Science.gov

Sample records for alfa-9802 gm-csf study

  1. Molecular cloning, sequencing and structural studies of granulocyte-macrophage colony-stimulating factor (GM-CSF) from Indian water buffalo (Bubalus bubalis).

    PubMed

    Sugumar, Thennarasu; Pugalenthi, Ganesan; Harishankar, Murugesan; Dhinakar Raj, G

    2014-02-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is essential for growth and development of progenitors of granulocytes and monocytes/macrophages. In this study, we report molecular cloning, sequencing and characterization of GM-CSF from Indian water buffalo, Bubalus bubalis. In addition, we performed sequence and structural analysis for buffalo GM-CSF. Buffalo GM-CSF has been compared with 17 mammalian GM-CSFs using multiple sequence alignment and phylogenetic tree. Three-dimensional model for buffalo GM-CSF and human receptor complex was built using homology modelling to study cross-reactivity between two species. Detailed analysis was performed to study GM-CSF interface and various interactions at the interface. © 2013 John Wiley & Sons Ltd.

  2. Assessment of serum levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) among non-segmental vitiligo patients: a pilot study.

    PubMed

    Abdellatif, Azmy Ahmed; Zaki, Amr Mohamed; Abdo, Hamed Mohamed; Aly, Dalia Gamal; Emara, Tarek Ahmed; El-Toukhy, Safinaz; Emam, Hanaa Mohamed; Abdelwahab, Mahetab Samir

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an essential factor in the growth and maturation of blood cells as well as modulation of the immune system. Few studies have investigated its involvement in the development of vitiligo, and no studies have been performed on Egyptian patients. To assess GM-CSF serum level among non-segmental Egyptian vitiligo patients and to determine its possible role in the etiopathogenesis of the disease. Forty patients with non-segmental vitiligo and 40 age- and sex-matched subjects were assessed for levels of GM-CSF in serum using the ELISA technique. The patients in this study showed lowerlevels ofGM-CSF in serum compared to controls (mean ± SD was 33.4 ± 5.7 pg/ml versus 63.4 ± 7.4 pg/ml, respectively, p = 0.0001). No appreciable relation was detected between levels of GM-CSF in serum and age, sex, family history, and stressful events or disease activity, type, and extent, p ˃ 0.05. GM-CSF serum level may be one of the determinants of the autoimmune hypothesis in the etiopathogenesis of non-segmental vitiligo.

  3. Construction of a recombinant human GM-CSF/MCAF fusion protein and study on itsin vitro andin vivo antitumor effects.

    PubMed

    Ye, Q; Su, G; Zhang, S; Huang, C

    1997-02-01

    A novel cytokine fusion protein was constructed by fusing granulocyte macrophage colony stimulating factor (GM-CSF) with monocyte chemotactic activating factor (MCAF), which acts as a factor directing effector cells (monocytes) to a target site. The recombinant human GM-CSF/MCAF fusion protein could sustain the growth of GMCSF-dependent cell line TF1 and was chemotactic for monocytes. Thein vitro antitumor effect showed that rhGM-CSF/MCAF could activate monocytes to inhibit the growth of several human tumor cell lines, including a promyelocyte leukemia cell line HL-60, a lung adenocarcinoma cell line A549, a hepatoma cell line SMMC-7721 and a melanoma cell line Bowes. Furthermore, the cytotoxicity of monocytes activated by rhGM-CSF/MCAF against HL-60 and A549 was greater than that activated by GM-CSF or MCAF alone, even greater than that activated by a combination of GM-CSF and MCAF, suggesting that the fusion protein has synergistic or enhanced effects. Thein vivo antitumor effect indicated that rhGM-CSF/MCAF had marked antitumor effect against A549 tumor in nude mice and even completely suppressed tumor formation. rhGM-CSF/MCAF was significantly more effective in inhibiting tumor growth than rhGM-CSF. Histological analysis showed that tumor site injected with rhGM-CSF/MCAF was infiltrated by a large number of monocytes while a sparse infiltration of monocytes was observed at the tumor site injected with rhGM-CSF or normal saline, suggesting that the antitumor effect of rhGM-CSF/MCAF was mediated by the recruitment of a large number of monocytes to the tumor site.

  4. Targeting GM-CSF in rheumatoid arthritis.

    PubMed

    Avci, Ali Berkant; Feist, Eugen; Burmester, Gerd-Rüdiger

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well-known as a haemopoietic growth factor. However, it is also essential in regulating functions of mature myeloid cells such as macrophages. Preclinical studies and observations of flares of arthritis in patients following GM-CSF treatment supported its important contribution to the pathogenesis of rheumatoid arthritis (RA). As the most advanced compound, mavrilimumab, a monoclonal antibody against GM-CSF receptor, has already completed phase II trials with a long term of follow-up period of 74 weeks. During this exposure period, an acceptable sustained safety and tolerability profile has been observed addressing the concerns of development of cytopenias or pulmonary alveolar proteinosis. Of note, a rapid and sustained efficacy and normalisation of acute phase reactants were consistently shown in studies both targeting GM-CSF and its receptor. Its tumour necrosis factor (TNF) independent mode of action with concurrent blockade of GM-CSF as well as IL-17 signalling reported from preclinical studies supports the assumption that it can be a useful biologic and an alternative agent in TNF inhibitor resistant patients with RA. Therefore, subsequent studies are warranted to investigate the safety and efficacy of GM-CSF blocking agents in different subgroups of RA.

  5. Enhancement of myeloperoxidase activity in WBCS in oral cancer patients treated with Granulocyte Macrophage Colony Stimulating Factor (GM-CSF)-A pilot study.

    PubMed

    Ananth, N; Balaji, G B; Vasudevan, D M; D'Souza, V; Rao, A V; Nambiar, D

    1998-07-01

    In a pilot study with five oral cancer patients undergoing radiotherapy (RT) three were given Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) as a protective agent to reduce the mucosal inflammation during radiotherapy. The myeloperoxidase (MPO) enzyme activity in WBC was quantitated. The three patients showed a significant increase in the MPO activity when compared with two untreated controls indicating the efficacy of GM-CSF as a protective agent. It is suggested that further detailed studies with larger number of patients would be useful.

  6. Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma

    PubMed Central

    Perales, Miguel-Angel; Yuan, Jianda; Powel, Sarah; Gallardo, Humilidad F.; Rasalan, Teresa S.; Gonzalez, Christina; Manukian, Gregor; Wang, Jian; Zhang, Yan; Chapman, Paul B.; Krown, Susan E.; Livingston, Philip O.; Ejadi, Samuel; Panageas, Katherine S.; Engelhorn, Manuel E.; Terzulli, Stephanie L.; Houghton, Alan N.; Wolchok, Jedd D.

    2014-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances immune responses by inducing dendritic cell proliferation, maturation, and migration and B and T lymphocyte expansion and differentiation. The potency of DNA vaccines can be enhanced by the addition of DNA encoding cytokines, acting as molecular adjuvants. We conducted a phase I/II trial of human GM-CSF DNA in conjunction with a multipeptide vaccine (gp100 and tyrosinase) in stage III/IV melanoma patients. Nineteen human leukocyte antigen (HLA)-A*0201(+) patients were treated. Three dose levels were studied: 100, 400, and 800 mcg DNA/injection, administered subcutaneously (SQ) every month with 500 mcg of each peptide. In the dose-ranging study, 3 patients were treated at each dose level. The remaining patients were then treated at the highest dose. Most toxicities were grade 1 injection site reactions. Eight patients (42%) developed CD8+ T-cell responses, defined by a ≥3 SD increase in baseline reactivity to tyrosinase or gp100 peptide in tetramer or intracellular cytokine staining assays. There was no relationship between dose and T-cell response. Responding T cells had an effector memory cell phenotype. Polyfunctional T cells were also demonstrated. At a median of 31 months follow-up, median survival has not been reached. Human GM-CSF DNA was found to be a safe adjuvant. PMID:18797450

  7. FEP regimen (epidoxorubicin, etoposide and cisplatin) in advanced gastric cancer, with or without low-dose GM-CSF: an Italian Trial in Medical Oncology (ITMO) study.

    PubMed Central

    Bajetta, E.; Di Bartolomeo, M.; Carnaghi, C.; Buzzoni, R.; Mariani, L.; Gebbia, V.; Comella, G.; Pinotti, G.; Ianniello, G.; Schieppati, G.; Bochicchio, A. M.; Maiorino, L.

    1998-01-01

    The new regimens developed over the last few years have led to an improvement in the treatment of advanced gastric cancer, and our previous experience confirmed the fact that the combination of etoposide, doxorubicin and cisplatin (EAP regimen) is an active treatment that leads to interesting complete remission rates. The primary end point of the present multicentre, randomized, parallel-group phase II study was to determine the activity of the simplified 2-day EAP schedule in patients with locally advanced or metastatic gastric cancer, and to verify whether the addition of low doses of granulocyte-macrophage colony-stimulating factor (GM-CSF) made it possible to increase dose intensity. Of the 62 enrolled patients, 30 were randomized to receive epirubicin 35 mg m(-2), etoposide 120 mg m(-2) and cisplatin 45 mg m(-2) (FEP) on days 1 and 2 every 28 days and 32 to receive the same schedule plus subcutaneous GM-CSF (molgramostin) 150 microg day(-1) on days 5-14 every 21 days. The patients were stratified by age and the number of disease sites. The characteristics of the patients were well balanced between the two groups. The objective response rate of the patients as a whole was 34% (21 out of 62; 95% confidence interval 22-46), with only one complete remission. The median response duration was 4.5 months (range 1-24 months). The median time to treatment failure was 5 months (range 1-14 months), without any difference between the two groups. The median survival of the patients as a whole was 9 months. Full doses were administered in 92% and 94% of the cycles in the control and GM-CSF arms respectively. The average dose intensity calculated for all drugs was 0.96% in the control and 1.27% in the GM-CSF group. CTC-NCI grade 3-4 neutropenia was reported in 39% vs 45% of patients, thrombocytopenia in 11% vs 35% (P = 0.020) and anaemia in 7% vs 35% (P = 0.014). The FEP combination is as active (OR: 34%) in the treatment of patients with advanced gastric cancer as the EAP

  8. Differentiation therapy in poor risk myeloid malignancies: Results of a dose finding study of the combination bryostatin-1 and GM-CSF.

    PubMed

    Smith, B Douglas; Jones, Richard J; Cho, Eunpi; Kowalski, Jeanne; Karp, Judith E; Gore, Steven D; Vala, Milada; Meade, Brooke; Baker, Sharyn D; Zhao, Ming; Piantadosi, Steven; Zhang, Zhe; Blumenthal, Gideon; Warlick, Erica D; Brodsky, Robert A; Murgo, Anthony; Rudek, Michelle A; Matsui, William H

    2011-01-01

    Pharmacologic differentiating agents have had relatively limited clinical success outside of the use of ATRA in acute promyelocytic leukemia and DNA methyltransferase inhibitors in myelodysplastic syndromes. The differentiating effects of such agents can be enhanced in combination with lineage-specific growth factors. We developed a dose finding trial to assess toxicity, differentiating activity, and clinical impact of the combination of bryostatin-1 and GM-CSF. Patients with poor risk myeloid malignancies were eligible to enroll in a dose finding study of continuous infusion bryostatin-1 combined with a fixed dose of daily GM-CSF. Toxicities were graded per NCI CTC version 2.0 and pharmacokinetic and correlative study samples were obtained to assess the combination's clinical and biologic differentiating effects. Thirty-two patients were treated with the combination therapy and the dose determined to be most suitable for study in a larger trial was continuous infusion broystatin-1 at 16μg/m(2) for 14 days and subcutaneous GM-CSF at 125μg/m(2) daily for 14 days every 28 days. Arthralgias and myalgias limited further dose escalation. Clinically, the combination impacted differentiation with improvement of absolute neutrophil counts (p=0.0001) in the majority of patients. Interestingly, there were two objective clinical responses, including a CR after a single cycle. Both the bryostatin-1 plasma concentrations and the correlative studies supported biologic activity of the combination at the doses where clinical responses were observed. Combining growth factors with pharmacologic differentiating agents may increase their clinical effectiveness and further studies should focus on such combinations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Differentiation therapy in poor risk myeloid malignancies: Results of a dose finding study of the combination bryostatin-1 and GM-CSF

    PubMed Central

    Smith, B. Douglas; Jones, Richard J.; Cho, Eunpi; Kowalski, Jeanne; Karp, Judith E.; Gore, Steven D.; Vala, Milada; Meade, Brooke; Baker, Sharyn D.; Zhao, Ming; Piantadosi, Steven; Zhang, Zhe; Blumenthal, Gideon; Warlick, Erica D.; Brodsky, Robert A.; Murgo, Anthony; Rudek, Michelle A.; Matsui, William H.

    2011-01-01

    Purpose Pharmacologic differentiating agents have had relatively limited clinical success outside of the use of ATRA in acute promyelocytic leukemia and DNA methyltransferase inhibitors in myelodysplastic syndromes. The differentiating effects of such agents can be enhanced in combination with lineage-specific growth factors. We developed a dose finding trial to assess toxicity, differentiating activity, and clinical impact of the combination of bryostatin-1 and GM-CSF. Experimental design Patients with poor risk myeloid malignancies were eligible to enroll in a dose finding study of continuous infusion bryostatin-1 combined with a fixed dose of daily GM-CSF. Toxicities were graded per NCI CTC version 2.0 and pharmacokinetic and correlative study samples were obtained to assess the combination’s clinical and biologic differentiating effects. Results Thirty-two patients were treated with the combination therapy and the dose determined to be most suitable for study in a larger trial was continuous infusion broystatin-1 at 16 µg/m2 for 14 days and subcutaneous GM-CSF at 125 µg/m2 daily for 14 days every 28 days. Arthralgias and myalgias limited further dose escalation. Clinically, the combination impacted differentiation with improvement of absolute neutrophil counts (p = 0.0001) in the majority of patients. Interestingly, there were two objective clinical responses, including a CR after a single cycle. Both the bryostatin-1 plasma concentrations and the correlative studies supported biologic activity of the combination at the doses where clinical responses were observed. Conclusions Combining growth factors with pharmacologic differentiating agents may increase their clinical effectiveness and further studies should focus on such combinations. PMID:20598742

  10. Immunogenicity of granulocyte-macrophage colony-stimulating factor (GM-CSF) products in patients undergoing combination therapy with GM-CSF.

    PubMed

    Wadhwa, M; Skog, A L; Bird, C; Ragnhammar, P; Lilljefors, M; Gaines-Das, R; Mellstedt, H; Thorpe, R

    1999-06-01

    In this study, we have assessed the development of neutralizing and nonneutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in two groups of patients with metastatic colorectal carcinoma receiving two different GM-CSF products. Three clinical trials were carried out, and a combination of GM-CSF and a colon carcinoma-reactive antibody was used in the absence of any concomitant chemotherapy. Two different GM-CSF products, both rDNA-derived and produced in Escherichia coli, were used. Patients in Trial 1 received product X, and those in Trials 2 and 3 received product Y. Patients in Trial 2 also received interleukin 2 in an attempt to potentiate immune responses. After the first cycle of treatment, no GM-CSF antibodies were detected, but on subsequent therapy, 28 of the 38 patients tested receiving product Y (Trials 2 and 3) developed antibodies that bound to the GM-CSF product used for therapy. However, none of the patients developed antibodies that neutralized the biological activity of GM-CSF, as assessed using an in vitro bioassay. Furthermore, there was no in vivo impairment in GM-CSF-induced expansion of leukocytes, neutrophils, and eosinophils in the patients. In contrast, 19 of the 20 patients given product X (Trial 1) developed GM-CSF binding antibodies, and 9 of these patients were shown to develop antibodies that neutralized the biological activity of GM-CSF. The presence of the latter was associated with a significant reduction in GM-CSF-induced expansion of leukocytes, neutrophils, and eosinophils in patients. Therefore, product X appears to be more immunogenic than product Y. Immunochemical characterization confirmed that the specificity of the antibody responses varied depending on the product used for therapy. Whereas sera from Trial 1 patients treated with product X showed the presence of antibodies with strong recognition of GM-CSF proteins, sera from patients treated with product Y showed varied recognition of GM-CSF

  11. Delivery of GM-CSF to Protect against Influenza Pneumonia

    PubMed Central

    Subramaniam, Renuka; Hillberry, Zachary; Chen, Han; Feng, Yan; Fletcher, Kalyn; Neuenschwander, Pierre; Shams, Homayoun

    2015-01-01

    Background Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV) pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza. Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) contributes to maturation of mononuclear phagocytes, enhancing their capacity for phagocytosis and cytokine production. Results Overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) in the lung of transgenic mice provides remarkable protection against IAV, which depends on alveolar macrophages (AM). In this study, we report that pulmonary delivery of GM-CSF to wild type young and aged mice abrogated mortality from IAV. Conclusion We also demonstrate that protection is species specific and human GM-CSF do not protect the mice nor stimulates mouse immunity. We also show that IAV-induced lung injury is the culprit for side-effects of GM-CSF in treating mice after IAV infection, and introduce a novel strategy to deliver the GM-CSF to and retain it in the alveolar space even after IAV infection. PMID:25923215

  12. Mistletoe treatment induces GM-CSF- and IL-5 production by PBMC and increases blood granulocyte- and eosinophil counts: a placebo controlled randomized study in healthy subjects.

    PubMed

    Huber, Roman; Rostock, M; Goedl, R; Lüdtke, R; Urech, K; Buck, S; Klein, R

    2005-10-18

    Various immunological effects have been reported during application of mistletoe preparations. Because these data are heterogeneous, we performed a placebo controlled study to investigate (1) effects on peripheral granulocyte and eosinophil counts, (2) related cytokine levels and (3) whether effects are related to mistletoe lectin (ML). 43 volunteers were randomized to receive the mistletoe plant extract Iscador Quercus spezial (IQ), purified ML, IQ which was depleted from ML, or placebo subcutaneously twice per week for 8 weeks. Weekly, differential blood count and every four weeks spontaneous and IQ- and ML-induced cytokine production by peripheral blood mononuclear cells (PBMC) were analyzed. Leukocyte-, granulocyte-, and eosinophil counts were significantly higher during treatment in the IQ- and ML-groups than in the placebo group. Furthermore, a significant increase of antigen-induced production of GM-CSF, IL-5 and IFNgamma by PBMC was observed in the IQ- and ML-group but not in the groups receiving ML-depleted IQ or placebo. Severe side effects did not occur in any of the subjects. Treatment with IQ or ML stimulates the production of GM-CSF, IL-5 and IFNgamma by PBMC, and this is accompanied by an increase of eosinophil- and granulocyte-counts. These observations may, therefore, open rational therapeutic indications for mistletoe extracts.

  13. Low doses of GM-CSF (molgramostim) and G-CSF (filgrastim) after cyclophosphamide (4 g/m2) enhance the peripheral blood progenitor cell harvest: results of two randomized studies including 120 patients

    PubMed Central

    Quittet, Philippe; Ceballos, Patrice; Lopez, Ernesto; Lu, Zhao-Yang; Latry, Pascal; Becht, Catherine; Legouffe, Eric; Fegueux, Nathalie; Exbrayat, Carole; Pouessel, Damien; Rouillé, Valérie; Daures, Jean-Pierre; Klein, Bernard; Rossi, Jean-François

    2006-01-01

    The use of a combination of G-CSF and GM-CSF to G-CSF alone, after cyclophosphamide (4g/m2) was compared in 2 randomized phase III studies, including 120 patients. In study A, 60 patients received 5 × 2 μg/kg/day of G-CSF and GM-CSF compared to 5 μg/kg/day of G-CSF. In study B, 60 patients received 2.5 × 2 μg/kg/day G-CSF and GM-CSF compared to G-CSF alone (5 μg/kg/day). With the aim to collect at least 5 × 106/kg CD34 cells in a maximum of 3 large volume leukapherisis (LK), 123 LK were performed in study A, showing significant higher number of patients reaching 10 × 106/kg CD34 cells (21/29 in G+GM-CSF arm vs 11/27 in G-CSF arm, P= .00006). In study B, 109 LK were performed, with similar results (10/27 vs 15/26, P= .003). In both the study, the total harvest of CD34 cells/kg was 2-fold higher in G-CSF plus GM-CSF group (18.3 × 106 in study A and 15.85 × 106 in study B) than in G-CSF group (9 × 106 in study A and 8.1 × 106 in study B), a difference particularly seen in multiple myeloma, with no significant difference in terms of mobilized myeloma cells between G-CSF and GM-CSF groups. PMID:16883311

  14. Immune response to hepatitis B vaccine in HIV-infected subjects using granulocyte-macrophage colony-stimulating factor (GM-CSF) as a vaccine adjuvant: ACTG study 5220.

    PubMed

    Overton, E T; Kang, M; Peters, M G; Umbleja, T; Alston-Smith, B L; Bastow, B; Demarco-Shaw, D; Koziel, M J; Mong-Kryspin, L; Sprenger, H L; Yu, J Y; Aberg, J A

    2010-08-02

    HIV-infected persons are at risk for HBV co-infection which is associated with increased morbidity and mortality. Unfortunately, protective immunity following HBV vaccination in HIV-infected persons is poor. This randomized, phase II, open-label study aimed to evaluate efficacy and safety of 40 mcg HBV vaccine with or without 250 mcg GM-CSF administered at day 0, weeks 4 and 12. HIV-infected individuals >or=18 years of age, CD4 count >or=200 cells/mm(3), seronegative for HBV and HCV, and naïve to HBV vaccination were eligible. Primary endpoints were quantitative HBsAb titers and adverse events. The study enrolled 48 subjects. Median age and baseline CD4 were 41 years and 446 cells/mm(3), 37 were on ART, and 26 subjects had undetectable VL. Vaccination was well tolerated. Seven subjects in the GM-CSF arm reported transient grade >or=2 signs/symptoms (six grade 2, one grade 3), mostly aches and nausea. GM-CSF had no significant effect on VL or CD4. Four weeks after vaccination, 26 subjects (59%) developed a protective antibody response (HBsAb >or=10 mIU/mL; 52% in the GM-CSF arm and 65% in the control arm) without improved Ab titer in the GM-CSF vs. control arm (median 11 mIU/mL vs. 92 mIU/mL, respectively). Response was more frequent in those with CD4 >or=350 cells/mm(3) (64%) than with CD4 <350 cells/mm(3) (50%), though not statistically significant. GM-CSF as an adjuvant did not improve the Ab titer or the development of protective immunity to HBV vaccination in those receiving an accelerated vaccine schedule. Given the common routes of transmission for HIV and HBV, additional HBV vaccine research is warranted. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. A Feasibility Study of Cyclophosphamide, Trastuzumab, and an Allogeneic GM-CSF-secreting Breast Tumor Vaccine for HER-2+ Metastatic Breast Cancer

    PubMed Central

    Chen, G; Gupta, R; Petrik, S; Laiko, M; Leatherman, JM; Asquith, JM; Daphtary, MM; Garrett-Mayer, E; Davidson, NE; Hirt, K; Berg, M; Uram, JN; Dauses, T; Fetting, J; Duus, EM; Atay-Rosenthal, S; Ye, X; Wolff, AC; Stearns, V; Jaffee, EM; Emens, LA

    2014-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor vaccines are bioactive, but limited by disease burden and immune tolerance. Cyclophosphamide (CY) augments vaccine activity in tolerant neu mice and metastatic breast cancer (MBC) patients. HER-2-specific monoclonal antibodies (MAb) enhance vaccine activity in neu mice. We hypothesized that CY-modulated vaccination with HER-2-specific MAb safely induces relevant HER-2-specific immunity in neu mice and HER-2+ MBC patients. Adding both CY and the HER-2-specific MAb 7.16.4 to vaccination maximized HER-2-specific CD8+ T-cell immunity and tumor-free survival in neu transgenic mice. We therefore conducted a single arm feasibility study of CY, an allogeneic HER-2+ GM-CSF-secreting breast tumor vaccine, and weekly trastuzumab in 20 HER-2+ MBC patients. Primary clinical trial objectives were safety and clinical benefit (CB), in which CB represents complete response+partial response+stable disease. Secondary study objectives were to assess HER-2-specific T-cell responses by delayed type hypersensitivity (DTH) and intracellular cytokine staining. Subjects received three monthly vaccinations, with a boost 6-8 months from trial entry. This combination immunotherapy was safe, with CB rates at 6 months and 1 year of 55% (95% CI:32-77%, p=0.013) and 40% (95% CI:19-64%) respectively. Median progression-free survival (PFS) and overall survival (OS) were 7 (95% CI:4-16) and 42 months (95% CI:22-70) respectively. Increased HER-2-specific DTH developed in 7/20 subjects (of whom 4 had CB (95% CI:18-90)), with a trend toward longer PFS and OS in DTH responders. Polyfunctional HER-2-specific CD8+ T cells progressively expanded across vaccination cycles. Further investigation of CY-modulated vaccination with trastuzumab is warranted. (Clinicaltrials.gov identifier: NCT00399529) PMID:25116755

  16. GM-CSF: a role in immune and inflammatory reactions in the intestine

    PubMed Central

    Egea, Laia; Hirata, Yoshihiro; Kagnoff, Martin F

    2012-01-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a cytokine that promotes myeloid cell development and maturation, and dendritic cell differentiation and survival in vitro. Growing evidence supports the notion that GM-CSF has a major role in some inflammatory and autoimmune reactions and in the host’s response to pulmonary infection, but few studies have addressed its functions and importance in the GI tract. Recent studies demonstrated that administration of GM-CSF can result in clinical improvement in patients with Crohn’s disease. Mice deficient in GM-CSF (GM-CSF−/−) developed more severe intestinal and systemic infection after an enteric infection, and more severe colitis in response to enteric exposure to dextran sodium sulfate. Both the severity of infection and colitis were largely prevented by GM-CSF administration. Such studies indicate that GM-CSF has an important role in the regulation of intestinal immune and inflammatory responses. PMID:21108592

  17. GM-CSF alters dendritic cells in autoimmune diseases.

    PubMed

    Li, Bao-Zhu; Ye, Qian-Ling; Xu, Wang-Dong; Li, Jie-Hua; Ye, Dong-Qing; Xu, Yuekang

    2013-11-01

    Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.

  18. Production of neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in carcinoma patients following GM-CSF combination therapy.

    PubMed

    Wadhwa, M; Bird, C; Fagerberg, J; Gaines-Das, R; Ragnhammar, P; Mellstedt, H; Thorpe, R

    1996-05-01

    In this study, the development of neutralizing and non-neutralizing GM-CSF antibodies and the clinical consequences related to the induction of these antibodies were analysed in 20 patients with metastatic colorectal carcinoma receiving a combination therapy of Escherichia coli-derived GM-CSF and a colon carcinoma-reactive MoAb in the absence of any concomitant chemotherapy. The recombinant human GM-CSF was administered subcutaneously for 10 days every month for 4 months. Following the first cycle of treatment, no GM-CSF antibodies were detected, but during subsequent therapy, 19 of the 20 patients studied developed GM-CSF binding antibodies. However, only a proportion (40%) of the 19 antibody-positive patients developed antibodies that neutralized the biological activity of GM-CSF in an in vitro bioassay. The presence of GM-CSF neutralizing antibodies was associated with a significant reduction in GM-CSF-induced expansion of leucocytes, neutrophils and eosinophils. Such clinical effects were not apparent in patients with non-neutralizing antibodies. Further characterization of sera from patients with neutralizing antibodies showed that, in most cases, the antibodies neutralized the biological activity of GM-CSF preparations derived using different expression systems (Chinese hamster ovary cells and yeast), suggesting that these antibodies may have the potential to cross-react with endogenously produced GM-CSF. These effects should be considered before therapeutic use of cytokines, particularly in patients who are not immunosuppressed, and therefore capable of mounting an effective immune response. Our results indicate that assessment of production of neutralizing antibodies induced during cytokine therapy can be used to predict diminished clinical response to further therapy.

  19. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity.

    PubMed

    Isik, Gözde; van Montfort, Thijs; Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A; Sanders, Rogier W

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF) chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF) proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF) should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  20. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    PubMed Central

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  1. GM-CSF and GM-CSF receptor have regulatory role in transforming rat mesenteric mesothelial cells into macrophage-like cells.

    PubMed

    Katz, Sándor; Zsiros, Viktória; Dóczi, Nikolett; Szabó, Arnold; Biczó, Ádám; Kiss, Anna L

    2016-10-01

    During peritonitis, mesothelial cells assume macrophage characteristics, expressing macrophage markers, indicating that they might differentiate into macrophage-like cells. Twenty-five male rats were used for in vivo experiments. For in vitro experiments, a primary mesentery culture model was developed. The mesothelial cell to macrophage-like cell transition was followed by studying ED1 expression. In vitro primary mesenteric culture was treated with granulocyte-macrophage colony-stimulating factor (GM-CSF, 1 ng/ml). Blocking internalization of receptor-ligand complex, Dynasore (80 µM) was used. Acute peritonitis was induced by Freund's adjuvant's (1 ml) intraperitoneal injection. Immunohistochemistry: GM-CSF in vitro treatment resulted in a prominent ED1 expression in transformed mesothelial cells. Blocking the internalization, ED1 expression could not be detected. GM-CSF receptor (both α and β) was expressed in mesothelial cells in vitro (even if the GM-CSF was not present) and in vivo. Inflammation resulted in an increasing GM-CSF and GM-CSF-receptor level in the lysate of mesothelial cells. Mesothelial cells can differentiate into macrophage-like cells, and GM-CSF, produced by the mesothelial cells, has probably an autocrine regulatory role in this transition. Our results provide new data about the plasticity of mesothelial cell and support the idea that during inflammation macrophages can derive from non-hematopoietic sources as well.

  2. GM-CSF Induces Inflammatory Macrophages by Regulating Glycolysis and Lipid Metabolism.

    PubMed

    Na, Yi Rang; Gu, Gyo Jung; Jung, Daun; Kim, Young Won; Na, Juri; Woo, Jin Sun; Cho, Joo Youn; Youn, Hyewon; Seok, Seung Hyeok

    2016-11-15

    GM-CSF induces proinflammatory macrophages, but the underlying mechanisms have not been studied thus far. In this study, we investigated the mechanisms of how GM-CSF induces inflammatory macrophages. First, we observed that GM-CSF increased the extent of LPS-induced acute glycolysis in murine bone marrow-derived macrophages. This directly correlates with an inflammatory phenotype because glycolysis inhibition by 2-deoxyglucose abolished GM-CSF-mediated increase of TNF-α, IL-1β, IL-6, and IL-12p70 synthesis upon LPS stimulation. Increased glycolytic capacity is due to de novo synthesis of glucose transporter (GLUT)-1, -3, and -4, as well as c-myc. Meanwhile, GM-CSF increased 3-hydroxy-3-methyl-glutaryl-CoA reductase, which is the rate-limiting enzyme of the mevalonate pathway. Inhibition of acute glycolysis or 3-hydroxy-3-methyl-glutaryl-CoA reductase abrogated the inflammatory effects of GM-CSF priming in macrophages. Finally, mice with inflamed colons exposed to dextran sodium sulfate containing GLUT-1(high) macrophages led to massive uptake of [(18)F]-fluorodeoxyglucose, but GM-CSF neutralization reduced the positron-emission tomography signal in the intestine and also decreased GLUT-1 expression in colonic macrophages. Collectively, our results reveal glycolysis and lipid metabolism created by GM-CSF as the underlying metabolic constructs for the function of inflammatory macrophages. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. [Granulocyte-macrophage colony-stimulating factor (GM-CSF), preclinical and phase I clinical investigations].

    PubMed

    Shen, B; Yang, Z; Xu, J

    1996-09-01

    To conduct preclinical studies and phase I trial of the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF). Pharmacodynamics, pharmacokinetic and toxicology of the rhGM-CSF were studied in animal models, and the safety was also evaluated in humans. The human bone marrow cells could be stimulated by purified rhGM-CSF to form multilineage colonies (CFU-GM and BFU-E). The rhGM-CSF administered for 7 days to Beagle dogs and monkeys subjected to 60Co r-ray irradiation was shown to induce both rapid and sustained increase in circulating leukocyte counts. Toxicology testing showed that the LD50 (i.v) was over 5000 micrograms/kg, and LD50 (i.p) over 10000 micrograms/kg in mice. Administration of the rhGM-CSF in excess of four times as much as clinical dosages was not associated with severe chronic toxicities. Most injected rhGM-CSF was excreted from urine, and did not accumulate in the body. In the phase I clinical trial, injecting 2.5-7.5 micrograms/day of rhGM-CSF was safe. It is effective and safe to use rhGM-CSF in the treatment of leukocytopenia.

  4. The granulocyte macrophage colony stimulating factor (GM-CSF) regulates amyloid beta (Abeta) production.

    PubMed

    Volmar, Claude-Henry; Ait-Ghezala, Ghania; Frieling, Jeremy; Paris, Daniel; Mullan, Michael J

    2008-06-01

    One of the hallmarks of Alzheimer's disease (AD) is the accumulation of amyloid beta (Abeta) plaques in the brain parenchyma. An inflammatory component to AD has been suggested in association with increased cytokine release. We have previously shown that CD40L stimulation of microglia induces increases in pro-inflammatory cytokines such as interleukin-1beta (IL-1beta), IL-6, IL-8 and GM-CSF. We have also shown that CD40L stimulation increases Abeta levels in HEK-293 cells over-expressing both the amyloid precursor protein (APP) and CD40 (HEK/APPsw/CD40). In this study, we show that GM-CSF neutralizing antibodies mitigate the CD40L-induced production of Abeta in HEK/APPsw/CD40 cells. In addition, we demonstrate that treatment of these cells with recombinant GM-CSF significantly increases Abeta levels. Furthermore, we show that shRNA silencing of the GM-CSF receptor gene significantly reduces Abeta levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Analysis of cell surface proteins revealed that silencing of the GM-CSF receptor also decreases APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). Taken together, our results suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Abeta production by influencing APP trafficking. GM-CSF signaling may be a suitable therapeutic target against Abeta production in AD.

  5. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer.

    PubMed

    Ma, Ning; Liu, Qilin; Hou, Lin; Wang, Yalin; Liu, Ziling

    2017-06-01

    Chronic inflammation is thought to be a major driving force for the development of colitis-associated colorectal cancer (CAC). As one member of proinflammatory cytokine family, granulocyte macrophage colony-stimulating factor (GM-CSF) has been identified to play a key role in CAC pathogenesis recently. The underlying mechanisms, however, remain largely unknown. In this study, we found that myeloid-derived suppressor cells (MDSCs) accumulated increasingly in the lesions during the progression from colitis to cancer, which was critical for CAC formation. Importantly, this MDSC accumulation was controlled by GM-CSF. MDSC number decreased significantly in GM-CSF-deficient mice suffering from CAC induction, and transfusion of MDSCs from wild-type CAC-bearing mice into GM-CSF-deficient counterparts led to recurrence of CAC. Furthermore, the supernatants of CAC lesions or GM-CSF alone was sufficient to differentiate hematopoietic precursors into MDSCs. Addition of neutralizing anti-GM-CSF antibody impaired the MDSC-differentiating effects of the supernatants of CAC lesions. Overall, these findings shed new insights into the mechanisms of GM-CSF underlying CAC development, by inducing/recruiting CAC-promoting MDSCs. Blocking GM-CSF activity or MDSC function may represent new therapeutic strategies for CAC in clinic.

  6. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances cumulus cell expansion in bovine oocytes

    PubMed Central

    2013-01-01

    Background The objectives of the study were to characterize the expression of the α- and β-subunits of granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in bovine cumulus cells and oocytes and to determine the effect of exogenous GM-CSF on cumulus cells expansion, oocyte maturation, IGF-2 transcript expression and subsequent competence for embryonic development. Methods Cumulus-oocyte complexes (COC) were obtained by aspirating follicles 3- to 8-mm in diameter with an 18 G needle connected to a vacuum pump at −50 mmHg. Samples of cumulus cells and oocytes were used to detect GM- CSF receptor by immunofluorescence. A dose–response experiment was performed to estimate the effect of GM-CSF on cumulus cell expansion and nuclear/cytoplasmic maturation. Also, the effect of GM-CSF on IGF-2 expression was evaluated in oocytes and cumulus cells after in vitro maturation by Q-PCR. Finally, a batch of COC was randomly assigned to in vitro maturation media consisting of: 1) synthetic oviductal fluid (SOF, n = 212); 2) synthetic oviductal fluid supplemented with 100 ng/ml of GM-CSF (SOF + GM-CSF, n = 224) or 3) tissue culture medium (TCM 199, n = 216) and then subsequently in vitro fertilized and cultured for 9 days. Results Immunoreactivity for both α and β GM-CSF receptors was localized in the cytoplasm of both cumulus cells and oocytes. Oocytes in vitro matured either with 10 or 100 ng/ml of GM-CSF presented a higher (P < 0.05) cumulus cells expansion than that of the control group (0 ng/ml of GM-CSF). GM-CSF did not affect the proportion of oocytes in metaphase II, cortical granules dispersion and IGF-2 expression. COC exposed to 100 ng/ml of GM-CSF during maturation did not display significant differences in terms of embryo cleavage rate (50.4% vs. 57.5%), blastocyst development at day 7 (31.9% vs. 28.7%) and at day 9 (17.4% vs. 17.9%) compared to untreated control (SOF alone, P = 0.2). Conclusions GM-CSF enhanced cumulus

  7. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances cumulus cell expansion in bovine oocytes.

    PubMed

    Peralta, Oscar A; Bucher, Danai; Fernandez, Ana; Berland, Marco; Strobel, Pablo; Ramirez, Alfredo; Ratto, Marcelo H; Concha, Ilona

    2013-06-24

    The objectives of the study were to characterize the expression of the α- and β-subunits of granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in bovine cumulus cells and oocytes and to determine the effect of exogenous GM-CSF on cumulus cells expansion, oocyte maturation, IGF-2 transcript expression and subsequent competence for embryonic development. Cumulus-oocyte complexes (COC) were obtained by aspirating follicles 3- to 8-mm in diameter with an 18 G needle connected to a vacuum pump at -50 mmHg. Samples of cumulus cells and oocytes were used to detect GM- CSF receptor by immunofluorescence. A dose-response experiment was performed to estimate the effect of GM-CSF on cumulus cell expansion and nuclear/cytoplasmic maturation. Also, the effect of GM-CSF on IGF-2 expression was evaluated in oocytes and cumulus cells after in vitro maturation by Q-PCR. Finally, a batch of COC was randomly assigned to in vitro maturation media consisting of: 1) synthetic oviductal fluid (SOF, n = 212); 2) synthetic oviductal fluid supplemented with 100 ng/ml of GM-CSF (SOF + GM-CSF, n = 224) or 3) tissue culture medium (TCM 199, n = 216) and then subsequently in vitro fertilized and cultured for 9 days. Immunoreactivity for both α and β GM-CSF receptors was localized in the cytoplasm of both cumulus cells and oocytes. Oocytes in vitro matured either with 10 or 100 ng/ml of GM-CSF presented a higher (P < 0.05) cumulus cells expansion than that of the control group (0 ng/ml of GM-CSF). GM-CSF did not affect the proportion of oocytes in metaphase II, cortical granules dispersion and IGF-2 expression. COC exposed to 100 ng/ml of GM-CSF during maturation did not display significant differences in terms of embryo cleavage rate (50.4% vs. 57.5%), blastocyst development at day 7 (31.9% vs. 28.7%) and at day 9 (17.4% vs. 17.9%) compared to untreated control (SOF alone, P = 0.2). GM-CSF enhanced cumulus cell expansion of in vitro matured bovine

  8. Production of GM-CSF mediated by cysteine protease of Der f in canine keratinocytes.

    PubMed

    Kimura, Tsuyoshi; Sekido, Machiko; Chimura, Naoki; Shibata, Sanae; Kondo, Naho; Kamishina, Harumi; Kamishina, Hiroaki; Maeda, Sadatoshi

    2012-08-01

    House dust mite (HDM) allergens are the most common allergens for induction of IgE-mediated hypersensitivity. Recently, epicutaneous sensitization with HDM allergens has been emphasized in the development of atopic dermatitis (AD) by producing various soluble factors in keratinocytes. Among the soluble factors, GM-CSF is a key molecule that activates Langerhans cells, antigen-presenting cells in the epidermis. In the present study, we investigated the effects of Dermatophagoides farinae (Der f) on GM-CSF production in a canine keratinocyte cell line, CPEK. CPEKs were found to produce GM-CSF upon stimulation by Der f. The GM-CSF production was suppressed by addition of a cysteine protease inhibitor. The present results suggest that cysteine protease-derived Der f may be an initiator of allergic inflammation by inducing the production of GM-CSF in keratinocytes.

  9. Biological Effects of Anti-Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Antibody Formation in Patients Treated With GM-CSF (Sargramostim) as Adjuvant Therapy of Melanoma.

    PubMed

    Spitler, Lynn E; Cao, Huynh; Piironen, Timo; Whiteside, Theresa L; Weber, Robert W; Cruickshank, Scott

    2017-04-01

    We investigated the development of binding and neutralizing antibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients receiving prolonged therapy with GM-CSF as adjuvant therapy of melanoma and the impact of these antibodies on biological effects. Fifty-three patients with high-risk melanoma that had been surgically excised were treated with GM-CSF, 125 μg/m daily for 14 days every 28 days for 1 year after surgical resection of disease. Serum samples for antibodies to GM-CSF were measured before treatment and on study days 155 and 351. Blood draws for testing biological effects were keyed to GM-CSF administration: days 0 (before), 15 (after 14 d on GM-CSF), 29 (after 14 d off GM-CSF), 155, and 351 (after 14 d on GM-CSF in the sixth and 13th cycle of treatment). Of 53 patients enrolled, 43 were evaluable for the development of anti-GM-CSF antibodies. Of these, 93% developed binding antibodies and 42% developed both binding and neutralizing antibodies. The increase in the white blood cell count, percent eosinophils, or neopterin levels engendered by GM-CSF administration was abrogated or markedly decreased in patients with neutralizing antibodies but not in patients who developed only binding antibodies. Ninety-three percent of patients with melanoma treated with GM-CSF as adjuvant therapy develop antibodies to GM-CSF. In those with neutralizing antibodies, a diminution of the biological effects of GM-CSF was observed. The development of neutralizing antibodies might also abrogate the potential clinical benefit of this treatment and should be considered in the design of future clinical trials.

  10. Expression of granulocyte-macrophage colony stimulating factor (GM-CSF) in male germ cells: GM-CSF enhances sperm motility.

    PubMed

    Vilanova, Lourdes T; Rauch, M Cecilia; Mansilla, Alejandra; Zambrano, Angara; Brito, Mónica; Werner, Enrique; Alfaro, Víctor; Cox, José F; Concha, Ilona I

    2003-10-01

    The granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine capable of stimulating proliferation, maturation and function of hematopoietic cells. Receptors for this cytokine are composed of two subunits, alpha and beta, and are expressed on myeloid progenitors and mature mononuclear phagocytes, monocytes, eosinophils and neutrophils, as well as in other nonhematopietic cells. We have recently demonstrated that bull spermatozoa express functional GM-CSF receptors that signal for increased glucose and Vitamin C uptake. In this study, we analyzed the expression of GM-CSF in bovine and human germ cells and its influence in bovine sperm motility. Reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization and immunoblotting analysis demonstrated that adult bovine and human testes expressed GM-CSF. In addition, immunolocalization studies confirmed the presence of GM-CSF in the germ cell line in bovine and human testes. Computer-assisted evaluation of patterns of sperm motility demonstrated that the addition of GM-CSF enhances several parameters of sperm motility in the presence of glucose or fructose substrates.

  11. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation.

    PubMed

    Becher, Burkhard; Tugues, Sonia; Greter, Melanie

    2016-11-15

    The granulocyte-macrophage colony-stimulating factor (GM-CSF) was initially classified as a hematopoietic growth factor. However, unlike its close relatives macrophage CSF (M-CSF) and granulocyte CSF (G-CSF), the majority of myeloid cells do not require GM-CSF for steady-state myelopoiesis. Instead, in inflammation, GM-CSF serves as a communication conduit between tissue-invading lymphocytes and myeloid cells. Even though lymphocytes are in all likelihood the instigators of chronic inflammatory disease, GM-CSF-activated phagocytes are well equipped to cause tissue damage. The pivotal role of GM-CSF at the T cell:myeloid cell interface might shift our attention toward studying the function of the myeloid compartment in immunopathology. Targeting specifically the crosstalk between T cells and myeloid cells through GM-CSF holds promise for the development of therapeutics to combat chronic tissue inflammation. Here, we will review some of the major discoveries of the recent past, which indicate that GM-CSF is so much more than its name suggests. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    SciTech Connect

    Koshida, Ryusuke Oishi, Hisashi Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  13. Cloning of canine GM-CSF and SCF genes.

    PubMed

    Shin, I S; Nam, M J; Park, S J; Youn, H Y; Han, H R

    2001-12-01

    Cytokines have pleiotropic regulatory effects on hematopoietic cells and many other cell types that participate in host defence and repair processes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates the growth and differentiation of granulocytes and macrophages and regulates the biological functions expressed by mature cells of these lineages. Stem cell factor (SCF) is a multifunctional cytokine involved in hematopoiesis, melanogenesis and gametogenesis. In order to determine the complementary DNA (cDNA) of canine GM-CSF and canine SCF, cDNA clones were generated from lipopolysaccharide (LPS) stimulated peripheral blood mononuclear cells (PBMCs) and bone marrow cells by reverse transcription PCR amplification. The canine GM-CSF cDNA obtained in this study contains an open reading frame encoding 144 amino acid residues and has 53-75% homology with those of human, cat, sheep, pig, cow and mouse, Canine SCF cDNA consist of an open reading frame encoding 274 amino acid residues and shares 81-92% homology with those of human, cat, pig, cow and mouse.

  14. GM-CSF produced by the airway epithelium is required for sensitization to cockroach allergen

    PubMed Central

    Sheih, Alyssa; Parks, William C.; Ziegler, Steven F.

    2016-01-01

    Airway epithelial cells are among the first to encounter inhaled allergens and can initiate allergic responses by producing pro-Th2 innate cytokines. In this study, we investigated the role of epithelial-derived cytokines in sensitization to a clinically relevant allergen, cockroach allergen (CRA). Among the epithelial-derived cytokines, GM-CSF played a central role in the initiation of Th2 allergic responses to CRA. We show that initial exposure to CRA directly activated airway epithelial cells through a TLR4-MyD88-dependent pathway and MyD88 signaling in epithelial cells induced upregulation of GM-CSF during sensitization. Epithelial-derived GM-CSF was required for allergic sensitization and selectively restored Th2 responses in the absence of MyD88. Thus, we demonstrate that epithelial-derived GM-CSF is a critical early signal during allergic sensitization to CRA. PMID:27731325

  15. GM-CSF Enhances Macrophage Glycolytic Activity In Vitro and Improves Detection of Inflammation In Vivo

    PubMed Central

    Singh, Parmanand; González-Ramos, Silvia; Mojena, Marina; Rosales-Mendoza, César Eduardo; Emami, Hamed; Swanson, Jeffrey; Morss, Alex; Fayad, Zahi A.; Rudd, James H.F.; Gelfand, Jeffrey; Paz-García, Marta; Martín-Sanz, Paloma; Boscá, Lisardo

    2016-01-01

    18F-FDG accumulates in glycolytically active tissues and is known to concentrate in tissues that are rich in activated macrophages. In this study, we tested the hypotheses that human granulocyte-macrophage colony-stimulating factor (GM-CSF), a clinically used cytokine, increases macrophage glycolysis and deoxyglucose uptake in vitro and acutely enhances 18F-FDG uptake within inflamed tissues such as atherosclerotic plaques in vivo. Methods: In vitro experiments were conducted on human macrophages whereby inflammatory activation and uptake of radiolabeled 2-deoxyglucose was assessed before and after GM-CSF exposure. In vivo studies were performed on mice and New Zealand White rabbits to assess the effect of GM-CSF on 18F-FDG uptake in normal versus inflamed arteries, using PET. Results: Incubation of human macrophages with GM-CSF resulted in increased glycolysis and increased 2-deoxyglucose uptake (P < 0.05). This effect was attenuated by neutralizing antibodies against tumor necrosis factor–α or after silencing or inhibition of 6-phosphofructo-2-kinase. In vivo, in mice and in rabbits, intravenous GM-CSF administration resulted in a 70% and 73% increase (P < 0.01 for both), respectively, in arterial 18F-FDG uptake in atherosclerotic animals but not in nonatherosclerotic controls. Histopathologic analysis demonstrated a significant correlation between in vivo 18F-FDG uptake and macrophage staining (R = 0.75, P < 0.01). Conclusion: GM-CSF substantially augments glycolytic flux in vitro (via a mechanism dependent on ubiquitous type 6-phosphofructo-2-kinase and tumor necrosis factor–α) and increases 18F-FDG uptake within inflamed atheroma in vivo. These findings demonstrate that GM-CSF can be used to enhance detection of inflammation. Further studies should explore the role of GM-CSF stimulation to enhance the detection of inflammatory foci in other disease states. PMID:27081166

  16. GM-CSF Enhances Macrophage Glycolytic Activity In Vitro and Improves Detection of Inflammation In Vivo.

    PubMed

    Singh, Parmanand; González-Ramos, Silvia; Mojena, Marina; Rosales-Mendoza, César Eduardo; Emami, Hamed; Swanson, Jeffrey; Morss, Alex; Fayad, Zahi A; Rudd, James H F; Gelfand, Jeffrey; Paz-García, Marta; Martín-Sanz, Paloma; Boscá, Lisardo; Tawakol, Ahmed

    2016-09-01

    (18)F-FDG accumulates in glycolytically active tissues and is known to concentrate in tissues that are rich in activated macrophages. In this study, we tested the hypotheses that human granulocyte-macrophage colony-stimulating factor (GM-CSF), a clinically used cytokine, increases macrophage glycolysis and deoxyglucose uptake in vitro and acutely enhances (18)F-FDG uptake within inflamed tissues such as atherosclerotic plaques in vivo. In vitro experiments were conducted on human macrophages whereby inflammatory activation and uptake of radiolabeled 2-deoxyglucose was assessed before and after GM-CSF exposure. In vivo studies were performed on mice and New Zealand White rabbits to assess the effect of GM-CSF on (18)F-FDG uptake in normal versus inflamed arteries, using PET. Incubation of human macrophages with GM-CSF resulted in increased glycolysis and increased 2-deoxyglucose uptake (P < 0.05). This effect was attenuated by neutralizing antibodies against tumor necrosis factor-α or after silencing or inhibition of 6-phosphofructo-2-kinase. In vivo, in mice and in rabbits, intravenous GM-CSF administration resulted in a 70% and 73% increase (P < 0.01 for both), respectively, in arterial (18)F-FDG uptake in atherosclerotic animals but not in nonatherosclerotic controls. Histopathologic analysis demonstrated a significant correlation between in vivo (18)F-FDG uptake and macrophage staining (R = 0.75, P < 0.01). GM-CSF substantially augments glycolytic flux in vitro (via a mechanism dependent on ubiquitous type 6-phosphofructo-2-kinase and tumor necrosis factor-α) and increases (18)F-FDG uptake within inflamed atheroma in vivo. These findings demonstrate that GM-CSF can be used to enhance detection of inflammation. Further studies should explore the role of GM-CSF stimulation to enhance the detection of inflammatory foci in other disease states. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF).

    PubMed

    Schäbitz, Wolf-Rüdiger; Krüger, Carola; Pitzer, Claudia; Weber, Daniela; Laage, Rico; Gassler, Nikolaus; Aronowski, Jaroslaw; Mier, Walter; Kirsch, Friederike; Dittgen, Tanjew; Bach, Alfred; Sommer, Clemens; Schneider, Armin

    2008-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine responsible for the proliferation, differentiation, and maturation of cells of the myeloid lineage, which was cloned more than 20 years ago. Here we uncovered a novel function of GM-CSF in the central nervous system (CNS). We identified the GM-CSF alpha-receptor as an upregulated gene in a screen for ischemia-induced genes in the cortex. This receptor is broadly expressed on neurons throughout the brain together with its ligand and induced by ischemic insults. In primary cortical neurons and human neuroblastoma cells, GM-CSF counteracts programmed cell death and induces BCL-2 and BCL-Xl expression in a dose- and time-dependent manner. Of the signaling pathways studied, GM-CSF most prominently induced the PI3K-Akt pathway, and inhibition of Akt strongly decreased antiapoptotic activity. Intravenously given GM-CSF passes the blood-brain barrier, and decreases infarct damage in two different experimental stroke models (middle cerebral artery occlusion (MCAO), and combined common carotid/distal MCA occlusion) concomitant with induction of BCL-Xl expression. Thus, GM-CSF acts as a neuroprotective protein in the CNS. This finding is remarkably reminiscent of the recently discovered functionality of two other hematopoietic factors, erythropoietin and granulocyte colony-stimulating factor in the CNS. The identification of a third hematopoietic factor acting as a neurotrophic factor in the CNS suggests a common principle in the functional evolution of these factors. Clinically, GM-CSF now broadens the repertoire of hematopoietic factors available as novel drug candidates for stroke and neurodegenerative diseases.

  18. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  19. Reprogramming of monocytes by GM-CSF contributes to regulatory immune functions during intestinal inflammation.

    PubMed

    Däbritz, Jan; Weinhage, Toni; Varga, Georg; Wirth, Timo; Walscheid, Karoline; Brockhausen, Anne; Schwarzmaier, David; Brückner, Markus; Ross, Matthias; Bettenworth, Dominik; Roth, Johannes; Ehrchen, Jan M; Foell, Dirk

    2015-03-01

    Human and murine studies showed that GM-CSF exerts beneficial effects in intestinal inflammation. To explore whether GM-CSF mediates its effects via monocytes, we analyzed effects of GM-CSF on monocytes in vitro and assessed the immunomodulatory potential of GM-CSF-activated monocytes (GMaMs) in vivo. We used microarray technology and functional assays to characterize GMaMs in vitro and used a mouse model of colitis to study GMaM functions in vivo. GM-CSF activates monocytes to increase adherence, migration, chemotaxis, and oxidative burst in vitro, and primes monocyte response to secondary microbial stimuli. In addition, GMaMs accelerate epithelial healing in vitro. Most important, in a mouse model of experimental T cell-induced colitis, GMaMs show therapeutic activity and protect mice from colitis. This is accompanied by increased production of IL-4, IL-10, and IL-13, and decreased production of IFN-γ in lamina propria mononuclear cells in vivo. Confirming this finding, GMaMs attract T cells and shape their differentiation toward Th2 by upregulating IL-4, IL-10, and IL-13 in T cells in vitro. Beneficial effects of GM-CSF in Crohn's disease may possibly be mediated through reprogramming of monocytes to simultaneously improved bacterial clearance and induction of wound healing, as well as regulation of adaptive immunity to limit excessive inflammation.

  20. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  1. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs

    PubMed Central

    Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F.

    2015-01-01

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  2. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease

    PubMed Central

    McKenzie, Brent S.

    2016-01-01

    Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. PMID:27595596

  3. Granulocyte-macrophage colony-stimulating factor (GM-CSF): a chemoattractive agent for murine leukocytes in vivo.

    PubMed

    Khajah, Maitham; Millen, Brandie; Cara, Denise Carmona; Waterhouse, Christopher; McCafferty, Donna-Marie

    2011-06-01

    GM-CSF is well recognized as a proliferative agent for hematopoietic cells and exerts a priming function on neutrophils. The aim of this study was to determine if GM-CSF has a role as a neutrophil chemoattractant in vivo and if it can contribute to recruitment during intestinal inflammation. Initial studies in vitro, using the under-agarose gel assay, determined that GM-CSF can induce neutrophil migration at a much lower molar concentration than the fMLP-like peptide WKYMVm (33.5-134 nM vs. 1-10 μM). GM-CSF-induced neutrophil migration was ablated (<95%) using neutrophils derived from GMCSFRβ(-/-) mice and significantly attenuated by 42% in PI3Kγ(-/-)neutrophils. In vivo, a significant increase in leukocyte recruitment was observed using intravital microscopy 4 h post-GM-CSF (10 μg/kg) injection, which was comparable with leukocyte recruitment induced by KC (40 μg/kg). GM-CSF-induced recruitment was abolished, and KC-induced recruitment was maintained in GMCSFRβ(-/-) mice. Furthermore, in vivo migration of extravascular leukocytes was observed toward a gel containing GM-CSF in WT but not GMCSFRβ(-/-) mice. Finally, in a model of intestinal inflammation (TNBS-induced colitis), colonic neutrophil recruitment, assessed using the MPO assay, was attenuated significantly in anti-GM-CSF-treated mice or GMCSFRβ(-/-) mice. These data demonstrate that GM-CSF is a potent chemoattractant in vitro and can recruit neutrophils from the microvasculature and induce extravascular migration in vivo in a β subunit-dependent manner. This property of GM-CSF may contribute significantly to recruitment during intestinal inflammation.

  4. Intracerebral Administration of Recombinant Rabies Virus Expressing GM-CSF Prevents the Development of Rabies after Infection with Street Virus

    PubMed Central

    Wang, Hualei; Zhang, Guoqing; Wen, Yongjun; Yang, Songtao; Xia, Xianzhu; Fu, Zhen F.

    2011-01-01

    Recently it was found that prior immunization with recombinant rabies virus (RABV) expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) (LBNSE-GM-CSF) resulted in high innate/adaptive immune responses and protection against challenge with virulent RABV (Wen et al., JVI, 2011). In this study, the ability of LBNSE-GM-CSF to prevent animals from developing rabies was investigated in mice after infection with lethal doses of street RABV. It was found that intracerebral administration of LBNSE-GM-CSF protected more mice from developing rabies than sham-treated mice as late as day 5 after infection with street RABV. Intracerebral administration of LBNSE-GM-CSF resulted in significantly higher levels of chemokine/cytokine expression and more infiltration of inflammatory and immune cells into the central nervous system (CNS) than sham-administration or administration with UV-inactivated LBNSE-GM-CSF. Enhancement of blood-brain barrier (BBB) permeability and increases in virus neutralizing antibodies (VNA) were also observed in mice treated with LBNSE-GM-CSF. On the other hand, intracerebral administration with UV-inactivated LBNSE-GM-CSF did not increase protection despite the fact that VNA were induced in the periphery. However, intracerebral administration with chemoattractant protein-1 (MCP-1, also termed CCL2) increased significantly the protective efficacy of UV-inactivated LBNSE-GM-CSF. Together these studies confirm that direct administration of LBNSE-GM-CSF can enhance the innate and adaptive immunity as well as the BBB permeability, thus allowing infiltration of inflammatory cells and other immune effectors enter into the CNS to clear the virus and prevent the development of rabies. PMID:21980450

  5. A Review of GM-CSF Therapy in Sepsis

    PubMed Central

    Mathias, Brittany; Szpila, Benjamin E.; Moore, Frederick A.; Efron, Philip A.; Moldawer, Lyle L.

    2015-01-01

    Abstract Determine what clinical role, if any, GM-CSF may have in the clinical treatment of sepsis in the adult patient. Advancements in the management of sepsis have led to significant decreases in early mortality; however, sepsis remains a significant source of long-term mortality and disability which places strain on healthcare resources with a substantial growing economic impact. Historically, early multiple organ failure (MOF) and death in patients with severe sepsis was thought to result from an exaggerated proinflammatory response called the systemic inflammatory response syndrome (SIRS). Numerous prospective randomized controlled trials (PRCTs) tested therapies aimed at decreasing the organ injury associated with an exaggerated inflammatory response. With few exceptions, the results from these PRCTs have been disappointing, and currently no specific therapeutic agent is approved to counteract the early SIRS response in patients with severe sepsis. It has long been recognized that there is a delayed immunosuppressive state that contributes to long-term morbidity. However, recent findings now support a concurrent proinflammatory and anti-inflammatory response present throughout sepsis. Multiple immunomodulating agents have been studied to combat the immunosuppressive phase of sepsis with the goal of decreasing secondary infection, reducing organ dysfunction, decreasing ICU stays, and improving survival. Granulocyte-macrophage colony stimulating factor (GM-CSF), a myelopoietic growth factor currently used in patients with neutropenia secondary to chemotherapy-induced myelosuppression, has been studied as a potential immune-activating agent. The applicability of GM-CSF as a standard therapy for generalized sepsis is still largely understudied; however, small-scale studies available have demonstrated some improved recovery from infection, decreased hospital length of stay, decreased days requiring mechanical ventilation, and decreased medical costs. PMID

  6. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function

    PubMed Central

    Overgaard, Christian E.; Schlingmann, Barbara; Dorsainvil White, StevenClaude; Ward, Christina; Fan, Xian; Swarnakar, Snehasikta; Brown, Lou Ann S.; Guidot, David M.

    2015-01-01

    Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions (“spikes”) containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS. PMID:25888574

  7. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function.

    PubMed

    Overgaard, Christian E; Schlingmann, Barbara; Dorsainvil White, StevenClaude; Ward, Christina; Fan, Xian; Swarnakar, Snehasikta; Brown, Lou Ann S; Guidot, David M; Koval, Michael

    2015-06-15

    Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS.

  8. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    PubMed Central

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  9. Characterization of pathogenic human monoclonal autoantibodies against GM-CSF

    PubMed Central

    Wang, Yanni; Thomson, Christy A.; Allan, Lenka L.; Jackson, Linda M.; Olson, Melanie; Hercus, Timothy R.; Nero, Tracy L.; Turner, Amanda; Parker, Michael W.; Lopez, Angel L.; Waddell, Thomas K.; Anderson, Gary P.; Hamilton, John A.; Schrader, John W.

    2013-01-01

    The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte–macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain. PMID:23620516

  10. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    PubMed Central

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  11. A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma

    PubMed Central

    2013-01-01

    Background CEA is expressed in >90% of pancreatic cancers (PC) and may be an appropriate immunotherapy target. CEA is poorly immunogenic due to immune tolerance; CAP1-6D, an altered peptide ligand can help bypass tolerance. We conducted a pilot randomized phase I trial in PC patients to determine the peptide dose required to induce an optimal CD8+ T cell response. Methods Patients with a PS 0-1, HLA-A2+ and CEA-expressing, previously-treated PC were randomized to receive 10 μg (arm A), 100 μg (arm B) or 1000 μg (arm C) of CEA peptide emulsified in Montanide and GM-CSF, given every 2 weeks until disease progression. Results Sixty-six patients were screened and 19 enrolled of whom 14 received at least 3 doses of the vaccine and thus evaluated for the primary immunologic endpoint. A median of 4 cycles (range 1-81) was delivered. Median and mean peak IFN-γ T cell response by ELISPOT (spots per 104 CD8+ cells, Arm A/B/C) was 11/52/271 (A vs. C, p = 0.028) for medians and 37/148/248 (A vs. C, p = 0.032) for means. T cell responses developed or increased in 20%/60%/100% of pts in Arms A/B/C. Seven of the 19 patients remain alive at a minimum 32 months from trial initiation, including three with unresectable disease. Conclusions The T cell response in this randomized phase I trial was dose-dependent with the 1 mg CEA peptide dose eliciting the most robust T cell responses. A signal of clinical benefit was observed and no significant toxicity was noted. Further evaluation of 1 mg CEA peptide with stronger adjuvants, and/or combined with agents to overcome immune inhibitory pathways, may be warranted in PC pts. Trial registration ClinicalTrials.gov NCT00203892 PMID:24829746

  12. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    PubMed

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  13. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model

    PubMed Central

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304

  14. Addition of sargramostim (GM-CSF) to imatinib results in major cytogenetic response in a patient with chronic myeloid leukemia.

    PubMed

    Connor, Rebecca F; Hurd, David; Pettenati, Mark J; Koty, Patrick; Molnár, István

    2006-10-01

    Imatinib mesylate, an inhibitor of BCR/ABL tyrosine kinase, has remarkable activity in chronic myeloid leukemia resulting in an 87% major cytogenetic response. We describe a woman who failed to achieve any cytogenetic response after 2.5 years of imatinib, 400mg daily. When daily sargramostim (GM-CSF) 100 microg/m2 was added, cytogenetic studies revealed a gradual increase in percentage of normal cells from start, 4, 9, and 15 months at 0%, 10%, 55%, and 85%, respectively. She became transfusion independent after starting GM-CSF. The addition of GM-CSF to imatinib resulted in a clinical benefit and a major cytogenetic response in this patient.

  15. CREB regulates TNF-α-induced GM-CSF secretion via p38 MAPK in human lung fibroblasts.

    PubMed

    Koga, Yasuhiko; Hisada, Takeshi; Ishizuka, Tamotsu; Utsugi, Mitsuyoshi; Ono, Akihiro; Yatomi, Masakiyo; Kamide, Yosuke; Aoki-Saito, Haruka; Tsurumaki, Hiroaki; Dobashi, Kunio; Yamada, Masanobu

    2016-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that mediates eosinophilic differentiation, migration and survival, causing respiratory tract inflammation. GM-CSF is also known to be secreted from respiratory tract structural cells. However, the mechanisms of GM-CSF secretion have not been well established. Human fetal lung fibroblasts and human primary asthmatic lung fibroblasts were used for the study of tumor necrosis factor alpha (TNF-α)-induced GM-CSF secretion. GM-CSF secretion and mRNA expression were measured by enzyme-linked immunosorbent assay and quantitative real-time reverse transcription polymerase chain reaction, respectively. Knockdown of cAMP response element-binding protein (CREB) in fibroblasts was carried out by using specific small interfering RNAs of CREB. Among respiratory tract structural cells, pulmonary fibroblasts exhibited increased GM-CSF secretion and mRNA expression after stimulation with TNF-α in a concentration-dependent manner. Moreover, a p38 mitogen-activated protein kinase (MAPK) inhibitor controlled TNF-α-induced GM-CSF secretion, and roflumilast and rolipram, inhibitors of phosphodiesterase-4, suppressed TNF-α-induced GM-CSF secretion. Consistent with this, forskolin also completely blocked GM-CSF secretion, and similar results were observed in response to cAMP treatment, suggesting that cAMP signaling suppressed TNF-α-induced GM-CSF secretion in human lung fibroblasts. Furthermore, CREB was phosphorylated through p38 MAPK but not cAMP signaling after TNF-α stimulation, and GM-CSF secretion was inhibited by CREB knockdown. Finally, these effects were also demonstrated in human primary lung fibroblasts in a patient with asthma. CREB signaled independent of cAMP signaling and was phosphorylated by p38 MAPK following TNF-α stimulation, playing a critical role in GM-CSF secretion in human lung fibroblasts. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All

  16. Variable effects of the co-administration of a GM-CSF-expressing plasmid on the immune response to flavivirus DNA vaccines in mice.

    PubMed

    Chen, Hui; Gao, Na; Wu, Jiangman; Zheng, Xiaoyan; Li, Jieqiong; Fan, Dongying; An, Jing

    2014-11-01

    As a cytokine adjuvant, granulocyte-macrophage colony-stimulating factor (GM-CSF) has been demonstrated to play central roles in the enhancement of the immune response and protection elicited by experimental vaccines. However, in our previous work, the co-administration of GM-CSF produced untoward effects on the immune response induced by a Japanese encephalitis virus DNA vaccine candidate. This study aimed to elucidate the adjuvant roles of GM-CSF in several Flaviviridae virus DNA vaccine candidates. Our results showed that the effects of GM-CSF were diverse: co-inoculated GM-CSF caused significant suppression to the dengue virus type 1 and type 2 prM-E DNA vaccinations and influenced protective efficiency against virus challenge. In contrast, GM-CSF showed little effect or an enhancement on the immune response elicited by hepatitis C virus C or E1 DNA vaccine candidates. Notably, these effects of GM-CSF were highly durable. Our results suggested that the adjuvant roles of the GM-CSF plasmid were complex and diverse, ranging from enhancement to suppression, depending on the immunogen of Flaviviridae virus DNA vaccine candidates. Therefore, the application of GM-CSF as a vaccine adjuvant or a therapeutic agent should be evaluated carefully.

  17. G-CSF and GM-CSF in clinical trials.

    PubMed Central

    Antman, K. H.

    1990-01-01

    Hematopoietic growth factors have now been purified, cloned, and produced in bacteria and yeast. Those that are currently in clinical study include erythropoietin, GM-CSF, G-CSF, M-CSF (also called CSF-1), and multi-CSF (also called interleukin 3). Growth factor appear likely to enhance the recovery and function of circulating white cells after standard-dose cancer therapy and high-bone-dose cancer therapy with marrow transplant and to restore leukocyte numbers and competence in the acquired immune deficiency syndromes and myelodysplastic syndromes. Phase I, II trials in AIDS, in cancer patients receiving chemotherapy, in cases of myeloproliferative disease, and after bone marrow transplant have been published. The results of phase III studies are just becoming available. PMID:1705737

  18. Benefits of GM-CSF Versus Placebo or G-CSF in Reducing Chemotherapy-Induced Complications: A Systematic Review of the Literature.

    PubMed

    Dubois, Robert W; Pinto, Lionel A; Bernal, Myriam; Badamgarav, Enkhe; Lyman, Gary H

    2004-10-01

    Unlike granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF) is not approved for reducing the incidence or duration of chemotherapy-induced febrile neutropenia. However, some studies have been conducted in this setting. A systematic review assessing the efficacy of GM-CSF versus placebo or G-CSF in reducing chemotherapy-induced febrile neutropenia and related complications was performed. Medline was reviewed for articles published between January 1987 and March 2003 that contained specific search terms. Explicit inclusion/exclusion criteria were developed for titles, abstracts, and articles. Two researchers reviewed (kappa>/= 0.7) and divided studies according to their evaluation of GM-CSF versus placebo or versus G-CSF. Nine studies were accepted: 6 randomized controlled trials compared GM-CSF versus placebo and 3 studies compared GM-CSF versus GCSF. Three placebo-controlled trials showed that GM-CSF was ineffective in reducing the risk of chemotherapy-induced febrile neutropenia. The remaining 3 trials reported incidence of fever and not febrile neutropenia: 2 reported a significantly increased incidence of fever in the GM-CSF group, and 1 reported that more patients receiving placebo experienced fever compared with patients in the GMCSF group (P > 0.05). The 3 studies comparing GM-CSF versus G-CSF reported fever as a primary outcome also. All 3 reported higher incidence of fever in the GM-CSF group (P < 0.05). Head-to-head trials of G-CSF and GM-CSF in reducing chemotherapy-induced complications are lacking. Identified GM-CSF studies did not show significant reduction in febrile neutropenia and fever.

