NASA Technical Reports Server (NTRS)
Peredo, M.; Slavin, J. A.; Mazur, E.; Curtis, S. A.
1995-01-01
A large set of bow shock crossings (i.e., 1392) observed by 17 spacecraft has been used to explore the three-dimensional shape and location of the Earth's bow shock and its dependence on solar wind and interplanetary magnetic field (IMF) conditions. This study investigates deviations from gas dynamic flow models associated with the magnetic terms in the magnetohydrodynamic (MHD) equations. Empirical models predicting the statistical position and shape of the bow shock for arbitrary values of the solar wind pressure, IMF, and Alfvenic Mach number (M(sub A)) have been derived. The resulting data set has been used to fit three-dimensional bow shock surfaces and to explore the variations in these surfaces with sonic (M(sub S)), Alfvenic (M(sub A)) and magnetosonic (M(sub MS)) Mach numbers. Analysis reveals that among the three Mach numbers, M(sub A) provides the best ordering of the least square bow shock curves. The subsolar shock is observed to move Earthward while the flanks flare outward in response to decreasing M(sub A); the net change represents a 6-10% effect. Variations due to changes in the IMF orientation were investigated by rotating the crossings into geocentric interplanetary medium coordinates. Past studies have suggested that the north-south extent of the bow shock surface exceeds the east-west dimension due to asymmetries in the fast mode Mach cone. This study confirms such a north-south versus east-west asymmetry and quantifies its variation with M(sub S), M(sub A), M(sub MS), and IMF orientation. A 2-7% effect is measured, with the asymmetry being more pronounced at low Mach numbers. Combining the bow shock models with the magnetopause model of Roelof and Sibeck (1993), variations in the magnetosheath thickness at different local times are explored. The ratio of the bow shock size to the magnetopause size at the subpolar point is found to be 1.46; at dawn and dusk, the ratios are found to be 1.89 and 1.93, respectively. The subsolar magnetosheath
Peredo, M.; Mazur, E.; Slavin, J.A.
1995-05-01
A large set of bow shock crossings (i.e., 1392) observed by 17 spacecraft has been used to explore the three-dimensional shape and location of the Earth`s bow shock and its dependence on solar wind and interplanetary magnetic field (IMF) conditions. This study investigates deviations from gas dynamic flow models associated with the magnetic terms in the magnetohydrodynamic (MHD) equations. Empirical models predicting the statistical position and shape of the bow shock for arbitrary values of the solar wind pressure, IMF, and Alfvenic Mach number (M{sub A}) have been derived. Individual crossings have been taken into consideration by normalizing the observed crossings to the average value
= 3.1 nPa. The resulting data set has been used to fit three-dimensional bow shock surfaces and to explore the variations in these surfaces with sonic (M{sub S}), Alfvenic (M{sub A}) and magnetosonic (M{sub MS}) Mach numbers. Analysis reveals that among the three Mach numbers, M{sub A} provides the best ordering of the least square bow shock curves. The subsolar shock is observed to move Earthward while the flanks flare outward in response to decreasing M{sub A}; the net change represents a 6-10% effect. Variations due to changes in the IMF orientation were investigated by rotating the crossings into geocentric interplanetary medium coordinates. This study confirms a north-south versus east-west asymmetry and quantifies its variation with M{sub S}, M{sub A}, M{sub MS}, and IMF orientation. A 2-7% effect is measured, with the asymmetry being more pronounced at low Mach numbers. Combining the bow shock models with the magnetopause model of Roelof and Sibeck, variations in the magnetopause size at the subpolar point is found to be 1.46; at dawn and dusk, the ratios are found to be 1.89 and 1.93, respectively. The subsolar magnetosheath thickness is used to derive the polytropic index {gamma} according to the empirical relation of Spreiter. 55 refs., 6 figs., 3 tabs.
Chaotic behaviour of high Mach number flows
NASA Technical Reports Server (NTRS)
Varvoglis, H.; Ghosh, S.
1985-01-01
The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.
Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas
NASA Technical Reports Server (NTRS)
Quest, K. B.
1985-01-01
A problem of critical importance to space physics and astrophysics is the existence and properties of high-Mach-number shocks. Preliminary results of a simulation of a perpendicular shock with Alfven Mach number 22 are reported. It is shown that for sufficiently small electron resistivity the dissipation for this shock is provided by a periodic rather than time-stationary reflection of ions. The problem of electron heating and the extension to higher Mach numbers are discussed.
Quasiperpendicular High Mach Number Shocks.
Sulaiman, A H; Masters, A; Dougherty, M K; Burgess, D; Fujimoto, M; Hospodarsky, G B
2015-09-18
Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (M_{A}) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ~0.3τ_{c}, where τ_{c} is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and M_{A} and focus on the magnetic structure of such shocks to further show that for the same M_{A}, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming. PMID:26430997
Quasiperpendicular High Mach Number Shocks
NASA Astrophysics Data System (ADS)
Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Burgess, D.; Fujimoto, M.; Hospodarsky, G. B.
2015-09-01
Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA ) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ˜0.3 τc , where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA , a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.
Simulations of high Mach number perpendicular shocks with resistive electrons
NASA Technical Reports Server (NTRS)
Quest, K. B.
1986-01-01
A simulation code which models the ions as microparticles and the electrons as a resistive massless fluid is employed to study the structure of high Mach number perpendicular shocks. It is found that stable stationary shock solutions can be obtained for Alfven Mach numbers (M sub A) between 5 and 60 for upstream plasmas where the ratio of the plasma pressure to the magnetic pressure is 1, providing that the upstream resistive diffusion length is much smaller than the ion inertial length. For much larger resistive diffusion lengths, the magnetic field overshoot is damped, and the imbalance in the electron momentum equation results in a periodic fluctuation of the fraction of reflected ions. In the limit of M sub A of less than 10, the magnetic overshoot and the fraction of reflected ions increase with increasing M sub A, while at higher Mach numbers the fraction of reflected ions peaks at about 40 percent and the magnetic field overshoot increases at a much slower rate. Electron inertial effects are also considered.
Effects of unequal particle number densities on Alfven waves
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1989-01-01
Analytic plasma theory and numerical solutions of the dispersion equation are used to show that the assumption that the linear properties of the waves are determined by a charge-neutral plasma in the absence of the nonthermal particles, while the nonthermal particles cause growth or additional damping superposed onto the background, is seriously flawed even for stable plasmas. Even when the nonthermal particles do not contribute significantly to the dispersion equation, unequal thermal electron and ion number densities (due to the presence of the nonthermal particles) may cause fundamental low wave number modifications to the Alfven modes, including the creation of a new resonance and severely modified dispersion. These results are found for both cold and warm plasmas. Previous work on Alfven waves should be reevaluated in view of these results.
Nonadiabatic electron heating at high-Mach-number perpendicular shocks
NASA Technical Reports Server (NTRS)
Tokar, R. L.; Aldrich, C. H.; Forslund, D. W.; Quest, K. B.
1986-01-01
Fully kinetic simulations of high-Mach-number (HMN) perpendicular collisionless shocks are described. It is shown that electron acceleration in the cross-shock electron field can produce downstream electron temperature significantly higher than those expected for adiabatic compression. The momentum space for test electrons at Mach 6 is illustrated.
Experiments with Turbulent Jets at Mach Number 0.9
NASA Technical Reports Server (NTRS)
Agui, Juan; Andreopoulos, Yiannis; Davis, David O. (Technical Monitor)
2001-01-01
A systematic investigation of the structure of turbulent jets before their interaction with shock or expansion waves was undertaken during the last year. In particular compressibility and density effects in circular jets issuing in still air were investigated experimentally. Jets with nitrogen, helium, and krypton gases at 0.3, 0.6, and 0.9 Mach numbers were investigated in detail. Particle Image Velocimetry technique was developed, tested, and used to obtain qualitative information of the two-dimensional velocity field on a plane inside the flow field, which was illuminated by a laser sheet. The motion of particles was recorded by a CCD camera, which was appropriately triggered to capture two images within a fraction of a microsecond. Statistical averaging of the data at each location reduced the large amount of acquired data. It was found that the spreading rate of the jets was reduced with increased Mach numbers or increased density ratio. It was also found that decay rates of centerline Mach numbers are higher in gases with reduced density ratio. Mach number fluctuations appear to decrease with increasing Mach number of the flow. It has been proposed that the reason for this behavior is the reduction of vortex stretching activities with increased Mach number.
Low Mach Number Modeling of Type Ia Supernovae
Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale,Michael
2005-08-05
We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and savings in computer time compared with frequently used compressible codes. Our equation set is derived from the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations validate the low Mach number model in regimes where both are applicable. Comparisons to simulations based on the more traditional an elastic approximation also demonstrate the agreement of these models in the regime for which the anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and can serve as the basis for an accurate and efficient simulation tool.
New numerical solver for flows at various Mach numbers
NASA Astrophysics Data System (ADS)
Miczek, F.; Röpke, F. K.; Edelmann, P. V. F.
2015-04-01
Context. Many problems in stellar astrophysics feature flows at low Mach numbers. Conventional compressible hydrodynamics schemes frequently used in the field have been developed for the transonic regime and exhibit excessive numerical dissipation for these flows. Aims: While schemes were proposed that solve hydrodynamics strictly in the low Mach regime and thus restrict their applicability, we aim at developing a scheme that correctly operates in a wide range of Mach numbers. Methods: Based on an analysis of the asymptotic behavior of the Euler equations in the low Mach limit we propose a novel scheme that is able to maintain a low Mach number flow setup while retaining all effects of compressibility. This is achieved by a suitable modification of the well-known Roe solver. Results: Numerical tests demonstrate the capability of this new scheme to reproduce slow flow structures even in moderate numerical resolution. Conclusions: Our scheme provides a promising approach to a consistent multidimensional hydrodynamical treatment of astrophysical low Mach number problems such as convection, instabilities, and mixing in stellar evolution.
Reynolds and Mach number effects on multielement airfoils
NASA Technical Reports Server (NTRS)
Valarezo, Walter O.; Dominik, Chet J.; Mcghee, Robert J.
1992-01-01
Experimental studies were conducted to assess Reynolds and Mach number effects on a supercritical multielement airfoil. The airfoil is representative of the stall-critical station of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between the Douglas Aircraft Company and the NASA LaRC to improve current knowledge of high-lift flows and to develop a validation database with practical geometries/conditions for emerging computational methods. This paper describes results obtained for both landing and takeoff multielement airfoils (four and three-element configurations) for a variety of Mach/Reynolds number combinations up to flight conditions. Effects on maximum lift are considered for the landing configurations and effects on both lift and drag are reported for the takeoff geometry. The present test results revealed considerable maximum lift effects on the three-element landing configuration for Reynolds number variations and significant Mach number effects on the four-element airfoil.
A simplified Mach number scaling law for helicopter rotor noise
NASA Technical Reports Server (NTRS)
Aravamudan, K. S.; Lee, A.; Harris, W. L.
1978-01-01
Mach number scaling laws are derived for the rotational and the high-frequency broadband noise from helicopter rotors. The rotational scaling law is obtained directly from the theory of Lowson and Ollerhead (1969) by exploiting the properties of the dominant terms in the expression for the complex Fourier coefficients of sound radiation from a point source. The scaling law for the high-frequency broadband noise is obtained by assuming that the noise sources are acoustically compact and computing the instantaneous pressure due to an element on an airfoil where vortices are shed. Experimental results on the correlation lengths for stationary airfoils are extended to rotating airfoils. On the assumption that the correlation length varies as the boundary layer displacement thickness, it is found that the Mach number scaling law contains a factor of Mach number raised to the exponent 5.8. Both scaling laws were verified by model tests.
Enthalpy damping for high Mach number Euler solutions
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1990-01-01
An improvement on the enthalpy damping procedure currently in use in solving supersonic flow fields is described. A correction based on entropy values is shown to produce a very efficient scheme for simulation of high Mach number three-dimensional flows. Substantial improvements in convergence rates have been achieved by incorporating this enthalpy damping scheme in a finite-volume Runge-Kutta method for solving the Euler equations. Results obtained for blended wing-body geometries at very high Mach numbers are presented.
Multi-dimensional low Mach number numerical simulations
NASA Astrophysics Data System (ADS)
Dwyer, Harry A.; Yam, C.
A time-dependent pressure-correction method for the Navier-Stokes equations at low Mach numbers (Patankar, 1980; Dwyer, 1989) and the predictor-corrector solution of the finite-volume transport equations (Beam and Warming, 1978) are combined to characterize complex three-dimensional chemically reacting flows with density variations. The derivation of the system equations is outlined; the application of the low-Mach-number model is explained; and numerical results are presented in graphs for (1) a burning spherical fuel droplet, (2) three-dimensional flow on an ellipsoid of revolution at angle of attack 90 deg, and (3) free convection over a heated ellipsoid.
Overestimation of Mach number due to probe shadow
NASA Astrophysics Data System (ADS)
Gosselin, J. J.; Thakur, S. C.; Sears, S. H.; McKee, J. S.; Scime, E. E.; Tynan, G. R.
2016-07-01
Comparisons of the plasma ion flow speed measurements from Mach probes and laser induced fluorescence were performed in the Controlled Shear Decorrelation Experiment. We show the presence of the probe causes a low density geometric shadow downstream of the probe that affects the current density collected by the probe in collisional plasmas if the ion-neutral mean free path is shorter than the probe shadow length, Lg = w2 Vdrift/D⊥, resulting in erroneous Mach numbers. We then present a simple correction term that provides the corrected Mach number from probe data when the sound speed, ion-neutral mean free path, and perpendicular diffusion coefficient of the plasma are known. The probe shadow effect must be taken into account whenever the ion-neutral mean free path is on the order of the probe shadow length in linear devices and the open-field line region of fusion devices.
Improving the Mach number capabilities of arc driven shock tubes
NASA Technical Reports Server (NTRS)
Johnson, J. A., III; Santiago, J.; I, L.
1980-01-01
New systematic trends in one of the performance parameters of pressure loaded arc driven shock tubes have been determined. For a given configuration, the Mach number increases with the cube root of capacitor energy; however, the initial driver gas pressure is relatively unimportant. A qualitative model based on the assumption of Joule-preheating by the arc discharge is discussed.
Mach Number Effects on Turbine Blade Transition Length Prediction
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Simon, F. F.
1998-01-01
The effect of a Mach number correction on a model for predicting the length of transition was investigated. The transition length decreases as the turbulent spot production rate increases. Much of the data for predicting the spot production rate comes from low speed flow experiments. Recent data and analysis showed that the spot production rate is affected by Mach number. The degree of agreement between analysis and data for turbine blade heat transfer without film cooling is strongly dependent of accurately predicting the length of transition. Consequently, turbine blade heat transfer data sets were used to validate a transition length turbulence model. A method for modifying models for the length of transition to account for Mach number effects is presented. The modification was made to two transition length models. The modified models were incorporated into the two-dimensional Navier-Stokes code, RVCQ3D. Comparisons were made between predicted and measured midspan surface heat transfer for stator and rotor turbine blades. The results showed that accounting for Mach number effects significantly improved the agreement with the experimental data.
Unusual locations of Earth's bow shock on September 24 - 25, 1987: Mach number effects
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Fairfield, Donald H.; Anderson, Oger R.; Carlton, Victoria E. H.; Paularena, Karolen I.; Lazarus, Alan J.
1995-01-01
International Sun Earth Explorer 1 (ISEE 1) and Interplanetary Monitoring Platform 8 (IMP 8) data are used to identify 19 crossings of Earth's bow shock during a 30-hour period following 0000 UT on September 24, 1987. Apparent standoff distances for the shock are calculated for each crossing using two methods and the spacecraft location; one method assumes the average shock shape, while the other assumes a ram pressure-dependent shock shape. The shock's apparent standoff distance, normally approximately 14 R(sub E), is shown to increase from near 10 R(sub E) initially to near 19 R(sub E) during an 8-hour period, followed by an excursion to near 35 R(sub E) (where two IMP 8 shock crossings occur) and an eventual return to values smaller than 19 R(sub E). The Alfven M(sub A) and fast magnetosonic M(sub ms). Mach numbers remain above 2 and the number density above 4/cu cm for almost the entire period. Ram pressure effects produce the initial near-Earth shock location, whereas expansions and contractions of the bow shock due to low Mach number effects account, qualitatively and semiquantitatively, for the timing and existence of almost all the remaining ISEE crossings and both IMP 8 crossings. Significant quantitative differences exist between the apparent standoff distances for the shock crossings and those predicted using the observed plasma parameters and the standard model based on Spreiter et al.'s (1966) gasdynamic equation. These differences can be explained in terms of either a different dependence of the standoff distance on Mach number at low M(sub A) and M(sub ms), or variations in shock shape with M(sub A) and M(sub ms) (becoming increasingly "puffed up" with decreasing M(sub A) and M(sub ms), as expected theoretically), or by a combination of both effects.
Mach number effect on jet impingement heat transfer.
Brevet, P; Dorignac, E; Vullierme, J J
2001-05-01
An experimental investigation of heat transfer from a single round free jet, impinging normally on a flat plate is described. Flow at the exit plane of the jet is fully developed and the total temperature of the jet is equal to the ambient temperature. Infrared measurements lead to the characterization of the local and averaged heat transfer coefficients and Nusselt numbers over the impingement plate. The adiabatic wall temperature is introduced as the reference temperature for heat transfer coefficient calculation. Various nozzle diameters from 3 mm to 15 mm are used to make the injection Mach number M vary whereas the Reynolds number Re is kept constant. Thus the Mach number influence on jet impingement heat transfer can be directly evaluated. Experiments have been carried out for 4 nozzle diameters, for 3 different nozzle-to-target distances, with Reynolds number ranging from 7200 to 71,500 and Mach number from 0.02 to 0.69. A correlation is obtained from the data for the average Nusselt number. PMID:11460655
Statistical error in particle simulations of low mach number flows
Hadjiconstantinou, N G; Garcia, A L
2000-11-13
We present predictions for the statistical error due to finite sampling in the presence of thermal fluctuations in molecular simulation algorithms. The expressions are derived using equilibrium statistical mechanics. The results show that the number of samples needed to adequately resolve the flowfield scales as the inverse square of the Mach number. Agreement of the theory with direct Monte Carlo simulations shows that the use of equilibrium theory is justified.
Very high Mach number shocks - Theory. [in space plasmas
NASA Technical Reports Server (NTRS)
Quest, Kevin B.
1986-01-01
The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.
Boundary conditions and the simulation of low Mach number flows
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Lorenz, Jens
1993-01-01
The problem of accurately computing low Mach number flows, with the specific intent of studying the interaction of sound waves with incompressible flow structures, such as concentrations of vorticity is considered. This is a multiple time (and/or space) scales problem, leading to various difficulties in the design of numerical methods. Concentration is on one of these difficulties - the development of boundary conditions at artificial boundaries which allow sound waves and vortices to radiate to the far field. Nonlinear model equations are derived based on assumptions about the scaling of the variables. Then these are linearized about a uniform flow and exact boundary conditions are systematically derived using transform methods. Finally, useful approximations to the exact conditions which are valid for small Mach number and small viscosity are computed.
Aerodynamic and acoustic performance of high Mach number inlets
NASA Technical Reports Server (NTRS)
Lumsdaine, E.; Clark, L. R.; Cherng, J. C.; Tag, I.
1977-01-01
Experimental results were obtained for two types of high Mach number inlets, one with a translating centerbody and one with a fixed geometry (collapsing cowl) without centerbody. The aerodynamic and acoustic performance of these inlets was examined. The effects of several parameters such as area ratio and length-diameter ratio were investigated. The translating centerbody inlet was found to be superior to the collapsing cowl inlet both acoustically and aerodynamically, particularly for area ratios greater than 1.5. Comparison of length-diameter ratio and area ratio effects on performance near choked flow showed the latter parameter to be more significant. Also, greater high frequency noise attenuation was achieved by increasing Mach number from low to high subsonic values.
Courant Number and Mach Number Insensitive CE/SE Euler Solvers
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2005-01-01
It has been known that the space-time CE/SE method can be used to obtain ID, 2D, and 3D steady and unsteady flow solutions with Mach numbers ranging from 0.0028 to 10. However, it is also known that a CE/SE solution may become overly dissipative when the Mach number is very small. As an initial attempt to remedy this weakness, new 1D Courant number and Mach number insensitive CE/SE Euler solvers are developed using several key concepts underlying the recent successful development of Courant number insensitive CE/SE schemes. Numerical results indicate that the new solvers are capable of resolving crisply a contact discontinuity embedded in a flow with the maximum Mach number = 0.01.
Mach number effects on transonic aeroelastic forces and flutter characteristics
NASA Technical Reports Server (NTRS)
Mohr, Ross W.; Batina, John T.; Yang, Henry T. Y.
1988-01-01
Transonic aeroelastic stability analysis and flutter calculations are presented for a generic transport-type wing based on the use of the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code. The CAP-TSD code was recently developed for transonic unsteady aerodynamic and aeroelastic analysis of complete aircraft configurations. A binary aeroelastic system consisting of simple bending and torsion modes was used to study aeroelastic behavior at transonic speeds. Generalized aerodynamic forces are presented for a wide range of Mach number and reduced frequency. Aeroelastic characteristics are presented for variations in freestream Mach number, mass ratio, and bending-torsion frequency ratio. Flutter boundaries are presented which have two transonic dips in flutter speed. The first dip is the usual transonic dip involving a bending-dominated flutter mode. The second dip is characterized by a single degree-of-freedom torsion oscillation. These aeroelastic results are physically interpreted and shown to be related to the steady state shock location and changes in generalized aerodynamic forces due to freestream Mach number.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
Donev, Aleksandar Bhattacharjee, Amit Kumar; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.