  19. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) Downregulates the Expression of Protumor Factors Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in a GM-CSF Receptor-Independent Manner in Cervical Cancer Cells.

    PubMed

    Jiang, Nanyan; Tian, Zhiqiang; Tang, Jun; Ou, Rongying; Xu, Yunsheng

    2015-01-01

    Enhanced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) is associated with the pathogenic processes of various tumor types. COX-2 and iNOS expression in the immunomodulatory dendritic cells is mediated by the granulocyte macrophage-colony stimulating factor (GM-CSF), which is also expressed by cervical cancer cells; however, whether and how GM-CSF regulates COX-2 and iNOS expression in clinical cervical cancer cells remain unknown. In this study, we found that the COX-2 and iNOS expression was upregulated in the cervical cancer tissues and positively correlated with cancer metastasis and stage. About one-half of the cervical cancer tissues showed strong/moderate GM-CSF expression, while the normal cervical tissues showed >80% positive rate; no GM-CSFR protein was detectable on the cervical cancer cells. The GM-CSF expression was negatively correlated with the COX-2 and iNOS expression in the cervical cancer tissues and the functional negative regulatory effect of GM-CSF on COX-2/iNOS expression was demonstrated in various cervical cancer cell lines. Therefore, in cervical cancer cells, GM-CSF might contribute an antitumor response by inhibiting iNOS and COX-2 expression in a GM-CSFR independent manner.

  20. Anti-GM-CSF antibodies in paediatric pulmonary alveolar proteinosis.

    PubMed

    Latzin, P; Tredano, M; Wüst, Y; de Blic, J; Nicolai, T; Bewig, B; Stanzel, F; Köhler, D; Bahuau, M; Griese, M

    2005-01-01

    Auto-antibodies against granulocyte-macrophage colony stimulating factor (GM-CSF) may be central to the pathogenesis of adult sporadic pulmonary alveolar proteinosis (PAP). The role of anti-GM-CSF auto-antibodies in paediatric forms of PAP is as yet unclear. Anti-GM-CSF auto-antibodies were determined with the help of an antigen capture assay using serum and/or bronchoalveolar lavage (BAL) fluid from 27 patients with PAP (nine adults, 15 children, three neonates) and from 185 children with different diseases as disease controls (various pulmonary conditions and patients with malignancies). Anti-GM-CSF auto-antibodies were detected in the serum of five of seven adult PAP patients. They were not found in the serum of any of the children or neonates with PAP nor in any of the disease control patients. Raised anti-GM-CSF titres were found in BAL fluid from three of four adult patients with PAP. Anti-GM-CSF auto-antibodies were detected in BAL fluid of only one of the 15 children (age at diagnosis 11 years, age at BAL 24 years) and in none of the neonates with PAP, nor in any of the disease control patients. The presence of anti-GM-CSF auto-antibodies seems to define an autoimmune disease underlying most of the adult sporadic type of PAP, but age at diagnosis may cause an overlap with children in some rare instances. In most of the children and all of the neonates the anti-GM-CSF titres were not significantly increased, indicating that alternative explanations are needed for the pathogenesis of the disease in these patients.

  1. Role of granulocyte-macrophage colony stimulating factor (GM-CSF) in the pathogenesis of adult pulmonary histiocytosis X.

    PubMed Central

    Tazi, A; Bonay, M; Bergeron, A; Grandsaigne, M; Hance, A J; Soler, P

    1996-01-01

    BACKGROUND: Pulmonary histiocytosis X is a disorder characterised by the presence of destructive granulomas preferentially involving distal bronchioles, that contain numerous activated Langerhans' cells. Recent studies have shown that granulocyte-macrophage colony stimulating factor (GM-CSF), which is produced by normal bronchiolar epithelium, may play an important part in the distribution and differentiation of Langerhans' cells. The aim of this study was to evaluate the role of this factor in the pathogenesis of pulmonary histiocytosis X. METHODS: Four patients with pulmonary histiocytosis X were examined by immunohistochemical techniques for GM-CSF and CD1a surface molecules. RESULTS: In early lesions the epithelium of bronchioles affected by the disease was strongly positive for GM-CSF and infiltrated by numerous CD1a+ Langerhans' cells organised into granulomas. In contrast, the expression of GM-CSF was substantially lower in bronchioles not affected by the disease, and these bronchioles contained few Langerhans' cells. When destruction by histiocytosis X lesions was more advanced, only remnants of bronchiolar epithelium could occasionally be identified; these remained strongly reactive for GM-CSF. Langerhans' cells within granulomas also moderately expressed this cytokine. CONCLUSIONS: These results support the hypothesis that GM-CSF could be one of the factors responsible for the local accumulation of lymphostimulatory Langerhans' cells in early lesions of pulmonary histiocytosis X. Images PMID:8693443

  2. [Biology and clinical applications of GM-CSF].

    PubMed

    Robak, T

    1994-01-01

    Granulocyte, macrophage colony stimulating factor (GM-CSF) and granulocyte--colony--stimulating factor (G-CSF) are two of the growing number of recognized cytokines involved in the regulation of hematopoiesis. The purification of these factors and the subsequent cloning of the DNAs which encode these proteins have led to their widespread clinical use in the setting up of therapy of disease-induced myelosuppression. GM-CSF has a broader spectrum of potential targets than G-CSF and promotes growth of progenitors of several myeloid lines and, to a lesser extent, of the megakaryocyte line. The pleiotropic effects of GM-CSF could therefore, theoretically, be an advantage compared with the more restricted activity of G-CSF. Its greatest potential use appears to be in the amelioration of neutropenia following myelosuppressive therapy. GM-CSF has demonstrated efficacy in decreasing the duration of neutropenia, decreasing the attendant infection, and enhancing the ability to deliver full doses of myelosuppressive therapy. GM-CSF can also reverse the neutropenia of myelodysplastic syndrome and aplastic anemia. It enhances recovery from bone marrow transplantation and thus reduce the attendant morbidity of this procedure. This hematopoietic growth factor may also enhance recruitment and harvest to peripheral stem cells. At clinically usefull dosages GM-CSF is generally well tolerated.

  3. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling.

    PubMed

    Subramanian, Manikandan; Thorp, Edward; Tabas, Ira

    2015-01-16

    Granulocyte macrophage colony-stimulating factor (GM-CSF, Csf2) is a growth factor for myeloid-lineage cells that has been implicated in the pathogenesis of atherosclerosis and other chronic inflammatory diseases. However, the role of GM-CSF in advanced atherosclerotic plaque progression, the process that gives rise to clinically dangerous plaques, is unknown. To understand the role of GM-CSF in advanced atherosclerotic plaque progression. Ldlr(-/-) mice and Csf2(-/-)Ldlr(-/-) mice were fed a Western-type diet for 12 weeks, and then parameters of advanced plaque progression in the aortic root were quantified. Lesions from the GM-CSF-deficient mice showed a substantial decrease in 2 key hallmarks of advanced atherosclerosis, lesional macrophage apoptosis and plaque necrosis, which indicates that GM-CSF promotes plaque progression. Based on a combination of in vitro and in vivo studies, we show that the mechanism involves GM-CSF-mediated production of interleukin-23, which increases apoptosis susceptibility in macrophages by promoting proteasomal degradation of the cell survival protein Bcl-2 (B-cell lymphoma 2) and by increasing oxidative stress. In low-density lipoprotein-driven atherosclerosis in mice, GM-CSF promotes advanced plaque progression by increasing macrophage apoptosis susceptibility. This action of GM-CSF is mediated by its interleukin-23-inducing activity rather than its role as a growth factor. © 2014 American Heart Association, Inc.

  4. Can 29kDa rhGM-CSF expressed by silkworm pupae bioreactor bring into effect as active cytokine through orally administration?

    PubMed

    Zhang, Yaozhou; Chen, Jian; Lv, Zhengbing; Nie, Zuoming; Zhang, Xiaoyan; Wu, Xiangfu

    2006-06-01

    In order to study the effect of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) as active cytokine through orally administration, we expressed hGM-CSF within silkworm pupae bioreactor. The purified rhGM-CSF named as BmrhGM-CSF is characterized as 29kDa glycoprotein, and its biological activity was measured both in vitro and in vivo. We found out BmrhGM-CSF could stimulate the colony formation of human bone marrow cells in a dose-dependent manner whether which were treated with or without gamma-ray 24h before. The ability of colony formation induced by BmrhGM-CSF is negatively correlated with gamma-ray intensity. As soon as 15min post oral administration with BmrhGM-CSF labeled with (125)I, an approximately 20kDa protein fragment was detected within mice blood by SDS-PAGE followed by autoradiography. In blood sample of test mice, a protein was also recognized by anti-hGM-CSF antibody using ELISA. The immunohistochemical analysis showed that BmrhGM-CSF was detected within intestinal histiocyte. This indicated it might be absorbed into blood via intestinal microvillus. Pharmacokinetics analysis after orally administered BmrhGM-CSF in animal model of leucopenia including mice, Beagle dogs and macaques showed that: (1) BmrhGM-CSF promoted the CFU-S formation in mice spleen and the synthesis of DNA in bone marrow cells of mice; (2) BmrhGM-CSF induced bone marrow karyocyta granulocyte growth significantly in both macaques and Beagle dogs compared to the negative control group. On the 9th day of orally administration, the animal WBC significantly increased in a dose-dependant manner, in which neutrophilic granulocyte was predominant. The WBC level of dogs in high dose group was about 1.5x10(9)cells/L more than that in the negative control. And the bone marrow smear revealed that the percents of both myloblast and progranulocyte in WBC in the hGM-CSF group were obviously higher than those in the negative control. These results proved that BmrhGM-CSF, a 29k

  5. GM-CSF in sickle cell anemia patients with elevated Hb F.

    PubMed

    Haider, M Z; Raghupathy, R; Azizieh, F; Abdelsalam, R; D'Souza, T M; Adekile, A D

    2000-01-01

    We estimated plasma GM-CSF levels in a group of 28 steady-state sickle cell anemia (SS) patients in Kuwait, using an ELISA technique. There were 24 age-matched Hb AA controls, 14 of whom were healthy while 10 were acutely ill at the time of the study. Five SS patients were also studied during 6 episodes of painful crisis. Among the SS patients, 82.1% were homozygous for the Saudi Arabia/India (SAI) haplotype with Hb F ranging from 15 to 35% and total Hb from 8.5 to 11 g/dl. Three patients (siblings) were SAI/Benin compound heterozygotes with Hb F of 9-23% and total Hb >10 g/dl. One patient each was homozygous for the Benin or the Bantu haplotype; they had Hb F <2% and total Hb of 6.6 and 7.2 g/dl, respectively. Four (14. 3%) steady-state SS patients had detectable plasma GM-CSF ranging from 75 to 1,817.6 pg/ml. These included the 2 patients with Hb F <2. 0% and 2 with the SAI/Benin compound heterozygotes with Hb F of 11 and 9%, respectively. Four (66.7%) SS patients in crisis, 6 (42.9%) healthy controls and 6 (60%) acutely ill controls had detectable plasma GM-CSF. A clearcut association of GM-CSF with Hb F level or degree of anemia in steady-state SS patients could not be established. The appearance of GM-CSF in the plasma of patients in crisis and also among control subjects raises the possibility that other factors are involved in the production of this cytokine in the subjects studied.

  6. Effect of recombinant lactobacillus expressing canine GM-CSF on immune function in dogs.

    PubMed

    Chung, Jin Young; Sung, Eui Jae; Cho, Chun Gyu; Seo, Kyoung Won; Lee, Jong-Soo; Bhang, Dong Ha; Lee, Hee Woo; Hwang, Cheol Yong; Lee, Wan Kyu; Youn, Hwa Young; Kim, Chul Joong

    2009-11-01

    Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either 1 x 10(9) colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGMCSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies.

  7. GM-CSF contributes to aortic aneurysms resulting from SMAD3 deficiency

    PubMed Central

    Ye, Ping; Chen, Wenhao; Wu, Jie; Huang, Xiaofan; Li, Jun; Wang, Sihua; Liu, Zheng; Wang, Guohua; Yang, Xiao; Zhang, Peng; Lv, Qiulun; Xia, Jiahong

    2013-01-01

    Heterozygous loss-of-function SMAD3 (Mothers against decapentaplegic homolog 3) mutations lead to aneurysm-osteoarthritis syndrome (AOS). In the present study, we found that mice lacking Smad3 had a vascular phenotype similar to AOS, marked by the progressive development of aneurysms. These aneurysms were associated with various pathological changes in transmural inflammatory cell infiltration. Bone marrow transplants from Smad3–/– mice induced aortitis and aortic root dilation in irradiated WT recipient mice. Transplantation of CD4+ T cells from Smad3–/– mice also induced aortitis in Smad3+/+ recipient mice, while depletion of CD4+ T cells in Smad3–/– mice reduced the infiltration of inflammatory cells in the aortic root. Furthermore, IFN-γ deficiency increased, while IL-17 deficiency decreased, disease severity in Smad3+/– mice. Cytokine secretion was measured using a cytokine quantibody array, and Smad3–/– CD4+ T cells secreted more GM-CSF than Smad3+/+ CD4+ T cells. GM-CSF induced CD11b+Gr-1+Ly-6Chi inflammatory monocyte accumulation in the aortic root, but administration of anti–GM-CSF mAb to Smad3–/– mice resulted in significantly less inflammation and dilation in the aortic root. We also identified a missense mutation (c.985A>G) in a family of thoracic aortic aneurysms. Intense inflammatory infiltration and GM-CSF expression was observed in aortas specimens of these patients, suggesting that GM-CSF is potentially involved in the development of AOS. PMID:23585475

  8. Tissue localization of GM-CSF receptor in bovine ovarian follicles and its role on glucose uptake by mural granulosa cells.

    PubMed

    Peralta, O A; Bucher, D; Angulo, C; Castro, M A; Ratto, M H; Concha, Il

    2016-07-01

    The granulocyte-macrophage colony stimulating factor (GM-CSF) is a multifunctional cytokine implicated in proliferation, differentiation, and activation of several cell types including those involved in hematopoiesis and reproduction. In the present study, the expression of the α- and β-subunit genes of GM-CSF receptor during follicular development in cattle was assessed. The spatial association of α- and β-subunits of GM-CSF with follicle stimulating hormone receptor (FSHR) and 3β-hydroxysteroid dehydrogenase (3β-HSD), and the temporal associations with gene expression of hexose transporters (GLUTs) in granulosa cells of cattle were also evaluated. The effect of GM-CSF on the functionality of hexose transporters was also determined in an in vitro primary culture of granulosa cells. The spatial association of subunits of the GM-CSF receptor with 3β-HSD and FSHR suggests a potential steroidogenic regulation of GM-CSF in granulosa cells. Immunodetection of GLUTs and uptake kinetic assays confirmed expression and functionality of these genes for hexose transporters in granulosa cells of cattle. Treatment of granulosa cells with GM-CSF, FSH or insulin- like growth factor-I (IGF-I) alone increased 2-deoxyglucose (DOG) or 3-0-methylglucose (OMG) uptake; however, when cells were treated with various combination of these factors there were no additive effect. Unexpectedly, the combination of GM-CSF and FSH decreased DOG uptake compared to FSH treatment alone. Thus, the expression pattern of GM-CSF receptor subunit genes during follicle development in cattle and promotion of DOG and OMG uptake in granulosa cells indicate a role for GM-CSF, FSH and/or IGF-I alone in regulating granulosa cell metabolic activity, specifically by promoting glucose uptake. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhanced ceramide generation and induction of apoptosis in human leukemia cells exposed to DT(388)-granulocyte-macrophage colony-stimulating factor (GM-CSF), a truncated diphtheria toxin fused to human GM-CSF.

    PubMed

    Senchenkov, A; Han, T Y; Wang, H; Frankel, A E; Kottke, T J; Kaufmann, S H; Cabot, M C

    2001-09-15

    DT(388)-GM-CSF, a targeted fusion toxin constructed by conjugation of human granulocyte-macrophage colony-stimulating factor (GM-CSF) with the catalytic and translocation domains of diphtheria toxin, is presently in phase I trials for patients with resistant acute myeloid leukemia. HL-60/VCR, a multidrug-resistant human myeloid leukemia cell line, and wild-type HL-60 cells were used to study the impact of DT(388)-GM-CSF on metabolism of ceramide, a modulator of apoptosis. After 48 hours with DT(388)-GM-CSF (10 nM), ceramide levels in HL-60/VCR cells rose 6-fold and viability fell to 10%, whereas GM-CSF alone was without influence. Similar results were obtained in HL-60 cells. Examination of the time course revealed that protein synthesis decreased by about 50% and cellular ceramide levels increased by about 80% between 4 and 6 hours after addition of DT(388)-GM-CSF. By 6 hours this was accompanied by activation of caspase-9, followed by activation of caspase-3, cleavage of caspase substrates, and chromatin fragmentation. Hygromycin B and emetine failed to elevate ceramide levels or induce apoptosis at concentrations that inhibited protein synthesis by 50%. Exposure to C(6)-ceramide inhibited protein synthesis (EC(50) approximately 5 microM) and decreased viability (EC(50) approximately 6 microM). Sphingomyelinase treatment depleted sphingomyelin by about 10%, while increasing ceramide levels and inhibiting protein synthesis. Diphtheria toxin increased ceramide and decreased sphingomyelin in U-937 cells, a cell line extremely sensitive to diphtheria toxin; exposure to DT(388)-GM-CSF showed sensitivity at less than 1.0 pM. Diphtheria toxin and conjugate trigger ceramide formation that contributes to apoptosis in human leukemia cells through caspase activation and inhibition of protein synthesis.

  10. GM-CSF with biochemotherapy (cisplatin, DTIC, tamoxifen, IL-2 and interferon-alpha): a phase I trial in melanoma.

    PubMed

    Vaughan, M M; Moore, J; Riches, P G; Johnston, S R; A'Hern, R P; Hill, M E; Eisen, T; Ayliffe, M J; Thomas, J M; Gore, M E

    2000-09-01

    Ineffective tumour antigen processing is recognised as an important cause of failure of immunotherapy in melanoma. GM-CSF may augment the cytotoxic lymphocyte response by activating antigen-presenting cells. This study evaluates a schedule combining GM-CSF with biochemotherapy. Nineteen patients with advanced malignant melanoma received cisplatin (25 mg/m2 days 1-3). dacarbazine (220 mg/m2 days 1-3), interleukin-2 (9 MIU/m2/24 h) and interferon-alpha2b (5 MIU/m2) both days 6-10 and days 17-21, and tamoxifen 40 mg/day continuously. Subcutaneous GM-CSF was given in escalating doses to three cohorts: 1) 450 microg/m2 days 4-5 and 15-16; 2) as 1) plus 225 microg/m2 days 6-10 and 17-21; 3) 450 microg/m2 days 4-10 and 15-21. Each cycle was 28 days. Constitutional side effects were the major non-haematological toxicity and lymphopaenia the main haematological toxicity. Six patients responded (32%, 95% confidence interval: 13%-57%), two patients had complete remission. There was an apparent trend for increasing responses with increasing GM-CSF dose; zero of six responses in cohort 1, two of seven in cohort 2 and three of six in cohort 3 (P = 0.016). Median overall survival was 6.2 months. Increasing GM-CSF doses significantly increased serum concentrations of neopterin and TNF-alpha. The combination of GM-CSF with biochemotherapy is feasible and there appears to be a dose-response relationship with GM-CSF in terms of host immunological response, and possibly clinical efficacy.

  11. GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages

    PubMed Central

    Na, Yi Rang; Jung, Daun; Gu, Gyo Jeong; Seok, Seung Hyeok

    2016-01-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) has a role in inducing emergency hematopoiesis upon exposure to inflammatory stimuli. Although GM-CSF generated murine bone marrow derived cells have been widely used as macrophages or dendritic cells in research, the exact characteristics of each cell population have not yet been defined. Here we discriminated GM-CSF grown bone marrow derived macrophages (GM-BMMs) from dendritic cells (GM-BMDCs) in several criteria. After C57BL/6J mice bone marrow cell culture for 7 days with GM-CSF supplementation, two main populations were observed in the attached cells based on MHCII and F4/80 marker expressions. GM-BMMs had MHCIIlowF4/80high as well as CD11c+CD11bhighCD80−CD64+MerTK+ phenotypes. In contrast, GM-BMDCs had MHCIIhighF4/80low and CD11chighCD8α− CD11b+CD80+CD64−MerTKlow phenotypes. Interestingly, the GM-BMM population increased but GM-BMDCs decreased in a GM-CSF dose-dependent manner. Functionally, GM-BMMs showed extremely high phagocytic abilities and produced higher IL-10 upon LPS stimulation. GM-BMDCs, however, could not phagocytose as well, but were efficient at producing TNFα, IL-1β, IL-12p70 and IL-6 as well as inducing T cell proliferation. Finally, whole transcriptome analysis revealed that GM-BMMs and GM-BMDCs are overlap with in vivo resident macrophages and dendritic cells, respectively. Taken together, our study shows the heterogeneicity of GM-CSF derived cell populations, and specifically characterizes GM-CSF derived macrophages compared to dendritic cells. PMID:27788572

  12. A randomised phase IIb study of mavrilimumab, a novel GM-CSF receptor alpha monoclonal antibody, in the treatment of rheumatoid arthritis.

    PubMed

    Burmester, Gerd R; McInnes, Iain B; Kremer, Joel; Miranda, Pedro; Korkosz, Mariusz; Vencovsky, Jiri; Rubbert-Roth, Andrea; Mysler, Eduardo; Sleeman, Matthew A; Godwood, Alex; Sinibaldi, Dominic; Guo, Xiang; White, Wendy I; Wang, Bing; Wu, Chi-Yuan; Ryan, Patricia C; Close, David; Weinblatt, Michael E

    2017-06-01

    Despite the therapeutic value of current rheumatoid arthritis (RA) treatments, agents with alternative modes of action are required. Mavrilimumab, a fully human monoclonal antibody targeting the granulocyte-macrophage colony-stimulating factor receptor-α, was evaluated in patients with moderate-to-severe RA. In a phase IIb study (NCT01706926), patients with inadequate response to ≥1 synthetic disease-modifying antirheumatic drug(s), Disease Activity Score 28 (DAS28)-C reactive protein (CRP)/erythrocyte sedimentation rate ≥3.2, ≥4 swollen joints despite methotrexate (MTX) were randomised 1:1:1:1 to subcutaneous mavrilimumab (150, 100, 30 mg), or placebo every other week (eow), plus MTX for 24 weeks. Coprimary outcomes were DAS28-CRP change from baseline to week 12 and American College of Rheumatology (ACR) 20 response rate (week 24). 326 patients were randomised (150 mg, n=79; 100 mg, n=85; 30 mg, n=81; placebo, n=81); 305 completed the study (September 2012-June 2013). Mavrilimumab treatment significantly reduced DAS28-CRP scores from baseline compared with placebo (change from baseline (SE); 150 mg: -1.90 (0.14), 100 mg: -1.64 (0.13), 30 mg: -1.37 (0.14), placebo: -0.68 (0.14); p<0.001; all dosages compared with placebo).Significantly more mavrilimumab-treated patients achieved ACR20 compared with placebo (week 24: 73.4%, 61.2%, 50.6% vs 24.7%, respectively (p<0.001)). Adverse events were reported in 43 (54.4%), 36 (42.4%), 41 (50.6%) and 38 (46.9%) patients in the mavrilimumab 150, 100, 30 mg eow and placebo groups, respectively. No treatment-related safety signals were identified. Mavrilimumab significantly decreased RA disease activity, with clinically meaningful responses observed 1 week after treatment initiation, representing a novel mechanism of action with persuasive therapeutic potential. NCT01706926; results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  13. Haematological effects of rhGM-CSF in dogs exposed to total-body irradiation with a dose of 2.4 Gy.

    PubMed

    Nothdurft, W; Selig, C; Fliedner, T M; Hintz-Obertreis, P; Kreja, L; Krumwieh, D; Kurrle, R; Seiler, F R; Weinsheimer, W

    1992-04-01

    It was the specific aim of this study to test the stimulatory effects of recombinant human GM-CSF (rhGM-CSF) on haemopoietic regeneration in dogs which had received total-body irradiation (TBI) with a dose of 2.4 Gy. In normal dogs rhGM-CSF given subcutaneously at 10 microgram/kg per day or 30 microgram/kg per day for 21 days caused strong but transient increases in the peripheral blood neutrophils. The monocyte counts also showed a transient rise during treatment in a dose-dependent fashion, whereas the lymphocyte counts increased only at the higher dose of rhGM-CSF and the platelet counts were transiently depressed during the course of the treatment. In the irradiated animals treatment with rhGM-CSF decreased the severity and shortened the duration of neutropenia but had no significant influence on monocyte or lymphocyte recovery. The granulocyte values showed a characteristic pattern of fluctuations with the first peak occurring at the same time (day 10 to day 13) when the abortive rise was observed in the untreated dogs. In contrast the GM-CFC in the peripheral blood remained depressed during the whole treatment course, similar to the untreated irradiated controls. These results indicate that treatment with GM-CSF can be an effective biological monotherapy for radiation-induced bone marrow failure, but that for higher radiation doses the number of GM-CSF responsive target cells will become a critical determinant of therapeutic efficacy.

  14. O-glycans and O-glycosylation sites of recombinant human GM-CSF derived from suspension-cultured rice cells, and their structural role.

    PubMed

    Kim, Jihye; Park, Heajin; Park, Byung Tae; Hwang, Hye Seong; Kim, Jae Il; Kim, Dae Kyong; Kim, Ha Hyung

    2016-10-14

    Recombinant human GM-CSF (rhGM-CSF) from yeast has been clinically applied to immunosuppressed patients. The production of suspension-cultured rice-cell-derived rhGM-CSF (rrhGM-CSF), which has a longer blood clearance time and the same bioactivity as yeast-derived rhGM-CSF, and the analysis of its N-glycans have been reported recently. However, there are no previous reports of the O-glycosylation of rhGM-CSF from plant cells, and so this study investigated O-glycans, O-glycosylation sites, and their structural role in rrhGM-CSF. Monosaccharide analysis revealed the presence of O-glycans comprising arabinose and galactose. Eight O-glycans comprising four arabinose residues with zero to seven galactose residues along with their relative quantities were analyzed. Analysis of pronase-digested glycopeptides indicated that the O-glycans are partially attached to Ser 5, Ser 7, Ser 9, or Thr 10 residues, and glycan heterogeneity was confirmed at each site. Pro-to-hydroxyproline conversions occurred at Pro 2, Pro 6, and Pro 8 residues. The preparation of deglycosylated rrhGM-CSFs revealed that deglycosylation greatly affects their α-helix structures. These findings indicate that O-glycans of rrhGM-CSF are essential for maintaining its structural stability and result in an extended in vivo half-life, but without affecting its biological function. This is the first report on the O-glycosylation of rhGM-CSF derived from plant cells.

  15. Comparative antitumor effect among GM-CSF, IL-12 and GM-CSF+IL-12 genetically modified tumor cell vaccines.

    PubMed

    Miguel, A; Herrero, M J; Sendra, L; Botella, R; Algás, R; Sánchez, M; Aliño, S F

    2013-10-01

    Genetically modified cells have been shown to be one of the most effective cancer vaccine strategies. An evaluation is made of the efficacy of both preventive and therapeutic antitumor vaccines against murine melanoma, using C57BL/6 mice and irradiated B16 tumor cells expressing granulocyte and macrophage colony-stimulating factor (GM-CSF), interleukin-12 (IL-12) or both. Tumor was transplanted by the injection of wild-type B16 cells. Tumor growth and survival were measured to evaluate the efficacy of vaccination. Specific humoral response and immunoglobulin G (IgG) switch were evaluated measuring total IgG and IgG1 and IgG2a subtypes against tumor membrane proteins of B16 cells. In preventive vaccination, all treated groups showed delayed tumor growth. In addition, the group vaccinated to express only GM-CSF achieved 100% animal survival (P<0.005). Vaccination with GM-CSF+IL-12-producing B16 cells yielded lesser results (60% survival, P<0.005). Furthermore, all surviving animals remained disease-free after second tumor implantation 1 year later. The therapeutic vaccination strategies resulted in significantly delayed tumor growth, mainly using B16 cells producing GM-CSF+IL-12 cytokines, with 70% tumor growth inhibition (P<0.001)-although none of the animals reached overall survival. The results obtained suggest that the GM-CSF+IL-12 combination only increases the efficacy of therapeutic vaccines. No differences in classical regulatory T cells were found among the different groups.

  16. The GM-CSF receptor utilizes β-catenin and Tcf4 to specify macrophage lineage differentiation

    PubMed Central

    Brown, Anna L.; Salerno, Diana G.; Sadras, Teresa; Engler, Grant A.; Kok, Chung H.; Wilkinson, Christopher R.; Samaraweera, Saumya E.; Sadlon, Timothy J.; Perugini, Michelle; Lewis, Ian D.; Gonda, Thomas J.; D’Andrea, Richard J.

    2011-01-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor β subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation, accumulation of β-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised β-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate β-catenin stability, most likely via GSK3β. Consistent with this pathway being active in primary cells we show that inhibition of GSK3β activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signalling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation. PMID:22099176

  17. Kinetics and stability of GM-CSF production by recombinant yeast cells immobilized in a fibrous-bed bioreactor.

    PubMed

    Yang, S T; Shu, C H

    1996-01-01

    The continuous production of murine granulocyte-macrophage colony-stimulating factor (GM-CSF) by recombinant yeast cells immobilized in a fibrous-bed bioreactor was studied. A high cell density of approximately 68 g/L and a GM-CSF productivity of approximately 3.5 mg/L.h were attained in the fibrous-bed bioreactor-fed with a rich (nonselective, pH 6.7) medium at a dilution rate of 0.16 h-1. The GM-CSF production was stable even though the fraction of plasmid-carrying cells in the reactor effluent gradually dropped below 5% over a period of 2 weeks. At the end of that period, the immobilized cells in the fibrous matrix still had a high fraction, approximately 26%, of plasmid-carrying cells. Similar results were obtained with reactors operated at 0.05 h-1 dilution rate and pH 4.0. Although the GM-CSF production was lower at pH 4, the reactor was stably operated for over 4 weeks without contamination or significant loss of productivity. The stable long-term GM-CSF production from the fibrous-bed bioreactor was attributed to the effect of cell immobilization on plasmid stability. Because GM-CSF production was growth-associated, as was found in batch fermentation with free cells, this stabilization effect cannot be attributed solely to the reduced cell growth in the immobilized cell environment. Plasmid-carrying cells were preferentially retained in the fibrous matrix, perhaps because their abilities to adhere to the fiber surface and to form cell aggregates were higher than those of plasmid-free cells.

  18. G-CSF and GM-CSF in Neutropenia

    PubMed Central

    Mehta, Hrishikesh M.; Malandra, Michael; Corey, Seth J.

    2015-01-01

    Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte/Macrophage Colony Stimulating Factor (GM-CSF) are used widely to promote the production of granulocytes or antigen presenting cells (APC). The Food and Drug Administration approved G-CSF (filgrastim) for the treatment of congenital and acquired neutropenias and for mobilization of peripheral hematopoietic progenitor cells for stem cell transplantation. A polyethylene glycol modified (PEGylated) form of G-CSF is approved for the treatment of neutropenias. Clinically significant neutropenia, rendering an individual immunocompromised, occurs when their number is less than 1500/µl. Current guidelines recommend their use when the risk of febrile neutropenia is greater than 20%. GM-CSF (sargramostim) is approved for neutropenia associated with stem cell transplantation. Because of its promotion of APC function, GM-CSF is being evaluated as an immunostimulatory adjuvant in a number of clinical trials. More than 20 million persons have benefited worldwide, and more than $5 billion sales occur annually in the United States. PMID:26254266

  19. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances the clinical responses to interferon-α (IFN) in newly diagnosed chronic myeloid leukemia (CML).

    PubMed

    Zeidner, Joshua F; Gladstone, Douglas E; Zahurak, Marianna; Matsui, William H; Gocke, Christopher; Jones, Richard J; Smith, B Douglas

    2014-08-01

    The majority of chronic myeloid leukemia (CML) patients treated with tyrosine kinase inhibitors (TKIs) remain with residual disease. In contrast to TKIs, interferon (IFN) is directly toxic to CML progenitor cells, and myeloid growth factors such as GM-CSF may enhance IFN's cytotoxicity. We performed a phase 2 study of IFN+GM-CSF in 58 newly diagnosed CML patients before imatinib approval. Short-term clinical responses included: 60% major cytogenetic response, 28% complete cytogenetic response and 19% complete molecular response. Six patients remain off all therapy for CML (range: 15 months-12 years) after IFN+GM-CSF treatment. IFN+GM-CSF shows promise as an adjunctive therapy for CML. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Preventive and therapeutic effects of gene therapy using silica nanoparticles-binding of GM-CSF gene on white blood cell production in dogs with leukopenia.

    PubMed

    Choi, Eun Wha; Koo, Hye Cheong; Shin, Il Seob; Chae, Young Jin; Lee, Jong Hwa; Han, Sei Myoung; Lee, Seung Jun; Bhang, Dong Ha; Park, Yong Ho; Lee, Chang Woo; Youn, Hwa Young

    2008-09-01

    Our previous study has shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) gene/silica nanoparticles have a leukocytosis effect in normal dogs. Therefore, this study was conducted to determine whether treatment of canine GM-CSF gene/silica nanoparticles has preventive or therapeutic effects in dogs with leukopenia. To induce leukopenia, vinblastine was administered intravenously at a dose of 2 mg/m(2) of body surface area on day 0. Then 7.5 microg GM-CSF/nanoparticles (1:100, w/w) were administered intravenously to each of four dogs in the prevention group on day 2 and an equivalent amount of GM-CSF/nanoparticles was administered to the post-nadir group on day 4 (other groups were administered phosphate-buffered saline intravenously). Therapeutic GM-CSF gene was expressed in peripheral blood mononuclear cells for 10 days and both the prevention and post-nadir groups showed significant increases in white blood cell counts when compared with the control group, as confirmed by complete blood count, differential count, and flow cytometry. GM-CSF/nanoparticles can be useful for correction of acute leukopenia, such as chemotherapy-induced myelosuppression, without developing neutralizing antibodies.

  1. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages.

    PubMed

    Bouhy, Delphine; Malgrange, Brigitte; Multon, Sylvie; Poirrier, Anne-Lise; Scholtes, Félix; Schoenen, Jean; Franzen, Rachelle

    2006-06-01

    Macrophages (monocytes/microglia) could play a critical role in central nervous system repair. We have previously found a synchronism between the regression of spontaneous axonal regeneration and the deactivation of macrophages 3-4 wk after a compression-injury of rat spinal cord. To explore whether reactivation of endogenous macrophages might be beneficial for spinal cord repair, we have studied the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) in the same paraplegia model and in cell cultures. There was a significant, though transient, improvement of locomotor recovery after a single delayed intraperitoneal injection of 2 microg GM-CSF, which also increased significantly the expression of Cr3 and brain-derived neurotrophic factor (BDNF) by macrophages at the lesion site. At longer survival delays, axonal regeneration was significantly enhanced in GM-CSF-treated rats. In vitro, BV2 microglial cells expressed higher levels of BDNF in the presence of GM-CSF and neurons cocultured with microglial cells activated by GM-CSF generated more neurites, an effect blocked by a BDNF antibody. These experiments suggest that GM-CSF could be an interesting treatment option for spinal cord injury and that its beneficial effects might be mediated by BDNF.

  2. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression

    PubMed Central

    Gutschalk, Claudia M; Yanamandra, Archana K; Linde, Nina; Meides, Alice; Depner, Sofia; Mueller, Margareta M

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) promotes tumor progression in different tumor models in an autocrine and paracrine manner. However, at the same time GM-CSF is used in cancer therapies to ameliorate neutropenia. We have previously shown in GM-CSF and G-CSF expressing or negative skin or head and neck squamous cell carcinoma that GM-CSF expression is associated with a highly angiogenic and invasive tumor phenotype. To determine the functional contribution of GM-CSF to tumor invasion, we stably transfected a GM-CSF negative colon adenocarcinoma cell line HT-29 with GM-CSF or treated the same cell line with exogenous GM-CSF. While GM-CSF overexpression and treatment reduced tumor cell proliferation and tumor growth in vitro and in vivo, respectively, it contributed to tumor progression. Together with an enhanced migratory capacity in vitro, we observed a striking increase in tumor cell invasion into the surrounding tissue concomitant with the induction of an activated tumor stroma in GM-CSF overexpressing or GM-CSF treated tumors. In a complex 3D in vitro model, enhanced GM-CSF expression was associated with a discontinued basement membrane deposition that might be mediated by the increased expression and activation of MMP-2, -9, and -26. Treatment with GM-CSF blocking antibodies reversed this effect. The increased presence and activity of these tumor cell derived proteases was confirmed in vivo. Here, expression of MMP-26 protein was predominantly located in pre- and early-invasive areas suggesting MMP-26 expression as an early event in promoting GM-CSF dependent tumor invasion. PMID:23634280

  3. Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury

    PubMed Central

    Han, Xiaonan; Gilbert, Shila; Groschwitz, Katherine; Hogan, Simon; Jurickova, Ingrid; Trapnell, Bruce; Samson, Charles; Gully, Jonathan

    2014-01-01

    Background Administration of granulocyte-macrophage colony stimulating factor (GM-CSF) relieves symptoms in Crohn's disease (CD). It has been reported that reduced GM-CSF bioactivity is associated with more aggressive ileal behaviour and that GM-CSF-null mice exhibit ileal barrier dysfunction and develop a transmural ileitis following exposure to non-steroidal anti-inflammatory drugs (NSAIDs). STAT5 signalling is central to GM-CSF action. It was therefore hypothesised that GM-CSF signalling in non-haematopoietic cells is required for ileal homeostasis. Methods Bone marrow (BM) chimeras were generated by reconstituting irradiated GM-CSF receptor (gm-csfr) β chain or GM-CSF (gm-csf) deficient mice with wild type BM (WTBM→GMRKO and WTBM→GMKO). Intestinal barrier function and the response to NSAID-induced ileal injury were examined. Expression of gm-csf, gm-csfr or stat5 in Caco-2 and HT-29 intestinal epithelial cell (IEC) lines was knocked down and the effect of GM-CSF signalling on IEC survival and proliferation was determined. Results Elevated levels of GM-CSF autoantibodies in ileal CD were found to be associated with dysregulation of IEC survival and proliferation. GM-CSF receptor-deficient mice and WTBM→GMRKO chimeras exhibited ileal hyperpermeability. NSAID exposure induced a transmural ileitis in GM-CSF receptor-deficient mice and WTBM→GMRKO chimeras. Transplantation of wild type BM into GM-CSF-deficient mice prevented NSAID ileal injury and restored ileal barrier function. Ileal crypt IEC proliferation was reduced in WTBM→GMRKO chimeras, while STAT5 activation in ileal IEC following NSAID exposure was abrogated in WTBM→GMRKO chimeras. Following knock down of gm-csf, gm-csfr α or β chain or stat5a/b expression in Caco-2 cells, basal proliferation was suppressed. GM-CSF normalised proliferation of Caco-2 cells exposed to NSAID, which was blocked by stat5a/b RNA interference. Conclusions Loss of GM-CSF signalling in non-haematopoietic cells

  4. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.; Stomski, Frank C.; Dottore, Mara; Powell, Jason; Ramshaw, Hayley; Woodcock, Joanna M.; Xu, Yibin; Guthridge, Mark; McKinstry, William J.; Lopez, Angel F.; Parker, Michael W.

    2008-08-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.

  5. Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant.

    PubMed

    Li, Na; Yu, Yun-Zhou; Yu, Wei-Yuan; Sun, Zhi-Wei

    2011-03-01

    Granulocyte-macrophage clony-stimulating factor (GM-CSF) is an attractive adjuvant for a DNA vaccine on account of its ability to recruit antigen-presenting cells to the site of antigen synthesis as well as stimulate the maturation of dendritic cells.This study evaluated the utility of GM-CSF as a plasmid DNA replicon vaccine adjuvants for botulinum neurotoxin serotype A (BoNT/A) in mouse model. In balb/c mice that received the plasmid DNA replicon vaccines derived from Semliki Forest virus (SFV) carrying the Hc gene of BoNT/A (AHc), both antibody and lymphoproliferative response specific to AHc were induced, the immunogenicity was enhanced by co-delivery or coexpress of the GM-CSF gene. In particular, when AHc and GM-CSF were coexpressed within the SFV based DNA vaccine, the anti-AHc antibody titers and survival rates of immunized mice after challenged with BoNT/A were significantly increased, and further enhanced by coimmunization with aluminum phosphate adjuvant.

  6. Up-regulation of cluster of differentiation (CD) 11b expression on the surface of canine granulocytes with human granulocyte-macrophage colony-stimulating factor (GM-CSF).

    PubMed

    Nakagaki, Kazuhide; Nunomura, Yuka; Uchida, Kanji; Nakata, Koh; Tazawa, Ryushi

    2014-08-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF.

  7. Up-Regulation of Cluster of Differentiation (CD) 11b Expression on the Surface of Canine Granulocytes with Human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)

    PubMed Central

    NAKAGAKI, Kazuhide; NUNOMURA, Yuka; UCHIDA, Kanji; NAKATA, Koh; TAZAWA, Ryushi

    2014-01-01

    ABSTRACT Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF. PMID:24829080

  8. Novel GM-CSF-based vaccines: One small step in GM-CSF gene optimization, one giant leap for human vaccines

    PubMed Central

    Yu, Ting-Wei; Chueh, Ho-Yen; Tsai, Ching-Chou; Lin, Cheng-Tao; Qiu, Jiantai Timothy

    2016-01-01

    ABSTRACT Granulocyte macrophage-colony stimulating factor (GM-CSF) is a potent immunomodulatory cytokine that is known to facilitate vaccine efficacy by promoting the development and prolongation of both humoral and cellular immunity. In the past years we have generated a novel codon-optimized GM-CSF gene as an adjuvant. The codon-optimized GM-CSF gene significantly increased protein expression levels in all cells tested and helped in generating a strong immune responses against HIV-1 Gag and HPV-associated cancer. Here, we review the literature dealing with the adjuvant activity of GM-CSF both in animal models and clinical trials. We anticipate that the codon-optimized GM-CSF gene offers a practical molecular strategy for potentiating immune responses to tumor cell-based vaccinations as well as other immunotherapeutic strategies. PMID:27560197

  9. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is released by female mouse bladder urothelial cells and expressed by the urothelium as an early response to lipopolysaccharides (LPS).

    PubMed

    Li, Yan; Lu, Ming; Alvarez-Lugo, Lery; Chen, Gang; Chai, Toby C

    2017-04-01

    We studied in vitro and in vivo response of primary mouse bladder urothelial cells (mBUC) and bladder urothelium to lipopolysaccharides (LPS), focusing on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Female C57BL/6 mBUC were exposed for 12 hr to differing concentrations of LPS (100 ng/ml to 10 µg/ml). mBUC were also exposed to a single dose of LPS (1 µg/ml) for 3, 6, 12 hr. Neutralizing GM-CSF antibody (0.1 μg/ml) was used block GM-CSF activity in vitro. In vivo experiments were performed, whereby, LPS (1 mg/ml) was instilled intravesically and left to dwell for 30 min followed by harvest of bladder urothelium 3 to 18 hr later. ELISA measured GM-CSF. qPCR quantitated mRNA for GM-CSF, vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α). RT-PCR was used to detect mRNA for GM-CSF, GM-CSFRα, and β in bladder tissues. Immunohistofluorescence and Western blots for GM-CSFRα were performed on bladder tissues. LPS induced a dose-dependent release of GM-CSF by mBUC. Mouse bladder urothelium did not express GM-CSF mRNA at baseline, but expressed GM-CSF mRNA 3 hr after in vivo LPS exposure, with GM-CSF mRNA expression disappearing 18 hr later. GM-CSFRα expression was confirmed in bladder urothelium. GM-CSF neutralizing antibody significantly diminished LPS-induced increases of VEGF and COX-2 mRNA expression. Urothelium and mBUC secreted GM-CSF as an early response to LPS. GM-CSF mediated downstream expression of VEGF and COX-2. Urothelial GM-CSF may function as a signaling mediator for both inflammation and pain transduction. Neurourol. Urodynam. 36:1020-1025, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Enhanced Th1-biased immune efficacy of porcine circovirus type 2 Cap-protein-based subunit vaccine when coadministered with recombinant porcine IL-2 or GM-CSF in mice.

    PubMed

    Wang, Yiping; Lu, Yuehua; Liu, Dan; Wei, Yanwu; Guo, Longjun; Wu, Hongli; Huang, Liping; Liu, Jianbo; Liu, Changming

    2015-02-01

    Porcine circovirus type 2 (PCV2) capsid (Cap) protein is the primary protective antigen responsible for inducing PCV2-specific protective immunity, so it is a desirable target for the development of recombinant subunit vaccines to prevent PCV2-associated diseases. Interleukin 2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), used as immune adjuvants, have been shown to enhance the immunogenicity of certain antigens or vaccines in various experimental models. In this study, five different subunit vaccines (the PCV2-Cap, Cap-PoIL-2, PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines) were prepared based on baculovirus-expressed recombinant proteins. The immunogenicity of these vaccines was evaluated to identify the immunoenhancement by PoIL-2 and PoGM-CSF of the Cap-protein-based PCV2 subunit vaccine in mice. The PCV2-Cap + PoIL-2, Cap-PoGM-CSF, PCV2-Cap + PoGM-CSF, and PCV2-Cap vaccines induced significantly higher levels of PCV2-specific antibodies than the Cap-PoIL-2 vaccine, whereas there was no apparent difference between these four vaccines. Our results indicate that neither PoIL-2 nor PoGM-CSF had effect on the enhancement of the humoral immunity induced by the PCV2-Cap vaccine. Furthermore, the PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines elicited stronger lymphocyte proliferative responses and greater IL-2 and interferon gamma (IFN-γ) secretion. This suggests that PoIL-2 and PoGM-CSF substantially augmented the Th1-biased immune response to the PCV2-Cap vaccine. Following challenge, the viral loads in the lungs of the PCV2-Cap + PoIL-2-, Cap-PoGM-CSF-, and PCV2-Cap + PoGM-CSF-treated groups were dramatically lower than those in the Cap-PoIL-2- and PCV2-Cap-treated groups, indicating that the three vaccines induced stronger protective effects against challenge. These findings show that PoIL-2 and PoGM-CSF essentially enhanced the Th1-biased protective efficacy of the

  11. Spleen tyrosine kinase mediates the actions of EPO and GM-CSF and coordinates with TGF-β in erythropoiesis.

    PubMed

    Chang, Hua-Ching; Huang, Duen-Yi; Wu, Mai-Szu; Chu, Ching-Liang; Tzeng, Shiang-Jong; Lin, Wan-Wan

    2017-04-01

    Erythropoietin (EPO) and GM-CSF are involved in erythropoiesis, while TGF-β inhibits proliferation but potentiates differentiation of erythroblasts. Since Syk inhibitor may induce anemia side effect in clinic, here we investigated the role of Syk in the biological actions of EPO and GM-CSF in erythropoiesis. In human erythroleukemia cell line TF-1, Syk inhibitor R406 exerts an enhancement effect with TGF-β to decrease cell viability, either in the absence or presence of EPO or GM-CSF. Such effect of R406 results from the reduced cell cycle progression and increased cell apoptosis. Notably, unlike Syk, Src family kinases are not involved in the viability control of TF-1 cells. Signaling studies showed that Syk is required for STAT5 and ERK activation induced by EPO, and Akt and ERK activation induced by GM-CSF. Nevertheless, R406 does not change the Smad2/3 signal caused by TGF-β, and TGF-β neither affects above signal pathways of EPO and GM-CSF. Of note, Syk is constitutively associated with EPOR in plasma membrane and can bind to STAT5 at active status upon EPO stimulation. Furthermore, EPO-induced hemoglobin γ expression was reduced by R406. In BFU-E and CFU-E colony formation assays in Syk-deficient erythroid progenitor cells, we confirmed the essential role of Syk in erythropoiesis mediated by EPO. Taken together, Syk is a novel upstream signaling molecule of EPOR, and contributes to erythroblast proliferation, survival and differentiation.

  12. GM-CSF CAUSES A PARADOXICAL INCREASE IN THE BH3-ONLY PRO-APOPTOTIC PROTEIN BIM IN HUMAN NEUTROPHILS

    PubMed Central

    Cowburn, Andrew S; Summers, Charlotte; Dunmore, Benjamin J; Farahi, Neda; Print, Cristin G; Cook, Simon J; Chilvers, Edwin R

    2014-01-01

    Neutrophil apoptosis is essential for the resolution of inflammation but delayed by several inflammatory mediators. In such terminally differentiated cells it has been uncertain whether these agents can inhibit apoptosis through transcriptional regulation of anti-death (Bcl-XL, Mcl-1, Bcl2A1) or BH3-only (Bim, Bid, Puma) Bcl2-family proteins. We report that GM-CSF and TNFα prevent the normal time-dependent loss of Mcl-1 and Bcl2A1 in neutrophils and demonstrate that they cause a NF-κB-dependent increase in Bcl-XL transcription/translation. Surprisingly, we show that GM-CSF and TNFα increase and/or maintain mRNA levels for the pro-apoptotic BH3-only protein Bid and that GM-CSF has a similar NF-κB-dependent effect on Bim transcription and BimEL expression. The in-vivo relevance of these findings was shown by the demonstration that GM-CSF is the dominant neutrophil survival factor present in lung lavage from patients with ventilator-associated pneumonia and confirmation of an increase lung neutrophil Bim mRNA. Finally GM-CSF caused mitochondrial location of Bim and a switch in phenotype to a cell that displays accelerated caspase-9-dependent apoptosis. This study demonstrates the capacity of neutrophil survival agents to induce a paradoxical increase in the pro-apoptotic proteins Bid and Bim and suggests that this may function to facilitate rapid apoptosis at the termination of the inflammatory cycle. PMID:20705940

  13. Expression of the human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene under control of the 5'-regulatory sequence of the goat alpha-S1-casein gene with and without a MAR element in transgenic mice.

    PubMed

    Burkov, I A; Serova, I A; Battulin, N R; Smirnov, A V; Babkin, I V; Andreeva, L E; Dvoryanchikov, G A; Serov, O L

    2013-10-01

    Expression of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) gene under the control of the 5'-regulatory sequence of the goat alpha-S1-casein gene with and without a matrix attachment region (MAR) element from the Drosophila histone 1 gene was studied in four and eight transgenic mouse lines, respectively. Of the four transgenic lines carrying the transgene without MAR, three had correct tissues-specific expression of the hGM-CSF gene in the mammary gland only and no signs of cell mosaicism. The concentration of hGM-CSF in the milk of transgenic females varied from 1.9 to 14 μg/ml. One line presented hGM-CSF in the blood serum, indicating ectopic expression. The values of secretion of hGM-CSF in milk of 6 transgenic lines carrying the transgene with MAR varied from 0.05 to 0.7 μg/ml, and two of these did not express hGM-CSF. Three of the four examined animals from lines of this group showed ectopic expression of the hGM-CSF gene, as determined by RT-PCR and immunofluorescence analyses, as well as the presence of hGM-CSF in the blood serum. Mosaic expression of the hGM-CSF gene in mammary epithelial cells was specific to all examined transgenic mice carrying the transgene with MAR but was never observed in the transgenic mice without MAR. The mosaic expression was not dependent on transgene copy number. Thus, the expected "protective or enhancer effect" from the MAR element on the hGM-CSF gene expression was not observed.

  14. Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    PubMed Central

    Chen, Hui; Gao, Na; Fan, Dongying; Wu, Jiangman; Zhu, Junping; Li, Jieqiong; Wang, Juan; Chen, Yanlei; An, Jing

    2012-01-01

    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF. PMID:22493704

  15. GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity.

    PubMed

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2016-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14(+) monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.

  16. IL-22, GM-CSF and IL-17 in peripheral CD4+ T cell subpopulations during multiple sclerosis relapses and remission. Impact of corticosteroid therapy

    PubMed Central

    Muls, Nathalie; Nasr, Zakia; Dang, Hong Anh; Sindic, Christian

    2017-01-01

    Multiple sclerosis (MS) is thought to be a Th17-mediated dysimmune disease of the central nervous system. However, recent publications have questioned the pathogenicity of IL-17 per se and rather suggest the implication of other Th17-related inflammatory mediators. Therefore, we studied the expression of GM-CSF, IL-22, IL-24, IL-26 and CD39 in peripheral blood mononuclear cells (PBMCs) from MS patients during relapses, remission and following corticosteroid treatment. We performed qPCR to measure mRNA levels from ex vivo or in vitro-stimulated PBMCs. Cytokine levels were determined by ELISA. We used flow cytometry to assess GM-CSF+, IL-22+ and CD39+ cells in relationship to IL-17+ CD4+ T cells. Our results showed that IL-22 mRNA and IL-22+CD4+ lymphocytes are increased in circulating cells of relapsing MS patients compared to remitting patients while GM-CSF was unchanged. We have further shown that 12.9, 39 and 12.4% of Th17 cells from MS patients during relapses expressed IL-22, GM-CSF and CD39 respectively. No changes in these proportions were found in stable MS patients. However, the majority of GM-CSF+ or IL-22+ T cells did not co-express IL-17. GM-CSF mRNA, but not IL-22 mRNA, was dramatically decreased ex vivo by ivMP. Our results contribute to a better characterisation of Th17, Th22 and ThGM-CSF cells in the setting of MS and according to disease activity. PMID:28301515

  17. GM-CSF Priming Drives Bone Marrow-Derived Macrophages to a Pro-Inflammatory Pattern and Downmodulates PGE2 in Response to TLR2 Ligands

    PubMed Central

    Sorgi, Carlos Arterio; Rose, Stephanie; Court, Nathalie; Carlos, Daniela; Paula-Silva, Francisco Wanderley Garcia; Assis, Patricia Aparecida; Frantz, Fabiani Gai; Ryffel, Bernhard; Quesniaux, Valerie; Faccioli, Lúcia Helena

    2012-01-01

    In response to pathogen recognition by Toll-like receptors (TLRs) on their cell surface, macrophages release lipid mediators and cytokines that are widely distributed throughout the body and play essential roles in host responses. Granulocyte macrophage colony-stimulating factor (GM-CSF) is important for the immune response during infections to improve the clearance of microorganisms. In this study, we examined the release of mediators in response to TLR2 ligands by bone marrow-derived macrophages (BMDMs) primed with GM-CSF. We demonstrated that when stimulated with TLR2 ligands, non-primed BMDMs preferentially produced PGE2 in greater amounts than LTB4. However, GM-CSF priming shifted the release of lipid mediators by BMDMs, resulting in a significant decrease of PGE2 production in response to the same stimuli. The decrease of PGE2 production from primed BMDMs was accompanied by a decrease in PGE-synthase mRNA expression and an increase in TNF-α and nitric oxide (NO) production. Moreover, some GM-CSF effects were potentiated by the addition of IFN-γ. Using a variety of TLR2 ligands, we established that PGE2 release by GM-CSF-primed BMDMs was dependent on TLR2 co-receptors (TLR1, TLR6), CD14, MyD88 and the nuclear translocation of NFκB but was not dependent on peroxisome proliferator-activated receptor-γ (PPAR-γ) activation. Indeed, GM-CSF priming enhanced TLR2, TLR4 and MyD88 mRNA expression and phospho-IκBα formation. These findings demonstrate that GM-CSF drives BMDMs to present a profile relevant to the host during infections. PMID:22808181

  18. A novel subunit vaccine co-expressing GM-CSF and PCV2b Cap protein enhances protective immunity against porcine circovirus type 2 in piglets.

    PubMed

    Zhang, Huawei; Qian, Ping; Peng, Bo; Shi, Lin; Chen, Huanchun; Li, Xiangmin

    2015-05-15

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated disease. Capsid (Cap) protein of PCV2 is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. GM-CSF is an immune adjuvant that enhances responses to vaccines. In this study, recombinant baculoviruses Ac-Cap and Ac-Cap-GM-CSF expressing the Cap protein alone and co-expressing the Cap protein and porcine GM-CSF, respectively, were constructed successfully. The target proteins were analyzed by western blotting and IFA. Further, these proteins were confirmed by electron microscopy, which showed that Cap proteins could self-assemble into virus-like particles having diameters of 17-25nm. Animal experiments showed that pigs immunized with Cap-GM-CSF subunit vaccine showed significantly higher levels of PCV2-specific antibodies and neutralizing antibodies than pigs immunized with the Cap subunit vaccine and a commercial vaccine (Ingelvac CircoFLEX; P<0.05). After PCV2 wild strain challenged, Pigs receiving the Cap-GM-CSF subunit vaccine showed significantly higher average daily weight gain after wild-type PCV2 challenge than pigs receiving the other three vaccines (P<0.05). None of PCV2 DNA was detected in all immunized animals, except control animals immunized with phosphate-buffered saline. These results indicated that GM-CSF was a powerful immunoadjuvant for PCV2 subunit vaccines because it enhanced humoral immune response and improved immune protection against PCV2 infection in pigs. Thus, the novel Cap-GM-CSF subunit vaccine has the potential to be used as an effective and safe vaccine candidate against PCV2 infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity

    PubMed Central

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2017-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14+ monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity. PMID:28138327

  20. Expression of GM-CSF receptors in male germ cells and their role in signaling for increased glucose and vitamin C transport.

    PubMed

    Zambrano, A; Noli, C; Rauch, M C; Werner, E; Brito, M; Amthauer, R; Slebe, J C; Vera, J C; Concha, I I

    2001-01-01

    We studied the expression and function of the granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in male germ cells. RT-PCR showed expression of mRNAs encoding the alpha- and beta-subunits of the GM-CSF receptor in human testis, and the presence of the alpha- and beta-proteins was confirmed by immunoblotting with anti-alpha and anti-beta-antibodies. Immunolocalization studies showed the level of expression of GM-CSF alpha- and beta-subunits in the germ line in the testis and in ejaculated spermatozoa. Receptor binding studies using radiolabeled GM-CSF revealed that bull spermatozoa have about 105 high-affinity sites with a K(d) of 222 pM and approximately 1100 low-affinity sites with a K(d) of 10 nM. GM-CSF signaled, in a time- and dose-dependent manner, for an increased uptake of glucose and vitamin C.

  1. Regulation of GM-CSF and IL-3 production from the murine keratinocyte cell line PAM 212 following exposure to ultraviolet radiation

    SciTech Connect

    Gallo, R.L.; Staszewski, R.; Sauder, D.N.; Knisely, T.L.; Granstein, R.D. )

    1991-08-01

    Ultraviolet radiation (UVR) exposure induces profound changes in the synthesis and secretion of various cytokines both in vivo and in vitro. Little is known regarding the mechanism of these responses. This investigation evaluated the effects of UVR on the ability of a murine keratinocyte line (PAM 212) to produce interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF). Subconfluent rapidly dividing PAM 212 cells were shown by RNA slot-blot hybridization studies to have increased levels of mRNA for both IL-3 and GM-CSF within 1 h of UVR exposure. However, only GM-CSF-specific bioactivity, as determined by antibody neutralization studies, was shown to increase above baseline in cell supernatants. Cells grown to confluence responded differently to UVR. Under these culture conditions an apparent decrease in bioactivity was detected after UVR exposure for both growth factors, and no change in mRNA levels was detected. In addition to culture density, removal of extracellular calcium or sodium during irradiation, treatment with amiloride, or inhibition of new mRNA synthesis with cordycepin was shown to influence the UVR-induced alteration in release of IL-3 or GM-CSF bioactivity from both confluent and subconfluent PAM 212 cells. These results demonstrate that UVR influences the release of the colony stimulating factors GM-CSF and IL-3 from keratinocyte, and suggests that the state of cell growth and conditions of membrane ion transport influence the mechanisms regulating secretion of those factors.

  2. Use of an Oncolytic Virus Secreting GM-CSF as Combined Oncolytic and Immunotherapy for Treatment of Colorectal and Hepatic Adenocarcinomas

    PubMed Central

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D’Angelica, Michael; Fong, Yuman

    2007-01-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multi-mutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these two anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, in order to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. In vitro, expression GM-CSF did not alter the infectivity, in vitro cytotoxicity, or replication of NV1034 compared to the non-cytokine secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l–6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice respectively. In these immune competent models, NV1034 or NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, in mice depleted of CD4+ and CD8+ T-lymphocytes, there was no difference in the antitumor efficacy of these viruses. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma. PMID:17383529

  3. Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity.

    PubMed

    Jurickova, I; Collins, M H; Chalk, C; Seese, A; Bezold, R; Lake, K; von Allmen, D; Frischer, J S; Falcone, R A; Trapnell, B C; Denson, L A

    2013-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies are associated with stricturing behaviour in Crohn disease (CD). We hypothesized that CD ileal lamina propria mononuclear cells (LPMC) would produce GM-CSF autoantibodies and peripheral blood (PB) samples would contain GM-CSF neutralizing capacity (NC). Paediatric CD and control PBMC and ileal biopsies or LPMC were isolated and cultured and GM-CSF, immunoglobulin (Ig)G and GM-CSF autoantibodies production were measured by enzyme-linked immunosorbent assay (ELISA). Basal and GM-CSF-primed neutrophil bacterial killing and signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation (pSTAT5) were measured by flow cytometry. GM-CSF autoantibodies were enriched within total IgG for LPMC isolated from CD ileal strictures and proximal margins compared to control ileum. Neutrophil bacterial killing was reduced in CD patients compared to controls. Within CD, neutrophil GM-CSF-dependent STAT5 activation and bacterial killing were reduced as GM-CSF autoantibodies increased. GM-CSF stimulation of pSTAT5 did not vary between controls and CD patients in washed PB granulocytes in which serum was removed. However, GM-CSF stimulation of pSTAT5 was reduced in whole PB samples from CD patients. These data were used to calculate the GM-CSF NC. CD patients with GM-CSF NC greater than 25% exhibited a fourfold higher rate of stricturing behaviour and surgery. The likelihood ratio (95% confidence interval) for stricturing behaviour for patients with elevation in both GM-CSF autoantibodies and GM-CSF NC was equal to 5 (2, 11). GM-CSF autoantibodies are produced by LPMC isolated from CD ileal resection specimens and are associated with reduced neutrophil bacterial killing. CD peripheral blood contains GM-CSF NC, which is associated with increased rates of stricturing behaviour. © 2013 British Society for Immunology.

  4. Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity

    PubMed Central

    Jurickova, I; Collins, M H; Chalk, C; Seese, A; Bezold, R; Lake, K; Allmen, D; Frischer, J S; Falcone, R A; Trapnell, B C; Denson, L A

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibodies are associated with stricturing behaviour in Crohn disease (CD). We hypothesized that CD ileal lamina propria mononuclear cells (LPMC) would produce GM-CSF autoantibodies and peripheral blood (PB) samples would contain GM-CSF neutralizing capacity (NC). Paediatric CD and control PBMC and ileal biopsies or LPMC were isolated and cultured and GM-CSF, immunoglobulin (Ig)G and GM-CSF autoantibodies production were measured by enzyme-linked immunosorbent assay (ELISA). Basal and GM-CSF-primed neutrophil bacterial killing and signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation (pSTAT5) were measured by flow cytometry. GM-CSF autoantibodies were enriched within total IgG for LPMC isolated from CD ileal strictures and proximal margins compared to control ileum. Neutrophil bacterial killing was reduced in CD patients compared to controls. Within CD, neutrophil GM-CSF-dependent STAT5 activation and bacterial killing were reduced as GM-CSF autoantibodies increased. GM-CSF stimulation of pSTAT5 did not vary between controls and CD patients in washed PB granulocytes in which serum was removed. However, GM-CSF stimulation of pSTAT5 was reduced in whole PB samples from CD patients. These data were used to calculate the GM-CSF NC. CD patients with GM-CSF NC greater than 25% exhibited a fourfold higher rate of stricturing behaviour and surgery. The likelihood ratio (95% confidence interval) for stricturing behaviour for patients with elevation in both GM-CSF autoantibodies and GM-CSF NC was equal to 5 (2, 11). GM-CSF autoantibodies are produced by LPMC isolated from CD ileal resection specimens and are associated with reduced neutrophil bacterial killing. CD peripheral blood contains GM-CSF NC, which is associated with increased rates of stricturing behaviour. PMID:23600834

  5. A Simplified Method for the Efficient Refolding and Purification of Recombinant Human GM-CSF

    PubMed Central

    Thomson, Christy A.; Olson, Melanie; Jackson, Linda M.; Schrader, John W.

    2012-01-01

    Human granulocyte macrophage colony-stimulating factor (hGM-CSF) is a haematopoietic growth factor and proinflammatory cytokine. Recombinant hGM-CSF is important not only as a research tool but also as a biotherapeutic. However, rhGM-CSF expressed in E. coli is known to form inclusion bodies of misfolded, aggregated protein. Refolding and subsequent purification of rhGM-CSF from inclusion bodies is difficult with low yields of bioactive protein being produced. Here we describe a method for the isolation, refolding and purification of bioactive rhGM-CSF from inclusion bodies. The method is straightforward, not requiring extensive experience in protein refolding nor purification and using standard laboratory equipment. PMID:23166789

  6. Action of granulopoiesis-stimulating cytokines rhG-CSF, rhGM-CSF, and rmGM-CSF on murine haematopoietic progenitor cells for granulocytes and macrophages (GM-CFC).

    PubMed

    Hofer, M; Vacek, A; Weiterová, L

    2005-01-01

    The aim of this study was to provide new data to the knowledge of mechanisms by which recombinant human granulocyte colony-stimulating factor (rhG-CSF), recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) enhance the numbers of colonies growing from hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in the murine bone marrow. The in vitro technique for cultivating GM-CFC from normal bone marrow cells was used. For evaluation of stimulatory actions of the drugs studied, the factors themselves or sera of mice given these factors were added to the cultures. The factors or the sera were present in the cultures either as the only potentially stimulatory agents or acted jointly with a suboptimum concentration of recombinant murine interleukin-3 (rmIL-3). It was found that both rhG-CSF and rmGM-CSF stimulate the proliferation of GM-CFC by a combination of direct mechanisms (direct actions on the target cells) and indirect effects (effects mediated through the induction of other cytokines and/or growth factors in the murine organism). The rhGM-CSF exhibited somewhat weaker in vitro effects in comparison with the other two factors and only indirect effects were noted. Additional in vivo experiments documented that, in spite of differences in mechanisms of action of the individual drugs studied on murine bone marrow cells in vitro, equal in vivo doses of the factors induce quantitatively similar effects on the production of GM-CFC in vivo.

  7. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis

    PubMed Central

    Chousterman, Benjamin G.; Hilgendorf, Ingo; Robbins, Clinton S.; Theurl, Igor; Gerhardt, Louisa M.S.; Iwamoto, Yoshiko; Quach, Tam D.; Ali, Muhammad; Chen, John W.; Rothstein, Thomas L.; Nahrendorf, Matthias; Weissleder, Ralph

    2014-01-01

    Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSF–dependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity. PMID:24821911

  8. Single chain Fv fragment specific for human GM-CSF: selection and expression using a bacterial expression library.

    PubMed

    Tapryal, Suman; Pal Khasa, Yogender; Mukherjee, K J

    2010-10-01

    Single chain antibodies (scFvs) are replacing whole antibody molecules since they are easy to produce on large scale and amenable to genetic modifications. Here we report the development of an anti-human granulocyte macrophage colony-stimulating factor (hGM-CSF) scFv as an immunoassay bio-reagent, utilizing an easily scalable bacterial expression system. For this, the V(H) and V(L) gene repertoires were amplified from the immunoglobulin complementary DNA, derived from total RNA of mice splenocytes, pre-sensitized with the antigen. The scFv library was expressed under the strong T7 promoter in BL21 (DE3) Escherichia coli cells. Preliminary screening led to the selection of four potential candidates, which were later subjected to light chain shuffling. Cross-reactivity analysis involving the original and shuffled candidates resulted in the selection of one scFv (scFv196) with no cross-reactivity against E. coli antigens. The binding affinity of the scFv196 for hGM-CSF, measured by surface plasmon resonance, was found to be within the physiological range (K(D) =1.5 μM). The refolded scFv was also shown to recognize and bind the glycosylated antigen, a closer mimic of the physiological GM-CSF, potentiating its use in immunoassays. Expression studies using shake flasks suggested periplasmic export of the scFv196 protein.

  9. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian Tan strain Guang9.

    PubMed

    Deng, Lili; Fan, Jun; Guo, Mingming; Huang, Biao

    2016-03-28

    Targeted oncolytic vaccinia viruses are being developed as a novel strategy in cancer therapy. Arming vaccinia viruses with immunostimulatory cytokines can enhance antitumor efficacy. Such engineered oncolytic viruses, like JX-594, a Wyeth strain vaccinia virus modified with human granulocyte-macrophage colony-stimulating factor (GM-CSF), have shown promising results and have proceeded rapidly in clinical trials. However, the oncolytic potential of the Chinese vaccine strain Tian Tan (VTT) has not been explored. In this study, we constructed a targeted oncolytic vaccinia virus of Tian Tan strain Guang9 (VG9) expressing murine GM-CSF (VG9-GMCSF) and evaluated the antitumor effect of this recombinant vaccinia virus in a murine melanoma model. In vitro, viral replication and cytotoxicity of VG9-GMCSF was as potent as VG9; in vivo, VG9-GMCSF significantly inhibited the growth of subcutaneously implanted melanoma tumors, prolonged the survival of tumor-bearing mice, and produced an antitumor cytotoxic response. Such antitumor effect may be due to the lytic nature of virus as well as the stimulation of immune activity by GM-CSF production. Our results indicate that VG9-GMCSF induces strong tumoricidal activity, providing a potential therapeutic strategy for combating cancer.

  10. Effects of recombinant GM-CSF and IgA opsonisation on neutrophil phagocytosis of latex beads coated with P6 outer membrane protein from Haemophilus influenzae.

    PubMed

    Burnett, D; Chamba, A; Stockley, R A; Murphy, T F; Hill, S L

    1993-06-01

    IgA is the major antibody class in mucosal secretions, yet its biological functions remain poorly understood and its role as an opsonin for neutrophils has been the subject of controversy. It has been reported that treatment of neutrophils with granulocyte-macrophage colony stimulating factor (GM-CSF) induces the cells to phagocytose particles opsonised with IgA. A study was performed to investigate the effects of GM-CSF and IgA opsonisation on the ability of human neutrophils to recognise and phagocytose latex beads coated with the P6 outer membrane protein of Haemophilus influenzae. Human neutrophils with and without preincubation with 100 pmol/l GM-CSF, were incubated with non-opsonised P6-coated latex beads or beads opsonised with IgA purified from the blood of a bronchiectatic patient with high titres of IgA anti-P6. Phagocytosis was measured by counting internalised beads during microscopic examination. The phagocytosis of IgA opsonised beads by untreated neutrophils (mean (SE) 2.1 (0.43) beads/cell) was significantly greater than that of non-opsonised beads (mean (SE) 1.3 (0.30) beads/cell). Treatment of neutrophils with GM-CSF resulted in increased phagocytosis of non-opsonised beads (mean (SE) 2.1 (0.39) beads/cell) but opsonisation with IgA increased this further (mean (SE) 3.4 (0.53) beads/cell). Human neutrophils recognise and phagocytose non-opsonised particles coated with bacterial antigen. Antibodies of the IgA isotype opsonise for neutrophil phagocytosis of particles coated with bacterial antigen but this behaviour is enhanced, in an additive fashion, by treatment of the cells with GM-CSF. The results suggest that IgA and GM-CSF are important cofactors for neutrophil recognition and elimination of bacterial pathogens.

  11. Effects of recombinant GM-CSF and IgA opsonisation on neutrophil phagocytosis of latex beads coated with P6 outer membrane protein from Haemophilus influenzae.

    PubMed Central

    Burnett, D; Chamba, A; Stockley, R A; Murphy, T F; Hill, S L

    1993-01-01

    BACKGROUND--IgA is the major antibody class in mucosal secretions, yet its biological functions remain poorly understood and its role as an opsonin for neutrophils has been the subject of controversy. It has been reported that treatment of neutrophils with granulocyte-macrophage colony stimulating factor (GM-CSF) induces the cells to phagocytose particles opsonised with IgA. A study was performed to investigate the effects of GM-CSF and IgA opsonisation on the ability of human neutrophils to recognise and phagocytose latex beads coated with the P6 outer membrane protein of Haemophilus influenzae. METHODS--Human neutrophils with and without preincubation with 100 pmol/l GM-CSF, were incubated with non-opsonised P6-coated latex beads or beads opsonised with IgA purified from the blood of a bronchiectatic patient with high titres of IgA anti-P6. Phagocytosis was measured by counting internalised beads during microscopic examination. RESULTS--The phagocytosis of IgA opsonised beads by untreated neutrophils (mean (SE) 2.1 (0.43) beads/cell) was significantly greater than that of non-opsonised beads (mean (SE) 1.3 (0.30) beads/cell). Treatment of neutrophils with GM-CSF resulted in increased phagocytosis of non-opsonised beads (mean (SE) 2.1 (0.39) beads/cell) but opsonisation with IgA increased this further (mean (SE) 3.4 (0.53) beads/cell). CONCLUSIONS--Human neutrophils recognise and phagocytose non-opsonised particles coated with bacterial antigen. Antibodies of the IgA isotype opsonise for neutrophil phagocytosis of particles coated with bacterial antigen but this behaviour is enhanced, in an additive fashion, by treatment of the cells with GM-CSF. The results suggest that IgA and GM-CSF are important cofactors for neutrophil recognition and elimination of bacterial pathogens. Images PMID:8346495

  12. GM-CSF in murine psoriasiform dermatitis: Redundant and pathogenic roles uncovered by antibody-induced neutralization and genetic deficiency

    PubMed Central

    Scholz, Tatjana; Weigert, Andreas; Brüne, Bernhard; Sadik, Christian D.; Böhm, Beate

    2017-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic, Th17-derived cytokine thought to critically contribute to the pathogenesis of diverse autoimmune diseases, including rheumatoid arthritis and psoriasis. Treatment with monoclonal antibodies that block GM-CSF activity is associated with favorable therapeutic effects in patients with rheumatoid arthritis. We evaluated the role of GM-CSF as a potential target for therapeutic interference in psoriasis using a combined pharmacologic and genetic approach and the mouse model of imiquimod-induced psoriasiform dermatitis (IMQPD). Neutralization of murine GM-CSF by an anti-GM-CSF antibody ameliorated IMQPD. In contrast, genetic deficiency in GM-CSF did not alter the course of IMQPD, suggesting the existence of mechanisms compensating for chronic, but not acute, absence of GM-CSF. Further investigation uncovered an alternative pathogenic pathway for IMQPD in the absence of GM-CSF characterized by an expanded plasmacytoid dendritic cell population and release of IFNα and IL-22. This pathway was not activated in wild-type mice during short-term anti-GM-CSF treatment. Our investigations support the potential value of GM-CSF as a therapeutic target in psoriatic disease. The discovery of an alternative pathogenic pathway for psoriasiform dermatitis in the permanent absence of GM-CSF, however, suggests the need for monitoring during therapeutic use of long-term GM-CSF blockade. PMID:28777803

  13. Granulocyte macrophage - colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture.

    PubMed

    Truong, M-D; Choi, B H; Kim, Y J; Kim, M S; Min, B-H

    2017-08-01

    To investigate whether granulocyte macrophage-colony stimulating factor (GM-CSF) can be used to increase the number of mesenchymal stem cells (MSCs) in blood clots formed by microfracture arthroplasty (MFX) and whether it can improve the therapeutic outcome for cartilage repair. Thirty-six New Zealand white rabbits were divided into four groups: (1) control, (2) GM-CSF, (3) MFX, and (4) GM-CSF + MFX. GM-CSF was administrated intravenously (IV) at 10 μg/kg body weight 20 min before the MFX surgery. The repaired tissues were retrieved and examined by histological observation, quantitative assessment, and biochemical assays at 4, 8, and 12 weeks after treatment. The number of MSCs was measured in the blood clots by the colony forming unit-fibroblast (CFU-F) assay. The kinetic profile and distribution of GM-CSF in vivo was also evaluated by near-Infrared (NIR) fluorescence imaging and enzyme-linked immune sorbent assay. In the histological observations and chemical assays examined at 4, 8, and 12 weeks, the MFX after GM-CSF administration showed better cartilage repair than the one without GM-CSF. The CFU-F assay showed a significantly larger amount of MSCs present in the blood clots of the GM-CSF + MFX group than in the blood clots of the other groups. The blood concentration of GM-CSF peaked at 10 min and decreased back to almost the initial level after a couple of hours. GM-CSF was distributed in many organs including the bone marrow but was not observed clearly in the joint cavity. Intravenous administration of GM-CSF together with MFX could be a promising therapeutic protocol to enhance the repair of cartilage defects. Copyright © 2017. Published by Elsevier Ltd.

  14. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis

    PubMed Central

    2011-01-01

    Introduction To investigate the effects of G-CSF or GM-CSF therapy in non-neutropenic patients with sepsis. Methods A systematic literature search of Medline, Embase and Cochrane Central Register of Controlled Trials was conducted using specific search terms. A manual review of references was also performed. Eligible studies were randomized control trials (RCTs) that compared granulocyte-colony stimulating factor (G-CSF) or granulocyte-macrophage colony stimulating factor (GM-CSF) therapy with placebo for the treatment of sepsis in adults. Main outcome measures were all-cause mortality at 14 days and 28 days after initiation of G-CSF or GM-CSF therapy, in-hospital mortality, reversal rate from infection, and adverse events. Results Twelve RCTs with 2,380 patients were identified. In regard to 14-day mortality, a total of 9 death events occurred among 71 patients (12.7%) in the treatment group compared with 13 events among 67 patients (19.4%) in the placebo groups. Meta-analysis showed there was no significant difference in 28-day mortality when G-CSF or GM-CSF were compared with placebo (relative risks (RR) = 0.93, 95% confidence interval (CI): 0.79 to 1.11, P = 0.44; P for heterogeneity = 0.31, I2 = 15%). Compared with placebo, G-CSF or GM-CSF therapy did not significantly reduce in-hospital mortality (RR = 0.97, 95% CI: 0.69 to 1.36, P = 0.86; P for heterogeneity = 0.80, I2 = 0%). However, G-CSF or GM-CSF therapy significantly increased the reversal rate from infection (RR = 1.34, 95% CI: 1.11 to 1.62, P = 0.002; P for heterogeneity = 0.47, I2 = 0%). No significant difference was observed in adverse events between groups (RR = 0.93, 95% CI: 0.70 to 1.23, P = 0.62; P for heterogeneity = 0.03, I2 = 58%). Sensitivity analysis by excluding one trial did not significantly change the results of adverse events (RR = 1.05, 95% CI: 0.84 to 1.32, P = 0.44; P for heterogeneity = 0.17, I2 = 36%). Conclusions There is no current evidence supporting the routine use of G-CSF or

  15. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis.

    PubMed

    Bo, Lulong; Wang, Fei; Zhu, Jiali; Li, Jinbao; Deng, Xiaoming

    2011-01-01

    To investigate the effects of G-CSF or GM-CSF therapy in non-neutropenic patients with sepsis. A systematic literature search of Medline, Embase and Cochrane Central Register of Controlled Trials was conducted using specific search terms. A manual review of references was also performed. Eligible studies were randomized control trials (RCTs) that compared granulocyte-colony stimulating factor (G-CSF) or granulocyte-macrophage colony stimulating factor (GM-CSF) therapy with placebo for the treatment of sepsis in adults. Main outcome measures were all-cause mortality at 14 days and 28 days after initiation of G-CSF or GM-CSF therapy, in-hospital mortality, reversal rate from infection, and adverse events. Twelve RCTs with 2,380 patients were identified. In regard to 14-day mortality, a total of 9 death events occurred among 71 patients (12.7%) in the treatment group compared with 13 events among 67 patients (19.4%) in the placebo groups. Meta-analysis showed there was no significant difference in 28-day mortality when G-CSF or GM-CSF were compared with placebo (relative risks (RR) = 0.93, 95% confidence interval (CI): 0.79 to 1.11, P = 0.44; P for heterogeneity = 0.31, I2 = 15%). Compared with placebo, G-CSF or GM-CSF therapy did not significantly reduce in-hospital mortality (RR = 0.97, 95% CI: 0.69 to 1.36, P = 0.86; P for heterogeneity = 0.80, I2 = 0%). However, G-CSF or GM-CSF therapy significantly increased the reversal rate from infection (RR = 1.34, 95% CI: 1.11 to 1.62, P = 0.002; P for heterogeneity = 0.47, I2 = 0%). No significant difference was observed in adverse events between groups (RR = 0.93, 95% CI: 0.70 to 1.23, P = 0.62; P for heterogeneity = 0.03, I2 = 58%). Sensitivity analysis by excluding one trial did not significantly change the results of adverse events (RR = 1.05, 95% CI: 0.84 to 1.32, P = 0.44; P for heterogeneity = 0.17, I2 = 36%). There is no current evidence supporting the routine use of G-CSF or GM-CSF in patients with sepsis. Large

  16. In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages.

    PubMed

    Barilli, Amelia; Rotoli, Bianca Maria; Visigalli, Rossana; Bussolati, Ovidio; Gazzola, Gian C; Kadija, Zamir; Rodi, Giuseppe; Mariani, Francesca; Ruzza, Maria Lorena; Luisetti, Maurizio; Dall'Asta, Valeria

    2010-11-26

    In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed. Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL) performed on the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR. We have found that: 1) system y+L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2) on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/y+LAT2 isoform; 3) in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that the gene is a target of the cytokine; 4) GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5) general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization. Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the defect in system y+L-mediated arginine transport. The

  17. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  18. NSAIDs increase GM-CSF release by human synoviocytes: comparison with nitric oxide-donating derivatives.

    PubMed

    Zacharowski, Paula; Breese, Emma; Wood, Elizabeth; Del Soldato, Piero; Warner, Tim; Mitchell, Jane

    2005-01-31

    Non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat the condition of rheumatoid arthritis, where levels of prostaglandin E2 (PGE2) and granulocyte macrophage-colony stimulating factor (GM-CSF) are elevated in the synovial fluid. NO-NSAIDs are a new class of cyclooxygenase (COX)-inhibitors developed by coupling a nitric oxide (NO)-donating moiety to conventional NSAIDs. We show that, in cytokine-treated synoviocytes (from non-rheumatic patients), NO-naproxen and NO-flurbiprofen like their parent compounds concentration-dependently reduce the levels of PGE2 (an index of COX-2 activity), with a corresponding rise in the release of GM-CSF. Unlike acetylsalicylic acid (ASA), NO-ASA reduces the levels of PGE2, without increasing GM-CSF release, although cell viability is reduced at the highest concentration (1 mM). The effects of NSAIDs and NO-NSAIDs on GM-CSF release were attributable to the PGE2 mediated cyclic (c) AMP pathway because PGE2 reversed the effects of COX blockade. Second, phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX) and Ro-201724 (both of which elevate cAMP levels) decreased GM-CSF release, in the presence of PGE2. Finally, neither sodium nitroprusside nor zaprinast (both of which elevate cGMP levels) affected GM-CSF or PGE2 release. Our findings demonstrate that GM-CSF is regulated by NSAIDs and NO-NSAIDs via inhibition of COX and appears to be mediated via the cAMP pathway. NO-ASA is the exception, because it does not increase GM-CSF release, although at millimolar concentrations cell viability is reduced.

  19. Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF, sargramostim) administered for 3 years as adjuvant therapy of stages II(T4), III, and IV melanoma.

    PubMed

    Spitler, Lynn E; Weber, Robert W; Allen, Robert E; Meyer, John; Cruickshank, Scott; Garbe, Edeltraut; Lin, Hui-Yi; Soong, Seng-jaw

    2009-01-01

    A hypothesis generating study was conducted to evaluate the safety and efficacy of prolonged (3 y) administration of granulocyte-macrophage colony-stimulating factor (GM-CSF, sargramostim) as surgical adjuvant therapy in patients with melanoma at high risk of recurrence. Ninety-eight evaluable patients with stages II(T4), III, or IV melanoma were given prolonged treatment with GM-CSF after surgical resection of disease. The GM-CSF was administered subcutaneously in 28-day cycles, such that a dose of 125 microg/m2 was delivered daily for 14 days followed by 14 days rest. Treatment cycles continued for 3 years or until disease recurrence, which could not be surgically excised. Patients were evaluated for toxicity, disease-free survival, and melanoma-specific survival. Prolonged administration of GM-CSF was well tolerated; grade 1 or 2 side effects occurred in 82% of the patients. There were no grade 3 or 4 treatment-related side effects. Two patients developed acute myelogenous leukemia after completion of 3 years of GM-CSF administration. With a median follow-up of 5.3 years, the median melanoma-specific survival has not yet been reached. The 5-year melanoma-specific survival rate was 60%. The current study has expanded the preliminary evidence on GM-CSF as adjuvant therapy of patients with melanoma who are at high risk for recurrence.

  20. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease

    PubMed Central

    Pierson, Emily R.; Goverman, Joan M.

    2017-01-01

    Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation. Unexpectedly, GM-CSF–deficient C3HeB/FeJ mice were fully susceptible to EAE because IL-17 activity compensated for the loss of GM-CSF during induction of spinal cord–targeted disease. In contrast, both GM-CSF and IL-17 were needed to fully overcome the inhibitory influence of IFN-γ on the induction of inflammation in the brain. Both GM-CSF and IL-17 independently promoted neutrophil accumulation in the brain, which was essential for brain-targeted disease. These results identify a GM-CSF/IL-17/IFN-γ axis that regulates inflammation in the central nervous system and suggest that a combination of cytokine-neutralizing therapies may be needed to dampen central nervous system autoimmunity. PMID:28405624

  1. Incorporating the use of GM-CSF in the treatment of chronic lymphocytic leukemia.

    PubMed

    Ferrajoli, Alessandra

    2009-03-01

    We evaluated the clinical activity of GM-CSF in combination with standard dose rituximab in patients with chronic lymphocytic leukemia (CLL). The rationale for exploring this combination is provided by the ability of GM-CSF to increase surface expression of CD20 in CLL cells and potentially render them a better target for rituximab. GM-CSF also enhances antibody-dependent cellular cytotoxicity against CLL cells. The combination of GM-CSF and rituximab was evaluated as initial treatment in elderly patients with indication for treatment and in patients at high risk for progression identified by elevated beta(2) microglobulin. This combination was also evaluated in patients with recurrent CLL. On the basis of the results of 118 patients, we observed an overall response rate of 65 and 9% complete remission and these results compare favourably with the results obtained with rituximab single agent. This combination was well tolerated with the most common toxicity consisting in mild GM-CSF injection site erythema. On the basis of this experience, we are currently evaluating the use of GM-CSF in combination with the chemoimmunotherapy regimen fludarabine, cyclophosphamide and rituximab.

  2. Identification of a fourth ancient member of the IL-3/IL-5/GM-CSF cytokine family, KK34, in many mammals.

    PubMed

    Yamaguchi, Takuya; Schares, Susann; Fischer, Uwe; Dijkstra, Johannes M

    2016-12-01

    The related cytokine genes IL-3, IL-5 and GM-CSF map to the (extended) TH2 cytokine locus of the mammalian genome. For chicken an additional related cytokine gene, KK34, was reported downstream of the IL-3 plus GM-CSF cluster, but hitherto it was believed that mammalian genomes lack this gene. However, the present study identifies an intact orthologue of chicken KK34 gene in many mammals like cattle and pig, while remnants of KK34 can be found in human and mouse. Bovine KK34 was found to be transcribed, and its recombinant protein could induce STAT5 phosphorylation and proliferation of lymphocytes upon incubation with bovine PBMCs. This concludes that KK34 is a fourth functional cytokine of the IL-3/IL-5/GM-CSF/KK34-family (alias IL-5 family) in mammals. While analyzing KK34, the present study also made new identifications of cytokine genes in the extended TH2 cytokine loci for reptiles, birds and marsupials. This includes a hitherto unknown cytokine gene in birds and reptiles which we designated "IL-5famE". Other newly identified genes are KK34, GM-CSF(-like), IL-5, and IL-13 in reptiles, and IL-3 in marsupials.

  3. A Chimeric HIV-1 Envelope Glycoprotein Trimer with an Embedded Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Domain Induces Enhanced Antibody and T Cell Responses*

    PubMed Central

    van Montfort, Thijs; Melchers, Mark; Isik, Gözde; Menis, Sergey; Huang, Po-Ssu; Matthews, Katie; Michael, Elizabeth; Berkhout, Ben; Schief, William R.; Moore, John P.; Sanders, Rogier W.

    2011-01-01

    An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric EnvGM-CSF enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines. PMID:21515681

  4. Combined administration of G-CSF and GM-CSF stimulates monocyte-derived pro-angiogenic cells in patients with acute myocardial infarction.

    PubMed

    Bruno, Stefania; Bussolati, Benedetta; Scacciatella, Paolo; Marra, Sebastiano; Sanavio, Fiorella; Tarella, Corrado; Camussi, Giovanni

    2006-04-01

    Mobilization of endothelial progenitor cells has been suggested to contribute to neo-vascularization of ischemic organs. Aim of this study was to investigate whether the combination of granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF may influence the expansion of circulating KDR+ cells in patients with acute myocardial infarction (AMI). KDR+ cells significantly increased in peripheral blood of AMI patients treated with G-CSF and GM-CSF compared to untreated patients. This KDR+ cells population was CD14+ but not CD34+ or CD133+. CD14+/KDR+ cells were also obtained in vitro by culturing mononuclear cells from healthy donors in a Rotary Cell Culture System in the presence of G-CSF + GM-CSF, but not of the individual growth factors. CD14+/KDR+ cells, obtained from patients or from in vitro culture, co-expressed hematopoietic (CD45, CD14) and endothelial markers (CD31, CD105, and VE-cadherin). CD14+/KDR+, but not CD14+/KDR- cells, stimulated the organization of human microvascular endothelial cells into capillary-like structures on Matrigel both in vitro and in vivo. The combination of G-CSF and GM-CSF induced a CD14+/KDR+ cell population with potential pro-angiogenic properties.

  5. Safety and immunogenicity of a CTL multiepitope peptide vaccine for HIV with or without GM-CSF in a phase I trial.

    PubMed

    Spearman, Paul; Kalams, Spyros; Elizaga, Marnie; Metch, Barbara; Chiu, Ya-Lin; Allen, Mary; Weinhold, Kent J; Ferrari, Guido; Parker, Scott D; McElrath, M Juliana; Frey, Sharon E; Fuchs, Jonathan D; Keefer, Michael C; Lubeck, Michael D; Egan, Michael; Braun, Ralph; Eldridge, John H; Haynes, Barton F; Corey, Lawrence

    2009-01-07

    There is an urgent need for a vaccine capable of preventing HIV infection or the development of HIV-related disease. A number of approaches designed to stimulate HIV-specific CD8+ cytotoxic T cell responses together with helper responses are presently under evaluation. In this phase 1, multi-center, placebo-controlled trial, we tested the ability of a novel multiepitope peptide vaccine to elicit HIV-specific immunity. To enhance the immunogenicity of the peptide vaccine, half of the vaccine recipients received recombinant granulocyte-macrophage colony stimulating factor (GM-CSF) protein as a coadjuvant. The vaccine was safe; tolerability was moderate, with a number of adverse events related to local injection site reactogenicity. Anti-GM-CSF antibody responses developed in the majority of GM-CSF recipients but were not associated with adverse hematologic events. The vaccine was only minimally immunogenic. Six of 80 volunteers who received vaccine developed HIV-specific responses as measured by interferon-gamma ELISPOT assay, and measurable responses were transient. This study failed to demonstrate that GM-CSF can substantially improve the overall weak immunogenicity of a multiepitope peptide-based HIV vaccine.

  6. A chimeric HIV-1 envelope glycoprotein trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain induces enhanced antibody and T cell responses.

    PubMed

    van Montfort, Thijs; Melchers, Mark; Isik, Gözde; Menis, Sergey; Huang, Po-Ssu; Matthews, Katie; Michael, Elizabeth; Berkhout, Ben; Schief, William R; Moore, John P; Sanders, Rogier W

    2011-06-24

    An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric Env(GM-CSF) enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines.

  7. Enhancing immune responses of EV71 VP1 DNA vaccine by co-inoculating plasmid IL-12 or GM-CSF expressing vector in mice.

    PubMed

    Peng, X; Fang, X; Li, J; Kong, L; Li, B; Ding, X

    2016-04-30

    Enterovirus 71 (EV71) is a major causative viral agent for large outbreaks of hand, foot, and mouth disease in children and infants, yet there is no vaccine or effective antiviral treatment for severe EV71 infection. The immunogenicity of EV71 VP1 DNA vaccine and the immunoregulatory activity of interleukin-12 (IL-12) or granulocyte-monocyte colony stimulating factor (GM-CSF) were investigated. DNA vaccine plasmids, pcDNA-VP1, pcDNA-IL-12 and pcDNA-GM-CSF were constructed and inoculated into BALB/c mice with or without pcDNA-IL-12 or pcDNA-GM-CSF by intramuscular injection. Cellular and humoral immune responses were assessed by indirect ELISA, lymphocyte proliferation assays, cytokine release assay and FACS. The VP1 DNA vaccine had good immunogenicity and can induce specific humoral and cellular immunity in BALB/c mice, while IL-2 or GM-CSF plays an immunoadjuvant role and enhances specific immune responses. This study provides a frame of reference for the design of DNA vaccines against EV71.

  8. Phorbol ester-treated human acute myeloid leukemia cells secrete G-CSF, GM-CSF and erythroid differentiation factor into serum-free media in primary culture.

    PubMed

    Scher, W; Eto, Y; Ejima, D; Den, T; Svet-Moldavsky, I A

    1990-12-10

    Upon treatment with the phorbol ester, tetradecanoylphorbol 13-acetate (PMA), peripheral mononuclear blood cells from patients with acute myeloid leukemia secrete into serum-free cell-conditioned media (PMA-CCM) at least three distinct nondialysable 'hematopoietic' factors: granulocyte-colony-stimulating factor (G-CSF), granulocyte/macrophage-colony-stimulating factor (GM-CSF) and erythroid differentiation factor (EDF, activin A). G-CSF was identified by its stimulation of [3H]thymidine incorporation into a G-CSF-responsive cell line, NSF-60, and the inhibition of its stimulation by a G-CSF-specific monoclonal antibody (MAB). GM-CSF was identified by its stimulation of [3H]thymidine incorporation into a GM-CSF-responsive line, TALL-101, and the inhibition of its stimulation by a GM-CSF-specific MAB. EDF was identified by its ability to stimulate erythroid differentiation in mouse erythroleukemia cell lines, its identical retention times to those of authentic EDF on three successive reverse-phase HPLC columns and characterization of its penultimate N-terminal residue as leucine which is the same as that of authentic EDF. Both authentic EDF and the erythroid-stimulating activity in PMA-CCM were found to act synergistically with a suboptimal inducing concentration of a well-studied inducing agent, dimethyl sulfoxide, in inducing erythroid differentiation. In addition, a fourth activity was observed in PMA-CCM: normal human fetal bone marrow cell-proliferation stimulating activity (FBMC-PSA). FBMC-PSA was identified by its ability to stimulate the growth of granulocytes and macrophages in FBMC suspension cultures, which neither recombinant G-CSF or GM-CSF were found to do.

  9. 11R-P53 and GM-CSF Expressing Oncolytic Adenovirus Target Cancer Stem Cells with Enhanced Synergistic Activity

    PubMed Central

    Lv, Sai-qun; Ye, Zhen-long; Liu, Pin-yi; Huang, Yao; Li, Lin-fang; Liu, Hui; Zhu, Hai-li; Jin, Hua-jun; Qian, Qi-jun

    2017-01-01

    Targeting cancer stem cells with oncolytic virus (OV) holds great potential for thorough elimination of cancer cells. Based on our previous studies, we here established 11R-P53 and mGM-CSF carrying oncolytic adenovirus (OAV) SG655-mGMP and investigated its therapeutic effect on hepatocellular carcinoma stem cells Hep3B-C and teratoma stem cells ECCG5. Firstly, the augmenting effect of 11R in our construct was tested and confirmed by examining the expression of EGFP with Fluorescence and FCM assays after transfecting Hep3B-C and ECCG5 cells with OVA SG7605-EGFP and SG7605-11R-EGFP. Secondly, the expressions of 11R-P53 and GM-CSF in Hep3B-C and ECCG5 cells after transfection with OAV SG655-mGMP were detected by Western blot and Elisa assays, respectively. Thirdly, the enhanced growth inhibitory and augmented apoptosis inducing effects of OAV SG655-mGMP on Hep3B-C and ECCG5 cells were tested with FCM assays by comparing with the control, wild type 5 adenovirus, 11R-P53 carrying OVA in vitro. Lastly, the in vivo therapeutic effect of OAV SG655-mGMP toward ECCG5 cell-formed xenografts was studied by measuring tumor volumes post different treatments with PBS, OAV SG655-11R-P53, OAV SG655-mGM-CSF and OAV SG655-mGMP. Treatment with OAV SG655-mGMP induced significant xenograft growth inhibition, inflammation factor AIF1 expression and immune cells infiltration. Therefore, our OAV SG655-mGMP provides a novel platform to arm OVs to target cancer stem cells. PMID:28243324

  10. A novel subset of helper T cells promotes immune responses by secreting GM-CSF

    PubMed Central

    Zhang, J; Roberts, A I; Liu, C; Ren, G; Xu, G; Zhang, L; Devadas, S; Shi, Yufang

    2013-01-01

    Helper T cells are crucial for maintaining proper immune responses. Yet, they have an undefined relationship with one of the most potent immune stimulatory cytokines, granulocyte macrophage-colony-stimulating factor (GM-CSF). By depleting major cytokines during the differentiation of CD4+ T cells in vitro, we derived cells that were found to produce large amounts of GM-CSF, but little of the cytokines produced by other helper T subsets. By their secretion of GM-CSF, this novel subset of helper T cells (which we have termed ThGM cells) promoted the production of cytokines by other T-cell subtypes, including type 1 helper T cell (Th1), type 2 helper T cell (Th2), type 1 cytotoxic T cell (Tc1), type 2 cytotoxic T cell (Tc2), and naive T cells, as evidenced by the fact that antibody neutralization of GM-CSF abolished this effect. ThGM cells were found to be highly prone to activation-induced cell death (AICD). Inhibitors of TRAIL or granzymes could not block AICD in ThGM cells, whereas inhibition of FasL/Fas interaction partially rescued ThGM cells from AICD. Thus, ThGM cells are a novel subpopulation of T helper cells that produce abundant GM-CSF, exhibit exquisite susceptibility to apoptosis, and therefore play a pivotal role in the regulation of the early stages of immune responses. PMID:24076588

  11. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    PubMed

    Neu, Caroline; Sedlag, Anne; Bayer, Carina; Förster, Sabine; Crauwels, Peter; Niess, Jan-Hendrik; van Zandbergen, Ger; Frascaroli, Giada; Riedel, Christian U

    2013-01-01

    Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm) infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ) stained positive for CD206 and M-CSF-derived macrophages (M-Mφ) for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most suitable model

  12. Stress response genes are suppressed in mouse preimplantation embryos by granulocyte-macrophage colony-stimulating factor (GM-CSF).

    PubMed

    Chin, Peck Y; Macpherson, Anne M; Thompson, Jeremy G; Lane, Michelle; Robertson, Sarah A

    2009-12-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to promote the development and survival of human and mouse preimplantation embryos; however, the mechanism of action of GM-CSF in embryos is not defined. Mouse blastocysts were cultured from zygote stage in vitro with and without recombinant mouse GM-CSF (rmGM-CSF), and in vivo developed blastocysts were flushed from Csf2 null mutant and wild-type mice. The effect of GM-CSF on blastocyst expression of stress response and apoptosis genes was evaluated by microarray, qPCR and immunochemistry. Microarray analysis of the gene transcription profile showed suppression of stress response and apoptosis gene pathways in blastocysts exposed to rmGM-CSF in vitro. qPCR analysis confirmed that rmGM-CSF inhibited expression of heat shock protein (HSP) and apoptosis pathway genes Cbl, Hspa5, Hsp90aa1, Hsp90ab1 and Gas5 in in vitro blastocysts. Immunocytochemical analysis of HSP 1 (HSPA1A/1B; HSP70), BAX, BCL2 and TRP53 (p53) in in vitro blastocysts showed that HSPA1A/1B and BCL2 proteins were less abundant when embryos were cultured with rmGM-CSF. BAX and TRP53 were unchanged at the protein level, but Bax mRNA expression was reduced after GM-CSF treatment. In in vivo developed blastocysts, Csf2 null mutation caused elevated expression of Hsph1 but not other stress response genes. We conclude that GM-CSF inhibits the cellular stress response and apoptosis pathways to facilitate embryo growth and survival, and the protective effects of GM-CSF are particularly evident in in vitro culture media, whereas in vivo other cytokines can partly compensate for absence of GM-CSF.

  13. Mechanisms of suppression of alveolar epithelial cell GM-CSF expression in the setting of hyperoxic stress

    PubMed Central

    Sturrock, Anne; Vollbrecht, Timothy; Mir-Kasimov, Mustafa; McManus, Michael; Wilcoxen, Steven E.

    2010-01-01

    Pulmonary expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) is critically important for normal functional maturation of alveolar macrophages. We found previously that lung GM-CSF is dramatically suppressed in mice exposed to hyperoxia. Alveolar epithelial cells (AEC) are a major source of GM-CSF in the peripheral lung, and in vivo hyperoxia resulted in greatly reduced expression of GM-CSF protein by AEC ex vivo. We now explore the mechanisms responsible for this effect, using primary cultures of murine AEC exposed to hyperoxia in vitro. Exposure of AEC to 80% oxygen/5% CO2 for 48 h did not induce overt toxicity, but resulted in significantly decreased GM-CSF protein and mRNA expression compared with cells in normoxia. Similar effects were seen when AEC were stressed with serum deprivation, an alternative inducer of oxidative stress. The effects in AEC were opposite those in a murine lung epithelial cell line (MLE-12 cells), in which hyperoxia induced GM-CSF expression. Both hyperoxia and serum deprivation resulted in increased intracellular reactive oxygen species (ROS) in AEC. Hyperoxia and serum deprivation induced significantly accelerated turnover of GM-CSF mRNA. Treatment of AEC with catalase during oxidative stress preserved GM-CSF protein and mRNA and was associated with stabilization of GM-CSF mRNA. We conclude that hyperoxia-induced suppression of AEC GM-CSF expression is a function of ROS-induced destabilization of GM-CSF mRNA. We speculate that AEC oxidative stress results in significantly impaired pulmonary innate immune defense due to effects on local GM-CSF expression in the lung. PMID:20034963

  14. GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells

    PubMed Central

    Barroeta Seijas, Amairelys Belen; Simonetti, Sonia; Vitale, Sara; Runci, Daniele; Quinci, Angela Caterina; Soriani, Alessandra; Criscuoli, Mattia; Filippi, Irene; Naldini, Antonella; Sacchetti, Federico Maria; Tarantino, Umberto; Oliva, Francesco; Piccirilli, Eleonora; Santoni, Angela; Di Rosa, Francesca

    2017-01-01

    Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit+ cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c+ cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit+ cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit+ CD40hi MHCIIhi cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more prominently rely

  15. GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells.

    PubMed

    Barroeta Seijas, Amairelys Belen; Simonetti, Sonia; Vitale, Sara; Runci, Daniele; Quinci, Angela Caterina; Soriani, Alessandra; Criscuoli, Mattia; Filippi, Irene; Naldini, Antonella; Sacchetti, Federico Maria; Tarantino, Umberto; Oliva, Francesco; Piccirilli, Eleonora; Santoni, Angela; Di Rosa, Francesca

    2017-01-01

    Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit(+) cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c(+) cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit(+) cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit(+) CD40(hi) MHCII(hi) cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more

  16. Binding of iodinated recombinant human GM-CSF to the blast cells of acute myeloblastic leukemia

    SciTech Connect

    Kelleher, C.A.; Wong, G.G.; Clark, S.C.; Schendel, P.F.; Minden, M.D.; McCulloch, E.A.

    1988-04-01

    Granulocyte/macrophage-colony-stimulating factor (GM-CSF) is an effective growth factor for the blasts of acute myeloblastic leukemia (AML). Radioiodinated Chinese hamster ovary (CHO)-cell derived GM-CSF was prepared using Bolton-Hunter reagent to label free amino groups on the protein. Normal human neutrophils and the blast cells from AML patients were examined for binding. We found that there were fewer receptors of higher affinity on blast cells compared with neutrophils. After brief culture in suspension, receptor number increased and affinity decreased. Experiments provided evidence that GM-CSF from Escherichia coli had a higher affinity for neutrophils (kd = 20 pM) than the CHO-cell derived protein (kd = 500 pM-1 nM). This difference was reflected in the increased effectiveness of the E. coli protein over the CHO protein to stimulate colony formation in both normal bone marrow cells and AML blasts.

  17. Modest stimulatory effect of recombinant human GM-CSF on colony growth from peripheral blood human megakaryocyte progenitor cells.

    PubMed

    Mazur, E M; Cohen, J L; Wong, G G; Clark, S C

    1987-12-01

    Recombinant human granulocyte-macrophage colony-stimulating factor (rGM-CSF) has been previously demonstrated to stimulate colony formation from human myeloid, erythroid, and multipotential stem cells. In this investigation, we evaluated the effects of rGM-CSF on colony growth by human megakaryocyte progenitors (CFU-Meg). rGM-CSF was tested at concentrations of 0.1-100 U/ml in plasma clot cultures of adherent-depleted normal peripheral blood mononuclear cells. Control cultures were concurrently prepared containing either no stimulator or megakaryocyte colony-stimulating factor (Meg-CSF) partially purified from aplastic canine serum. rGM-CSF increased megakaryocyte colony numbers from a baseline of 4.3 +/- 1.4 (+/- SEM) in the unstimulated cultures to a maximum of 21.0 +/- 5.3 colonies at an rGM-CSF concentration of 1.0 U/ml. Corresponding megakaryocytic colony size increased from 4.4 to 8.3 cells/colony. Further increasing the rGM-CSF concentration resulted in decreasing megakaryocyte colony growth, reaching 6.8 +/- 2.9 colonies at 100 U/ml. The maximum number of megakaryocyte colonies stimulated by rGM-CSF was only 23.3% of that achieved in the control cultures containing optimal concentrations of serum-derived Meg-CSF protein (2.0 mg/ml). Megakaryocyte colonies stimulated by rGM-CSF consisted of predominantly low ploidy cells approximately equally distributed in 2N, 4N, and 8N ploidy classes. There was no increase in ploidy with any rGM-CSF concentration. These data indicate that rGM-CSF has modest activity in stimulating human megakaryocyte colony growth that is substantially less than that present in serum-derived Meg-CSF. rGM-CSF appears to primarily affect the early mitotic phase of megakaryocyte colony development with little influence on megakaryocyte endoreduplication.

  18. Recombinant rabies viruses expressing GM-CSF or flagellin are effective vaccines for both intramuscular and oral immunizations.

    PubMed

    Zhou, Ming; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W; Li, Zhenguang; Chai, Qingqing; Yang, Yang; Leyson, Christina M; Wu, Wenxue; Cui, Min; Fu, Zhen F

    2013-01-01

    Our previous studies indicated that recombinant rabies viruses (rRABV) expressing chemokines or cytokines (including GM-CSF) could enhance the immunogenicity by recruiting and/or activating dendritic cells (DC). In this study, bacterial flagellin was cloned into the RABV genome and recombinant virus LBNSE-Flagellin was rescued. To compare the immunogenicity of LBNSE-Flagellin with recombinant virus expressing GMCSF (LBNSE-GMCSF), mice were immunized with each of these rRABVs by intramuscular (i.m.) or oral route. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. The i.m.-immunized mice were bled at three weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with 50 LD50 challenge virus standard (CVS-24). Orally immunized mice were boosted after three weeks and then bled and challenged one week after the booster immunization. It was found that both LBNSE-GMCSF and LBNSE-Flagellin recruited/activated more DCs and B cells in the periphery, stimulated higher levels of adaptive immune responses (VNA), and protected more mice against challenge infection than the parent virus LBNSE in both the i.m. and the orally immunized groups. Together, these studies suggest that recombinant RABV expressing GM-CSF or flagellin are more immunogenic than the parent virus in both i.m. and oral immunizations.

  19. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    PubMed

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8(+) T cells from immunized animals, antigen-specific CD8(+) T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  20. Gene therapy for human nasopharyngeal carcinoma by adenovirus-mediated transfer of human p53, GM-CSF, and B7-1 genes in a mouse xenograft tumor model.

    PubMed

    Ren, Su-Ping; Wang, Lan; Wang, Hua; Wu, Bin; Han, Ying; Wang, Li-Sheng; Wu, Chu-Tse

    2008-10-01

    Incidence of nasopharyngeal carcinoma (NPC) remains high in endemic regions. Prevention of tumor recurrences and metastases is a crucial approach to improve therapeutic outcome in NPC patients. In this study, we investigated the effects of the cotransfer of the tumor suppressor gene, p53, in combination with the immunostimulatory genes, GM-CSF and B7-1, on tumor regression and subsequent tumor recurrence. We constructed a recombinant adenovirus carrying human wild-type p53, granulocyte-macrophage colony-stimulating factor (GM-CSF), and B7-1 genes (Ad-p53/GM-CSF/B7-1), which mediated high-level expression of these three genes in NPC CNE-1 cells. Ad-p53/GM-CSF/B7-1 infection inhibited the growth of CNE-1 cells and induced tumor-specific cytotoxic T-lymphocytes (CTLs) in vitro. In CNE-1 xenograft tumor models in huPBL-nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, an intratumoral injection of Ad-p53/GM-CSF/B7-1 resulted in a reduced tumor burden, compared to normal saline (NS) and Ad-p53 controls. Tumors in the Ad-p53/GM-CSF/B7-1 group displayed diffuse necrosis and infiltration of human T-cells. Further, the tumor occurrence of CNE-1 cell rechallenge largely decreased after the primary tumor was intratumorally injected with Ad-p53/GM-CSF/B7-1 in the HuPBL-NOD/SCID mice model. Only 2 of 8 (25%) animals in the Ad-p53/GM-CSF/B7-1 group had developed measurable tumors, which demonstrated extensive necrosis and much more human T-cell infiltration, compared to 5 of 7 (71%) in the NS and Ad-p53 groups. Therefore, the adenovirus-mediated introduction of p53, GM-CSF, and B7-1 genes could improve local control and prevent the recurrence or metastases of NPC tumors, which suggests a potential therapeutic value in NPC treatment.

  1. Anticandidal effects of voriconazole and caspofungin, singly and in combination, against Candida glabrata, extracellularly and intracellularly in granulocyte-macrophage colony stimulating factor (GM-CSF)-activated human monocytes.

    PubMed

    Baltch, Aldona L; Bopp, Lawrence H; Smith, Raymond P; Ritz, William J; Michelsen, Phyllis B

    2008-12-01

    The antifungal effects of voriconazole and caspofungin, singly and in combination, were determined against Candida glabrata in time-kill curves in broth, in human monocyte-derived macrophages (MDMs) and in MDMs activated by granulocyte-macrophage colony-stimulating factor (GM-CSF). Three strains of fluconazole-resistant C. glabrata were evaluated. For intracellular studies, MDM monolayers, with or without GM-CSF activation, were infected with C. glabrata and treated with voriconazole and caspofungin at 2.5x and 5x MIC, respectively, or at 1x MIC. Extracellular studies in broth were performed using drug concentrations from 0.1 to 10x MIC. Viable yeast were enumerated at 0, 24 and 48 h. Significantly greater killing of C. glabrata occurred with the drug combination than with either single drug, both intracellularly and extracellularly (P < 0.01). For voriconazole, the antifungal activity in MDM activated by GM-CSF was greater than that in unactivated MDM, regardless of antibiotic concentration or time of exposure. However, for caspofungin and for the two-drug combination, enhanced activity in GM-CSF-activated MDM depended on the drug concentration and time of exposure. Our data suggest that combinations of voriconazole and caspofungin may be efficacious for the treatment of serious C. glabrata infections. With single-drug therapy, especially voriconazole, GM-CSF activation of monocytes could be considered.

  2. Induction of apoptosis on K562 cell line and double strand breaks on colon cancer cell line expressing high affinity receptor for granulocyte macrophage-colony stimulating factor (GM-CSF).

    PubMed

    Roudkenar, Mehryar Habibi; Bouzari, Saeid; Kuwahara, Yoshikazu; Roushandeh, Amaneh Mohammadi; Baba, Taisuke; Oloomi, Mana; Fukumoto, Manabu

    2008-01-01

    Immunotoxins are comprised of both the cell targeting and the cell killing moieties. We previously established a new immunotoxin, i.e. Shiga toxin granulocyte macrophage-colony stimulating factor (StxA1-GM-CSF), comprises of catalytic domain of Stx, as a killing moiety and GM-CSF, as a cell targeting moiety. In this study, the ability of the immunotoxin to induce apoptosis and double strand breaks (DSB) on different cell lines was investigated. The recombinant hybrid protein was expressed in bacterial expression system and purified with nickel-nitrilotriacetate acid resin. The K562 (erythroid leukemia) cell line and LS174 (colon carcinoma) were used in this study. The neutral comet assay was carried out for the detection of DSB and Hoechst staining was performed for apoptosis. StxA1-GM-CSF effectively induced apoptosis on K562 cell line and DNA Double Strand Break (DSB) were observed on colon cancer cell line treated with StxA1-GM-CSF. This novel action i.e. DNA damage might be a relevant mechanism of action for StxA1-GM-CSF that is designed to act as immunotoxin, although further investigation is required.

  3. Modulation of dendritic cells using granulocyte-macrophage colony-stimulating factor (GM-CSF) delays type 1 diabetes by enhancing CD4+CD25+ regulatory T cell function.

    PubMed

    Cheatem, Donald; Ganesh, Balaji B; Gangi, Eryn; Vasu, Chenthamarakshan; Prabhakar, Bellur S

    2009-05-01

    Abnormalities in DC function are implicated in defective immune regulation that leads to type-1 diabetes (T1D) in NOD mice and humans. In this study, we used GM-CSF and Flt3-L to modulate DC function in NOD mice and observed the effects on T1D development. Treatment with either ligand at earlier stages of insulitis suppressed the development of T1D. Unlike Flt3-L, GM-CSF was more effective in suppressing T1D, even when administered at later stages of insulitis. In vitro studies and in vivo adoptive transfer experiments revealed that CD4+CD25+ T cells from GM-CSF-treated mice could suppress effector T cell response and T1D. This suppression is likely mediated through enhanced IL-10 and TGF-beta1 production. Adoptive transfer of GM-CSF exposed DCs to naive mice resulted in an expansion of Foxp3+ T cells and a significant delay in T1D onset. Our results indicate that GM-CSF acted primarily on DCs and caused an expansion of Foxp3+ Tregs which delayed the onset of T1D in NOD mice.

  4. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells.

    PubMed

    Schuett, Jutta; Schuett, Harald; Oberoi, Raghav; Koch, Ann-Kathrin; Pretzer, Silke; Luchtefeld, Maren; Schieffer, Bernhard; Grote, Karsten

    2017-06-01

    NADPH oxidase-generated reactive oxygen species (ROS) from immune cells are well known to be important for pathogen killing in response to TLR ligands. Here, we investigated a new aspect of NADPH oxidase in the TLR2/6-induced release of the immunologically relevant GM-CSF by endothelial cells. Stimulation of human endothelial cells with TLR2/6 agonist, MALP-2 (macrophage-activating lipopeptide of 2 kDa), induced NADPH oxidase activation and ROS formation. Inhibition by ROS scavengers and NADPH oxidase inhibitors blocked MALP-2-induced GM-CSF release. NADPH oxidase activators or ROS donors alone did not result in GM-CSF secretion; however, additional superoxide supply augmented MALP-2-induced GM-CSF secretion and restored GM-CSF levels after NADPH oxidase inhibition. MALP-2-dependent NF-ĸB activation was suppressed by NADPH oxidase inhibition, and inhibition of NF-κB completely blunted MALP-2-induced GM-CSF release. Vascular explants from mice that were deficient for the NADPH oxidase subunit p47 (phox) showed diminished intimal superoxide production and GM-CSF release after ex vivo stimulation with MALP-2. Moreover, an increase in circulating progenitor cells after MALP-2 injection was completely abolished in p47(phox)-knockout mice. Finally, MALP-2 stimulation increased mRNA expression of the major subunit NADPH oxidase, (Nox)2, in endothelial cells, and Nox2 inhibition prevented MALP-2-induced GM-CSF release. Our findings identify a Nox2-containing NADPH oxidase as a crucial regulator of the immunologic important growth factor GM-CSF after TLR2/6 stimulation in endothelial cells.-Schuett, J., Schuett, H., Oberoi, R., Koch, A.-K., Pretzer, S., Luchtefeld, M., Schieffer, B., Grote, K. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells. © FASEB.

  5. Systematic review: new serological markers (anti-glycan, anti-GP2, anti-GM-CSF Ab) in the prediction of IBD patient outcomes.

    PubMed

    Bonneau, J; Dumestre-Perard, C; Rinaudo-Gaujous, M; Genin, C; Sparrow, M; Roblin, X; Paul, S

    2015-03-01

    Traditionally, IBD diagnosis is based on clinical, radiological, endoscopic, and histological criteria. Biomarkers are needed in cases of uncertain diagnosis, or to predict disease course and therapeutic response. No guideline recommends the detection of antibodies (including ASCA and ANCA) for diagnosis or prognosis of IBD to date. However, many recent data suggest the potential role of new serological markers (anti-glycan (ACCA, ALCA, AMCA, anti-L and anti-C), anti-GP2 and anti-GM-CSF Ab). This review focuses on clinical utility of these new serological markers in diagnosis, prognosis and therapeutic monitoring of IBD. Literature review of anti-glycan, anti-GP2 and anti-GM-CSF Ab and their impact on diagnosis, prognosis and prediction of therapeutic response was performed in PubMed/MEDLINE up to June 2014. Anti-glycan, anti-GP2 and anti-GM-CSF Ab are especially associated with CD and seem to be correlated with complicated disease phenotypes even if results differ between studies. Although anti-glycan Ab and anti-GP2 Ab have low sensitivity in diagnosis of IBD, they could identify a small number of CD patients not detected by other tests such as ASCA. Anti-glycan Abs are associated with a progression to a more severe disease course and a higher risk for IBD-related surgery. Anti-GP2 Ab could particularly contribute to better stratify cases of pouchitis. Anti-GM-CSF Ab seems to be correlated with disease activity and could help predict relapses. These new promising biomarkers could particularly be useful in stratification of patients according to disease phenotype and risk of complications. They could be a valuable aid in prediction of disease course and therapeutic response but more prospective studies are needed.

  6. INHALED GM-CSF FOR FIRST PULMONARY RECURRENCE OF OSTEOSARCOMA; EFFECTS ON DISEASE FREE SURVIVAL AND IMMUNOMODULATION: A REPORT FROM THE CHILDREN’S ONCOLOGY GROUP

    PubMed Central

    Arndt, Carola A. S.; Koshkina, Nadya V.; Inwards, Carrie Y.; Hawkins, Douglas S.; Krailo, Mark D.; Villaluna, Doojduen; Anderson, Peter M.; Goorin, Allen M.; Blakely, Martin L.; Bernstein, Mark; Bell, Sharon A.; Ray, Kaylee; Grendahl, Darryl C.; Marina, Neyssa; Kleinerman, Eugenie S.

    2010-01-01

    PURPOSE Osteosarcoma most commonly recurs in lung. Based on preliminary data on antitumor effects of GM-CSF in animal models, and promising phase 1 trials, we embarked on a feasibility study of inhaled granulocyte-macrophage colony stimulating factor (GM-CSF) in patients with first isolated pulmonary recurrence of osteosarcoma. EXPERIMENTAL DESIGN Forty-three eligible patients received inhaled GM-CSF at doses from 250-1750 μg twice daily on alternate weeks. Following two cycles, patients underwent thoracotomy to resect tumor and analyze pulmonary nodules for expression of Fas/Fas ligand (Fas/FasL), and presence of dendritic cells by immunostaining for CD1a, clusterin and S100. Following surgery, patients received 12 additional cycles of therapy on alternating weeks or until progression. Event free survival and survival, and feasibility of therapy delivery were evaluated. RESULTS Dose escalation to 1750 μg twice daily was feasible with no dose limiting toxicity. Mean scores for Fas /FasL in nodules from patients with bilateral recurrence who underwent unilateral thoracotomy pretreatment (using a scoring system of 0-3) were 1.3 and 0.88 respectively, compared to 0.78 and 0.62 in nodules resected following two cycles of therapy. Only 11 of 30 nodules post inhalation were positive for CD1a, 4 of 30 for S100 and 6 of 30 for clusterin. Event free and overall survival at 3 years were 7.8% and 35.4%, respectively. CONCLUSIONS Inhalation of GM-CSF at doses from 250-1750 μg twice daily on alternate weeks was feasible with low toxicity. However no detectable immunostimulatory effect in pulmonary metastases or improved outcome post relapse were seen. PMID:20576718

  7. Molecular Analysis of a Short-term Model of β-Glucans-Trained Immunity Highlights the Accessory Contribution of GM-CSF in Priming Mouse Macrophages Response.

    PubMed

    Walachowski, Sarah; Tabouret, Guillaume; Fabre, Marion; Foucras, Gilles

    2017-01-01

    β-Glucans (BGs) are glucose polymers present in the fungal cell wall (CW) and, as such, are recognized by innate immune cells as microbial-associated pattern through Dectin-1 receptor. Recent studies have highlighted the ability of the pathogenic yeast Candida albicans or its CW-derived β(1,3) (1,6)-glucans to increase human monocytes cytokine secretion upon secondary stimulation, a phenomenon now referred as immune training. This ability of monocytes programming confers BGs an undeniable immunotherapeutic potential. Our objective was to determine whether BGs from Saccharomyces cerevisiae, a non-pathogenic yeast, are endowed with such a property. For this purpose, we have developed a short-term training model based on lipopolysaccharide re-stimulation of mouse bone marrow-derived macrophages primed with S. cerevisiae BGs. Through a transcriptome analysis, we demonstrated that BGs induced a specific gene expression signature involving the PI3K/AKT signaling pathway as in human monocytes. Moreover, we showed that over-expression of Csf2 (that encodes for GM-CSF) was a Dectin-1-dependent feature of BG-induced priming of macrophages. Further experiments confirmed that GM-CSF up-regulated Dectin-1 cell surface expression and amplified macrophages response along BG-mediated training. However, the blockade of GM-CSFR demonstrated that GM-CSF was not primarily required for BG-induced training of macrophages although it can substantially improve it. In addition, we found that mouse macrophages trained with BGs upregulated their expression of the four and a half LIM-only protein 2 (Fhl2) in a Dectin-1-dependent manner. Consistently, we observed that intracellular levels of FHL2 increased after stimulation of macrophages with BGs. In conclusion, our experiments provide new insights on GM-CSF contribution to the training of cells from the monocytic lineage and highlights FHL2 as a possible regulator of BG-associated signaling.

  8. Molecular cloning of a second subunit of the receptor for human granulocyte - macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor

    SciTech Connect

    Hayashida, Kazuhiro; Kitamura, Toshio; Gorman, D.M.; Miyajima, Atsushi ); Arai, Kenichi; Yokota, Takashi )

    1990-12-01

    Using the mouse interleukin 3 (IL-3) receptor cDNA as a probe, the authors obtained a monologous cDNA (KH97) from a cDNA library of a human hemopoietic cell line, TF-1. The protein encoded by the KH97 cDNA has 56% amino acid sequence identity with the mouse IL-3 receptor and retains features common to the family of cytokine receptors. Fibroblasts transfected with the KH97 cDNA expressed a protein of 120 kDa but did not bind any human cytokines, including IL-3 and granulocyte - macrophage colony-stimulating factor (GM-CSF). Interestingly, cotransfection of cDNAs for KH97 and the low-affinity human GM-CSF receptor in fibroblasts resulted in formation of a high-affinity receptor for GM-CSF. The dissociation rate of GM-CSF from the reconstituted high-affinity receptor was slower than that from the low-affinity site, whereas the association rate was unchanged. Cross-linking of {sup 125}I-labeled GM-CSF to fibroblasts cotransfected with both cDNAs revealed the same cross-linking patterns as in TF-1 cells - i.e., two major proteins of 80 and 120 kDa which correspond to the low-affinity GM-CSF receptor and the KH97 protein, respectively. These results indicate that the high-affinity GM-CSF receptor is composed of at least two components in a manner analogous to the IL-2 receptor. They therefore propose to designate the low-affinity GM-CSF receptor and the KH97 protein as the {alpha} and {beta} subunits of the GM-CSF receptor, respectively.

  9. Enrichment of Ly6C(hi) monocytes by multiple GM-CSF injections with HBV vaccine contributes to viral clearance in a HBV mouse model.

    PubMed

    Zhao, Weidong; Zhou, Xian; Zhao, Gan; Lin, Qing; Wang, Xianzheng; Yu, Xueping; Wang, Bin

    2017-07-12

    Adjuvants are considered a necessary component for HBV therapeutic vaccines but few are licensed in clinical practice due to concerns about safety or efficiency. In our recent study, we established that a combination protocol of 3-day pretreatments with GM-CSF before a vaccination (3 × GM-CSF+VACCINE) into the same injection site could break immune tolerance and cause over 90% reduction of HBsAg level in the HBsAg transgenic mouse model. Herein, we further investigated the therapeutic potential of the combination in AAV8-1.3HBV-infected mice. After four vaccinations, both serum HBeAg and HBsAg were cleared and there was a 95% reduction of HBV-positive hepatocytes, in addition to the presence of large number of infiltrating CD8+ T cells in the livers. Mechanistically, the HBV-specific T-cell responses were elicited via a 3 × GM-CSF+VACCINE-induced conversion of CCR2-dependent CD11b+ Ly6Chi monocytes into CD11b+CD11c+ DCs. Experimental depletion of Ly6Chi monocytes resulted in a defective HBV-specific immune response thereby abrogating HBV eradication. This vaccination strategy could lead to development of an effective therapeutic protocol against chronic HBV in infected patients.

  10. Circadian rhythm of neutrophil counts and granulocyte macrophage-colony stimulating factor (GM-CSF) under clozapine treatment: a case report.

    PubMed

    Ferrea, Stefano; Fehsel, Karin; Cordes, Joachim; Luckhaus, Christian

    2010-03-01

    Agranulocytosis is a severe side effect of clozapine which requires stopping this medication immediately in the case of progressive neutropenia. There are, however, cases of benign neutropenia under clozapine that do not progress. The ability to predict progression vs. non-progression in neutropenia cases under clozapine would be highly valuable for avoiding unnecessary treatment withdrawals. In this context, we closely monitored circadian neutrophil counts and granulocyte macrophage-colony stimulating factor (GM-CSF) levels in a patient who had low normal neutrophil counts at baseline and developed neutropenia under clozapine treatment. Venous blood samples were drawn in close intervals for 4 weeks. At several time points blood was sampled in the morning between 08:30 and 9:30 h and a second time in the afternoon between 14:00 and 15:00 h. The circadian rhythm of neutrophil counts and GM-CSF levels was unchanged. There was no progression to agranulocytosis, and clozapine could be continued. In view of the available literature and the presented case it is suggested that further studying of circadian profiles of neutrophil counts, neutrophil regulatory factors, such as GM-CSF, and their intercorrelation may help to find a biomarker of benign vs. malign neutropenia under clozapine.

  11. Combined effect of protein fusion and signal sequence greatly enhances the production of recombinant human GM-CSF in Escherichia coli.

    PubMed

    Bhattacharya, Palash; Pandey, Gaurav; Srivastava, Poonam; Mukherjee, Krishna Jyoti

    2005-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor, that has been used as a therapeutic agent in facilitating bone marrow and stem cell transplantation and in other clinical cases like neutropenia. Although biologically active recombinant GM-CSF has been successfully produced in Escherichia coli, the reported levels are extremely poor. In this study we looked into the possible reasons for poor expression and found that protein toxicity coupled with protease-based degradation was the principal reason for low productivity. To overcome this problem we attached a signal sequence, as well as an amino-terminal His-tag fusion to the GM-CSF gene. This combination had a dramatic effect on expression levels, which increased from 0.8 microg/mL in the control to 40 microg/mL. When a larger fusion partner, such as the Maltose-binding protein (MBP-tag), was used the expression levels increased further to 69.5 microg/mL, which along with the MBP-tag represented approx 12% of the total cellular protein.

  12. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma.

    PubMed

    Li, Ming; Wang, Bin; Wu, Zhonghua; Zhang, Jiadong; Shi, Xiwen; Cheng, Wenlan; Han, Shuangyin

    2015-07-01

    Dendritic cells loaded with tumor-associated antigens can effectively stimulate the antitumor immune response of cytotoxic T lymphocytes in the body, which facilitates the development of novel and effective treatments for cancer. In this study, the adenovirus-mediated ephrinA1-PE38/GM-CSF was successfully constructed using the overlap extension method, and verified with sequencing analysis. HEK293 cells were infected with the adenovirus and the cellular expression of ephrinA1-PE38/GM-CSF was measured with an enzyme-linked immunosorbent assay. The recombinant adenovirus was then delivered into the tumor-bearing rats and the results showed that such treatment significantly reduced the volumes of gliomas and improved the survival of the transplanted rats. The results from immunohistochemistry and flow cytometry suggested that this immunomodulatory agent cause activation of dendritic cells. The findings that ephrinA1-PE38/GM-CSF had a high efficacy in the activation of the dendritic cells would facilitate the development of in vivo dendritic-cell vaccines for the treatment of gliomas in rats. Our new method of DC vaccine production induces not only a specific local antitumor immune response but also a systemic immunotherapeutic effect. In addition, this method completely circumvents the risk of contamination related to the in vitro culture of DCs, thus greatly improving the safety and feasibility of clinical application of the DC vaccines in glioma.

  13. CBL linker region and RING finger mutations lead to enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling via elevated levels of JAK2 and LYN.

    PubMed

    Javadi, Mojib; Richmond, Terri D; Huang, Kai; Barber, Dwayne L

    2013-07-05

    Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways.

  14. CBL Linker Region and RING Finger Mutations Lead to Enhanced Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Signaling via Elevated Levels of JAK2 and LYN*

    PubMed Central

    Javadi, Mojib; Richmond, Terri D.; Huang, Kai; Barber, Dwayne L.

    2013-01-01

    Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways. PMID:23696637

  15. Construction and immunological characterization of CD40L or GM-CSF incorporated Hantaan virus like particle

    PubMed Central

    Zhang, Xiaoxiao; Truax, Agnieszka D.; Ma, Ruixue; Liu, Ziyu; Lei, Yingfeng; Zhang, Liang; Ye, Wei; Zhang, Fanglin; Xu, Zhikai; Shang, Lei; Liu, Rongrong; Wang, Fang; Wu, Xingan

    2016-01-01

    Infection of Hantaan virus (HTNV) usually causes hemorrhagic fever with renal syndrome (HFRS). China has the worst epidemic incidence of HFRS as well as high fatality. Inactivated whole virus has been used for HFRS vaccination, however there are still problems such as safety concerns. CD40 ligand (CD40L) and granulocyte macrophage colony-stimulating factor (GM-CSF) are well-known immune stimulating molecules that can enhance antigen presenting, lymphocytes activation and maturation, incorporation of CD40L and GM-CSF to the surface of virus like particles (VLPs) can greatly improve the vaccination effect. We constructed eukaryotic vectors expressing HTNV M segment and S segment, as well as vectors expressing HTNV M segment with CD40L or GM-CSF, our results showed successful production of CD40L or GM-CSF incorporated HTNV VLPs. In vitro stimulation with CD40L or GM-CSF anchored HTNV VLP showed enhanced activation of macrophages and DCs. CD40L/GM-CSF incorporated VLP can induce higher level of HTNV specific antibody and neutralizing antibody in mice. Immunized mice splenocytes showed higher ability of secreting IFN-γ and IL-2, as well as enhancing CTL activity. These results suggest CD40L/GM-CSF incorporated VLP can serve as prospective vaccine candidate. PMID:27542281

  16. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    PubMed Central

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  17. Restoration of MYC-repressed targets mediates the negative effects of GM-CSF on RUNX1-ETO leukemogenicity.

    PubMed

    Weng, S; Matsuura, S; Mowery, C T; Stoner, S A; Lam, K; Ran, D; Davis, A G; Lo, M-C; Zhang, D-E

    2017-01-01

    Granulocyte macrophage-colony-stimulating factor (GM-CSF) signaling regulates hematopoiesis and immune responses. CSF2RA, the gene encoding the α-subunit for GM-CSF, is significantly downregulated in t(8;21) (RUNX1-ETO or RE) leukemia patients, suggesting that it may serve as a tumor suppressor. We previously reported that GM-CSF signaling is inhibitory to RE leukemogenesis. Here we conducted gene expression profiling of primary RE hematopoietic stem/progenitor cells (HSPCs) treated with GM-CSF to elucidate the mechanisms mediating the negative effects of GM on RE leukemogenicity. We observed that GM treatment of RE HSPCs resulted in a unique gene expression profile that resembles primary human cells undergoing myelopoiesis, which was not observed in control HSPCs. Additionally, we discovered that GM-CSF signaling attenuates MYC-associated gene signatures in RE HSPCs. In agreement with this, a functional screen of a subset of GM-CSF-responsive genes demonstrated that a MYC inhibitor, MXI1 (Max interactor 1), reduced the leukemic potential of RE HSPCs and t(8;21) acute myeloid leukemia (AML) cells. Furthermore, MYC knockdown and treatment with the BET (bromodomain and extra terminal domain) inhibitor JQ1 reduced the leukemic potential of t(8;21) cell lines. Altogether, we discovered a novel molecular mechanism mediating the GM-CSF-induced reduction in leukemic potential of RE cells, and our findings support MYC inhibition as an effective strategy for reducing the leukemogenicity of t(8;21) AML.

  18. Cost-effective manufacture of an allogeneic GM-CSF-secreting breast tumor vaccine in an academic cGMP facility.

    PubMed

    Davis-Sproul, J M; Harris, M P; Davidson, N E; Kobrin, B J; Jaffee, E M; Emens, L A

    2005-01-01

    GM-CSF-secreting, allogeneic cell-based cancer vaccines have shown promise for the treatment of a variety of solid tumors. We have now applied this approach to breast cancer. The aim of these studies was to optimize expansion parameters, qualify the manufacturing process, and establish expected outcomes for cGMP-compliant manufacturing of two GM-CSF-secreting breast tumor cell lines. The variables affecting the efficiency of expanding and formulating two allogeneic GM-CSF-secreting cell lines, 2T47D-V and 3SKBR3-7, were systematically evaluated. Production criteria investigated included alternative cell culture vessels (flasks vs. cell factories), centrifugation time and speed variables for large volume cell concentration, cell seeding density, the minimal concentration of FBS required for maximal cell expansion, and the dose and timing of irradiation in relation to cryopreservation. These studies demonstrate that, in comparison with standard 150-cm2 tissue culture flasks, Nunc 10-Stack Cell Factories are a more efficient and practical cell culture vessel for vaccine cell line manufacture. Centrifugation optimization studies using the COBE 2991 Cell Processor established that a speed of 2000 r.p.m. (450 g) for 2 min reliably concentrated the cells while maintaining acceptable viability and bioactivity. Radiation studies established that lethal irradiation prior to cryopreservation does not compromise the quality of the product, as measured by post-thaw cell viability and GM-CSF cell line-specific secretion levels. Finally, studies aimed at optimizing the production of one vaccine cell line, 3SKBR3-7, demonstrated that seeding the cells at a higher density and maintaining them in half the initial concentration of FBS maximized the yield of bioactive cells, resulting in significant cost savings. A manufacturing process that simultaneously maximizes cell yield, minimizes cell manipulation and maintains vaccine cell potency is critical for producing cell-based cancer

  19. GM-CSF and ipilimumab therapy in metastatic melanoma: Clinical outcomes and immunologic responses

    PubMed Central

    Kwek, Serena S.; Kahn, James; Greaney, Samantha K.; Lewis, Jera; Cha, Edward; Zhang, Li; Weber, Robert W.; Leonard, Lonnie; Markovic, Svetomir N.; Fong, Lawrence; Spitler, Lynn E.

    2016-01-01

    ABSTRACT We conducted a phase II clinical trial of anti-CTLA-4 antibody (ipilimumab) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in 22 patients with metastatic melanoma and determined clinical outcomes and immunologic responses. The treatment consisted of a 3-mo induction with ipilimumab at 10 mg/kg administered every 3 weeks for four doses in combination with GM-CSF at 125 µg/m2 for 14 d beginning on the day of the ipilimumab infusion and then GM-CSF for 3 mo on the same schedule without ipilimumab. This was followed by maintenance therapy with the combination every 3 mo for up to 2 y or until disease progression or unacceptable toxicity. Blood samples for determination of immune subsets were obtained before treatment, at week 3 (end of cycle 1) and at week 6 (end of cycle 2). Blood samples were also obtained from seven subjects who were cancer-free. The immune response disease control (irDC) rate at 24 weeks was 41% and the overall response rate (ORR) was 32%. The median progression free-survival (PFS) was 3.5 mo and the median overall survival (OS) was 21.1 mo. 41% of the patients experienced Grade 3 to 4 adverse events. We conclude that this combination is safe and the results suggest the combination may be more effective than ipilimumab monotherapy. Further, the results suggest that lower levels of CD4+ effector T cells but higher levels of CD8+ T cells expressing PD-1 at pre-treatment could be a potential biomarker for disease control in patients who receive immunotherapy with ipilimumab and GM-CSF. Further trials of this combination are warranted. PMID:27141383

  20. GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice.

    PubMed

    Boyd, Tim D; Bennett, Steven P; Mori, Takashi; Governatori, Nicholas; Runfeldt, Melissa; Norden, Michelle; Padmanabhan, Jaya; Neame, Peter; Wefes, Inge; Sanchez-Ramos, Juan; Arendash, Gary W; Potter, Huntington

    2010-01-01

    Rheumatoid arthritis (RA) is a negative risk factor for the development of Alzheimer's disease (AD). While it has been commonly assumed that RA patients' usage of non-steroidal anti-inflammatory drugs (NSAIDs) helped prevent onset and progression of AD, NSAID clinical trials have proven unsuccessful in AD patients. To determine whether intrinsic factors within RA pathogenesis itself may underlie RA's protective effect, we investigated the activity of colony-stimulating factors, upregulated in RA, on the pathology and behavior of transgenic AD mice. 5 microg bolus injections of macrophage, granulocyte, and granulocyte-macrophage colony-stimulating factors (M-CSF, G-CSF, or GM-CSF) were administered unilaterally into the hippocampus of aged cognitively-impaired AD mice and the resulting amyloid load reductions determined one week later, using the artificial cerebrospinal fluid-injected contralateral sides as controls. G-CSF and more significantly, GM-CSF reduced amyloidosis throughout the treated brain hemisphere one week following bolus administration to AD mice. 20 daily subcutaneous injections of 5 microg of GM-CSF (the most amyloid-reducing CSF in the bolus experiment) were administered to balanced cohorts of AD mice after assessment in a battery of cognitive tests. Reductions in amyloid load and improvements in cognitive function were assessed. Subcutaneous GM-CSF administration significantly reduced brain amyloidosis and completely reversed the cognitive impairment, while increasing hippocampal synaptic area and microglial density. These findings, along with two decades of accrued safety data using Leukine, recombinant human GMCSF, in elderly leukopenic patients, suggest that Leukine should be tested as a treatment to reverse cerebral amyloid pathology and cognitive impairment in AD.