2015-03-15
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a
A moving frame algorithm for high Mach number hydrodynamics
NASA Astrophysics Data System (ADS)
Trac, Hy; Pen, Ue-Li
2004-07-01
We present a new approach to Eulerian computational fluid dynamics that is designed to work at high Mach numbers encountered in astrophysical hydrodynamic simulations. Standard Eulerian schemes that strictly conserve total energy suffer from the high Mach number problem and proposed solutions to additionally solve the entropy or thermal energy still have their limitations. In our approach, the Eulerian conservation equations are solved in an adaptive frame moving with the fluid where Mach numbers are minimized. The moving frame approach uses a velocity decomposition technique to define local kinetic variables while storing the bulk kinetic components in a smoothed background velocity field that is associated with the grid velocity. Gravitationally induced accelerations are added to the grid, thereby minimizing the spurious heating problem encountered in cold gas flows. Separately tracking local and bulk flow components allows thermodynamic variables to be accurately calculated in both subsonic and supersonic regions. A main feature of the algorithm, that is not possible in previous Eulerian implementations, is the ability to resolve shocks and prevent spurious heating where both the pre-shock and post-shock fluid are supersonic. The hybrid algorithm combines the high-resolution shock capturing ability of the second-order accurate Eulerian TVD scheme with a low-diffusion Lagrangian advection scheme. We have implemented a cosmological code where the hydrodynamic evolution of the baryons is captured using the moving frame algorithm while the gravitational evolution of the collisionless dark matter is tracked using a particle-mesh N-body algorithm. Hydrodynamic and cosmological tests are described and results presented. The current code is fast, memory-friendly, and parallelized for shared-memory machines.
High Order Difference Method for Low Mach Number Aeroacoustics
NASA Technical Reports Server (NTRS)
Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)
2001-01-01
A high order finite difference method with improved accuracy and stability properties for computational aeroacoustics (CAA) at low Mach numbers is proposed. The Euler equations are split into a conservative and a symmetric non- conservative portion to allow the derivation of a generalized energy estimate. Since the symmetrization is based on entropy variables, that splitting of the flux derivatives is referred to as entropy splitting. Its discretization by high order central differences was found to need less numerical dissipation than conventional conservative schemes. Owing to the large disparity of acoustic and stagnation quantities in low Mach number aeroacoustics, the split Euler equations are formulated in perturbation form. The unknowns are the small changes of the conservative variables with respect to their large stagnation values. All nonlinearities and the conservation form of the conservative portion of the split flux derivatives can be retained, while cancellation errors are avoided with its discretization opposed to the conventional conservative form. The finite difference method is third-order accurate at the boundary and the conventional central sixth-order accurate stencil in the interior. The difference operator satisfies the summation by parts property analogous to the integration by parts in the continuous energy estimate. Thus, strict stability of the difference method follows automatically. Spurious high frequency oscillations are suppressed by a characteristic-based filter similar to but without limiter. The time derivative is approximated by a 4-stage low-storage second-order explicit Runge-Kutta method. The method has been applied to simulate vortex sound at low Mach numbers. We consider the Kirchhoff vortex, which is an elliptical patch of constant vorticity rotating with constant angular frequency in irrotational flow. The acoustic pressure generated by the Kirchhoff vortex is governed by the 2D Helmholtz equation, which can be solved
Measurements of Inertial Limit Alfven Wave Dispersion for Finite Perpendicular Wave Number
Kletzing, C. A.; Thuecks, D. J.; Skiff, F.; Bounds, S. R.; Vincena, S.
2010-03-05
Measurements of the dispersion relation for shear Alfven waves as a function of perpendicular wave number are reported for the inertial regime for which V{sub A}>V{sub Te}. The parallel phase velocity and damping are determined as k{sub perpendicular} varies and the measurements are compared to theoretical predictions. The comparison shows that the best agreement between theory and experiment is achieved for a fully complex plasma dispersion relation which includes the effects of electron collisions.
Finite Mach number spherical shock wave, application to shock ignition
Vallet, A.; Ribeyre, X.; Tikhonchuk, V.
2013-08-15
A converging and diverging spherical shock wave with a finite initial Mach number M{sub s0} is described by using a perturbative approach over a small parameter M{sub s}{sup −2}. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock Λ(t)∝dU{sub s}/dR{sub s} now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.
Finite Mach number spherical shock wave, application to shock ignition
NASA Astrophysics Data System (ADS)
Vallet, A.; Ribeyre, X.; Tikhonchuk, V.
2013-08-01
A converging and diverging spherical shock wave with a finite initial Mach number Ms0 is described by using a perturbative approach over a small parameter Ms-2. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock Λ(t)∝dUs/dRs now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.
The Variation of Slat Noise with Mach and Reynolds Numbers
NASA Technical Reports Server (NTRS)
Lockhard, David P.; Choudhari, Meelan M.
2011-01-01
The slat noise from the 30P30N high-lift system has been computed using a computational fluid dynamics code in conjunction with a Ffowcs Williams-Hawkings solver. By varying the Mach number from 0.13 to 0.25, the noise was found to vary roughly with the 5th power of the speed. Slight changes in the behavior with directivity angle could easily account for the different speed dependencies reported in the literature. Varying the Reynolds number from 1.4 to 2.4 million resulted in almost no differences, and primarily served to demonstrate the repeatability of the results. However, changing the underlying hybrid Reynolds-averaged-Navier-Stokes/Large-Eddy-Simulation turbulence model significantly altered the mean flow because of changes in the flap separation. However, the general trends observed in both the acoustics and near-field fluctuations were similar for both models.
An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers
NASA Technical Reports Server (NTRS)
Holden, M. S.
1972-01-01
Skin friction, heat transfer and pressure measurements were obtained in laminar, transitional and turbulent boundary layers on flat plates at Mach numbers from 7 to 13 at wall-to-free stream stagnation temperature ratios from 0.1 to 0.3. Measurements in laminar flows were in excellent agreement with the theory of Cheng. Correlations of the transition measurements with measurements on flight vehicles and in ballistic ranges show good agreement. Our transition measurements do not correlate well with those of Pate and Schueler. Comparisons have been made between the skin friction and heat transfer measurements and the theories of Van Driest, Eckert and Spalding and Chi. These comparisons reveal in general that at the high end of our Mach number range (10-13) the theory of Van Driest is in best agreement with the data, whereas at lower Mach numbers (6.5-10) the Spalding Chi theory is in better agreement with the measurements.
Turbomachinery for Low-to-High Mach Number Flight
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Shah, Parthiv N.
2004-01-01
The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed
A Global Existence Result for a Zero Mach Number System
NASA Astrophysics Data System (ADS)
Liao, Xian
2014-03-01
In this paper we study the global-in-time existence of weak solutions to a zero Mach number system that derives from the Navier-Stokes-Fourier system, under a special relationship between the viscosity coefficient and the heat conductivity coefficient. Roughly speaking, this relation implies that the source term in the equation for the newly introduced divergence-free velocity vector field vanishes. In dimension two, thanks to a local-in-time existence result of a unique strong solution in critical Besov spaces given by Danchin and Liao (Commun Contemp Math 14:1250022, 2012), for arbitrary large initial data, we show that this unique strong solution exists globally in time, as a consequence of a weak-strong uniqueness argument.
Structure of medium Mach number quasi-parallel shocks - Upstream and downstream waves
NASA Technical Reports Server (NTRS)
Krauss-Varban, D.; Omidi, N.
1991-01-01
The transition from steady low-Mach-number to unsteady high-Mach-number quasi-parallel shocks was investigated by performing large-scale 1D hybrid code simulations at increasing Mach numbers. It was found that only at very low Mach number shocks the steepening is limited by upstream phase-standing whistlers, as predicted by the classical theory (Tidman and Northrop, 1968). In the intermediate region of Mach numbers between 1.5 and 3.5, a very diverse behavior is observed. Backstreaming ions generate fast magnetosonic waves which dominate the upstream, with wavelengths longer than phase-standing whistlers. At increasing Mach numbers, the phase and group velocities of the dominant waves are reduced until they point back toward the shock; when there is sufficient energy flux in these waves, they lead to unsteady shock behavior and eventually to shock reformation.
Effect of Reynolds Number and Mach Number on flow angularity probe sensitivity
NASA Technical Reports Server (NTRS)
Smith, L. A.; Adcock, J. B.
1986-01-01
Preliminary calibrations were performed on nine flow angularity probes in the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST) and the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). These probes will be used in surveying the test section flows of the National Transonic Facility (NTF). The probes used in this study have a pyramid head with five pressure orifices. The calibrations consisted of both isolated probe measurements and rake-mounted multiprobe measurements that covered a range of subsonic Mach numbers up to 0.90 and Reynolds numbers per foot up to 40 X 10 to the 6th power. The preliminary calibration in the 7 x 10 HST included testing the probes both individually and in a rake. The 0.3-m TCT calibration tested two probes singly at varying Reynolds numbers. The results from these tests include Mach number, Reynolds number, and rake-mounting effects. The results of these tests showed probe sensitivity to be slightly affected by Mach number. At Reynolds numbers per foot above 10 x 10 to the 6th power, the probe did not exhibit a Reynolds number sensitivity.
Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application
NASA Technical Reports Server (NTRS)
Chapin, W. G.
1986-01-01
A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.
Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Xiao, X.; Edwards, J. R.; Hassan, H. A.; Gaffney, R. L., Jr.
2007-01-01
A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.
Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Gaffney, R. L., Jr.; Xiao, X.; Edwards, J. R.; Hassan, H. A.
2005-01-01
A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.
Hodograph design of lifting airfoils with high critical mach numbers
NASA Astrophysics Data System (ADS)
Kropinski, M. C. A.; Schwendeman, D. W.; Cole, J. D.
1995-05-01
We wish to construct airfoils that have the highest free-stream Mach number M ∞ for a given set of geometric constraints for which the flow is nowhere supersonic. Nonlifting airfoils which maximize M ∞ for a given thickness ratio δ are known to possess long sonic segments at their critical speed. To construct lifting airfoils, we proceed under the conjecture that the optimal airfoil satisfying a given set of constraints is the one possessing the longest possible arc length of sonic velocity. A boundary-value problem is formulated in the hodograph plane using transonic small-disturbance theory whose solution determines an airfoil with long sonic arcs. For small lift coefficients, the hodograph domain covers two Riemann sheets and a finite-difference method is used to solve the boundary-value problem on this domain. A numerical integration of the solution around the boundary yields an airfoil shape, and three examples are discussed. The performance of these airfoils is compared with standard airfoils having the same lift coefficient and δ, and it is shown that the calculated airfoils have a 6% 10% increase in critical M ∞.
LOW MACH NUMBER MODELING OF CORE CONVECTION IN MASSIVE STARS
Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.
2013-08-20
This work presents three-dimensional simulations of core convection in a 15 M{sub Sun} star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.
Interaction of upstream flow distortions with high Mach number cascades
NASA Technical Reports Server (NTRS)
Englert, G. W.
1981-01-01
Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.
Attenuation of sound in a low Mach number nozzle flow
NASA Technical Reports Server (NTRS)
Howe, M. S.
1979-01-01
The energy conversion mechanisms which govern the emission of low frequency sound from an axisymmetric jet pipe of arbitrary nozzle contraction ratio in the case of low Mach number nozzle flow are discussed. The energy of the incident sound which flows through the nozzle is used to maintain two distinct characteristic disturbances in the exterior fluid. First, there is the emitted radiation which has the directivity equivalent to that of a monopole-dipole combination. Second, essentially incompressible vortex waves are induced on the jet by vortex shedding from the lip of the nozzle and may involve the excitation of instability modes. Two linearized analytical models are examined to determine the partition of the emitted energy between the radiation field and the vortex waves. One of these is an exact linear theory in which the jet boundary is treated as a vortex sheet. The second model assumes that the width of the mean shear layer of the jet cannot be neglected. The results are discussed with reference to recent nozzle attenuation measurements.
Low Mach number parallel and quasi-parallel shocks
NASA Technical Reports Server (NTRS)
Omidi, N.; Quest, K. B.; Winske, D.
1990-01-01
The properties of low-Mach-number parallel and quasi-parallel shocks are studied using the results of one-dimensional hybrid simulations. It is shown that both the structure and ion dissipation at the shocks differ considerably. In the parallel limit, the shock remains coupled to the piston and consists of large-amplitude magnetosonic-whistler waves in the upstream, through the shock and into the downstream region, where the waves eventually damp out. These waves are generated by an ion beam instability due to the interaction between the incident and piston-reflected ions. The excited waves decelerate the plasma sufficiently that it becomes stable far into the downstream. The increase in ion temperature along the shock normal in the downstream region is due to superposition of incident and piston-rflected ions. These two populations of ions remain distinct through the downstream region. While they are both gyrophase-bunched, their counterstreaming nature results in a 180-deg phase shift in their perpendicular velocities.
Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers
NASA Technical Reports Server (NTRS)
Grabbe, Crockett L.; Cairns, Iver H.
1995-01-01
A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a
Unusual locations of Earth`s bow shock on September 24-25, 1987: Mach number effects
Cairns, I.H.; Anderson, R.R.; Fairfield, D.H.; Carlton, V.E.H.; Paularena, K.I.; Lazarus, A.J.
1995-01-01
ISEE 1 and IMP 8 data are used to identify 19 crossings of Earth`s bow shock during a 30-hour period following 0000 UT on September 24, 1987. Apparent standoff distances for the shock are calculated for each crossing using two methods and the spacecraft location; one method assumes the average shock shape, while the other assumes a ram pressure-dependent shock shape. The shock`s apparent standoff distance normally {approximately}14 R{sub E}, is shown to increase from near 10 R{sub E} initially to near 19 R{sub E}. The Alfven M{sub A} and fast magnetosonic M{sub ms} Mach numbers remain above 2 and the number density above 4 cm{sup {minus}3} for almost the entire period. Ram pressure effects produce the initial near-Earth shock location, whereas expansions and contractions of the bow shock due to low Mach number effects account, qualitatively and semiquantitatively, for the timing and existence of almost all the remaining ISEE crossings and both IMP 8 crossings. Ram pressure-induced changes in the shock`s shape are discussed but found to be quantitatively unimportant for the shock crossings analyzed. Approximate estimates of both the deviation of the shock`s standoff distance from the standard model and of the shock`s shape are determined independently (but not consistently) for M{sub ms}{approximately}2.4. The estimates imply substantial changes in standoff distance and/or shock shape at low M{sub A} and M{sub ms}. Mach number effects can therefore be quantitatively important in determining and predicting the shape and location of the bow shock, even when M{sub A} and M{sub ms} remain above 2. This study confirms and generalizes previous studies of Mach number effects on Earth`s bow shock. Statistical studies and simulations of the bow shock`s shape and location should be performed as a function of Mach number, magnetic field orientation, and ram pressure. 25 refs., 12 figs.
Numerical Simulation of a High Mach Number Jet Flow
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.
1993-01-01
The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach
Variation with Mach Number of Static and Total Pressures Through Various Screens
NASA Technical Reports Server (NTRS)
Adler, Alfred A
1946-01-01
Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is
Radiation models for thermal flows at low Mach number
Teleaga, Ioan . E-mail: teleaga@mathematik.tu-darmstadt.de; Seaid, Mohammed . E-mail: seaid@mathematik.uni-kl.de; Gasser, Ingenuin . E-mail: gasser@math.uni-hamburg.de; Klar, Axel . E-mail: klar@itwm.fhg.de; Struckmeier, Jens . E-mail: struckmeier@math.uni-hamburg.de
2006-07-01
Simplified approximate models for radiation are proposed to study thermal effects in low Mach flow in open tunnels. The governing equations for fluid dynamics are derived by applying a low Mach asymptotic in the compressible Navier-Stokes problem. Based on an asymptotic analysis we show that the integro-differential equation for radiative transfer can be replaced by a set of differential equations which are independent of angle variable and easy to solve using standard numerical discretizations. As an application we consider a simplified fire model in vehicular tunnels. The results presented in this paper show that the proposed models are able to predict temperature in the tunnels accurately with low computational cost.
A low-Mach number fix for Roe’s approximate Riemann solver
NASA Astrophysics Data System (ADS)
Rieper, Felix
2011-06-01
We present a low-Mach number fix for Roe's approximate Riemann solver (LMRoe). As the Mach number Ma tends to zero, solutions to the Euler equations converge to solutions of the incompressible equations. Yet, standard upwind schemes do not reproduce this convergence: the artificial viscosity grows like 1/Ma, leading to a loss of accuracy as Ma → 0. With a discrete asymptotic analysis of the Roe scheme we identify the responsible term: the jump in the normal velocity component Δ U of the Riemann problem. The remedy consists of reducing this term by one order of magnitude in terms of the Mach number. This is achieved by simply multiplying Δ U with the local Mach number. With an asymptotic analysis it is shown that all discrepancies between continuous and discrete asymptotics disappear, while, at the same time, checkerboard modes are suppressed. Low Mach number test cases show, first, that the accuracy of LMRoe is independent of the Mach number, second, that the solution converges to the incompressible limit for Ma → 0 on a fixed mesh and, finally, that the new scheme does not produce pressure checkerboard modes. High speed test cases demonstrate the fall back of the new scheme to the classical Roe scheme at moderate and high Mach numbers.
NASA Technical Reports Server (NTRS)
Graham, Donald J
1949-01-01
Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.
Sidewall Mach Number Distributions for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Florance, James R.; Rivera, Jose A., Jr.
2001-01-01
The Transonic Dynamics Tunnel(TDT) was recalibrated due to the conversion of the heavy gas test medium from R-12 to R-134a. The objectives of the tests were to determine the relationship between the free-stream Mach number and the measured test section Mach number, and to quantify any necessary corrections. Other tests included the measurement of pressure distributions along the test-section walls, test-section centerline, at certain tunnel stations via a rake apparatus, and in the tunnel settling chamber. Wall boundary layer, turbulence, and flow angularity measurements were also performed. This paper discusses the determination of sidewall Mach number distributions.
Absolute/convective instabilities and the convective Mach number in a compressible mixing layer
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1989-01-01
Two aspects of the stability of a compressible mixing layer: Absolute/Convective instability and the convective Mach number were considered. It was shown that, for Mach numbers less than one, the compressible mixing layer is convectively unstable unless there is an appreciable amount of backflow. Also presented was a rigorous derivation of a convective Mach number based on linear stability theory for the flow of a multi-species gas in a mixing layer. The result is compared with the heuristic definitions of others and to selected experimental results.
Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations
NASA Technical Reports Server (NTRS)
Strash, Daniel J.; Summa, Michael; Yoo, Sungyul
1991-01-01
A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.
Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; DeBonis, J. R.
1999-01-01
A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.
On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers
NASA Technical Reports Server (NTRS)
Pletcher, R. H.; Chen, K.-H.
1993-01-01
The properties of a preconditioned, coupled, strongly implicit finite difference scheme for solving the compressible Navier-Stokes equations in primitive variables are investigated for two unsteady flows at low speeds, namely the impulsively started driven cavity and the startup of pipe flow. For the shear-driven cavity flow, the computational effort was observed to be nearly independent of Mach number, especially at the low end of the range considered. This Mach number independence was also observed for steady pipe flow calculations; however, rather different conclusions were drawn for the unsteady calculations. In the pressure-driven pipe startup problem, the compressibility of the fluid began to significantly influence the physics of the flow development at quite low Mach numbers. The present scheme was observed to produce the expected characteristics of completely incompressible flow when the Mach number was set at very low values. Good agreement with incompressible results available in the literature was observed.
Low Mach Number Modeling of Type Ia Supernovae. II. EnergyEvolution
Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale,Mike
2006-03-28
The convective period leading up to a Type Ia supernova (SNIa) explosion is characterized by very low Mach number flows, requiringhydrodynamical methods well-suited to long-time integration. We continuethe development of the low Mach number equation set for stellar scaleflows by incorporating the effects of heat release due to externalsources. Low Mach number hydrodynamics equations with a time-dependentbackground state are derived, and a numerical method based on theapproximate projection formalism is presented. We demonstrate throughvalidation with a fully compressible hydrodynamics code that this lowMach number model accurately captures the expansion of the stellaratmosphere as well as the local dynamics due to external heat sources.This algorithm provides the basis for an efficient simulation tool forstudying the ignition of SNe Ia.
NASA Technical Reports Server (NTRS)
Graham, Donald J
1948-01-01
Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.
Mach-Number Measurement with Laser and Pressure Probes in Humid Supersonic Flow
NASA Technical Reports Server (NTRS)
Herring, G. C.
2008-01-01
Mach-number measurements using a nonintrusive optical technique, laser-induced thermal acoustics (LITA), are compared to pressure probes in humid supersonic airflow. The two techniques agree well in dry flow (-35 C dew point), but LITA measurements show about five times larger fractional change in Mach number than that of the pressure-probe when water is purposefully introduced into the flow. Possible reasons for this discrepancy are discussed.
NASA Technical Reports Server (NTRS)
Furlong, G. Chester; Fitzpatrick, James E.
1947-01-01
Wing was tested with full-span, partial-span, or split flaps deflected 60 Degrees and without flaps. Chordwise pressure-distribution measurements were made for all flap configurations.. Peak values of maximum lift coefficient were obtained at relatively low free-stream Mach numbers and, before critical Mach number was reached, were almost entirely dependent on Reynolds Number. Lift coefficient increased by increasing Mach number or deflecting flaps while critical pressure coefficient was reached at lower free-stream Mach numbers.
Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Number
NASA Technical Reports Server (NTRS)
Xiao, X.; Edwards, J. R.; Hassan, H. A.
2004-01-01
Present simulation of turbulent flows involving shock wave/boundary layer interaction invariably overestimates heat flux by almost a factor of two. One possible reason for such a performance is a result of the fact that the turbulence models employed make use of Morkovin's hypothesis. This hypothesis is valid for non-hypersonic Mach numbers and moderate rates of heat transfer. At hypersonic Mach numbers, high rates of heat transfer exist in regions where shock wave/boundary layer interactions are important. As a result, one should not expect traditional turbulence models to yield accurate results. The goal of this investigation is to explore the role of a variable Prandtl number formulation in predicting heat flux in flows dominated by strong shock wave/boundary layer interactions. The intended applications involve external flows in the absence of combustion such as those encountered in supersonic inlets. This can be achieved by adding equations for the temperature variance and its dissipation rate. Such equations can be derived from the exact Navier-Stokes equations. Traditionally, modeled equations are based on the low speed energy equation where the pressure gradient term and the term responsible for energy dissipation are ignored. It is clear that such assumptions are not valid for hypersonic flows. The approach used here is based on the procedure used in deriving the k-zeta model, in which the exact equations that governed k, the variance of velocity, and zeta, the variance of vorticity, were derived and modeled. For the variable turbulent Prandtl number, the exact equations that govern the temperature variance and its dissipation rate are derived and modeled term by term. The resulting set of equations are free of damping and wall functions and are coordinate-system independent. Moreover, modeled correlations are tensorially consistent and invariant under Galilean transformation. The final set of equations will be given in the paper.
Mach number study of supersonic turbulence: the properties of the density field
NASA Astrophysics Data System (ADS)
Konstandin, L.; Schmidt, W.; Girichidis, P.; Peters, T.; Shetty, R.; Klessen, R. S.
2016-08-01
We model driven, compressible, isothermal, turbulence with Mach numbers ranging from the subsonic ($\\mathcal{M} \\approx 0.65$) to the highly supersonic regime ($\\mathcal{M}\\approx 16 $). The forcing scheme consists both solenoidal (transverse) and compressive (longitudinal) modes in equal parts. We find a relation $\\sigma_{s}^2 = \\mathrm{b}\\log{(1+\\mathrm{b}^2\\mathcal{M}^2)}$ between the Mach number and the standard deviation of the logarithmic density with $\\mathrm{b} = 0.457 \\pm 0.007$. The density spectra follow $\\mathcal{D}(k,\\,\\mathcal{M}) \\propto k^{\\zeta(\\mathcal{M})}$ with scaling exponents depending on the Mach number. We find $\\zeta(\\mathcal{M}) = \\alpha \\mathcal{M}^{\\beta}$ with a coefficient $\\alpha$ that varies slightly with resolution, whereas $\\beta$ changes systematically. We extrapolate to the limit of infinite resolution and find $\\alpha = -1.91 \\pm 0.01,\\, \\beta =-0.30\\pm 0.03$. The dependence of the scaling exponent on the Mach number implies a fractal dimension $D=2+0.96 \\mathcal{M}^{-0.30}$. We determine how the scaling parameters depend on the wavenumber and find that the density spectra are slightly curved. This curvature gets more pronounced with increasing Mach number. We propose a physically motivated fitting formula $\\mathcal{D}(k) = \\mathcal{D}_0 k^{\\zeta k^{\\eta}}$ by using simple scaling arguments. The fit reproduces the spectral behaviour down to scales $k\\approx 80$. The density spectrum follows a single power-law $\\eta = -0.005 \\pm 0.01$ in the low Mach number regime and the strongest curvature $\\eta = -0.04 \\pm 0.02$ for the highest Mach number. These values of $\\eta$ represent a lower limit, as the curvature increases with resolution.
Pressure recovery performance of conical diffusers at high subsonic Mach numbers
NASA Technical Reports Server (NTRS)
Dolan, F. X.; Runstadler, P. W., Jr.
1973-01-01
The pressure recovery performance of conical diffusers has been measured for a wide range of geometries and inlet flow conditions. The approximate level and location (in terms of diffuser geometry of optimum performance were determined. Throat Mach numbers from low subsonic (m sub t equals 0.2) through choking (m sub t equals 1.0) were investigated in combination with throat blockage from 0.03 to 0.12. For fixed Mach number, performance was measured over a fourfold range of inlet Reynolds number. Maps of pressure recovery are presented as a function of diffuser geometry for fixed sets of inlet conditions. The influence of inlet blockage, throat Mach number, and inlet Reynolds number is discussed.
On the instabilities of supersonic mixing layers - A high-Mach-number asymptotic theory
NASA Technical Reports Server (NTRS)
Balsa, Thomas F.; Goldstein, M. E.
1990-01-01
The stability of a family of tanh mixing layers is studied at large Mach numbers using perturbation methods. It is found that the eigenfunction develops a multilayered structure, and the eigenvalue is obtained by solving a simplified version of the Rayleigh equation (with homogeneous boundary conditions) in one of these layers which lies in either of the external streams. This analysis leads to a simple hypersonic similarity law which explains how spatial and temporal phase speeds and growth rates scale with Mach number and temperature ratio. Comparisons are made with numerical results, and it is found that this similarity law provides a good qualitative guide for the behavior of the instability at high Mach numbers. In addition to this asymptotic theory, some fully numerical results are also presented (with no limitation on the Mach number) in order to explain the origin of the hypersonic modes (through mode splitting) and to discuss the role of oblique modes over a very wide range of Mach number and temperature ratio.
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1974-01-01
Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.
Mach number study of supersonic turbulence: the properties of the density field
NASA Astrophysics Data System (ADS)
Konstandin, L.; Schmidt, W.; Girichidis, P.; Peters, T.; Shetty, R.; Klessen, R. S.
2016-08-01
We analyse the scaling properties of turbulent flows using a suite of three-dimensional numerical simulations. We model driven, compressible, isothermal, turbulence with Mach numbers ranging from the subsonic ({M} ≈ 0.5) to the highly supersonic regime ({M}≈ 16). The forcing scheme consists of both solenoidal (transverse) and compressive (longitudinal) modes in equal parts. We confirm the relation σ s^2 = ln {(1+b^2{M}^2)} between the Mach number and the standard deviation of the logarithmic density with b = 0.33. We find increasing deviations with higher Mach number from the predicted lognormal shape in the high-density wing of the density probability density function. The density spectra follow {D}(k, {M}) ∝ k^{ζ ({M})} with scaling exponents depending on the Mach number. We find ζ ({M}) = α {M}^{β } with coefficients α = -2.1 and β = -0.33. The dependence of the scaling exponent on the Mach number implies a fractal dimension D=2+1.05 {M}^{-0.33}.
Mach number study of supersonic turbulence: The properties of the density field
NASA Astrophysics Data System (ADS)
Konstandin, L.; Schmidt, W.; Girichidis, P.; Peters, T.; Shetty, R.; Klessen, R. S.
2016-06-01
We analyse the scaling properties of turbulent flows using a suite of three-dimensional numerical simulations. We model driven, compressible, isothermal, turbulence with Mach numbers ranging from the subsonic (mathcal {M} ≈ 0.5) to the highly supersonic regime (mathcal {M}≈ 16). The forcing scheme consists of both solenoidal (transverse) and compressive (longitudinal) modes in equal parts. We confirm the relation σ s^2 = ln {(1+b^2mathcal {M}^2)} between the Mach number and the standard deviation of the logarithmic density with b = 0.33. We find increasing deviations with higher Mach number from the predicted log-normal shape in the high density wing of the density probability density function. The density spectra follow mathcal {D}(k, mathcal {M}) ∝ k^{ζ (mathcal {M})} with scaling exponents depending on the Mach number. We find ζ (mathcal {M}) = α mathcal {M}^{β } with a coefficient α = -2.1 and β = -0.33. The dependence of the scaling exponent on the Mach number implies a fractal dimension D=2+1.05 mathcal {M}^{-0.33}.
Nonlinear standing Alfven wave current system at Io: Theory
Neubauer, F.M.
1980-03-01
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.
Operating characteristics of the Langley Mach 10 high Reynolds number helium tunnel
NASA Technical Reports Server (NTRS)
Watson, R. D.; Morris, D. J.; Fischer, M. C.
1974-01-01
Operating characteristics of the Langley Mach 10 high Reynolds number helium tunnel are presented for stagnation pressures from 138 N/sq cm to 1655 N/sq cm. The characteristics include detailed Mach number surveys in the test section from which usable core size and regions of disturbed flow were determined, preliminary blockage test results, and maximum run time to be expected at various stagnation pressures. Important tunnel dimensions including details of the model mounting apparatus are given. Measurements show the variation in average core Mach number in the test section to be between 9.4 and 10 for the present range of test conditions. The core radius is from 23 cm to 31.5 cm, depending on stagnation pressure and axial location in the test section.
Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations
NASA Astrophysics Data System (ADS)
Moguen, Yann; Delmas, Simon; Perrier, Vincent; Bruel, Pascal; Dick, Erik
2015-01-01
An inertia term is introduced in the AUSM+-up scheme. The resulting scheme, called AUSM-IT (IT for Inertia Term), is designed as an extension of the AUSM+-up scheme allowing for full Mach number range calculations of unsteady flows including acoustic features. In line with the continuous asymptotic analysis, the AUSM-IT scheme satisfies the conservation of the discrete linear acoustic energy at first order in the low Mach number limit. Its capability to properly handle low Mach number unsteady flows, that may include acoustic waves or discontinuities, is numerically illustrated. The approach for building the AUSM-IT scheme from the AUSM+-up scheme is applicable to any other Godunov-type scheme.
Detailed noise measurements on the SR-7A propeller: Tone behavior with helical tip Mach number
NASA Technical Reports Server (NTRS)
Dittmar, James H.; Hall, David G.
1991-01-01
Detailed noise measurements were taken on the SR-7A propeller to investigate the behavior of the noise with helical tip Mach number and then to level off as Mach number was increased further. This behavior was further investigated by obtaining detailed pressure-time histories of data. The pressure-time histories indicate that a portion of the primary pressure pulse is progressively cancelled by a secondary pulse which results in the noise leveling off as the helical tip Mach number is increased. This second pulse appears to originate on the same blade as the primary pulse and is in some way connected to the blade itself. This leaves open the possibility of redesigning the blade to improve the cancellation; thereby, the propeller noise is reduced.
Guderley reflection for higher Mach numbers in a standard shock tube
NASA Astrophysics Data System (ADS)
Cachucho, A.; Skews, B. W.
2012-03-01
An experimental study shows that the Guderley reflection (GR) of shock waves can be produced in a standard shock tube. A new technique was utilised which comprises triple point of a developed weak Mach reflection undergoing a number of reflections off the ceiling and floor of the shock tube before arriving at the test section. Both simple perturbation sources and diverging ramps were used to generate a transverse wave in the tube which then becomes the weak reflected wave of the reflection pattern. Tests were conducted for three ramp angles (10°, 15°, and 20°) and two perturbation sources for a range of Mach numbers (1.10-1.40) and two shock tube expansion chamber lengths (2.0 and 4.0 m). It was found that the length of the Mach stem of the reflection pattern is the overall vertical distance traveled by the triple point. Images with equivalent Mach stem lengths in the order of 2.0 m were produced. All tests showed evidence of the fourth wave of the GR, namely the expansion wave behind the reflected shock wave. A shocklet terminating the expansion wave was also identified in a few cases mainly for incident wave Mach numbers of approximately 1.20.
Experimental study of Mach number effects on the evolution of Richtmyer-Meshkov instabilities
NASA Astrophysics Data System (ADS)
Mejia-Alvarez, Ricardo; Wilson, Brandon; Craig, Alex; Prestridge, Kathy
2015-11-01
The evolution of Richtmyer-Meshkov instabilities from the initial linear growth stages, to the subsequent non-linear interactions and the eventual (sometimes elusive) transition to turbulence, is strongly dependent on a number of factors such as shock strength (Mach number), Atwood number, and the initial structure of the fluid interface. Mach number controls the effective value of the Atwood number after compression, and thus the distribution and total amount of kinetic energy deposited at shock interaction. The initial scale-content in the fluid interface defines how quickly and to what extent growing instabilities interact with each other, ultimately conditioning transition to turbulence. These effects are not entirely independent of each other, and the extent of their relative importance is not well understood. To shed light on this subject, we designed a parameter space consisting of three different Mach numbers (1.1, 1.3, and 1.45) and three different interface configurations of varying scale content. This parameter space is being explored experimentally by means of simultaneous PIV/PLIF measurements on a single air- SF6 interface as it evolves after shock interaction. This talk will focus on the observation of Mach number effects for an early stage of evolution.
NASA Technical Reports Server (NTRS)
Love, D. A.
1978-01-01
Two single nozzles with flare angles of 10 and 20 degrees were tested at Mach numbers of 0.5, 0.9, 1.2, 1.46, 1.96 and 3.48 in the presence of gaseous plumes. An attempt was made to determine the local Mach number above the flare by utilizing a pitot probe. This objective was only partially satisfied because the 20 degree flare separated the flow ahead of the flare for Mach numbers of 0.5 to 1.96. An accurate local Mach number could not be determined because of the separated flow. To meet the objective of a data base as a function of freestream Mach number, model surface and base pressures were obtained in the presence of gaseous plumes for a matrix of chamber pressures and temperatures at Mach numbers of 0.5, 0.9, 1.2, 1.46, 1.96 and 3.48.
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, John; Saunders, John
2014-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, J. W.; Saunders, J. D.
2015-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
NASA Astrophysics Data System (ADS)
Rüdiger, G.; Schultz, M.; Kitchatinov, L. L.
2016-03-01
With applications to inner solar-type radiative zones, a linear theory is used to analyse the instability of a toroidal background field of dipolar parity, in the presence of density stratification, differential rotation and realistically small Prandtl numbers. The physical parameters are the Alfvén frequency ΩA, the global rotation rate Ω and the buoyancy frequency N with ΩA < Ω < N. Only the solutions for the wavelengths with the maximal growth rates are considered. If these scales are combined to estimate radial velocities, one finds that it hardly depends on the latitudinal shear and the magnetic Mach number. In the formulation of Schatzman the radial mixing of chemicals can be estimated as Re* = O(100) which indeed is necessary to dissipate the lithium in the solar tachocline with a time-scale of 1 Gyr. The calculated growth rates indicate a destabilization of the system for growing latitudinal shear except for small Mach numbers and antisolar shear. The ratio ε of the magnetic and the kinetic energy of the instability pattern only slightly depends on the shear but a strong dependence on the magnetic Mach number exists with ε ∝ Mm2. The effective magnetic Prandtl number reaches values O(103) so that for the stars with high magnetic Mach number the differential rotation decays much faster than the toroidal background field.
NASA Technical Reports Server (NTRS)
Groesbeck, D. E.; Huff, R. G.; Vonglahn, U. H.
1977-01-01
Small-scale circular, noncircular, single- and multi-element nozzles with flow areas as large as 122 sq cm were tested with cold airflow at exit Mach numbers from 0.28 to 1.15. The effects of multi-element nozzle shape and element spacing on jet Mach number decay were studied in an effort to reduce the noise caused by jet impingement on externally blown flap (EBF) STOL aircraft. The jet Mach number decay data are well represented by empirical relations. Jet spreading and Mach number decay contours are presented for all configurations tested.
Collisionless relaxation of downstream ion distributions in low-Mach number shocks
Gedalin, M.; Friedman, Y.; Balikhin, M.
2015-07-15
Collisionlessly formed downstream distributions of ions in low-Mach number shocks are studied. General expressions for the asymptotic value of the ion density and pressure are derived for the directly transmitted ions. An analytical approximation for the overshoot strength is suggested for the low-β case. Spatial damping scale of the downstream magnetic oscillations is estimated.
A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Eberhardt, S.; Palmer, G.
1986-01-01
A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.
A NEW DENSITY VARIANCE-MACH NUMBER RELATION FOR SUBSONIC AND SUPERSONIC ISOTHERMAL TURBULENCE
Konstandin, L.; Girichidis, P.; Federrath, C.; Klessen, R. S.
2012-12-20
The probability density function of the gas density in subsonic and supersonic, isothermal, driven turbulence is analyzed using a systematic set of hydrodynamical grid simulations with resolutions of up to 1024{sup 3} cells. We perform a series of numerical experiments with root-mean-square (rms) Mach number M ranging from the nearly incompressible, subsonic (M=0.1) to the highly compressible, supersonic (M=15) regime. We study the influence of two extreme cases for the driving mechanism by applying a purely solenoidal (divergence-free) and a purely compressive (curl-free) forcing field to drive the turbulence. We find that our measurements fit the linear relation between the rms Mach number and the standard deviation (std. dev.) of the density distribution in a wide range of Mach numbers, where the proportionality constant depends on the type of forcing. In addition, we propose a new linear relation between the std. dev. of the density distribution {sigma}{sub {rho}} and that of the velocity in compressible modes, i.e., the compressible component of the rms Mach number, M{sub comp}. In this relation the influence of the forcing is significantly reduced, suggesting a linear relation between {sigma}{sub {rho}} and M{sub comp}, independent of the forcing, and ranging from the subsonic to the supersonic regime.
The Many Faces of the Asymptotics of Low-Mach-Number Flows
NASA Astrophysics Data System (ADS)
Zeytounian, Radyadour Kh.
It has long been known (Janzen 1913 and Rayleigh 1916) that asymptotic methods provide a sound way of describing incompressible aerodynamics (hydrodynamics) in terms of a low-Mach-number (M ≪ 1) flow, and a comprehensive discussion of this topic was given by Imai (1957), as far as steady flows of an inviscid fluid are concerned.
NASA Technical Reports Server (NTRS)
Mack, R. J.
1973-01-01
A study of seven methods for predicting flow-field pressure signatures from the parameters Mach number, body geometry, and field-path distance has been made. The methods included the method of characteristics, which served as a standard of comparison; a shock-capturing method; three Whitham theory methods; a modified characteristics method; and a bicharacteristics method. Results from each method were also compared with recently obtained wind-tunnel data for a cone-cylinder model at Mach numbers of 2.96 and 4.63 with ratios of radial distance to cone length of 2 and 5. The comparisons at a Mach number of 2.96 showed that signatures from all the methods correlated well with wind-tunnel data and with the signatures predicted by the method of characteristics. At a Mach number of 4.63, however, the agreement between the signatures obtained in the wind tunnel and those predicted by theory varied from good to poor, as did the agreement between the signatures obtained by the method of characteristics and the other six methods. It should be noted that these results and comparisons indicate pressure prediction capabilities only for the near-field flow about bodies of revolution.
Effect of Subsonic Inlet Lip Geometry on Predicted Surface and Flow Mach Number Distributions
NASA Technical Reports Server (NTRS)
Albers, J. A.; Miller, B. A.
1973-01-01
The effect of subsonic inlet lip geometry on predicted surface and flow Mach number distributions is illustrated. The theoretical results were obtained from incompressible potential flow calculations corrected for compressibility. The major emphasis of this investigation is on the low-speed (takeoff and landing) operating conditions. The low-speed results were obtained for a range of three geometric variables of interest: contraction ratio, defined as the ratio of highlight area to throat area; internal lip major - to minor-axis ratio; and internal lip shape. The low-speed results were obtained at both static conditions and a free-stream velocity of 42.6m/sec, with incidence angles ranging from 0 deg to 50 deg. The results indicate that of the three geometric variables considered, contraction ratio had the largest effect on the surface Mach number distributions. The effects of inlet diameter ratio and blunting of the external forebody on maximum external surface Mach numbers are illustrated at a cruise Mach number of 0.8.
NASA Astrophysics Data System (ADS)
Grocott, A.; Badman, S. V.; Cowley, S. W. H.; Milan, S. E.; Nichols, J. D.; Yeoman, T. K.
2009-07-01
We present a statistical investigation into the magnetosonic Mach number dependence of the efficiency of reconnection at the Earth's dayside magnetopause. We use the transpolar voltage V PC, derived from radar observations of the ionospheric electric field, as a proxy for the dayside reconnection voltage. Our results show that the IMF clock angle dependence of V PC is closely approximated by the function f($\\theta$) = sin2($\\theta$/2), which we use in the derivation of a solar wind transfer function E* = E SW f($\\theta$), wherein E SW is the solar wind electric field. We find that V PC is strongly related to E*, increasing almost linearly with small E* but saturating as E* becomes high. We also find that E* is strongly dependent on the magnetosonic Mach number, M MS, decreasing to near-zero values as M MS approaches 12, due principally to decreasing values of the IMF strength. V PC, on the other hand, is only weakly related to M MS and, for lower, more usual values of E*, actually shows a modest increase with increasing M MS. This result has implications for the solar wind-magnetosphere interaction at the outer planets where the Mach number is typically much higher than it is at 1 AU. Examples of SuperDARN convection maps from two high Mach number intervals are also presented, illustrating the existence of fairly typical reconnection driven flows. We thus find no evidence for a significant reduction in the magnetopause reconnection rate associated with high magnetosonic Mach numbers.
Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number
Battista, F.; Casciola, C. M.; Picano, F.
2014-05-15
Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.
Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number
NASA Astrophysics Data System (ADS)
Battista, F.; Picano, F.; Casciola, C. M.
2014-05-01
Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures - the so-called ligaments - in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.
Application of a transitional boundary-layer theory in the low hypersonic Mach number regime
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Mcdonald, H.
1975-01-01
An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.
Computation of two-dimensional turbulent flow at subsonic Mach numbers over thick trailing edges
NASA Technical Reports Server (NTRS)
Drescher, P.
1982-01-01
An implicit time marching finite difference method is used to predict two dimensional turbulent flow at a Reynolds number of 440,000 and a Mach number of 0.574 over a shortened NACA 0012 airfoil with a trailing edge of 4.5% thickness and semicircular shape. The flow is found to be unsteady but periodic in the trailing edge region. Thus, lift and drag fluctuate at small amplitudes around mean values and at distinct frequencies.