  1. Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF.

    PubMed

    Clarke, Deborah L; Belvisi, Maria G; Catley, Matthew C; Yacoub, Magdi H; Newton, Robert; Giembycz, Mark A

    2004-04-01

    1. The prostanoid receptor(s) on human airways smooth muscle (HASM) cells that mediates the inhibitory effect of PGE(2) on interleukin (IL)-1 beta-induced granulocyte/macrophage colony-stimulating factor (GM-CSF) release has been classified. 2. IL-1 beta evoked the release of GM-CSF from HASM cells, which was suppressed by PGE(2), 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3)-selective), ONO-AE1-259 and butaprost (both EP(2)-selective) with pIC(50) values of 8.61, 7.13, 5.64, 8.79 and 5.43, respectively. EP-receptor agonists that have selectivity for the EP(1)-(17-phenyl-omega-trinor PGE(2)) and EP(3)-receptor (sulprostone) subtypes as well as cicaprost (IP-selective), PGD(2), PGF(2 alpha) and U-46619 (TP-selective) were poorly active or inactive at concentrations up to 10 microM. 3. AH 6809, a drug that can be used to selectively block EP(2)-receptors in HASM cells, antagonised the inhibitory effect of PGE(2), 16,16-dimethyl PGE(2) and ONO-AE1-259 with apparent pA(2) values of 5.85, 6.09 and 6.1 respectively. In contrast, the EP(4)-receptor antagonists, AH 23848B and L-161,982, failed to displace to the right the concentration-response curves that described the inhibition of GM-CSF release evoked by PGE(2) and ONO-AE1-259. 4. Inhibition of GM-CSF release by PGE(2) and 8-Br-cAMP was abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA) but not by H-89, a purported small molecule inhibitor of PKA. 5. We conclude that prostanoid receptors of the EP(2)-subtype mediate the inhibitory effect of PGE(2) on GM-CSF release from HASM cells by recruiting a PKA-dependent pathway. In addition, the data illustrate that caution should be exercised when using H-89 in studies designed to assess the role of PKA in biological processes.

  2. Persistent STAT5 Phosphorylation and Epigenetic Dysregulation of GM-CSF and PGS2/COX2 Expression in Type 1 Diabetic Human Monocytes

    PubMed Central

    Garrigan, Erin; Belkin, Nicole S.; Alexander, John J.; Han, Zhao; Seydel, Federica; Carter, Jamal; Atkinson, Mark; Wasserfall, Clive; Clare-Salzler, Michael J.; Amick, Matthew A.; Litherland, Sally A.

    2013-01-01

    STAT5 proteins are adaptor proteins for histone acetylation enzymes. Histone acetylation at promoter and enhancer chromosomal regions opens the chromatin and allows access of transcription enzymes to specific genes in rapid response cell signals, such as in inflammation. Histone acetylation-mediated gene regulation is involved in expression of 2 key inflammatory response genes: CSF2, encoding granulocyte-macrophage colony stimulating factor (GM-CSF), and PTGS2, encoding prostaglandin synthase 2/cyclooxygenase 2 (PGS2/COX2). Prolonged CSF2 expression, high GM-CSF production, and GM-CSF activation of PTGS2 gene expression all are seen in type 1 diabetes (T1D) monocytes. Persistent phosphorylation activation of monocyte STAT5 (STAT5Ptyr) is also found in individuals with or at-risk for T1D. To examine whether elevated T1D monocyte STAT5Ptyr may be associated with aberrant inflammatory gene expression in T1D, blood monocytes from non-autoimmune controls and T1D patients were analyzed by flow cytometry for STAT5Ptyr activation, and by chromatin immuno-precipitation (ChIP) analyses for STAT5Ptyr’s ability to bind at CSF2 and PTGS2 regulatory sites in association with histone acetylation. In unstimulated monocytes, STAT5Ptyr was elevated in 59.65% of T1D, but only 2.44% of control subjects (p<0.0001). Increased STAT5Ptyr correlated with T1D disease duration (p = 0.0030, r2 = 0.0784). Unstimulated (p = 0.140) and GM-CSF-stimulated (p = 0.0485) T1D monocytes, had greater STAT5Ptyr binding to epigenetic regulatory sites upstream of CSF2 than control monocytes. Increased STAT5Ptyr binding in T1D monocytes was concurrent with binding at these sites of STAT6Ptyr (p = 0.0283), CBP/P300 histone acetylase, acetylated histones H3, SMRT/NCoR histone deacetylase (p = 0.0040), and RNA Polymerase II (p = 0.0040). Our study indicates that in T1D monocytes, STAT5Ptyr activation is significantly higher and that STAT5Ptyr is found bound to CSF2 promoter and

  3. Fludarabine, cyclophosphamide, and rituximab (FCR) plus GM-CSF as frontline treatment for patients with Chronic Lymphocytic Leukemia

    PubMed Central

    Strati, Paolo; Ferrajoli, Alessandra; Lerner, Susan; O’Brien, Susan; Wierda, William; Keating, Michael J; Faderl, Stefan

    2015-01-01

    FCR, the standard of care for frontline treatment of CLL patients, is associated with a high rate of neutropenia and infectious complications. GM-CSF reduces myelosuppression and can potentiate rituximab activity. We conducted a clinical trial combining GM-CSF with FCR for frontline treatment of 60 CLL patients. Eighty-six percent completed all 6 courses and 18% discontinued GM-CSF for toxicity; grade 3–4 neutropenia was observed in 30% of cycles, and severe infections in 16% of cases. ORR was 100%. Both median EFS and OS have not been reached. Longer EFS was associated with favorable cytogenetic. GM-CSF led to a lower frequency of infectious complications than the historical FCR group, albeit similar EFS and OS. PMID:23808813

  4. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling.

    PubMed

    Koch, Corinna; Samareh, Bardia; Morishima, Tatsuya; Mir, Perihan; Kanz, Lothar; Zeidler, Cornelia; Skokowa, Julia; Welte, Karl

    2017-03-01

    Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor. Recently, we detected that G-CSF induces granulopoiesis in CN patients by hyperactivation of nicotinamide phosphoribosyl transferase (NAMPT)/Sirtuin 1 signaling in myeloid cells. Here, we demonstrated that, in contrast to G-CSF, GM-CSF failed to induce NAMPT-dependent granulopoiesis in CN patients. We further identified NAMPT signaling as an essential downstream effector of the GM-CSF pathway in myelopoiesis.

  5. Granulocyte macrophage-colony stimulating factor (GM-CSF) augments acute lung injury via its neutrophil priming effects.

    PubMed

    Choi, Jae Chol; Jung, Jae Woo; Kwak, Hee Won; Song, Ju Han; Jeon, Eun Ju; Shin, Jong Wook; Park, In Won; Choi, Byoung Whui; Kim, Jae Yeol

    2008-04-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) has immuno-stimulatory effects. We hypothesized that GM-CSF plays an important role both in lipopolysaccharide (LPS)- and hemorrhage-induced acute lung injury (ALI). We also postulated that GM-CSF augments LPS-induced inflammation by priming neutrophils. ALI was induced in GM-CSF-/- or control C57BL mice either by LPS injection or by hemorrhage. Lung inflammation (by lung expression for tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2), interleukin-1beta (IL-1beta), interleukin- 6 (IL-6), and keratinocyte-derived chemokine) and lung injury (by myeloperoxidase and Evans blue dye assay) were evaluated after ALI. Incremental doses of LPS (0, 1, 10, and 100 ng/mL) and GM-CSF (0, 1, 10, and 100 ng/mL) were added to bone marrow neutrophils. The expression of TNF-alpha, MIP-2, and IL-1beta was evaluated with enzyme linked immunosorbent assay. The mRNA expression of three cytokines, and the nuclear translocation of nuclear factor kappa B (NF kappa-B) were evaluated by reverse transcriptase-polymerase chain reaction and electrophoretic mobility shift assay, respectively. GM-CSF -/- mice showed decreased neutrophil infiltration, less leakage, and lower expression of cytokines in the lung after LPS or hemorrhage. GM-CSF augmented LPS-induced protein and mRNA expression of TNF-alpha, MIP-2 and IL-1beta, which was mediated by increased intra-nuclear translocation of NF-kappaB. GM-CSF plays an important role in high-dose LPS and hemorrhage-induced ALI, which appears to be mediated by its priming effect on neutrophils.

  6. A human monoclonal IgG1 potently neutralizing the pro-inflammatory cytokine GM-CSF.

    PubMed

    Krinner, Eva-Maria; Raum, Tobias; Petsch, Silke; Bruckmaier, Sandra; Schuster, Ioana; Petersen, Laetitia; Cierpka, Ronny; Abebe, Derege; Mølhøj, Michael; Wolf, Andreas; Sørensen, Poul; Locher, Mathias; Baeuerle, Patrick A; Hepp, Julia

    2007-02-01

    The pro-inflammatory cytokine GM-CSF is aberrantly produced in many autoimmune and chronic inflammatory human diseases. GM-CSF neutralization by antibodies has been shown to have a profound therapeutic effect in animal models of rheumatoid arthritis, inflammatory lung diseases, psoriasis and multiple sclerosis. Moreover, the absence of GM-CSF in null mutant mice ameliorates or prevents certain of these diseases. Here we describe the biophysical and biological properties of a human anti-GM-CSF IgG1 antibody designated MT203, which was derived by phage display guided selection. MT203 bound with picomolar affinity to an epitope on human and macaque GM-CSF involved in high-affinity receptor interaction. As a consequence, the antibody potently prevented both GM-CSF-induced proliferation of TF-1 cells with a sub-nanomolar IC50 value and the production of the chemokine IL-8 by U937 cells. MT203 neutralized equally well recombinant (r) human (h) GM-CSF from Escherichia coli and yeast, and also normally glycosylated GM-CSF secreted by human lung epithelial cells in response to IL-1beta stimulation. Furthermore, MT203 significantly reduced both survival and activation of peripheral human eosinophils as may be required for effective treatment of inflammatory lung diseases. The antibody did not show a detectable loss of neutralizing activity after 5 days in human serum at 37 degrees C. Based on its favorable properties, MT203 has been selected for development as a novel anti-inflammatory human monoclonal antibody with therapeutic potential in a multitude of human autoimmune and inflammatory diseases.

  7. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy.

    PubMed

    van de Laar, Lianne; Coffer, Paul J; Woltman, Andrea M

    2012-04-12

    Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset-specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF-induced signaling provide a molecular explanation for GM-CSF-dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF-differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF-dependent DC-based strategies to regulate immunity.

  8. Cytokine regulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) production by human retinal pigment epithelial cells

    PubMed Central

    Crane, I J; Kuppner, M C; Mckillop-Smith, S; Wallace, C A; Forrester, J V

    1999-01-01

    GM-CSF is an important regulator of macrophage, granulocyte and dendritic cell behaviour and function. These cell types have been implicated in the retinal damage characteristic of endogenous posterior uveitis. Dendritic cells in the choroid have access to retinal antigens processed by the retinal pigment epithelial (RPE) cells of the blood–retinal barrier and are thought to be candidates for the presentation of antigen in uveoretinitis. We therefore investigated the production of GM-CSF and its regulation in human RPE cells. IL-1β, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) all stimulated GM-CSF production by RPE cells and a combination of these cytokines increased GM-CSF production over five-fold compared with that with the individual cytokines alone. Interferon-gamma (IFN-γ) rapidly down-regulated these responses. IFN-γ did not appear to be acting directly on IL-1β or via the synthesis of another protein. GM-CSF mRNA expression showed the same pattern of response to these cytokines, indicating transcriptional or pre-transcriptional regulation, and there was no evidence that IFN-γ was acting by destabilizing GM-CSF mRNA. These results are generally important in understanding the ways in which cytokine regulation differs between different cell types and also more specifically for determining ways in which a cytokine with a significant role in the development of autoimmune uveoretinitis may be manipulated. PMID:9933455

  9. Neuroantigen-specific, tolerogenic vaccines: GM-CSF is a fusion partner that facilitates tolerance rather than immunity to dominant self-epitopes of myelin in murine models of experimental autoimmune encephalomyelitis (EAE)

    PubMed Central

    2011-01-01

    Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity. PMID:22208499

  10. Acceleration of hemopoietic recovery in dogs after extended-field partial-body irradiation by treatment with colony-stimulating factors: rhG-CSF and rhGM-CSF.

    PubMed

    Nothdurft, W; Kreja, L; Selig, C

    1997-03-15

    The influence of treatment with the two colony-stimulating factors, rhG-CSF and rhGM-CSF, on the hemopoietic recovery in aplastic bone marrow sites after extended-field irradiation was studied in a canine model. The dogs received irradiation of the cranial part of their body with a single dose of 11.7 Gy, comprising approximately 72% of the total bone marrow mass. Anatomically this type of exposure corresponds to upper body irradiation (UBI) as employed under clinical conditions. Treatment with both the CSFs was employed for 7 days by daily injections of 30 microg/kg, starting 24 hr after irradiation. Treatment with rhGM-CSF did not completely prevent the initial decrease of the granulocyte counts, but caused an accelerated, though incomplete, recovery in the period from day 5 to day 15. In contrast, treatment with rhG-CSF caused two phases of granulocytosis and an early recovery to normal levels at day 11 after irradiation. Treatment with rhG-CSF, but not with rhGM-CSF, was associated with a strong supra-normal increase of progenitor cells in the blood within the first 8 days and an accelerated hemopoietic recovery in the irradiated sites particularly within the first 7 days after the exposure. These results indicate that under conditions of partial-body irradiation short term treatment with G-CSF is superior to GM-CSF in initiating the hemopoietic recovery on the basis of endogenous stem cell seeding.

  11. GM-CSF Autoantibody-positive Pulmonary Alveolar Proteinosis with Simultaneous Myeloproliferative Neoplasm

    PubMed Central

    Imoto, Naoto; Harunori, Nakashima; Furukawa, Katsuya; Tange, Naoyuki; Murase, Atsushi; Hayakawa, Masaya; Ichihara, Masatoshi; Iwata, Yosuke; Kosugi, Hiroshi

    2017-01-01

    Pulmonary alveolar proteinosis (PAP) is classified as autoimmune, secondary, or genetic. We herein describe a 69-year-old man with autoimmune PAP, simultaneously diagnosed with myeloproliferative neoplasm (MPN). Two years after the diagnosis, the MPN progressed to acute myeloid leukemia, and the patient died from an alveolar hemorrhage during remission induction chemotherapy. Throughout the clinical course, no progression of PAP was observed, despite the progression to leukemia. There are few reports of autoimmune PAP with hematological malignancy, and this case demonstrated that an evaluation for GM-CSF autoantibodies is important for distinguishing the autoimmune and secondary forms of PAP, even if the patient has hematological malignancy. PMID:28202867

  12. Molecular basis of in vitro affinity maturation and functional evolution of a neutralizing anti-human GM-CSF antibody

    PubMed Central

    Eylenstein, Roy; Weinfurtner, Daniel; Härtle, Stefan; Strohner, Ralf; Böttcher, Jark; Augustin, Martin; Ostendorp, Ralf; Steidl, Stefan

    2016-01-01

    X-ray structure analysis of 4 antibody Fab fragments, each in complex with human granulocyte macrophage colony stimulating factor (GM-CSF), was performed to investigate the changes at the protein-protein binding interface during the course of in vitro affinity maturation by phage display selection. The parental antibody MOR03929 was compared to its derivatives MOR04252 (CDR-H2 optimized), MOR04302 (CDR-L3 optimized) and MOR04357 (CDR-H2 and CDR-L3 optimized). All antibodies bind to a conformational epitope that can be divided into 3 sub-epitopes. Specifically, MOR04357 binds to a region close to the GM-CSF N-terminus (residues 11–24), a short second sub-epitope (residues 83–89) and a third at the C-terminus (residues 112–123). Modifications introduced during affinity maturation in CDR-H2 and CDR-L3 led to the establishment of additional hydrogen bonds and van der Waals contacts, respectively, providing a rationale for the observed improvement in binding affinity and neutralization potency. Once GM-CSF is complexed to the antibodies, modeling predicts a sterical clash with GM-CSF binding to GM-CSF receptor α and β chain. This predicted mutually exclusive binding was confirmed by a GM-CSF receptor α chain ligand binding inhibition assay. Finally, high throughput sequencing of clones obtained after affinity maturation phage display pannings revealed highly selected consensus sequences for CDR-H2 as well for CDR-L3, which are in accordance with the sequence of the highest affinity antibody MOR04357. The resolved crystal structures highlight the criticality of these strongly selected residues for high affinity interaction with GM-CSF. PMID:26406987

  13. Properties of bcr-abl-transformed mouse 12B1 cells secreting interleukin-2 and granulocyte-macrophage colony stimulating factor (GM-CSF): II. Adverse effects of GM-CSF.

    PubMed

    Petráčková, Martina; Staněk, Libor; Mandys, Václav; Dundr, Pavel; Vonka, Vladimír

    2012-06-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) is considered to be the most effective immunostimulating factor for the construction of gene-engineered anti-cancer vaccines. In some tumour cells, this type of genetic modification has resulted in the loss of the oncogenic potential. This was not the case with bcr-abl-transformed mouse 12B1 cells. A cell line, designated 12B1/GM-CSF/cl-5 producing more than 100 ng/106 cells/24 h, displayed higher pathogenicity than the parental, non-transduced cells. Although the tumours induced by the parental 12B1 cells and 12B1/GM-CSF/cl-5 cells appeared nearly at the same time and then grew at an approximately equal rate, the latter mice were in a much poorer clinical condition. In these animals the growth of the tumours was associated with gradually increasing blood levels of GM-CSF. In both groups of animals splenomegaly was observed; it was much more pronounced in the case of 12B1/GM-CSF/cl-5-inoculated animals. While in the case of animals inoculated with the parental cells the splenomegaly was probably mainly due to infiltration with tumour cells, in the animals inoculated with the GM-CSF-secreting cells splenomegaly and derangement of parenchymal organs, such as lungs, liver and kidneys, were more complex, including congestion and infiltration with hemopoietic cells, predominantly immature cells of myeloid lineage. The most conspicuous of these changes was the hyperaemia of the lungs. No such alterations were seen in animals inoculated with the parental cells. On the other hand, the contents of T regulatory cells were comparable in both groups and they increased in parallel at the end of the observation period. When GM-CSF neutralizing antibody was administered to animals inoculated with the 12B1/GM-CSF/cl-5 cells, the pathological changes observed within the organs were suppressed, this proving that the overproduced GM-CSF and not any other substance, played the key role in their induction.

  14. [The plasma levels and diagnostic utility of granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage - colony stimulating factor (GM-CSF) in patients with I and II stage of breast cancer].

    PubMed

    Ławicki, Sławomir; Czygier, Małgorzata; Wojtukiewicz, Marek; Szmitkowski, Maciej

    2009-01-01

    Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage - colony stimulating factor (GM-CSF) belong to hematopoetic growth factors (HGFs). Few clinical investigation have shown their autologous production both in vitro by human cell lines and in vivo by tumors, for example in breast cancer. We have investigated the plasma levels of G-CSF, GM-CSF and commonly accepted tumor marker (CA 15-3) before treatment of breast cancer patients in relation to the healthy controls. Additionally, the diagnostic criteria: sensitivity, specificity, the predictive value of positive and negative results were defined. Tested group--50 patients with breast cancer, control group--30 healthy women. G-CSF and GM-CSF were determined using ELISA method, CA 15-3--was measured by chemilumunescence immunoassay (CMIA) (ABBOTT). Median values of G-CSF, GM-CSF and CA 15-3 plasma levels were significantly higher in the II stage of breast cancer patients before surgery compared to the control group. The diagnostic sensitivity of G-CSF and GM-CSF was slightly lower than CA 15-3. The higher range of the diagnostic sensitivity of tested cytokines and CA 15-3 in more advanced breast stages was observed. The combined use of both cytokines and CA 15-3 analysis resulted also in the increased sensitivity range (69%). The diagnostic specificities of tested cytokines were high for both cytokines (equal 90%) and CA 15-3 (95%). The positive and negative predictive values were high for all tested parameters and were higher in more advanced tumor stage. This study suggests that tested cytokines, especially G-CSF, can be clinically useful in diagnostics of breast cancer patients, but further investigation and confirmation by a prospective study are necessary.

  15. Soluble β-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway.

    PubMed

    Masuda, Yuki; Togo, Takuya; Mizuno, Shigeto; Konishi, Morichika; Nanba, Hiroaki

    2012-04-01

    MD-Fraction, a highly purified, soluble β-(1,3) (1,6)-glucan obtained from Grifola frondosa (an oriental edible mushroom), has been reported to inhibit tumor growth by modulating host immunity. β-Glucan, a major component of the fungal cell wall, is generally recognized by PRRs expressed on macrophages and DCs, such as Dectin-1, and the ability of β-glucans to modulate host immunity is influenced by their structure and purity. Most cellular studies have used particulate β-glucans, such as yeast zymosan (crude β-glucan) and curdlan (purified β-glucan). However, little is known about the cellular mechanism of soluble β-glucans, including MD-Fraction, despite significant therapeutic implications. In this study, we investigated the cellular mechanism of MD-Fraction in murine resident macrophages and compared it with two well-known β-glucan particles. MD-Fraction induced GM-CSF production rapidly through Dectin-1-independent ERK and p38 MAPK activation. Subsequently, MD-Fraction-induced GM-CSF enhanced proliferation and Dectin-1 expression, which permitted Dectin-1-mediated TNF-α induction through the Syk pathway. Curdlan induced not only the proliferation and activation of Dectin-1/Syk signaling in a manner similar to MD-Fraction but also the uncontrolled, proinflammatory cytokine response. Contrastingly, zymosan reduced proliferation and Dectin-1 expression significantly, indicating that the mechanism of macrophage activation by MD-Fraction differs from that of zymosan. This is the first study to demonstrate that purified β-glucans, such as MD-Fraction and curdlan, induce GM-CSF production directly, resulting in Dectin-1/Syk activation in resident macrophages. In conclusion, we demonstrated that MD-Fraction induces cell proliferation and cytokine production without excessive inflammation in resident macrophages, supporting its immunotherapeutic potential.

  16. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF.

    PubMed

    Spear, Paul; Barber, Amorette; Rynda-Apple, Agnieszka; Sentman, Charles L

    2012-06-15

    The infiltration of suppressive myeloid cells into the tumor microenvironment restrains anti-tumor immunity. However, cytokines may alter the function of myeloid lineage cells to support tumor rejection, regulating the balance between pro- and anti-tumor immunity. In this study, it is shown that effector cytokines secreted by adoptively transferred T cells expressing a chimeric Ag receptor (CAR) shape the function of myeloid cells to promote endogenous immunity and tumor destruction. Mice bearing the ovarian ID8 tumor were treated with T cells transduced with a chimeric NKG2D receptor. GM-CSF secreted by the adoptively transferred T cells recruited peripheral F4/80(lo)Ly-6C(+) myeloid cells to the tumor microenvironment in a CCR2-dependent fashion. T cell IFN-γ and GM-CSF activated local, tumor-associated macrophages, decreased expression of regulatory factors, increased IL-12p40 production, and augmented Ag processing and presentation by host macrophages to Ag-specific T cells. In addition, T cell-derived IFN-γ, but not GM-CSF, induced the production of NO by F4/80(hi) macrophages and enhanced their lysis of tumor cells. The ability of CAR T cell therapy to eliminate tumor was moderately impaired when inducible NO synthase was inhibited and greatly impaired in the absence of peritoneal macrophages after depletion with clodronate encapsulated liposomes. This study demonstrates that the activation of host macrophages by CAR T cell-derived cytokines transformed the tumor microenvironment from immunosuppressive to immunostimulatory and contributed to inhibition of ovarian tumor growth.

  17. Dragon's blood extracts reduce radiation-induced peripheral blood injury and protects human megakaryocyte cells from GM-CSF withdraw-induced apoptosis.

    PubMed

    Ran, Yuanyuan; Xu, Bing; Wang, Ran; Gao, Qian; Jia, Qiutian; Hasan, Murtaza; Shan, Shuangquan; Ma, Hong; Dai, Rongji; Deng, Yulin; Qing, Hong

    2016-01-01

    Dragon's blood (DB), a Chinese traditional herb, was shown to have certain protective effects on radiation-induced bone marrow injury due to the presence of several phenolic compounds. The 50% ethanol extracts (DBE) were separated from DB by the methods of alcohol extracting-water precipitating. The protective effects of DBE on hematopoiesis were studied, particularly on megakaryocytes. In this study, we investigated the in vivo radioprotective effects of DBE on hematopoiesis and pathological changes using an irradiated-mouse model. Moreover, the protective effects and potential molecular mechanisms of DBE on megakaryocytopoiesis in vitro were explored in GM-CSF depletion-induced Mo7e cell model. DBE significantly promoted the recovery of peripheral blood cells in irradiated mice. Histology bone marrow confirmed the protective effect of DBE, as shown by an increased number of hematopoietic cells and a reduction of apoptosis. In a megakaryocytic apoptotic model, DBE (50 µg/mL) markedly alleviated GM-CSF withdrawal-induced apoptosis and cell-cycle arrest of Mo7e cells. DBE (50 µg/mL) also significantly decreased the ratio of Bax to Bcl-2 expression, inhibited the active caspase-3 expression. In addition, DBE could induce ERK1/2 phosphorylation in GM-CSF-depleted Mo7e cell, but not Akt. Our data demonstrated that DBE could effectively accelerate the recovery of peripheral blood cells, especially platelet. DBE attenuated cell apoptosis and cell cycle arrest through the decrease of Bax/Bcl-2 ratio and the reduction of active caspase-3 expression. The effect of DBE on Mo7e cells survival and proliferation is likely associated with the activation of ERK, but not Akt. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  19. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF.

    PubMed

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C P; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J; Bonvin, Alexandre M J J; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N

    2016-11-07

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses.

  20. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection

    PubMed Central

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-01-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy. PMID:26312947

  1. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection.

    PubMed

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-01-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy.

  2. The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells.

    PubMed

    Wan, Chi-Keung; Oh, Jangsuk; Li, Peng; West, Erin E; Wong, Elizabeth A; Andraski, Allison B; Spolski, Rosanne; Yu, Zu-Xi; He, Jianping; Kelsall, Brian L; Leonard, Warren J

    2013-03-21

    Interleukin-21 (IL-21) has broad actions on T and B cells, but its actions in innate immunity are poorly understood. Here we show that IL-21 induced apoptosis of conventional dendritic cells (cDCs) via STAT3 and Bim, and this was inhibited by granulocyte-macrophage colony-stimulating factor (GM-CSF). ChIP-Seq analysis revealed genome-wide binding competition between GM-CSF-induced STAT5 and IL-21-induced STAT3. Expression of IL-21 in vivo decreased cDC numbers, and this was prevented by GM-CSF. Moreover, repetitive α-galactosylceramide injection of mice induced IL-21 but decreased GM-CSF production by natural killer T (NKT) cells, correlating with decreased cDC numbers. Furthermore, adoptive transfer of wild-type CD4+ T cells caused more severe colitis with increased DCs and interferon-γ (IFN-γ)-producing CD4+ T cells in Il21r(-/-)Rag2(-/-) mice (which lack T cells and have IL-21-unresponsive DCs) than in Rag2(-/-) mice. Thus, IL-21 and GM-CSF exhibit cross-regulatory actions on gene regulation and apoptosis, regulating cDC numbers and thereby the magnitude of the immune response. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Frontline Science: Nasal epithelial GM-CSF contributes to TLR5-mediated modulation of airway dendritic cells and subsequent IgA response.

    PubMed

    Cao, Yuan; Zhang, Ejuan; Yang, Jingyi; Yang, Yi; Yu, Jie; Xiao, Yang; Li, Wei; Zhou, Dihan; Li, Yaoming; Zhao, Bali; Yan, Hu; Lu, Mengji; Zhong, Maohua; Yan, Huimin

    2017-09-01

    Flagellin, as a TLR5 agonist, is an established mucosal adjuvant for enhancing mucosal IgA responses by i.n. immunization. Nasal epithelial cells (NECs) are the first sentinel cells to be exposed to antigen and adjuvant in i.n. immunization, and it is suggested that they play an important role in the mucosal adjuvant activity of flagellin. However, the molecular mechanism leading to modulation and the response by flagellin-activated NECs remain unknown. We aimed to identify the soluble mediator(s) from flagellin-activated NECs that modulate the functions of airway dendritic cells (DCs) and enhance subsequent IgA response. In vitro studies showed that compared with the TLR4 agonist LPS, flagellin directly triggered slight up-regulation of CD80 on airway DCs but was insufficient to affect CD86 expression and DC-mediated IgA response. With the use of an in vitro system for culturing mouse primary NECs (mNECs), we demonstrated that flagellin-activated mNECs could functionally modulate airway DCs, which manifested as significant up-regulation of CD80/CD86 and enhancement of IgA production. The functional modulation of airway DCs was dependent on TLR5 activation of mNECs rather than direct TLR5 activation of airway DCs. With the use of cytokine array and antibody-blocking assays, we further identified that GM-CSF, a cytokine secreted from TLR5-activated mNECs, contributes to the activation of mNECs to airway DCs and subsequent IgA enhancement. In vivo blocking experiments confirmed that GM-CSF is an important factor in recombinant flagellin derived from Salmonella typhi (FliC)-induced airway DC activation and antigen-specific IgA enhancement. Our data directly demonstrate that nasal epithelial GM-CSF contributes to TLR5-mediated modulation of airway DCs and a subsequent IgA response. © Society for Leukocyte Biology.

  4. The hematopoietic factor GM-CSF (granulocyte-macrophage colony-stimulating factor) promotes neuronal differentiation of adult neural stem cells in vitro.

    PubMed

    Krüger, Carola; Laage, Rico; Pitzer, Claudia; Schäbitz, Wolf-Rüdiger; Schneider, Armin

    2007-10-22

    Granulocyte-macrophage colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in the generation of granulocytes, macrophages, and dendritic cells from hematopoietic progenitor cells. We have recently demonstrated that GM-CSF has anti-apoptotic functions on neurons, and is neuroprotective in animal stroke models. The GM-CSF receptor alpha is expressed on adult neural stem cells in the rodent brain, and in culture. Addition of GM-CSF to NSCs in vitro increased neuronal differentiation in a dose-dependent manner as determined by quantitative PCR, reporter gene assays, and FACS analysis. Similar to the hematopoietic factor Granulocyte-colony stimulating factor (G-CSF), GM-CSF stimulates neuronal differentiation of adult NSCs. These data highlight the astonishingly similar functions of major hematopoietic factors in the brain, and raise the clinical attractiveness of GM-CSF as a novel drug for neurological disorders.

  5. GM-CSF-neuroantigen fusion proteins reverse experimental autoimmune encephalomyelitis and mediate tolerogenic activity in adjuvant-primed environments: association with inflammation-dependent, inhibitory antigen presentation.

    PubMed

    Islam, S M Touhidul; Curtis, Alan D; Taslim, Najla; Wilkinson, Daniel S; Mannie, Mark D

    2014-09-01

    Single-chain fusion proteins comprised of GM-CSF and neuroantigen (NAg) are potent, NAg-specific inhibitors of experimental autoimmune encephalomyelitis (EAE). An important question was whether GMCSF-NAg tolerogenic vaccines retained inhibitory activity within inflammatory environments or were contingent upon steady-state conditions. GM-CSF fused to the myelin oligodendrocyte glycoprotein MOG35-55 peptide (GMCSF-MOG) reversed established paralytic disease in both passive and active models of EAE in C57BL/6 mice. The fusion protein also reversed EAE in CD4-deficient and B cell-deficient mice. Notably, GMCSF-MOG inhibited EAE when coinjected adjacent to the MOG35-55/CFA emulsion. GMCSF-MOG also retained dominant inhibitory activity when directly emulsified with MOG35-55 in the CFA emulsion in both C57BL/6 or B cell-deficient models of EAE. Likewise, when combined with proteolipid protein 139-151 in CFA, GM-CSF fused to proteolipid protein 139-151 peptide inhibited EAE in SJL mice. When deliberately emulsified in CFA with the NAg, GMCSF-NAg inhibited EAE even though NAg was present at >30-fold molar excess. In vitro studies revealed that the GM-CSF domain of GMCSF-MOG stimulated growth and differentiation of inflammatory dendritic cells (DC) and simultaneously targeted the MOG35-55 domain for enhanced presentation by these DC. These inflammatory DC presented MOG35-55 to MOG-specific T cells by an inhibitory mechanism that was mediated in part by IFN-γ signaling and NO production. In conclusion, GMCSF-NAg was tolerogenic in CFA-primed proinflammatory environments by a mechanism associated with targeted Ag presentation by inflammatory DC and an inhibitory IFN-γ/NO pathway. The inhibitory activity of GMCSF-NAg in CFA-primed lymphatics distinguishes GMCSF-NAg fusion proteins as a unique class of inflammation-dependent tolerogens that are mechanistically distinct from naked peptide or protein-based tolerogens.

  6. TGF-β Affects the Differentiation of Human GM-CSF+ CD4+ T Cells in an Activation- and Sodium-Dependent Manner

    PubMed Central

    Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper

    2016-01-01

    The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF+ CD4+ T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF+ subsets of human CD4+ T cells. These results are important for understanding of autoimmune disease and therapeutic considerations. PMID:28066414

  7. [The adjuvant effect of granulocyte macrophage colony stimulating factor (GM-CSF) in dengue virus and hepatitis C virus DNA vaccines].

    PubMed

    Wu, Jiang-Man; Chen, Hui; Sheng, Zi-Yang; Wang, Juan; Fan, Dong-Ying; Gao, Na; An, Jing

    2012-05-01

    To investigate the adjuvant effect of granulocyte macrophage colony stimulating factor (GM-CSF) in Flaviviridae virus DNA vaccines. After DNA immunization, the antibody levels of serum from mice were detected by ELISA and indirect immunofluorescence assay. Co-immunization of GM-CSF suppressed the immune responses induced by DV1 and DV2 candidate vaccines whereas enhanced the immune response induced by HCV C and E1 DNA vaccines. As genetic adjuvant for DNA vaccines, GM-CSF might display complex diversity on the immune responses: an augmentation or suppression due to different immunogens. Therefore, GM-CSF should be used with some cautions in clinic.

  8. GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine intoxicated mice1

    PubMed Central

    Kosloski, Lisa M.; Kosmacek, Elizabeth A.; Olson, Katherine E.; Mosley, R. Lee; Gendelman, Howard E.

    2013-01-01

    Innate and adaptive immune responses can speed nigrostriatal neurodegeneration in Parkinson’s disease (PD). We posit that GM-CSF can attenuate such responses. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice, GM-CSF given prior to MPTP protected nigral dopaminergic neurons coincident with altered microglial morphologies and regulatory T cell (Treg) induction. Adoptive transfer of GM-CSF-induced Treg to MPTP mice protected nigral neurons and their striatal termini. Gene expression analyses revealed novel immune-based neuronal protection pathways. The results provide evidence that GM-CSF modulation of immunity could be of clinical benefit for PD. PMID:24210793

  9. Recombinant human granulocyte macrophage colony stimulating factor (hGM-CSF): Possibility of nanoparticle-mediated delivery in cancer immunotherapy.

    PubMed

    Vanitha, Selvarajan; Chaubey, Nidhi; Ghosh, Siddhartha S; Sanpui, Pallab

    2017-03-04

    Most of the cancer treatment strategies from chemotherapy to radiotherapy render cancer cells apoptotic and these apoptotic cancer cells accumulate at the tumor sites. The accumulation of apoptotic cancer cells often result in inflammation and autoimmune responses causing serious health implications. Macrophages, which are effective immune combatants, can help in the clearance of these deleterious occupants. Granulocyte macrophage colony stimulating factor (GM-CSF) is a key cytokine, modulator of immune system and responsible for growth and differentiation of granulocytes and macrophages. In this regard, supply of recombinant GM-CSF can enhance the capability of macrophages for clearance of apoptotic cancer cells. However, delivery of the cytokine in vivo can suffer from certain disadvantages like faster depletion, less stability and low targeting efficiency. We believe that the stability and sustained release of GM-CSF can be improved through its encapsulation inside appropriately designed nanoparticles.

  10. A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-α-2b in patients with CEA-expressing carcinomas.

    PubMed

    Duggan, Megan C; Jochems, Caroline; Donahue, Renee N; Richards, Jacob; Karpa, Volodymyr; Foust, Elizabeth; Paul, Bonnie; Brooks, Taylor; Tridandapani, Susheela; Olencki, Thomas; Pan, Xueliang; Lesinski, Gregory B; Schlom, Jeffrey; Carson Iii, William E

    2016-11-01

    Prime-boost vaccination with recombinant (r) vaccinia(V)-CEA(6D)-TRICOM (triad of co-stimulatory molecules B7.1, ICAM-1 and LFA-3) and rFowlpox(F)-CEA(6D)-TRICOM infect antigen-presenting cells and direct expression of co-stimulatory molecules. We hypothesized that co-administration of vaccine with GM-CSF and interferon alpha (IFN-α) would have efficacy in CEA-expressing cancers. Patients with CEA-expressing cancers received the rV-CEA(6D)-TRICOM vaccine subcutaneously (s.c.) on day 1 followed by GM-CSF s.c. to the injection site on days 1-4. In Cycle 1, patients received thrice weekly s.c. injections of IFN-α-2b the week after rV-CEA(6D)-TRICOM. In Cycles 2-4, patients received thrice weekly s.c. injections of IFN-α-2b the same week that rF-CEA(6D)-TRICOM was given. The first cohort received no IFN followed by dose escalation of IFN-α in subsequent cohorts. Thirty-three patients were accrued (mean 59.8 years). Grade 3 toxicities included fatigue and hyperglycemia. Grade 4-5 adverse events (unrelated to treatment) were confusion (1), elevated aspartate transaminase (AST)/alanine transaminase (ALT) (1), and sudden death (1). No patients had a partial response, and eight patients exhibited stable disease of ≥3 months. Median progression-free survival and overall survival (OS) were 1.8 and 6.3 months, respectively. Significantly higher serum CD27 levels were observed after vaccine therapy (p = 0.006 post 1-2 cycles, p = 0.003 post 3 cycles, p = 0.03 post 4-7 cycles) and 42 % of patients assayed developed CEA-specific T cell responses. Pre-treatment levels of myeloid-derived suppressor cells correlated with overall survival (p = 0.04). Administration of IFN-α led to significantly increased OS (p = 0.02) compared to vaccine alone. While the vaccine regimen produced no clinical responses, IFN-α administration was associated with improved survival.

  11. Interleukin-3, GM-CSF, and TPA induce distinct phosphorylation events in an interleukin 3-dependent multipotential cell line

    SciTech Connect

    Sorensen, P.H.; Mui, A.L.; Murthy, S.C.; Krystal, G.

    1989-02-01

    The mechanism of action of the hemopoietic growth factor, murine interleukin-3 (mIL-3), was investigated using an mIL-3-dependent multipotential hematopoietic cell line, B6SUtA1. Murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) was as potent as mIL-3 in stimulating these cells. In addition, sodium orthovanadate, an inhibitor of phosphotyrosine phosphatase, and 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a known activator of protein kinase C, also stimulated DNA synthesis in these cells, suggesting that protein phosphorylation might be involved in the mechanism of action of mIL-3 and mGM-CSF. To assess this possibility, intact B6SUtA1 cells exposed for brief periods to mIL-3, mGM-CSF, and TPA were analyzed for changes in phosphorylation patterns using metabolic /sup 32/P-labeling and antibodies to phosphotyrosine. Both mIL-3 and mGM-CSF induced the serine-specific phosphorylation of a 68-Kd cytosolic protein, whereas all three agents stimulated the serine-specific phosphorylation of a 68-Kd membrane protein. Furthermore, mIL-3 stimulated tyrosine phosphorylation of the 68-Kd membrane protein, as well as of 140-, 90-, 55, and 40-Kd proteins. The 90-Kd protein was also tyrosine phosphorylated in response to mGM-CSF. These phosphotyrosine containing proteins were not detected in TPA-treated cells. These results indicate that protein phosphorylations on tyrosine and serine residues occur in B6SUtA1 cells following short-term incubation with mIL-3 or mGM-CSF and that most of these phosphorylation events are mediated by kinases other than protein kinase C (PkC).

  12. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    SciTech Connect

    Malur, Anagha; Huizar, Isham; Wells, Greg; Barna, Barbara P.; Malur, Achut G.; Thomassen, Mary Jane

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  13. Overview of use of G-CSF and GM-CSF in the treatment of acute radiation injury.

    PubMed

    Reeves, Glen

    2014-06-01

    Depression of hematopoietic elements due to significant levels of whole-body or partial-body irradiation due to radiation-induced suppression of mitosis in the stem and progenitor cells can result in life-threatening injury. Successful administration of intensive care of patients experiencing acute radiation sickness (ARS; also called acute radiation syndrome) is dependent upon the ability to stimulate the recovery of surviving hematopoietic stem cells (HSC), assuming the non-hematopoietic injuries are also survivable with treatment. To date, there have been a number of studies involving radiation accidents where patients were treated with cytokines. Although the data overall seem to indicate that the period of neutropenia is shortened and survival prolonged, so far there is no statistically significant proof that cytokine administration actually decreases mortality in radiation-injured humans. Some studies have shown no improved survival when used in a mouse model; however, studies in canines and primates have shown improved survival. CSF therapy is considered a valuable adjunct to treatment with antibiotics and strict hygiene controls in certain irradiated patients. It appears that these drugs do shorten the periods of neutropenia in irradiated patients and must be considered part of the therapeutic armamentarium in the treatment of ARS in a mass casualty situation. Based on review of the human experience with G-CSF and GM-CSF, as well as some animal studies, current consensus opinions support the prompt administration of these materials to patients suffering significant bone marrow depression from exposure to ionizing radiation.

  14. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    SciTech Connect

    Li, Yan; Ohms, Stephen J.; Shannon, Frances M.; Sun, Chao; Fan, Jun Y.

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer DNA methylation is dynamic and flexible and changes rapidly upon cell activation. Black-Right-Pointing-Pointer DNA methylation controls the inducible gene expression in a given cell type. Black-Right-Pointing-Pointer Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  15. Protein engineering and preclinical development of a GM-CSF receptor antibody for the treatment of rheumatoid arthritis

    PubMed Central

    Minter, RR; Cohen, ES; Wang, B; Liang, M; Vainshtein, I; Rees, G; Eghobamien, L; Harrison, P; Sims, DA; Matthews, C; Wilkinson, T; Monk, P; Drinkwater, C; Fabri, L; Nash, A; McCourt, M; Jermutus, L; Roskos, L; Anderson, IK; Sleeman, MA

    2013-01-01

    Background and Purpose For antibody therapies against receptor targets, in vivo outcomes can be difficult to predict because of target-mediated clearance or antigen ‘sink’ effects. The purpose of this work was to engineer an antibody to the GM-CSF receptor α (GM-CSFRα) with pharmacological properties optimized for chronic, s.c. treatment of rheumatoid arthritis (RA) patients. Experimental Approach We used an in silico model of receptor occupancy to guide the target affinity and a combinatorial phage display approach for affinity maturation. Mechanism of action and internalization assays were performed on the optimized antibody in vitro before refining the modelling predictions of the eventual dosing in man. Finally, in vivo pharmacology studies in cynomolgus monkeys were carried out to inform the predictions and support future clinical development. Key Results Antibody potency was improved 8600-fold, and the target affinity was reached. The refined model predicted pharmacodynamic effects at doses as low as 1 mg kg−1 and a study in cynomolgus monkeys confirmed in vivo efficacy at 1 mg kg−1 dosing. Conclusions and Implications This rational approach to antibody drug discovery enabled the isolation of a potent molecule compatible with chronic, s.c. self-administration by RA patients. We believe this general approach enables the development of optimal biopharmaceuticals. PMID:22913645

  16. Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines.

    PubMed

    Tai, Kuo-Feng; Chen, Ding-Shinn; Hwang, Lih-Hwa

    2004-01-01

    In preclinical studies, tumor cells genetically engineered to secrete cytokines, hereafter referred to as tumor cell vaccines, can often generate systemic antitumor immunity. This study investigated the therapeutic effects of live or irradiated tumor cell vaccines that secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) on established orthotopic liver tumors. Experimental results indicated that two doses (3 x 10(7) cells per dose) of irradiated tumor cell vaccines were therapeutically ineffective, whereas one dose (3 x 10(6) cells) of live tumor cell vaccines caused complete tumor regression. In vivo depletion of CD8+ T cells, but not natural killer cells, restored tumor formation in the live vaccine-treated animals. Additionally, the treatment of cells with live vaccine induced markedly higher levels of cytotoxic T lymphocyte activity than the irradiated vaccines in the draining lymph nodes. The higher levels of cytokine and antigen loads could partly explain the superior antitumor activity of live tumor cell vaccines, but other unidentified mechanisms could also play a role in the early T cell activation in the lymph nodes. A protocol using multiple and higher dosages of irradiated tumor cell vaccines also caused significant regression of liver tumors. These results suggest that the GM-CSF-secreting tumor cell vaccines are highly promising for orthotopic liver tumors if higher levels of immune responses are elicited during early tumor development. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  17. IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23

    PubMed Central

    Grifka-Walk, Heather M.; Giles, David A.; Segal, Benjamin M.

    2016-01-01

    CD4+ T-helper (Th) cells reactive against myelin antigens mediate the animal model experimental autoimmune encephalomyelitis (EAE) and have been implicated in the pathogenesis of multiple sclerosis (MS). It is currently debated whether encephalitogenic Th cells are heterogeneous or arise from a single lineage. In the current study, we challenge the dogma that stimulation with the monokine IL-23 is universally required for the acquisition of pathogenic properties by myelin-reactive T cells. We show that IL-12-modulated Th1 cells readily produce IFN-γ and GM-CSF in the central nervous system (CNS) and induce a severe form of EAE via an IL-23-independent pathway. Th1-mediated EAE is characterized by monocyte-rich CNS infiltrates, elicits a strong proinflammatory cytokine response in the CNS, and is partially CCR2-dependent. Conversely, IL-23-modulated, stable Th17 cells induce EAE with a relatively mild course via an IL-12-independent pathway. These data provide definitive evidence that autoimmune disease can be driven by distinct CD4+ T helper cell subsets and polarizing factors. PMID:26220255

  18. Establishment of a GM-CSF-dependent megakaryoblastic cell line with the potential to differentiate into an eosinophilic lineage in response to retinoic acids.

    PubMed

    Ma, F; Koike, K; Higuchi, T; Kinoshita, T; Takeuchi, K; Mwamtemi, H H; Sawai, N; Kamijo, T; Shiohara, M; Horie, S; Kawa, S; Sasaki, Y; Hidaka, E; Yamagami, O; Yamashita, T; Koike, T; Ishii, E; Komiyama, A

    1998-02-01

    We recently established a human granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent cell line (HML) from colony-constituent cells grown by peripheral blood cells of a patient with acute megakaryoblastic leukaemia. The HML cells possessed megakaryocytic features, as determined by cytochemical, electron microscopic and flow cytometric analysis. In the present study we examined the effects of retinoic acid (RA) on the development of HML cells. All-trans-RA, 13-cis-RA and 9-cis-RA at 10(-8) mol/l to 10(-5) mol/l inhibited the GM-CSF-dependent cell growth. Some of the RA-treated cells contained prominent azurophilic granules and were positive for peroxidase. They also reacted with Biebrich scarlet, Luxol fast blue and a monoclonal antibody against eosinophil peroxidase. In addition, exposure to RA increased the frequency and the intensity of major basic protein-positive cells. However, eosinophil-derived neurotoxin and eosinophil cationic protein were not detected or were only detected at a low level in the lysates of the HML cells treated with RA. Although IL-5 alone could not stimulate cell growth, the addition of IL-5 to the cultures containing stem cell factor + all-trans-RA was required for the expression of the eosinophilic phenotype. These results suggest that the HML cell line is a megakaryoblastic cell line with the potential to differentiate into the eosinophilic lineage. HML cells may be a useful model for elucidating the eosinophilic differentiation programme.

  19. GM-CSF signalling blockade and chemotherapeutic agents act in concert to inhibit the function of myeloid-derived suppressor cells in vitro

    PubMed Central

    Gargett, Tessa; Christo, Susan N; Hercus, Timothy R; Abbas, Nazim; Singhal, Nimit; Lopez, Angel F; Brown, Michael P

    2016-01-01

    Immune evasion is a recently defined hallmark of cancer, and immunotherapeutic approaches that stimulate an immune response to tumours are gaining recognition. However tumours may evade the immune response and resist immune-targeted treatment by promoting an immune-suppressive environment and stimulating the differentiation or recruitment of immunosuppressive cells. Myeloid-derived suppressor cells (MDSC) have been identified in a range of cancers and are often associated with tumour progression and poor patient outcomes. Pancreatic cancer in particular supports MDSC differentiation via the secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), and MDSC are believed to contribute to the profoundly immune-suppressive microenvironment present in pancreatic tumours. MDSC-targeted therapies that deplete or inhibit this cell population have been proposed as a way to shift the balance in favour of a tumour-clearing immune response. In this study, we have modelled MDSC differentiation and function in vitro and this has provided us with the opportunity to test a range of potential MDSC-targeted therapies to identify candidates for further investigation. Using in vitro modelling we show here that the combination of GM-CSF-signalling blockade and gemcitabine suppresses both the MDSC phenotype and the inhibition of T-cell function by MDSC. PMID:28090321

  20. GM-CSF treated F4/80+ BMCs improve murine hind limb ischemia similar to M-CSF differentiated macrophages.

    PubMed

    Kuwahara, Go; Nishinakamura, Hitomi; Kojima, Daibo; Tashiro, Tadashi; Kodama, Shohta

    2014-01-01

    Novel cell therapy is required to treat critical limb ischemia (CLI) as many current approaches require repeated aspiration of bone marrow cells (BMCs). The use of cultured BMCs can reduce the total number of injections required and were shown to induce therapeutic angiogenesis in a murine model of hind limb ischemia. Blood flow recovery was significantly improved in mice treated with granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent BMCs that secreted inflammatory cytokines. Angiogenesis, lymphangiogenesis, and blood flow recovery ratio were significantly higher in the GM-CSF-cultured F4/80+ macrophage (GM-Mø)-treated group compared with controls. Furthermore, Foxp3+ cell numbers and tissue IL-10 concentrations were significantly increased compared with controls. There was no significant difference in blood flow recovery between GM-Mø and M-CSF-cultured F4/80+ macrophages (M-Mø). Thus, GM-Mø were associated with improved blood flow in hind limb ischemia similar to M-Mø. The selective methods of culturing and treating GM-Mø cells similar to M-Mø cells could be used clinically to help resolve the large number of cells required for BMC treatment of CLI. This study demonstrates a novel cell therapy for CLI that can be used in conjunction with conventional therapy including percutaneous intervention and surgical bypass.

  1. The inducible tissue-specific expression of the human IL-3/GM-CSF locus is controlled by a complex array of developmentally regulated enhancers

    PubMed Central

    Baxter, Euan W.; Mirabella, Fabio; Bowers, Sarion R.; James, Sally R.; Bonavita, Aude-Marine; Bertrand, Elisabeth; Strogantsev, Ruslan; Hawwari, Abbas; Bert, Andrew G.; de Arce, Andrea Gonzalez; West, Adam G.; Bonifer, Constanze; Cockerill, Peter N.

    2012-01-01

    The closely linked human IL-3 and GM-CSF genes are tightly regulated and are expressed in activated T cells and mast cells. Here we used transgenic mice to study the developmental regulation of this locus and to identify DNA elements required for its correct activity in vivo. Because these two genes are separated by a CTCF-dependent insulator, and the GM-CSF gene is regulated primarily by its own upstream enhancer, the main aim was to identify regions of the locus required for correct IL-3 gene expression. We initially found that the previously identified proximal upstream IL-3 enhancers were insufficient to account for the in vivo activity of the IL-3 gene. However, an extended analysis of DNase I hypersensitive sites (DHSs) spanning the entire upstream IL-3 intergenic region revealed the existence of a complex cluster of both constitutive and inducible DHSs spanning the −34 to −40 kb region. The tissue specificity of these DHSs mirrored the activity of the IL-3 gene, and included a highly inducible CyclosporinA-sensitive enhancer at −37 kb which increased IL-3 promoter activity 40 fold. Significantly, inclusion of this region enabled correct in vivo regulation of IL-3 gene expression in T cells, mast cells and myeloid progenitor cells. PMID:23024272

  2. Immunotherapy with autologous tumour antigen-coated microbeads (large multivalent immunogen), IL-2 and GM-CSF in dogs with spontaneous B-cell lymphoma.

    PubMed

    Henson, M S; Curtsinger, J M; Larson, V S; Klausner, J S; Modiano, J F; Mescher, M F; Miller, J S

    2011-06-01

    Cytotoxic T-lymphocyte responses to subcellular antigens are enhanced when antigens are presented on cell-sized silica microbeads called large multivalent immunogens (LMIs). LMIs prepared with tumour cell membrane fragments have induced partial remissions in humans with melanoma and renal cell carcinoma. The purpose of this phase I study was to evaluate the safety of LMIs, prepared with autologous lymphoma cell membranes, along with subcutaneous interleukin 2 (IL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF) in dogs with untreated B-cell lymphoma. After lymph node excision and induction chemotherapy, five dogs were vaccinated with three weekly doses of LMI alone; five with LMI and subcutaneous IL-2 and five with LMI, IL-2 and GM-CSF. No significant toxicity was noted, treatment did not adversely affect disease-free interval and half of the dogs showed measurable delayed-type hypersensitivity reactions to intradermal challenge with LMI, suggesting specific cell-mediated immunity. © 2010 Blackwell Publishing Ltd.

  3. DPP4 truncated GM-CSF & IL-3 manifest distinct receptor binding & regulatory functions compared to their full length forms.

    PubMed

    O'Leary, H A; Capitano, M; Cooper, S; Mantel, C; Boswell, H S; Kapur, R; Ramdas, B; Chan, R; Deng, L; Qu, C-K; Broxmeyer, H E

    2017-03-27

    Dipeptidylpeptidase 4 (DPP4/CD26) enzymatically cleaves select penultimate amino acids of proteins, including colony stimulating factors (CSFs), and has been implicated in cellular regulation. To better understand the role of DPP4 regulation of hematopoiesis, we analyzed the activity of DPP4 on the surface of immature blood cells and then comparatively assessed the interactions and functional effects of full-length (FL) and DPP4 truncated factors [(T)-GM-CSF and- IL-3] on both in vitro and in vivo models of normal and leukemic cells. T-GM-CSF and T-IL-3 had enhanced receptor binding, but decreased CSF activity, compared to their FL forms. Importantly, T-GM-CSF and T-IL-3 significantly, and reciprocally, blunted receptor binding and myeloid progenitor cell proliferation activity of both FL-GM-CSF and FL-IL-3 in vitro and in vivo. Similar effects were apparent in vitro using cluster forming cells from patients with Acute Myeloid Leukemia (AML) regardless of cytogenetic or molecular alterations and in vivo utilizing animal models of leukemia. This suggests that DPP4 T-molecules have modified binding and functions compared to their FL counterparts and may serve regulatory roles in normal and malignant hematopoiesis.Leukemia accepted article preview online, 27 March 2017. doi:10.1038/leu.2017.98.

  4. CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells.

    PubMed

    Kara, Ervin E; McKenzie, Duncan R; Bastow, Cameron R; Gregor, Carly E; Fenix, Kevin A; Ogunniyi, Abiodun D; Paton, James C; Mack, Matthias; Pombal, Diana R; Seillet, Cyrill; Dubois, Bénédicte; Liston, Adrian; MacDonald, Kelli P A; Belz, Gabrielle T; Smyth, Mark J; Hill, Geoffrey R; Comerford, Iain; McColl, Shaun R

    2015-10-29

    IL-17-producing helper T (Th17) cells are critical for host defense against extracellular pathogens but also drive numerous autoimmune diseases. Th17 cells that differ in their inflammatory potential have been described including IL-10-producing Th17 cells that are weak inducers of inflammation and highly inflammatory, IL-23-driven, GM-CSF/IFNγ-producing Th17 cells. However, their distinct developmental requirements, functions and trafficking mechanisms in vivo remain poorly understood. Here we identify a temporally regulated IL-23-dependent switch from CCR6 to CCR2 usage by developing Th17 cells that is critical for pathogenic Th17 cell-driven inflammation in experimental autoimmune encephalomyelitis (EAE). This switch defines a unique in vivo cell surface signature (CCR6(-)CCR2(+)) of GM-CSF/IFNγ-producing Th17 cells in EAE and experimental persistent extracellular bacterial infection, and in humans. Using this signature, we identify an IL-23/IL-1/IFNγ/TNFα/T-bet/Eomesodermin-driven circuit driving GM-CSF/IFNγ-producing Th17 cell formation in vivo. Thus, our data identify a unique cell surface signature, trafficking mechanism and T-cell intrinsic regulators of GM-CSF/IFNγ-producing Th17 cells.

  5. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia

    PubMed Central

    2012-01-01

    Background Microglia are resident macrophage-like cells in the central nervous system (CNS) and cause innate immune responses via the LPS receptors, Toll-like receptor (TLR) 4 and CD14, in a variety of neuroinflammatory disorders including bacterial infection, Alzheimer’s disease, and amyotrophic lateral sclerosis. Granulocyte macrophage-colony stimulating factor (GM-CSF) activates microglia and induces inflammatory responses via binding to GM-CSF receptor complex composed of two different subunit GM-CSF receptor α (GM-CSFRα) and common β chain (βc). GM-CSF has been shown to be associated with neuroinflammatory responses in multiple sclerosis and Alzheimer’s disease. However, the mechanisms how GM-CSF promotes neuroinflammation still remain unclear. Methods Microglia were stimulated with 20 ng/ml GM-CSF and the levels of TLR4 and CD14 expression were evaluated by RT-PCR and flowcytometry. LPS binding was analyzed by flowcytometry. GM-CSF receptor complex was analyzed by immunocytechemistry. The levels of IL-1β, IL-6 and TNF-α in culture supernatant of GM-CSF-stimulated microglia and NF-κB nuclear translocation were determined by ELISA. Production of nitric oxide (NO) was measured by the Griess method. The levels of p-ERK1/2, ERK1/2, p-p38 and p38 were assessed by Western blotting. Statistically significant differences between experimental groups were determined by one-way ANOVA followed by Tukey test for multiple comparisons. Results GM-CSF receptor complex was expressed in microglia. GM-CSF enhanced TLR4 and CD14 expressions in microglia and subsequent LPS-binding to the cell surface. In addition, GM-CSF priming increased LPS-induced NF-κB nuclear translocation and production of IL-1β, IL-6, TNF-α and NO by microglia. GM-CSF upregulated the levels of p-ERK1/2 and p-p38, suggesting that induction of TLR4 and CD14 expression by GM-CSF was mediated through ERK1/2 and p38, respectively. Conclusions These results suggest that GM-CSF upregulates TLR4 and

  6. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization.

    PubMed

    Ziebe, Søren; Loft, Anne; Povlsen, Betina B; Erb, Karin; Agerholm, Inge; Aasted, Michael; Gabrielsen, Anette; Hnida, Christina; Zobel, Dorit P; Munding, Bibi; Bendz, Susanne H; Robertson, Sarah A

    2013-05-01

    To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR). Multicenter, randomized, placebo-controlled, double-blinded prospective design. Fourteen Scandinavian fertility clinics. A total of 1,332 women with indication for in vitro fertilization or intracytoplasmic sperm injection; 1,149 received embryo transfer (GM-CSF: n = 564; control: n = 585). Oocytes were fertilized, and embryos cultured and transferred in control medium or test medium containing 2 ng/mL GM-CSF. OIR at gestational week 7, with follow-up at week 12 and birth. At week 7, OIRs were 23.5% (GM-CSF), and 20.0% (control) (odds ratio [OR] 1.26, 95% confidence interval [CI] 0.91-1.75). At week 12, OIRs were 23.0% (GM-CSF) and 18.7% (control) (OR 1.35, 95% CI 1.06-1.72), and live birth rates were 28.9% and 24.1%, respectively (OR 1.35, 95% CI 1.03-1.78). The effect of GM-CSF was influenced by the human serum albumin concentration in the medium. Birth weight and abnormality incidence were similar in both groups. Exploratory analyses showed that GM-CSF increased OIR in women with previous miscarriage, especially in women with more than one miscarriage. Addition of GM-CSF to embryo culture medium elicits a significant increase in survival of transferred embryos to week 12 and live birth. Our results are consistent with a protective effect of GM-CSF on culture-induced embryo stress. GM-CSF may be particularly efficacious in women with previous miscarriage. NCT00565747. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Local GM-CSF-Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice.

    PubMed

    Chen, Gwo-Hsiao; Teitz-Tennenbaum, Seagal; Neal, Lori M; Murdock, Benjamin J; Malachowski, Antoni N; Dils, Anthony J; Olszewski, Michal A; Osterholzer, John J

    2016-02-15

    Patients with acquired deficiency in GM-CSF are susceptible to infections with Cryptococcus neoformans and other opportunistic fungi. We previously showed that GM-CSF protects against progressive fungal disease using a murine model of cryptococcal lung infection. To better understand the cellular and molecular mechanisms through which GM-CSF enhances antifungal host defenses, we investigated temporal and spatial relationships between myeloid and lymphoid immune responses in wild-type C57BL/6 mice capable of producing GM-CSF and GM-CSF-deficient mice infected with a moderately virulent encapsulated strain of C. neoformans (strain 52D). Our data demonstrate that GM-CSF deficiency led to a reduction in: 1) total lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) total numbers of CD11b(+) dendritic cells (DC) and CD11b(-) and CD11b(+) macrophages (Mϕ); 4) DC and Mϕ activation; and 5) localization of DC and Mϕ to the microanatomic sites of alveolar infection. In contrast, GM-CSF deficiency resulted in increased accumulation of DC and Mϕ precursors, namely Ly-6C(high) monocytes, in the blood and lungs of infected mice. Collectively, these results show that GM-CSF promotes the local differentiation, accumulation, activation, and alveolar localization of lung DC and Mϕ in mice with cryptococcal lung infection. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease and thus shed new light on the increased susceptibility to these infections observed in patients with acquired GM-CSF deficiency.

  8. So-Cheong-Ryong-Tang, a herbal medicine, modulates inflammatory cell infiltration and prevents airway remodeling via regulation of interleukin-17 and GM-CSF in allergic asthma in mice

    PubMed Central

    Kim, Hyung-Woo; Lim, Chi-Yeon; Kim, Bu-Yeo; Cho, Su-In

    2014-01-01

    Background: So-Cheong-Ryong-Tang (SCRT), herbal medicine, has been used for the control of respiratory disease in East Asian countries. However, its therapeutic mechanisms, especially an inhibitory effect on inflammatory cell infiltration and airway remodeling in allergic asthma are unclear. Objective: The present study investigated the mechanism of antiasthmatic effects of SCRT in allergic asthma in mice. Materials and Methods: We investigated the influence of SCRT on levels of interleukin-17 (IL-17), granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-4, and interferon gamma (IFN-γ) in bronchoalveolar lavage fluid (BALF), ovalbumin (OVA)-specific IgE in serum, and histopathological changes in allergen-induced asthma. Results: So-Cheong-Ryong-Tang decreased levels of IL-17 and GM-CSF in BALF. IL-4, a Th2-driven cytokine, was also decreased by SCRT, but IFN-γ, a Th1-driven cytokine, was not changed. Levels of OVA-specific IgE in serum were also decreased by SCRT. With SCRT treatment, histopathological findings showed reduced tendency of inflammatory cell infiltration, and prevention from airway remodeling such as epithelial hyperplasia. Conclusion: In this study, we firstly demonstrated that regulation of IL-17 and GM-CSF production may be one of the mechanism contributed to a reduction of inflammatory cell infiltration and prevention from airway remodeling. PMID:25298667

  9. Comparative Antitumor Effect of Preventive versus Therapeutic Vaccines Employing B16 Melanoma Cells Genetically Modified to Express GM-CSF and B7.2 in a Murine Model

    PubMed Central

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Algás, Rosa; Sánchez, Maria; Aliño, Salvador F.

    2012-01-01

    Cancer vaccines have always been a subject of gene therapy research. One of the most successful approaches has been working with genetically modified tumor cells. In this study, we describe our approach to achieving an immune response against a murine melanoma model, employing B16 tumor cells expressing GM-CSF and B7.2. Wild B16 cells were injected in C57BL6 mice to cause the tumor. Irradiated B16 cells transfected with GM-CSF, B7.2, or both, were processed as a preventive and therapeutic vaccination. Tumor volumes were measured and survival curves were obtained. Blood samples were taken from mice, and IgGs of each treatment group were also measured. The regulatory T cells (Treg) of selected groups were quantified using counts of images taken by confocal microscopy. Results: one hundred percent survival was achieved by preventive vaccination with the group of cells transfected with p2F_GM-CSF. Therapeutic vaccination achieved initial inhibition of tumor growth but did not secure overall survival of the animals. Classical Treg cells did not vary among the different groups in this therapeutic vaccination model. PMID:23202306

  10. Comparative antitumor effect of preventive versus therapeutic vaccines employing B16 melanoma cells genetically modified to express GM-CSF and B7.2 in a murine model.

    PubMed

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Algás, Rosa; Sánchez, Maria; Aliño, Salvador F

    2012-10-31

    Cancer vaccines have always been a subject of gene therapy research. One of the most successful approaches has been working with genetically modified tumor cells. In this study, we describe our approach to achieving an immune response against a murine melanoma model, employing B16 tumor cells expressing GM-CSF and B7.2. Wild B16 cells were injected in C57BL6 mice to cause the tumor. Irradiated B16 cells transfected with GM-CSF, B7.2, or both, were processed as a preventive and therapeutic vaccination. Tumor volumes were measured and survival curves were obtained. Blood samples were taken from mice, and IgGs of each treatment group were also measured. The regulatory T cells (Treg) of selected groups were quantified using counts of images taken by confocal microscopy. one hundred percent survival was achieved by preventive vaccination with the group of cells transfected with p2F_GM-CSF. Therapeutic vaccination achieved initial inhibition of tumor growth but did not secure overall survival of the animals. Classical Treg cells did not vary among the different groups in this therapeutic vaccination model.

  11. Isolation and characterization of a resistant core peptide of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF); confirmation of the GM-CSF amino acid sequence by mass spectrometry.

    PubMed Central

    Tsarbopoulos, A.; Pramanik, B. N.; Labdon, J. E.; Reichert, P.; Gitlin, G.; Patel, S.; Sardana, V.; Nagabhushan, T. L.; Trotta, P. P.

    1993-01-01

    A trypsin-resistant core peptide of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) was isolated and analyzed by high-energy Cs+ liquid secondary-ion (LSI) mass spectrometric analysis. This analysis provided successful detection of the high-mass disulfide-linked core peptide as well as information confirming the existence of disulfide pairing. Similarly, LSI mass spectrometric analysis of the peptide fragments isolated chromatographically from a Staphylococcus aureus V8 protease digest of rhGM-CSF provided rapid confirmation of the cDNA-derived sequence and determination of the existing disulfide bonds between cysteine residues 54-96 and 88-121. Electrospray ionization mass spectrometry was employed to measure the molecular weight of the intact protein and to determine the number of the disulfide bonds in the protein molecule by comparative analysis of the protein before and after reduction with beta-mercaptoethanol. PMID:8268804

  12. Effects of GM-CSF gene transfer using silica-nanoparticles as a vehicle on white blood cell production in dogs.

    PubMed

    Choi, Eun Wha; Shin, Il Seob; Chae, Young Jin; Koo, Hye Cheong; Lee, Jong Hwa; Chung, Tae Ho; Park, Yong Ho; Kim, Dae Yong; Hwang, Cheol Yong; Lee, Chang Woo; Youn, Hwa Young

    2008-07-01

    We sought to test two concepts: that nanoparticles can be used for in vivo gene delivery and that canine granulocyte-macrophage colony-stimulating factor (GM-CSF)/nanoparticles can have possibility to be used to treat transient (acute) canine leukopenia. We have generated a novel fluorescent-silica nanoparticle binding of canine GM-CSF gene; canine GM-CSF gene was inserted between the cytomegalovirus promoter and poly-adenylation sequences of simian virus 40, and the gene construct was ligated to fluorescent silica nanoparticles functionalized with tertiary amine. When the GM-CSF/nanoparticles were injected into normal dogs, the GM-CSF was expressed in peripheral blood mononuclear cells for at least 9 days and there were significant increases in white blood cell counts, as confirmed by complete blood count, differential count, and flow cytometry. Significant increases in expression of major histocompatibility complex class II on granulocytes and in serum GM-CSF were also observed. Readministration of the nanoparticles was also effective and expression in various tissues was confirmed by reverse transcriptase polymerase chain reaction. These GM-CSF/nanoparticles may be useful for correction of acute leukopenia, such as chemotherapy-induced myelosuppression without developing neutralizing antibodies.

  13. GM-CSF Production Allows the Identification of Immunoprevalent Antigens Recognized by Human CD4+ T Cells Following Smallpox Vaccination

    PubMed Central

    Judkowski, Valeria; Bunying, Alcinette; Ge, Feng; Appel, Jon R.; Law, Kingyee; Sharma, Atima; Raja- Gabaglia, Claudia; Norori, Patricia; Santos, Radleigh G.; Giulianotti, Marc A.; Slifka, Mark K.; Douek, Daniel C.; Graham, Barney S.; Pinilla, Clemencia

    2011-01-01

    The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a “T cell–driven” methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens. PMID:21931646

  14. Alternaria Fungus Induces the Production of GM-CSF, Interleukin-6 and Interleukin-8 and Calcium Signaling in Human Airway Epithelium through Protease-Activated Receptor 2

    PubMed Central

    Matsuwaki, Yoshinori; Wada, Kota; White, Thomas; Moriyama, Hiroshi; Kita, Hirohito

    2012-01-01

    Rationale Recent studies suggest that host immune responses to environmental fungi may play an important role in the development of allergic diseases, such as human asthma. Epithelium is considered an active participant in allergic inflammation. We previously reported that aspartate protease from Alternaria induces the activation and degranulation of human eosinophils that are mediated through protease-activated receptor 2 (PAR-2). However, our current knowledge on the innate immune responses of epithelium to environmental fungi is very limited. We investigated the responses of epithelium to fungi and the mechanisms of these responses. Methods Human airway epithelial cell line BEAS-2B and Calu-3 (both from American Type Culture Collection) were incubated with PAR-2 peptides and extracts of various fungi. The cellular responses, including GM-CSF, interleukin (IL)-6, IL-8, eotaxin, eotaxin-2 and RANTES production as well as increases in intracellular calcium concentration ([Ca2+]i), were examined. To characterize the proteases involved in these responses, protease inhibitors such as pepstatin A and alkalo-thermophilic Bacillus inhibitor (ATBI), HIV protease inhibitors and 4-amidinophenylmethanesulfonyl fluoride hydrochloride were used. To investigate the role of PAR-2, PAR-2-agonistic and PAR-2-antagonistic peptides were used. Results PAR-2-activating peptide, but not the control peptide, induced GM-CSF, IL-6 and IL-8 production; these cellular responses were accompanied by a quick and marked increase in [Ca2+]i. Among 7 common environmental fungi, only Alternaria induced GM-CSF, IL-6 and IL-8 production and increased [Ca2+]i response. Both cytokine production and increased [Ca2+]i were significantly inhibited by PAR-2 antagonist peptide and by aspartate protease inhibitors (pepstatin A, ritonavir, nelfinavir and ATBI), but not by the PAR-2 control peptide or by other protease inhibitors. Conclusions Aspartate proteases from Alternaria induce cytokine production and

  15. Development of a successful antitumor therapeutic model combining in vivo dendritic cell vaccination with tumor irradiation and intratumoral GM-CSF delivery.

    PubMed

    Driessens, Gregory; Nuttin, Lise; Gras, Alain; Maetens, Julie; Mievis, Stephane; Schoore, Marylène; Velu, Thierry; Tenenbaum, Liliane; Préat, Véronique; Bruyns, Catherine

    2011-02-01

    Vaccination of dendritic cells (DC) combined with GM-CSF secreting tumor cells has shown good therapeutic efficacy in several tumor models. Nevertheless, the engineering of GM-CSF secreting tumor cell line could represent a tedious step limiting its application for treatment in patients. We therefore developed in rats, an "all in vivo" strategy of combined vaccination using an in vivo local irradiation of the tumor as a source of tumor antigens for DC vaccines and an exogenous source of GM-CSF. We report here that supplying recombinant mGM-CSF by local injections or surgical implantation of osmotic pumps did not allow reproducing the therapeutic efficacy observed with in vitro prepared combined vaccines. To bypass this limitation possibly due to the short half-life of recombinant GM-CSF, we have generated adeno-associated virus coding for mGM-CSF and tested their efficacy to transduce tumor cells in vitro and in vivo. The in vivo vaccines combining local irradiation and AAV2/1-mGM-CSF vectors showed high therapeutic efficacy allowing to cure 60% of the rats with pre-implanted tumors, as previously observed with in vitro prepared vaccines. Same efficacy has been observed with a second generation of vaccines combining DC, local tumor irradiation, and the controlled supply of recombinant mGM-CSF in poloxamer 407, a biocompatible thermoreversible hydrogel. By generating a successful "all in vivo" vaccination protocol combining tumor radiotherapy with DC vaccines and a straightforward supply of GM-CSF, we have developed a therapeutic strategy easily translatable to clinic that could become accessible to a much bigger number of cancer patients.

  16. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF.

    PubMed

    Quail, Daniela F; Olson, Oakley C; Bhardwaj, Priya; Walsh, Logan A; Akkari, Leila; Quick, Marsha L; Chen, I-Chun; Wendel, Nils; Ben-Chetrit, Nir; Walker, Jeanne; Holt, Peter R; Dannenberg, Andrew J; Joyce, Johanna A

    2017-08-01

    Obesity is associated with chronic, low-grade inflammation, which can disrupt homeostasis within tissue microenvironments. Given the correlation between obesity and relative risk of death from cancer, we investigated whether obesity-associated inflammation promotes metastatic progression. We demonstrate that obesity causes lung neutrophilia in otherwise normal mice, which is further exacerbated by the presence of a primary tumour. The increase in lung neutrophils translates to increased breast cancer metastasis to this site, in a GM-CSF- and IL5-dependent manner. Importantly, weight loss is sufficient to reverse this effect, and reduce serum levels of GM-CSF and IL5 in both mouse models and humans. Our data indicate that special consideration of the obese patient population is critical for effective management of cancer progression.

  17. Do IL-3/GM-CSF effect on the myofibroblastic differentiation of human adipose derived stromal cells?

    PubMed

    Lee, Jae-Sun; Tae, Son-Seung; Kim, Deok-Yeol; Han, Seung-Kyu; Kim, Woo-Kyung; Dhong, Eun-Sang

    2017-06-15

    Capsular contracture is an incurable complication after silicone-based implant surgery. Myofibroblast is the predominant cell in the contracted capsule. We hypothesized that human adipose derive stromal cells (hASCs) together with fibroblast may show a similar phenotypic characteristics of myofibroblast after the treatment of inflammatory cytokines in vitro. Interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) were treated in the culture of hASCs and HDFs. Lyn peptide inhibitor was applied as an inhibitor. The changes of cell surface markers (CD105, CD73, CD34, CD45, CD31, CD325 and CD146) were assessed. The expression of various cytokines related to wound contraction were tested such as TGF-β, α-SMA, HGF, FGF, ENT-1, and TSP-1. Myo-D, α-SMA, and glial fibrillary acidic protein (GFAP) were evaluated by blotting and immunocytochemical staining. The collagen-gel contraction assay was performed for the functional contraction of myofibroblastic phenotype. The expression of α-SMA, Myo-D and GFAP after the treatment of IL-3/GM-CSF showed similar results in hASCs and HDFs. Enhanced expression of TGF- β was observed in HDFs and the increase of ENT-1 and TSP-1 was significant in hASCs. Collagen-gel with HDFs contracted significantly within 24h after the treatment of IL-3/GM-CSF, and the contraction was inhibited by Lyn peptide inhibitor. But in hASCs, the gel-contraction was not significant. IL-3/ GM-CSF effected on the myofibroblastic differentiation of hASCs as well as it did on HDFs. But hASCs did not show the phenotypic gel-contraction within 24h. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Abnormal Responses of Myeloid Progenitor Cells to GM-CSF (Granulocyte-Macrophage-Colony-Stimulating Factor) in Human Cyclic Neutropenia

    DTIC Science & Technology

    1989-04-01

    Continut on reverse if necessar and jentify by bi).nrbe,; FIELD GROUP SUBG ROUP Ne utropen ia, granu Iocyte-macrop ae ofnyS imu £ating factor (GM...be _3 eosinophilic were also detected occasionally (< 5% of total col- , onies) among CFU-GM grown with > 1.0 nmol/liter rhGM- CSF. Whereas the clonal

  19. Crystallization and preliminary X-ray diffraction analysis of the ternary human GM-CSF receptor complex

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; Xu, Yibin; Lopez, Angel F.; Parker, Michael W.; McKinstry, William J.

    2008-07-28

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a haemopoietic growth factor that acts through a ternary receptor signalling complex containing specific {alpha} (GMR{alpha}) and common {beta} ({beta}c) receptor subunits. Human GM-CSF is encoded by the gene csf2, while the genes for GMR{alpha} and {beta}c are csf2ra and csf2rb, respectively. Crystals of the ternary ectodomain complex comprising GM-CSF and the soluble extracellular regions of both the GMR{alpha} subunit and either {beta}c or its glutamine-substitution mutant N346Q were obtained using the hanging-drop vapour-diffusion method. The best diffracting crystals of the ternary complex were obtained using the N346Q mutation of the {beta}c subunit. These crystals grew using polyethylene glycol 3350 with a high concentration of proline, belonged to space group P6{sub 3}22 and diffracted to 3.3 {angstrom} resolution.

  20. Incorporation of GM-CSF or CD40L Enhances the Immunogenicity of Hantaan Virus-Like Particles

    PubMed Central

    Cheng, Lin-Feng; Wang, Fang; Zhang, Liang; Yu, Lan; Ye, Wei; Liu, Zi-Yu; Ying, Qi-Kang; Wu, Xing-An; Xu, Zhi-Kai; Zhang, Fang-Lin

    2016-01-01

    A safe and effective Hantaan virus (HTNV) vaccine is highly desirable because HTNV causes an acute and often fatal disease (hemorrhagic fever with renal syndrome, HFRS). Since the immunity of the inactivated vaccine is weak and the safety is poor, HTNV virus-like particles (VLPs) offer an attractive and safe alternative. These particles lack the viral genome but are perceived by the immune system as virus particles. We hypothesized that adding immunostimulatory signals to VLPs would enhance their efficacy. To accomplish this enhancement, we generated chimeric HTNV VLPs containing glycosylphosphatidylinositol (GPI)-anchored granulocyte macrophage colony-stimulating factor (GM-CSF) or CD40 ligand (CD40L) and investigated their biological activity in vitro. The immunization of mice with chimeric HTNV VLPs containing GM-CSF or CD40L induced stronger humoral immune responses and cellular immune responses compared to the HTNV VLPs and Chinese commercial inactivated hantavirus vaccine. Chimeric HTNV VLPs containing GM-CSF or CD40L also protected mice from an HTNV challenge. Altogether, our results suggest that anchoring immunostimulatory molecules into HTNV VLPs can be a potential approach for the control and prevention of HFRS. PMID:28066721

  1. Antibody repertoire against HIV-1 gp120 triggered in nude and normal mice by GM-CSF/gp120 immunization.

    PubMed

    del Real, G; Llorente, M; Lucas, P; Kremer, L; Torán, J L; Martínez-A, C

    1999-08-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) facilitates the induction of primary immune responses by activating and recruiting antigen-presenting cells (APC), which efficiently present antigen determinants to Th cells. We have derived a functional GM-CSF/gp120 chimeric protein that, following immunization in soluble, adjuvant-independent form in normal mice, triggers highly specific, high affinity anti-gp120 antibodies. In contrast, nude mice respond with mutated, polyreactive, low affinity antibodies that mature further and increase in affinity in T cell-reconstituted nude mice. Anti-gp120 antibody production in nude mice is mediated principally by GM-CSF/gp120-triggered IL-4 production, since neutralizing anti-IL-4 abrogates the in vivo response. The anti-gp120 antibody response in normal, nude and T cell-reconstituted nude mice is encoded at a remarkably high frequency by the VH81X and VH7183 genes, a family used notably during fetal life and, when expressed at the adult stage, associated with autoimmune disease. We conclude that HIV gp120 binds and selects a subpopulation of developing B cells expressing a set of VH genes associated with immunodeficiency and autoimmunity.

  2. Induction of protumoral CD11c(high) macrophages by glioma cancer stem cells through GM-CSF.

    PubMed

    Kokubu, Yasuhiro; Tabu, Kouichi; Muramatsu, Nozomi; Wang, Wenqian; Murota, Yoshitaka; Nobuhisa, Ikuo; Jinushi, Masahisa; Taga, Tetsuya

    2016-03-01

    Cancer stem cells (CSCs) are maintained under special microenvironment called niche, and elucidation and targeting of the CSC niche will be a feasible strategy for cancer eradication. Tumor-associated macrophages (TAMs) are known to be involved in cancer progression and thus can be a component of CSC niche. Although TAMs are known to play multiple roles in tumor progression, involvement of CSCs in TAM development fully remains to be elucidated. Using rat C6 glioma side population (SP) cells as a model of glioma CSCs, we here show that CSCs induce the TAM development by promoting survival and differentiation of bone marrow-derived monocytes. CSC-induced macrophages can be separated into two distinct subsets of cells, CD11c(low) and CD11c(high) cells. Interestingly, only the CD11c(high) subset of cells have protumoral activity, as shown by intracranial transplantation into immune-deficient mice together with CSCs. These CD11c(high) macrophages were observed in the tumor formed by co-transplantation with CSCs. Furthermore, CSCs produced GM-CSF and anti-GM-CSF antibody inhibited CSC-induced TAM development. In conclusion, CSCs have the ability to self-create their own niche involving TAMs through CSC-derived GM-CSF, which can thus be a therapeutic target in view of CSC niche disruption.

  3. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis.

  4. Antibody responses to galectin-8, TARP and TRAP1 in prostate cancer patients treated with a GM-CSF-secreting cellular immunotherapy.

    PubMed

    Nguyen, Minh C; Tu, Guang Huan; Koprivnikar, Kathryn E; Gonzalez-Edick, Melissa; Jooss, Karin U; Harding, Thomas C

    2010-09-01

    A critical factor in clinical development of cancer immunotherapies is the identification of tumor-associated antigens that may be related to immunotherapy potency. In this study, protein microarrays containing >8,000 human proteins were screened with serum from prostate cancer patients (N = 13) before and after treatment with a granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting whole cell immunotherapy. Thirty-three proteins were identified that displayed significantly elevated (P GM-CSF secreting cellular immunotherapy in prostate cancer patients and demonstrates the utility of using protein microarrays for the high-throughput screening of patient-derived antibody responses.

  5. Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors.

    PubMed

    Campisano, Sabrina; Mac Keon, Soledad; Gazzaniga, Silvina; Ruiz, María Sol; Traian, Martín Dodes; Mordoh, José; Wainstok, Rosa

    2013-01-02

    We have initially shown that DC/ApoNec vaccine can induce protection against the poorly immunogenic B16F1 melanoma in mice. The population of DC obtained for vaccination after 7days culture with murine GM-CSF is heterogeneous and presents about 60% of CD11c+ DC. Therefore, our purpose was to identify the phenotype of the cells obtained after differentiation and its immunogenicity once injected. DC were separated with anti-CD11c microbeads and the two populations identified in terms of CD11c positivity (DC+ and DC-) were also studied. Approximately 26.6% of the cells in DC+ fraction co-expressed CD11c+ and F4/80 markers and 75.4% were double positive for CD11c and CD11b markers. DC+ fraction also expressed Ly6G. DC- fraction was richer in CD11c-/F4/80+ macrophages (44.7%), some of which co-expressed Ly6G (41.8%), and F4/80-/Ly6-G+ neutrophils (34.6%). Both DC+ and DC- fractions displayed similar capacity to phagocyte and endocyte antigens and even expressed levels of MHC Class II and CD80, CD83 and CD86 costimulatory molecules similar to those in the DC fraction. However, only DC/ApoNec vaccine was capable to induce protection in mice (p<0.01). After 24h co-culture, no detectable level of IL-12 was recorded in DC/ApoNec vaccine, either in supernatant or intracellularly. Therefore, the protection obtained with DC/ApoNec vaccine seemed to be independent of the vaccine's ability to secrete this inflammatory cytokine at the time of injection. In conclusion, we demonstrated that all cell types derived from the culture of mouse bone marrow with GM-CSF are necessary to induce antitumor protection in vivo. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia-a new therapeutic strategy?

    PubMed

    Rösler, Barbara; Herold, Susanne

    2016-12-01

    Influenza viruses (IVs) circulate seasonally and are a common cause of respiratory infections in pediatric and adult patients. Additionally, recurrent pandemics cause massive morbidity and mortality worldwide. Infection may result in rapid progressive viral pneumonia with fatal outcome. Since accurate treatment strategies are still missing, research refocuses attention to lung pathology and cellular crosstalk to develop new therapeutic options.Alveolar epithelial cells (AECs) play an important role in orchestrating the pulmonary antiviral host response. After IV infection they release a cascade of immune mediators, one of which is granulocyte and macrophage colony-stimulating factor (GM-CSF). GM-CSF is known to promote differentiation, activation and mobilization of myeloid cells. In the lung, GM-CSF drives immune functions of alveolar macrophages and dendritic cells (DCs) and also improves epithelial repair processes through direct interaction with AECs. During IV infection, AEC-derived GM-CSF shows a lung-protective effect that is also present after local GM-CSF application. This mini-review provides an overview on GM-CSF-modulated immune responses to IV pneumonia and its therapeutic potential in severe IV pneumonia.

  7. Changes in chromatin accessibility across the GM-CSF promoter upon T cell activation are dependent on nuclear factor kappaB proteins.

    PubMed

    Holloway, Adele F; Rao, Sudha; Chen, Xinxin; Shannon, M Frances

    2003-02-17

    Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a key cytokine in myelopoiesis and aberrant expression is associated with chronic inflammatory disease and myeloid leukemias. This aberrant expression is often associated with constitutive nuclear factor (NF)-kappaB activation. To investigate the relationship between NF-kappaB and GM-CSF transcription in a chromatin context, we analyzed the chromatin structure of the GM-CSF gene in T cells and the role of NF-kappaB proteins in chromatin remodeling. We show here that chromatin remodeling occurs across a region of the GM-CSF gene between -174 and +24 upon T cell activation, suggesting that remodeling is limited to a single nucleosome encompassing the proximal promoter. Nuclear NF-kappaB levels appear to play a critical role in this process. In addition, using an immobilized template assay we found that the ATPase component of the SWI/SNF chromatin remodeling complex, brg1, is recruited to the GM-CSF proximal promoter in an NF-kappaB-dependent manner in vitro. These results suggest that chromatin remodeling across the GM-CSF promoter in T cells is a result of recruitment of SWI/SNF type remodeling complexes by NF-kappaB proteins binding to the CD28 response region of the promoter.

  8. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Ugel, Stefano; Marigo, Ilaria; Fernandez Gomez, Audry; Mesa, Circe; Geilich, Markus; Winkels, Gregor; Traggiai, Elisabetta; Casati, Anna; Grassi, Fabio; Bronte, Vincenzo

    2010-01-01

    CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSC) contribute to tumor immune evasion by restraining the activity of CD8+ T-cells. Two major MDSC subsets were recently shown to play an equal role in MDSC-induced immune dysfunctions: monocytic- and granulocytic-like. We isolated three fractions of MDSC, i.e. CD11b+/Gr-1high, CD11b+/Gr-1int, and CD11b+/Gr-1low populations that were characterized morphologically, phenotypically and functionally in different tumor models. In vitro assays showed that CD11b+/Gr-1int cell subset, mainly comprising monocytes and myeloid precursors, was always capable to suppress CD8+ T-cell activation, while CD11b+/Gr-1high cells, mostly granulocytes, exerted appreciable suppression only in some tumor models and when present in high numbers. The CD11b+/Gr-1int but not CD11b+/Gr-1high cells were also immunosuppressive in vivo following adoptive transfer. CD11b+/Gr-1low cells retained the immunosuppressive potential in most tumor models. Gene silencing experiments indicated that GM-CSF was necessary to induce preferential expansion of both CD11b+/Gr-1int and CD11b+/Gr-1low subsets in the spleen of tumor-bearing mice and mediate tumor-induced tolerance whereas G-CSF, which preferentially expanded CD11b+/Gr-1high cells, did not create such immunosuppressive environment. GM-CSF also acted on granulocyte-macrophage progenitors in the bone marrow inducing local expansion of CD11b+/Gr-1low cells. These data unveil a hierarchy of immunoregulatory activity among MDSC subsets that is controlled by tumor-released GM-CSF.

  9. Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus

    PubMed Central

    Kang, Hongtao; Qi, Yinglin; Wang, Hualei; Zheng, Xuexing; Gao, Yuwei; Li, Nan; Yang, Songtao; Xia, Xianzhu

    2015-01-01

    Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies. PMID:25768031

  10. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis

    PubMed Central

    Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U

    2016-01-01

    Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217

  11. Slow-dissociation effect of common signaling subunit beta c on IL5 and GM-CSF receptor assembly.

    PubMed

    Ishino, Tetsuya; Harrington, Adrian E; Zaks-Zilberman, Meirav; Scibek, Jeffery J; Chaiken, Irwin

    2008-05-01

    Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.

  12. [A Pichia pastoris with alpha-1, 6-mannosyltransferases deletion and its use in expression of HSA/GM-CSF chimera].

    PubMed

    Wang, Yue; Gong, Xin; Chang, Shao-Hong; Liu, Bo; Song, Miao; Huang, Hai-Hua; Wu, Jun

    2007-09-01

    Yeast is a widely used host for recombinant protein expression. However, glycoproteins derived from yeast contain N-glycan of high mannose type and are usually hyperglycosylated. alpha-1,6-mannosyltransferases gene (och1) encodes the enzyme that initiates the first step of out-chain elongation of high mannose type N-glycan in yeast, which is different from that in human. So, a high efficient method to knockout target gene by two-step recombination was established and was used to delete och1. In the first recombinant, a plasmid with och1::ADE1 and ura3 gene was linearized in the downstream of och1 and inserted to the och1 site of P. pastoris genome, where the upstream and downstream of och1 were duplicated. In the second recombinant, the duplicated fragments of och1 were exchanged and the och1 deletion strains were selected on the plates containing 5-FOA, but no adenine. Then the och1 deletion strain was applied to express an human serum albumin (HSA) granulocyte-macrophage colony-stimulating factor (GM-CSF) chimera. Different with the hyperglycosylated HSA/GM-CSF chimera expressed in wild type P. pastoris, the chimera expressed in the och1 deletion strain, contained smaller N-glycan. The results suggested that the och1 mutant yeast may be more suitable for production of recombinant glycoproteins. And the och 1 deletion strain could be used for further re-engineering to produce complex human glycoproteins.

  13. CD154-stimulated GM-CSF release by vascular smooth muscle cells elicits monocyte activation--role in atherogenesis.

    PubMed

    Stojakovic, Milica; Krzesz, Robert; Wagner, Andreas H; Hecker, Markus

    2007-11-01

    During the early phase of atherosclerosis, T cells and monocytes attach to and migrate through the endothelium into the vessel wall. To provide an insight into the potential cross talk between T cells and smooth muscle cells (SMC) in atherogenesis, we investigated changes in gene expression caused by CD40 ligation in cultured vascular SMC and their consequences for monocyte activation. CD40 expression in human-cultured SMC was induced by 24-h treatment with tumor necrosis factor-alpha plus interferon-gamma followed by 12-h exposure to mouse myeloma cells stably expressing human CD154 or the corresponding control cells. DNA microarray analysis (Affymetrix HG-U952A chip) indicated 33 up-regulated genes in three individual experiments of which 19 encoded pro-inflammatory adhesion molecules, cytokines, chemokines, and receptors. One functional consequence of this change in gene expression was an activation of transformed human promonocytic-1 monocytes exposed to the conditioned medium of the stimulated SMC. Subsequent antibody neutralization experiments identified granulocyte-macrophage colony-stimulating factor (GM-CSF) as the SMC-derived cytokine responsible for this effect. Thus, vascular SMC-like endothelial cells appear to contribute to the maintenance of an inflammatory response in the atherosclerotic vessel wall upon CD40-CD154 co-stimulation. Among 19 up-regulated pro-inflammatory gene products, GM-CSF plays an important role in SMC-dependent monocyte activation.

  14. A comparison of treatment of canine cyclic hematopoiesis with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF interleukin-3, and canine G-CSF.

    PubMed

    Hammond, W P; Boone, T C; Donahue, R E; Souza, L M; Dale, D C

    1990-08-01

    Cyclic hematopoiesis in gray collie dogs is a stem cell disease in which abnormal regulation of cell production in the bone marrow causes cyclic fluctuations of blood cell counts. In vitro studies demonstrated that recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and granulocyte colony stimulating factor (G-CSF) all stimulated increases in colony formation by canine bone marrow progenitor cells. Based on these results, gray collie dogs were then treated with recombinant human (rh) GM-CSF, IL-3, or G-CSF subcutaneously to test the hypothesis that pharmacologic doses of one of these hematopoietic growth factors could alter cyclic production of cells. When recombinant canine G-CSF became available, it was tested over a range of doses. In vivo rhIL-3 had no effect on the recurrent neutropenia but was associated with eosinophilia, rhGM-CSF caused neutrophilia and eosinophilia but cycling of hematopoiesis persisted. However, rhG-CSF caused neutrophilia, prevented the recurrent neutropenia and, in the two animals not developing antibodies to rhG-CSF, obliterated periodic fluctuation of monocyte, eosinophil, reticulocyte, and platelet counts. Recombinant canine G-CSF increased the nadir neutrophil counts and amplitude of fluctuations at low doses (1 micrograms/kg/d) and eliminated all cycling of cell counts at high doses (5 and 10 micrograms/kg/d). These data suggest significant differences in the actions of these growth factors and imply a critical role for G-CSF in the homeostatic regulation of hematopoiesis.

  15. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Plett, Paul Artur; Chua, Hui Lin; Sampson, Carol H; Katz, Barry P; Fam, Christine M; Anderson, Lana J; Cox, George N; Orschell, Christie M

    2014-01-01

    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event.

  16. IL-12 and GM-CSF in DNA/MVA Immunizations against HIV-1 CRF12_BF Nef Induced T-Cell Responses With an Enhanced Magnitude, Breadth and Quality

    PubMed Central

    Rodríguez, Ana María; Falivene, Juliana; Holgado, María Pía; Turk, Gabriela; Gherardi, María Magdalena

    2012-01-01

    In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF) and heterologous (B) Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide. This study indicates that the incorporation of DNA expressing IL-12 in DNA/MVA schemes produced the best results in terms of improvements of T-cell-response key properties such as breadth, cross-reactivity and quality (avidity and pattern of cytokines secreted). These relevant results contribute to the design of strategies aimed to induce T-cell responses against HIV antigens with higher quality

  17. Novel insights in preventing Gram-negative bacterial infection in cirrhotic patients: review on the effects of GM-CSF in maintaining homeostasis of the immune system.

    PubMed

    Xu, Dong; Zhao, Manzhi; Song, Yuhu; Song, Jianxin; Huang, Yuancheng; Wang, Junshuai

    2015-01-01

    Cirrhotic patients with dysfunctional and/or low numbers of leukocytes are often infected with bacteria, especially Gram-negative bacteria, which is characterized by producing lipopolysaccharide (LPS). Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that influences the production, maturation, function, and survival of various immune cells. In this paper, we reviewed not only Toll-like receptors 4 (TLR4) signaling pathway and its immunological effect, but also the specific stimulating function and autocrine performance of GM-CSF on hematopoietic cells, as well as the recent discovery of innate response activator-B cells in protection against microbial sepsis and the direct LPS-TLR4 signaling on hematopoiesis. Thus we concluded that GM-CSF might play important roles in preventing Gram-negative bacterial infections in cirrhotic patients through maintaining immune system functions and homeostasis.

  18. [Transfection of TF-1 cell line with human bcl-2 proto-oncogene provides short-term survival in absence of GM-CSF without changing the phenotype].

    PubMed

    Alvarado-Moreno, J A; Nieves-Ramírez, M E; Cáceres-Cortés, J R

    2000-01-01

    Apoptosis is a process genetically controlled. The produce of the bcl-2 gene, bcl-2, is an anti apoptotic protein that is linked to the external membrane of the mitochondria. To explore the possibility that bcl-2 transfection could change phenotype, response to mitogenic factor, and cell morphology on the TF-1 parental cell line and the bcl-2 transfectant TB-1 or TF-1neo. We look at the expression of CD13, CD34 and c-Kit surface markers by flow cytometry. We have measured cell proliferation in response to GM-CSF and cell survival after GM-CSF withdrawal by the MTT assay on the same cell lines. Apoptosis was evaluated by the apoptotic membrane blebbing set up at different times after serum and survival factor removal or tolerance to cytotoxic compounds from Justicia spicigera. According with our results, ectopic expression of the bcl-2 gene prevented apoptosis without changes in morphology or phenotype in the absence of GM-CSF and serum or the presence of the extract from Justicia spicigera. Consisting with the Bcl-2 function, we found that Bcl-2 did not change response to GM-CSF. Serum deprivation or GM-CSF withdrawal induces cell death at 36 hours in TF-1 and TF-1neo cells, whereas TB-1 cells undergo apoptotic membrane blebbing after 96 hours under the same conditions. Taken together, our data indicate that Bcl-2 is a short term anti apoptotic protein in TB-1 cell line, that does not affect response to GM-CSF neither CD13, CD34 nor c-Kit antigen expression.

  19. Expression of IL-1β, IL-2, IL-10, TNF-β and GM-CSF in peripheral blood leukocytes of rabbits experimentally infected with rabbit haemorrhagic disease virus.

    PubMed

    Trzeciak-Ryczek, Alicja; Tokarz-Deptuła, Beata; Deptuła, Wiesław

    2016-04-15

    Rabbit haemorrhagic disease (RHD) is a highly morbid and mortal viral infection of European rabbits. This disease is one of the main causes of death in wild rabbits, and results in large economic losses in farms of rabbits worldwide. Although the first outbreak of this disease was noted in 1984, the pathogenesis of RHD and mechanisms of RHDV (rabbit haemorrhagic disease virus) pathogenecity have still not been fully elucidated. Recent studies indicate a role of the immune response, especially peripheral blood leukocytes (PBL), in the pathogenesis of this disease. Thus, in the present study we investigated the expression of IL-1β, IL-2, IL-10, TNF-β and GM-CSF genes in PBL of RHDV-infected rabbits. We also compared the expression of genes encoding these cytokines in rabbits with different course of RHDV infection (in animals that died 36h postinfection or survived until 60th h after infection). The study revealed that three (IL-10, TNF-β and GM-CSF) out of five investigated genes encoding cytokines showed increased expression in PBL of RHDV-infected rabbits, and the level of expression depended on the course of RHD. The results indicate the potential role of these cytokines in RHDV infection and their influence on the survival time of infected rabbits.

  20. Peptide vaccination in Montanide adjuvant induces and GM-CSF increases CXCR3 and cutaneous lymphocyte antigen expression by tumor antigen-specific CD8 T cells.

    PubMed

    Clancy-Thompson, Eleanor; King, Laura K; Nunnley, Lenora D; Mullins, Irene M; Slingluff, Craig L; Mullins, David W

    2013-11-01

    T cell infiltration of melanoma is associated with enhanced clinical efficacy and is a desirable endpoint of immunotherapeutic vaccination. Infiltration is regulated, in part, by chemokine receptors and selectin ligands on the surface of tumor-specific lymphocytes. Therefore, we investigated the expression of two homing molecules--CXCR3 and CLA - on vaccine-induced CD8 T cells, in the context of a clinical trial of a melanoma-specific peptide vaccine. Both CXCR3 and CLA have been associated with T cell infiltration of melanoma. We demonstrate that a single subcutaneous/intradermal administration of peptide vaccine in Montanide adjuvant induces tumor-specific CD8 T cells that are predominantly positive for CXCR3, with a subpopulation of CXCR3(+)CLA(+) cells. Addition of GM-CSF significantly enhances CXCR3 expression and increases the proportion of CLA-expressing cells. Concurrent with CXCR3 and CLA expression, vaccine-induced CD8 cells express high levels of Tbet, IFN-γ, and IL-12Rβ1. Collectively, these studies demonstrate that peptide vaccination in adjuvant induces CD8 T cells with a phenotype that may support infiltration of melanoma.

  1. CD80 (B7-1) expression on human acute myeloid leukaemic cells cultured with GM-CSF, IL-3 and IL-6.

    PubMed

    Hicks, C; Keoshkerian, E; Gaudry, L; Lindeman, R

    2001-06-01

    Acute myeloid leukaemia (AML) blasts rarely express the B7 family of co-stimulatory molecules and do not elicit a clinically significant autologous T-lymphocyte anti-tumour response. The aim of this study was the in vitro modification of AML blasts to an antigen-presenting cell phenotype characterised by upregulated expression of the co-stimulatory molecule CD80 (B7-1). Circulating AML cells were induced to undergo partial differentiation in culture with the cytokines IL-3, IL-6 and GM-CSF; they exhibited variable upregulation of CD80 and continued to express MHC class I and II. These cells remained viable to day 20, in contrast with normal peripheral blood mononuclear cells (PBMNC), which did not survive under the culture conditions. In contrast to unmanipulated blasts, cultured leukaemic cells expressed B7-1. Where initial cytogenetic abnormalities were present, they were also seen in flow-sorted CD80-expressing cells after culture in cytokines, indicating their malignant origin. The immunogenic potential of these cultured cells was highlighted by allogeneic and autologous mixed lymphocyte reactions, in which both differentiated, but not unmanipulated, blasts produced expansion of T-lymphocyte numbers. Autologous cytotoxic T-lymphocyte (CTL) assays indicated specific killing of B7-1+ leukaemic cells, which was greatly enhanced after priming of the T-lymphocytes by B7-1+ blasts prior to the CTL assay, then enabling the CTL to lyse both unmanipulated and differentiated leukaemic cells.

  2. Combination of SCF, IL-6, IL-3, and GM-CSF increases the mitotic index in short term bone marrow cultures from acute promyelocytic leukemia (APL) patients.

    PubMed

    Williams, B; Allan, D J

    1996-10-01

    Acute promyelocytic leukemia (APL) is characterized cytogenetically by the presence of a reciprocal translocation between chromosomes 15 and 17 [t(15;17)(q22-q24;q11-q21)] in the bone marrow cells in the majority of patients. Cytogenetic evaluation of bone marrow cultures from patients with APL is often technically difficult, due to frequent difficult marrow aspiration and the suboptimal quality of cytogenetic preparations. This has important implications for the cytogenetic detection of residual disease. This study examined the proliferative ability of the recombinant human growth factors-stem cell factor (SCF), interleukin-6 (IL-6), interleukin-3 (IL-3), and granulocyte macrophage-colony stimulating factor (GM-CSF)-to determine if they would provide a consistent improvement over the standard cytogenetic culturing techniques in terms of mitotic index (MI). In all cases, the MI of the growth factor stimulated cultures showed a considerably higher (3.5-198 fold) and statistically significant (p < 0.01) increase compared to the unstimulated cultures. We conclude that the use of recombinant human growth factors is potentially an effective way of increasing the MI in bone marrow cultures from APL patients for the purposes of diagnosis and residual disease detection.

  3. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  4. Intratumoural GM-CSF microspheres and CTLA-4 blockade enhance the antitumour immunity induced by thermal ablation in a subcutaneous murine hepatoma model.

    PubMed

    Chen, Zubing; Shen, Shiqiang; Peng, Baogang; Tao, Jianpin

    2009-08-01

    We evaluated the effect of a new antitumour immunity regimen that included microwave ablation, intratumoural microspheres encapsulating granulocyte-macrophage colony stimulating factor (GM-CSF), and blockade of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). C57BL6 mice with an established subcutaneous Hepa 1-6 hepatoma underwent microwave ablation, followed by intratumoural injection of GM-CSF microspheres, and intraperitoneal injection of anti-CTLA-4 antibodies. The therapeutic effects were evaluated by tumour growth, survival analysis, and cytotoxicity of T lymphocytes against Hepa 1-6. The co-administration of microwave thermal ablation, GM-CSF microspheres, and anti-CTLA-4 rejected tumour rechallenge in 90% of treated mice in a subcutaneous murine Hepa 1-6 model, and cured established distant tumour in 50% of the treated mice. This antitumour immune response was tumour-specific and mediated by natural killer (NK), CD4+, and CD8+ T cells. Microwave ablation, followed by intratumoural GM-CSF microspheres, and anti-CTLA-4 antibodies results in the local eradication of tumours, rejection of tumours following rechallenge, and cures established distant tumours, suggesting that this is a promising regimen and one that is readily applicable in the clinic.

  5. Assaying the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a mitogen of immature cells in fetal blood cultures.

    PubMed

    Costa, D; Borrell, A; Jou, J M; Besón, I; Soler, A; Carrió, A; Margarit, E; Caballín, R; Ballesta, F; Fortuny, A

    1999-01-01

    Based on the presence of immature cells in fetal blood, and in an attempt to shorten the cytogenetic reporting time, three simultaneous one-day culture regimes were established in 23 fetal blood samples: (a) the standard phytohemagglutinin (PHA)-stimulated lymphocytes culture, (b) a culture using the granulocyte-macrophage colony-stimulating factor (GM-CSF) as an alternative mitogen, and (c) an unstimulated culture. Diagnostic success rates achieved by these three methods were as follows: 43 per cent (95 per cent CI: 23-64) (GM-CSF), 30 per cent (95 per cent CI: 12-49) (PHA) and 9 per cent (unstimulated). These three regimes were also assayed in three-day cultures giving 100 per cent diagnostic success rate for the PHA and GM-CSF, and 62 per cent (95 per cent CI: 41-83) for the unstimulated. A moderate correlation was found between the initial concentration of cultured erythroblasts and the metaphase count in one-day GM-CSF-stimulated (r=0.43, p=0.01) and unstimulated (r=0.35, p=0.05) cultures, suggesting that erythroblasts may be in part responsible for the mitotic index observed in these two regime cultures. In conclusion, our experience suggests that immature cells in fetal blood may be successfully cultured for diagnostic purposes.

  6. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics.

    PubMed

    N'diaye, Marie; Warnecke, Andreas; Flytzani, Sevasti; Abdelmagid, Nada; Ruhrmann, Sabrina; Olsson, Tomas; Jagodic, Maja; Harris, Robert A; Guerreiro-Cacais, Andre Ortlieb

    2016-03-01

    Dendritic cells are professional APCs that play a central role in the initiation of immune responses. The limited ex vivo availability of dendritic cells inspires the widespread use of bone marrow-derived dendritic cells as an alternative in research. However, the functional characteristics of bone marrow-derived dendritic cells are incompletely understood. Therefore, we compared functional and phenotypic characteristics of rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3 ligand bone marrow-derived dendritic cells. A comparison of surface markers revealed that FLT3 ligand-bone marrow-derived dendritic cells expressed signal regulatory protein α, CD103, and CD4 and baseline levels of MHC class II, CD40, and CD86, which were highly up-regulated upon stimulation. Conversely, GM-CSF/IL-4-bone marrow-derived dendritic cells constitutively expressed signal regulatory protein α, CD11c, and CD11b but only mildly up-regulated MHC class II, CD40, or CD86 following stimulation. Expression of dendritic cell-associated core transcripts was restricted to FLT3 ligand-bone marrow-derived dendritic cells . GM-CSF/IL-4-bone marrow-derived dendritic cells were superior at phagocytosis but were outperformed by FLT3 ligand-bone marrow-derived dendritic cells at antigen presentation and T cell stimulation in vitro. Stimulated GM-CSF/IL-4-bone marrow-derived dendritic cells secreted more TNF, CCL5, CCL20, and NO, whereas FLT3 ligand-bone marrow-derived dendritic cells secreted more IL-6 and IL-12. Finally, whereas GM-CSF/IL-4-bone marrow-derived dendritic cell culture supernatants added to resting T cell cultures promoted forkhead box p3(+) regulatory T cell populations, FLT3 ligand-bone marrow-derived dendritic cell culture supernatants drove Th17 differentiation. We conclude that rat GM-CSF/IL-4-bone marrow-derived dendritic cells and FLT3 ligand-bone marrow-derived dendritic cells are functionally distinct. Our data support the current rationale that FLT3

  7. Multi-response model for rheumatoid arthritis based on delay differential equations in collagen-induced arthritic mice treated with an anti-GM-CSF antibody.

    PubMed

    Koch, Gilbert; Wagner, Thomas; Plater-Zyberk, Christine; Lahu, Gezim; Schropp, Johannes

    2012-02-01

    Collagen-induced arthritis (CIA) in mice is an experimental model for rheumatoid arthritis, a human chronic inflammatory destructive disease. The therapeutic effect of neutralizing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by an antibody was examined in the mouse disease in a view of deriving a pharmacokinetic/pharmacodynamic (PKPD) model. In CIA mice the development of disease is measured by a total arthritic score (TAS) and an ankylosis score (AKS). We present a multi-response PKPD model which describes the time course of the unperturbed and perturbed TAS and AKS. The antibody acts directly on GM-CSF by binding to it. Therefore, a compartment for the cytokine GM-CSF is an essential component of the mathematical model. This compartment drives the disease development in the PKPD model. Different known properties of arthritis development in the CIA model are included in the PKPD model. Firstly, the inflammation, driven by GM-CSF, dominates at the beginning of the disease and decreases after some time. Secondly, a destructive (ankylosis) part evolves in the TAS that is delayed in time. In order to model these two properties a delay differential equation was used. The PKPD model was applied to different experiments with doses ranging from 0.1 to 100 mg/kg. The influence of the drug was modeled by a non-linear approach. The final mathematical model consists of three differential equations representing the compartments for GM-CSF, inflammation and destruction. Our mathematical model described well all available dosing schedules by a simultaneous fit. We also present an equivalent and easy reformulation as ordinary differential equation which grants the use of standard PKPD software.

  8. Effect of monoclonal antibody 17-1A and GM-CSF in patients with advanced colorectal carcinoma--long-lasting, complete remissions can be induced.

    PubMed

    Ragnhammar, P; Fagerberg, J; Frödin, J E; Hjelm, A L; Lindemalm, C; Magnusson, I; Masucci, G; Mellstedt, H

    1993-03-12

    Antibody-dependent cellular cytotoxicity (ADCC) is considered to be one of the effector functions of unconjugated monoclonal antibodies (MAbs) in tumor therapy. The antitumor activity of MAbs might therefore be augmented if the cytotoxic capability of the effector cells could be increased. In an in vitro system, the killing capacity of MAb was significantly enhanced by pre-treatment of the effector cells with granulocyte-macrophage colony-stimulating factor (GM-CSF). Based on these findings, the therapeutic effect of the combination of mouse MAb 17-1A (IgG2a) and GM-CSF was evaluated in 20 patients with metastatic colorectal carcinoma (CRC). The patients received GM-CSF for 10 days and a single i.v. infusion of MAb 17-1A on day 3 of the cycle. Four cycles were given at 1-monthly intervals. There was a continuous increase in blood monocytes and lymphocytes during all 4 GM-CSF cycles. Neutrophils and eosinophils were also significantly augmented but in a biphasic manner and the cell counts on day 10 of cycle IV were significantly lower than in cycles I and II. GM-CSF-related side-effects were of no major clinical importance. During the third cycle, an immediate-type allergic reaction (ITAR) against MAb 17-1A occurred in most patients, necessitating reduction of the MAb dose as well as of the infusion rate. Two patients achieved complete remission. One patient had a minor response, and 3 other patients were considered to have stable disease > 3 months.

  9. DT388-GM-CSF, a novel fusion toxin consisting of a truncated diphtheria toxin fused to human granulocyte-macrophage colony-stimulating factor, prolongs host survival in a SCID mouse model of acute myeloid leukemia.

    PubMed

    Hall, P D; Willingham, M C; Kreitman, R J; Frankel, A E

    1999-04-01

    Despite significant advances in the treatment of acute myeloid leukemia (AML), the majority of patients will succumb to drug-resistant AML. To overcome this resistance, we have developed a novel fusion toxin consisting of the catalytic and translocation subunits of diphtheria toxin (DT388) linked to human granulocyte-macrophage colony-stimulating factor (GM-CSF). In vitro, DT388-GM-CSF demonstrated significant activity against numerous AML cell lines and fresh AML blasts. To determine its in vivo efficacy, we developed an in vivo model of human AML in severe combined immunodeficiency (SCID) mice injected intravenously with 1 x 10(7) HL-60 cells (AML-M2 cell line). The SCID mice developed abdominal masses, infiltration of the liver and bone marrow, and peripheral blasts with a median survival of 42.5 days. We tested DT388-GM-CSF, ara-C, human GM-CSF, and DAB389IL-2, which were injected intraperitoneally on days 2-6 in this model. DT3-GM-CSF significantly improved survival of the SCID mice over Ara-C, DAB389IL-2, or control (P < 0.001). DT388-GM-CSF-treated mice who developed leukemia exhibited no difference in the number of GM-CSF receptors (P = 0.39), ligand affinity (P = 0.77), or sensitivity (P = 0.56) to DT388-GM-CSF as compared to the controls. Frank leukemia in DT388-GM-CSF-treated mice may be due to incomplete penetration of drug into tissues rather than cellular resistance. DT388-GM-CSF is an active therapeutic agent in our SCID mouse model of AML with a unique mechanism of action and differing toxicities than current cytotoxic agents.

  10. Intermittent Chemotherapy as a Platform for Testing Novel Agents in Patients With Metastatic Castration-Resistant Prostate Cancer: A Department of Defense Prostate Cancer Clinical Trials Consortium Randomized Phase II Trial of Intermittent Docetaxel With Prednisone With or Without Maintenance GM-CSF.

    PubMed

    Aggarwal, Rahul R; Beer, Tomasz M; Weinberg, Vivian K; Higano, Celestia; Taplin, Mary-Ellen; Ryan, Charles J; Lin, Amy M; Alumkal, Joshi; Graff, Julie N; Nordquist, Luke T; Herrera, Isheen; Small, Eric J

    2015-06-01

    Immunotherapy with granulocyte-macrophage colony-stimulating factor (GM-CSF), an agent that previously demonstrated antitumor activity, was evaluated within an intermittent chemotherapy framework of docetaxel with prednisone (D+P) in metastatic castration-resistant prostate cancer (mCRPC). mCRPC patients with ≥ 50% prostate-specific antigen (PSA) decline after 6 cycles of D+P were randomized to either GM-CSF or observation (Obs). At disease progression (PD), D+P was reinitiated for 6 cycles followed by the same "off chemotherapy" regimen in patients eligible for chemotherapy interruption. The sequence was repeated until PD during chemotherapy, lack of PSA response to chemotherapy, or unacceptable toxicity. The primary end point was time to chemotherapy resistance (TTCR). Of 125 patients enrolled, 52 (42%) experienced ≥ 50% PSA decline on induction D+P and were randomized to GM-CSF (n = 27) or Obs (n = 25). The median time to PD was 3.3 months (95% confidence interval [CI], 2.4-3.5) and 1.5 months (95% CI, 1.5-2.4) during the initial course of GM-CSF and Obs, respectively. Twelve of 26 (46%) patients responded to a second course of D+P. Eleven randomized patients (21%) experienced PD during chemotherapy, precluding accurate assessment of TTCR. The remaining 41 randomized patients discontinued study for lack of PSA response to chemotherapy (n = 8), patient choice to not restart chemotherapy with PSA PD (n = 13), toxicity (n = 7), or study withdrawal (n = 13). Conducting a prospective study in mCRPC with maintenance immunotherapy within the framework of intermittent chemotherapy was feasible. The use of PSA instead of radiographic end points limited the number of evaluable patients. This study provides important insight into designing contemporary intermittent chemotherapy trials with maintenance immunotherapy in patients with advanced prostate cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells.

    PubMed

    Firas, Jaber; Liu, Xiaodong; Nefzger, Christian M; Polo, Jose M

    2014-06-01

    Induced pluripotent stem cells (iPSCs) are characterised by their ability to differentiate into any cell type of the body. Accordingly, iPSCs possess immense potential for disease modelling, pharmaceutical screening and autologous cell therapies. The most common source of iPSCs derivation is skin fibroblasts. However, from a clinical point of view, skin fibroblasts may not be ideal, as invasive procedures such as skin biopsies are required for their extraction. Moreover, fibroblasts are highly heterogeneous with a poorly defined developmental pathway, which makes studying reprogramming mechanistics difficult. Granulocytes, on the other hand, are easily obtainable, their developmental pathway has been extensively studied and fluorescence activated cell sorting allows for the isolation of these cells at high purity; thus iPSCs derivation from granulocytes could provide an alternative to fibroblast-derived iPSCs. Previous studies succeeded in producing iPSC colonies from mouse granulocytes but with the use of a mitotically inactivated feeder layer, restricting their use for studying reprogramming mechanistics. As granulocytes display poor survival under culture conditions, we investigated the influence of haematopoietic cytokines to stabilise this cell type in vitro and allow for reprogramming in the absence of a feeder layer. Our results show that treatment with MEF-conditioned media and/or initial exposure to GM-CSF allows for reprogramming of granulocytes under feeder-free conditions. This work can serve as a basis for future work aimed at dissecting the reprogramming mechanism as well as obtaining large numbers of iPSCs from a clinically relevant cell source.

  12. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients.

    PubMed

    Pilla, Lorenzo; Patuzzo, Roberto; Rivoltini, Licia; Maio, Michele; Pennacchioli, Elisabetta; Lamaj, Elda; Maurichi, Andrea; Massarut, Samuele; Marchianò, Alfonso; Santantonio, Cristina; Tosi, Diego; Arienti, Flavio; Cova, Agata; Sovena, Gloria; Piris, Adriano; Nonaka, Daisuke; Bersani, Ilaria; Di Florio, Annabella; Luigi, Mariani; Srivastava, Pramod K; Hoos, Axel; Santinami, Mario; Parmiani, Giorgio

    2006-08-01

    The aim of this study was to determine the immunogenicity and antitumor activity of autologous, tumor-derived heat shock protein gp96-peptide complex vaccine (HSPPC-96; Oncophage given with GM-CSF and IFN-alpha in pre-treated metastatic (AJCC stage IV) melanoma patients. Patients underwent surgical resection of metastatic lesions for HSPPC-96 production. HSPPC-96 was administered subcutaneously (s.c.) in four weekly intervals (first cycle). Patients with more available vaccine and absence of progressive disease received four additional injections in 2-week intervals (second cycle) or more. GM-CSF was given s.c. at the same site at days -1, 0 and +1, while IFN-alpha (3 MU) was administered s.c. at a different site at days +4 and +6. Antigen-specific anti-melanoma T and NK lymphocyte response was assessed by enzyme-linked immunospot assay on peripheral blood mononuclear cells obtained before and after vaccination. Thirty-eight patients were enrolled, 20 received at least four injections (one cycle) of HSPPC-96 and were considered assessable. Toxicity was mild and most treatment-related adverse events were local erythema and induration at the injection site. Patients receiving at least four injections of HSPPC-96 were considered evaluable for clinical response: of the 18 patients with measurable disease post surgery, 11 showed stable disease (SD). The ELISPOT assay revealed an increased class I HLA-restricted T and NK cell-mediated post-vaccination response in 5 out of 17 and 12 out of the 18 patients tested, respectively. Four of the five class I HLA-restricted T cell responses fall in the group of SD patients. Vaccination with autologous HSPPC-96 together with GM-CSF and IFN-alpha is feasible and accompanied by mild local and systemic toxicity. Both tumor-specific T cell-mediated and NK cell responses were generated in a proportion of patients. Clinical activity was limited to SD. However, both immunological and clinical responses were not improved as compared with

  13. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the Hematopoietic Syndrome of the Acute Radiation Syndrome

    PubMed Central

    Plett, P. Artur; Chua, Hui Lin; Sampson, Carol H.; Katz, Barry P.; Fam, Christine M.; Anderson, Lana J.; Cox, George; Orschell, Christie M.

    2013-01-01

    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, utilizing our previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated (PEG) HGF developed by Bolder Biotechnology (BBT) were investigated. The PEGylated-HGF possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76–8.72 Gy, 137Cs, 0.62–1.02 Gy min−1) and were treated with various dosing regimens of 0.1, 0.3 and 1.0 mg kg−1 of analogs of humanPEG-G-CSF, murinePEG-GM-CSF, or humanPEG-IL-11. Mice were administered one of the HGF analogs at 24–28hr post irradiation, and, in some studies, additional doses given every other day (beginning with the 24–28hr dose) for a total of 3 or 9 doses. 30d survival was significantly increased with only one dose of 0.3mg kg−1 of PEG-G-CSF and PEG-IL-11, or three doses of 0.3mg kg−1 of PEG-GM-CSF (p≤0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p≤0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT’s PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event. PMID:24276546

  14. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    PubMed Central

    Miguel, Antonio; Sendra, Luis; Noé, Verónica; Ciudad, Carles J; Dasí, Francisco; Hervas, David; Herrero, María José; Aliño, Salvador F

    2017-01-01

    The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg), which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2′-O-methyl phosphorotioate-modified oligonucleotides (2′-OMe-PS-ASOs) and polypurine reverse Hoogsteen hairpins (PPRHs), were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) and were intraperitoneally treated with CTLA4 and Foxp3 2′-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following results were obtained: 1) only 2′-OMe-PS-ASO reached gene silencing efficacy “in vitro”; 2) an improved survival effect was achieved combining both therapeutic vaccine and Foxp3 antisense or CTLA4 antisense oligonucleotides (50% and 20%, respectively); 3) The blood CD4+CD25+Foxp3+ (Treg) and CD4+CTLA4+ cell counts were higher in mice that developed tumor on the day of sacrifice. Our data showed that tumor cell vaccine combined with Foxp3 or CTLA4 gene silencing can increase the efficacy of therapeutic antitumor vaccination. PMID:28176947

  15. GM-CSF-neuroantigen fusion proteins reverse experimental autoimmune encephalomyelitis and mediate tolerogenic activity in adjuvant-primed environments: association with inflammation-dependent, inhibitory antigen presentation2

    PubMed Central

    Islam, S.M. Touhidul; Curtis, Alan D.; Taslim, Najla; Wilkinson, Daniel S.; Mannie, Mark D.

    2014-01-01

    Single-chain fusion proteins comprised of GM-CSF and neuroantigen (NAg) are potent, NAg-specific inhibitors of experimental autoimmune encephalomyelitis (EAE). An important question was whether GMCSF-NAg tolerogenic vaccines retained inhibitory activity within inflammatory environments or were contingent upon steady-state conditions. A GMCSF-MOG fusion protein reversed established paralytic disease in both passive and active models of EAE in C57BL/6 mice. The fusion protein also reversed EAE in CD4-deficient and B cell-deficient mice. Notably, GMCSF-MOG inhibited EAE when co-injected adjacent to the MOG35-55/CFA emulsion. GMCSF-MOG also retained dominant inhibitory activity when directly emulsified with MOG35-55 in the CFA emulsion in both C57BL/6 or B cell-deficient models of EAE. Likewise, when combined with PLP139-151 in CFA, GMCSF-PLP inhibited EAE in SJL mice. When deliberately emulsified in CFA with the NAg, GMCSF-NAg inhibited EAE even though NAg was present at more than a 30-fold molar excess. In vitro studies revealed that the GMCSF domain of GMCSF-MOG stimulated growth and differentiation of inflammatory dendritic cells (DC) and simultaneously targeted the MOG35-55 domain for enhanced presentation by these DC. These inflammatory DC presented MOG35-55 to MOG-specific T cells by an inhibitory mechanism that was mediated in part by IFN-γ signaling and NO production. In conclusion, GMCSF-NAg was tolerogenic in CFA-primed pro-inflammatory environments by a mechanism associated with targeted antigen presentation by inflammatory DC and an inhibitory IFN-γ/ NO pathway. The inhibitory activity of GMCSF-NAg in CFA-primed lymphatics distinguishes GMCSF-NAg fusion proteins as a unique class of inflammation-dependent tolerogens that are mechanistically distinct from naked peptide or protein-based tolerogens. PMID:25049359

  16. Local delivery of CpG-B and GM-CSF induces concerted activation of effector and regulatory T cells in the human melanoma sentinel lymph node.

    PubMed

    van den Hout, Mari F C M; Sluijter, Berbel J R; Santegoets, Saskia J A M; van Leeuwen, Paul A M; van den Tol, M Petrousjka; van den Eertwegh, Alfons J M; Scheper, Rik J; de Gruijl, Tanja D

    2016-04-01

    Impaired immune effector functions in the melanoma sentinel lymph node (SLN) may allow for early metastatic events. In an effort to determine the optimal way to strengthen immune defenses, 28 clinical stage I-II melanoma patients were randomized in a 3-arm Phase II study to receive, prior to excision and sampling of the SLN, i.d. injections of saline or low-dose CpG-B (CpG), alone or combined with GM-CSF (GM), around the melanoma excision site. We previously described the combined administration of these DC-targeting agents to result in activation and recruitment of potentially cross-presenting BDCA3(+) DCs to the SLN. In this report we describe the effects on effector and regulatory T and NK cell subsets. Local low-dose CpG administration resulted in lower CD4/CD8 ratios, Th1 skewing, increased frequencies of melanoma-specific CD8(+) T cells and possible recruitment of effector NK cells, irrespective of GM co-administration. These immune-potentiating effects were counterbalanced by increased IL-10 production by T cells and significantly higher levels of FoxP3 and CTLA4 in regulatory T cells (Tregs) with correspondingly higher suppressive activity in the SLN. Notably, CpG ± GM-administered patients showed significantly lower numbers of SLN metastases (saline: 4/9, CpG + GM: 1/9, CpG: 0/10, p = 0.04). These findings indicate that i.d. delivery of low-dose CpG ± GM potentially arms the SLN of early-stage melanoma patients against metastatic spread, but that antitumor efficacy may be further boosted by counteracting the collateral activation of Tregs.

  17. Fusion protein of mutant B7-DC and Fc enhances the antitumor immune effect of GM-CSF-secreting whole-cell vaccine.

    PubMed

    Kojima, Masatsugu; Murata, Satoshi; Mekata, Eiji; Takebayashi, Katsushi; Jaffee, Elizabeth M; Tani, Tohru

    2014-04-01

    B7-DC [also known as programmed death ligand 2 (PD-L2)] is a costimulatory molecule expressed predominantly on dendritic cells (DCs) and macrophages. In addition to its coinhibitory receptor, programmed death receptor 1 (PD-1), evidence suggests that B7-DC interacts with an unidentified costimulatory receptor on T cells. B7-DC mutants with selective binding capacity for the costimulatory receptor may be effective in stimulating antitumor immune responses, while avoiding the inhibitory effects of PD-1. In this study, we concomitantly administered a GM-CSF-secreting whole-cell vaccine together with a fusion protein of mutant B7-DC and Fc portion (mB7-DC-Fc), which binds selectively to the costimulatory receptor. This lead to an increased number of tumor antigen-specific cytotoxic T lymphocytes both in the spleen and at the tumor site and complete elimination of established tumors in vivo. In addition, mB7-DC-Fc increased IFN-γ and IL-2 production and decreased IL-4 and IL-10 production in vitro, indicating that mB7-DC-Fc tips the Th1/Th2 balance toward Th1 dominance, which is more favorable for antitumor immunity. Furthermore, mB7-DC-Fc decreased the PD-1(+) proportion of CD8(+) T cells in vitro and tumor-infiltrating CD8(+) T cells in vivo, suggesting that mB7-DC-Fc may maintain tumor-infiltrating CD8(+) T cells in a nonexhausted state. In conclusion, mB7-DC-Fc administration during the T-cell priming phase enhances antitumor effects of vaccine by generating more tumor antigen-specific cytotoxic T lymphocytes and leading to their accumulation at the tumor site. We suggest that this combination approach may be a promising strategy for antitumor immunotherapy.

  18. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans.

    PubMed

    Bramante, Simona; Kaufmann, Johanna K; Veckman, Ville; Liikanen, Ilkka; Nettelbeck, Dirk M; Hemminki, Otto; Vassilev, Lotta; Cerullo, Vincenzo; Oksanen, Minna; Heiskanen, Raita; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Matikainen, Sampsa; Vähä-Koskela, Markus; Koski, Anniina; Hemminki, Akseli

    2015-10-01

    Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma.

  19. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    PubMed Central

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  20. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage.

    PubMed

    Ushach, Irina; Zlotnik, Albert

    2016-09-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. © Society for Leukocyte Biology.

  1. Addition of GM-CSF Does Not Improve Response to Early Treatment of High Risk Chronic Lymphocytic Leukemia with Alemtuzumab and Rituximab

    PubMed Central

    Zent, Clive S.; Wu, Wenting; Bowen, Deborah A.; Hanson, Curtis A.; Pettinger, Adam M.; Shanafelt, Tait D.; Kay, Neil E.; Leis, Jose F.; Call, Timothy G.

    2015-01-01

    Thirty-three previously untreated patients with high risk CLL were treated before meeting standard criteria with alemtuzumab and rituximab. GM-CSF was added to the regimen to determine if it would improve treatment efficacy without increasing toxicity. High risk was defined as at least one of the following: 17p13-; 11q22.3-; unmutated IGHV (or use of VH3-21) together with elevated expression of ZAP-70 and/or CD38. Treatment was subcutaneous GM-CSF 250μg Monday-Wednesday-Friday for 6 weeks from day 1, subcutaneous alemtuzumab 3mg-10mg-30mg from day 3 and then 30 mg Monday-Wednesday-Friday for 4 weeks, and intravenous rituximab (375 mg/m2/week) for 4 weeks from day 8. Patients received standard supportive care and were monitored weekly for CMV reactivation. Using standard criteria, 31 (94%) patients responded to treatment with 9 (27%) complete responses (one with persistent cytopenia) and 9 (27%) nodular partial responses. Median progression free survival was 13.0 months and time to next treatment was 33.5 months. No patient died during treatment, seven (21%) had grade 3-4 toxicities attributable to treatment, and 10 (30%) had CMV viremia. Addition of GM-CSF to therapy with alemtuzumab and rituximab decreased treatment efficacy and increased the rate of CMV reactivation compared to a historical control. PMID:22853816

  2. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus.

    PubMed

    Kanerva, Anna; Nokisalmi, Petri; Diaconu, Iulia; Koski, Anniina; Cerullo, Vincenzo; Liikanen, Ilkka; Tähtinen, Siri; Oksanen, Minna; Heiskanen, Raita; Pesonen, Saila; Joensuu, Timo; Alanko, Tuomo; Partanen, Kaarina; Laasonen, Leena; Kairemo, Kalevi; Pesonen, Sari; Kangasniemi, Lotta; Hemminki, Akseli

    2013-05-15

    Multiple injections of oncolytic adenovirus could enhance immunologic response. In the first part of this article, the focus was on immunologic aspects. Sixty patients previously naïve to oncolytic virus and who had white blood cells available were treated. Thirty-nine of 60 were assessed after a single virus administration, whereas 21 of 60 received a "serial treatment" consisting of three injections within 10 weeks. In the second part, we focused on 115 patients treated with a granulocyte macrophage colony-stimulating factor (GM-CSF)-coding capsid chimeric adenovirus, CGTG-102. Following serial treatment, both increase and decrease in antitumor T cells in blood were seen more frequently, findings which are compatible with induction of T-cell immunity and trafficking of T cells to tumors, respectively. Safety was good in both groups. In 115 patients treated with CGTG-102 (Ad5/3-D24-GMCSF), median overall survival was 111 days following single and 277 days after serial treatment in nonrandomized comparison. Switching the virus capsid for avoiding neutralizing antibodies in a serial treatment featuring three different viruses did not impact safety or efficacy. A correlation between antiviral and antitumor T cells was seen (P = 0.001), suggesting that viral oncolysis can result in epitope spreading and breaking of tumor-associated immunologic tolerance. Alternatively, some patients may be more susceptible to induction of T-cell immunity and/or trafficking. These results provide the first human data linking antiviral immunity with antitumor immunity, implying that oncolytic viruses could have an important role in cancer immunotherapy. ©2013 AACR

  3. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans.

    PubMed

    Bramante, Simona; Koski, Anniina; Kipar, Anja; Diaconu, Iulia; Liikanen, Ilkka; Hemminki, Otto; Vassilev, Lotta; Parviainen, Suvi; Cerullo, Vincenzo; Pesonen, Saila K; Oksanen, Minna; Heiskanen, Raita; Rouvinen-Lagerström, Noora; Merisalo-Soikkeli, Maiju; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2014-08-01

    Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing.

  4. Evaluation of a DNA vaccine candidate expressing prM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) in immunogenicity and protection.

    PubMed

    Zheng, Qun; Fan, Dongying; Gao, Na; Chen, Hui; Wang, Juan; Ming, Ying; Li, Jieqiong; An, Jing

    2011-01-17

    Dengue is one of the most important mosquito-borne viral diseases. In past years, although considerable effort has been put into the development of a vaccine, there is currently no licensed dengue vaccine. In this study, we constructed DNA vaccines that carried the prM-E-NS1 genes of dengue virus serotype 1 (DV1) with or without the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, an attractive DNA vaccine adjuvant. Immunization with the plasmid pCAG-DV1/E/NS1, which expresses viral prM-E-NS1, or the bicistronic plasmid pCAG-DV1-GM, which co-expresses viral prM-E-NS1 and GM-CSF, resulted in long-term IgG response, high levels of splenocyte-secreted interferon-γ and interleukin-2, strong cytotoxic T lymphocyte activity and sufficient protection in the DV1-challenged mice. This suggested that both humoral and cellular immune responses were induced by the immunizations and that they played important roles in protection against the DV1 challenge. Interestingly, the magnitude, quality and protective capacity of the immune responses induced by immunization with pCAG-DV1/E/NS1 or pCAG-DV1-GM seemed stronger than those induced by pCAG-DV1/E (expressing viral prM-E alone). Taken together, we demonstrated that prM/E plus NS1 would be a suitable solution for the development of a DNA vaccine against DV.

  5. Differential Expression of IL-17, 22 and 23 in the Progression of Colorectal Cancer in Patients with K-ras Mutation: Ras Signal Inhibition and Crosstalk with GM-CSF and IFN-γ

    PubMed Central

    Petanidis, Savvas; Anestakis, Doxakis; Argyraki, Maria; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios

    2013-01-01

    Recent studies have suggested that aberrant K-ras signaling is responsible for triggering immunological responses and inflammation-driven tumorigenesis. Interleukins IL-17, IL-22, and IL-23 have been reported in various types of malignancies, but the exact mechanistic role of these molecules remains to be elucidated. Given the role of K-ras and the involvement of interleukins in colorectal tumorigenesis, research efforts are reported for the first time, showing that differentially expressed interleukin IL-17, IL-22, and IL-23 levels are associated with K-ras in a stage-specific fashion along colorectal cancer progression. Specifically, a) the effect of K-ras signaling was investigated in the overall expression of interleukins in patients with colorectal cancer and healthy controls, and b) an association was established between mutant K-ras and cytokines GM-CSF and IFN-γ. The results indicate that specific interleukins are differentially expressed in K-ras positive patients and the use of K-ras inhibitor Manumycin A decreases both interleukin levels and apoptosis in Caco-2 cells by inhibiting cell viability. Finally, inflammation-driven GM-CSF and IFN-γ levels are modulated through interleukin expression in tumor patients, with interleukin expression in the intestinal lumen and cancerous tissue mediated by aberrant K-ras signaling. Collectively, the findings a) indicate that interleukin expression is influenced by ras signaling and specific interleukins play an oncogenic promoter role in colorectal cancer, highlighting the molecular link between inflammation and tumorigenesis, and b) accentuate the interwoven molecular correlations as leads to new therapeutic approaches in the future. PMID:24040001

  6. TNF-alpha regulates GM-CSF-, IL-3- or M-CSF-induced Fc epsilon RII/CD23 gene expression and soluble Fc epsilon RII release by human monocytes.

    PubMed

    Hashimoto, S; Gon, Y; Hayashi, S; Tomita, Y; Yodoi, J; Horie, T

    1997-03-01

    The authors examined the regulatory effects of tumour necrosis factor-alpha (TNF-alpha) on granulocyte macrophage colony stimulating factor (GM-CSF)-, interleukin-3 (IL-3)- or macrophage colony stimulating factor (M-CSF)-induced gene expression of the low affinity receptor for IgE (Fc epsilon RII) on human monocytes and GM-CSF-, IL-3- or M-CSF-induced soluble Fc epsilon RII (sFc epsilon RII) release from monocytes. The expression of GM-CSF-, IL-3- or M-CSF-induced Fc epsilon RII on the surface of monocytes was reduced by TNF-alpha. The present analysis was designed to examine whether or not TNF-alpha could suppress GM-CSF-, IL-3- or M-CSF-induced Fc epsilon RII messenger RNA (mRNA) expression and enhance the release of sFc epsilon RII induced by these cytokines. The addition of TNF-alpha to monocyte cultures with GM-CSF, IL-3 or M-CSF significantly reduced Fc epsilon RII expression on the surface of monocytes and significantly increased sFc epsilon RII release from monocytes. These results suggest that TNF-alpha-dependent reduction of GM-CSF-, IL-3- or M-CSF-induced Fc epsilon RII expression on the surface of monocytes resulted, at least in part, from the suppression of Fc epsilon RII mRNA and the enhancement of sFc epsilon RII release.

  7. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response.