The small-scale dynamo: breaking universality at high Mach numbers
NASA Astrophysics Data System (ADS)
Schleicher, Dominik R. G.; Schober, Jennifer; Federrath, Christoph; Bovino, Stefano; Schmidt, Wolfram
2013-02-01
The small-scale dynamo plays a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may, in particular, lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this paper, we explore whether in this large range of conditions, universal behavior can be expected. Our starting point is previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current amplification scale, backreactions occur and the growth is shifted to the next-larger scale. We employ a Fokker-Planck model to calculate the magnetic field amplification during the nonlinear regime, and find a resulting power-law growth that depends on the type of turbulence invoked. For Kolmogorov turbulence, we confirm previous results suggesting a linear growth of magnetic energy. For more general turbulent spectra, where the turbulent velocity scales with the characteristic length scale as uℓ∝ℓϑ, we find that the magnetic energy grows as (t/Ted)2ϑ/(1-ϑ), with t being the time coordinate and Ted the eddy-turnover time on the forcing scale of turbulence. For Burgers turbulence, ϑ = 1/2, quadratic rather than linear growth may thus be expected, as the spectral energy increases from smaller to larger scales more rapidly. The quadratic growth is due to the initially smaller growth rates obtained for Burgers turbulence. Similarly, we show that the characteristic
Assessment of a transitional boundary layer theory at low hypersonic Mach numbers
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Mcdonald, H.
1972-01-01
An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.
NASA Technical Reports Server (NTRS)
Syvertson, Clarence A.; Savin, Raymond C.
1951-01-01
Two theoretical procedures are developed for designing asymmetric supersonic nozzles for which the calculated exit flow is nearly uniform over a range of Mach numbers. One procedure is applicable at Mach numbers less than approximately 3. This approach yields, without iteration, a nozzle for which the calculated exit flow is uniform at two Mach numbers and, with proper design, is nearly uniform at Mach numbers between, slightly above, and slightly below these two. The use of an inclined and curved sonic line is an essential feature of this approach, The second procedure requires iteration and is used far designs at Mach numbers exceeding 3. Although it is not a necessary feature, an inclined and curved sonic line is also used in this procedure. In both approaches the flow field dawn stream of the sonic line is determined using the method of characteristics.
Analytical investigation of ram-jet-engine performance in flight Mach number range from 3 to 7
NASA Technical Reports Server (NTRS)
Evans, Philip J , Jr
1951-01-01
An analytical investigation was made of the performance of isolated ram-jet engines in the flight Mach number range from 3 to 7 for two types of diffuser, a high-efficiency diffuser, and a normal-shock diffuser. The fuel was assumed to be a hydrocarbon similar to gasoline. The conclusions reached are: (1) a design altitude of about 100,000 feet is desirable for a high-efficiency high Mach number ram jet on the basis of engine construction and performance; and (2) although greater thrust could be obtained with other fuels, gasoline provides sufficient energy release for maximum engine efficiency in the flight Mach number range investigated. The maximum engine efficiency calculated was 0.47, which occurred at a Mach number of 5. At a Mach number of 7, the maximum propulsive-thrust coefficient was 0.57.
Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients.
Gaensler, B M; Haverkorn, M; Burkhart, B; Newton-McGee, K J; Ekers, R D; Lazarian, A; McClure-Griffiths, N M; Robishaw, T; Dickey, J M; Green, A J
2011-10-13
The interstellar medium of the Milky Way is multiphase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1,000 kilometres (ref. 4). Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine, because observations have lacked the sensitivity and resolution to image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q, U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse, ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm, ionized medium has a relatively low sonic Mach number, M(s) ≲ 2. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions. PMID:21976022
On the Design of Lifting Airfoils with High Critical Mach Number Using Full Potential Theory
NASA Astrophysics Data System (ADS)
Kropinski, M. C. A.
We wish to construct airfoils that have the highest free-stream Mach number for a given set of geometric constraints for which the flow is nowhere supersonic. Nonlifting airfoils that maximize the critical Mach number for a given cross-sectional area are known to possess long sonic segments at their critical speed. To construct lifting airfoils, we proceed under the conjecture that an airfoil with a high value of has the longest possible arc length of sonic velocity over its upper and lower surface. In Kropinski etal. (1995) the lifting problem was tackled in transonic small-disturbance theory. In this paper we numerically construct lifting airfoils with high using the full potential theory and we show that these airfoils have significantly higher than some standard airfoils. We also construct airfoils with higher values of the lift coefficient, by relaxing the speed constraint on the lower surface of the airfoil to have a value less than sonic.
Statistics of the cosmic Mach number from numerical simulations of a cold dark matter universe
NASA Technical Reports Server (NTRS)
Suto, Yasushi; Cen, Renyue; Ostriker, Jeremiah P.
1992-01-01
Results are presented of an analysis of the cosmic Mach number, M, the ratio of the streaming velocity, v, to the random velocity dispersion, sigma, of galaxies in a given patch of the universe, which was performed on the basis of hydrodynamical simulations of the cold dark matter scenario. Galaxy formation is modeled by application of detailed physical processes rather than by the ad hoc assumption of 'bias' between dark matter and galaxy fluctuations. The correlation between M and sigma is found to be very weak for both components. No evidence is found for a physical 'velocity bias' in the quantities which appear in the definition of M. Standard cold-dark-matter-dominated universes are in conflict, at a statistically significant level, with the available observation, in that they predict a Mach number considerably lower than is observed.
NASA Astrophysics Data System (ADS)
Datta, Abanti; Sinhamahapatra, Kalyan Prasad
2016-08-01
The effects of convective Mach number on plane jets with parallel co-flow streams are investigated in the present study. Two-dimensional viscous compressible plane jet issuing to co-flowing parallel streams is numerically simulated using higher order spatial and temporal integration schemes. To remove mesh induced non-uniformities explicit tridiagonal spatial filter is applied. The mean flow field and turbulence statistics are captured from the simulated results using time-average over streamwise direction. The captured mean velocity profiles in appropriate non-dimensional form exhibit self-similar behaviour and do not change considerably with convective Mach number. The streamwise mean excess velocity profiles collapse very well with previous experimental data. The turbulent intensity profiles and Reynolds shear stress profiles do not show self-similar characteristic and increase slowly in farther downstream. The two-dimensional simulation is found capable of capturing correct jet spreading and decay.
A two phase Mach number description of the equilibrium flow of nitrogen in ducts
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.; Adcock, J. B.
1979-01-01
Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.
Mach number scaling of helicopter rotor blade/vortex interaction noise
NASA Technical Reports Server (NTRS)
Leighton, Kenneth P.; Harris, Wesley L.
1985-01-01
A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.
NASA Technical Reports Server (NTRS)
Bangert, Linda S.; Carson, George T., Jr.
1992-01-01
A parametric study was conducted in the Langley 16-Foot Transonic Tunnel on an isolated nonaxisymmetic fuselage model that simulates a twin-engine fighter. The effects of aft-end closure distribution (top/bottom) nozzle-flap boattail angle versus nozzle-sidewall boattail angle) and afterbody and nozzle corner treatment (sharp or radius) were investigated. Four different closure distributions with three different corner radii were tested. Tests were conducted over a range of Mach numbers from 0.40 to 1.25 and over a range of angles of attack from -3 to 9 degrees. Solid plume simulators were used to simulate the jet exhaust. For a given closure distribution in the range of Mach numbers tested, the sharp-corner nozzles generally had the highest drag, and the 2-in. corner-radius nozzles generally had the lowest drag. The effect of closure distribution on afterbody drag was highly dependent on configuration and flight condition.
Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor
NASA Technical Reports Server (NTRS)
Stephens, David B.
2012-01-01
An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.
Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.
1987-01-01
Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.
Investigation at Mach Number 1.91 of Spreading Characteristics of Jet Expanding from Choked Nozzles
NASA Technical Reports Server (NTRS)
Rousso, Morris D; Baughman, L Eugene
1952-01-01
It is demonstrated that the temperature profiles of jets expanding into a supersonic stream are considerably smaller than the temperature profiles of jets expanding into quiescent air. The effect on the wake of varying afterbody geometry is shown to be small. The gross spreading characteristics of jets expanding from convergent and convergent-divergent nozzles in the base of a body of revolution with various boattail configurations at a Mach number of 1.91 are presented.
Simulation of transient flow in a shock tunnel and a high Mach number nozzle
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1991-01-01
A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.
Shock Acceleration of Electrons: The Role of Mach Number and Shock Surface Fluctuations
NASA Astrophysics Data System (ADS)
Burgess, David; Haynes, Christopher; Gingell, Peter; Hellinger, Petr
2015-04-01
Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts and radio emission in the outer heliosphere. A simulation study is carried out of electron acceleration for quasi-perpendicular shocks, typical of the shocks in the solar wind. Two and three-dimensional self-consistent hybrid simulations of quasi-perpendicular shocks provide the electric and magnetic fields in which test particle electrons are followed. A range of different Mach numbers and shock normal angles are investigated. When the Mach number is low, the results agree with theory assuming magnetic moment conserving reflection, with electron energy gains of a factor only 2 to 3. For high Mach numbers, i.e., super-critical, the shock front has a dynamic rippled character. In this case the electrons can suffer scattering in the ion-scale turbulence within the shock layer, producing higher energy gains and some modification of the loss-cone distribution functions predicted by magnetic moment conservation. In addition, acceleration to high energies is present over a wider range of shock normal angles. Distribution functions for reflected and transmitted electrons are computed based on initial upstream kappa distributions similar to the solar wind electron distribution, allowing quantitative comparisons with observations. In addition, the impact of upstream turbulence on the structure of low Mach number shocks is examined, in order to investigate whether such shocks can also produce efficient acceleration due to additional electron scattering.
Taylor, J.P.H.; Walker, A.D.M. )
1987-09-01
When the azimuthal wave number is large, the equations describing standing hydromagnetic waves in the magnetosphere can be written as a set of coupled equations describing the couples magnetosonic and Alfven waves. These equations are decoupled when the filed lines are straight. The eigenfrequencies of the decoupled oscillations are computed. For typical conditions in the outer magnetosphere these give periods in the Pc 4-5 band or above. The longitudinal magnetosonic wave consists of oscillations in the plasma pressure, the longitudinal plasma drift velocity and the compressional magnetic field. Higher harmonics of the standing waves have nodes quite near the equator. These higher harmonics have larger fractional pressure perturbations at high latitudes. The compressional magnetic field for all modes, however, is substantially attenuated at higher latitudes, and the theory predicts that compressional oscillations of B are only likely to be seen near the equator. Conditions can be favorable for resonance to occur between the magnetosonic mode and the transverse Alfven mode. The computed results show periods of the right order of magnitude to explain observations of compressional pulsations. The theory has the potential to explain the polarization when coupling is fully taken into account.
Particle-in-cell simulations of particle energization from low Mach number fast mode shocks
NASA Astrophysics Data System (ADS)
Park, Jaehong; Workman, Jared; Blackman, Eric; Ren, Chuang; Siller, Robert
2012-10-01
Low Mach number, high plasma beta, fast mode shocks likely occur in the outflows from reconnection sites associated with solar flares. These shocks are sites of particle energization with observable consequences, but there has been much less work on understanding the underlying physics compared to that of Mach number shocks. To make progress, we have simulated a low Mach number/high beta shock using 2D particle-in-cell simulations with a ``moving wall'' method and studied the shock structure and particle acceleration processes therein [Park et. al (2012), Phys. Plasmas, 19, 062904]. The moving wall method can control the shock speed in the simulation frame to allow smaller simulation boxes and longer simulation times. We found that the modified two-stream instability in the shock transition region is responsible for shock sustenance via turbulent dissipation and entropy creation throughout the downstream region long after the initial shock formation. Particle tracking and the particle energy distributions show that both electrons and ions participate in shock-drift-acceleration (SDA). The simulation combined with a theoretical analysis reveals a two-temperature Maxwellian distribution for the electron energy distribution via SDA.
Mach Number Effects on Ignition and Mixing Processes in a Reacting Shock-Bubble Interaction
NASA Astrophysics Data System (ADS)
Hickel, Stefan; Diegelmann, Felix; Tritschler, Volker
2015-11-01
We investigate reacting shock-bubble interactions (RSBI) by direct numerical simulations (DNS) with detailed chemical reaction kinetics. The bubble contains a stoichiometric H2-O2 gas mixture and is surrounded by pure N2. The interaction with a planar shock wave induces Richtmyer-Meshkov instability. Secondary instabilities develop into a turbulent mixing zone at the bubble interface. The transmitted shock focuses at the downstream pole of the bubble and may ignite the bubble gas. To trigger different reaction wave types, we performed DNS of RSBI for shock Mach numbers in the range of Ma = 2 . 13 - 2 . 50 at a constant initial pressure of p0 = 0 . 50 atm. Deflagration, dominated by H, O and OH production, is observed for a shock Mach number of Ma = 2 . 13 . Increasing the shock Mach number reduces the induction time and eventually leads to deflagration-detonation transition. Ignition by a Ma = 2 . 50 shock wave directly leads to a detonation wave, driven by HO2 and H2O2 high-pressure chemistry. Richtmyer-Meshkov instability, subsequent Kelvin Helmholtz instabilities, and bubble expansion are highly affected by the reaction wave. Mixing is significantly decreased by both reaction waves types. In particular detonation waves reduce the mixing distinctly.
Relationship between solar energetic oxygen flux and MHD shock mach number
NASA Astrophysics Data System (ADS)
Liou, K.; Wu, C.-C.; Dryer, M.; Wu, S. T.; Berdichevsky, D. B.; Plunkett, S.; Mewaldt, R. A.; Mason, G. M.
2012-05-01
This study correlates the time-intensity profile of a magnetohydrodynamic (MHD) shock with the corresponding solar energetic oxygen for a coronal mass ejection (CME) event that occurred on October 28, 2003. The intensity of MHD shock, in terms of Mach number, is simulated using a 1.5D MHD code, whereas the solar energetic oxygen flux is observed by the Solar Isotope Spectrometer (SIS) on board the Advanced Composition Explorer (ACE) spacecraft. A good correlation (Pearson correlation coefficient: r = 0.70 - 0.84) is found between the forward fast-mode shock Mach number and the hourly-averaged, logarithmic oxygen differential energy flux for 7 energy channels (7.3 - 63.8 MeV). We suspect that the intensity-time profile of high energy SEP events is manifested by the strength (Mach number) of CME-driven propagation shocks. While further studies with more events are required to be more conclusive, this study result provides a direction for future studies or predictions of SEP fluxes.
Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number
NASA Astrophysics Data System (ADS)
Dellacherie, Stéphane
2010-02-01
We propose a theoretical framework to clearly explain the inaccuracy of Godunov type schemes applied to the compressible Euler system at low Mach number on a Cartesian mesh. In particular, we clearly explain why this inaccuracy problem concerns the 2D or 3D geometry and does not concern the 1D geometry. The theoretical arguments are based on the Hodge decomposition, on the fact that an appropriate well-prepared subspace is invariant for the linear wave equation and on the notion of first-order modified equation. This theoretical approach allows to propose a simple modification that can be applied to any colocated scheme of Godunov type or not in order to define a large class of colocated schemes accurate at low Mach number on any mesh. It also allows to justify colocated schemes that are accurate at low Mach number as, for example, the Roe-Turkel and the AUSM +-up schemes, and to find a link with a colocated incompressible scheme stabilized with a Brezzi-Pitkäranta type stabilization. Numerical results justify the theoretical arguments proposed in this paper.
A half-explicit, non-split projection method for low Mach number flows.
Pousin, Jerome G.; Najm, Habib N.; Pebay, Philippe Pierre
2004-02-01
In the context of the direct numerical simulation of low MACH number reacting flows, the aim of this article is to propose a new approach based on the integration of the original differential algebraic (DAE) system of governing equations, without further differentiation. In order to do so, while preserving a possibility of easy parallelization, it is proposed to use a one-step index 2 DAE time-integrator, the Half Explicit Method (HEM). In this context, we recall why the low MACH number approximation belongs to the class of index 2 DAEs and discuss why the pressure can be associated with the constraint. We then focus on a fourth-order HEM scheme, and provide a formulation that makes its implementation more convenient. Practical details about the consistency of initial conditions are discussed, prior to focusing on the implicit solve involved in the method. The method is then evaluated using the Modified KAPS Problem, since it has some of the features of the low MACH number approximation. Numerical results are presented, confirming the above expectations. A brief summary of ongoing efforts is finally provided.
NASA Technical Reports Server (NTRS)
Pendley, Robert E; Robinson, Harold L
1950-01-01
An investigation of three NACA 1-series nose inlets, two of which were fitted with protruded central bodies, was conducted in the Langley 8-foot high-speed tunnel. An elliptical-nose body, which had a critical Mach number approximately equal to that of one of the nose inlets, was also tested. Tests were made near zero angle of attack for a Mach number range from 0.4 to 0.925 and for the supersonic Mach number of 1.2. The inlet-velocity-ratio range extended from zero to a maximum value of 1.34. Measurements included pressure distribution, external drag, and total-pressure loss of the internal flow near the inlet. Drag was not measured for the tests at the supersonic Mach number. Over the range of inlet-velocity ratio investigated, the calculated external pressure-drag coefficient at a Mach number of 1.2 was consecutively lower for the nose inlets of higher critical Mach number, and the pressure-drag coefficient of the longest nose inlet was in the range of pressure-drag coefficient for two solid noses of fineness ratio 2.4 and 6.0. For Mach numbers below the Mach number of the supercritical drag rise, extrapolation of the test data indicated that the external drag of the nose inlets was little affected by the addition of central bodies at or slightly below the minimum inlet-velocity ratio for unseparated central-body flow. The addition of central bodies to the nose inlets also led to no appreciable effects on either the Mach number of the supercritical drag rise, or, for inlet-velocity ratios high enough to avoid a pressure peak at the inlet lip, on the critical Mach number. The total-pressure recovery of the inlets tested, which were of a subsonic type, was sensibly unimpaired at the supersonic Mach number of 1.2 Low-speed measurements of the minimum inlet-velocity ratio for unseparated central-body flow appear to be applicable for Mach numbers extending to 1.2.
Walker, A.D.M. )
1987-09-01
A new hydromagnetic theory is developed for describing compressional pulsations with azimuthal wave number. It is assumed that there are two plasma, one hot, in which pressure effects are important, and the other cold. The equations are derived in a general set of magnetic coordinates which allow realistic calculations including geometrical effects in the magnetosphere. The equations describe the three hydromagnetic modes which are coupled by the geometry. When the azimuthal wave number is large, the fast mode is strongly evanescent. This allows an expansion in 1/m in order to decouple the fast wave. The remaining equations describe the coupled transverse Alfven and magnetosonic modes. Some of the puzzling features of the observations of polarization are discussed.
NASA Technical Reports Server (NTRS)
Bingham, G. J.; Noonan, K. W.
1982-01-01
Three airfoils designed for helicopter rotor application were investigated in the Langley 6- by 28-inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics at Mach numbers from 0.34 to 0.88 and respective Reynolds numbers from about 4.4 x 10(6) power to 9.5 x 10(6) power. The airfoils have thickness-to-chord ratios of 0.08, 0.10, and 0.12. Trailing-edge reflex was applied to minimize pitching moment. The maximum normal-force coefficient of the RC(3)-12 airfoil is from 0.1 to 0.2 higher, depending on Mach number M, than that of the NACA 0012 airfoil tested in the same facility. The maximum normal-force coefficient of the RC(3)-10 is about equal to that of the NACA 0012 at Mach numbers to 0.40 and is higher than that of the NACA 0012 at Mach numbers above 0.40. The maximum normal force coefficient of the RC(3)-08 is about 0.19 lower than that of the NACA 0012 at a Mach number of 0.35 and about 0.05 lower at a Mach number of 0.54. The drag divergence Mach number of the RC(3)-08 airfoil at normal-force coefficients below 0.1 was indicated to be greater than the maximum test Mach number of 0.88. At zero lift, the drag-divergence Mach numbers of the RC(3)-12 and the RC(3)-10 are about 0.77 and 0.82, respectively.
NASA Technical Reports Server (NTRS)
Salmi, Reino J.
1958-01-01
A preliminary investigation of a simple 5 deg conical-flow expander was made to determine the feasibility of using this type of device to increase the Mach number in the test section of a supersonic wind tunnel. The inlet-to-exit area ratio of the nozzle was that required to increase one-dimensional flow from a Mach number of 3.88 to 5.5. The Mach numbers obtained at the expander exit varied from about 5.1 at the centerline to about 5.4 near the walls. No difficulty in operation of the main wind tunnel was experienced.
Zingale, M.; Orvedahl, R. J.; Nonaka, A.; Almgren, A. S.; Bell, J. B.; Malone, C. M.
2013-02-10
We assess the robustness of a low Mach number hydrodynamics algorithm for modeling helium shell convection on the surface of a white dwarf in the context of the sub-Chandrasekhar model for Type Ia supernovae. We use the low Mach number stellar hydrodynamics code, MAESTRO, to perform three-dimensional, spatially adaptive simulations of convection leading up to the point of the ignition of a burning front. We show that the low Mach number hydrodynamics model provides a robust description of the system.
An experimental documentation of a separated trailing-edge flow at a transonic Mach number
NASA Technical Reports Server (NTRS)
Viswanath, P. R.; Brown, J. L.
1982-01-01
A detailed experiment on the separated flow field at a sharp trailing edge is described and documented. The separated flow is a result of sustained adverse pressure gradients. The experiment was conducted using an elongated airfoil-like model at a transonic Mach number and at a high Reynolds number of practical interest. Measurements made include surface pressures and detailed mean and turbulence flow quantities in the region just upstream of separation to downstream into the near-wake, following wake closure. The data obtained are presented mostly in tabular form. These data are of sufficient quality and detail to be useful as a test case for evaluating turbulence models and calculation methods.
NASA Technical Reports Server (NTRS)
Webb, L. D.
1985-01-01
Advanced design propellers on a JetStar aircraft were tested at NASA Ames Research Center's Dryden Flight Research Facility. A calibration of the flow field at the test location to obtain local Mach number and flow direction was performed. A pitot-static probe and flow direction vane installation was installed and tested at Mach 0.3 to 0.8 and altitudes from 3000 m (10,000 ft) to 9100 m (30,000 ft). Local Mach number and flow direction relationships were obtained and related to their noseboom counterparts. Effects of varying angles of sideslip to + or - 3 deg. were investigated.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6), 60 x 10(exp 6), and 120 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.
1975-01-01
Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.