    PubMed

    Gri, Giorgia; Gallo, Elena; Di Carlo, Emma; Musiani, Piero; Colombo, Mario P

    2003-01-01

    Efficient T cell priming by GM-CSF and CD40 ligand double-transduced C26 murine colon carcinoma is not sufficient to cure metastases in a therapeutic setting. To determine whether a cellular vaccine that interacts directly with both APC and T cells in vivo might be superior, we generated C26 carcinoma cells transduced with the T cell costimulatory molecule OX40 ligand (OX40L) either alone (C26/OX40L) or together with GM-CSF (C26/GM/OX40L), which is known to activate APC. Mice injected with C26/OX40L cells displayed only a delay in tumor growth, while the C26/GM/OX40L tumor regressed in 85% of mice. Tumor rejection required granulocytes, CD4+, CD8+ T cells, and APC-mediated CD40-CD40 ligand cosignaling, but not IFN-gamma or IL-12 as shown using subset-depleted and knockout (KO) mice. CD40KO mice primed with C26/GM/OX40L cells failed to mount a CTL response, and T cells infiltrating the C26/GM/OX40L tumor were OX40 negative, suggesting an impairment in APC-T cell cross-talk in CD40KO mice. Indeed, CD4+ T cell-depleted mice failed to mount any CTL activity against the C26 tumor, while treatment with agonistic mAb to CD40, which acts on APC, bypassed the requirement for CD4+ T cells and restored CTL activation. C26/GM/OX40L cells cured 83% of mice bearing lung metastases, whereas C26/OX40L or C26/GM vaccination cured only 28 and 16% of mice, respectively. These results indicate the synergistic activity of OX40L and GM-CSF in a therapeutic setting.

  8. Effect of cilomilast (Ariflo) on TNF-α, IL-8, and GM-CSF release by airway cells of patients with COPD

    PubMed Central

    Profita, M; Chiappara, G; Mirabella, F; Di, G; Chimenti, L; Costanzo, G; Riccobono, L; Bellia, V; Bousquet, J; Vignola, A

    2003-01-01

    Background: Inflammation in chronic obstructive pulmonary disease (COPD) is characterised by increased neutrophilic infiltration of the airways. Cilomilast, a novel selective phosphodiesterase 4 inhibitor in clinical development for COPD treatment, exerts anti-inflammatory effects. The ability of cilomilast to inhibit the release of neutrophil chemoattractants such as tumour necrosis factor (TNF)-α, interleukin (IL)-8, and granulocyte-macrophage colony stimulating factor (GM-CSF) by bronchial epithelial cells and sputum cells isolated from 10 patients with COPD, 14 normal controls, and 10 smokers was investigated. Methods: Bronchial epithelial cells obtained by bronchial brushing and sputum cells isolated from induced sputum samples were cultured for 24 hours in the presence or absence of cilomilast (1 µM). After incubation the supernatants were harvested and the levels of mediators measured by ELISA. Chemotactic activity in supernatants was also measured using a Boyden chamber. Results: TNF-α and IL-8 release by bronchial epithelial cells and sputum cells was higher in patients with COPD than in controls (p<0.0001) and smokers (p<0.0001). GM-CSF was only detectable in sputum cell supernatants and its level was higher in patients with COPD than in controls and smokers (p<0.0001, respectively). Cilomilast significantly reduced TNF-α release by bronchial epithelial cells and sputum cells (p=0.005) and GM-CSF release by sputum cells (p=0.003), whereas IL-8 release was not statistically inhibited. Supernatants of sputum cells and bronchial epithelial cells treated with cilomilast significantly decreased neutrophil chemotaxis (p<0.006 and p<0.008, respectively). Conclusions: Cilomilast inhibits the production of some neutrophil chemoattractants by airway cells. This drug may play a role in the resolution of neutrophilic inflammation associated with COPD and cigarette smoke. PMID:12832668

  9. Keratinocyte growth factor administration attenuates murine pulmonary mycobacterium tuberculosis infection through granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophage activation and phagolysosome fusion.

    PubMed

    Pasula, Rajamouli; Azad, Abul K; Gardner, Jason C; Schlesinger, Larry S; McCormack, Francis X

    2015-03-13

    Augmentation of innate immune defenses is an appealing adjunctive strategy for treatment of pulmonary Mycobacterium tuberculosis infections, especially those caused by drug-resistant strains. The effect of intranasal administration of keratinocyte growth factor (KGF), an epithelial mitogen and differentiation factor, on M. tuberculosis infection in mice was tested in prophylaxis, treatment, and rescue scenarios. Infection of C57BL6 mice with M. tuberculosis resulted in inoculum size-dependent weight loss and mortality. A single dose of KGF given 1 day prior to infection with 10(5) M. tuberculosis bacilli prevented weight loss and enhanced pulmonary mycobacterial clearance (compared with saline-pretreated mice) for up to 28 days. Similar effects were seen when KGF was delivered intranasally every third day for 15 days, but weight loss and bacillary growth resumed when KGF was withdrawn. For mice with a well established M. tuberculosis infection, KGF given every 3 days beginning on day 15 postinoculation was associated with reversal of weight loss and an increase in M. tuberculosis clearance. In in vitro co-culture experiments, M. tuberculosis-infected macrophages exposed to conditioned medium from KGF-treated alveolar type II cell (MLE-15) monolayers exhibited enhanced GM-CSF-dependent killing through mechanisms that included promotion of phagolysosome fusion and induction of nitric oxide. Alveolar macrophages from KGF-treated mice also exhibited enhanced GM-CSF-dependent phagolysosomal fusion. These results provide evidence that administration of KGF promotes M. tuberculosis clearance through GM-CSF-dependent mechanisms and enhances host defense against M. tuberculosis infection.

  10. Randomized, Placebo-Controlled, Phase III Trial of Yeast-Derived Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Versus Peptide Vaccination Versus GM-CSF Plus Peptide Vaccination Versus Placebo in Patients With No Evidence of Disease After Complete Surgical Resection of Locally Advanced and/or Stage IV Melanoma: A Trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E4697).

    PubMed

    Lawson, David H; Lee, Sandra; Zhao, Fengmin; Tarhini, Ahmad A; Margolin, Kim A; Ernstoff, Marc S; Atkins, Michael B; Cohen, Gary I; Whiteside, Theresa L; Butterfield, Lisa H; Kirkwood, John M

    2015-12-01

    We conducted a double-blind, placebo-controlled trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and peptide vaccination (PV) on relapse-free survival (RFS) and overall survival (OS) in patients with resected high-risk melanoma. Patients with completely resected stage IV or high-risk stage III melanoma were grouped by human leukocyte antigen (HLA) -A2 status. HLA-A2-positive patients were randomly assigned to receive GM-CSF, PV, both, or placebo; HLA-A2-negative patients, GM-CSF or placebo. Treatment lasted for 1 year or until recurrence. Efficacy analyses were conducted in the intent-to-treat population. A total of 815 patients were enrolled. There were no significant improvements in OS (stratified log-rank P = .528; hazard ratio, 0.94; 95% repeated CI, 0.77 to 1.15) or RFS (P = .131; hazard ratio, 0.88; 95% CI, 0.74 to 1.04) in the patients assigned to GM-CSF (n = 408) versus those assigned to placebo (n = 407). The median OS times with GM-CSF versus placebo treatments were 69.6 months (95% CI, 53.4 to 83.5 months) versus 59.3 months (95% CI, 44.4 to 77.3 months); the 5-year OS probability rates were 52.3% (95% CI, 47.3% to 57.1%) versus 49.4% (95% CI, 44.3% to 54.3%), respectively. The median RFS times with GM-CSF versus placebo were 11.4 months (95% CI, 9.4 to 14.8 months) versus 8.8 months (95% CI, 7.5 to 11.2 months); the 5-year RFS probability rates were 31.2% (95% CI, 26.7% to 35.9%) versus 27.0% (95% CI, 22.7% to 31.5%), respectively. Exploratory analyses showed a trend toward improved OS in GM-CSF-treated patients with resected visceral metastases. When survival in HLA-A2-positive patients who received PV versus placebo was compared, RFS and OS were not significantly different. Treatment-related grade 3 or greater adverse events were similar between GM-CSF and placebo groups. Neither adjuvant GM-CSF nor PV significantly improved RFS or OS in patients with high-risk resected melanoma. Exploratory analyses suggest

  11. Characterization of cis-regulatory elements of the c-myc promoter responding to human GM-CSF or mouse interleukin 3 in mouse proB cell line BA/F3 cells expressing the human GM-CSF receptor.

    PubMed

    Watanabe, S; Ishida, S; Koike, K; Arai, K

    1995-06-01

    Interleukin 3 (IL-3) or granulocyte macrophage colony-stimulating factor (GM-CSF) activates c-fos, c-jun, and c-myc genes and proliferation in both hematopoietic and nonhematopoietic cells. Using a series of deletion mutants of the beta subunit of human GM-CSF receptor (hGMR) and inhibitors of tyrosine kinase, two distinct signaling pathways, one for activation of c-fos and c-jun genes, and the other for cell proliferation and activation of c-myc gene have been elucidated. In contrast to wealth of information on the pathway leading to activation of c-fos/c-jun genes, knowledge of the latter is scanty. To clarify the mechanisms of activation of c-myc gene by cytokines, we established a transient transfection assay in mouse proB cell line BA/F3 cells expressing hGMR. Analyses of hGMR beta subunit mutants revealed two cytoplasmic regions involved in activation of the c-myc promoter, one is essential and the other is dispensable but enhances the activity. These regions are located at the membrane proximal and the distal regions covering amino acid positions 455-544 and 544-589, respectively. Characterization of cis-acting regulatory elements of the c-myc gene showed that the region containing the P2 promoter initiation site is sufficient to mediate the response to mIL-3 or hGM-CSF. Electrophoretic mobility shift assay using an oligonucleotide corresponding to the distal putative E2F binding site revealed that p107/E2F complex, the negative regulator of E2F, decreased, and free E2F increased after mIL-3 stimulation. These results support the thesis that mIL-3 or hGM-CSF regulates the c-myc promoter by altering composition of the E2F complexes at E2F binding site.

  12. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells.

    PubMed

    Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose

    2016-01-01

    The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.

  13. GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells.

    PubMed

    Helft, Julie; Böttcher, Jan; Chakravarty, Probir; Zelenay, Santiago; Huotari, Jatta; Schraml, Barbara U; Goubau, Delphine; Reis e Sousa, Caetano

    2015-06-16

    Dendritic cells (DCs) are key players in the immune system. Much of their biology has been elucidated via culture systems in which hematopoietic precursors differentiate into DCs under the aegis of cytokines. A widely used protocol involves the culture of murine bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate BM-derived DCs (BMDCs). BMDCs express CD11c and MHC class II (MHCII) molecules and share with DCs isolated from tissues the ability to present exogenous antigens to T cells and to respond to microbial stimuli by undergoing maturation. We demonstrate that CD11c(+)MHCII(+) BMDCs are in fact a heterogeneous group of cells that comprises conventional DCs and monocyte-derived macrophages. DCs and macrophages in GM-CSF cultures both undergo maturation upon stimulation with lipopolysaccharide but respond differentially to the stimulus and remain separable entities. These results have important implications for the interpretation of a vast array of data obtained with DC culture systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Randomized, Placebo-Controlled, Phase III Trial of Yeast-Derived Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Versus Peptide Vaccination Versus GM-CSF Plus Peptide Vaccination Versus Placebo in Patients With No Evidence of Disease After Complete Surgical Resection of Locally Advanced and/or Stage IV Melanoma: A Trial of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network Cancer Research Group (E4697)

    PubMed Central

    Lawson, David H.; Lee, Sandra; Zhao, Fengmin; Tarhini, Ahmad A.; Margolin, Kim A.; Ernstoff, Marc S.; Atkins, Michael B.; Cohen, Gary I.; Whiteside, Theresa L.; Butterfield, Lisa H.; Kirkwood, John M.

    2015-01-01

    Purpose We conducted a double-blind, placebo-controlled trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and peptide vaccination (PV) on relapse-free survival (RFS) and overall survival (OS) in patients with resected high-risk melanoma. Patients and Methods Patients with completely resected stage IV or high-risk stage III melanoma were grouped by human leukocyte antigen (HLA) -A2 status. HLA-A2–positive patients were randomly assigned to receive GM-CSF, PV, both, or placebo; HLA-A2–negative patients, GM-CSF or placebo. Treatment lasted for 1 year or until recurrence. Efficacy analyses were conducted in the intent-to-treat population. Results A total of 815 patients were enrolled. There were no significant improvements in OS (stratified log-rank P = .528; hazard ratio, 0.94; 95% repeated CI, 0.77 to 1.15) or RFS (P = .131; hazard ratio, 0.88; 95% CI, 0.74 to 1.04) in the patients assigned to GM-CSF (n = 408) versus those assigned to placebo (n = 407). The median OS times with GM-CSF versus placebo treatments were 69.6 months (95% CI, 53.4 to 83.5 months) versus 59.3 months (95% CI, 44.4 to 77.3 months); the 5-year OS probability rates were 52.3% (95% CI, 47.3% to 57.1%) versus 49.4% (95% CI, 44.3% to 54.3%), respectively. The median RFS times with GM-CSF versus placebo were 11.4 months (95% CI, 9.4 to 14.8 months) versus 8.8 months (95% CI, 7.5 to 11.2 months); the 5-year RFS probability rates were 31.2% (95% CI, 26.7% to 35.9%) versus 27.0% (95% CI, 22.7% to 31.5%), respectively. Exploratory analyses showed a trend toward improved OS in GM-CSF–treated patients with resected visceral metastases. When survival in HLA-A2–positive patients who received PV versus placebo was compared, RFS and OS were not significantly different. Treatment-related grade 3 or greater adverse events were similar between GM-CSF and placebo groups. Conclusion Neither adjuvant GM-CSF nor PV significantly improved RFS or OS in patients with high

  15. Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet.

    PubMed

    Cravens, Petra D; Hussain, Rehana Z; Zacharias, Tresa E; Ben, Li-Hong; Herndon, Emily; Vinnakota, Ramya; Lambracht-Washington, Doris; Nessler, Stefan; Zamvil, Scott S; Eagar, Todd N; Stüve, Olaf

    2011-06-24

    Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS), multiple sclerosis (MS). Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2b) mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of ~70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOG)p35-55 in complete Freund's adjuvant (CFA) followed by pertussis toxin (PT). Only lymph node cells (LNC) isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 μg/mL of MOGp35-55 and 0.5 ng/mL of interleukin-12 (IL-12) were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFNγ) was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4+ T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4+ T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were not characterized

  16. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis.

    PubMed

    Kiku, Yoshio; Ozawa, Tomomi; Takahashi, Hideyuki; Kushibiki, Shiro; Inumaru, Shigeki; Shingu, Hiroyuki; Nagasawa, Yuya; Watanabe, Atsushi; Hata, Eiji; Hayashi, Tomohito

    2017-03-09

    The effect of intramammary infusion of recombinant bovine granulocyte-macrophage colony-stimulating factor (rbGM-CSF) and interleukin-8 (rbIL-8) on mononuclear cell populations in quarters, somatic cell count (SCC) and the California Mastitis Test (CMT) score were investigated. From the selected cows with naturally occurring Staphylococcus aureus subclinical mastitis, one quarter of each cow were selected for the infusions of rbGM-CSF (400 μg/5 mL/quarter, n = 9), rbIL-8 (1 mg/5 mL/quarter, n = 9), and phosphate-buffered saline (5 mL/quarter, n = 7). The CMT score of both cytokines post infusion temporarily increased between days 0 and 1 and significantly decreased between days 7 and 14 compared to the preinfusion level. The SCC on day 14 after infusions of rbGM-CSF tended to be lower than that of the control group. The percentage of CD14+ cells increased on days 1 and 2 post infusion of rbGM-CSF. The percentage of CD4+ and CD8+ cells also increased on days 2 and 3, suggesting that the infusion of rbGM-CSF enhanced cellular immunity in the mammary gland. In contrast, the percentage of CD14+ cells decreased on days 0.25 and 1 post infusion of rbIL-8. No significant changes in the percentages of CD4+ and CD8+ cells in milk after infusion of rbIL-8 were evident during the experimental period, which suggested that rbIL-8 had little effect on the function of T cells in the mammary gland. These results indicated that rbGM-CSF and rbIL-8 decreased the CMT score by a different mechanism and may have a potential as therapeutic agents for subclinical mastitis.

  17. Granulocyte-macrophage stimulating factor (GM-CSF) increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy.

    PubMed

    Martinez, Micaela; Ono, Nadia; Planutiene, Marina; Planutis, Kestutis; Nelson, Edward L; Holcombe, Randall F

    2012-01-23

    Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322) in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC) expression of γ-interferon and T-bet transcription factor (Tbx21) by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF) samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points). Dendritic cells were defined as lineage (-) and MHC class II high (+). 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02) and ~5x excluding non-responders (3.2% to 14.5%, p < 0.001). This effect was sustained over multiple cycles for approximately half of the responders, but tachyphylaxis over subsequent chemotherapy cycles was noted for the remainder. Treatment also led to a significant reduction in the proportion of circulating regulatory T-cells (Treg; p = 0.0042). PBMC Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02). PBMC γ-interferon expression, however was unchanged. This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid

  18. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling

    PubMed Central

    Correll, Kelly; Zemans, Rachel L.; Leslie, Christina C.; Murphy, Robert C.; Mason, Robert J.

    2015-01-01

    The most severe complication of influenza is viral pneumonia, which can lead to the acute respiratory distress syndrome. Alveolar epithelial cells (AECs) are the first cells that influenza virus encounters upon entering the alveolus. Infected epithelial cells produce cytokines that attract and activate neutrophils and macrophages, which in turn induce damage to the epithelial-endothelial barrier. Hepatocyte growth factor (HGF)/c-Met and transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGFR) are well known to regulate repair of damaged alveolar epithelium by stimulating cell migration and proliferation. Recently, TGF-α/EGFR signaling has also been shown to regulate innate immune responses in bronchial epithelial cells. However, little is known about whether HGF/c-Met signaling alters the innate immune responses and whether the innate immune responses in AECs are regulated by HGF/c-Met and TGF-α/EGFR. We hypothesized that HGF/c-Met and TGF-α/EGFR would regulate innate immune responses to influenza A virus infection in human AECs. We found that recombinant human HGF (rhHGF) and rhTGF-α stimulated primary human AECs to secrete IL-8 and granulocyte macrophage colony-stimulating factor (GM-CSF) strongly and IL-6 and monocyte chemotactic protein 1 moderately. Influenza infection stimulated the secretion of IL-8 and GM-CSF by AECs plated on rat-tail collagen through EGFR activation likely by TGF-α released from AECs and through c-Met activated by HGF secreted from lung fibroblasts. HGF secretion by fibroblasts was stimulated by AEC production of prostaglandin E2 during influenza infection. We conclude that HGF/c-Met and TGF-α/EGFR signaling enhances the innate immune responses by human AECs during influenza infections. PMID:26033355

  19. Peptide insertions in domain 4 of hbeta(c), the shared signalling receptor subunit for GM-CSF, IL3 and IL5, induce ligand-independent activation.

    PubMed

    Jones, K L; Bagley, C J; Butcher, C; Barry, S C; Vadas, M A; D'Andrea, R J

    2001-06-21

    A mutant form of the common beta-subunit of the GM-CSF, interleukin-3 (IL3) and IL5 receptors is activated by a 37 residue duplicated segment which includes the WSXWS motif and an adjacent, highly conserved, aliphatic/basic element. Haemopoietic expression of this mutant, hbeta(c)FIDelta, in mice leads to myeloproliferative disease. To examine the mechanism of activation of this mutant we targetted the two conserved motifs in each repeat for mutagenesis. Here we show that this mutant exhibits constitutive activity in BaF-B03 cells in the presence of mouse or human GM-CSF receptor alpha-subunit (GMRalpha) and this activity is disrupted by mutations of the conserved motifs in the first repeat. In the presence of these mutations the receptor reverts to an alternative conformation which retains responsiveness to human IL3 in a CTLL cell line co-expressing the human IL3 receptor alpha-subunit (hIL3Ralpha). Remarkably, the activated conformation is maintained in the presence of substitutions, deletions or replacement of the second repeat. This suggests that activation occurs due to insertion of extra sequence after the WSXWS motif and is not dependent on the length or specific sequence of the insertion. Thus hbeta(c) displays an ability to fold into functional receptor conformations given insertion of up to 37 residues in the membrane-proximal region. Constitutive activation most likely results from a specific conformational change which alters a dormant, inactive receptor complex, permitting functional association with GMRalpha and ligand-independent mitogenic signalling.

  20. Batf3-Dependent CD11blow/− Peripheral Dendritic Cells Are GM-CSF-Independent and Are Not Required for Th Cell Priming after Subcutaneous Immunization

    PubMed Central

    Edelson, Brian T.; Bradstreet, Tara R.; KC, Wumesh; Hildner, Kai; Herzog, Jeremy W.; Sim, Julia; Russell, John H.; Murphy, Theresa L.; Unanue, Emil R.; Murphy, Kenneth M.

    2011-01-01

    Dendritic cells (DCs) subsets differ in precursor cell of origin, functional properties, requirements for growth factors, and dependence on transcription factors. Lymphoid-tissue resident CD8α+ conventional DCs (cDCs) and CD11blow/−CD103+ non-lymphoid DCs are developmentally related, each being dependent on FMS-like tyrosine kinase 3 ligand (Flt3L), and requiring the transcription factors Batf3, Irf8, and Id2 for development. It was recently suggested that granulocyte/macrophage colony stimulating factor (GM-CSF) was required for the development of dermal CD11blow/−Langerin+CD103+ DCs, and that this dermal DC subset was required for priming autoreactive T cells in experimental autoimmune encephalitis (EAE). Here, we compared development of peripheral tissue DCs and susceptibility to EAE in GM-CSF receptor deficient (Csf2rb−/−) and Batf3−/− mice. We find that Batf3-dependent dermal CD11blow/−Langerin+ DCs do develop in Csf2rb−/− mice, but that they express reduced, but not absent, levels of CD103. Further, Batf3−/− mice lacking all peripheral CD11blow/− DCs show robust Th cell priming after subcutaneous immunization and are susceptible to EAE. Our results suggest that defective T effector priming and resistance to EAE exhibited by Csf2rb−/− mice does not result from the absence of dermal CD11blow/−Langerin+CD103+ DCs. PMID:22065991

  1. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling.

    PubMed

    Ito, Yoko; Correll, Kelly; Zemans, Rachel L; Leslie, Christina C; Murphy, Robert C; Mason, Robert J

    2015-06-01

    The most severe complication of influenza is viral pneumonia, which can lead to the acute respiratory distress syndrome. Alveolar epithelial cells (AECs) are the first cells that influenza virus encounters upon entering the alveolus. Infected epithelial cells produce cytokines that attract and activate neutrophils and macrophages, which in turn induce damage to the epithelial-endothelial barrier. Hepatocyte growth factor (HGF)/c-Met and transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGFR) are well known to regulate repair of damaged alveolar epithelium by stimulating cell migration and proliferation. Recently, TGF-α/EGFR signaling has also been shown to regulate innate immune responses in bronchial epithelial cells. However, little is known about whether HGF/c-Met signaling alters the innate immune responses and whether the innate immune responses in AECs are regulated by HGF/c-Met and TGF-α/EGFR. We hypothesized that HGF/c-Met and TGF-α/EGFR would regulate innate immune responses to influenza A virus infection in human AECs. We found that recombinant human HGF (rhHGF) and rhTGF-α stimulated primary human AECs to secrete IL-8 and granulocyte macrophage colony-stimulating factor (GM-CSF) strongly and IL-6 and monocyte chemotactic protein 1 moderately. Influenza infection stimulated the secretion of IL-8 and GM-CSF by AECs plated on rat-tail collagen through EGFR activation likely by TGF-α released from AECs and through c-Met activated by HGF secreted from lung fibroblasts. HGF secretion by fibroblasts was stimulated by AEC production of prostaglandin E2 during influenza infection. We conclude that HGF/c-Met and TGF-α/EGFR signaling enhances the innate immune responses by human AECs during influenza infections.

  2. Production of the Growth Factors GM-CSF, G-CSF, and VEGF by Human Peripheral Blood Cells Induced with Metal Complexes of Human Serum γ-Globulin Formed with Copper or Zinc Ions

    PubMed Central

    Cheknev, Sergey B.; Apresova, Maria A.; Moryakova, Nadezhda A.; Efremova, Irina E.; Mezdrokhina, Anna S.; Piskovskaya, Lidya S.; Babajanz, Alla A.

    2014-01-01

    As it was established in our previous studies, the proteins of human serum γ-globulin fraction could interact with copper or zinc ions distributed in the periglobular space, form metal complexes, and become able to perform effector functions differing due to the conformational shifts from those mediated by them in native conformation of their Fc regions. In the present work we have evaluated ability of the γ-globulin metal complexes formed with copper or zinc ions in the conditions like to the physiological ones to induce production or to regulate induction in the culture of freshly isolated human peripheral blood cells (PBC) of granulocyte (G) and granulocyte-macrophage (GM) colony-stimulating factors (CSF) as well as of vascular endothelial growth factor (VEGF). The γ-globulin metal complexes formed with both copper and zinc ions were found to similarly reduce production of GM-CSF, G-CSF, and VEGF induced in normal human PBC cultures by the control γ-globulins or by copper and zinc ions used alone. In context of theory and practice of inflammation the properties of the γ-globulin metal complexes might impact the basic knowledge in search of novel approaches to anti-inflammatory drugs development. PMID:25104881

  3. IL-2 and IL-4 counteract budesonide inhibition of GM-CSF and IL-10, but not of IL-8, IL-12 or TNF-α production by human mononuclear blood cells

    PubMed Central

    Larsson, Susanne; Löfdahl, Claes-Göran; Linden, Margareta

    1999-01-01

    The combination of interleukin-2 (IL-2) and IL-4 reduces the inhibitory effects of glucocorticoids on granulocytemacrophage colonystimulating factor (GM-CSF) production, in agreement with the hypothesis that this combination causes glucocorticoid resistance. Whether a general cytokine resistance to glucocorticoids is induced by IL-2 and IL-4 has not been reported. Mononuclear blood cells from healthy individuals were pretreated with IL-2, IL-4, or IL-2+ IL-4 (31.3–500 U ml−1) for 48 h, prior to lipopolysaccharide (LPS; 10 ng ml−1; 20 h) and budesonide addition. Cytokine levels in the supernatants were analysed using specific immunoassays. DNA content was analysed to estimate cell numbers. GM-CSF production was totally inhibited by budesonide at 10−8 M in vehicle treated cultures, while IL-10 was inhibited to 33.4±4.3% of control. IL-2, IL-4, or IL-2+IL-4 reduced the inhibitory effects of budesonide on GM-CSF to similar levels (23.7±6.7, 31.6±8.5 and 35.1±4.3% of control, respectively). IL-2, IL-4, or IL-2+IL-4 also reduced the inhibitory effects of budesonide on IL-10 production (46.5±6.6, 55.9±7.3%, and 68.3±9.9% of control, respectively). In contrast, IL-8, IL-12 and TNF-α production did not become resistant to budesonide. Thus, glucocorticoid resistance induced by IL-2 and IL-4 is not general at the cytokine production level. While the glucocorticoid sensitivity of GM-CSF and IL-10 production decreased, the sensitivity of IL-8, IL-12 or TNF-α production was unchanged. Also, the mixture of IL-2 and IL-4 is not crucial for induction of glucocorticoid resistance of GM-CSF production. PMID:10433506

  4. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling.

    PubMed Central

    Sato, N; Sakamaki, K; Terada, N; Arai, K; Miyajima, A

    1993-01-01

    The high-affinity receptors for granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL-3) and IL-5 consist of two subunits, alpha and beta. The alpha subunits are specific to each cytokine and the same beta subunit (beta c) is shared by these three receptors. Although none of these receptor subunits has intrinsic kinase activity, these cytokines induce protein tyrosine phosphorylation, activation of Ras, Raf-1 and MAP kinase, and transcriptional activation of nuclear proto-oncogenes such as c-myc, c-fos and c-jun. In this paper, we describe a detailed analysis of the signaling potential of the beta c subunit by using a series of cytoplasmic deletion mutants. The human beta c consists of 881 amino acid residues. A C-terminal deletion mutant of beta c at amino acid 763 (beta 763) induced phosphorylation of Shc and activation of Ras, Raf-1, MAP kinase and p70 S6 kinase, whereas a deletion at amino acid 626 (beta 626) induced none of these effects. The beta 763 mutant, as well as the full-length beta c, induced transcription of c-myc, c-fos and c-jun. Deletions at amino acid 517 (beta 517) and 626 (beta 626) induced c-myc and pim-1, but no induction of c-fos and c-jun was observed. GM-CSF increased phosphatidylinositol 3 kinase (PI3-K) activity in anti-phosphotyrosine immunoprecipitates from cells expressing beta 763 as well as beta c, whereas it was only marginally increased from cells expressing beta 517 or beta 626. Thus, there are at least two distinct regions within the cytoplasmic domain of beta c that are responsible for different signals, i.e. a membrane proximal region of approximately 60 amino acid residues upstream of Glu517 is essential for induction of c-myc and pim-1, and a distal region of approximately 140 amino acid residues (between Leu626 and Ser763) is required for activation of Ras, Raf-1, MAP kinase and p70 S6 kinase, as well as induction of c-fos and c-jun. Images PMID:8223433

  5. PI3K p110δ uniquely promotes gain-of-function Shp2-induced GM-CSF hypersensitivity in a model of JMML.

    PubMed

    Goodwin, Charles B; Li, Xing Jun; Mali, Raghuveer S; Chan, Gordon; Kang, Michelle; Liu, Ziyue; Vanhaesebroeck, Bart; Neel, Benjamin G; Loh, Mignon L; Lannutti, Brian J; Kapur, Reuben; Chan, Rebecca J

    2014-05-01

    Although hyperactivation of the Ras-Erk signaling pathway is known to underlie the pathogenesis of juvenile myelomonocytic leukemia (JMML), a fatal childhood disease, the PI3K-Akt signaling pathway is also dysregulated in this disease. Using genetic models, we demonstrate that inactivation of phosphatidylinositol-3-kinase (PI3K) catalytic subunit p110δ, but not PI3K p110α, corrects gain-of-function (GOF) Shp2-induced granulocyte macrophage-colony-stimulating factor (GM-CSF) hypersensitivity, Akt and Erk hyperactivation, and skewed hematopoietic progenitor distribution. Likewise, potent p110δ-specific inhibitors curtail the proliferation of GOF Shp2-expressing hematopoietic cells and cooperate with mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK) inhibition to reduce proliferation further and maximally block Erk and Akt activation. Furthermore, the PI3K p110δ-specific inhibitor, idelalisib, also demonstrates activity against primary leukemia cells from individuals with JMML. These findings suggest that selective inhibition of the PI3K catalytic subunit p110δ could provide an innovative approach for treatment of JMML, with the potential for limiting toxicity resulting from the hematopoietic-restricted expression of p110δ.

  6. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF- and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains

    PubMed Central

    de Souza Silva, Calliandra; Tavares, Aldo Henrique; Sousa Jeronimo, Marcio; Soares de Lima, Yasmin; da Silveira Derengowski, Lorena; Lorenzetti Bocca, Anamélia; Silva-Pereira, Ildinete

    2015-01-01

    Considering the importance of macrophages as the first line of defense against fungal infection and the different roles played by the two M1- and M2-like polarized macrophages, we decided to evaluate the effects of Paracoccidioides brasiliensis infection on GM-CSF- and M-CSF-induced bone marrow-derived macrophages (BMM) from the A/J and B10.A mouse strains, an established model of resistance/susceptibility to PCM, respectively. Upon differentiation, the generated GM- or M-BMMs were characterized by morphological analyses, gene expression profiles, and cytokines production. Our main results demonstrate that GM-BMMs derived from A/J and B.10 produced high levels of pro- and anti-inflammatory cytokines that may contribute to generate an unbalanced early immune response. In accordance with the literature, the B10.A susceptible mice lineage has an innate tendency to polarize into M1-like phenotype, whereas the opposite phenotype occurs in A/J resistance mice. In this context, our data support that susceptibility and resistance are strongly correlated with M1 and M2 polarization, respectively. PMID:26543326

  7. Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin.

    PubMed

    Kast, Richard E; Hill, Quentin A; Wion, Didier; Mellstedt, Håkan; Focosi, Daniele; Karpel-Massler, Georg; Heiland, Tim; Halatsch, Marc-Eric

    2017-05-01

    Increased ratio of circulating neutrophils to lymphocytes is a common finding in glioblastoma and other cancers. Data reviewed establish that any damage to brain tissue tends to cause an increase in G-CSF and/or GM-CSF (G(M)-CSF) synthesized by the brain. Glioblastoma cells themselves also synthesize G(M)-CSF. G(M)-CSF synthesized by brain due to damage by a growing tumor and by the tumor itself stimulates bone marrow to shift hematopoiesis toward granulocytic lineages away from lymphocytic lineages. This shift is immunosuppressive and generates the relative lymphopenia characteristic of glioblastoma. Any trauma to brain-be it blunt, sharp, ischemic, infectious, cytotoxic, tumor encroachment, or radiation-increases brain synthesis of G(M)-CSF. G(M)-CSF are growth and motility enhancing factors for glioblastomas. High levels of G(M)-CSF contribute to the characteristic neutrophilia and lymphopenia of glioblastoma. Hematopoietic bone marrow becomes entrained with, directed by, and contributes to glioblastoma pathology. The antibiotic dapsone, the lipid-lowering agent fenofibrate, and the antiviral drug ribavirin are Food and Drug Administration- and European Medicines Agency-approved medicines that have potential to lower synthesis or effects of G(M)-CSF and thus deprive a glioblastoma of some of the growth promoting contributions of bone marrow and G(M)-CSF.

  8. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF- and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains.

    PubMed

    de Souza Silva, Calliandra; Tavares, Aldo Henrique; Sousa Jeronimo, Marcio; Soares de Lima, Yasmin; da Silveira Derengowski, Lorena; Bocca, Anamélia Lorenzetti; Silva-Pereira, Ildinete

    2015-01-01

    Considering the importance of macrophages as the first line of defense against fungal infection and the different roles played by the two M1- and M2-like polarized macrophages, we decided to evaluate the effects of Paracoccidioides brasiliensis infection on GM-CSF- and M-CSF-induced bone marrow-derived macrophages (BMM) from the A/J and B10.A mouse strains, an established model of resistance/susceptibility to PCM, respectively. Upon differentiation, the generated GM- or M-BMMs were characterized by morphological analyses, gene expression profiles, and cytokines production. Our main results demonstrate that GM-BMMs derived from A/J and B.10 produced high levels of pro- and anti-inflammatory cytokines that may contribute to generate an unbalanced early immune response. In accordance with the literature, the B10.A susceptible mice lineage has an innate tendency to polarize into M1-like phenotype, whereas the opposite phenotype occurs in A/J resistance mice. In this context, our data support that susceptibility and resistance are strongly correlated with M1 and M2 polarization, respectively.

  9. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF.

    PubMed

    Tavernier, J; Devos, R; Cornelis, S; Tuypens, T; Van der Heyden, J; Fiers, W; Plaetinck, G

    1991-09-20

    cDNA clones encoding two receptor proteins involved in the binding of human interleukin 5 (hIL5) have been isolated. A first class codes for an IL5-specific chain (hIL5R alpha). The major transcript of this receptor gene, as analyzed in both HL-60 eosinophilic cells and eosinophilic myelocytes grown from cord blood, encodes a secreted form of this receptor. This soluble hIL5R alpha has antagonistic properties. A second component of the hIL5R is found to be identical to the beta chain of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) high affinity receptor. The finding that IL5 and GM-CSF share a receptor subunit provides a molecular basis for the observation that these cytokines can partially interfere with each other's binding and have highly overlapping biological activities on eosinophils.

  10. Suitable in vitro culture of Eimeria bovis meront II stages in bovine colonic epithelial cells and parasite-induced upregulation of CXCL10 and GM-CSF gene transcription.

    PubMed

    Hermosilla, Carlos; Stamm, Ivonne; Menge, Christian; Taubert, Anja

    2015-08-01

    We here established a suitable in vitro cell culture system based on bovine colonic epithelial cells (BCEC) for the development of Eimeria bovis merozoites I and the characterization of early parasite-induced innate epithelial host cell reactions as gene transcription of proinflammatory molecules. Both primary and permanent BCEC (BCEC (rim) and BCEC(perm)) were suitable for E. bovis merozoite I invasion and subsequent development of meronts II leading to the release of viable merozoites II. E. bovis merozoite II failed to develop any further neither into gamont nor oocyst stages in BCEC in vitro. E. bovis merozoite I induced innate epithelial host cell reactions at the level of CXC/CCL chemokines (CXCL1, CXCL8, CXCL10, CCL2), IL-6, and GM-CSF gene transcription. Overall, both BCEC types were activated by merozoite I infections since they showed significantly enhanced gene transcript levels of the immunomodulatory molecules CXCL10 and GM-CSF. However, gene transcription profiles of BCEC(prim) and BCEC(perm) revealed different reaction patterns in response to merozoite I infection with regard to quality and kinetics of chemokine/cytokine gene transcription. Although both BCEC types equally showed most prominent responses for CXCL10 and GM-CSF, the induction of CXCL1, CXCL8, CCL2, and IL-6 gene transcripts varied qualitatively and quantitatively. Our results demonstrate that BCEC seem capable to respond to E. bovis merozoite I infection by the upregulation of CXCL10 and GM-CSF gene transcription and therefore probably contribute to host innate effector mechanisms against E. bovis.

  11. PyNTTTTGT and CpG Immunostimulatory Oligonucleotides: Effect on Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF) Secretion by Human CD56+ (NK and NKT) Cells

    PubMed Central

    Rodriguez, Juan M.; Marchicio, José; López, Mariela; Ziblat, Andrea; Elias, Fernanda; Fló, Juan; López, Ricardo A.; Horn, David; Zorzopulos, Jorge; Montaner, Alejandro D.

    2015-01-01

    CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system. PMID:25706946

  12. Effect of intramammary injection of rboGM-CSF on milk levels of chemiluminescence activity, somatic cell count, and Staphylococcus aureus count in Holstein cows with S. aureus subclinical mastitis

    PubMed Central

    2004-01-01

    Abstract The effect of intramammary injection of recombinant bovine granulocyte-macrophage colony-stimulating factor (rboGM-CSF, 400 μg/10 mL) on quarter milk levels of chemiluminescence (CL) activity, and somatic cell count (SCC) and shedding pattern of Staphylococcus aureus was investigated. Ten Holstein cows, naturally infected with S. aureus were used, with either early-stage or late-stage subclinical mastitis. Injection of rboGM-CSF caused a remarkable increase in milk CL activity with a peak at 6 h after the cytokine injection in the early- and late-stage groups. In the early-stage group, milk SCC stayed around preinjection level at 6 h, rose significantly on days 1 and 2, and was followed by a smooth and significant decline to an under preinjection level (below 200 000 cells/mL) on day 7 postinjection. Alternatively, in the late-stage group, milk SCC rose significantly at 6 h after the cytokine injection and maintained high levels thereafter. The milk S. aureus count decreased drastically by the cytokine injection in the early-stage group. The bacterial count was moderately decreased in the late-stage group, but increased back to preinoculation levels on day 7 after the cytokine injection. The results suggest that the rboGM-CSF has a potential as a therapeutic agent for S. aureus infection causing subclinical mastitis of dairy cows, if the cytokine is applied at the initial stage of infection. PMID:15352542

  13. GR-independent down-modulation on GM-CSF bone marrow-derived dendritic cells by the selective glucocorticoid receptor modulator Compound A

    PubMed Central

    Barcala Tabarrozzi, Andres E.; Andreone, Luz; Deckers, Julie; Castro, Carla N.; Gimeno, María L.; Ariolfo, Laura; Berguer, Paula M.; Antunica-Noguerol, María; Liberman, Ana C.; Vettorazzi, Sabine; Tuckermann, Jan P.; De Bosscher, Karolien; Perone, Marcelo J.

    2016-01-01

    Dendritic cells (DC) initiate the adaptive immune response. Glucocorticoids (GCs) down-modulate the function of DC. Compound A (CpdA, (2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride) is a plant-derived GR-ligand with marked dissociative properties. We investigated the effects of CpdA on in vitro generated GM-CSF-conditioned bone marrow-derived DC (BMDC). CpdA-exposed BMDC exhibited low expression of cell-surface molecules and diminution of the release of proinflammatory cytokines upon LPS stimulation; processes associated with BMDC maturation and activation. CpdA-treated BMDC were inefficient at Ag capture via mannose receptor-mediated endocytosis and displayed reduced T-cell priming. CpdA prevented the LPS-induced rise in pErk1/2 and pP38, kinases involved in TLR4 signaling. CpdA fully inhibited LPS-induced pAktSer473, a marker associated with the generation of tolerogenic DC. We used pharmacological blockade and selective genetic loss-of-function tools and demonstrated GR-independent inhibitory effects of CpdA in BMDC. Mechanistically, CpdA-mediated inactivation of the NF-κB intracellular signaling pathway was associated with a short-circuiting of pErk1/2 and pP38 upstream signaling. Assessment of the in vivo function of CpdA-treated BMDC pulsed with the hapten trinitrobenzenesulfonic acid showed impaired cell-mediated contact hypersensitivity. Collectively, we provide evidence that CpdA is an effective BMDC modulator that might have a benefit for immune disorders, even when GR is not directly targeted. PMID:27857212

  14. Cuscuta chinensis Ameliorates Immunosuppression and Urotoxic Effect of Cyclophosphamide by Regulating Cytokines - GM-CSF and TNF-Alpha.

    PubMed

    Raju, Nidhi; Sakthivel, Kunnathur Murugesan; Kannan, Narayanan; Vinod Prabhu, Venugopal; Guruvayoorappan, Chandrasekaran

    2015-06-01

    Cancer is the leading cause of death worldwide. Cyclophosphamide (CTX) is commonly used as anticancer drug which causes toxicity by its reactive metabolites such as acroline and phosphoramide mustard. In this study, Cuscuta chinensis (C. chinensis) (family: Convolvulaceae) was assessed for ability to restore mice against CTX-induced toxicity. Coadministration of C. chinensis extract (10 mg/kg BW, IP, daily) for ten consecutive days reduced CTX-induced (25 mg/kg BW, IP, daily) toxicity. Treatment with C. chinensis extract significantly (p < 0.01) increased the relative organ weight and body weight. Moreover, administration of C. chinensis extract significantly increased bone marrow cellulatity and α-esterase activity in CTX-treated mice which suggested its protective role on the hematopoietic system. The GSH content was drastically reduced by CTX administration in urinary bladder which was enhanced by treatment with C. chinensis extract, indicating that preventing acroline-mediated tissue damage or cell toxicity and also the extract decreased the urinary bladder nitric oxide (NO) level which proves recovery over urinary tract injury associated with CTX treatment. The administration of C. chinensis extract decreased serum urea, creatinine, and bilirubin levels when compared to CTX-alone-treated group. Histopathological analysis of the urinary bladder of CTX-alone-treated group showed necrotic damage whereas the C. chinensis-treated group showed normal bladder architecture. The above data clearly demonstrates chemoprotective role of C. chinensis against CTX-induced toxicities by regulating antioxidant and inflammatory mediators.

  15. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype.

    PubMed

    Seif, Michelle; Philippi, Anja; Breinig, Frank; Kiemer, Alexandra K; Hoppstädter, Jessica

    2016-10-01

    Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.

  16. High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques.

    PubMed

    Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja; Chamcha, Venkatesarlu; Chea, Lynette S; Kozlowski, Pamela A; LaBranche, Celia C; Chennareddi, Lakshmi; Lawson, Benton; Reddy, Pradeep B J; Styles, Tiffany M; Vanderford, Thomas H; Montefiori, David C; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-11-01

    We tested, in rhesus macaques, the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/SIV macaque 239 vaccine. High doses of MVA/GM-CSF did not affect the levels of systemic envelope (Env)-specific Ab, but it did decrease the expression of the gut-homing receptor α4β7 on plasmacytoid dendritic cells (p < 0.01) and the magnitudes of Env-specific IgA (p = 0.01) and IgG (p < 0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus macaques subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus SIVsmE660. Eight of nine TRIM5α-restrictive animals receiving no or the lowest dose (1 × 10(5) PFU) of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group, only 1 of 12 animals resisted all 12 challenges. In the TRIM5α-restrictive animals, but not in the TRIM5α-permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r = +0.6) and IgA (r = +0.6), the avidity of Env-specific serum IgG (r = +0.5), and Ab dependent cell-mediated virus inhibition (r = +0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that 1) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of TRIM5α restriction, 2) nonneutralizing Ab responses contribute to protection against SIVsmE660 in TRIM5α-restrictive animals, and 3) high doses of codelivered MVA/GM-CSF inhibit mucosal Ab responses and the protection elicited by MVA expressing noninfectious SIV macaque 239 virus-like particles.

  17. Standardized serum GM-CSF autoantibody testing for the routine clinical diagnosis of autoimmune pulmonary alveolar proteinosis.

    PubMed

    Uchida, Kanji; Nakata, Koh; Carey, Brenna; Chalk, Claudia; Suzuki, Takuji; Sakagami, Takuro; Koch, Diana E; Stevens, Carrie; Inoue, Yoshikazu; Yamada, Yoshitsugu; Trapnell, Bruce C

    2014-01-15

    Autoantibodies against granulocyte/macrophage colony-stimulating factor (GMAbs) cause autoimmune pulmonary alveolar proteinosis (PAP) and measurement of the GMAb level in serum is now commonly used to identify this disease, albeit, in a clinical research setting. The present study was undertaken to optimize and standardize serum GMAb concentration testing using a GMAb enzyme-linked immunosorbent assay (GMAb ELISA) to prepare for its introduction into routine clinical use. The GMAb ELISA was evaluated using serum specimens from autoimmune PAP patients, healthy people, and GMAb-spiked serum from healthy people. After optimizing assay components and procedures, its accuracy, precision, reliability, sensitivity, specificity, and ruggedness were evaluated. The coefficient of variation in repeated measurements was acceptable (<15%) for well-to-well, plate-to-plate, day-to-day, and inter-operator variation, and was not affected by repeated freeze-thaw cycles of serum specimens or the reference standards, or by storage of serum samples at -80°C. The lower limit of quantification (LLOQ) of the PAP patient-derived polyclonal GMAb reference standard (PCRS) was 0.78ng/ml. Receiver operating characteristic curve analysis identified a serum GMAb level of 5μg/ml (based on PCRS) as the optimal cut off value for distinguishing autoimmune PAP serum from normal serum. A pharmaceutical-grade, monoclonal GMAb reference standard (MCRS) was developed as the basis of a new unit of measure for GMAb concentration: one International Unit (IU) of GMAb is equivalent to 1μg/ml of MCRS. The median [interquartile range] serum GMAb level was markedly higher in autoimmune PAP patients than in healthy people (21.54 [12.83-36.38] versus 0.08 [0.05-0.14] IU; n=56, 38; respectively; P<0.0001). Results demonstrate that serum GMAb measurement using the GMAb ELISA was accurate, precise, reliable, had an acceptable LLOQ, and could be accurately expressed in standardized units. These findings support the

  18. START Trial: a pilot study on STimulation of ARTeriogenesis using subcutaneous application of granulocyte-macrophage colony-stimulating factor as a new treatment for peripheral vascular disease.

    PubMed

    van Royen, Niels; Schirmer, Stephan H; Atasever, Bektas; Behrens, Casper Y H; Ubbink, Dirk; Buschmann, Eva E; Voskuil, Michiel; Bot, Pieter; Hoefer, Imo; Schlingemann, Reinier O; Biemond, Bart J; Tijssen, J G; Bode, Christoph; Schaper, Wolfgang; Oskam, Jacques; Legemate, Dink A; Piek, Jan J; Buschmann, Ivo

    2005-08-16

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) was recently shown to increase collateral flow index in patients with coronary artery disease. Experimental models showed beneficial effects of GM-CSF on collateral artery growth in the peripheral circulation. Thus, in the present study, we evaluated the effects of GM-CSF in patients with peripheral artery disease. A double-blinded, randomized, placebo-controlled study was performed in 40 patients with moderate or severe intermittent claudication. Patients were treated with placebo or subcutaneously applied GM-CSF (10 microg/kg) for a period of 14 days (total of 7 injections). GM-CSF treatment led to a strong increase in total white blood cell count and C-reactive protein. Monocyte fraction initially increased but thereafter decreased significantly as compared with baseline. Both the placebo group and the treatment group showed a significant increase in walking distance at day 14 (placebo: 127+/-67 versus 184+/-87 meters, P=0.03, GM-CSF: 126+/-66 versus 189+/-141 meters, P=0.04) and at day 90. Change in walking time, the primary end point of the study, was not different between groups. No change in ankle-brachial index was found on GM-CSF treatment at day 14 or at day 90. Laser Doppler flowmetry measurements showed a significant decrease in microcirculatory flow reserve in the control group (P=0.03) and no change in the GM-CSF group. The present study does not support the use of GM-CSF for treatment of patients with moderate or severe intermittent claudication. Issues that need to be addressed are dosing, the selection of patients, and potential differences between GM-CSF effects in the coronary and the peripheral circulation.

  19. Definition of a GC-rich motif as regulatory sequence of the human IL-3 gene: coordinate regulation of the IL-3 gene by CLE2/GC box of the GM-CSF gene in T cell activation.

    PubMed

    Nishida, J; Yoshida, M; Arai, K; Yokota, T

    1991-03-01

    The human IL-3 gene, located on chromosome 5, contains several cis-acting DNA sequences, i.e. CLE (conserved lymphokine element) and a GC-rich region, similar to the GM-CSF gene. To investigate the role of these elements, the 5' flanking region of the IL-3 gene was attached to a bacterial chloramphenicol acetyltransferase (CAT) gene. The fusion plasmids were analyzed by an in vitro transcription system using Jurkat cell nuclear extract prepared from cells stimulated with phorbol-12-myristate-13-acetate and calcium ionophore (PMA/A23187), introduced into Jurkat cells, expressed transiently, and stimulated by co-transfection of human T cell leukemia virus type I (HTLV-I) encoded transactivator, p40tax. The GC-rich region enhanced TATA-dependent transcription in the in vitro transcription system and also strongly responded to p40tax stimulation in the in vivo cotransfection assay. Using this GC-rich region as a probe, we identified a constitutive DNA-protein complex, alpha, whose binding specificity correlates with transcription activity. However, this element is not sufficient for the expression of the IL-3 gene in response to T cell activation signals (PMA/A23187) and no sequence was found within the IL-3 gene which mediates the response to PMA/A23187. The enhancer sequence which responds to T cell activation signals may be located outside the IL-3 gene and may be shared by other lymphokines, possibly by GM-CSF. We propose that the GM-CSF enhancer (CLE2/GC box) which mediates the response to T cell activation signals may stimulate the expression of the IL-3 gene.

  20. Co-vaccination with adeno-associated virus vectors encoding human papillomavirus 16 L1 proteins and adenovirus encoding murine GM-CSF can elicit strong and prolonged neutralizing antibody.

    PubMed

    Liu, Dai-Wei; Chang, Junn-Liang; Tsao, Yeou-Ping; Huang, Chien-Wei; Kuo, Shu-Wen; Chen, Show-Li

    2005-01-01

    Non-infectious human papillomavirus-like particles (VLPs), encoded by the major capsid gene L1, have been shown to be effective as vaccines to prevent cervical cancer. We have developed the genetic immunization of the L1 gene to induce a neutralizing antibody. We constructed and generated a recombinant adeno-associated virus encoding human papillomavirus (HPV) 16 L1 protein that could form virus-like particles in transduced cells. Previous reports have demonstrated that the formation of VLP is necessary to induce high titers of neutralizing antibodies to protect an animal from viral challenge. Therefore, we carried out a single intramuscular (i.m.) injection with recombinant adeno-associated virus encoding HPV-16 L1 protein (rAAV-16L1) in BALB/c mice, which ultimately produced stronger and more prolonged neutralizing L1 antibodies, when compared to the DNA vaccine. Immunohistochemistry showed that the accumulation of antigen presenting cells, such as macrophages and dendritic cells, in rAAV-16L1 and L1 DNA-injected muscle fibers may be due to the L1 protein expression, but not to AAV infection. When compared to the L1 VLP vaccine, however, the titers of neutralizing L1 antibodies induced by VLP were higher than those induced by rAAV-16L1. Co-vaccinating with rAAV-16L1 and adenovirus encoding murine GM-CSF (rAAV-16L1/rAd-mGM-CSF) induced comparable higher levels of neutralizing L1 antibodies with those of VLP. This implies that a single i.m. co-injection with rAAV-16L1/rAd-mGM-CSF can achieve the same vaccine effect as a VLP vaccine requiring 3 booster injections.

  1. PU.1 is essential for CD11c expression in CD8(+)/CD8(-) lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation.

    PubMed

    Zhu, Xue-Jun; Yang, Zhong-Fa; Chen, Yaoyu; Wang, Junling; Rosmarin, Alan G

    2012-01-01

    Dendritic cells (DCs) regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8(+) lymphoid-derived DCs or B220(+) plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8(+) lymphoid-derived DCs, but not in B220(+) plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220(+) plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required for lineage

  2. PU.1 Is Essential for CD11c Expression in CD8+/CD8− Lymphoid and Monocyte-Derived Dendritic Cells during GM-CSF or FLT3L-Induced Differentiation

    PubMed Central

    Chen, Yaoyu; Wang, Junling; Rosmarin, Alan G.

    2012-01-01

    Dendritic cells (DCs) regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8+ lymphoid-derived DCs or B220+ plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8+ lymphoid-derived DCs, but not in B220+ plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220+ plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required for lineage-specific CD11c

  3. GM-CSF DNA: an adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine

    PubMed Central

    Lai, Lilin; Vödrös, Dalma; Kozlowski, Pamela A.; Montefiori, David C.; Wilson, Robert L.; Akerstrom, Vicki L.; Chennareddi, Lakshmi; Yu, Tianwei; Kannanganat, Sunil; Ofielu, Lazarus; Villinger, Francois; Wyatt, Linda S.; Moss, Bernard; Amara, Rama Rao; Robinson, Harriet L.

    2007-01-01

    Single intradermal or intramuscular inoculations of GM-CSF DNA with the DNA prime for a simian-human immunodeficiency virus (SHIV)-89.6 vaccine, which consists of DNA priming followed by modified vaccinia Ankara (MVA) boosting, increased protection of both the blood and intestines against the acute phase of an intrarectal SHIV-89.6P challenge. GM-CSF appeared to contribute to protection by enhancing two antibody responses: the avidity maturation of anti-Env IgG in blood (p=<0.01) and the presence of long lasting anti-viral IgA in rectal secretions (p<0.01). The avidity of anti-Env IgG showed strong correlations with protection both pre and post challenge. Animals with the highest avidity anti-Env Ab had 1000-fold reductions in peak viremia over those with the lowest avidity anti-Env Ab. The enhanced IgA response was associated with the best protection, but did not achieve significance. PMID:17698160

  4. The frequency of clinical pregnancy and implantation rate after cultivation of embryos in a medium with granulocyte macrophage colony-stimulating factor (GM-CSF) in patients with preceding failed attempts of ART.

    PubMed

    Tevkin, S; Lokshin, V; Shishimorova, M; Polumiskov, V

    2014-10-01

    The application in IVF practice of modern techniques can improve positive outcome of each cycle in the assisted reproductive technology (ART) programs and the effectiveness of treatment as a whole. There are embryos in the female reproductive tract in physiological medium which contain various cytokines and growth factors. It plays an important role in the regulation of normal embryonic development, improve implantation and subsequently optimizing the development of the fetus and the placenta. Granulocyte macrophage colony-stimulating factor (GM-CSF is one of the cytokines playing an important role in reproductive function. Addition of recombinant GM-CSF to the culture medium can makes closer human embryos culture to in vivo conditions and improve the efficacy ART cycles. The analysis of culture embryos in EmbryoGen medium has shown that fertilization rate embryo culture and transfer to patients with previous unsuccessful attempts increases clinical pregnancy rate compared to the control group 39.1 versus 27.8%, respectively. It is noted that the implantation rate (on 7 weeks' gestation) and progressive clinical pregnancy rate (on 12 weeks' gestation) were significantly higher in group embryos culture in EmbryoGen medium compared to standard combination of medium (ISM1+VA), and were 20.4 and 17.4% versus 11.6 and 9.1%, respectively.

  5. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    PubMed

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  6. Arabinogalactan protein from Jatropha curcas L. seeds as TGFβ1-mediated inductor of keratinocyte in vitro differentiation and stimulation of GM-CSF, HGF, KGF and in organotypic skin equivalents.

    PubMed

    Zippel, Janina; Wells, Thomas; Hensel, Andreas

    2010-10-01

    Arabinogalactan protein JC from Jatropha curcas seed endosperm (mean molecular weight 140 kDa) was isolated by cold water extraction and characterized concerning sugar and amino acid composition. At 10 and 100 µg/mL JC stimulated mitochondrial activity (MTT test) of human skin cells (HaCaT keratinocytes, fibroblasts) and the ATP status of primary keratinocytes. JC did not influence the cellular proliferation, while primary keratinocytes were triggered into differentiation status. Investigations on a potential mode of action of JC were performed on complex organotypic skin equivalents. JC induced the production of HGF, KGF and TGFβ, with TGFβ being the main inductor for the differentiation-inducing effect of JC. Also the expression of GM-CSF was stimulated strongly by JC. This in vitro activity profile indicated JC to be a potent inductor of cellular differentiation via stimulation of growth hormones and TGF-β-induced cell signaling. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A Kampo (traditional Japanese herbal) medicine, Hochuekkito, pretreatment in mice prevented influenza virus replication accompanied with GM-CSF expression and increase in several defensin mRNA levels.

    PubMed

    Dan, Katsuaki; Akiyoshi, Hiroko; Munakata, Kaori; Hasegawa, Hideki; Watanabe, Kenji

    2013-01-01

    A Kampo medicine, Hochuekkito (TJ-41), with an influenza virus-preventing effect had life-extending effectiveness, and immunological responses other than interferon (IFN)-α release were examined. TJ-41 (1 g/kg) was given to C57BL/6 male mice orally once a day for 2 weeks. Mice were then intranasally infected with influenza virus. After infection, virus titers and various parameters, mRNA levels and protein expression, for immunoresponses in the bronchoalveolar lavage fluid or removed lung homogenate, were measured by plaque assay, quantitative RT-PCR and ELISA. IFN-α and -β levels of TJ-41-treated mice were higher than those of the control. Toll-like receptor TLR7 and TLR9 mRNAs were elevated after infection, but retinoic acid-inducible gene (RIG-1) family mRNA levels, RIG-1, melanoma differentiation-associated gene 5 and Leishmania G protein 2 showed no response in either TJ-41 or control groups. Interferon regulatory transcription factor (IRF)-3 mRNA levels to stimulate type I (α/β) IFN were increased, but IRF-7 did not change. Only granulocyte-macrophage colony-stimulating factor (GM-CSF) after Hochuekkito treatment was significantly elevated 2 and 3 days after infection. The mRNA levels of 7 defensins after infection increased compared to preinfection values. The key roles of TJ-41 were not only stimulation of type I IFN release but also GM-CSF-derived anti-inflammation activity. Furthermore, defensin (antimicrobial peptide) mRNA levels increased by infection and were further enhanced by TJ-41 treatment. Defensin might prevent influenza virus replication.

  8. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors

    PubMed Central

    Panousis, Con; Dhagat, Urmi; Edwards, Kirsten M.; Rayzman, Veronika; Hardy, Matthew P.; Braley, Hal; Gauvreau, Gail M.; Hercus, Timothy R.; Smith, Steven; Sehmi, Roma; McMillan, Laura; Dottore, Mara; McClure, Barbara J.; Fabri, Louis J.; Vairo, Gino; Lopez, Angel F; Parker, Michael W.; Nash, Andrew D.; Wilson, Nicholas J.; Wilson, Michael J.; Owczarek, Catherine M.

    2016-01-01

    ABSTRACT The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU). PMID:26651396

  9. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors.

    PubMed

    Panousis, Con; Dhagat, Urmi; Edwards, Kirsten M; Rayzman, Veronika; Hardy, Matthew P; Braley, Hal; Gauvreau, Gail M; Hercus, Timothy R; Smith, Steven; Sehmi, Roma; McMillan, Laura; Dottore, Mara; McClure, Barbara J; Fabri, Louis J; Vairo, Gino; Lopez, Angel F; Parker, Michael W; Nash, Andrew D; Wilson, Nicholas J; Wilson, Michael J; Owczarek, Catherine M

    2016-01-01

    The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU).

  10. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    PubMed

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this

  11. Establishment of a retinoic acid-resistant human acute promyelocytic leukaemia (APL) model in human granulocyte-macrophage colony-stimulating factor (hGM-CSF) transgenic severe combined immunodeficiency (SCID) mice.

    PubMed

    Fukuchi, Y; Kizaki, M; Kinjo, K; Awaya, N; Muto, A; Ito, M; Kawai, Y; Umezawa, A; Hata, J; Ueyama, Y; Ikeda, Y

    1998-10-01

    To understand the mechanisms and identify novel approaches to overcoming retinoic acid (RA) resistance in acute promyelocytic leukaemia (APL), we established the first human RA-resistant APL model in severe combined immunodeficiency (SCID) mice. UF-1 cells, an RA-resistant APL cell line established in our laboratory, were transplanted into human granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing SCID (hGMTg SCID) mice and inoculated cells formed subcutaneous tumours in all hGMTg SCID mice, but not in the non-transgenic control SCID mice. Single-cell suspensions (UF-1/GMTg SCID cells) were similar in morphological, immunological, cytogenetic and molecular genetic features to parental UF-1 cells. All-trans RA did not change the morphological features of cells or their expression of CD11b. RA did not alter the growth curve of cells as determined by MTT assay, suggesting that UF-1/GMTg SCID cells are resistant to RA. These results demonstrate that this is the first RA-resistant APL animal model that may be useful for investigating the biology of this myeloid leukaemia in vivo, as well as for evaluating novel therapeutic approaches including patients with RA-resistant APL.

  12. Establishment of a retinoic acid-resistant human acute promyelocytic leukaemia (APL) model in human granulocyte-macrophage colony-stimulating factor (hGM-CSF) transgenic severe combined immunodeficiency (SCID) mice.

    PubMed Central

    Fukuchi, Y.; Kizaki, M.; Kinjo, K.; Awaya, N.; Muto, A.; Ito, M.; Kawai, Y.; Umezawa, A.; Hata, J.; Ueyama, Y.; Ikeda, Y.

    1998-01-01

    To understand the mechanisms and identify novel approaches to overcoming retinoic acid (RA) resistance in acute promyelocytic leukaemia (APL), we established the first human RA-resistant APL model in severe combined immunodeficiency (SCID) mice. UF-1 cells, an RA-resistant APL cell line established in our laboratory, were transplanted into human granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing SCID (hGMTg SCID) mice and inoculated cells formed subcutaneous tumours in all hGMTg SCID mice, but not in the non-transgenic control SCID mice. Single-cell suspensions (UF-1/GMTg SCID cells) were similar in morphological, immunological, cytogenetic and molecular genetic features to parental UF-1 cells. All-trans RA did not change the morphological features of cells or their expression of CD11b. RA did not alter the growth curve of cells as determined by MTT assay, suggesting that UF-1/GMTg SCID cells are resistant to RA. These results demonstrate that this is the first RA-resistant APL animal model that may be useful for investigating the biology of this myeloid leukaemia in vivo, as well as for evaluating novel therapeutic approaches including patients with RA-resistant APL. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9764578

  13. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    PubMed

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Activating point mutations in the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors suggest the involvement of beta subunit dimerization and cell type-specific molecules in signalling.

    PubMed Central

    Jenkins, B J; D'Andrea, R; Gonda, T J

    1995-01-01

    We have combined retroviral expression cloning with random mutagenesis to identify two activating point mutations in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5 by virtue of their ability to confer factor independence on the haemopoietic cell line, FDC-P1. One mutation (V449E) is located within the transmembrane domain and, by analogy with a similar mutation in the neu oncogene, may act by inducing dimerization of h beta c. The other mutation (I374N) lies in the extracellular, membrane-proximal portion of h beta c. Neither of these mutants, nor a previously described mutant of h beta c (FI delta, which has a small duplication in the extracellular region), was capable of inducing factor independence in CTLL-2 cells, while only V449E could induce factor independence in BAF-B03 cells. These results imply that the extracellular and transmembrane mutations act by different mechanisms. Furthermore, they imply that the mutants, and hence also wild-type h beta c, interact with cell type-specific signalling molecules. Models are presented which illustrate how these mutations may act and predict some of the characteristics of the putative receptor-associated signalling molecules. Images PMID:7556069

  15. Bone marrow-derived macrophages grown in GM-CSF or M-CSF differ in their ability to produce IL-12 and to induce IFN-gamma production after stimulation with Trypanosoma cruzi antigens.

    PubMed

    Tadokoro, C E; de Almeida Abrahamsohn, I

    2001-05-01

    Trypanosoma cruzi is the etiological agent of Chagas' disease in man. Control of parasitism at the beginning of experimental infection depends on cytokine-activated macrophages that synthesize nitric oxide (NO). We investigated macrophage populations derived in the presence of M-CSF (M-MØ) or GM-CSF (GM-MØ) regarding their ability to control intracellular parasitism by T. cruzi and to synthesize IL-12 and NO. Both macrophage populations supported intracellular multiplication of the parasite; when activated by IFN-gamma, GM-MØ exerted better control of parasitism. Stimulation of GM-MØ with T. cruzi or Staphylococcus aureus resulted in IL-12 production and higher levels of NO synthesis in comparison with stimulated M-MØ. Mice immunized with parasite-Ag-pulsed GM-MØ but not with pulsed M-MØ had increased IFN-gamma and IL-2 production in lymph nodes. However, when immunization was followed by infection with live parasites, transient elevation of IFN-gamma production was observed in both GM-MØ- and M-MØ-immunized mice, without reduction of blood parasite levels.

  16. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells*

    PubMed Central

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-01-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. PMID:26229149

  17. Light chain (κ/λ) ratio of GM-CSF autoantibodies is associated with disease severity in autoimmune pulmonary alveolar proteinosis.

    PubMed

    Nei, Takahito; Urano, Shinya; Itoh, Yuko; Kitamura, Nobutaka; Hashimoto, Atsushi; Tanaka, Takahiro; Motoi, Natsuki; Kaneko, Chinatsu; Tazawa, Ryushi; Nakagaki, Kazuhide; Arai, Toru; Inoue, Yoshikazu; Nakata, Koh

    2013-12-01

    Previous studies demonstrated that antigranulocyte colony-stimulating factor autoantibody (GMAb) was consistently present in patients with autoimmune pulmonary alveolar proteinosis (aPAP), and, thus, represented candidature as a reliable diagnostic marker. However, our large cohort study suggested that the concentration of this antibody was not correlated with disease severity in patients. We found that the κ/λ ratio of GMAb was significantly correlated with the degree of hypoxemia. The proportion of λ-type GMAb per total λ-type IgG was significantly higher in severely affected patients than those in mildly affected patients, but the proportion of κ-type was unchanged. The κ/λ ratio was significantly correlated with both KL-6 and SP-D, which have been previously reported as disease severity markers. Thus, the light chain isotype usage of GMAb may not only be associated with the severity of aPAP, but may also represent a useful disease severity marker.

  18. Autologous tumor cell vaccination plus infusion of GM-CSF by a programmable pump in the treatment of recurrent malignant gliomas.

    PubMed

    Clavreul, Anne; Piard, Nicole; Tanguy, Jean-Yves; Gamelin, Eric; Rousselet, Marie-Christine; Leynia, Pierre; Menei, Philippe

    2010-07-01

    We report on the safety and feasibility of autologous tumor cell vaccination combined with infusion of granulocyte-macrophage colony-stimulating factor by a programmable pump in the treatment of recurrent malignant gliomas. The programmable pump is a promising tool used to infuse cytokines subcutaneously for vaccination. Our trial enrolled nine patients who had undergone surgery, radiation and had been successfully weaned off steroids. Unfortunately, only five patients completed the protocol and were monitored for side effects, local reactions, delayed-type hypersensitivity (DTH) responses and survival. The treatment was well tolerated. Two patients developed DTH reactions after vaccination and three patients had an unusually long survival without any other treatment. Despite the few patients treated, the results of this trial are encouraging. This study also highlights the specific difficulties encountered in vaccination programs for the treatment of glioma.

  19. Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma

    PubMed Central

    Molfino, Nestor A; Kuna, Piotr; Leff, Jonathan A; Oh, Chad K; Singh, Dave; Chernow, Marlene; Sutton, Brian; Yarranton, Geoffrey

    2016-01-01

    Objectives We wished to evaluate the effects of an antigranulocyte-macrophage colony-stimulating factor monoclonal antibody (KB003) on forced expiratory volume in 1 s (FEV1), asthma control and asthma exacerbations in adult asthmatics inadequately controlled by long-acting bronchodilators and inhaled/oral corticosteroids. Settings 47 ambulatory asthma care centres globally. Primary outcome measures Change in FEV1 at week 24. Participants 311 were screened, 160 were randomised and 129 completed the study. Interventions 7 intravenous infusions of either 400 mg KB003 or placebo at baseline and weeks 2, 4, 8, 12, 16 and 20. Primary and secondary outcome measures FEV1 at week 24, asthma control, exacerbation rates and safety in all participants as well as prespecified subgroups. Main results In the KB003 treated group, FEV1 at week 24 improved to 118 mL compared with 54 mL in the placebo group (p=0.224). However, FEV1 improved to 253 vs 26 mL at week 24 (p=0.02) in eosinophilic asthmatics (defined as >300 peripheral blood eosinophils/mL at baseline) and comparable improvements were seen at weeks 20 (p=0.034) and 24 (p=0.077) in patients with FEV1 reversibility ≥20% at baseline and at weeks 4 (p=0.029), 16 (p=0.018) and 20 (p=0.006) in patients with prebronchodilator FEV1 ≤50% predicted at baseline. There were no effects on asthma control or exacerbation rates. The most frequent adverse events in the KB003 group were rhinosinusitis and headache. There was no significant difference in antidrug antibody response between placebo and treated groups. There were no excess infections or changes in biomarkers known to be associated with the development of pulmonary alveolar proteinosis. Conclusions Higher doses and/or further asthma phenotyping may be required in future studies with KB003. Trial registration number NCT01603277; Results. PMID:26739717

  20. Arecoline increases basic fibroblast growth factor but reduces expression of IL-1, IL-6, G-CSF and GM-CSF in human umbilical vein endothelium.

    PubMed

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Moore, Malcolm A S; Zoellner, Hans

    2015-09-01

    Areca nut chewing is associated with oral submucous fibrosis (OSF). Raised vascular basic fibroblast growth factor may induce fibrosis. Arecoline is a muscarinic alkaloid in areca nut, which we earlier reported causes injury and necrosis of human endothelium. Human umbilical vein endothelial cells were exposed to arecoline with or without tumor necrosis factor-α, and separately to acetylcholine, muscarine, or nicotine. Protein levels of basic fibroblast growth factor, as well as the inflammatory cytokines: granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor, and Interleukins-6, 1-α and 1-β, were determined by enzyme-linked immunosorbent assay. mRNA levels were established by real-time reverse transcription polymerase chain reaction. Basic fibroblast growth factor was released into the culture medium at arecoline levels causing necrosis (P < 0.05). This contrasted with an opposite effect of arecoline on levels of the inflammatory cytokines (P < 0.05). Tumor necrosis factor-α increased IL-6 and granulocyte-macrophage colony stimulated factor, but arecoline reduced this stimulated expression (P < 0.05). Arecoline had no effect on mRNA for basic fibroblast growth factor, although there was reduced mRNA for the separate inflammatory cytokines studied. The effect of acetylcholine, muscarine, and nicotine was minimal and dissimilar to that of arecoline. Data raise the possibility that arecoline-induced, vascular basic fibroblast growth factor contributes to OSF, by combining increased growth factor expression with endothelial necrosis, and thus driving fibroblast proliferation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts

    PubMed Central

    Rudisch, Albin; Dewhurst, Matthew Richard; Horga, Luminita Gabriela; Kramer, Nina; Harrer, Nathalie; Dong, Meng; van der Kuip, Heiko; Wernitznig, Andreas; Bernthaler, Andreas; Dolznig, Helmut; Sommergruber, Wolfgang

    2015-01-01

    We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the “cytokine fingerprints” identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay. PMID:25919140

  2. Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling.

    PubMed

    Brauer, Helena; Strauss, Julia; Wegner, Wiebke; Müller-Tidow, Carsten; Horstmann, Martin; Jücker, Manfred

    2012-11-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of the PI3K/AKT pathway, which is constitutively activated in 50-70% of acute myeloid leukemias (AML). Ten different missense mutations in SHIP1 have been described in 3% of AML patients suggesting a functional role of SHIP1 in AML. Here, we report the identification of two new SHIP1 mutations T162P and R225W that were detected in 2 and 1 out of 96 AML patients, respectively. The functional analysis of all 12 AML-associated SHIP1 mutations, one ALL-associated SHIP1 mutation (Q1076X) and a missense SNP (H1168Y) revealed that two mutations i.e. Y643H and P1039S abrogated the ability of SHIP1 to reduce constitutive PI3K/AKT signaling in Jurkat cells. The loss of function of SHIP1 mutant Y643H which is localized in the inositol phosphatase domain was due to a reduction of the specific activity by 84%. Because all other SHIP1 mutants had a normal enzymatic activity, we assumed that these SHIP1 mutants may be functionally impaired due to a loss of interaction with plasma membrane receptors or adapter proteins. In agreement with this model, we found that the SHIP1 mutant F28L located in the FLVR motif of the SH2 domain was incapable of binding tyrosine-phosphorylated proteins including the GM-CSF receptor and that the SHIP1 mutant Q1076X lost its ability to bind to the C-terminal SH3 domain of the adapter protein Grb2. In addition, SHIP1 mutant P1039S which does not reduce PI3K/AKT signaling anymore is located in a PXXP SH3 domain consensus binding motif suggesting that mutation of the conserved proline residue interferes with binding of SHIP1 to a so far unidentified SH3 domain containing protein. In summary, our data indicate that SHIP1 mutations detected in human leukemia patients impair the negative regulatory function of SHIP1 on PI3K/AKT signaling in leukemia cells either directly by reduced enzymatic activity or indirectly by disturbed protein interaction with tyrosine-phosphorylated membrane receptors or

  3. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults.

    PubMed

    Buchbinder, Susan P; Grunenberg, Nicole A; Sanchez, Brittany J; Seaton, Kelly E; Ferrari, Guido; Moody, M Anthony; Frahm, Nicole; Montefiori, David C; Hay, Christine M; Goepfert, Paul A; Baden, Lindsey R; Robinson, Harriet L; Yu, Xuesong; Gilbert, Peter B; McElrath, M Juliana; Huang, Yunda; Tomaras, Georgia D

    2017-01-01

    A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. ClinicalTrials.gov NCT01571960.

  4. Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults

    PubMed Central

    Grunenberg, Nicole A.; Sanchez, Brittany J.; Seaton, Kelly E.; Ferrari, Guido; Moody, M. Anthony; Frahm, Nicole; Montefiori, David C.; Hay, Christine M.; Goepfert, Paul A.; Baden, Lindsey R.; Robinson, Harriet L.; Yu, Xuesong; Gilbert, Peter B.; McElrath, M. Juliana; Huang, Yunda; Tomaras, Georgia D.

    2017-01-01

    Background A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Methods Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. Results All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. Conclusion This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. Trial registration ClinicalTrials.gov NCT01571960 PMID:28727817

  5. Growth advantage of chronic myeloid leukemia CFU-GM in vitro: survival to growth factor deprivation, possibly related to autocrine stimulation, is a more common feature than hypersensitivity to GM-CSF/IL3 and is efficiently counteracted by retinoids +- alpha-interferon.

    PubMed

    Ferrero, D; Foli, C; Giaretta, F; Argentino, C; Rus, C; Pileri, A

    2001-03-01

    Bcr/abl fusion gene, in experimental models, induces survival to growth factor deprivation and hypersensitivity to IL3. However, conflicting data were reported about chronic myeloid leukemia (CML) progenitors. We investigated the responsiveness of purified CML CFU-GM to GM-CSF/IL3 and their survival to growth factor deprivation. CFU-GM hypersensitivity to IL3 and/or GM-CSF was found in 3/11 CML cases only. CML CFU-GM survived well in stroma-free 'mass' culture (5 x 10(4) cells/ml) without cytokine addition, up to day 11, average recovery being around 95% in medium + 10% fetal bovine serum and 67-81% in serum-free medium. Conversely, normal progenitors declined steadily, particularly after extensive purification (18 +/- 10% recovery at the 7th day), and in serum-free medium (4 +/- 6% recovery). By contrast, normal and CML CFU-GM declined in a similar way in limiting dilution cultures (1-10 cells/50 microl). We also investigated the effects of retinoic acid and alpha-interferon on CFU-GM survival. Both all-trans- and 13-cis retinoic acid, particularly in combination with alpha-interferon, reduced CML CFU-GM recovery down to normal progenitors' values. In conclusion, hypersensitivity to CSFs is rare in CML, whereas resistance to growth factor deprivation has been confirmed in mass, but not in limiting, dilution cultures. Both stereoisomers of retinoic acid, at therapeutic concentrations and in combination with alpha-interferon, can overcome the survival advantage of CML progenitors.

  6. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA

    PubMed Central

    Richie, Thomas L.; Charoenvit, Yupin; Wang, Ruobing; Epstein, Judith E.; Hedstrom, Richard C.; Kumar, Sanjai; Luke, Thomas C.; Freilich, Daniel A.; Aguiar, Joao C.; Sacci, Jr., John B.; Sedegah, Martha; Nosek, Jr., Ronald A.; De La Vega, Patricia; Berzins, Mara P.; Majam, Victoria F.; Abot, Esteban N.; Ganeshan, Harini; Richie, Nancy O.; Banania, Jo Glenna; Baraceros, Maria Fe B.; Geter, Tanya G.; Mere, Robin; Bebris, Lolita; Limbach, Keith; Hickey, Bradley W.; Lanar, David E.; Ng, Jennifer; Shi, Meng; Hobart, Peter M.; Norman, Jon A.; Soisson, Lorraine A.; Hollingdale, Michael R.; Rogers, William O.; Doolan, Denise L.; Hoffman, Stephen L.

    2012-01-01

    When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines. PMID:23151451

  7. The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: A double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901

    SciTech Connect

    Ryu, Janice K. . E-mail: janice.ryu@ucdmc.ucdavis.edu; Swann, Suzanne; LeVeque, Francis; Johnson, Darlene J.; Chen, Allan; Fortin, Andre; Kim, Harold; Ang, Kian K.

    2007-03-01

    Purpose: Based on early clinical evidence of potential mucosal protection by granulocyte-macrophage colony stimulating factor (GM-CSF), the Radiation Therapy Oncology Group conducted a double-blind, placebo-controlled, randomized study to test the efficacy and safety of GM-CSF in reducing the severity and duration of mucosal injury and pain (mucositis) associated with curative radiotherapy (RT) in head-and-neck cancer patients. Methods and Materials: Eligible patients included those with head-and-neck cancer with radiation ports encompassing >50% of oral cavity and/or oropharynx. Standard RT ports were used to cover the primary tumor and regional lymphatics at risk in standard fractionation to 60-70 Gy. Concurrent cisplatin chemotherapy was allowed. Patients were randomized to receive subcutaneous injection of GM-CSF 250 {mu}g/m{sup 2} or placebo 3 times a week. Mucosal reaction was assessed during the course of RT using the National Cancer Institute Common Toxicity Criteria and the protocol-specific scoring system. Results: Between October 2000 and September 2002, 130 patients from 36 institutions were accrued. Nine patients (7%) were excluded from the analysis, 3 as a result of drug unavailability. More than 80% of the patients participated in the quality-of-life endpoint of this study. The GM-CSF did not cause any increase in toxicity compared with placebo. There was no statistically significant difference in the average mean mucositis score in the GM-CSF and placebo arms by a t test (p = 0.4006). Conclusion: This placebo-controlled, randomized study demonstrated no significant effect of GM-CSF given concurrently compared with placebo in reducing the severity or duration of RT-induced mucositis in patients undergoing definitive RT for head-and-neck cancer.

  8. Progenitor cell release plus exercise to improve functional performance in peripheral artery disease: the PROPEL Study.

    PubMed

    Domanchuk, Kathryn; Ferrucci, Luigi; Guralnik, Jack M; Criqui, Michael H; Tian, Lu; Liu, Kiang; Losordo, Douglas; Stein, James; Green, David; Kibbe, Melina; Zhao, Lihui; Annex, Brian; Perlman, Harris; Lloyd-Jones, Donald; Pearce, William; Taylor, Doris; McDermott, Mary M

    2013-11-01

    Functional impairment, functional decline, and mobility loss are major public health problems in people with lower extremity peripheral artery disease (PAD). Few medical therapies significantly improve walking performance in PAD. We describe methods for the PROgenitor cell release Plus Exercise to improve functionaL performance in PAD (PROPEL) Study, a randomized controlled clinical trial designed to determine whether granulocyte-macrophage colony stimulating factor (GM-CSF) combined with supervised treadmill walking exercise improves six-minute walk distance more than GM-CSF alone, more than supervised treadmill exercise alone, and more than placebo plus attention control in participants with PAD, respectively. PROPEL Study participants are randomized to one of four arms in a 2 by 2 factorial design. The four study arms are GM-CSF plus supervised treadmill exercise, GM-CSF plus attention control, placebo plus supervised exercise therapy, or placebo plus attention control. The primary outcome is change in six-minute walk distance at 12-week follow-up. Secondary outcomes include change in brachial artery flow-mediated dilation (FMD), change in maximal treadmill walking time, and change in circulating CD34+ cells at 12-week follow-up. Outcomes are also measured at six-week and six-month follow-up. Results of the PROPEL Study will have important implications for understanding mechanisms of improving walking performance and preventing mobility loss in the large and growing number of men and women with PAD.

  9. Gene expression profiles of some cytokines, growth factors, receptors, and enzymes (GM-CSF, IFNγ, MMP-2, IGF-II, EGF, TGF-β, IGF-IIR) during pregnancy in the cat uterus.

    PubMed

    Agaoglu, Ozgecan Korkmaz; Agaoglu, Ali Reha; Guzeloglu, Aydin; Aslan, Selim; Kurar, Ercan; Kayis, Seyit Ali; Schäfer-Somi, Sabine

    2016-03-01

    Early pregnancy is one of the most critical periods of pregnancy, and many factors such as cytokines, enzymes, and members of the immune system have to cooperate in a balanced way. In the present study, the gene expression profiles of factors associated with pregnancy such as EGF, transforming growth factor beta, granulocyte-macrophage colony-stimulating factor, interferon gamma, insulin-like growth factor 2, insulin-like growth factor 2 receptor, and matrix metalloproteinase 2 were analyzed in uterine tissues of female cats. The cats were assigned to five groups: G1 (embryo positive, n = 7; 7th day after mating), G2 (after implantation, n = 7; 20th day after mating), G3 (midgestation, n = 7; 24-25th day after mating), G4 (late gestation, n = 7; 30-45th day after mating), G5 (oocyte group, n = 7; 7th day after estrus). Tissue samples from the uterus and placenta were collected after ovariohysterectomy. Relative messenger RNA levels were determined by real-time polymerase chain reaction. All the factors examined were detected in all tissue samples. In the course of pregnancy, significantly higher expression of EGF and matrix metalloproteinase 2 in G2 than in G1 was observed (P < 0.05). Insulin-like growth factor 2 expression was higher in all groups than in G1 (P < 0.05). Upregulation of EGF during implantation was detected. The expression of interferon gamma was significantly higher in G3 than in G1 (P < 0.05). Transforming growth factor beta and granulocyte-macrophage colony-stimulating factor were constantly expressed in all groups. In conclusion, the expressions of these factors in feline uterine tissue at different stages of pregnancy might indicate that these factors play roles in the development of pregnancy such as trophoblast invasion, vascularization, implantation, and placentation.

  10. Granulocyte-macrophage colony-stimulating factor (GM-CSF)–secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML)

    PubMed Central

    Borrello, Ivan M.; Stock, Wendy; Sher, Dorie; Qin, Lu; DeAngelo, Daniel J.; Alyea, Edwin P.; Stone, Richard M.; Damon, Lloyd E.; Linker, Charles A.; Maslyar, Daniel J.; Hege, Kristen M.

    2009-01-01

    Preclinical models have demonstrated the efficacy of granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapies (GVAX platform) accompanied by immunotherapy-primed lymphocytes after autologous stem cell transplantation in hematologic malignancies. We conducted a phase 2 study of this combination in adult patients with acute myeloid leukemia. Immunotherapy consisted of autologous leukemia cells admixed with granulocyte-macrophage colony-stimulating factor-secreting K562 cells. “Primed” lymphocytes were collected after a single pretransplantation dose of immunotherapy and reinfused with the stem cell graft. Fifty-four subjects were enrolled; 46 (85%) achieved a complete remission, and 28 (52%) received the pretransplantation immunotherapy. For all patients who achieved complete remission, the 3-year relapse-free survival (RFS) rate was 47.4% and overall survival was 57.4%. For the 28 immunotherapy-treated patients, the RFS and overall survival rates were 61.8% and 73.4%, respectively. Posttreatment induction of delayed-type hypersensitivity reactions to autologous leukemia cells was associated with longer 3-year RFS rate (100% vs 48%). Minimal residual disease was monitored by quantitative analysis of Wilms tumor-1 (WT1), a leukemia-associated gene. A decrease in WT1 transcripts in blood was noted in 69% of patients after the first immunotherapy dose and was also associated with longer 3-year RFS (61% vs 0%). In conclusion, immunotherapy in combination with primed lymphocytes and autologous stem cell transplantation shows encouraging signals of potential activity in acute myeloid leukemia (ClinicalTrials.gov: NCT00116467). PMID:19556425

  11. Cosmos 2229 immunology study (Experiment K-8-07)

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  12. Efficacy and Safety/Toxicity Study of Recombinant Vaccinia Virus JX-594 in Two Immunocompetent Animal Models of Glioma

    PubMed Central

    Lun, XueQing; Chan, Jennifer; Zhou, Hongyuan; Sun, Beichen; Kelly, John JP; Stechishin, Owen Owen; Bell, John C; Parato, Kelley; Hu, Kang; Vaillant, Dominique; Wang, Jiahu; Liu, Ta-Chiang; Breitbach, Caroline; Kirn, David; Senger, Donna L; Forsyth, Peter A

    2010-01-01

    The purpose of this study was to investigate the oncolytic potential of the recombinant, granulocyte macrophage colony-stimulating factor (GM-CSF)-expressing vaccinia virus (VV) JX-594 in experimental malignant glioma (MGs) in vitro and in immunocompetent rodent models. We have found that JX-594 killed all MG cell lines tested in vitro. Intratumoral (i.t.) administration of JX-594 significantly inhibited tumor growth and prolonged survival in rats-bearing RG2 intracranial (i.c.) tumors and mice-bearing GL261 brain tumors. Combination therapy with JX-594 and rapamycin significantly increased viral replication and further prolonged survival in both immunocompetent i.c. MG models with several animals considered “cured” (three out of seven rats >120 days, terminated experiment). JX-594 infected and killed brain tumor-initiating cells (BTICs) from patient samples grown ex vivo, and did so more efficiently than other oncolytic viruses MYXV, Reovirus type-3, and VSVΔM51. Additional safety/toxicity studies in nontumor-bearing rodents treated with a supratherapeutic dose of JX-594 demonstrated GM-CSF-dependent inflammation and necrosis. These results suggest that i.c. administered JX-594 triggers a predictable GM-CSF-mediated inflammation in murine models. Before proceeding to clinical trials, JX-594 should be evaluated in the brains of nonhuman primates and optimized for the viral doses, delivery routes as well as the combination agents (e.g., mTOR inhibitors). PMID:20808290

  13. Efficacy and safety/toxicity study of recombinant vaccinia virus JX-594 in two immunocompetent animal models of glioma.

    PubMed

    Lun, XueQing; Chan, Jennifer; Zhou, Hongyuan; Sun, Beichen; Kelly, John J P; Stechishin, Owen Owen; Bell, John C; Parato, Kelley; Hu, Kang; Vaillant, Dominique; Wang, Jiahu; Liu, Ta-Chiang; Breitbach, Caroline; Kirn, David; Senger, Donna L; Forsyth, Peter A

    2010-11-01

    The purpose of this study was to investigate the oncolytic potential of the recombinant, granulocyte macrophage colony-stimulating factor (GM-CSF)-expressing vaccinia virus (VV) JX-594 in experimental malignant glioma (MGs) in vitro and in immunocompetent rodent models. We have found that JX-594 killed all MG cell lines tested in vitro. Intratumoral (i.t.) administration of JX-594 significantly inhibited tumor growth and prolonged survival in rats-bearing RG2 intracranial (i.c.) tumors and mice-bearing GL261 brain tumors. Combination therapy with JX-594 and rapamycin significantly increased viral replication and further prolonged survival in both immunocompetent i.c. MG models with several animals considered "cured" (three out of seven rats >120 days, terminated experiment). JX-594 infected and killed brain tumor-initiating cells (BTICs) from patient samples grown ex vivo, and did so more efficiently than other oncolytic viruses MYXV, Reovirus type-3, and VSV(ΔM51). Additional safety/toxicity studies in nontumor-bearing rodents treated with a supratherapeutic dose of JX-594 demonstrated GM-CSF-dependent inflammation and necrosis. These results suggest that i.c. administered JX-594 triggers a predictable GM-CSF-mediated inflammation in murine models. Before proceeding to clinical trials, JX-594 should be evaluated in the brains of nonhuman primates and optimized for the viral doses, delivery routes as well as the combination agents (e.g., mTOR inhibitors).

  14. A Safety and Feasibility Study of an Allogeneic Colon Cancer Cell Vaccine Administered with a Granulocyte–Macrophage Colony Stimulating Factor–Producing Bystander Cell Line in Patients with Metastatic Colorectal Cancer

    PubMed Central

    Zheng, Lei; Edil, Barish H.; Soares, Kevin C.; El-Shami, Khaled; Uram, Jennifer N.; Judkins, Carol; Zhang, Zhe; Onners, Beth; Laheru, Daniel; Pardoll, Drew; Jaffee, Elizabeth M.; Schulick, Richard D.

    2014-01-01

    Background Despite recent advances in earlier detection and improvements in chemotherapy, the 5-year survival rate of patients with metastatic colorectal carcinoma remains poor. Immunotherapy is a potentially effective therapeutic approach to the treatment of colorectal carcinoma. Preclinical studies have supported the antitumor activity of immunization with a granulocyte–macrophage colony-stimulating factor (GM-CSF) producing murine colon tumor cell vaccine. Methods A novel colorectal cancer vaccine composed of irradiated, allogeneic human colon cancer cells and GM-CSF-producing bystander cells was developed and tested in combination with a single intravenous low dose of cyclophosphamide in a phase 1 study of patients with metastatic colorectal cancer. Results A total of nine patients were enrolled onto and treated in this study. Six patients had a history of colorectal adenocarcinoma hepatic metastases and underwent curative metastasectomy, while three other patients had unresectable stage IV disease. This study demonstrates the safety and feasibility of this vaccine administered in patients with metastatic colorectal cancer. At last follow-up, the six patients who underwent curative metastasectomy survived longer than 36 months, and four of these six patients were without disease recurrence. Immunologic correlate results suggest that the GM-CSF-producing colon cancer vaccine enhances the production of anti-MUC1 antibodies. Conclusions This vaccine is feasible and safe. Future investigation of the efficacy and antitumor immunity of this vaccine is warranted. PMID:24943235

  15. Low concentrations of recombinant granulocyte macrophage-colony stimulating factor derived from Chinese hamster ovary cells augments long-term bioactivity with delayed clearance in vitro.

    PubMed

    Hashimoto, Atsushi; Tanaka, Takahiro; Itoh, Yuko; Yamagata, Akira; Kitamura, Nobutaka; Tazawa, Ryushi; Nakagaki, Kazuhide; Nakata, Koh

    2014-08-01

    To date, the biological activity of granulocyte macrophage-colony stimulating factor (GM-CSF) has been investigated by using mostly Escherichia coli- or yeast cell-derived recombinant human GM-CSF (erhGM-CSF and yrhGM-CSF, respectively). However, Chinese hamster ovary cell-derived recombinant human GM-CSF (crhGM-CSF), as well as natural human GM-CSF, is a distinct molecule that includes modifications by complicated oligosaccharide moieties. In the present study, we reevaluated the bioactivity of crhGM-CSF by comparing it with those of erhGM-CSF and yrhGM-CSF. The effect of short-term stimulation (0.5h) on the activation of neutrophils/monocytes or peripheral blood mononuclear cells (PBMCs) by crhGM-CSF was lower than those with erhGM-CSF or yrhGM-CSF at low concentrations (under 60pM). Intermediate-term stimulation (24h) among the different rhGM-CSFs with respect to its effect on the activation of TF-1 cells, a GM-CSF-dependent cell line, or PBMCs was not significantly different. In contrast, the proliferation/survival of TF-1 cells or PBMCs after long-term stimulation (72-168h) was higher at low concentrations of crhGM-CSF (15-30pM) than that of cells treated with other GM-CSFs. The proportion of apoptotic TF-1 cells after incubation with crhGM-CSF for 72h was lower than that of cells incubated with other rhGM-CSFs. These effects were attenuated by desialylation of crhGM-CSF. Clearance of crhGM-CSF but not desialylated-crhGM-CSF by both TF-1 cells and PBMCs was delayed compared with that of erhGM-CSF or yrhGM-CSF. These results suggest that sialylation of oligosaccharide moieties delayed the clearance of GM-CSF, thus eliciting increased long-term bioactivity in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Hornell, Tara M C; Beresford, Guy W; Bushey, Alyssa; Boss, Jeremy M; Mellins, Elizabeth D

    2003-09-01

    GM-CSF stimulates the growth and differentiation of hematopoietic progenitors and also affects mature cell function. These effects have led to the use of GM-CSF as a vaccine adjuvant with promising results; however, the mechanisms underlying GM-CSF-mediated immune potentiation are incompletely understood. In this study, we investigated the hypothesis that the immune stimulatory role of GM-CSF is in part due to effects on class II MHC Ag presentation. We find that, in primary human monocytes treated for 24-48 h, GM-CSF increases surface class II MHC expression and decreases the relative level of the invariant chain-derived peptide, CLIP, bound to surface class II molecules. GM-CSF also increases expression of the costimulatory molecules CD86 and CD40, but not the differentiation marker CD1a or CD16. Furthermore, GM-CSF-treated monocytes are better stimulators in a mixed leukocyte reaction. Additional analyses of the class II pathway revealed that GM-CSF increases total protein and RNA levels of HLA-DR, DM, and DOalpha. Expression of class II transactivator (CIITA) types I and III, but not IV, transcripts increases in response to GM-CSF. Furthermore, GM-CSF increases the amount of CIITA associated with the DR promoter. Thus, our data argue that the proinflammatory role of GM-CSF is mediated in part through increased expression of key molecules involved in the class II MHC pathway via induction of CIITA.

  17. Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes.

    PubMed

    Brizzi, M F; Aronica, M G; Rosso, A; Bagnara, G P; Yarden, Y; Pegoraro, L

    1996-02-16

    Granulocyte-macrophage colony-stimulating factor (GM-CSF), supports proliferation, differentiation, and functional activation of hemopoietic cells by its interaction with a heterodimeric receptor. Although GM-CSF receptor is devoid of tyrosine kinase enzymatic activity, GM-CSF-induced peripheral blood polymorphonuclear leukocytes (PMN) functional activation is mediated by the phosphorylation of a large number of intracellular signaling molecules. We have previously shown that JAK2 becomes tyrosine-phosphorylated in response to GM-CSF in PMN. In the present study we demonstrate that also the signal transducers and activators of transcription (STAT) family members STAT1 p91 and STAT3 p92 and the product of the c-fps/fes protooncogene become tyrosine-phosphorylated upon GM-CSF stimulation and physically associated with both GM-CSF receptor beta common subunit and JAK2. Moreover GM-CSF was able to induce JAK2 and p93fes catalytic activity. We also demonstrate that the association of the GM-CSF receptor beta common subunit with JAK2 is ligand-dependent. Finally we demonstrate that GM-CSF induces a DNA-binding complex that contains both p91 and p92. These results identify a new signal transduction pathway activated by GM-CSF and provide a mechanism for rapid activation of gene expression in GM-CSF-stimulated PMN.

  18. Endothelial-derived GM-CSF influences expression of oncostatin M

    USDA-ARS?s Scientific Manuscript database

    During and following transendothelial migration, neutrophils undergo a number of phenotypic changes resulting from encounters with endothelial-derived factors. This report uses an in vitro model with HUVEC and isolated human neutrophils to examine the effects of two locally-derived cytokines, granul...

  19. Pulmonary alveolar proteinosis: a complete response to GM-CSF therapy

    PubMed Central

    Barraclough, R; Gillies, A

    2001-01-01

    Pulmonary alveolar proteinosis is a rare condition traditionally requiring treatment with whole lung lavage. The case is presented of a young man who obtained complete remission following treatment with granulocyte-macrophage colony stimulating factor, a new treatment option.

 PMID:11462071

  20. Occupational inhalational exposure and serum GM-CSF autoantibody in pulmonary alveolar proteinosis.

    PubMed

    Xiao, Yong-Long; Xu, Kai-Feng; Li, Yan; Li, Yan; Li, Hui; Shi, Bin; Zhou, Ke-Feng; Zhou, Zheng-Yang; Cai, Hou-Rong

    2015-07-01

    Although the serum granulocyte-macrophage colony stimulating factor autoantibody (GMAb) levels have been recognised as a diagnostic marker in primary pulmonary alveolar proteinosis (PAP), their role in PAP with occupational inhalational exposure (PAPo) remains unclear. Forty-five consecutive patients with PAP were enrolled. Each patient with PAP was assessed for baseline clinical characteristics, chest high-resolution CT (HRCT), serum GMAb and occupational exposure. Fifty healthy controls were included to define normal ranges for GMAb levels. Ninety-seven hospital controls with other respiratory diseases were included to establish prevalence of a history of occupational inhalation exposure. According to the serum GMAb cut-off value of 2.39 μg/mL, 84.4% of the recruited patients with PAP had positive serum GMAb with a median level of 28.7 μg/mL, defined as autoimmune PAP, and the remaining 15.6% had negative serum GMAb with a median level of 0.16 μg/mL, defined as non-autoimmune PAP. Also, 34.2% of patients with autoimmune PAP had a history of occupational inhalational exposure, which was not significantly higher than that of hospital controls (34.2% vs 19.6%, p=0.072). Four patients with PAPo showed negative GMAb. Their arterial oxygen tension, pulmonary function parameters and chest HRCT features were significantly different when compared with patients with autoimmune PAP (p<0.05). These four non-autoimmune occupational lung disease cases culminated in 3 deaths and a lung transplant. A number of patients with PAP who may have occupational inhalational exposure and negative serum GMAb represent a high possibility of silicoproteinosis and very poor survival. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Phase II Study of Adjuvant Immunotherapy with the CSF-470 Vaccine Plus Bacillus Calmette–Guerin Plus Recombinant Human Granulocyte Macrophage-Colony Stimulating Factor vs Medium-Dose Interferon Alpha 2B in Stages IIB, IIC, and III Cutaneous Melanoma Patients: A Single Institution, Randomized Study

    PubMed Central

    Mordoh, José; Pampena, María Betina; Aris, Mariana; Blanco, Paula Alejandra; Lombardo, Mónica; von Euw, Erika María; Mac Keon, Soledad; Yépez Crow, Michelle; Bravo, Alicia Inés; O’Connor, Juan Manuel; Orlando, Ana Gabriela; Ramello, Franco; Levy, Estrella Mariel; Barrio, María Marcela

    2017-01-01

    The irradiated, allogeneic, cellular CSF-470 vaccine plus Bacillus Calmette–Guerin (BCG) and recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) is being tested against medium-dose IFN-α2b in stages IIB–III cutaneous melanoma (CM) patients (pts) after surgery in an open, randomized, Phase II/III study. We present the results of the Phase II part of the ongoing CASVAC-0401 study (ClinicalTrials.gov: NCT01729663). Thirty-one pts were randomized to the CSF-470 vaccine (n = 20) or to the IFN-α2b arm (n = 11). During the 2-year treatment, immunized pts should receive 13 vaccinations. On day 1 of each visit, 1.6 × 107 irradiated CSF-470 cells plus 106 colony-forming units BCG plus 100 µg rhGM-CSF were administered intradermally, followed on days 2–4 by 100 µg rhGM-CSF. IFN-α2b pts should receive 10 million units (MU)/day/5 days a week for 4 weeks; then 5 MU thrice weekly for 23 months. Toxicity and quality of life (QOL) were evaluated at each visit. With a mean and a maximum follow-up of 39.4 and 83 months, respectively, a significant benefit in the distant metastasis-free survival (DMFS) for CSF-470 was observed (p = 0.022). Immune monitoring showed an increase in antitumoral cellular and humoral response in vaccinated pts. CSF-470 was well tolerated; 20/20 pts presented grades 1–2 dermic reactions at the vaccination site; 3/20 pts presented grade 3 allergic reactions. Other adverse events (AEs) were grade 1. Pts in the IFN-α2b arm presented grades 2–3 hematological (7/11), hepatic (2/11), and cardiac (1/11) toxicity; AEs in 9/11 pts forced treatment interruptions. QOL was significantly superior in the vaccine arm (p < 0.0001). Our results suggest that CSF-470 vaccine plus BCG plus GM-CSF can significantly prolong, with lower toxicity, the DMFS of high-risk CM pts with respect to medium-dose IFN-α2b. The continuation of a Phase III part of the CASVAC-0401 study is encouraged. PMID:28620382

  2. Molecular cloning and in vivo evaluation of canine granulocyte-macrophage colony-stimulating factor.

    PubMed

    Nash, R A; Schuening, F; Appelbaum, F; Hammond, W P; Boone, T; Morris, C F; Slichter, S J; Storb, R

    1991-08-15

    Canine granulocyte-macrophage colony-stimulating factor (caGM-CSF) was cloned and expressed to allow further investigation of GM-CSF in a large animal model. The cDNA is 850 base pairs (bp) long and encodes a peptide of 144 amino acids. The nucleotide and amino acid sequence homology between caGM-CSF and human GM-CSF (hGM-CSF) is 80% and 70%, respectively. A mammalian expression vector pCMV/CAGM was constructed and used to transfect COS cells for expression of caGM-CSF. Supernatant from transfected COS cells enriched with caGM-CSF was shown to have significant stimulating activity in granulocyte-macrophage colony forming unit (CFU-GM) assays of canine marrow. caGM-CSF, expressed from bacteria, was used to treat seven dogs at varying doses twice daily subcutaneously (sc) for 14 to 16 days. Circulating blood neutrophils and monocytes increased significantly. The increase in circulating eosinophils was variable. Thrombocytopenia developed during administration of caGM-CSF but corrected rapidly after cessation of treatment. Evaluation of survival times of 51Cr-labeled autologous platelets suggested increased consumption as the primary reason for thrombocytopenia. A species-specific GM-CSF will be a useful tool for hematologic or immunologic studies in dogs.

  3. Molecular cloning and expression of woodchuck granulocyte-macrophage colony stimulating factor.

    PubMed

    Wu, H L; Chen, P J; Lin, H K; Lee, R S; Lin, H L; Liu, C J; Lee, P J; Lee, J J; Chen, D S

    2001-11-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) has immunoregulatory and antiviral effects, and may thus be promising for the treatment of chronic hepatitis B. Using woodchuck hepatitis virus (WHV)-infected woodchuck as an animal model to test the efficacy and safety of GM-CSF on the therapy of chronic hepatitis B, woodchuck GM-CSF will be required due to the apparent species-specific activity of GM-CSF. The cDNA of woodchuck GM-CSF was cloned using reverse transcription-polymerase chain reaction (RT-PCR) with primers deriving from highly conserved regions of GM-CSF genes from other species. The deduced amino acids, including the signal peptide, is 138 in length and its identities to human, murine, canine and bovine GM-CSFs are 63, 49, 63, and 63% respectively. The genomic DNA of woodchuck GM-CSF was also cloned by PCR. Its organization is highly homologous to that of human and murine GM-CSF genes, consisting of four exons and three introns. Cloned woodchuck GM-CSF was expressed transiently in 293T cells. The recombinant protein expressed was found to stimulate the growth and differentiation of woodchuck bone marrow cells, indicating the protein expressed by the cloned gene is functional. These results pave the way for future studies on the potential role of GM-CSF for the treatment of chronic hepatitis B by using this animal model. Copyright 2001 Wiley-Liss, Inc.

  4. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor

    PubMed Central

    ZHAI, YONGZHEN; ZHOU, YAN; LI, XIMEI; FENG, GUOHE

    2015-01-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM-CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan-pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF. PMID:25738258

  5. Immunophenotypic and ultrastructural study in peripheral blood neutrophil granulocytes following bone marrow transplantation.

    PubMed

    Masat, T; Feliu, E; Villamor, N; Castellsagué, J; Ordi, J; Fabregues, M; Rozman, C

    1997-08-01

    Neutrophil studies after bone marrow transplantation (BMT) describe chemotactic and phagocytotic alterations and dyshaemopoiesis. Neutrophil granulocytes (NG) in peripheral blood after BMT were analysed in 28 patients. 14 patients (six receiving GM-CSF) underwent autologous BMT and 14 underwent allogeneic BMT. Immunophenotypic and electron microscopic studies were performed during post-BMT granulopoietic regeneration. Results were compared with NG from 15 healthy bone marrow donors (control group A) and from six patients receiving intensive chemotherapy before autologous BMT (control group B). A significant increase in CD15 and a decrease in 8C7 antigen expression was observed in peripheral blood NG from BMT patients compared with controls A. MPO-7 in NG after BMT did not differ from control group A. Autologous BMT patients showed a lower percentage of NG expressing 13F6, 31D8 and CD16 (Leu 11a) than allogeneic BMT patients, and a significant decrease in 8C7 antigen expression compared with patients receiving intensive chemotherapy. Ultrastructurally, a marked decrease of azurophilic granules was observed in NG from BMT patients compared with control groups A and B. These data indicate that repopulation after BMT was made by phenotypically less mature NG with dysgranulopoietic features. Differences between autologous and allogeneic BMT patients may be partly related to GM-CSF usage. In conclusion, NG present immunophenotypic and ultrastructural changes after BMT which may be involved in abnormal NG response against bacterial infections, although further investigation is needed.

  6. Studies on canine bone marrow long-term culture: effect of stem cell factor.

    PubMed

    Neuner, E; Schumm, M; Schneider, E M; Guenther, W; Kremmer, E; Vogl, C; Büttner, M; Thierfelder, S; Kolb, H J

    1998-02-16

    Long-term culture of canine marrow cells allows in vitro studies of the hematopoietic system of the dog and characterization of early progenitor cells. Colonies of fresh marrow cells grew equally good in both agar or methylcellulose supplemented with fetal calf serum, while colonies of long-term cultures required agar-based medium containing human serum. Optimum colony growth was obtained when stem cell factor (SCF) and granulocyte-macrophage-colony-stimulating factor (GM-CSF) were used as growth stimuli of colony forming units (CFU). Similar results were achieved with several cell culture media. Addition of hydrocortisone to long-term cultures improved clonogenic growth of cultured cells. Addition of 2-mercaptoethanol had no effect. Strong differences were observed in long-term culture with different horse serum lots and the addition of fetal calf serum to long-term culture suppressed CFU growth of cultured cells. Recharging of cultures with fresh marrow cells on day 7 of culture improved CFU growth only in the following week but had little effect on the outcome. Adding SCF to long-term cultures led to differentiation of more primitive cells and destruction of the stromal layer. Investigation of purified and cultured cell populations was possible when preestablished long-term cultures as stromal layers were used. Loss of long-term culture-initiating ability could be demonstrated in this system with lineage negative marrow cells expanded ex vivo with SCF and GM-CSF.

  7. Analysis of the cytokine profiles of the synovial fluid in a normal temporomandibular joint: preliminary study.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan; Kim, Bum-Soo; Lee, Jeong-Yun; Yun, Pil-Young; Bae, Ji-Hyun; Oh, Ji-Su; Ahn, Jong-Mo; Kim, Jae-Sung; Lee, Sook-Young

    2012-12-01

    The purpose of this study was to compare the cytokine profiles of the synovial fluid from the temporomandibular joint (TMJ) spaces of normal individuals and temporomandibular disorder (TMD) patients. Thirty-four patients with planned orthognathic surgery did not present abnormalities of the TMJ on magnetic resonance images and radiographs and did not show the symptoms identified by the Research Diagnostic Criteria for TMD (RDC-TMD); as a result, they were assigned to the control group. Twenty-two patients who sought treatment for TMD during the same period were assigned to the TMD group. Synovial fluid was collected from superior TMJ spaces, and cytokine expression was analysed by an enzyme-linked immunosorbent assay (ELISA). Significant differences were tested using Fisher's exact test (p<0.05). Granulocyte Macrophage Colony stimulating Factor (GM-CSF), interferon (INF), interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10 and tumour necrosis factor (TNF)-α were detected in the TMD group, whereas no cytokines were detected in the control group. The most prevalent cytokines in the TMD group were IL-1β, IL-6 and GM-CSF. IL-4 and IL-5 were not detected in either the TMD group or in the control group. None of the cytokines that were detected in patients with TMD were found in the articular spaces of normal individuals.

  8. Cosmos: 1989 immunology studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    The effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM were determined. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies performed on Cosmos 1887. Spleen and bone marrow cells were obtained from flown, vivarium control, synchronous control, and suspended rats. The cells were stained with a series of monoclonal antibodies directed against rat leukocyte cell surface antigens. Control cells were stained with a monoclonal antibody directed against an irrelevant species or were unstained. Cells were then analyzed for fluorescence using a FACSCAN flow cytometer. Bone marrow cells were placed in culture with GM-CSF in McCoy's 5a medium and incubated for 5 days. Cultures were then evaluated for the number of colonies of 50 cells or greater.

  9. Synthesis of granulocyte–macrophage colony-stimulating factor as homogeneous glycoforms and early comparisons with yeast cell-derived material

    PubMed Central

    Zhang, Qiang; Johnston, Eric V.; Shieh, Jae-Hung; Moore, Malcolm A. S.; Danishefsky, Samuel J.

    2014-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) is a medicinally important glycoprotein, used as an immunostimulant following bone-marrow transplant. On the basis of reports of its potential utility as an anticancer vaccine adjuvant, we undertook to develop a synthetic route toward single-glycoform GM-CSF. We describe herein a convergent total synthesis of GM-CSF aglycone and two homogeneous glycoforms. Analytical and biological studies confirm the structure and activity of these synthetic congeners. PMID:24516138

  10. Granulocyte macrophage colony stimulating factor ameliorates DSS induced experimental colitis

    PubMed Central

    Sainathan, Satheesh K.; Hanna, Eyad M.; Gong, Qingqing; Bishnupuri, Kumar S.; Luo, Qizhi; Colonna, Marco; White, Frances V.; Croze, Ed; Houchen, Courtney; Anant, Shrikant; Dieckgraefe, Brian K.

    2015-01-01

    Background Sargramostim, granulocyte–macrophage colony-stimulating factor (GM-CSF), a hematopoietic growth factor, stimulates cells of the intestinal innate immune system. Clinical trials show that Sargramostim induces clinical response and remission in patients with active Crohn's disease. To study the mechanism, we examined the effects of GM-CSF in the dextran sulphate sodium (DSS) induced acute colitis model. We hypothesized that GM-CSF may work through effects on dendritic cells (DCs). Methods Acute colitis was induced in Balb/c mice by administration of DSS in drinking water. Mice were treated with daily GM-CSF or PBS. To probe the role of plasmacytoid DCs (pDCs) in the response to GM-CSF, we further examine the effects of monoclonal antibody 440c, which is specific for a sialic acid-binding immunoglobulin (Ig)-like lectin expressed on pDCs. Results GM-CSF ameliorates acute DSS-induced colitis; resulting in significantly improved clinical parameters and histology. Microarray analysis showed reduced expression of pro-inflammatory genes including TNFα and IL1β; results further confirmed by real-time RT-PCR and serum Bio-plex analysis. GM-CSF treatment significantly expands pDCs and type 1 IFN production. Administration of mAb 440c completely blocked the therapeutic effect of GM-CSF. GM-CSF is also effective in RAG1−/− mice, demonstrating activity independent effects on T and B cells. IFN-β administration mimics the therapeutic effect of GM-CSF in DSS-treated mice. GM-CSF increases systemic and mucosal type 1 IFN expression and exhibits synergy with pDC activators, such as microbial CpG DNA. Conclusions GM-CSF is effective in the treatment of DSS colitis in a mechanism involving the 440c+ plasmacytoid DC population. PMID:17932977

  11. Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis.

    PubMed

    Sainathan, Satheesh K; Hanna, Eyad M; Gong, Qingqing; Bishnupuri, Kumar S; Luo, Qizhi; Colonna, Marco; White, Frances V; Croze, Ed; Houchen, Courtney; Anant, Shrikant; Dieckgraefe, Brian K

    2008-01-01

    Sargramostim, granulocyte macrophage colony-stimulating factor (GM-CSF), a hematopoietic growth factor, stimulates cells of the intestinal innate immune system. Clinical trials show that sargramostim induces clinical response and remission in patients with active Crohn's disease. To study the mechanism, we examined the effects of GM-CSF in the dextran sulfate sodium (DSS)-induced acute colitis model. We hypothesized that GM-CSF may work through effects on dendritic cells (DCs). Acute colitis was induced in Balb/c mice by administration of DSS in drinking water. Mice were treated with daily GM-CSF or phosphate-buffered saline (PBS). To probe the role of plasmacytoid DCs (pDCs) in the response to GM-CSF, we further examined the effects of monoclonal antibody 440c, which is specific for a sialic acid-binding immunoglobulin (Ig)-like lectin expressed on pDCs. GM-CSF ameliorates acute DSS-induced colitis, resulting in significantly improved clinical parameters and histology. Microarray analysis showed reduced expression of proinflammatory genes including TNF-alpha and IL1-beta; the results were further confirmed by real-time reverse-transcriptase polymerase chain reaction and serum Bio-plex analysis. GM-CSF treatment significantly expands pDCs and type 1 IFN production. Administration of mAb 440c completely blocked the therapeutic effect of GM-CSF. GM-CSF is also effective in RAG1(-/-) mice, demonstrating activity-independent effects on T and B cells. IFN-beta administration mimics the therapeutic effect of GM-CSF in DSS-treated mice. GM-CSF increases systemic and mucosal type 1 IFN expression and exhibits synergy with pDC activators, such as microbial cytosine-phosphate-guanosine (CpG) DNA. GM-CSF is effective in the treatment of DSS colitis in a mechanism involving the 440c(+) pDC population.

  12. Granulocyte-macrophage colony-stimulating factor is neuroprotective in experimental traumatic brain injury.

    PubMed

    Shultz, Sandy R; Tan, Xin L; Wright, David K; Liu, Shijie J; Semple, Bridgette D; Johnston, Leigh; Jones, Nigel C; Cook, Andrew D; Hamilton, John A; O'Brien, Terence J

    2014-05-15

    Traumatic brain injury (TBI) is an international health concern with a complex pathogenesis resulting in major long-term neurological, neurocognitive, and neuropsychiatric outcomes. Although neuroinflammation has been identified as an important pathophysiological process resulting from TBI, the function of specific inflammatory mediators in the aftermath of TBI remains poorly understood. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an inflammatory cytokine that has been reported to have neuroprotective effects in various animal models of neurodegenerative disease that share pathological similarities with TBI. The importance of GM-CSF in TBI has yet to be studied, however. We examined the role of GM-CSF in TBI by comparing the effects of a lateral fluid percussion (LFP) injury or sham injury in GM-CSF gene deficient (GM-CSF(-/-)) versus wild-type (WT) mice. After a 3-month recovery interval, mice were assessed using neuroimaging and behavioral outcomes. All mice given a LFP injury displayed significant brain atrophy and behavioral impairments compared with those given sham-injuries; however, this was significantly worse in the GM-CSF(-/-) mice compared with the WT mice. GM-CSF(-/-) mice given LFP injury also had reduced astrogliosis compared with their WT counterparts. These novel findings indicate that the inflammatory mediator, GM-CSF, may have significant protective properties in the chronic sequelae of experimental TBI and suggest that further research investigating GM-CSF and its potential benefits in the injured brain is warranted.

  13. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor.

    PubMed

    Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe

    2015-07-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.

  14. Granulocyte-Macrophage Colony-Stimulating Factor Is Neuroprotective in Experimental Traumatic Brain Injury

    PubMed Central

    Tan, Xin L.; Wright, David K.; Liu, Shijie J.; Semple, Bridgette D.; Johnston, Leigh; Jones, Nigel C.; Cook, Andrew D.; Hamilton, John A.; O'Brien, Terence J.

    2014-01-01

    Abstract Traumatic brain injury (TBI) is an international health concern with a complex pathogenesis resulting in major long-term neurological, neurocognitive, and neuropsychiatric outcomes. Although neuroinflammation has been identified as an important pathophysiological process resulting from TBI, the function of specific inflammatory mediators in the aftermath of TBI remains poorly understood. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an inflammatory cytokine that has been reported to have neuroprotective effects in various animal models of neurodegenerative disease that share pathological similarities with TBI. The importance of GM-CSF in TBI has yet to be studied, however. We examined the role of GM-CSF in TBI by comparing the effects of a lateral fluid percussion (LFP) injury or sham injury in GM-CSF gene deficient (GM-CSF-/-) versus wild-type (WT) mice. After a 3-month recovery interval, mice were assessed using neuroimaging and behavioral outcomes. All mice given a LFP injury displayed significant brain atrophy and behavioral impairments compared with those given sham-injuries; however, this was significantly worse in the GM-CSF-/- mice compared with the WT mice. GM-CSF-/- mice given LFP injury also had reduced astrogliosis compared with their WT counterparts. These novel findings indicate that the inflammatory mediator, GM-CSF, may have significant protective properties in the chronic sequelae of experimental TBI and suggest that further research investigating GM-CSF and its potential benefits in the injured brain is warranted. PMID:24392832

  15. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma.

    PubMed

    Hoeller, Christoph; Michielin, Olivier; Ascierto, Paolo A; Szabo, Zsolt; Blank, Christian U

    2016-09-01

    Several immunomodulatory checkpoint inhibitors have been approved for the treatment of patients with advanced melanoma, including ipilimumab, nivolumab and pembrolizumab. Talimogene laherparepvec is the first oncolytic virus to gain regulatory approval in the USA; it is also approved in Europe. Talimogene laherparepvec expresses granulocyte-macrophage colony-stimulating factor (GM-CSF), and with other GM-CSF-expressing oncolytic viruses in development, understanding the clinical relevance of this cytokine in treating advanced melanoma is important. Results of trials of GM-CSF in melanoma have been mixed, and while GM-CSF has the potential to promote anti-tumor responses, some preclinical data suggest that GM-CSF may sometimes promote tumor growth. GM-CSF has not been approved as a melanoma treatment. We undertook a systematic literature review of studies of GM-CSF in patients with advanced melanoma (stage IIIB-IV). Of the 503 articles identified, 26 studies met the eligibility criteria. Most studies investigated the use of GM-CSF in combination with another treatment, such as peptide vaccines or chemotherapy, or as an adjuvant to surgery. Some clinical benefit was reported in patients who received GM-CSF as an adjuvant to surgery, or in combination with other treatments. In general, outcomes for patients receiving peptide vaccines were not improved with the addition of GM-CSF. GM-CSF may be a valuable therapeutic adjuvant; however, further studies are needed, particularly head-to-head comparisons, to confirm the optimal dosing regimen and clinical effectiveness in patients with advanced melanoma.

  16. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development

    PubMed Central

    2012-01-01

    Introduction Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to be important in the development of inflammatory models of rheumatoid arthritis and there is encouraging data that its blockade may have clinical relevance in patients with rheumatoid arthritis. The aims of the current study were to determine whether GM-CSF may also be important for disease and pain development in a model of osteoarthritis. Methods The role of GM-CSF was investigated using the collagenase-induced instability model of osteoarthritis. We studied both GM-CSF-/- mice and wild-type (C57BL/6) mice treated prophylactically or therapeutically with a monoclonal antibody to GM-CSF. Disease development (both early and late) was evaluated by histology and knee pain development was measured by assessment of weight distribution. Results In the absence of GM-CSF, there was less synovitis and matrix metalloproteinase-mediated neoepitope expression at week 2 post disease induction, and less cartilage damage at week 6. GM-CSF was absolutely required for pain development. Therapeutic neutralization of GM-CSF not only abolished the pain within 3 days but also led to significantly reduced cartilage damage. Conclusions GM-CSF is key to the development of experimental osteoarthritis and its associated pain. Importantly, GM-CSF neutralization by a therapeutic monoclonal antibody-based protocol rapidly and completely abolished existing arthritic pain and suppressed the degree of arthritis development. Our results suggest that it would be worth exploring the importance of GM-CSF for pain and disease in other osteoarthritis models and perhaps clinically for this form of arthritis. PMID:22995428

  17. T Cell–Derived Granulocyte-Macrophage Colony-Stimulating Factor Contributes to Dry Eye Disease Pathogenesis by Promoting CD11b+ Myeloid Cell Maturation and Migration

    PubMed Central

    Dohlman, Thomas H.; Ding, Julia; Dana, Reza; Chauhan, Sunil K.

    2017-01-01

    Purpose Growing evidence suggests that granulocyte-macrophage colony-stimulating factor (GM-CSF) contributes to T helper 17 (Th17) cell–associated immunoinflammatory diseases. The purpose of this study was to evaluate the effect of T cell–derived GM-CSF on CD11b+ myeloid cell function in dry eye disease (DED). Methods In a murine model of DED, quantitative real-time PCR and ELISA were used to measure GM-CSF expression at the ocular surface, and flow cytometry was used to enumerate GM-CSF producing Th17 cells. A granulocyte-macrophage colony-stimulating factor neutralizing antibody was used topically in vivo and in an in vitro culture system to evaluate the role of GM-CSF in recruiting and maturing CD11b+ cells. Clinical disease severity was evaluated after topical administration of GM-CSF neutralizing antibody. Results In dry eye disease, GM-CSF is significantly upregulated at the ocular surface and the frequency of GM-CSF producing Th17 cells is significantly increased in the draining lymph nodes. In vitro neutralization of GM-CSF from CD4+ T cells derived from DED mice suppresses major histocompatibility complex II expression by CD11b+ cells and CD11b+ cell migration. Topical neutralization of GM-CSF in a murine model of DED suppresses CD11b+ maturation and migration, as well as Th17 cell induction, yielding a reduction in clinical signs of disease. Conclusions T helper 17 cell–derived GM-CSF contributes to DED pathogenesis by promoting CD11b+ cell activation and migration to the ocular surface. PMID:28241321

  18. Disseminated Cryptococcosis Due to Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in the Absence of Pulmonary Alveolar Proteinosis.

    PubMed

    Kuo, Chen-Yen; Wang, Shang-Yu; Shih, Han-Po; Tu, Kun-Hua; Huang, Wen-Chi; Ding, Jing-Ya; Lin, Chia-Hao; Yeh, Chun-Fu; Ho, Mao-Wang; Chang, Shi-Chuan; He, Chi-Ying; Chen, Hung-Kai; Ho, Chen-Hsuan; Lee, Chen-Hsiang; Chi, Chih-Yu; Ku, Cheng-Lung

    2017-02-01

    Autoantibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) can cause acquired pulmonary alveolar proteinosis (PAP). Cases of acquired PAP susceptible to typical respiratory pathogens and opportunistic infections have been reported. Anti-GM-CSF autoantibodies have been reported in a few patients with cryptococcal meningitis. This study evaluated the presence of neutralizing anti-GM-CSF autoantibodies in patients without known congenital or acquired immunodeficiency with severe pulmonary or extrapulmonary cryptococcal infection but without PAP. We took a clinical history and performed an immunologic evaluation and screening of anti-cytokine autoantibodies in patients with cryptococcal meningitis. The impact of autoantibodies to GM-CSF on immune function was assessed by intracellular staining of GM-CSF-induced STAT5 phosphorylation and MIP-1α production in normal peripheral blood mononuclear cells incubated with plasma from patients or normal control subjects. Neutralizing anti-GM-CSF autoantibodies were identified in four patients with disseminated cryptococcosis, none of whom exhibited PAP. Plasma from patients blocked GM-CSF signaling and inhibited STAT5 phosphorylation and production of MIP-1α. One patient died of disseminated cryptococcosis involving the central nervous system, which was associated with defective GM-CSF activity. Anti-GM-CSF autoantibodies increase susceptibility to cryptococcal infection in adults without PAP. Cryptococcal central nervous system infection associated with anti-GM-CSF autoantibodies could result in neurological sequelae or be life-threatening. Therefore, timely detection of neutralizing anti-GM-CSF autoantibodies and development of an effective therapy are necessary to prevent deterioration of cryptococcal infection in these patients.

  19. T Cell-Derived Granulocyte-Macrophage Colony-Stimulating Factor Contributes to Dry Eye Disease Pathogenesis by Promoting CD11b+ Myeloid Cell Maturation and Migration.

    PubMed

    Dohlman, Thomas H; Ding, Julia; Dana, Reza; Chauhan, Sunil K

    2017-02-01

    Growing evidence suggests that granulocyte-macrophage colony-stimulating factor (GM-CSF) contributes to T helper 17 (Th17) cell-associated immunoinflammatory diseases. The purpose of this study was to evaluate the effect of T cell-derived GM-CSF on CD11b+ myeloid cell function in dry eye disease (DED). In a murine model of DED, quantitative real-time PCR and ELISA were used to measure GM-CSF expression at the ocular surface, and flow cytometry was used to enumerate GM-CSF producing Th17 cells. A granulocyte-macrophage colony-stimulating factor neutralizing antibody was used topically in vivo and in an in vitro culture system to evaluate the role of GM-CSF in recruiting and maturing CD11b+ cells. Clinical disease severity was evaluated after topical administration of GM-CSF neutralizing antibody. In dry eye disease, GM-CSF is significantly upregulated at the ocular surface and the frequency of GM-CSF producing Th17 cells is significantly increased in the draining lymph nodes. In vitro neutralization of GM-CSF from CD4+ T cells derived from DED mice suppresses major histocompatibility complex II expression by CD11b+ cells and CD11b+ cell migration. Topical neutralization of GM-CSF in a murine model of DED suppresses CD11b+ maturation and migration, as well as Th17 cell induction, yielding a reduction in clinical signs of disease. T helper 17 cell-derived GM-CSF contributes to DED pathogenesis by promoting CD11b+ cell activation and migration to the ocular surface.

  20. A GM-CSF and CD40L bystander vaccine is effective in a murine breast cancer model

    PubMed Central

    Soliman, Hatem; Mediavilla-Varela, Melanie; Antonia, Scott J

    2015-01-01

    Background There is increasing interest in using cancer vaccines to treat breast cancer patients in the adjuvant setting to prevent recurrence in high risk situations or in combination with other immunomodulators in the advanced setting. Current peptide vaccines are limited by immunologic compatibility issues, and engineered autologous cellular vaccines are difficult to produce on a large scale. Using standardized bystander cell lines modified to secrete immune stimulating adjuvant substances can greatly enhance the ability to produce immunogenic cellular vaccines using unmodified autologous cells or allogeneic medical grade tumor cell lines as targets. We investigated the efficacy of a cellular vaccine using B78H1 bystander cell lines engineered to secrete granulocyte macrophage-colony stimulating factor and CD40 ligand (BCG) in a murine model of breast cancer. Methods Five-week-old female BALB/c mice were injected orthotopically in the mammary fat pad with 4T1 tumor cells. Treatment consisted of irradiated 4T1 ± BCG cells given subcutaneously every 4 days and was repeated three times per mouse when tumors became palpable. Tumors were measured two to three times per week for 25 days. The vaccine’s activity was confirmed in a second experiment using Lewis lung carcinoma (LLC) cells in C57BL/6 mice to exclude a model specific effect. Interferon-γ (IFN-γ) and interleukin-2 (IL-2) enzyme-linked immunospots (ELISPOTS) were performed on splenic lymphocytes incubated with 4T1 lysates along with immunohistochemistry for CD3 on tumor sections. Results Tumor growth was significantly inhibited in the 4T1-BCG and LLC-BCG treatment groups when compared to 4T1 and LLC treatment groups. There were higher levels of IL-2 and IFN-γ secreting T-cells on ELISPOT for BCG treated groups, and a trend for higher numbers of tumor infiltrating CD3+ lymphocytes. Some tumors in the 4T1-BCG demonstrated organized lymphoid structures within the tumor microenvironment as well. Conclusion The use of BCG bystander cell lines demonstrates proof of concept for anti-tumor activity and immunogenicity in an immunocompetent murine model of breast cancer. This vaccine is being evaluated in lung cancer and should be explored further in clinical trials of breast cancer patients at high risk of recurrence or in combination with other immunomodulatory agents. PMID:26719725

  1. Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice.

    PubMed

    Shang, De S; Yang, Yi M; Zhang, Hu; Tian, Li; Jiang, Jiu S; Dong, Yan B; Zhang, Ke; Li, Bo; Zhao, Wei D; Fang, Wen G; Chen, Yu H

    2016-11-01

    Although tight junctions between human brain microvascular endothelial cells in the blood-brain barrier prevent molecules or cells in the bloodstream from entering the brain, in Alzheimer's disease, peripheral blood monocytes can "open" these tight junctions and trigger subsequent transendothelial migration. However, the mechanism underlying this migration is unclear. Here, we found that the CSF2RB, but not CSF2RA, subunit of the granulocyte-macrophage colony-stimulating factor receptor was overexpressed on monocytes from Alzheimer's disease patients. CSF2RB contributes to granulocyte-macrophage colony-stimulating factor-induced transendothelial monocyte migration. Granulocyte-macrophage colony-stimulating factor triggers human brain microvascular endothelial cells monolayer tight junction disassembly by downregulating ZO-1 expression via transcription modulation and claudin-5 expression via the ubiquitination pathway. Interestingly, intracerebral granulocyte-macrophage colony-stimulating factor blockade abolished the increased monocyte infiltration in the brains of APP/PS1 Alzheimer's disease model mice. Our results suggest that in Alzheimer's disease patients, high granulocyte-macrophage colony-stimulating factor levels in the brain parenchyma and cerebrospinal fluid induced blood-brain barrier opening, facilitating the infiltration of CSF2RB-expressing peripheral monocytes across blood-brain barrier and into the brain. CSF2RB might be useful as an Alzheimer's disease biomarker. Thus, our findings will help to understand the mechanism of monocyte infiltration in Alzheimer's disease pathogenesis.

  2. Immunization With AFP + GM CSF Plasmid Prime and AFP Adenoviral Vector Boost in Patients With Hepatocellular Carcinoma

    ClinicalTrials.gov

    2015-12-01

    Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver

  3. Recombinant human granulocyte macrophage colony stimulating factor in deep second-degree burn wound healing.

    PubMed

    Yan, Dexiong; Liu, Sha; Zhao, Xiaochun; Bian, Huijuan; Yao, Xingwei; Xing, Jiping; Sun, Weijing; Chen, Xiangjun

    2017-06-01

    The aim of this study was to explore the effects of recombinant human granulocyte macrophage colony stimulating factor (rhGM-CSF) on deep second-degree burn wound healing. In this study, 95 patients with a total of 190 burn wounds were treated with either rhGM-CSF or placebo, separated into 2 groups by treatment type. Wound healing rate, wound healing time, histopathological condition, and scar scale were all compared between the 2 groups. The healing rates in the rhGM-CSF group were remarkably higher than those in the placebo group (P < .01). The wound healing time in the rhGM-CSF group (18.8 ± 7.6 days) was significantly shorter than that in the placebo group (25.5 ± 4.6 days, P < .01). On the 14th day and 28th day, the average optical density of vascular endothelial factor (VEGF) in the rhGM-CSF group was larger than that in the placebo group. Meanwhile, the average optical density of fibroblast growth factor (FGF) in the rhGM-CSF group was also larger than that in the placebo group. Furthermore, the Vancouver scar scale scores of pigmentation, pliability, height, and vascularity were notable lower in the rhGM-CSF group than those in the placebo group (P < .01). The results suggest that rhGM-CSF can significantly accelerate deep second-degree burn wound healing.

  4. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides.

    PubMed

    Chen, Hung-Sen; Tsai, Yow-Fu; Lin, Steven; Lin, Chia-Ching; Khoo, Kay-Hooi; Lin, Chun-Hung; Wong, Chi-Huey

    2004-11-01

    We describe here the isolation of Reishi polysaccharides for the study of their effect on cytokine expression in mouse splenocytes. A fraction (F3) has been shown to activate the expression of IL-1, IL-6, IL-12, IFN-gamma, TNF-alpha, GM-CSF, G-CSF, and M-CSF, and from this three subfractions have been prepared where F3G1 activates IL-1, IL-12, TNF-alpha, and G-CSF, F3G2 activates all the cytokines as F3 does, and F3G3 activates only IL-1 and TNF-alpha. Together with previous studies, the mode of action on macrophages has been proposed where F3 binds to TLR4 receptor and activates extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 to induce IL-1 expression.

  5. Selective effects of aging on brain white matter microstructure: a diffusion tensor imaging tractography study.

    PubMed

    Michielse, Stijn; Coupland, Nick; Camicioli, Richard; Carter, Rawle; Seres, Peter; Sabino, Jennifer; Malykhin, Nikolai

    2010-10-01

    We examined age-related changes in the cerebral white matter. Structural magnetic resonance images (MRIs) and diffusion tensor images (DTIs) were acquired from 69 healthy subjects aged 22-84 years. Quantitative DTI tractography was performed for nine different white matter tracts to determine tract volume, fractional anisotropy (FA), mean diffusivity (MD), axial, and radial diffusivities. We used automated and manual segmentation to determine volumes of gray matter (GM), white mater (WM), cerebrospinal fluid (CSF), and intracranial space. The results showed significant effects of aging on WM, GM, CSF volumes, and selective effects of aging on structural integrity of different white matter tracts. WM of the prefrontal region was the most vulnerable to aging, while temporal lobe connections, cingulum, and parieto-occipital commissural connections showed relative preservation with age. This study was cross-sectional, and therefore, additional longitudinal studies are needed to confirm our findings.

  6. Phase I multicenter study of combined high-dose ifosfamide and doxorubicin in the treatment of advanced sarcomas. Swiss Group for Clinical Research (SAKK).

    PubMed

    Leyvraz, S; Bacchi, M; Cerny, T; Lissoni, A; Sessa, C; Bressoud, A; Hermann, R

    1998-08-01

    Ifosfamide and doxorubicin are the most active agents in the treatment of sarcomas and are characterized by a marked dose-response relationship. The objective of this study was to determine the maximum tolerated dose (MTD) of both agents in combination under granulocyte-macrophage colony-stimulating factor (GM-CSF) cover. Thirty-three patients with untreated sarcomas (soft tissue: n = 20; gynecological: n = 11; bone: n = 2) were treated with ifosfamide 12 g/m2 by continuous i.v. infusion over five days and doxorubicin with dose escalation from 50 mg/m2 i.v. bolus divided on two days, then to 60 mg/m2 bolus divided on three days. Ifosfamide was reduced to 10 g/m2 and doxorubicin was further escalated up to 90 mg/m2. GM-CSF (5 micrograms/kg/day subcutaneously) was started 24 hours after chemotherapy and continued for 10 days. The MTD was reached with the combination of ifosfamide at 12 g/m2 and doxorubicin at 60 mg/m2. But with ifosfamide 10 g/m2 and doxorubicin 90 mg/m2 the MTD was not obtained. While severe leukopenia and granulopenia were observed at all-dose levels, severe anemia was more frequently related to the highest dose of ifosfamide. Severe thrombopenia and mucositis were more commonly observed at the highest dose of doxorubicin. Ifosfamide 10 g/m2 and doxorubicin 90 mg/m2 induced WHO grade 4 leukopenia in 58%, grade 3-4 thrombopenia in 42%, and anemia in 31% of cycles. Mucositis was minor in 50% of cycles. The overall response rate among 31 evaluable patients was 55% (95 confidence interval (CI): 36%-73%), with four (13%) complete responders and 13 (42%) partial responders. Response rates based on soft-tissue sarcomas or gynecological sarcomas alone were similar. Ten patients could be treated by elective surgery and/or radiotherapy. The total group of patients reached a median survival of two years, with 25% (SE 8%) survivors after three years. The dose level of ifosfamide 10 g/m2 and doxorubicin 90 mg/m2 with supportive GM-CSF is manageable in a

  7. Increased Prevalence of Luminal Narrowing and Stricturing Identified by Enterography in Pediatric Crohn Disease Patients with Elevated Granulocyte-Macrophage Colony Stimulating Factor Auto-antibodies

    PubMed Central

    Dykes, Dana M.H.; Towbin, Alexander J.; Bonkowski, Erin; Chalk, Claudia; Bezold, Ramona; Lake, Kathleen; Kim, Mi-Ok; Heubi, James E.; Trapnell, Bruce C.; Podberesky, Daniel J.; Denson, Lee A.

    2013-01-01

    Background Crohn disease (CD) patients with elevated Granulocyte-Macrophage Colony-Stimulating Factor auto-antibodies (GM-CSF Ab) are more likely to develop stricturing behavior requiring surgery. Computed Tomography or Magnetic Resonance Enterography (CTE or MRE) may detect luminal narrowing (LN) prior to stricture development. Objective To determine whether CD patients with elevated GM-CSF Ab (≥ 1.6 mcg/mL) have a higher prevalence of LN and stricturing on CTE or MRE. Methods A single center, cross-sectional study of 153 pediatric CD patients and controls undergoing CTE or MRE. A novel scoring system evaluated for disease activity, presence of LN, stricture, intra-abdominal abscess, or fistulae Ouutcomes were compared with respect to antibody status using Fisher's exact test, logistic regression, and the unpaired t-test. Results GM-CSF Ab were elevated in CD patients (n=114) with a median (IQR) GM-CSF Ab level of 2.3 mcg/mL (0.5, 6.6) compared with healthy and disease controls, p=0.001. Ileal disease location was more common in CD patients with high GM-CSF Ab, p<0.001. Luminal narrowing increased from 39% in CD patients with low GM-CSF Ab to 71% in those with high levels (p=0.004). High GM-CSF Ab remained significantly associated with LN in a multivariate logistic model. Stricturing increased from 4% in CD patients with low GM-CSF Ab to 19% in those with high GM-CSF Ab (p=0.03). Conclusions Pediatric CD patients with high GM-CSF Ab levels have a higher prevalence of LN on CTE or MRE. Further study will be needed to determine whether medical therapy will reduce progression to stricturing behavior in these patients. PMID:23893081

  8. Engineering superactive granulocyte macrophage colony-stimulating factor transferrin fusion proteins as orally-delivered candidate agents for treating neurodegenerative disease.