NASA Technical Reports Server (NTRS)
Carson, George T., Jr.; Lamb, Milton
1988-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the aeropropulsive performance characteristics (the aerodynamic quantities affected by propulsion) of 13 isolated combined turbojet/ramjet nozzle configurations. These configurations simulated the variable-geometry features of two nozzle designs designated as the multiple-expansion ramp nozzle (MERN) and the composite contour nozzle (CCN). Test data were obtained at static conditions and at Mach numbers of 0.60, 0.90, and 1.20 with jet exhaust simulated by high-pressure air. The results showed that the CCN had the higher performance over the Mach number range than the MERN, as indicated by the difference of thrust minus drag divided by ideal thrust. Increasing the ramjet throat area for the MERN resulted in an increase in performance that increased with Mach number. For the CCN at Mach numbers less than 1.20, increasing the ramjet throat area resulted in a loss in performance.
Flow noise induced by small gaps in low-Mach-number turbulent boundary layers
NASA Astrophysics Data System (ADS)
Hao, Jin; Wang, Meng; Ji, Minsuk; Wang, Kan
2013-11-01
The flow-noise induced by small gaps underneath low-Mach-number turbulent boundary layers at Reθ = 4755 is studied using large-eddy simulation and Lighthill's theory. The gap leading-edge height is 13% of the boundary-layer thickness, and the gap width and trailing-edge height are varied to investigate their effects on surface-pressure fluctuations and sound generation. The maximum surface pressure fluctuations, which increase with gap width and trailing-edge height, occur at the trailing edge or near the reattachment point if there is separation from the trailing edge. The downstream recovery towards an equilibrium boundary layer is significantly faster for gap flows compared to step flows, and the recovery distance scales with the reattachment length for gaps with trailing-edge separation. The acoustic field is dominated by the forward-facing step in the gap and resembles forward-step sound for wide gaps and/or asymmetric gaps with trailing edge higher than leading edge. In these cases, the dominant acoustic source mechanisms are the impingement of the separated shear layer from the leading edge onto the trailing edge and the unsteady separation from the trailing edge, coupled with edge diffraction. For narrow and symmetric gaps, the destructive interference of sound from the leading and trailing edges causes a significant decline in low-frequency sound and thereby creates a broad spectral peak in the mid-frequency range. The effects of gap acoustic non-compactness and free-stream convection are investigated by comparing solutions based on a compact gap Green's function with those from a boundary-element calculation. They are found to be negligible at the typical hydroacoustc Mach number of 0.01, but become significant at Mach numbers as low as 0.1 and moderately high frequencies.
NASA Technical Reports Server (NTRS)
Motschmann, Uwe; Raeder, Joachim
1992-01-01
The behavior of minor ions just downstream of a low Mach number quasi-perpendicular shock is investigated both theoretically and by computer simulations. Because all ions see the same cross shock electric field their deceleration depends on their charge to mass ratio, yielding different downstream velocities. It is shown that these differences in velocity can lead to coherent wave structures in the downstream region of quasi-perpendicular shocks with a narrow transition layer. These waves are shown to be multi ion hybrid waves in contrast to mirror waves and ion cyclotron waves. Under favorable conditions these waves should be observable both at interplanetary shocks and at planetary bowshocks.
Profile of a low-Mach-number shock in two-fluid plasma theory
NASA Astrophysics Data System (ADS)
Gedalin, M.; Kushinsky, Y.; Balikhin, M.
2015-08-01
Magnetic profiles of low-Mach-number collisionless shocks in space plasmas are studied within the two-fluid plasma theory. Particular attention is given to the upstream magnetic oscillations generated at the ramp. By including weak resistive dissipation in the equations of motion for electrons and protons, the dependence of the upstream wave train features on the ratio of the dispersion length to the dissipative length is established quantitatively. The dependence of the oscillation amplitude and spatial damping scale on the shock normal angle θ is found.
The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Neumann, Richard D.; Freeman, Delma C.
2011-01-01
In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.
Characteristics of Low-Aspect-Ratio Wings at Supercritical Mach Numbers
NASA Technical Reports Server (NTRS)
Stack, John; Lindsey, W F
1949-01-01
The separation of the flow over wings precipitated by the compression shock that forms as speeds are increased into the supercritical Mach number range has imposed serious difficulties in the improvement of aircraft performance. Three difficulties rise principally as a consequence of the rapid drag rise and the loss of lift that causes serious stability changes when the wing shock-stalls. Favorable relieving effects due to the three-dimensional flow around the tips were obtained and these effects were of such magnitude that it is indicated that low-aspect-ratio wings offer a possible solution of the problems encountered.
Bumblebee program, aerodynamic data. Part 2: Flow fields at Mach number 2.0. [supersonic missiles
NASA Technical Reports Server (NTRS)
Barnes, G. A.; Cronvich, L. L.
1979-01-01
Available flow field data which can be used in validating theoretical procedures for computing flow fields around supersonic missiles are presented. Tabulated test data are given which define the flow field around a conical-nosed cylindrical body in a crossflow plane corresponding to a likely tail location. The data were obtained at a Mach number of 2.0 for an angle of attack of 0 to 23 degrees. The data define the flow field for cases both with and without a forward wing present.
NASA Technical Reports Server (NTRS)
Kaul, U. K.
1988-01-01
Computations of the hypersonic flow around sharp cones were carried out using the PNS code with attention given to the heat transfer predictions around the transition region. Results of calculations performed over 5, 8, and 10 deg half-angle sharp cones in the Mach number range of 7 to 10 are presented. It is noted that calculations of this type have become an integral part of the general design procedure for hypersonic vehicles such as the National Aerospace Plane and the Space Shuttle.
A fluctuating surface pressure test technique utilizing Mach number sweeps at transonic speeds
NASA Technical Reports Server (NTRS)
Hanly, R. D.
1974-01-01
A multichannel on-line RMS data acquisition and reduction system has been developed using commercial RMS computing modules and a programmable calculator. Details of this system, which has the capability of acquiring 96 channels of RMS data and computing and printing desired parameters in near real-time, are presented. In addition, raw data can be recorded at a much higher rate for computation and printing later. Results are presented showing the benefits of this system in 'sweep' tests where one parameter such as Mach number or angle of attack is slowly varied with time.
NASA Technical Reports Server (NTRS)
Cambon, C.; Coleman, G. N.; Mansour, N. N.
1992-01-01
The effect of rapid mean compression on compressible turbulence at a range of turbulent Mach numbers is investigated. Rapid distortion theory (RDT) and direct numerical simulation results for the case of axial (one-dimensional) compression are used to illustrate the existence of two distinct rapid compression regimes. These regimes are set by the relationships between the timescales of the mean distortion, the turbulence, and the speed of sound. A general RDT formulation is developed and is proposed as a means of improving turbulence models for compressible flows.
A low Mach number preconditioned scheme for a two-phase liquid-gas compressible flow model
NASA Astrophysics Data System (ADS)
Pelanti, Marica
2015-11-01
The simulation of liquid-gas flows such as cavitating flows demands numerical methods efficient for a wide range of Mach number regimes, due to the large and rapid variation of the speed of sound in these two-phase flows. When classical upwind finite volume discretizations for compressible flow models are employed, suitable strategies are needed to overcome the well known difficulty of loss of accuracy encountered at low Mach number by these methods. In this work we present a novel finite volume wave propagation scheme with low Mach number preconditioning for the numerical approximation of a six-equation two-phase liquid-gas compressible flow model with stiff mechanical relaxation. A Turkel-type preconditioner is designed to correct the acoustic fields at low Mach number, by altering the numerical dissipation tensor of the scheme. We present numerical results for two-dimensional liquid-gas nozzle flow tests both for low Mach number regimes and for transonic regimes with shock formation, which show the effectiveness and accuracy of the proposed preconditioned method. In particular, in the low Mach number limit the order of pressure perturbations at the discrete level agrees with the theoretical results for the continuous two-phase flow model.
NASA Technical Reports Server (NTRS)
Needleman, Kathy E.; Mack, Robert J.
1990-01-01
This paper presents and discusses trends in nose shock overpressure generated by two conceptual Mach 2.0 configurations. One configuration was designed for high aerodynamic efficiency, while the other was designed to produce a low boom, shaped-overpressure signature. Aerodynamic lift, sonic boom minimization, and Mach-sliced/area-rule codes were used to analyze and compute the sonic boom characteristics of both configurations with respect to cruise Mach number, weight, and altitude. The influence of these parameters on the overpressure and the overpressure trends are discussed and conclusions are given.
Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
Hireche, Omar; Weisman, Catherine; Baltean-Carlès, Diana; Le Quéré, Patrick; Bauwens, Luc
2010-12-01
A model of an idealized thermoacoustic engine is formulated, coupling nonlinear flow and heat exchange in the heat exchangers and stack with a simple linear acoustic model of the resonator and load. Correct coupling results in an asymptotically consistent global model, in the small Mach number approximation. A well-resolved numerical solution is obtained for two-dimensional heat exchangers and stack. The model assumes that the heat exchangers and stack are shorter than the overall length by a factor of the order of a representative Mach number. The model is well-suited for simulation of the entire startup process, whereby as a result of some excitation, an initially specified temperature profile in the stack evolves toward a near-steady profile, eventually reaching stationary operation. A validation analysis is presented, together with results showing the early amplitude growth and approach of a stationary regime. Two types of initial excitation are used: Random noise and a small periodic wave. The set of assumptions made leads to a heat-exchanger section that acts as a source of volume but is transparent to pressure and to a local heat-exchanger model characterized by a dynamically incompressible flow to which a locally spatially uniform acoustic pressure fluctuation is superimposed. PMID:21218877
The influence of incident shock Mach number on radial incident shock wave focusing
NASA Astrophysics Data System (ADS)
Chen, Xin; Tan, Sheng; He, Liming; Rong, Kang; Zhang, Qiang; Zhu, Xiaobin
2016-04-01
Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP) Runge-Kutta method, third-order weighed essential non-oscillation (WENO) scheme and adaptive mesh refinement (AMR) algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing) were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.
Optimization of slender wings for center-of-pressure shift due to change in Mach number
NASA Technical Reports Server (NTRS)
Andersen, Carl M.
1988-01-01
It is observed that the center of pressure on a wing shifts as the Mach number is changed. Such shifts are in general undesirable and are sometimes compensated for by actively shifting the center of gravity of the aircraft or by using active stability controls. To avoid this complication, it is desirable to design the wings of a high speed aircraft so as to minimize the extent of the center-of-pressure shifts. This, together with a desire to minimize the center-of-pressure shifts in missile control surfaces, provides the motivation for this project. There are many design parameters which affect center-of-pressure shifts, but it is expected that the largest effects are due to the wing planform. Thus, for the sake of simplicity, this study is confined to an investigation of thin, flat, (i.e., no camber or twist), relatively slender, pointed wings flying at a small angle of attack. Once the dependence of the center of pressure on planform and Mach number is understood, we can expect to investigate the sensitivity of the center-of-pressure shifts to various other parameters.
Revised tables of airspeed, altitude, and Mach number presented in the International system of units
NASA Technical Reports Server (NTRS)
Benner, M. S.; Sawyer, R. H.
1973-01-01
Because inception of a national program to implement the International System of Units (SI) appears to be inevitable and imminent, the tables of airspeed, altitude, and Mach number prepared by Livingston and Gracey to serve for airspeed meter and altimeter calibrations and for the conversion of flight measurements of these quantities to related parameters - Mach number, true airspeed, equivalent airspeed, etc. - have been revised to the SI. Tables of airspeed in knots are also included because of the significance of this quantity in navigation. In addition, the data in the altitude tables have been revised to the U.S. Standard Atmosphere of 1962. The latter data reflect increased knowledge of the higher atmosphere and more precise determination of basic quantities, including the redefinition of the absolute thermodynamic temperature scale by the Tenth General Conference on Weights and Measures in 1954. The U.S. Standard Atmosphere, 1962, corresponds to the International Civil Aviation Organization (ICAO) Standard Atmosphere up to 20 kilometers (geopotential altitude). A table of conversion factors for various pressure units is presented in SI Units.
Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers
NASA Technical Reports Server (NTRS)
Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)
2001-01-01
A method of minimizing numerical errors, and improving nonlinear stability and accuracy associated with low Mach number computational aeroacoustics (CAA) is proposed. The method consists of two levels. From the governing equation level, we condition the Euler equations in two steps. The first step is to split the inviscid flux derivatives into a conservative and a non-conservative portion that satisfies a so called generalized energy estimate. This involves the symmetrization of the Euler equations via a transformation of variables that are functions of the physical entropy. Owing to the large disparity of acoustic and stagnation quantities in low Mach number aeroacoustics, the second step is to reformulate the split Euler equations in perturbation form with the new unknowns as the small changes of the conservative variables with respect to their large stagnation values. From the numerical scheme level, a stable sixth-order central interior scheme with a third-order boundary schemes that satisfies the discrete analogue of the integration-by-parts procedure used in the continuous energy estimate (summation-by-parts property) is employed.
MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows
NASA Astrophysics Data System (ADS)
Nonaka, Andrew; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Zingale, M.
2010-01-01
Many astrophysical phenomena are highly subsonic, requiring specialized numerical methods suitable for long-time integration. We present MAESTRO, a low Mach number stellar hydrodynamics code that can be used to simulate long-time, low-speed flows that would be prohibitively expensive to model using traditional compressible codes. MAESTRO is based on an equation set that we have derived using low Mach number asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional full-star flows, and uses adaptive mesh refinement (AMR) to locally refine grids in regions of interest. Our initial scientific applications include the convective phase of Type Ia supernovae and Type I X-ray Bursts on neutron stars. The work at LBNL was supported by the SciDAC Program of the DOE Office of Advanced Scientific Computing Research under the DOE under contract No. DE-AC02-05CH11231. The work at Stony Brook was supported by the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448. We made use of the Jaguar via a DOE INCITE allocation at the OLCF at ORNL and Franklin at NERSC at LBNL.
On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules
Myong, R. S.
2014-05-15
The high Mach number shock structure singularity arising in moment equations of the Boltzmann equation was investigated. The source of the singularity is shown to be the unbalanced treatment between two high order kinematic and dissipation terms caused by the overreach of Maxwellian molecule assumption. In compressive gaseous flow, the high order stress-strain coupling term of quadratic nature will grow far faster than the strain term, resulting in an imbalance with the linear dissipation term and eventually a blow-up singularity in high thermal nonequilibrium. On the other hand, the singularity arising from unbalanced treatment does not occur in the case of velocity shear and expansion flows, since the high order effects are cancelled under the constraint of the free-molecular asymptotic behavior. As an alternative method to achieve the balanced treatment, Eu's generalized hydrodynamics, consistent with the second law of thermodynamics, was revisited. After introducing the canonical distribution function in exponential form and applying the cumulant expansion to the explicit calculation of the dissipation term, a natural platform suitable for the balanced treatment was derived. The resulting constitutive equation with the nonlinear factor was then shown to be well-posed for all regimes, effectively removing the high Mach number shock structure singularity.
Exploratory Investigation of Boundary-Layer Transition on a Hollow Cylinder at a Mach Number of 6.9
NASA Technical Reports Server (NTRS)
Bertram, Mitchel H
1957-01-01
The Reynolds number for transition on the outside of a hollow cylinder with heat transfer from the boundary layer to the wall has been investigated at a Mach number of 6.9 in the Langley 11-inch hypersonic tunnel. The type of boundary layer was determined from impact-pressure surveys and optical viewing. From a correlation of results obtained from various sources at lower Mach numbers (in the range 2.0 to 4.5) and data from the present tests with variable Reynolds number per inch, leading-edge thickness and free-stream Reynolds number per inch appear to be important considerations in flat-plate transition results. At a given Mach number, it appears that the Reynolds number based on leading-edge thickness is an important parameter that must be considered in comparisons of flat-plate transition data from various installations.
NASA Technical Reports Server (NTRS)
Dollyhigh, S. M.
1979-01-01
Two 0.085-scale full span wind-tunnel models of a Mach 1.60 design supercruiser configuration were tested at Mach numbers from 0.60 to 2.70. One model incorporated a varying dihedral (swept-up) wing to obtain the desired lateral-directional characteristics; the other incorporated more conventional twin vertical tails. The data from the wind-tunnel tests are presented without analysis.
An experimental investigation of the NASA space shuttle external tank at hypersonic Mach numbers
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1975-01-01
Pressure and heat transfer tests were conducted simulating flight conditions which the space shuttle external tank will experience prior to break-up. The tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel and simulated entry conditions for nominal, abort-once-around (AOA), and return to launch site (RTLS) launch occurrences. Surface pressure and heat-transfer-rate distributions were obtained with and without various protuberences (or exterior hardware) on the model at Mach numbers from 15.2 to 17.7 at angles of attack from -15 deg to -180 deg and at several roll angles. The tests were conducted over a Reynolds number range from 1300 to 58,000, based on model length.
Compressible and low Mach number LES of a swirl experimental burner
NASA Astrophysics Data System (ADS)
Barré, David; Kraushaar, Matthias; Staffelbach, Gabriel; Moureau, Vincent; Gicquel, Laurent Y. M.
2013-01-01
Large-Eddy Simulations (LES) of a swirl experimental burner are performed using a compressible and a low Mach number solver. The investigations are focused on the modeling strategies in LES aimed at validating the flow predictions and principally the associated pressure losses. Accurate prediction of pressure drop through complex geometries, such as those typically encountered in industrial swirlers, is indeed of paramount importance to design and optimize the engine efficiency. LES is here probed and tested to identify the model parameters affecting pressure losses: grid resolution, wall treatment or solver accuracy, with the aim of highlighting the requirements for accurate pressure drop predictions. Results show that for the high Reynolds number flow considered, the wall law model provides the best predictions and minimizes the error compared to experimental findings with a reasonable overall CPU cost.
The least-squares finite element method for low-mach-number compressible viscous flows
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1994-01-01
The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.
On the precise implications of acoustic analogies for aerodynamic noise at low Mach numbers
NASA Astrophysics Data System (ADS)
Spalart, Philippe R.
2013-05-01
We seek a clear statement of the scaling which may be expected with rigour for transportation or other noise at low Mach numbers M, based on Lighthill's and Curle's theories of 1952 and 1955. In the presence of compact solid bodies, the leading term in the acoustic intensity is of order M6. Contrary to the belief held since that time that it is of order M8, the contribution of quadrupoles, in the presence of dipoles, is of order only M7. Retarded-time-difference effects are also of order M7. Curle's widely used approximation based on unsteady forces neglects both effects. Its order of accuracy is thus lower than was thought, and the common estimates of the value of M below which it applies appear precarious. The M6 leading term is modified by powers up to the fourth of (1-Mr), where Mr is the relative Mach number between source and observer; at speeds of interest the effect is several dB. However, this is only one of the corrections of order M7, which makes its value debatable. The same applies to the difference between emission distance and reception distance. The scaling with M6 is theoretically correct to leading order, but this prediction may be so convincing, like the M8 scaling for jet noise, that some authors rush to confirm it when their measurements are in conflict with it. We survey experimental studies of landing-gear noise, and argue that the observed power of M is often well below 6. We also object to comparisons across Mach numbers at fixed frequency; they should be made at fixed Strouhal number St instead. Finally, the compact-source argument does not only require M≪1; it requires MSt≪1. This is more restrictive if the relevant St is well above 1, a situation which can be caused by interference with a boundary or by wake impingement, among other effects. The best length scales to define St for this purpose are discussed.
Edwards, J; MacKinnon, A; Robey, H
2001-04-01
The information that can be obtained from current laser driven high Mach number (compressible) hydrodynamics experiments using solid targets and foams is limited by the need to use X-ray diagnostics. These do well at providing the shape of gross 2D structures which we model well, but are a long way from being able to reveal detailed information at the smaller spatial scales, or in 3D turbulent flows, where most of the modeling uncertainties exist. Remedying this is, and will continue to be, an ongoing research effort. An alternative approach that is not being considered is to use gaseous targets coupled with optical diagnostics. The lower density of gases compared to solids or foams means we can use much larger targets for a given laser energy. This should significantly improve spatial resolution, and the dynamic range of scales that are resolvable. In addition, it may be possible to adapt powerful techniques, such as LIF, used by the low Mach number (incompressible) fluid/gas community so that they work in the high Mach number plasma regime. This would provide much more detailed information on turbulent flows than could be achieved with current X-ray diagnostics. We propose a small research effort to use established techniques such as optical interferometry (absolute electron density), and Schlieren photography (electron density gradient), to study compressible hydrodynamic instabilities. We also propose to explore whether techniques such as LIF may be adapted to the plasma regime, thus providing detailed information, particularly about turbulent flows, that is not currently obtainable in plasmas using X-ray diagnostics. The setting will be radiating blast waves, which avoids costly target fabrication, while promising a high physics payoff to the astrophysics community just from using the established diagnostics alone. We propose to conduct the work in collaboration with Dr Todd Ditmire at the University of Texas at Austin, principally on the Janus laser, and
NASA Technical Reports Server (NTRS)
Jillie, Don W.; Hopkins, Edward J.
1961-01-01
The effects of leading-edge bluntness and sweep on boundary-layer transition on flat plate models were investigated at Mach numbers of 2.00, 2.50, 3.00, and 4.00. The effect of sweep on transition was also determined on a flat plate model equipped with an elliptical nose at a Mach number of 0.27. Models used for the supersonic investigation had leading-edge radii varying from 0.0005 to 0.040 inch. The free-stream unit Reynolds number was held constant at 15 million per foot for the supersonic tests and the angle of attack was 0 deg. Surface flow conditions were determined by visual observation and recorded photographically. The sublimation technique was used to indicate transition, and the fluorescent-oil technique was used to indicate flow separation. Measured Mach number and sweep effects on transition are compared with those predicted from shock-loss considerations as described in NACA Rep. 1312. For the models with the blunter leading edges, the transition Reynolds number (based on free-stream flow conditions) was approximately doubled by an increase in Mach number from 2.50 to 4.00; and nearly the same result was predicted from shock-loss considerations. At all super- sonic Mach numbers, increases in sweep reduced the transition Reynolds number and the amount of reduction increased with increases in bluntness. The shock-loss method considerably underestimated- the sweep effects, possibly because of the existence of crossflow instability associated with swept wings. At a Mach number of 0.27, no reduction in the transition Reynolds number with sweep was measured (as would be expected with no shock loss) until the sweep angle was attained where crossflow instability appeared.
Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Re, Richard J.; Bare, E. Ann
1992-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Brownson, J. J.
1972-01-01
Static aerodynamic forces and moments were measured to study the effects of Reynolds number and body corner radius on the aerodynamic characteristics of a straight wing space shuttle orbiter at subsonic speeds. A 0.02-scale model was tested at Mach numbers from 0.3 to 0.9 and Reynolds numbers from about 600,000 to 3 million, based on body width. The body alone and the body with its wing and horizontal tail attached were tested at angles of attack from 35 to 75 degrees. The effects of rounding the body corners at the junctures connecting the bottom and sides were investigated for corner radii from 0 to 8.5 percent of the body width. At low subsonic Mach numbers (free stream Mach number approximately equal 0.3) the aerodynamic characteristics are affected significantly by changes in Reynolds number and body corner radius. With increase in Mach number to free stream Mach number = 0.9 the effect of Reynolds number seems to vanish, but a significant effect of body corner radius remains.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.; Chima, Rodrick V.; Turkel, Eli
1997-01-01
A preconditioning scheme has been implemented into a three-dimensional viscous computational fluid dynamics code for turbomachine blade rows. The preconditioning allows the code, originally developed for simulating compressible flow fields, to be applied to nearly-incompressible, low Mach number flows. A brief description is given of the compressible Navier-Stokes equations for a rotating coordinate system, along with the preconditioning method employed. Details about the conservative formulation of artificial dissipation are provided, and different artificial dissipation schemes are discussed and compared. The preconditioned code was applied to a well-documented case involving the NASA large low-speed centrifugal compressor for which detailed experimental data are available for comparison. Performance and flow field data are compared for the near-design operating point of the compressor, with generally good agreement between computation and experiment. Further, significant differences between computational results for the different numerical implementations, revealing different levels of solution accuracy, are discussed.
NASA Astrophysics Data System (ADS)
Kornhaas, Michael; Schäfer, Michael; Sternel, Dörte C.
2015-06-01
An integrated hybrid approach for the numerical simulation of aeroacoustics at low Mach numbers is presented. The method is based on a viscous/acoustic splitting. The turbulent incompressible background flow is computed with large eddy simulation, based on the incompressible Navier-Stokes equations, whereas the acoustics are computed from linearized Euler equations with a high-resolution scheme. The focus is on the numerical efficiency of the approach. To accelerate the computations, hierarchical grids and a frozen fluid approach for the acoustics are employed and investigated. For validation and the investigation of the numerical efficiency and accuracy the sound emission of a plate in the turbulent wake of a circular cylinder is employed as a test case.
A high-energy-density, high-Mach number single jet experiment
Hansen, J. F.; Dittrich, T. R.; Elliott, J. B.; Glendinning, S. G.; Cotrell, D. L.
2011-08-15
A high-energy-density, x-ray-driven, high-Mach number (M{>=} 17) single jet experiment shows constant propagation speeds of the jet and its bowshock into the late time regime. The jet assumes a characteristic mushroom shape with a stalk and a head. The width of the head and the bowshock also grow linearly in time. The width of the stalk decreases exponentially toward an asymptotic value. In late time images, the stalk kinks and develops a filamentary nature, which is similar to experiments with applied magnetic fields. Numerical simulations match the experiment reasonably well, but ''exterior'' details of the laser target must be included to obtain a match at late times.
Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios
NASA Technical Reports Server (NTRS)
Biggers, James C.; McCloud, John L., III; Stroub, Robert H.
2015-01-01
As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.
The Mach number of the cosmic flow - A critical test for current theories
NASA Technical Reports Server (NTRS)
Ostriker, Jeremiah P.; Suto, Yusushi
1990-01-01
A new cosmological, self-contained test using the ratio of mean velocity and the velocity dispersion in the mean flow frame of a group of test objects is presented. To allow comparison with linear theory, the velocity field must first be smoothed on a suitable scale. In the context of linear perturbation theory, the Mach number M(R) which measures the ratio of power on scales larger than to scales smaller than the patch size R, is independent of the perturbation amplitude and also of bias. An apparent inconsistency is found for standard values of power-law index n = 1 and cosmological density parameter Omega = 1, when comparing values of M(R) predicted by popular models with tentative available observations. Nonstandard models based on adiabatic perturbations with either negative n or small Omega value also fail, due to creation of unacceptably large microwave background fluctuations.
Sonic-box method employing local Mach number for oscillating wings with thickness
NASA Technical Reports Server (NTRS)
Ruo, S. Y.
1978-01-01
A computer program was developed to account approximately for the effects of finite wing thickness in the transonic potential flow over an oscillating wing of finite span. The program is based on the original sonic-box program for planar wing which was previously extended to include the effects of the swept trailing edge and the thickness of the wing. Account for the nonuniform flow caused by finite thickness is made by application of the local linearization concept. The thickness effect, expressed in terms of the local Mach number, is included in the basic solution to replace the coordinate transformation method used in the earlier work. Calculations were made for a delta wing and a rectangular wing performing plunge and pitch oscillations, and the results were compared with those obtained from other methods. An input quide and a complete listing of the computer code are presented.
NASA Astrophysics Data System (ADS)
Ranjan, Devesh; Niederhaus, John; Motl, Bradley; Anderson, Mark; Oakley, Jason; Bonazza, Riccardo
2007-01-01
Experiments to study the compression and unstable evolution of an isolated soap-film bubble containing helium, subjected to a strong planar shock wave (M=2.95) in ambient nitrogen, have been performed in a vertical shock tube of square internal cross section using planar laser diagnostics. The early phase of the interaction process is dominated by the formation of a primary vortex ring due to the baroclinic source of vorticity deposited during the shock-bubble interaction, and the mass transfer from the body of the bubble to the vortex ring. The late time (long after shock interaction) study reveals the presence of a secondary baroclinic source of vorticity at high Mach number which is responsible for the formation of counterrotating secondary and tertiary vortex rings and the subsequent larger rate of elongation of the bubble.
Cosmic Mach Number: a sensitive probe for the growth of structure
Ma, Yin-Zhe; Ostriker, Jeremiah P.; Zhao, Gong-Bo E-mail: ostriker@princeton.edu
2012-06-01
We investigate the potential power of the Cosmic Mach Number (CMN), which is the ratio between the mean velocity and the velocity dispersion of galaxies as a function of cosmic scales, to constrain cosmologies. We first measure the CMN from 4 catalogs of galaxy peculiar velocity surveys at low redshift (z element of [0.002,0.03]), and use them to contrast cosmological models. Overall, current data is consistent with the WMAP7 ΛCDM model. We find that the CMN is highly sensitive to the growth of structure on scales k element of [0.01,0.1] h/Mpc in Fourier space. Therefore, modified gravity models, and models with massive neutrinos, in which the structure growth generically deviates from that of the ΛCDM model in a scale-dependent way, can be well differentiated from the ΛCDM model by using future CMN data.
Stability Analysis of a mortar cover ejected at various Mach numbers and angles of attack
NASA Astrophysics Data System (ADS)
Schwab, Jane; Carnasciali, Maria-Isabel; Andrejczyk, Joe; Kandis, Mike
2011-11-01
This study utilized CFD software to predict the aerodynamic coefficient of a wedge-shaped mortar cover which is ejected from a spacecraft upon deployment of its Parachute Recovery System (PRS). Concern over recontact or collision between the mortar cover and spacecraft served as the impetus for this study in which drag and moment coefficients were determined at Mach numbers from 0.3 to 1.6 at 30-degree increments. These CFD predictions were then used as inputs to a two-dimensional, multi-body, three-DoF trajectory model to calculate the relative motion of the mortar cover and spacecraft. Based upon those simulations, the study concluded a minimal/zero risk of collision with either the spacecraft or PRS. Sponsored by Pioneer Aerospace.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Adcock, J. B.; Ladson, C. L.
1980-01-01
Calibration data for the two dimensional test section of the Langley 0.3 Meter Transonic Cryogenic Tunnel were used to develop a Mach number-Reynolds number correlation for the fan pressure ratio in terms of test section conditions. Well established engineering relationships combined to form an equation which is functionally analogous to the correlation. A geometric loss coefficient which is independent of Reynolds number or Mach number was determined. Present and anticipated uses of this concept include improvement of tunnel control schemes, comparison of efficiencies for operationally similar wind tunnels, prediction of tunnel test conditions and associated energy usage, and determination of Reynolds number scaling laws for similar fluid flow systems.
NASA Technical Reports Server (NTRS)
James, Carlton S.
1959-01-01
The effects of Mach number and surface-roughness variation on boundary-layer transition were studied using fin-stabilized hollow-tube models in free flight. The tests were conducted over the Mach number range from 2.8 to 7 at a nominally constant unit Reynolds number of 3 million per inch, and with heat transfer to the model surface. A screwthread type of distributed two-dimensional roughness was used. Nominal thread heights varied from 100 microinches to 2100 microinches. Transition Reynolds number was found to increase with increasing Mach number at a rate depending simultaneously on Mach number and roughness height. The laminar boundary layer was found to tolerate increasing amounts of roughness as Mach number increased. For a given Mach number an optimum roughness height was found which gave a maximum laminar run greater than was obtained with a smooth surface.
Dynamic-stability tests on an aircraft escape module at Mach numbers from 0.40 to 2.16
NASA Technical Reports Server (NTRS)
Davenport, E. E.; Kilgore, R. A.
1975-01-01
Wind-tunnel measurements of the aerodynamic damping and oscillatory stability of a model of a proposed escape module for a military aircraft have been made using a small-amplitude forced-oscillation technique in pitch and yaw at Mach numbers from 0.40 to 2.16 and in roll at Mach numbers from 0.40 to 1.20. The results in pitch indicate regions in the angle-of-attack range where the model exhibits large and rapid changes in both damping and stability with angle of attack, probably caused by vortex flow over the fins. There was no pronounced effect of change in angle of attack on damping in yaw. Except for the highest Mach number, negative damping in roll was produced at high negative angles of attack.
NASA Technical Reports Server (NTRS)
Clark, J. P.; Jones, T. V.; LaGraff, J. E.
2007-01-01
A series of experiments are described which examine the growth of turbulent spots on a flat plate at Reynolds and Mach numbers typical of gas-turbine blading. A short-duration piston tunnel is employed and rapid-response miniature surface-heat-transfer gauges are used to asses the state of the boundary layer. The leading- and trailing-edge velocities of spots are reported for different external pressure gradients and Mach numbers. Also, the lateral spreading angle is determined from the heat-transfer signals which demonstrate dramatically the reduction in spot growth associated with favorable pressure gradients. An associated experiment on the development of turbulent wedges is also reported where liquid-crystal heat-transfer techniques are employed in low-speed wind tunnel to visualize and measure the wedge characteristics. Finally, both liquid crystal techniques and hot-film measurements from flight tests at Mach number of 0.6 are presented.
Variation in Heat Transfer During Transient Heating of a Hemisphere at a Mach Number of 2
NASA Technical Reports Server (NTRS)
English, Roland D.; Carter, Howard S.
1960-01-01
Convective heat-transfer tests were made on a 5-inch-diameter hemisphere to determine the variation of Stanton number with the ratio of wall temperature to total temperature. The tests were made at a nominal Mach number of 2 for stagnation temperatures of 760 deg R, 1,030 deg R, and 1,380 deg R. The model was constructed so that radiation effects and also streamwise conduction effects within the model skin were minimized. The results of the tests verified that these effects were small. Tests which were made with different masses of air inside the model to check for conduction effects to the internal air cavity showed these effects to be negligible. For laminar flow on the hemisphere, the Stanton number remained essentially constant as the ratio of wall temperature to total temperature increased. However, for fully established turbulent flow, the Stanton number at some stations decreased on the order of 50 percent as the ratio of wall temperature to total temperature increased. A theory which agreed fairly well with the trend of this decrease is shown for comparison.
A Note on the Drag Due to Lift of Delta Wings at Mach Numbers up to 2.0
NASA Technical Reports Server (NTRS)
Osborne, Robert S.; Kelly, Thomas C.
1960-01-01
In order to indicate the effects of Reynolds number and other variables on the drag due to lift of delta wings for Mach numbers up to 2.0, the results of several investigations of wing-body combinations having plane delta wings with aspect ratios from 2 to 4 have been assembled for comparison and brief analysis. The effects of Reynolds number, leading-edge radius, and thickness ratio could generally be correlated with Reynolds number based on the leading-edge radius as a parameter. The effects of leading-edge Reynolds number on drag due to lift were large at Mach numbers less than 0.25. However, with increases in Mach number, the effects decreased and were almost negligible at a Mach number of 2.0. and trimming were large, as would be expected. The effects of aspect ratio and trimming were large, as would be expected. It was indicated at least for subsonic and transonic speeds that improvement in the drag due to lift might be obtained from wing modifications designed to inhibit flow separation.
NASA Astrophysics Data System (ADS)
Balashov, V. A.; Savenkov, E. B.
2015-10-01
The applicability of numerical algorithms based on a quasi-hydrodynamic system of equations for computing viscous heat-conducting compressible gas flows at Mach numbers M = 10-2-10-1 is studied numerically. The numerical algorithm is briefly described, and the results obtained for a number of two- and three-dimensional test problems are presented and compared with earlier numerical data.
NASA Technical Reports Server (NTRS)
Kyser, A. C.
1977-01-01
Results are presented from an elementary analysis of the effect of sweep angle on the idealized structural weight of swept wings, with cruise Mach number M and lift coefficient C sub L as parameters. The analysis indicates that sweep is unnecessary for cruise Mach numbers below about 0.80, whereas for the higher subsonic speeds, a well defined minimum-weight condition exists at a sweep angle in the neighborhood of 35 deg or 40 deg, depending on M and C sub L. The results further indicate that wing-structure weight increases sharply with Mach number in the high subsonic range, with Mach 0.85 wings weighing half again as much as Mach 0.75 wings. Weight is also shown to increase with cruise lift coefficient, but the effect is not strong for the usual range of design lift coefficients. Minimum wing-structure weight is found to occur at a ratio of thickness to normal chord of about 18 percent, but it is concluded that the thickness ratio for optimum wing design would probably lie in the range of 12 to 15 percent.
Correia, C.; De Medeiros, J. R.; Burkhart, B.; Lazarian, A.; Ossenkopf, V.; Stutzki, J.; Kainulainen, J.; Kowal, G.
2014-04-10
We study how the estimation of the sonic Mach number (M{sub s} ) from {sup 13}CO linewidths relates to the actual three-dimensional sonic Mach number. For this purpose we analyze MHD simulations that include post-processing to take radiative transfer effects into account. As expected, we find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin tracers. However, we find that opacity broadening causes M{sub s} to be overestimated by a factor of ≈1.16-1.3 when calculated from optically thick {sup 13}CO lines. We also find that there is a dependence on the magnetic field: super-Alfvénic turbulence shows increased line broadening compared with sub-Alfvénic turbulence for all values of optical depth for supersonic turbulence. Our results have implications for the observationally derived sonic Mach number-density standard deviation (σ{sub ρ/(ρ)}) relationship, σ{sub ρ/〈ρ〉}{sup 2}=b{sup 2}M{sub s}{sup 2}, and the related column density standard deviation (σ {sub N/(N)}) sonic Mach number relationship. In particular, we find that the parameter b, as an indicator of solenoidal versus compressive driving, will be underestimated as a result of opacity broadening. We compare the σ {sub N/(N)}-M{sub s} relation derived from synthetic dust extinction maps and {sup 13}CO linewidths with recent observational studies and find that solenoidally driven MHD turbulence simulations have values of σ {sub N/(N)}which are lower than real molecular clouds. This may be due to the influence of self-gravity which should be included in simulations of molecular cloud dynamics.
NASA Technical Reports Server (NTRS)
Henneberry, Hugh M.; Snyder, Christopher A.
1993-01-01
An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.
Application of Pressure Sensitive Paint to Confined Flow at Mach Number 2.5
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Bencic, T. J.; Bruckner, R. J.
1998-01-01
Pressure sensitive paint (PSP) is a novel technology that is being used frequently in external aerodynamics. For internal flows in narrow channels, and applications at elevated nonuniform temperatures, however, there are still unresolved problems that complicate the procedures for calibrating PSP signals. To address some of these problems, investigations were carried out in a narrow channel with supersonic flows of Mach 2.5. The first set of tests focused on the distribution of the wall pressure in the diverging section of the test channel downstream of the nozzle throat. The second set dealt with the distribution of wall static pressure due to the shock/wall interaction caused by a 25 deg. wedge in the constant Mach number part of the test section. In addition, the total temperature of the flow was varied to assess the effects of temperature on the PSP signal. Finally, contamination of the pressure field data, caused by internal reflection of the PSP signal in a narrow channel, was demonstrated. The local wall pressures were measured with static taps, and the wall pressure distributions were acquired by using PSP. The PSP results gave excellent qualitative impressions of the pressure field investigated. However, the quantitative results, specifically the accuracy of the PSP data in narrow channels, show that improvements need to be made in the calibration procedures, particularly for heated flows. In the cases investigated, the experimental error had a standard deviation of +/- 8.0% for the unheated flow, and +/- 16.0% for the heated flow, at an average pressure of 11 kpa.
Performance Characteristics of Flush and Shielded Auxiliary Exits at Mach Numbers of 1.5 to 2.0
NASA Technical Reports Server (NTRS)
Abdalla, Kaleel L.
1959-01-01
The performance characteristics of several flush and shielded auxiliary exits were investigated at Mach numbers of 1.5 to 2.0, and jet pressure ratios from jet off to 10. The results indicate that the shielded configurations produced better overall performance than the corresponding flush exits over the Mach-number and pressure-ratio ranges investigated. Furthermore, the full-length shielded exit was highest in performance of all the configurations. The flat-exit nozzle block provided considerably improved performance compared with the curved-exit nozzle block.
Flow Separation Ahead of a Blunt Axially Symmetric Body at Mach Numbers 1.76 to 2.10
NASA Technical Reports Server (NTRS)
Moeckel, W E
1951-01-01
The pressure distribution and drag were determined for a spherical-nosed axially symmetric body with thin projecting rods at Mach numbers of 1.76, 1.93, and 2.10. The upstream projection distance of the rods was varied over a wide range to study changes in the character of the flow separation and to determine the variation of drag and pressure distribution with tip projection. Drag coefficients between 0.18 and 0.30 were obtained for most tip projections at each Mach number.
Investigation of side wall effects on an inward scramjet inlet at Mach number 8.6
NASA Astrophysics Data System (ADS)
Rolim, Tiago Cavalcanti
Experimental and computational studies were conducted to evaluate the performance of a scramjet inlet as the side cowl length is changed. A slender inward turning inlet of a total length of 304.8 mm, a span of 50.8 mm with the compression at 11.54 deg and CR = 4.79 was used. The side cowl lengths were of 0, 50.8 and 76.2 mm. The UTA Hypersonic Shock Tunnel facility was used in the reflected mode. The model was instrumented with nine piezoelectric pressure transducers, for static and total pressure measurements. A wedge was mounted at the rear of the inlet in order to accommodate a Pitot pressure rake. The driven tube was instrumented with three pressure transducers. Two of them were used to measure the incident shock wave speed, and a third one was used for stagnation pressure measurements during a test. Furthermore, a Pitot probe was installed below the model in order to measure the impact pressure on each run, this reading along with the driven sensor readings, allowed us for the calculation of freestream properties. During the experiments, nominal stagnation enthalpy of 0.67 MJ/kg and stagnation pressure of 3.67 MPa were achieved. Freestream conditions were Mach number 8.6 and Reynolds number of 1.94 million per m. Test times were 300 - 500 microseconds. Numerical simulations using RANS with the Wilcox K-w turbulence model were performed using ANSYS Fluent. The results from the static pressure measurements presented a good agreement with CFD predictions. Moreover, the uniformity at the inlet exit was achieved within the experimental precision. The experiments showed that the cowl length has a pronounced effect in the pressure distribution on the inlet and a minor effect in the exit flow Mach number. The numerical results confirmed these trends and showed that a complex flow structure is formed in the cowl-ramp corners; a non-uniform transverse shock structure was found to be related to the cowl leading edge position. Cross flow due to the side expansion
NASA Technical Reports Server (NTRS)
Canning, Thomas N.; Edwards, Thomas M.
1988-01-01
The results of surveys of the near and far wake of the Galileo Probe are presented for Mach numbers from 0.25 tp 0.95. The trends in the data resulting from changes in Mach number, radial and axial distance, angle of attack, and a small change in model shape are shown in crossplots based on the data. A rationale for selecting an operating volume suitable for parachute inflation based on low Mach number flight results is outlined.
NASA Technical Reports Server (NTRS)
Bartlett, G. R.
1985-01-01
An investigation has been conducted in the Langley 16 Foot Transonic Tunnel to determine propfan installation and slipstream interference effects on an unswept supercritical wing. This data can be used for verification of existing and developing theoretical codes as well as giving an understanding of the flow interactions associated with propeller/nacelle/wing integration. The investigation was conducted over a Mach number range of 0.5 to 0.8 and at angles of attack from 0 deg to 3 deg. The propeller was powered by an air turbine simulator and the exhaust from the air turbine was used to simulate the exhaust from the propfan nacelle. Reynolds number based on wing chord varied from 3 to 4 million. Results indicate that the propfan causes an increase in the wing lift coefficient. It was found that most of the propeller induced swirl is recovered by the wing. The propeller slipstream also causes a large favorable leading edge suction peak on the upwash side and a smaller unfavorable decrease on the downwash side.
Heat transfer predictions for two turbine nozzle geometries at high Reynolds and Mach numbers
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Jackson, R.