    PubMed

    Heinzelman, Pete; Priebe, Molly C

    2015-01-01

    Intravenously injected granulocyte macrophage colony-stimulating factor (GM-CSF) has shown efficacy in Alzheimer's Disease (AD) and Parkinson's Disease (PD) animal studies and is undergoing clinical evaluation. The likely need for dosing of GM-CSF to patients over months or years motivates pursuit of avenues for delivering GM-CSF to circulation via oral administration. Flow cytometric screening of 37 yeast-displayed GM-CSF saturation mutant libraries revealed residues P12, H15, R23, R24, and K72 as key determinants of GM-CSF's CD116 and CD131 GM-CSF receptor (GM-CSFR) subunit binding affinity. Screening combinatorial GM-CSF libraries mutated at positions P12, H15, and R23 yielded variants with increased affinities toward both CD116 and CD131. Genetic fusion of GM-CSF to human transferrin (Trf), a strategy that enables oral delivery of other biopharmaceuticals in animals, yielded bioactive wild type and variant cytokines upon secretion from cultured Human Embryonic Kidney cells. Surface plasmon resonance (SPR) measurements showed that all evaluated variants possess decreases in CD116 and CD131 binding KD values of up to 2.5-fold relative to wild type. Improved affinity led to increased in vitro bioactivity; the most bioactive variant, P12D/H15L/R23L, had a leukocyte proliferation assay EC50 value 3.5-fold lower than the wild type GM-CSF/Trf fusion. These outcomes are important first steps toward our goal of developing GM-CSF/Trf fusions as orally available AD and PD therapeutics. © 2015 American Institute of Chemical Engineers.

  9. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.

    PubMed

    Chung, Joonho; Kim, Moon Hang; Yoon, Yong Je; Kim, Kil Hwan; Park, So Ra; Choi, Byung Hyune

    2014-12-01

    This study investigated the effects of granulocyte colony-stimulating factor (G-CSF) on glial scar formation after spinal cord injury (SCI) in rats and compared the therapeutic effects between G-CSF and granulocytemacrophage colony-stimulating factor (GM-CSF) to evaluate G-CSF as a potential substitute for GM-CSF in clinical application. Rats were randomly assigned to 1 of 4 groups: a sham-operated group (Group 1), an SCI group without treatment (Group 2), an SCI group treated with G-CSF (Group 3), and an SCI group treated with GM-CSF (Group 4). G-CSF and GM-CSF were administered via intraperitoneal injection immediately after SCI. The effects of G-CSF and GM-CSF on functional recovery, glial scar formation, and axonal regeneration were evaluated and compared. The rats in Groups 3 and 4 showed better functional recovery and more decreased cavity sizes than those in Group 2 (p < 0.05). Both G-CSF and GM-CSF suppressed intensive expression of glial fibrillary acidic protein around the cavity at 4 weeks and reduced the expression of chondroitin sulfate proteoglycans (p < 0.05). Also, early administration of G-CSF and GM-CSF protected axon fibers from destructive injury and facilitated axonal regeneration. There were no significant differences in comparisons of functional recovery, glial scar formation, and axonal regeneration between G-CSF and GM-CSF. G-CSF suppressed glial scar formation after SCI in rats, possibly by restricting the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans, which might facilitate functional recovery from SCI. GM-CSF and G-CSF had similar effects on glial scar formation and functional recovery after SCI, suggesting that G-CSF can potentially be substituted for GM-CSF in the treatment of SCI.

  10. The water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia (Designated as MAK) ameliorates murine colitis induced by trinitrobenzene sulphonic acid.

    PubMed

    Hanaoka, R; Ueno, Y; Tanaka, S; Nagai, K; Onitake, T; Yoshioka, K; Chayama, K

    2011-11-01

    Ganoderma lucidum Karst is well known as 'Reishi', a traditional food in China and Japan. It contains a polysaccharide component known to induce granulocyte macrophage colony-stimulating factor (GM-CSF) production from murine splenocytes. Moreover, GM-CSF may be a therapeutic agent for Crohn's disease. In this study, we investigated the water-soluble, polysaccharide components of Reishi (designated as MAK) in murine colitis induced by trinitrobenzene sulphonic acid (TNBS). We examined the concentration of GM-CSF in peritoneal macrophage cells (PMs) of C57BL/6 mice during in vitro and in vivo stimulation with MAK. After feeding with chow or MAK for 2 weeks, 2 mg of TNBS/50% ethanol was administered to each mouse. After 3 days of TNBS treatment, intestinal inflammation was evaluated, and mononuclear cells of the mesenteric lymph nodes (MLNs) and colon were cultured for ELISA. To determine the preventive role of GM-CSF, the mice were pre-treated with or without anti-GM-CSF antibody before TNBS administration. In vitro and in vivo MAK-stimulated PMs produced GM-CSF in a dose-dependent manner. Intestinal inflammation by TNBS was improved by feeding with MAK. MLNs of mice treated with TNBS produced IFN-γ, which was inhibited by feeding with MAK. In contrast, MLNs of mice treated with TNBS inhibited GM-CSF production, which was induced by feeding with MAK. The colon organ culture assay also revealed that IFN-γ was decreased and GM-CSF was increased by MAK. The preventive effect was blocked by the neutralization of GM-CSF. We concluded that the induction of GM-CSF by MAK may provide the anti-inflammatory effect.

  11. Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant.

    PubMed

    Kass, E; Panicali, D L; Mazzara, G; Schlom, J; Greiner, J W

    2001-01-01

    Recombinant avian poxviruses [fowlpox and canarypox (ALVAC)], restricted for replication in nonavian cell substrates and expressing granulocyte/macrophage-colony stimulating factor (avipox-GM-CSF), were evaluated for their ability to enrich an immunization site with antigen-presenting cells (APCs) and, in turn, function as biological vaccine adjuvants. Avipox-GM-CSF administered as a single s.c. injection significantly enhanced the percentage and absolute number of APCs in the regional lymph nodes that drain the injection site. Both the magnitude and duration of the cellular and phenotypic increases within the lymph nodes induced by the avipox-GM-CSF viruses were significantly (P < 0.05) greater than those measured in mice treated with four daily injections of recombinant GM-CSF protein. Temporal studies revealed that the APC enrichment of regional lymph nodes was sustained for 21-28 days after injection of the recombinant avipox virus expressing GM-CSF and, moreover, three injections of the recombinant virus could be given without any appreciable loss of in vivo bioactivity. Mice expressing human carcinoembryonic antigen (CEA) as a transgene (CEA.Tg) developed CEA-specific humoral and cell-mediated immunity after being immunized with avipox-CEA. The coadministration of recombinant avipox viruses expressing CEA and GM-CSF significantly enhanced CEA-specific host immunity with an accompanying immunotherapeutic response in tumor-bearing CEA.Tg mice. The optimal use of avipox-GM-CSF, in terms of dose and dose schedule, especially when used with different immunogens, remains to be determined. Nonetheless, the present findings demonstrate: (a) the effective delivery of GM-CSF to an immunization site using a recombinant avian poxvirus; (b) the compatibility of delivering an antigen and GM-CSF in replication-defective viruses to enhance antigen-specific immunity; and (c) the combined use of recombinant avipox viruses expressing CEA and GM-CSF to generate antitumor

  12. Phase Ib trial of granulocyte-macrophage colony-stimulating factor combined with murine monoclonal antibody R24 in patients with metastatic melanoma.

    PubMed

    Chachoua, A; Oratz, R; Liebes, L; Alter, R S; Felice, A; Peace, D; Vilcek, J; Blum, R H

    1994-08-01

    R24, a murine monoclonal antibody, has been shown to mediate complement- and antibody-dependent cellular cytotoxicity (ADCC) of melanoma tumor targets. We conducted a Phase Ib clinical trial using granulocyte-macrophage colony-stimulating factor (GM-CSF) and R24 in 20 patients with metastatic melanoma. The purpose of this study was to test the hypothesis that treatment with GM-CSF could up-regulate monocyte and granulocyte ADCC and that the combination of GM-CSF plus R24, which mediates ADCC, would lead to enhanced anti-tumor activity in patients with melanoma. GM-CSF was administered by subcutaneous injection daily for 21 days at a dose of 150 micrograms/m2/day. R24 was administered by continuous intravenous infusion on days 8-15 at three dose levels: 0, 10, and 50 mg/m2/day. All 20 patients received one cycle of treatment only. Immune parameters measured were monocyte and granulocyte direct cytotoxicity and ADCC. All patients were evaluable for toxicity. Fifteen patients were evaluable for immune response. Treatment with GM-CSF alone was well tolerated. Toxicity from the combination of GM-CSF plus R24 included diffuse urticaria, nausea and vomiting, hypertension, and hypotension. Hypotension was the dose-limiting toxicity. Two patients on the 50-mg/m2/day dose level of R24 achieved a partial response lasting 2+ and 5+ months. Treatment with GM-CSF led to a statistically significant enhancement of monocyte and granulocyte direct cytotoxicity and ADCC. The maximally tolerated dose of R24 given at this schedule combined with GM-CSF is < 50 mg/m2/day. We conclude that GM-CSF given by subcutaneous injection at 150 micrograms/m2 x 21 days can enhance effector cell ADCC and direct cytotoxicity and that the combination of GM-CSF and R24 can be therapeutic.

  13. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells

    PubMed Central

    1996-01-01

    Peripheral nerve injury is followed by Wallerian degeneration which is characterized by cellular and molecular events that turn the degenerating nerve into a tissue that supports nerve regeneration. One of these is the removal, by phagocytosis, of myelin that contains molecules which inhibit regeneration. We have recently documented that the scavenger macrophage and Schwann cells express the galactose- specific lectin MAC-2 which is significant to myelin phagocytosis. In the present study we provide evidence for a mechanism leading to the augmented expression of cell surface MAC-2. Nerve lesion causes noneuronal cells, primarily fibroblasts, to produce the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF). In turn, GM- CSF induces Schwann cells and macrophages to up-regulate surface expression of MAC-2. The proposed mechanism is based on the following novel observations. GM-CSF mRNA was detected by PCR in in vitro and in vivo degenerating nerves, but not in intact nerves. The GM-CSF molecule was detected by ELISA in medium conditioned by in vitro and in vivo degenerating peripheral nerves as of the 4th h after injury. GM-CSF activity was demonstrated by two independent bioassays, and repressed by activity blocking antibodies. Significant levels of GM-CSF were produced by nerve derived fibroblasts, but neither by Schwann cells nor by nerve derived macrophages. Mouse rGM-CSF enhanced MAC-2 production in nerve explants, and up-regulated cell surface expression of MAC-2 by Schwann cells and macrophages. Interleukin-1 beta up-regulated GM-CSF production thus suggesting that injury induced GM-CSF production may be mediated by interleukin-1 beta. Our findings highlight the fact that fibroblasts, by producing GM-CSF and thereby affecting macrophage and Schwann function, play a significant role in the cascade of molecular events and cellular interactions of Wallerian degeneration. PMID:8601605

  14. Effects of free amino acids on cytokine secretion and proliferative activity of feline T cells in an in vitro study using the cell line MYA-1.

    PubMed

    Paßlack, Nadine; Doherr, Marcus G; Zentek, Jürgen

    2016-10-01

    In vitro studies might be an interesting screening method for targeted in vivo studies in the field of immunonutrition and help to reduce and refine animal studies. As the role of amino acids for immune function of cats has not been evaluated in detail so far, the present study aimed at investigating the effects of eight different amino acids (arginine, leucine, isoleucine, valine, glutamine, lysine, threonine and tryptophan) in six concentrations each (0, 0.25, 0.5, 1, 2 and 8x the cat blood level) on cytokine secretion and proliferative activity of feline T cells (MYA-1) in vitro. The results demonstrated that high doses of arginine increased IL-4, IL-10 and TNF-α secretion of T cells, while increasing concentrations of lysine increased IL-10 secretion and proliferative activity of the T cells. High doses of leucine enhanced GM-CSF and IL-10 secretion, while concentrations of threonine in the cell culture media greater than blood concentration also increased GM-CSF and additionally TNF-α secretion of the cells. The effects of glutamine and isoleucine on T cell function were only small. In conclusion, the present in vitro study could evaluate the immunomodulating potential of specific amino acids for feline T cell function. High doses of arginine, lysine, leucine and threonine had a significant impact on cytokine secretion and proliferative activity of the T cells. Targeted in vivo studies should investigate the clinical relevance of dietary supplementation of those amino acids in healthy and diseased cats as a next step.

  15. The effects of granulocyte-macrophage colony-stimulating factor on tumour-infiltrating lymphocytes from renal cell carcinoma.

    PubMed Central

    Steger, G. G.; Kaboo, R.; deKernion, J. B.; Figlin, R.; Belldegrun, A.

    1995-01-01

    It has been shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) can induce specific and non-specific anti-tumour cytotoxicity and also stimulates the proliferation and function of peripheral lymphocytes and thymocytes. GM-CSF and interleukin 2 (IL-2) act synergistically on peripheral lymphocytes for the induction of a highly effective cytotoxic cell population. Thus, the goal of our investigation was to study the effects of GM-CSF upon expansion, proliferation and in vitro killing activity of tumour-infiltrating lymphocytes (TILs) from renal cell carcinoma (RCC). TILs from seven consecutive tumours were cultured with GM-CSF (500 or 1000 nmol ml-1) without IL-2 supplementation, with suboptimal doses of IL-2 (8 and 40 U ml-1) plus GM-CSF (1000 nmol ml-1), and with a dose of IL-2 (400 U ml-1) which sufficed alone to induce TIL development plus GM-CSF (500 or 1000 nmol ml-1). GM-CSF alone or together with suboptimal doses of IL-2 was not able to induce or facilitate TIL development in these cultures. When GM-CSF at both concentrations studied was added to optimal doses of IL-2 the resulting TIL populations proliferated significantly better and faster (+66%), resulting in a higher cell yield (+24%) at the time of maximal expansion of the TIL cultures. The length of the culture periods of TILs was not affected by GM-CSF when compared with the control cultures supplemented with IL-2 alone. In vitro killing activity of TIL populations stimulated with IL-2 and GM-CSF remained unspecific, but lysis of the autologous tumour targets as well as the allogeneic renal tumour targets was significantly enhanced (+138%) as compared with the corresponding control TILs stimulated with IL-2 alone. Lysis of the natural killer (NK)-sensitive control cell line K562 and the NK-resistant Daudi cell line remained unchanged even though FACS analysis of TILs cultured with IL-2 and 1000 nmol of GM-CSF demonstrated a significantly higher proportion of cells expressing the CD56

  16. Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-κB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: rationale for combination therapy in rheumatoid arthritis.

    PubMed

    van Nieuwenhuijze, Annemarie E M; van de Loo, Fons A; Walgreen, Birgitte; Bennink, Miranda; Helsen, Monique; van den Bersselaar, Liduine; Wicks, Ian P; van den Berg, Wim B; Koenders, Marije I

    2015-06-17

    Type 17 T helper cells and interleukin (IL)-17 play important roles in the pathogenesis of human and murine arthritis. Although there is a clear link between IL-17 and granulocyte macrophage colony-stimulating factor (GM-CSF) in the inflammatory cascade, details about their interaction in arthritic synovial joints are unclear. In view of the introduction of GM-CSF and IL-17 inhibitors to the clinic, we studied how IL-17 and GM-CSF orchestrate the local production of inflammatory mediators during experimental arthritis. To allow detection of additive, complementary or synergistic effects of IL-17 and GM-CSF, we used two opposing experimental approaches: treatment of arthritic mice with neutralising antibodies to IL-17 and GM-CSF and local overexpression of these cytokines in naive synovial joints. Mice were treated for 2 weeks with antibodies against IL-17 and/or GM-CSF after onset of collagen-induced arthritis. Naive mice were injected intraarticularly with adenoviral vectors for IL-17 and/or GM-CSF, resulting in local overexpression. Joint inflammation was monitored by macroscopic scoring, X-rays and histology. Joint washouts, synovial cell and lymph node cultures were analysed for cytokines, chemokines and inflammatory mediators by Luminex analysis, flow cytometry and quantitative polymerase chain reaction. Combined therapeutic anti-IL-17 and anti-GM-CSF ameliorated arthritis progression, and joint damage was dramatically reduced compared with treatment with anti-IL-17 or anti-GM-CSF alone. Anti-IL-17 specifically reduced synovial IL-23 transcription, whereas anti-GM-CSF reduced transcription of matrix metalloproteinases (MMPs) and receptor activator of nuclear factor κB ligand (RANKL). Overexpression of IL-17 or GM-CSF in naive knee joints elicited extensive inflammatory infiltrate, cartilage damage and bone destruction. Combined overexpression revealed additive and synergistic effects on the production of MMPs, RANKL and IL-23 in the synovium and led to

  17. Antigens and cytokine genes in antitumor vaccines: the importance of the temporal delivery sequence in antitumor signals.

    PubMed

    Herrero, María José; Botella, Rafael; Dasí, Francisco; Algás, Rosa; Sánchez, María; Aliño, Salvador F

    2006-12-01

    Studies against cancer, including clinical trials, have shown that a correct activation of the immune system can lead to tumor rejection whereas incorrect signaling results in no positive effects or even anergy. We have worked assuming that two signals, GM-CSF (granulocyte and macrophage colony-stimulating factor) and tumor antigens are necessary to mediate an antitumor effective response. To study which is the ideal temporal sequence for their administration, we have used a murine model of antimelanoma vaccine employing whole B16 tumor cells or their membrane protein antigens (TMPs) in combination with gm-csf transfer before or after the antigen delivery. Our results show that: (i) When gm-csf tisular transfection is performed before TMP delivery, a tumor growth inhibition is observed, but with a limit effect when administering high antigen doses; in contrast, when signals are inverted, the limited effect is lost and greater antitumor efficacy is obtained. (ii) A similar behavior, but with stronger positive results, is observed employing gm-csf transfection and whole tumor cells as antigens. While negative results are obtained with gm-csf before cells, the best results (total survival of treated mice) are obtained when GM-CSF is administered in transfected cells. We conclude that optimal antitumoral response can be obtained when the antigen signal is given before (or simultaneous with) GM-CSF production, while the inversion of the signals could result in the undesired inhibition or anergy of the immune response.

  18. Decreased expression of granulocyte-macrophage colony-stimulating factor is associated with adverse clinical outcome in patients with gastric cancer undergoing gastrectomy.

    PubMed

    Liu, Hao; Lin, Chao; Shen, Zhenbin; Zhang, Heng; He, Hongyong; Li, He; Qin, Jing; Qin, Xinyu; Xu, Jiejie; Sun, Yihong

    2017-10-01

    Previous studies have revealed the clinical significance of tumor-associated macrophages (TAMs) in gastric cancer, whereas the role of the cytokines that orchestrate TAM polarization in gastric cancer remains elusive. The present study aimed to evaluate the prognostic value of granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in patients with gastric cancer. Intratumoral GM-CSF expression was investigated by immunohistochemical staining in 408 retrospectively enrolled patients. Kaplan-Meier analysis and Cox regression models were used to evaluate the prognostic value of GM-CSF expression. Predictive nomograms were generated to predict the overall survival and disease-free survival rates of the patients. Decreased intratumoral GM-CSF expression was identified, and indicated a poorer clinical outcome for patients with gastric cancer, particularly in advanced stages. Intratumoral GM-CSF expression may provide an additional risk stratification for the prognosis of patients with gastric cancer based on the Tumor-Node-Metastasis (TNM) staging system. Cox multivariate analysis identified GM-CSF expression as an independent prognostic factor for overall survival and disease-free survival time. The generated nomograms performed well in predicting the 3-and 5-year clinical outcome of patients with gastric cancer. In conclusion, GM-CSF is a potential independent prognostic indicator for patients with gastric cancer, which may be integrated with TNM staging systems to improve the predictive accuracy for clinical outcome, particularly in advanced tumors.

  19. Granulocyte/Macrophage Colony-Stimulating Factor Influences Angiogenesis by Regulating the Coordinated Expression of VEGF and the Ang/Tie System

    PubMed Central

    Zhao, Jingling; Chen, Lei; Shu, Bin; Tang, Jinming; Zhang, Lijun; Xie, Julin; Qi, Shaohai; Xu, Yingbin

    2014-01-01

    Granulocyte/macrophage colony-stimulating factor (GM-CSF) can accelerate wound healing by promoting angiogenesis. The biological effects of GM-CSF in angiogenesis and the corresponding underlying molecular mechanisms, including in the early stages of primitive endothelial tubule formation and the later stages of new vessel maturation, have only been partially clarified. This study aimed to investigate the effects of GM-CSF on angiogenesis and its regulatory mechanisms. Employing a self-controlled model (Sprague-Dawley rats with deep partial-thickness burn wounds), we determined that GM-CSF can increase VEGF expression and decrease the expression ratio of Ang-1/Ang-2 and the phosphorylation of Tie-2 in the early stages of the wound healing process, which promotes the degradation of the basement membrane and the proliferation of endothelial cells. At later stages of wound healing, GM-CSF can increase the expression ratio of Ang-1/Ang-2 and the phosphorylation of Tie-2 and maintain a high VEGF expression level. Consequently, pericyte coverages were higher, and the basement membrane became more integrated in new blood vessels, which enhanced the barrier function of blood vessels. In summary, we report here that increased angiogenesis is associated with GM-CSF treatment, and we indicate that VEGF and the Ang/Tie system may act as angiogenic mediators of the healing effect of GM-CSF on burn wounds. PMID:24658178

  20. Granulocyte-macrophage colony-stimulating factor levels in amniotic fluid before the onset of labor and during labor do not differ in normal pregnancies.

    PubMed

    Hayashi, Masatoshi; Sohma, Ryoichi; Sumioka, Yumiko; Inaba, Noriyuki

    2006-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) at the implantation site may regulate invasion and differentiation of placental trophoblast. We evaluated whether GM-CSF levels in amniotic fluid during labor contributing to subsequent delivery differed from those before the onset of labor in normal pregnancies. This study enrolled 36 Japanese women experiencing normal pregnancies with single fetuses who had no infection. Of these pregnancies, 18 were women during labor that led to subsequent term delivery (labors). The other 18 were women without labor underwent cesarean section (controls). These two groups (18 labors and 18 controls) were compared. The average gestational age at entry was 38-39 weeks of gestation. The women's ages and gestational ages did not differ significantly between the two groups. Amniotic fluid was collected and the GM-CSF levels were compared between two groups. The GM-CSF level was determined by the enzyme-linked immunosorbent assay method. There was no significant increase in GM-CSF levels in amniotic fluid during labor compared with that before the onset of labor. The GM-CSF in amniotic fluid may not promote the onset of labor at term and/or term labor contributing to subsequent delivery may not induce the production and secretion of GM-CSF into amniotic cavity.

  1. Effects of granulocyte-macrophage colony-stimulating factor supplementation in culture medium on embryo quality and pregnancy outcome of women aged over 35 years.

    PubMed

    Zhou, Wenhui; Chu, Dapeng; Sha, Wei; Fu, Lei; Li, Yuan

    2016-01-01

    The purpose of this study is to explore whether a low concentration of granulocyte-macrophage colony-stimulating factor (GM-CSF) supplementation in culture medium is beneficial to infertile women aged over 35 years. A retrospective cohort study was performed to analyze the embryo quality and pregnancy outcome of 212 controlled ovarian stimulation (COH) cycles with or without GM-CSF addition (n = 117 [GM-CSF, 0.2 ng/mL] vs n = 95 [control]). No significant difference was observed in cleavage rate (96.2 vs 96.5 %), blastocyst formation rate (53.2 vs 54.0 %), good blastocyst rate (26.8 vs 26.8 %), or available embryo rate (54.2 vs 49.7 %) between the GM-CSF group and the control group. However, the average age of the GM-CSF group (38.41 ± 3.13 years) was significantly 1 year older than that of the corresponding control group (37.45 ± 2.74 years) (P < 0.05). GM-CSF addition greatly decreased the occurrence of biochemical pregnancy (55.6 % [control] vs 20.8 % [GM-CSF], P < 0.05). No case of neonatal malformation was observed in the present study. Although no benefit of GM-CSF on embryo quality was observed, the addition of this factor significantly decreased the occurrence of chemical pregnancy of women aged over 35 years, indicating the role of GM-CSF in improving implantation competence of embryos derived from elderly infertile women.

  2. Granulocyte-macrophage colony-stimulating factor, a potent adjuvant for polarization to Th-17 pattern: an experience on HIV-1 vaccine model.

    PubMed

    Mahdavi, Mehdi; Tajik, Amir Hossein; Ebtekar, Massoumeh; Rahimi, Roghieh; Adibzadeh, Mohammad Mehdi; Moozarmpour, Hamid Reza; Beikverdi, Mohammad Sadegh; Olfat, Soophie; Hassan, Zuhair Mohammad; Choopani, Mohammad; Kameli, Morteza; Hartoonian, Christine

    2017-06-01

    Cytokines are mediators for polarization of immune response in vaccines. Studies show that co-immunization of DNA vaccines with granulocyte-macrophage colony-stimulating factor (GM-CSF) can increase immune responses. Here, experimental mice were immunized with HIV-1tat/pol/gag/env DNA vaccine with GM-CSF and boosted with recombinant vaccine. Lymphocyte proliferation with Brdu and CTL activity, IL-4, IFN-γ, IL-17 cytokines, total antibody, and IgG1 and IgG2a isotypes were assessed with ELISA. Results show that GM-CSF as adjuvant in DNA immunization significantly increased lymphocyte proliferation and IFN-γ cytokines, but CTL response was tiny increased. Also GM-CSF as adjuvant decreased IL-4 cytokine vs mere vaccine group. IL-17 in the group that immunized with mixture of DNA vaccine/GM-CSF was significantly increased vs DNA vaccine group. Result of total antibody shows that GM-CSF increased antibody response in which both IgG1 and IgG2a increased. Overall, results confirmed the beneficial effect of GM-CSF as adjuvant to increase vaccine immunogenicity. The hallmark result of this study was to increase IL-17 cytokine with DNA vaccine/GM-CSF immunized group. This study for the first time provides the evidence of the potency of GM-CSF in the induction of IL-17 in response to a vaccine, which is important for control of infection such as HIV-1. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  3. Delivery of granulocyte-macrophage colony-stimulating factor in bioadhesive hydrogel stimulates migration of dendritic cells in models of human papillomavirus-associated (pre)neoplastic epithelial lesions.

    PubMed

    Hubert, Pascale; Evrard, Brigitte; Maillard, Catherine; Franzen-Detrooz, Elizabeth; Delattre, Luc; Foidart, Jean-Michel; Noël, Agnes; Boniver, Jacques; Delvenne, Philippe

    2004-11-01

    Because of the central role of dendritic cells and/or Langerhans cells(DC/LC) in the induction of cellular immune responses, pharmacological agents that modulate the recruitment of these cells might have a clinical interest. The present study was designed to evaluate the capacity of several pharmaceutical formulations to topically deliver granulocyte-macrophage colony-stimulating factor (GM-CSF) on human papillomavirus (HPV)-associated genital (pre)neoplastic lesions. The formulations were evaluated for their bioactivity and for their potential to recruit DC in organotypic cultures of HPV-transformed keratinocytes. We found that a bioadhesive polycarbophil gel (Noveon) at pH 5.5 is able to maintain the bioactivity of GM-CSF at 4 or 37 degrees C for at least 7 days, whereas a decreased activity of GM-CSF was observed when the molecule is included in other polymer gels. GM-CSF incorporated in the polycarbophil gel was also a potent factor in enhancing the colonization of DC into organotypic cultures of HPV-transformed keratinocytes since the infiltration of DC in the in vitro-formed (pre)neoplastic epithelium was very low under basal conditions and dramatically increased in the presence of GM-CSF gel. We next demonstrated that GM-CSF incorporated in polycarbophil gel induces the recruitment of human DC in a human (pre)neoplastic epithelium grafted into NOD/SCID mice. The efficacy of GM-CSF in this formulation was equivalent to that observed with liquid GM-CSF. These results suggest that GM-CSF incorporated in polycarbophil gel could play an important role in the recruitment of DC/LC in mucosal surfaces and be useful as a new immunotherapeutic approach for genital HPV-associated (pre)neoplastic lesions.

  4. Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-phenylalanine. Acceleration by granulocyte-macrophage colony stimulating factor.

    PubMed

    English, D; Broxmeyer, H E; Gabig, T G; Akard, L P; Williams, D E; Hoffman, R

    1988-10-01

    This investigation was undertaken to clarify the mechanism by which purified recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) potentiates neutrophil oxidative responses triggered by the chemotactic peptide, FMLP. Previous studies have shown that GM-CSF priming of neutrophil responses to FMLP is induced relatively slowly, requiring 90 to 120 min of incubation in vitro, is not associated with increased levels of cytoplasmic free Ca2+, but is associated with up-regulation of cell-surface FMLP receptors. We have confirmed these findings and further characterized the process of GM-CSF priming. We found that the effect of GM-CSF on neutrophil oxidative responsiveness was induced in a temperature-dependent manner and was not reversed when the cells were washed extensively to remove the growth factor before stimulation with FMLP. Extracellular Ca2+ was not required for functional enhancement by GM-CSF and GM-CSF alone effected no detectable alteration in the 32P-labeled phospholipid content of neutrophils during incubation in vitro. Our data indicate that GM-CSF exerts its influence on neutrophils by accelerating a process that occurs spontaneously and results in up-regulation of both cell-surface FMLP receptors and oxidative responsiveness to FMLP. Thus, the results demonstrate that, with respect to oxidative activation, circulating endstage polymorphonuclear leukocytes are nonresponsive or hyporesponsive to FMLP; functional responsiveness increases dramatically as surface FMLP receptors are gradually deployed after the cells leave the circulation. Thus, as neutrophils mature, their responsiveness to FMLP changes in a manner which may be crucial for efficient host defense. At 37 degrees C, this process is markedly potentiated by GM-CSF. We conclude that endogenous GM-CSF, released systemically or at sites of infection and inflammation, potentially plays an important role in host defense by accelerating functional maturation of responding

  5. Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for (18)F FDG PET Imaging of Vessel Wall Inflammation.

    PubMed

    Tavakoli, Sina; Short, John D; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M; Asmis, Reto

    2017-04-01

    Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 ((18)F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. (18)F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of (18)F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. (©) RSNA, 2016 Online supplemental material is available for this article.

  6. T cell expression of granulocyte-macrophage colony-stimulating factor in juvenile arthritis is contingent upon Th17 plasticity.

    PubMed

    Piper, Christopher; Pesenacker, Anne M; Bending, David; Thirugnanabalan, Balathas; Varsani, Hemlata; Wedderburn, Lucy R; Nistala, Kiran

    2014-07-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) is a potent inflammatory mediator that is responsible for recruitment and activation of innate immune cells. Recent data from murine studies have identified Th17 cells as a key source of GM-CSF and suggest that T cell-derived GM-CSF is instrumental in the induction of autoimmune disease. The present study was undertaken to analyze the expression of T cell-derived GM-CSF in the joints of patients with juvenile idiopathic arthritis (JIA) and to investigate the differentiation of Th17 cells and how this relates to GM-CSF+ T helper cells. Synovial fluid (SF) and peripheral blood (PB) samples from 24 patients with JIA were analyzed, by flow cytometry and reverse transcription-polymerase chain reaction, for expression of GM-CSF and the Th17 marker CD161. A cytokine capture assay was used to purify Th17 cells and test the plasticity of cytokine production in response to interleukin-12 (IL-12) and IL-23. The frequency of GM-CSF-producing T helper cells was significantly enriched in SF mononuclear cells compared to PB mononuclear cells from the patients with JIA (24.1% of CD4+ T cells versus 2.9%) and closely correlated with the erythrocyte sedimentation rate (r(2) = 0.91, P < 0.001). Synovial GM-CSF+ T cells were predominantly CD161+ and coexpressed interferon-γ (IFNγ), but not IL-17. Culture of Th17 cells in the presence of IL-12 led to rapid up-regulation of GM-CSF and IFNγ, recapitulating the phenotype of GM-CSF-expressing cells within the joint. Our results identify a novel outcome of Th17 plasticity in humans that may account for the enrichment of GM-CSF-expressing T cells in the joints of patients with JIA. The association of GM-CSF expression with systemic inflammation highlights the potential role of Th17-related cytokines in the pathology of JIA. © 2014 The Authors. Arthritis & Rheumatology is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  7. Effect of recombinant canine granulocyte-macrophage colony-stimulating factor on hematopoietic recovery after otherwise lethal total body irradiation.

    PubMed

    Nash, R A; Schuening, F G; Seidel, K; Appelbaum, F R; Boone, T; Deeg, H J; Graham, T C; Hackman, R; Sullivan-Pepe, M; Storb, R

    1994-04-01

    Recombinant canine granulocyte-macrophage colony-stimulating factor (rcGM-CSF) was studied in normal dogs and in dogs receiving otherwise lethal total body irradiation (TBI) without marrow transplant. Five normal dogs receiving 25 micrograms/kg of rcGM-CSF by subcutaneous (SC) injection twice daily (BID) for 14 days showed increases in peripheral blood neutrophil counts of three to five times the baseline. Platelet counts decreased during administration of rcGM-CSF to a mean nadir of 52,800. Ten dogs received 400 cGy TBI at 10 cGy/min from two opposing 60Co sources and no marrow graft. Within 2 hours of TBI, rcGM-CSF was begun at a dose of 50 micrograms/kg SC BID for 5 doses and then continued at 25 micrograms/kg SC BID for 21 days. Only 1 of the 10 dogs receiving rcGM-CSF survived with complete and sustained recovery of hematopoiesis. One of 13 historical control dogs survived after 400 cGy with no hematopoietic growth factor or marrow infusion. Results with rcGM-CSF were compared with previous and concurrent data with G-CSF studied in the same model. Of 10 dogs receiving G-CSF, 8 survived with complete and sustained hematopoietic recovery, a significantly better survival than that seen with rcGM-CSF (P = .006). Neutrophil counts were sustained at higher levels after TBI for the first 18 days in the G-CSF group (P < .016) and the neutrophil nadirs were higher. No differences in neutrophil nadirs were noted between the rcGM-CSF and control groups. Dogs treated with rcGM-CSF experienced a more rapid decline of platelet counts than G-CSF-treated or control dogs over the first 18 days (P < .001). The nadir of the platelet count was higher in the control group than in either the G-CSF or rcGM-CSF group and no significant difference was observed between the G-CSF and rcGM-CSF groups. After otherwise lethal TBI (400 cGy) in dogs, rcGM-CSF was not effective in promoting hematopoietic recovery or improving survival.

  8. Preclinical evaluation of herpes simplex virus armed with granulocyte-macrophage colony-stimulating factor in pancreatic carcinoma.

    PubMed

    Liu, Hao; Yuan, Shou-Jun; Chen, Ying-Tai; Xie, Yi-Bin; Cui, Liang; Yang, Wei-Zhi; Yang, De-Xuan; Tian, Yan-Tao

    2013-08-21

    To investigate the therapeutic efficacy and mechanisms of action of oncolytic-herpes-simplex-virus encoding granulocyte-macrophage colony-stimulating factor (HSV(GM-CSF)) in pancreatic carcinoma. Tumor blocks were homogenized in a sterile grinder in saline. The homogenate was injected into the right armpit of each mouse. After vaccination, the mice were randomly assigned into four groups: a control group, a high dose HSV(GM-CSF) group [1 × 10⁷ plaque forming units (pfu)/tumor], a medium dose HSV(GM-CSF) group (5 × 10⁶ pfu/tumor) and a low dose HSV(GM-CSF) group (5 × 10⁵ pfu/tumor). After initiation of drug administration, body weights and tumor diameters were measured every 3 d. Fifteen days later, after decapitation of the animal by cervical dislocation, each tumor was isolated, weighed and stored in 10% formaldehyde solution. The drug effectiveness was evaluated according to the weight, volume and relative volume change of each tumor. Furthermore, GM-CSF protein levels in serum were assayed by enzyme-linked immunosorbent assays at 1, 2, 3 and 4 d after injection of HSV(GM-CSF). Injection of the recombinant mouse HSV encoding GM-CSF resulted in a significant reduction in tumor growth compared to the control group, and dose-dependent effects were observed: the relative tumor proliferation rates of the low dose, medium dose and high dose groups on 15 d after injection were 45.5%, 55.2% and 65.5%, respectively. The inhibition rates of the tumor weights of the low, middle, and high dose groups were 41.4%, 46.7% and 50.5%, respectively. Furthermore, the production of GM-CSF was significantly increased in the mice infected with HSV(GM-CSF). The increase in the GM-CSF level was more pronounced in the high dose group compared to the other two dose groups. Our study provides the first evidence that HSV(GM-CSF) could inhibit the growth of pancreatic cancer. The enhanced GM-CSF expression might be responsible for the phenomenon.

  9. Effects of Granulocyte-Macrophage Colony-Stimulating Factor in Burn Patients

    DTIC Science & Technology

    1991-01-01

    endothelial cant increase in luminol chemiluminescence during the first injury from adherent white blood cells. The reduction in few days of treatment, which...evidence of inhalation injury resulted in exclu- blood were added to 2 mL of barbital buffer solution in siliconized sion from the study. All eligible...values obtained for luminol correspond to the hr-GM-CSF total oxygenation events produced primarily by myeloperoxidase. Nonglycosylated hr-GM-CSF was

  10. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma.

    PubMed

    Kaufman, Howard L; Ruby, Carl E; Hughes, Tasha; Slingluff, Craig L

    2014-01-01

    In 2012, it was estimated that 9180 people in the United States would die from melanoma and that more than 76,000 new cases would be diagnosed. Surgical resection is effective for early-stage melanoma, but outcomes are poor for patients with advanced disease. Expression of tumor-associated antigens by melanoma cells makes the disease a promising candidate for immunotherapy. The hematopoietic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) has a variety of effects on the immune system including activation of T cells and maturation of dendritic cells, as well as an ability to promote humoral and cell-mediated responses. Given its immunobiology, there has been interest in strategies incorporating GM-CSF in the treatment of melanoma. Preclinical studies with GM-CSF have suggested that it has antitumor activity against melanoma and can enhance the activity of anti-melanoma vaccines. Numerous clinical studies have evaluated recombinant GM-CSF as a monotherapy, as adjuvant with or without cancer vaccines, or in combination with chemotherapy. Although there have been suggestions of clinical benefit in some studies, results have been inconsistent. More recently, novel approaches incorporating GM-CSF in the treatment of melanoma have been evaluated. These have included oncolytic immunotherapy with the GM-CSF-expressing engineered herpes simplex virus talimogene laherparepvec and administration of GM-CSF in combination with ipilimumab, both of which have improved patient outcomes in phase 3 studies. This review describes the diverse body of preclinical and clinical evidence regarding use of GM-CSF in the treatment of melanoma.

  11. Regulation of Wound Healing by Granulocyte-Macrophage Colony-Stimulating Factor after Vocal Fold Injury

    PubMed Central

    Lim, Jae-Yol; Choi, Byung Hyune; Lee, Songyi; Jang, Yun Ho; Choi, Jeong-Seok; Kim, Young-Mo

    2013-01-01

    Objectives Vocal fold (VF) scarring remains a therapeutic challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitates epithelial wound healing, and recently, growth factor therapy has been applied to promote tissue repair. This study was undertaken to investigate the effect of GM-CSF on VF wound healing in vivo and in vitro. Methods VF scarring was induced in New Zealand white rabbits by direct injury. Immediately thereafter, either GM-CSF or PBS was injected into the VFs of rabbits. Endoscopic, histopathological, immunohistochemical, and biomechanical evaluations of VFs were performed at 3 months post-injury. Human vocal fold fibroblasts (hVFFs) were cultured with GM-CSF. Production of type I and III collagen was examined immunocytochemically, and the synthesis of elastin and hyaluronic acids was evaluated by ELISA. The mRNA levels of genes related to ECM components and ECM production-related growth factors, such as HGF and TGF-ß1, were examined by real time RT-PCR. Results The GM-CSF-treated VFs showed reduced collagen deposition in comparison to the PBS-injected controls (P<0.05). Immunohistochemical staining revealed lower amounts of type I collagen and fibronectin in the GM-CSF-treated VFs (P<0.05 and P<0.01, respectively). Viscous and elastic shear moduli of VF samples were significantly lower in the GM-CSF group than in the PBS-injected group (P<0.001 and P<0.01, respectively). Mucosal waves in the GM-CSF group showed significant improvement when compared to the PBS group (P = 0.0446). GM-CSF inhibited TGF-β1-induced collagen synthesis by hVFFs (P<0.05) and the production of hyaluronic acids increased at 72 hours post-treatment (P<0.05). The expressions of HAS-2, tropoelastin, MMP-1, HGF, and c-Met mRNA were significantly increased by GM-CSF, although at different time points (P<0.05). Conclusion The present study shows that GM-CSF offers therapeutic potential for the remodeling of VF wounds and the promotion of VF regeneration

  12. Oncolytic viral therapy with a combination of HF10, a herpes simplex virus type 1 variant and granulocyte-macrophage colony-stimulating factor for murine ovarian cancer.

    PubMed

    Goshima, Fumi; Esaki, Shinichi; Luo, Chenhong; Kamakura, Maki; Kimura, Hiroshi; Nishiyama, Yukihiro

    2014-06-15

    Ovarian cancer is the most frequent cause of gynecological cancer-related mortality as a majority of patients are diagnosed at an advanced stage with intraperitoneal dissemination because of the absence of initial symptoms. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the maturation of specialized antigen-presenting cells. In this study, we utilized a herpes simplex virus (HSV) amplicon expressing murine GM-CSF combined with HF10 (mGM-CSF amplicon), a highly attenuated HSV type 1 strain functioning as a helper virus to strengthen anti-tumor immune response, for the treatment of ovarian cancer with intraperitoneal dissemination. A mouse ovarian cancer cell line, OV2944-HM-1 (HM-1), was intraperitoneally injected, following which HF10 only or the mGM-CSF amplicon was injected intraperitoneally three times. HF10 injection prolonged survival and decreased intraperitoneal dissemination, but to a lesser extent than the mGM-CSF amplicon. Although HF10 replication was not observed in HM-1 cells, expression of VP5, a late gene coding the major capsid protein of HSV, was detected. Moreover, mGM-CSF production was detected in transfected HM-1 cells. Immunohistochemical staining revealed the infiltration of CD4- and CD8-positive cells into the peritoneal tumor(s). A significantly increased CD4+ T cell concentration was observed in the spleen. Murine splenic cells after each treatment were stimulated with HM-1 cells, and the strongest immune response was observed in the mice that received mGM-CSF amplicon injections. These results suggested that the mGM-CSF amplicon is a promising agent for the treatment of advanced ovarian cancer with intraperitoneal dissemination. © 2013 UICC.

  13. Nocardia-induced granulocyte macrophage colony-stimulating factor is neutralized by autoantibodies in disseminated/extrapulmonary nocardiosis.

    PubMed

    Rosen, Lindsey B; Rocha Pereira, Nuno; Figueiredo, Cristóvão; Fiske, Lauren C; Ressner, Roseanne A; Hong, Julie C; Gregg, Kevin S; Henry, Tracey L; Pak, Kirk J; Baumgarten, Katherine L; Seoane, Leonardo; Garcia-Diaz, Julia; Olivier, Kenneth N; Zelazny, Adrian M; Holland, Steven M; Browne, Sarah K

    2015-04-01

    Nocardia species cause infections in both immunocompromised and otherwise immunocompetent patients, although the mechanisms defining susceptibility in the latter group are elusive. Anticytokine autoantibodies are an emerging cause of pathogen-specific susceptibility in previously healthy human immunodeficiency virus-uninfected adults, including anti-granulocyte macrophage colony-stimulating factor (GM-CSF) autoantibodies with cryptococcal meningitis. Plasma from patients with disseminated/extrapulmonary nocardiosis and healthy controls was screened for anticytokine autoantibodies using a particle-based approach. Autoantibody function was assessed by intranuclear staining for GM-CSF-induced STAT5 phosphorylation in normal cells incubated with either patient or normal plasma. GM-CSF-mediated cellular activation by Nocardia was assessed by staining for intracellular cytokine production and intranuclear STAT5 phosphorylation. We identified neutralizing anti-GM-CSF autoantibodies in 5 of 7 patients studied with central nervous system nocardiosis and in no healthy controls (n = 14). GM-CSF production was induced by Nocardia in vitro, suggesting a causative role for anti-GM-CSF autoantibodies in Nocardia susceptibility and dissemination. In previously healthy adults with otherwise unexplained disseminated/extrapulmonary Nocardia infections, anti-GM-CSF autoantibodies should be considered. Their presence may suggest that these patients may be at risk for later development of pulmonary alveolar proteinosis or other opportunistic infections, and that patients may benefit from therapeutic GM-CSF administration. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Granulocyte-Macrophage Colony-Stimulating Factor Production and Tissue Eosinophilia in Chronic Rhinitis

    PubMed Central

    Peric, Aleksandar; Spadijer-Mirkovic, Cveta; Matkovic-Jozin, Svjetlana; Jovancevic, Ljiljana; Vojvodic, Danilo

    2016-01-01

    Introduction Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a strong proinflammatory cytokine that takes part in allergic nasal inflammation as an eosinophil colony-stimulating factor. However, the role of GM-CSF in non-allergic rhinitis has not been fully explored. Objectives The aim of this investigation was to assess the concentration of GM-CSF in nasal secretions of patients with non-allergic rhinitis with eosinophilia syndrome (NARES) in comparison to patients with perennial allergic rhinitis (PAR) and healthy subjects, as well as to assess the relationship with the degree of eosinophilic inflammation and clinical characteristics of the patients. Methods Fourteen patients with diagnosis of NARES, 14 PAR patients, and 14 healthy subjects were included in this cross-sectional study. All patients underwent symptom score assessment, nasal endoscopy, allergy testing, and cytological evaluation. The concentration of GM-CSF in nasal secretions of all participants was measured by enzyme-linked immunosorbent assay (ELISA). Results We found significantly higher levels of GM-CSF in patients with NARES than in the control group (p = 0.035). The percent of eosinophils in nasal mucosa was higher in NARES patients in comparison to patients with PAR (p < 0.001) and control patients (p < 0.0001). We found positive correlations between GM-CSF levels and eosinophil counts only in NARES patients. Conclusion The concentrations of GM-CSF in nasal secretions correlate well with eosinophil counts in the nasal mucosa of NARES patients. These facts indicate a possible role of GM-CSF as a favorable marker for assessment of nasal disease severity and the degree of chronic eosinophilic inflammation in the nasal mucosa. PMID:27746841

  15. Granulocyte-macrophage colony-stimulating factor increases the infectivity of Leishmania amazonensis by protecting promastigotes from heat-induced death.

    PubMed Central

    Barcinski, M A; Schechtman, D; Quintao, L G; Costa, D de A; Soares, L R; Moreira, M E; Charlab, R

    1992-01-01

    We have studied the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the infectivity of promastigotes of Leishmania amazonensis, an obligate intramacrophage parasite. We measured the capacity of the promastigotes to infect macrophages after preincubation at different temperatures (28, 34, and 37 degrees C) with recombinant murine GM-CSF, as well as the effect of an anti-murine GM-CSF antibody on the in vitro and in vivo infectivity of the parasite. GM-CSF increases the capacity of the promastigotes to infect cells when preincubated at 34 and 37 degrees C, whereas the anti-GM-CSF antibody exerts the opposite effect: it decreases the internalization rate and the progression of infection in macrophage cultures and slows the growth of the lesion in infected BALB/c mice. Neither of the described effects were observed when the in vitro and in vivo infections were made with amastigotes. Promastigotes die in a time-dependent manner when incubated at temperatures higher than 28 degrees C in the absence of GM-CSF. They are protected from this heat-induced death by incubation with the recombinant hormone. Our interpretation of these data is that the increase in the infectivity of promastigotes when incubated with GM-CSF at the temperatures at which infection occurs (34 and 37 degrees C) is due to the larger number of surviving forms within the infecting population. The decrease in infectivity when they are incubated with the antibody is due to inhibition of the protection conferred by the GM-CSF produced by the macrophages during the in vitro and in vivo infections. PMID:1500159

  16. Vaccine Therapy With Sargramostim (GM-CSF) in Treating Patients With Her-2 Positive Stage III-IV Breast Cancer or Ovarian Cancer

    ClinicalTrials.gov

    2016-05-02

    HER2-positive Breast Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  17. A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and Reduces Monocyte Signaling via GM-CSF.

    PubMed

    Chuang, Ling-Shiang; Villaverde, Nicole; Hui, Ken Y; Mortha, Arthur; Rahman, Adeeb; Levine, Adam P; Haritunians, Talin; Evelyn Ng, Sok Meng; Zhang, Wei; Hsu, Nai-Yun; Facey, Jody-Ann; Luong, Tramy; Fernandez-Hernandez, Heriberto; Li, Dalin; Rivas, Manuel; Schiff, Elena R; Gusev, Alexander; Schumm, L Phillip; Bowen, Beatrice M; Sharma, Yashoda; Ning, Kaida; Remark, Romain; Gnjatic, Sacha; Legnani, Peter; George, James; Sands, Bruce E; Stempak, Joanne M; Datta, Lisa W; Lipka, Seth; Katz, Seymour; Cheifetz, Adam S; Barzilai, Nir; Pontikos, Nikolas; Abraham, Clara; Dubinsky, Marla J; Targan, Stephan; Taylor, Kent; Rotter, Jerome I; Scherl, Ellen J; Desnick, Robert J; Abreu, Maria T; Zhao, Hongyu; Atzmon, Gil; Pe'er, Itsik; Kugathasan, Subra; Hakonarson, Hakon; McCauley, Jacob L; Lencz, Todd; Darvasi, Ariel; Plagnol, Vincent; Silverberg, Mark S; Muise, Aleixo M; Brant, Steven R; Daly, Mark J; Segal, Anthony W; Duerr, Richard H; Merad, Miriam; McGovern, Dermot P B; Peter, Inga; Cho, Judy H

    2016-10-01

    Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. We performed exome sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony-stimulating factor 2-receptor β common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and granulocyte-macrophage colony-stimulating factor-responsive cells were defined by adenomatous polyposis coli (APC) time-of-flight mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and the expression and functions of gene products were compared. In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P = 8.52 × 10(-4)); the finding was validated in the replication cohort (combined P = 3.42 × 10(-6)). Incubation of intestinal lamina propria leukocytes with granulocyte-macrophage colony-stimulating factor resulted in high levels of phosphorylation of signal transducer and activator of transcription (STAT5) and lesser increases in phosphorylation of extracellular signal-regulated kinase and AK straining transforming (AKT). Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 after stimulation with granulocyte-macrophage colony-stimulating factor, compared with cells transfected with control CSF2RB, indicating a dominant-negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to granulocyte-macrophage colony-stimulating factor and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to granulocyte-macrophage colony-stimulating factor, providing an additional mechanism for alterations to the innate immune response in individuals with CD. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-09-20

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Protective effects of recombinant human granulocyte macrophage colony stimulating factor on H1N1 influenza virus-induced pneumonia in mice.

    PubMed

    Huang, Hai; Li, Hong; Zhou, Pei; Ju, Dianwen

    2010-08-01

    Protective effects of recombinant human granulocyte macrophage colony stimulating factor (rHuGM-CSF) on H1N1 influenza virus infection was studied in vivo and in vitro. Mice were infected with H1N1 influenza A viruses and rHuGM-CSF at doses of 0.34, 0.67, and 1.34mgkg(-1)d(-1) was administrated for 7days before the mice were infected with influenza virus and continued for a further 3days. Compared with control mice, rHuGM-CSF was demonstrated to increase the survival rate of the infected mice by 50.0%, 55.6%, and 80.0% and increased the mean survival days by 25.7%, 30.0%, and 46.8%, respectively. Histopathological study of the lungs in pneumonia mice found that pre-treatment with rHuGM-CSF significantly ameliorated lung injury induced by influenza virus infection. In vitro study demonstrated that when rHuGM-CSF were co-incubated with peripheral blood mononuclear cells (PBMCs), the PBMCs culture supernatant induced a dose-dependent reduction of virus-induced cytopathic effect (CPE) in Madin-Darby canine kidney (MDCK) cells in vitro. These results suggested that rHuGM-CSF might be an effective and potential protection for H1N1 influenza virus-induced pneumonia. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Evaluation of immunomodulatory effect of recombinant human granulocyte-macrophage colony-stimulating factor on polymorphonuclear cell from dogs with cancer in vitro.

    PubMed

    Zhang, Y; Axiak-Bechtel, S; Friedman Cowan, C; Amorim, J; Tsuruta, K; DeClue, A E

    2017-09-01

    The objective of this in vitro study was to evaluate the immunomodulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on polymorphonuclear cell (PMN) function in dogs with cancer. PMNs were harvested from dogs with naturally developing cancer as a pre-clinical model to evaluate the immunomodulatory effects of rhGM-CSF on PMN phagocytic and cytotoxic functions, cytokine production and receptor expression. Some aspects of cancer-related PMN dysfunction in dogs with cancer were restored following incubation with rhGM-CSF including PMN phagocytosis, respiratory burst and LPS-induced TNF-α production. In addition, rhGM-CSF increased surface HLA-DR expression on the PMNs of dogs with cancer. These data suggests that dysfunction of innate immune response in dogs with cancer may be improved by rhGM-CSF. The results of this study provided a pathophysiologic rationale for the initiation of clinical trials to continue evaluating rhGM-CSF as an immunomodulatory therapy in dogs with cancer. © 2016 John Wiley & Sons Ltd.

  1. Monocyte activation following systemic administration of granulocyte-macrophage colony-stimulating factor.

    PubMed

    Chachoua, A; Oratz, R; Hoogmoed, R; Caron, D; Peace, D; Liebes, L; Blum, R H; Vilcek, J

    1994-04-01

    Twenty-four patients with solid malignancies were treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) on a Phase 1b trial. The objective of the study was to evaluate the effects of GM-CSF on peripheral blood monocyte activation. GM-CSF was administered by subcutaneous injection daily for 14 days. Immune parameters measured were monocyte cytotoxicity against the human colon carcinoma (HT29) cell line, serum tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, and in vitro TNF-alpha and IL-1 beta induction. All patients were evaluable for toxicity. Fifteen patients were evaluable for immunologic response. Treatment with GM-CSF led to a statistically significant enhancement in direct monocyte cytotoxicity against HT29 cells. There was no increase in serum TNF-alpha or IL-1 beta and no consistent in vitro induction of TNF-alpha or IL-1 beta from monocytes posttreatment. Treatment was well tolerated overall. We conclude that treatment with GM-CSF can lead to enhanced monocyte cytotoxicity. Further studies are in progress to evaluate the effect of GM-CSF on other parameters of monocyte functions.

  2. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation.

    PubMed

    Achuthan, Adrian; Cook, Andrew D; Lee, Ming-Chin; Saleh, Reem; Khiew, Hsu-Wei; Chang, Melody W N; Louis, Cynthia; Fleetwood, Andrew J; Lacey, Derek C; Christensen, Anne D; Frye, Ashlee T; Lam, Pui Yeng; Kusano, Hitoshi; Nomura, Koji; Steiner, Nancy; Förster, Irmgard; Nutt, Stephen L; Olshansky, Moshe; Turner, Stephen J; Hamilton, John A

    2016-09-01

    Data from preclinical and clinical studies have demonstrated that granulocyte macrophage colony-stimulating factor (GM-CSF) can function as a key proinflammatory cytokine. However, therapies that directly target GM-CSF function could lead to undesirable side effects, creating a need to delineate downstream pathways and mediators. In this work, we provide evidence that GM-CSF drives CCL17 production by acting through an IFN regulatory factor 4-dependent (IRF4-dependent) pathway in human monocytes, murine macrophages, and mice in vivo. In murine models of arthritis and pain, IRF4 regulated the formation of CCL17, which mediated the proinflammatory and algesic actions of GM-CSF. Mechanistically, GM-CSF upregulated IRF4 expression by enhancing JMJD3 demethylase activity. We also determined that CCL17 has chemokine-independent functions in inflammatory arthritis and pain. These findings indicate that GM-CSF can mediate inflammation and pain by regulating IRF4-induced CCL17 production, providing insights into a pathway with potential therapeutic avenues for the treatment of inflammatory diseases and their associated pain.

  3. Involvement of nuclear factor of activated T cells in granulocyte-macrophage colony-stimulating factor production in canine keratinocytes stimulated with a cysteine protease.

    PubMed

    Kimura, Tsuyoshi; Sekido, Machiko; Iio, Aki; Chimura, Naoki; Shibata, Sanae; Kamishina, Harumi; Kamishina, Hiroaki; Maeda, Sadatoshi

    2013-06-01

    A previous study demonstrated that the cysteine protease of Dermatophagoides farinae induced production of granulocyte-macrophage colony-stimulating factor (GM-CSF) in a canine epidermal keratinocyte progenitor cell line (CPEK); however, the molecular mechanism has not been elucidated. Given that the transcription of GM-CSF mRNA in human lymphocytes is mainly regulated by the nuclear factor of activated T cells (NFAT), it is hypothesized that NFAT also contributes to GM-CSF production in canine keratinocytes stimulated with a cysteine protease. Nuclear translocation of NFAT was evaluated in CPEK cells in the absence or presence of the cysteine protease papain. We also investigated whether blockade of NFAT could inhibit GM-CSF production. Papain-induced nuclear translocation of NFAT, producing GM-CSF, was partly inhibited by ciclosporin. The results suggest that GM-CSF production mediated by the cysteine protease is regulated not only by NFAT but also by unknown signalling pathways in canine keratinocytes. © 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD.

  4. Endobronchial allergen challenge in asthma. Demonstration of cellular source of granulocyte macrophage colony-stimulating factor by in situ hybridization.

    PubMed Central

    Broide, D H; Firestein, G S

    1991-01-01

    Airway inflammation is thought to play an important role in the pathogenesis of asthma. We have used in situ hybridization and an immunoassay to determine whether granulocyte macrophage colony-stimulating factor (GM-CSF) (a cytokine capable of eosinophil activation) is present in the airway of asthmatics (n = 6) who have 37.0 +/- 15.1% airway eosinophilia after endobronchial allergen challenge. Levels of immunoreactive GM-CSF (less than 4 pg/ml pre-allergen versus 180.5 +/- 46.9 pg/ml post-allergen) increased significantly 24 h after endobronchial allergen stimulation. The cellular source of bronchoalveolar lavage (BAL) GM-CSF, as determined by in situ hybridization and immunoperoxidase staining, was derived predominantly from UCHL-1 positive BAL lymphocytes, as well as from a smaller population of alveolar macrophages. Before local endobronchial allergen challenge, less than 1% of lymphocytes and alveolar macrophages recovered by BAL expressed GM-CSF mRNA, whereas after allergen stimulation 92.6 +/- 3.4% of lymphocytes and 17.5 +/- 22.7% of alveolar macrophages expressed GM-CSF mRNA. This study provides evidence that in an experimental model of allergen-induced asthma, activation of the immune and inflammatory response (BAL lymphocyte and alveolar macrophage production of GM-CSF) is temporally associated with an inflammatory cell influx of eosinophils into the airway. Images PMID:1885766

  5. An immunodominant epitope in a functional domain near the N-terminus of human granulocyte-macrophage colony-stimulating factor identified by cross-reaction of synthetic peptides with neutralizing anti-protein and anti-peptide antibodies.

    PubMed

    Beffy, P; Rovero, P; Di Bartolo, V; Laricchia Robbio, L; Dané, A; Pegoraro, S; Bertolero, F; Revoltella, R P

    1994-12-01

    We produced polyclonal and monoclonal antibodies (MAbs) against recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF) and performed studies of epitope mapping by ELISA, using five synthetic peptides corresponding to sequences along this molecule. Additionally, anti-peptide MAbs were generated. The antibody ability to inhibit rhGM-CSF activity was determined using as bioassay the MO7e cell line, which is dependent on hGM-CSF for growth in vitro. An immunodominant epitope able to induce the highest neutralization antibody titers was identified near the N terminus of hGM-CSF. A synthetic peptide 14-24, homologous to a sequence including part of the first alpha-helix of the molecule, was recognized by neutralizing anti-protein antibodies. Similarly, MAbs anti- 14-24 cross-reacted with rhGM-CSF and specifically blocked its function. Replacement of Val16 or Asn17 with alanine greatly reduced the antibody-binding capacity to peptide 14-24, whereas substitution of Gln20 or Glu21 was less critical. Monoclonal antibodies generated against residues 30-41 (corresponding to an intrahelical loop) and 79-91 (homologous to a sequence including part of the third alpha-helix) or its analog [Ala88](79-91)beta Ala-Cys, were conformation dependent and nonneutralizing: they failed to react or bound poorly to rhGM-CSF in ELISA, but readily recognized the homologous sequence in the denatured protein, by Western blotting.

  6. Immunotherapy against metastatic bladder cancer by combined administration of granulocyte macrophage-colony stimulating factor and interleukin-2 surface modified MB49 bladder cancer stem cells vaccine.

    PubMed

    Wang, Chun-Yan; Hua, Rui; Liu, Li; Zhan, Xiaomin; Chen, Simei; Quan, Song; Chu, Qing-Jun; Zhu, Yong-Tong

    2017-02-16

    In previous studies, it has been shown that the granulocyte macrophage-colony stimulating factor (GM-CSF) or interleukin-2 (IL-2) surface modified MB49 bladder cancer stem cells (MCSCs) vaccine could induce a specific antitumor immunity and against bladder cancer in mice model respectively. However, whether combined administration of GM-CSF and IL-2 could produce specific immune responses to cancer stem cells (CSCs) was uncertain. MCSCs were established and characterized. GM-CSF and IL-2 MCSCs vaccines were prepared and bioactivity was evaluated. The therapeutic, protective, specific, and memorial immune response animal experiments were designed. Tumor-specific cytotoxic T lymphocytes assay, enzyme linked immunosorbent assay, flow cytometry assay were performed to indentify whether vaccine caused an antitumor immunity. Streptavidin (SA)-GM-CSF and SA-IL-2 MCSCs vaccines were prepared successfully. Such vaccines inhibited the volume of tumor and prolonged the survival of the mice in animal experiments. The express of IgG or IFN-c, the portion of dendritic cells, CD8(+) and CD4(+) T cells were highest in the combined vaccines group than the SA-GM-CSF vaccine group, the SA-IL-2 vaccine group, the MCSCs group and the PBS group. The combined of GM-CSF and IL-2 vaccines could induce better antitumor immunity than a vaccine alone.

  7. High yield primary microglial cultures using granulocyte macrophage-colony stimulating factor from embryonic murine cerebral cortical tissue.

    PubMed

    Yu, Adam C; Neil, Sarah E; Quandt, Jacqueline A

    2017-06-15

    Microglia play vital roles in neurotrophic support and modulating immune or inflammatory responses to pathogens or damage/stressors during disease. This study describes the ability to establish large numbers of microglia from embryonic tissues with the addition of granulocyte-macrophage stimulating factor (GM-CSF) and characterizes their similarities to adult microglia examined ex vivo as well as their responses to inflammatory mediators. Microglia were seeded from a primary embryonic mixed cortical suspension with the addition of GM-CSF. Microglial expression of CD45, CD11b, CD11c, MHC class I and II, CD40, CD80, and CD86 was analyzed by flow cytometry and compared to those isolated using different culture methods and to the BV-2 cell line. GM-CSF microglia immunoreactivity and cytokine production was examined in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Our results demonstrate GM-CSF addition during microglial culture yields higher cell numbers with greater purity than conventionally cultured primary microglia. We found that the expression of immune markers by GM-CSF microglia more closely resemble adult microglia than other methods or an immortalized BV-2 cell line. Primary differences amongst the different groups were reflected in their levels of CD39, CD86 and MHC class I expression. GM-CSF microglia produce CCL2, tumor necrosis factor-α, IL-6 and IL-10 following exposure to LPS and alter costimulatory marker expression in response to LPS or IFN-γ. Notably, GM-CSF microglia were often more responsive than the commonly used BV-2 cell line which produced negligible IL-10. GM-CSF cultured microglia closely model the phenotype of adult microglia examined ex vivo. GM-CSF microglia are robust in their responses to inflammatory stimuli, altering immune markers including Iba-1 and expressing an array of cytokines characteristic of both pro-inflammatory and reparative processes. Consequently, the addition of GM-CSF for the culturing of primary

  8. Nasal lavage levels of granulocyte-macrophage colony-stimulating factor and chronic nasal hypereosinophilia.

    PubMed

    De Corso, Eugenio; Baroni, Silvia; Lucidi, Daniela; Battista, Mariapina; Romanello, Matteo; Autilio, Chiara; Morelli, Renato; Di Nardo, Walter; Passali, Giulio Cesare; Sergi, Bruno; Bussu, Francesco; Fetoni, Anna Rita; Zuppi, Cecilia; Paludetti, Gaetano

    2015-06-01

    The aim of the present study was to measure levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in nasal lavage of patients affected by chronic eosinophilic sinonasal inflammation to clarify the relationship with eosinophilic tissue infiltration and clinical features. Between November 2012 and June 2013, we selected 70 patients with chronic eosinophilic inflammation (average age 41.8 years) who were classified into the following groups: persistent allergic rhinitis (group 1), noninfectious non-allergic rhinitis with eosinophilia syndrome (group 2) and chronic rhinosinusitis with polyps (group 3). Finally, we enrolled 20 healthy subjects as controls (group 4). All patients underwent symptoms score questionnaire based on a visual analogue scale, nasal endoscopy and/or computed tomography (CT) scan, and allergy testing. Nasal cytology by scraping of the mucosa and GM-CSF assays in nasal lavage were performed in all subjects. Detectable levels of GM-CSF were found in 34 of 70 (48.57%) patients, with an average concentration of 2.67 ± 0.8 pg/mL, whereas in controls only 1 of 20 individuals showed detectable GM-CSF levels. Eosinophil infiltration was significantly higher in patients with detectable GM-CSF compared to those with undetectable levels (49.4% vs 39.2%, respectively; p < 0.05). Furthermore, significant weakly-moderate correlation was found between GM-CSF levels and percentage of eosinophil infiltration in tissue (p < 0.05). Correlation between symptom scores and GM-CSF levels was significant only in group 2, which showed higher average concentrations of GM-CSF compared to groups 1 and 3 (2.9 pg/mL vs 1.6 pg/mL and 1.8 pg/mL, respectively; p < 0.05). Our data confirm that GM-CSF is more frequently detectable in nasal lavages of patients affected by chronic sinonasal eosinophilic inflammation than in controls. Statistical analyses revealed a significant weakly-moderate correlation between GM-CSF levels in nasal lavage of all patients and

  9. Linked Tumor-Selective Virus Replication and Transgene Expression from E3-Containing Oncolytic Adenoviruses†

    PubMed Central

    Zhu, Mingzhu; Bristol, J. Andrew; Xie, Yuefeng; Mina, Mervat; Ji, Hong; Forry-Schaudies, Suzanne; Ennist, David L.

    2005-01-01

    Historically, the adenoviral E3 region was found to be nonessential for viral replication in vitro. In addition, adenoviruses whose genome was more than approximately 105% the size of the native genome were inefficiently packaged. These profound observations were used experimentally to insert transgenes into the adenoviral backbone. More recently, however, the reintroduction of the E3 region into oncolytic adenoviruses has been found to positively influence antitumor efficacy in preclinical models and clinical trials. In the studies reported here, the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA sequence has been substituted for the E3-gp19 gene in oncolytic adenoviruses that otherwise retained the E3 region. Five viruses that differed slightly in the method of transgene insertion were generated and compared to Ar6pAE2fGmF (E2F/GM/ΔE3), a previously described E3-deleted oncolytic adenovirus encoding GM-CSF. In all of the viruses, the human E2F-1 promoter regulated E1A expression and GM-CSF expression was under the control of the adenoviral E3 promoter and the packaging signal was relocated immediately upstream from the right terminal repeat. The E3-gp19-deleted viruses had similar cytolytic properties, as measured in vitro by cytotoxicity assays, but differed markedly in their capacity to express and secrete GM-CSF. Ar15pAE2fGmF (E2F/GM/E3b), the virus that produced the highest levels of GM-CSF and retained the native GM-CSF leader sequence, was selected for further analysis. The E2F/GM/E3b and E2F/GM/ΔE3 viruses exhibited similar cytotoxic activity and GM-CSF production in several tumor cell lines in vitro. However, when compared in vivo in nude mouse xenograft tumor models, E2F/GM/E3b spread through tumors to a greater extent, resulted in higher peak GM-CSF and total exposure levels in both tumor and serum, and was more efficacious than the E3-deleted virus. Using the matched WI-38 (parental) and WI-38-VA13 (simian virus 40 large T antigen

  10. Epidermal growth factor receptor signalling regulates granulocyte-macrophage colony-stimulating factor production by airway epithelial cells and established allergic airway disease.

    PubMed

    Acciani, T H; Suzuki, T; Trapnell, B C; Le Cras, T D

    2016-02-01

    Airway epithelial cells (AEC) are increasingly recognized as a major signalling centre in the pathogenesis of allergic asthma. A previous study demonstrated that epithelial growth factor receptor (EGFR) signalling in AEC regulated key features of allergic airway disease. However, it is unclear what mediators are regulated by EGFR signalling in AEC, although the production of the pro-inflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is EGFR dependent in keratinocytes. To determine whether EGFR signalling regulates GM-CSF production by human AEC downstream of the clinically relevant mediators house dust mite (HDM) and interleukin (IL)-17A and in a mouse model of established allergic asthma. EGFR inhibitors were used to determine whether EGFR signalling regulates GM-CSF production by cultured human AEC in response to HDM and IL-17A. The roles of EGFR ligands, p38 mitogen-activated protein kinase (MAPK) and tumour necrosis factor-alpha (TNF-α) converting enzyme (TACE) were also assessed. To determine whether EGFR regulates GM-CSF as well as key asthma characteristics in vivo, mice were chronically exposed to HDM to establish allergic airway disease and then treated with the EGFR inhibitor Erlotinib. EGFR inhibition reduced HDM and IL-17A induced GM-CSF production i