1995-01-01
Predictions of turbine vane and endwall heat transfer and pressure distributions are compared with experimental measurements for two vane geometries. The differences in geometries were due to differences in the hub profile, and both geometries were derived from the design of a high rim speed turbine (HRST). The experiments were conducted in the Isentropic Light Piston Facility (ILPF) at Pyestock at a Reynolds number of 5.3 x 10(exp 6), a Mach number of 1.2, and a wall-to-gas temperature ratio of 0.66. Predictions are given for two different steady-state three-dimensional Navier-Stokes computational analyses. C-type meshes were used, and algebraic models were employed to calculate the turbulent eddy viscosity. The effects of different turbulence modeling assumptions on the predicted results are examined. Comparisons are also given between predicted and measured total pressure distributions behind the vane. The combination of realistic engine geometries and flow conditions proved to be quite demanding in terms of the convergence of the CFD solutions. An appropriate method of grid generation, which resulted in consistently converged CFD solutions, was identified.
Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Rumsey, Christopher L.; Huang, George P.
2015-01-01
Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa - omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.
Heat transfer predictions for two turbine nozzle geometries at high Reynolds and Mach numbers
NASA Astrophysics Data System (ADS)
Boyle, R. J.; Jackson, R.
1995-09-01
Predictions of turbine vane and endwall heat transfer and pressure distributions are compared with experimental measurements for two vane geometries. The differences in geometries were due to differences in the hub profile, and both geometries were derived from the design of a high rim speed turbine (HRST). The experiments were conducted in the Isentropic Light Piston Facility (ILPF) at Pyestock at a Reynolds number of 5.3 x 10(exp 6), a Mach number of 1.2, and a wall-to-gas temperature ratio of 0.66. Predictions are given for two different steady-state three-dimensional Navier-Stokes computational analyses. C-type meshes were used, and algebraic models were employed to calculate the turbulent eddy viscosity. The effects of different turbulence modeling assumptions on the predicted results are examined. Comparisons are also given between predicted and measured total pressure distributions behind the vane. The combination of realistic engine geometries and flow conditions proved to be quite demanding in terms of the convergence of the CFD solutions. An appropriate method of grid generation, which resulted in consistently converged CFD solutions, was identified.
NASA Technical Reports Server (NTRS)
Hicks, Raymond M.; Cliff, Susan E.
1991-01-01
Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.
A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers
NASA Astrophysics Data System (ADS)
Bassett, Gene Marcel
1993-01-01
Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low
Panwar, Anuraj; Rizvi, H.; Ryu, C. M.
2013-11-15
Sagdeev’s technique is used to study the large amplitude compressional Alfvenic double layers in a magnetohydrodynamic plasma taking into account the small plasma β and small values of kinematic viscosity. Dispersive effect raised by non-ideal electron inertia currents perpendicular to the ambient magnetic field. The range of allowed values of the soliton speed, M (Mach number), plasma β (ratio of the plasma thermal pressure to the pressure in the confining magnetic field), and viscosity coefficient, wherein double layer may exist, are determined. In the absence of collisions, viscous dissipation modifies the Sagdeev potential and results in large amplitude compressional Alfvenic double layers. The depth of Sagdeev potential increases with the increasing Mach number and plasma β, however, decreases with the increasing viscosity. The double layer structure increases with the increasing plasma β, but decreases with increasing viscous dissipation μ(tilde sign)
A note on the drag due to lift of delta wings at Mach numbers up to 2.0
NASA Technical Reports Server (NTRS)
Osborne, Robert S; Kelly, Thomas C
1953-01-01
In order to indicate the effects of Reynolds number and other variables on the drag due to lift of delta wings for Mach numbers up to 2.0, the results of several investigations of wing-body combinations employing delta wings with aspect ratios from 2 to 4 have been assembled for comparison. Effects of Reynolds number, leading-edge radius, and thickness ratio could be correlated with Reynolds number based on the leading-edge radius as a parameter. The results indicated that leading-edge Reynolds number effects were large at low speeds, but decreased with increases in Mach number. The effects of aspect ratio, wing modifications, and trim requirements are discussed.
Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.; Babb, C. Donald
1968-01-01
An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.
Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers
NASA Technical Reports Server (NTRS)
Stefko, George L.; Jeracki, Robert J.
1985-01-01
Low-speed wind-tunnel performance tests of two advanced propellers have been completed at the NASA Lewis Research Center as part of the NASA Advanced Turboprop Program. The 62.2 cm (24.5 in.) diameter adjustable-pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds (i.e., from Mach 0.10 to 0.34) at zero angle of attack in the NASA Lewis 10 by 10 Foot Supersonic Wind Tunnel. Both models had eight blades and a cruise-design-point operating condition of Mach 0.80, and 10.668 km (35,000 ft) I.S.A. altitude, a 243.8 m/s (800 ft/sec) tip speed, and a high power loading of 301 kW/sq m (37.5 shp/sq ft). Each model had its own integrally designed area-ruled spinner, but used the same specially contoured nacelle. These features reduced blade-section Mach numbers and relieved blade-root choking at the cruise condition. No adverse or unusual low-speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propeller. Typical efficiencies of the straight and 45 deg swept propellers were 50.2 and 54.9 percent, respectively, at a takeoff condition of Mach 0.20 and 53.7 and 59.1 percent, respectively, at a climb condition of Mach 0.34.
Standing waves at low Mach number laminar bow shocks. [earth-solar wind interaction
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Feldman, W. C.
1975-01-01
Explorer 43 data were used to study 34 bow shock crossings observed from 5 to 16 earth radii upstream of the average bow shock location. Waves with periods of 6 to 130 s having amplitudes up to delta-B/B = 1 were detected. Wave polarization for the low-frequency waves is right-handed in relation to the average field direction when the observer moves from the upstream to downstream direction but is left-handed when the observer moves in the opposite sense. This fact identified the waves as standing whistler waves in the coordinate system of the shock. The waves are in agreement with collisionless low Mach number laminar shock theory. When the measured parameters were used to calculate theoretical wavelengths, the observed wave frequencies could be used to calculate velocities for the shock-wave coordinate system past the spacecraft; such velocities are mostly between 10 and 30 km/s. It is suggested that the higher-frequency propagating whistler waves may evolve from the standing whistler waves through a decay instability.
Linear global modes in a high Reynolds number Mach 0.9 turbulent jet
NASA Astrophysics Data System (ADS)
Schmidt, Oliver; Towne, Aaron; Colonius, Tim
2015-11-01
A global linear stability and resolvent analysis of the mean flow from a carefully validated Mach 0 . 9 turbulent jet large eddy simulation (LES) is conducted. Spatiotemporal Fourier decomposition of the simulation data reveals the presence of large scale coherent structures at small azimuthal wavenumbers. The latter wave packets appear as discrete sets of lightly dampened modes in the linear global stability analysis. Their common feature is a spatial separation into an upstream traveling acoustic perturbation in the potential core region, and a Kelvin-Helmholtz-like vortical perturbation which is advected downstream. The least stable branch of discrete modes observed at Strouhal numbers 0 . 38 < St < 0 . 42 exhibits the same acoustic super-directivity as found in the LES and various experimental studies, and hence establishes a direct link between global linear instabilities and low-angle acoustic radiation. Branches at higher frequencies and azimuthal wavenumbers show multi-directive acoustic emission patterns. This observation is of particular interest since high angle, broadband radiation is commonly attributed to stochastic fluctuations of the turbulent jet shear layer.
Flow vector, Mach number and abundance of the Warm Breeze of neutral He observed by IBEX
NASA Astrophysics Data System (ADS)
Kubiak, Marzena A.; McComas, David; Galli, Andre; Kucharek, Harald; Wurz, Peter; Schwadron, Nathan; Sokol, Justyna M.; Bzowski, Maciej; Heirtzler, David M.; Möbius, Eberhard; Fuselier, Stephen; Swaczyna, Paweł; Leonard, Trevor; Park, Jeewoo
2016-07-01
With the velocity vector and temperature of the pristine interstellar neutral (ISN) He recently obtained with high precision from a coordinated analysis by the IBEX Science Team, we analyzed the IBEX observations of neutral He left out from this analysis. These observations were collected during the interstellar neutral observation seasons 2010---2014 and cover the region in the Earth's orbit where the Warm Breeze persists. The Warm Breeze is a newly discovered population of neutral He in the heliosphere. We search for the inflow velocity vector and the temperature of the Warm Breeze and used the same simulation model and a very similar parameter fitting method to that used for the analysis of ISN He. We approximate the parent population of the Warm Breeze in front of the heliosphere with a homogeneous Maxwell-Boltzmann distribution function and find a temperature of ~9 500 K, an inflow speed of ~11.3 km/s, and an inflow longitude and latitude in the J2000 ecliptic coordinates 251.6°, 12.0°. The abundance of the Warm Breeze relative to the interstellar neutral He is 5.6% and the Mach number of the flow is 1.97. We discuss implications of this result for the heliospheric physics and an insight into the behavior of interstellar plasma in the outer heliosheath.
Noise Sources in a Low-Reynolds-Number Turbulent Jet at Mach 0.9
NASA Technical Reports Server (NTRS)
Freund, Jonathan B.
2001-01-01
The mechanisms of sound generation in a Mach 0.9, Reynolds number 3600 turbulent jet are investigated by direct numerical simulation. Details of the numerical method are briefly outlined and results are validated against an experiment at the same flow conditions. Lighthill's theory is used to define a nominal acoustic source in the jet, and a numerical solution of Lighthill's equation is compared to the simulation to verify the computational procedures. The acoustic source is Fourier transformed in the axial coordinate and time and then filtered in order to identify and separate components capable of radiating to the far field. This procedure indicates that the peak radiating component of the source is coincident with neither the peak of the full unfiltered source nor that of the turbulent kinetic energy. The phase velocities of significant components range from approximately 5% to 50% of the ambient sound speed which calls into question the commonly made assumption that the noise sources convect at a single velocity. Space-time correlations demonstrate that the sources are not acoustically compact in the streamwise direction and that the portion of the source that radiates at angles greater than 45 deg. is stationary. Filtering non-radiating wavenumber components of the source at single frequencies reveals that a simple modulated wave forms for the source, as might be predicted by linear stability analysis. At small angles from the jet axis the noise from these modes is highly directional, better described by an exponential than a standard Doppler factor.
Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure
NASA Astrophysics Data System (ADS)
Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin
2011-09-01
In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.
Electron acceleration in a nonrelativistic shock with very high Alfvén Mach number.
Matsumoto, Y; Amano, T; Hoshino, M
2013-11-22
Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic shock with very high Alfvén Mach number (M(A)~45) is revealed by means of a two-dimensional fully kinetic particle-in-cell simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion-acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-high-M(A) regime. PMID:24313495
NASA Technical Reports Server (NTRS)
Callegari, A. J.
1979-01-01
A nonlinear theory for sound propagation in variable area ducts carrying a nearly sonic flow is presented. Linear acoustic theory is shown to be singular and the detailed nature of the singularity is used to develop the correct nonlinear theory. The theory is based on a quasi-one dimensional model. It is derived by the method of matched asymptotic expansions. In a nearly chocked flow, the theory indicates the following processes to be acting: a transonic trapping of upstream propagating sound causing an intensification of this sound in the throat region of the duct; generation of superharmonics and an acoustic streaming effect; development of shocks in the acoustic quantities near the throat. Several specific problems are solved analytically and numerical parameter studies are carried out. Results indicate that appreciable acoustic power is shifted to higher harmonics as shocked conditions are approached. The effect of the throat Mach number on the attenuation of upstream propagating sound excited by a fixed source is also determined.
Pressure distributions on a cambered wing body configuration at subsonic Mach numbers
NASA Technical Reports Server (NTRS)
Henderson, W. P.
1975-01-01
An investigation was conducted in the Langley high-speed 7- by 10-foot tunnel at Mach numbers of 0.20 and 0.40 and angles of attack up to about 22 deg to measure the pressure distributions on two cambered-wing configurations. The wings had the same planform (aspect ratio of 2.5 and a leading-edge-sweep angle of 44 deg) but differed in amounts of camber and twist (wing design lift coefficient of 0.35 and 0.70). The effects of wing strake on the wing pressure distributions were also studied. The results indicate that the experimental chordwise pressure distribution agrees reasonably well with the design distribution over the forward 60 percent of nearly all the airfoil sections for the lower cambered wing. The measured lifting pressures are slightly less than the design pressures over the aft part of the airfoil. For the highly cambered wing, there is a significant difference between the experimental and the design pressure level. The experimental distribution, however, is still very similar to the prescribed distribution. At angles of attack above 12 deg, the addition of a wing-fuselage strake results in a significant increase in lifting pressure coefficient at all wing stations outboard of the strake-wing intersection.
Towards a generalized computational fluid dynamics technique for all Mach numbers
NASA Technical Reports Server (NTRS)
Walters, R. W.; Slack, D. C.; Godfrey, A. G.
1993-01-01
Currently there exists no single unified approach for efficiently and accurately solving computational fluid dynamics (CFD) problems across the Mach number regime, from truly low speed incompressible flows to hypersonic speeds. There are several CFD codes that have evolved into sophisticated prediction tools with a wide variety of features including multiblock capabilities, generalized chemistry and thermodynamics models among other features. However, as these codes evolve, the demand placed on the end user also increases simply because of the myriad of features that are incorporated into these codes. In order for a user to be able to solve a wide range of problems, several codes may be needed requiring the user to be familiar with the intricacies of each code and their rather complicated input files. Moreover, the cost of training users and maintaining several codes becomes prohibitive. The objective of the current work is to extend the compressible, characteristic-based, thermochemical nonequilibrium Navier-Stokes code GASP to very low speed flows and simultaneously improve convergence at all speeds. Before this work began, the practical speed range of GASP was Mach numbers on the order of 0.1 and higher. In addition, a number of new techniques have been developed for more accurate physical and numerical modeling. The primary focus has been on the development of optimal preconditioning techniques for the Euler and the Navier-Stokes equations with general finite-rate chemistry models and both equilibrium and nonequilibrium thermodynamics models. We began with the work of Van Leer, Lee, and Roe for inviscid, one-dimensional perfect gases and extended their approach to include three-dimensional reacting flows. The basic steps required to accomplish this task were a transformation to stream-aligned coordinates, the formulation of the preconditioning matrix, incorporation into both explicit and implicit temporal integration schemes, and modification of the numerical
Towards a generalized computational fluid dynamics technique for all Mach numbers
NASA Astrophysics Data System (ADS)
Walters, R. W.; Slack, D. C.; Godfrey, A. G.
1993-07-01
Currently there exists no single unified approach for efficiently and accurately solving computational fluid dynamics (CFD) problems across the Mach number regime, from truly low speed incompressible flows to hypersonic speeds. There are several CFD codes that have evolved into sophisticated prediction tools with a wide variety of features including multiblock capabilities, generalized chemistry and thermodynamics models among other features. However, as these codes evolve, the demand placed on the end user also increases simply because of the myriad of features that are incorporated into these codes. In order for a user to be able to solve a wide range of problems, several codes may be needed requiring the user to be familiar with the intricacies of each code and their rather complicated input files. Moreover, the cost of training users and maintaining several codes becomes prohibitive. The objective of the current work is to extend the compressible, characteristic-based, thermochemical nonequilibrium Navier-Stokes code GASP to very low speed flows and simultaneously improve convergence at all speeds. Before this work began, the practical speed range of GASP was Mach numbers on the order of 0.1 and higher. In addition, a number of new techniques have been developed for more accurate physical and numerical modeling. The primary focus has been on the development of optimal preconditioning techniques for the Euler and the Navier-Stokes equations with general finite-rate chemistry models and both equilibrium and nonequilibrium thermodynamics models. We began with the work of Van Leer, Lee, and Roe for inviscid, one-dimensional perfect gases and extended their approach to include three-dimensional reacting flows. The basic steps required to accomplish this task were a transformation to stream-aligned coordinates, the formulation of the preconditioning matrix, incorporation into both explicit and implicit temporal integration schemes, and modification of the numerical
Discrete sonic jets used as boundary-layer trips at Mach numbers of 6 and 8.5
NASA Technical Reports Server (NTRS)
Stone, D. R.; Cary, A. M., Jr.
1972-01-01
The effect of discrete three-dimensional sonic jets used to promote transition on a sharp-leading-edge flat plate at Mach numbers of 6 and 8.5 and unit Reynolds numbers as high as 2.5 x 100,000 per cm in the Langley 20-inch hypersonic tunnels is discussed. An examination of the downstream flow-field distortions associated with the discrete jets for the Mach 8.5 flow was also conducted. Jet trips are found to produce lengths of turbulent flow comparable to those obtained for spherical-roughness-element trips while significantly reducing the downstream flow distortions. A Reynolds number based upon secondary jet penetration into a supersonic main flow is used to correlate jet-trip effectiveness just as a Reynolds number based upon roughness height is used to correlate spherical-trip effectiveness. Measured heat-transfer data are in agreement with the predictions.
NASA Technical Reports Server (NTRS)
Seiff, Alvin; Wilkins, Max E.
1961-01-01
The aerodynamic characteristics of a hypersonic glider configuration, consisting of a slender ogive cylinder with three highly swept wings, spaced 120 apart, with the wing chord equal to the body length, were investigated experimentally at a Mach number of 6 and at Reynolds numbers from 6 to 16 million. The objectives were to evaluate the theoretical procedures which had been used to estimate the performance of the glider, and also to evaluate the characteristics of the glider itself. A principal question concerned the viscous drag at full-scale Reynolds number, there being a large difference between the total drags for laminar and turbulent boundary layers. It was found that the procedures which had been applied for estimating minimum drag, drag due to lift, lift curve slope, and center of pressure were generally accurate within 10 percent. An important exception was the non-linear contribution to the lift coefficient which had been represented by a Newtonian term. Experimentally, the lift curve was nearly linear within the angle-of-attack range up to 10 deg. This error affected the estimated lift-drag ratio. The minimum drag measurements indicated that substantial amounts of turbulent boundary layer were present on all models tested, over a range of surface roughness from 5 microinches maximum to 200 microinches maximum. In fact, the minimum drag coefficients were nearly independent of the surface smoothness and fell between the estimated values for turbulent and laminar boundary layers, but closer to the turbulent value. At the highest test Reynolds numbers and at large angles of attack, there was some indication that the skin friction of the rough models was being increased by the surface roughness. At full-scale Reynolds number, the maximum lift-drag ratio with a leading edge of practical diameter (from the standpoint of leading-edge heating) was 4.0. The configuration was statically and dynamically stable in pitch and yaw, and the center of pressure was less
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
In-flight boundary-layer measurements on a hollow cylinder at a Mach number of 3.0
NASA Technical Reports Server (NTRS)
Quinn, R. D.; Gong, L.
1980-01-01
Skin temperatures, shear forces, surface static pressures, boundary layer pitot pressures, and boundary layer total temperatures were measured on the external surface of a hollow cylinder that was 3.04 meters long and 0.437 meter in diameter and was mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 (a local Mach number of 2.9) and at wall to recovery temperature ratios of 0.66 to 0.91. The local Reynolds number had a nominal value of 4,300,000 per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. In addition, boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor was obtained from the heat transfer and skin friction measurements. The measured data are compared with several boundary layer prediction methods.
NASA Technical Reports Server (NTRS)
Ghosh, S.; Matthaeus, W. H.
1992-01-01
Theory suggests that three distinct types of turbulence can occur in the low Mach number limit of polytropic flow: nearly incompressible flows dominated by vorticity, nearly pure acoustic turbulence dominated by compression, and flows characterized by near statistical equipartition of vorticity and compressions. Distinctions between these kinds of turbulence are investigated here by direct numerical simulation of two-dimensional compressible hydrodynamic turbulence. Dynamical scalings of density fluctuations, examination of the ratio of transverse to longitudinal velocity fluctuations, and spectral decomposition of the fluctuations are employed to distinguish the nature of these low Mach number solutions. A strong dependence on the initial data is observed, as well as a tendency for enhanced effects of compressibility at later times and at higher wave numbers, as suggested by theories of nearly incompressible flows.
NASA Technical Reports Server (NTRS)
Davenport, E. E.
1974-01-01
Slender sharp-edge wings having leading-edge sweep angles of 74 deg have been studied at Mach numbers from 0.60 to 2.80, at angles of attack from about minus 4 deg to 22 deg, and at angles of sideslip from 0 deg to 5 deg. The wings had delta, arrow, and diamond planforms. The experimental tests were made in the Langley 8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel test section number 1. The theoretical predictions were made using the theories of NASA TN D-3767 and NASA TN D-6243. The results of the study indicated that the lift and drag characteristics as affected by planform and Mach number could be reasonably well predicted for the delta wing in the subsonic and transonic Mach number range. In the supersonic range, the delta and diamond wings were about equally good in the degree of agreement between experiment and theory. In making drag-due-to-lift predictions the vortex lift effects must be taken into account if reasonable results are to be obtained at moderate or high lift coefficients.
NASA Technical Reports Server (NTRS)
Clousing, Lawrence A; Turner, William N; Rolls, L Stewart
1946-01-01
Pressure-distribution measurements were made on the right wing of a pursuit-type airplane at values of Mach number up to 0.80. The results showed that a considerable portion of the lift was carried by components of the airplane other than the wings, and that the proportion of lift carried by the wings may vary considerably with Mach number, thus changing the bending moment at the wing root whether or not there is a shift in the lateral position of the center of pressure. It was also shown that the center of pressure does not necessarily move outward at high Mach numbers, even though the wing-thickness ratio decreases toward the wing tip. The wing pitching-moment coefficient increased sharply in a negative direction at a Mach lift-curve slope increased with Mach number up to values of above the critical value. Pressures inside the wing were small and negative.
NASA Technical Reports Server (NTRS)
Keener, E. R.; Taleghani, J.
1975-01-01
Five forebody models of various shapes were tested in the Ames 6- by 6-Foot Wind Tunnel to determine the aerodynamic characteristics at Mach numbers from 0.25 to 2 at a Reynolds number of 800000. At a Mach number of 0.6 the Reynolds number was varied from 0.4 to 1.8 mil. Angle of attack was varied from -2 deg to 88 deg at zero sideslip. The purpose of the investigation was to determine the effect of Mach number of the side force that develops at low speeds and zero sideslip for all of these forebody models when the nose is pointed. Test results show that with increasing Mach number the maximum side forces decrease to zero between Mach numbers of 0.8 and 1.5, depending on the nose angle; the smaller the nose angle of the higher the Mach number at which the side force exists. At a Mach number of 0.6 there is some variation of side force with Reynolds number, the variation being the largest for the more slender tangent ogive.
NASA Astrophysics Data System (ADS)
Pulikkottil, V. V.; Sujith, R. I.
2015-07-01
In this paper, instability mechanisms in a low Mach number reacting flow are investigated. Here, the emphasis is on the growth or decay of acoustic oscillations which arise from the acoustic-hydrodynamic interaction in a low Mach number reacting flow. Motivated by the studies in magnetohydrodynamics and atmospheric flows, we propose to investigate the acoustic-hydrodynamic coupling as a system of wave-mean flow interaction. For example, a comparison with the heat fluctuation modified hydrodynamics associated with magnetohydrodynamics is useful in understanding this coupling. The wavelike acoustic disturbance is introduced here as a compressibility correction to the mean flow. Accounting for the multiple scales introduced by the weak compressibility, we derive a set of equations governing wave-mean flow interaction in a reacting low Mach number flow. Sources such as volume expansion (which, in atmospheric flows arises due to the density variation with altitude) occur in reacting flows due to the heat release rate. This heat release rate, when coupled with the acoustic field, often leads to self-sustained thermo-acoustic oscillations. In the study of such oscillations, we discover a relation between the acoustic pressure and second order thermal fluctuations. Further, using this relation, we discover the nonlinear coupling mechanism that would lead to self-sustained oscillations in a reacting low Mach number flow. This mechanism, represented by a coupled convection reaction diffusion system, is presented here for the first time. In addition to the acoustic pressure and temperature fields, we also discover the role of acoustic velocity field in the acoustic-hydrodynamic interaction through a convective and lift-up mechanism.
A study of the sonic-boom characteristics of a blunt body at a Mach number of 4.14
NASA Technical Reports Server (NTRS)
Carlson, H. W.; Mack, R. J.
1977-01-01
An experimental and theoretical study has shown that the applicability of far-field sonic-boom theory previously demonstrated for more slender shapes may now be extended to bodies with ratios of diameter to length as great as 2 and to Mach numbers at least as high as 4.14. This finding is of special significance in view of the limitations to the use of existing methods for the extrapolation of close-in experimental data.
NASA Technical Reports Server (NTRS)
Barnes, G. A.; Cronvich, L. L.
1979-01-01
Individual wing panel aerodynamic characteristics are provided for rectangular wings with aspect ratios of 0.25, 0.75, and 1.00 each panel at Mach numbers if 1.5 and 2.0 for angles of attack to 23 degrees. Data plots produced from reports of wind tunnel tests show normal force coefficients, and the spanwise and chordwise center of pressure locations.
Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.
NASA Astrophysics Data System (ADS)
Yeager, David Marvin
An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results
Effects of body shape on the aerodynamics of a body of revolution at Mach numbers from 1.6 to 4.6
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1985-01-01
The aerodnamic characteristics for several bodies of revolution have been determined from wind tunnel tests at Mach numbers from 1.6 to 4.63. Six bodies, each having a length-to-diameter ratio of 6.67, were investigated. Geometric modifications included forebody shape, afterbody shape, and midsection slope. Significant aerodynamic changes were observed to be functions of geometric change and Mach number. Because of the aerodynamic dependence on geometry as well as Mach number, it is obvious that a number of trades must be considered in selecting a projectile shape.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Berrier, Bobby L.; Abeyounis, William K.
2001-01-01
Investigations have been conducted in the Langley 16-Foot Transonic Tunnel (at Mach numbers from 0.60 to 1.25) and in the Langley Unitary Plan Wind Tunnel (at Mach numbers from 2.16 to 2.86) at an angle of attack of 0 deg to determine the isolated performance of several expendable nozzle concepts for supersonic nonaugmented turbojet applications. The effects of centerbody base shape, shroud length, shroud ventilation, cruciform shroud expansion ratio, and cruciform shroud flap vectoring were investigated. The nozzle pressure ratio range, which was a function of Mach number, was between 1.9 and 11.8 in the 16-Foot Transonic Tunnel and between 7.9 and 54.9 in the Unitary Plan Wind Tunnel. Discharge coefficient, thrust-minus-drag, and the forces and moments generated by vectoring the divergent shroud flaps (for Mach numbers of 0.60 to 1.25 only) of a cruciform nozzle configuration were measured. The shortest nozzle had the best thrust-minus-drag performance at Mach numbers up to 0.95 but was approached in performance by other configurations at Mach numbers of 1.15 and 1.25. At Mach numbers above 1.25, the cruciform nozzle configuration having the same expansion ratio (2.64) as the fixed geometry nozzles had the best thrust-minus-drag performance. Ventilation of the fixed geometry divergent shrouds to the nozzle external boattail flow generally improved thrust-minus-drag performance at Mach numbers from 0.60 to 1.25, but decreased performance above a Mach number of 1.25.
NASA Technical Reports Server (NTRS)
Cunningham, Atlee M., Jr.; Spragle, Gregory S.
1987-01-01
The influence of Mach and Reynolds numbers as well as airfoil and planform geometry on the phenomenon of constant shock jump pressure coefficient for conditions of shock induced trailing edge separation (SITES) was studied. It was demonstrated that the phenomenon does exist for a wide variety of two and three dimensional flow cases and that the influence of free stream Mach number was not significant. The influence of Reynolds number was found to be important but was not strong. Airfoil and planform geometric characteristics were found to be very important where the pressure coefficient jump was shown to vary with the sum of: (1) airfoil curvature at the upper surface crest, and (2) camber surface slope at the trailing edge. It was also determined that the onset of SITES could be defined as a function of airfoil geometric parameters and Mach number normal to the leading edge. This onset prediction was shown to predict the angle of onset to within + or - 1 deg accuracy or better for about 90% of the cases studied.
NASA Technical Reports Server (NTRS)
Steers, L. L.
1979-01-01
Afterbody pressure distribution data were obtained in flight from an airplane having twin side-by-side jet exhausts. The data were obtained in level flight at Mach numbers from 0.60 to 1.60 and at elevated load factors for Mach numbers of 0.60, 0.90, and 1.20. The test altitude varied from 2300 meters (7500 feet) to 15,200 meters (50,000 feet) over a speed range that provided a matrix of constant Mach number and constant unit Reynolds number test conditions. The results of the full-scale flight afterbody pressure distribution program are presented in the form of plotted pressure distributions and tabulated pressure coefficients with Mach number, angle of attack, engine nozzle pressure ratio, and unit Reynolds number as controlled parameters.
NASA Technical Reports Server (NTRS)
Hess, Robert V; Gardner, Clifford S
1947-01-01
By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.
NASA Technical Reports Server (NTRS)
Ladson, Charles L.
1959-01-01
A two-dimensional wind-tunnel investigation of the pressure distributions over several NACA 16-series airfoils with thicknesses of 4, 6, 9, and 12 percent of the chord and design lift coefficients of 0, 0.2, 1 and 0.5 has been conducted in the Langley airfoil test apparatus at transonic Mach numbers from 0.7 to 1.25. The tests ranged in Reynolds number from 2.4 x 10(exp 6) to 2.8 x l0(exp 6) and in angle of attack from -10 to 12 deg. Chordwise pressure distributions and schlieren flow photographs are presented without analysis.
Aerodynamic Characteristics of a Slender Cone-cylinder Body of Revolution at a Mach Number of 3.85
NASA Technical Reports Server (NTRS)
Jack, John R
1951-01-01
An experimental investigation of the aerodynamics of a slender cone-cylinder body of revolution was conducted at a Mach number of 3.85 for angles of attack of 0 degree to 10 degrees and a Reynolds number of 3.85x10(exp 6). Boundary-layer measurements at zero angle of attack are compared with the compressible-flow formulations for predicting laminar boundary-layer characteristics. Comparison of experimental pressure and force values with theoretical values showed relatively good agreement for small angles of attack. The measured mean skin-friction coefficients agreed well with theoretical values obtained for laminar flow over cones.
NASA Technical Reports Server (NTRS)
Holdaway, George H.; Mellenthin, Jack A.; Hatfield, Elaine W.
1959-01-01
A diamond wing and body combination was designed to have an area distribution which would result in near optimum zero-lift wave-drag coefficients at a Mach number of 1.00, and decreasing wave-drag coefficient with increasing Mach number up to near sonic leading-edge conditions for the wing. The airfoil section were computed by varying their shape along with the body radii (blending process) to match the selected area distribution and the given plan form. The exposed wing section had an average maximum thickness of about 3 percent of the local chords, and the maximum thickness of the center-line chord was 5.49 percent. The wing had an aspect ratio of 2 and a leading-edge sweep of 45 deg. Test data were obtained throughout the Mach number range from 0.20 to 3.50 at Reynolds numbers based on the mean aerodynamic chord of roughly 6,000,000 to 9,000,000. The zero-lift wave-drag coefficients of the diamond model satisfied the design objectives and were equal to the low values for the Mach number 1.00 equivalent body up to the limit of the transonic tests. From the peak drag coefficient near M = 1.00 there was a gradual decrease in wave-drag coefficient up to M = 1.20. Above sonic leading-edge conditions of the wing there was a rise in the wave-drag coefficient which was attributed in part to the body contouring as well as to the wing geometry. The diamond model had good lift characteristics, in spite of the prediction from low-aspect-ratio theory that the rear half of the diamond wing would carry little lift. The experimental lift-curve slope obtained at supersonic speeds were equal to or greater than the values predicted by linear theory. Similarly the other basic aerodynamic parameters, aerodynamic center position, and maximum lift-drag ratios were satisfactorily predicted at supersonic speeds.
NASA Astrophysics Data System (ADS)
Blackman, Eric; Park, Jaehong; Ren, Chuang; Workman, Jared
2012-10-01
Low Mach/high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide electron energization responsible for some of the hard X-rays detected by YOHKO and the RHESSE, and radio emission. There has been a dearth of work on understanding the microphysics of these low Mach number shocks. We present new 2D particle-in-cell simulations of low Mach/high beta shocks for the general quasi-perpendicular geometry of field and shock normal to compare with the results for the purely perpendicular case considered in Park et. al. (2012)[Phys.Plasmas 19,062904]. Our aim is to study shock structure and particle acceleration. We find that the modified-two-stream instability sustains the shock and accounts for the entropy creation downstream. We observe the electron Whistler instability in the transition region due to the temperature anisotropy. To have enough simulation electrons above the threshold energy for shock-drift-acceleration (SDA), we inject a two-temperature Maxwellian distribution represented by two separate species, which is approximated to a kappa distribution with κ=10. From particle tracking and the particle energy distribution, we find copious high-energy electrons experiencing SDA.
NASA Technical Reports Server (NTRS)
Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.
1986-01-01
The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.
NASA Technical Reports Server (NTRS)
Smeltzer, D. B.; Sorensen, N. E.
1972-01-01
A 38.8-cm (15.28-in.) capture diameter model of a mixed-compression axisymmetric inlet system with a translating cowl was designed and tested. The internal contours, designed for Mach number 2.65, provided a throat area of 59 percent of the capture area when the cowl was retracted for transonic operation. Other model features included a boundary-layer removal system, vortex generators, an engine airflow bypass system, cowl support struts, and rotating rakes at the engine face. All tunnel testing was conducted at a tunnel total pressure of about 1 atm (a unit Reynolds number of about 8.53 million/m at Mach number 2.65) at angles of attack from 0 deg to 4 deg. Results for the following were obtained: total-pressure recovery and distortion at the engine face as a function of bleed mass-flow ratio, the effect of bleed and vortex generator configurations on pressure recovery and distortion, inlet tolerance to unstart due to changes in angle of attack or Mach number, surface pressure distributions, boundary-layer profiles, and transonic additive drag. At Mach number 2.65 and with the best bleed configurations, maximum total pressure recovery at the engine face ranged from 91 to 94.5 percent with bleed mass-flow ratios from 4 to 9 percent, respectively, and total-pressure distortion was less than 10 percent. At off-design supersonic Mach numbers above 1.70, maximum total-pressure recoveries and corresponding bleed mass flows were about the same as at Mach number 2.65, with about 10 to 15 percent distortion. In the transonic Mach number range, total pressure recovery was high (above 96 percent) and distortion was low (less than 15 percent) only when the inlet mass-flow ration was reduced 0.02 to 0.06 from the maximum theoretical value (0.590 at Mach number 1.0).
Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo
2014-10-20
Electron acceleration to non-thermal energies in low Mach number (M{sub s} ≲ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ≅ 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.
NASA Technical Reports Server (NTRS)
De Moraes, Carlos A; Nowitzky, Albin M
1954-01-01
The present investigation was made at a free-stream Mach number of 1.59 to compare the afterbody drags to a series of conical boattailed models at zero angle of attack. Afterbody drags were obtained for both the power-off and the power-on conditions. Power-on drags were obtained as a function of afterbody fineness ratio, jet pressure ratio and divergence, and jet Mach number.
Flight evaluation of HL-10 lifting body handling qualities at Mach numbers from 0.30 to 1.86
NASA Technical Reports Server (NTRS)
Kempel, R. W.; Manke, J. A.
1974-01-01
The longitudinal and lateral-directional handling qualities of the HL-10 lifting body vehicle were evaluated in flight at Mach numbers up to 1.86 and altitudes up to approximately 27,450 meters (90,000 feet). In general, the vehicle's handling qualities were considered to be good. Approximately 91 percent of the pilot ratings were 3.5 or better, and 42.4 percent were 2.0. Handling qualities problems were encountered during the first flight due to problems with the control system and vehicle aerodynamics. Modifications of the flight vehicle corrected all deficiencies, and no other significant handling qualities problems were encountered.
NASA Astrophysics Data System (ADS)
Marshall, J.; Healey, K.; Croker, B.; Kendrick, K.; Yang, T. T.; Hsia, Y. C.; Dickerson, R. A.; Forman, L.
2006-02-01
Heterogeneous iodine cluster formation has been identified as the responsible factor resulting in large iodine titration requirements for Boeing's first high Mach number nitrogen ejector nozzle. A solution employing geometrically produced aerodynamic heating in the flow was envisioned to break up these clusters. Horizontal and vertical wire arrays (cluster busters) placed downstream of the nozzle exit plane (NEP) have been shown to significantly reduce the optimal iodine titration and to greatly improve the power extraction efficiency of the Chemical Oxygen-Iodine Laser utilizing this first generation ejector nozzle.
NASA Astrophysics Data System (ADS)
Isaev, S. A.; Baranov, P. A.; Mikhalev, A. N.; Sudakov, A. G.
2014-11-01
Various approaches to modeling super- and hypersonic turbulent airflow past cylindrical bodies with a nontraditional nose in the form of a protruding rod-supported disk have been compared. Aeroballistic experiments on a light-gas propulsion setup were combined with wind tunnel tests and numerical simulations using VP2/3 program package based on multiblock computational techniques and a model of shear stress transport with flow-line curvature corrections. The phenomenon of the head and wave drag reduction for the stepped body is analyzed at high Mach numbers (up to 10) and variation of the supporting rod length under conditions of existence of the frontal flow separation zone.
NASA Technical Reports Server (NTRS)
Jagger, James M; Mirels, Harold
1949-01-01
An investigation was conducted at a Mach number of 1.91 to determine spanwise pressure distribution over a wing tip in a region influenced by a sharp subsonic leading edge swept back at 70 degrees. Except for pressure distribution on the top surface in the immediate vicinity of the subsonic leading edge, the maximum difference between linearized theory and experimental data was 2 1/2 percent (of free-stream dynamic pressure) for angles of attack up to 4 degrees and 7 percent for angles of attack up to 8 degrees. Pressures on the top surface nearest the subsonic edge indicated local expansions beyond values predicted by linearized theory.
NASA Technical Reports Server (NTRS)
Foley, J. E.
1972-01-01
An experimental program was conducted to survey the lee side vortex flow field about an ogive-cylinder-frustum-cylinder at angles of attack to 25 degrees for two Reynolds numbers at Mach number 0.8, and one Reynolds number at Mach number 1.96. The data were obtained using miniature 5-port conical pressure probes calibrated for angle of attack and roll angle over a Mach number range of 0.6 to 3.0. The results are presented here as local flow field properties and circulation strengths for various body stations.
Comparison of reacting and non-reacting shear layers at a high subsonic Mach number
NASA Technical Reports Server (NTRS)
Chang, C. T.; Marek, C. J.; Wey, C.; Jones, R. A.; Smith, M. J.
1993-01-01
The flow field in a hydrogen-fueled planar reacting shear layer was measured with an LDV system and is compared with a similar air to air case without combustion. Measurements were made with a speed ratio of 0.34 with the highspeed stream at Mach 0.71. They show that the shear layer with reaction grows faster than one without, and both cases are within the range of data scatter presented by the established database. The coupling between the streamwise and the cross-stream turbulence components inside the shear layer is slow, and reaction only increased it slightly. However, a more organized pattern of the Reynolds stress is present in the reacting shear layer, possibly as a result of larger scale structure formation in the layer associated with heat release.
NASA Technical Reports Server (NTRS)
Chapman, Rowe, Jr; Morrow, John D
1952-01-01
A modified triangular wing of aspect ratio 2.53 having an airfoil section 3.7 percent thick at the root and 5.98 percent thick at the tip was designed in an attempt to improve the lift and drag characteristics of triangular wings. Free-flight drag and stability tests were made using rocket-propelled models equipped with the modified wing. The Mach number range of the test was from 0.70 to 1.37. Test results indicated the following: The lift-curve slope of wing plus fuselage approaches the theoretical value of wing alone at supersonic Mach numbers. The drag coefficient, based on total wing area, for wing plus interference was approximately 0.0035 at subsonic Mach numbers and 0.0080 at supersonic Mach numbers. The maximum shift in aerodynamic center for the complete configuration was 14 percent in the rearward direction from the forward position of 51.5 percent of mean aerodynamic chord at subsonic Mach numbers. The variation of lift and moment with angle of attack was linear at supersonic Mach numbers for the range of coefficients covered in the test. The high value of lift-curve slope was considered to be a significant result attributable to the wing modifications.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Rogers, Lawrence W.
1992-01-01
A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.
NASA Technical Reports Server (NTRS)
Fisher, D. F.
1978-01-01
In-flight measurements of boundary layer and skin friction data were made on YF-12 airplanes for Mach numbers between 2.0 and 3.0. Boattail pressures were also obtained for Mach numbers between 0.7 and 3.0 with Reynolds numbers up to four hundred million. Boundary layer data measured along the lower fuselage centerline indicate local displacement and momentum thicknesses can be much larger than predicted. Skin friction coefficients measured at two of five lower fuselage stations were significantly less than predicted by flat plate theory. The presence of large differences between measured boattail pressure drag and values calculated by a potential flow solution indicates the presence of vortex effects on the upper boattail surface. At both subsonic and supersonic speeds, pressure drag on the longer of two boattail configurations was equal to or less than the pressure drag on the shorter configuration. At subsonic and transonic speeds, the difference in the drag coefficient was on the order of 0.0008 to 0.0010. In the supersonic cruise range, the difference in the drag coefficient was on the order of 0.002. Boattail drag coefficients are based on wing reference area.
Spreading of Exhaust Jet from 16 Inch Ream Jet at Mach Number 2.0 / Fred Wilcox, Donald Pennington
NASA Technical Reports Server (NTRS)
Wilcox, Fred; Pennington, Donald
1952-01-01
An investigation of the jet-spreading characteristics of a 16 inch ram-jet engine was conducted in the 8 by 6 foot supersonic tunnel at a Mach number of 2.0; both a converging nozzle having a contraction ratio of 0.71 and a cylindrical extension to the combustion chamber were used. The jet boundaries determined by means of pitot pressure surveys were compared with boundaries calculated from one-dimensional continuity and momentum relations. For the cylindrical nozzle, the jet reaches its maximum diameter, 4 percent greater than calculated, about 0.6 nozzle-exit diameter downstream of the nozzle exit. The maximum diameter for the converging nozzle was 7 percent greater than calculated from one dimensional relations and occurred from 1 to 1.5 nozzle-exit diameters downstream of the exit. Non dimensional maximum jet diameters agreed closely with results of an investigation by Rousso and Baughman; these data were obtained with low-temperature jets exhausting into a stream at a Mach number of 1.91 from nozzles having exit diameters of 0.75 inch.
Numerical Solution of the Flow of a Perfect Gas Over A Circular Cylinder at Infinite Mach Number
NASA Technical Reports Server (NTRS)
Hamaker, Frank M.
1959-01-01
A solution for the two-dimensional flow of an inviscid perfect gas over a circular cylinder at infinite Mach number is obtained by numerical methods of analysis. Nonisentropic conditions of curved shock waves and vorticity are included in the solution. The analysis is divided into two distinct regions, the subsonic region which is analyzed by the relaxation method of Southwell and the supersonic region which was treated by the method of characteristics. Both these methods of analysis are inapplicable on the sonic line which is therefore considered separately. The shapes of the sonic line and the shock wave are obtained by iteration techniques. The striking result of the solution is the strong curvature of the sonic line and of the other lines of constant Mach number. Because of this the influence of the supersonic flow on the sonic line is negligible. On comparison with Newtonian flow methods, it is found that the approximate methods show a larger variation of surface pressure than is given by the present solution.
Preliminary Base Pressures Obtained from the X-15 Airplane at Mach Numbers from 1.1 to 3.2
NASA Technical Reports Server (NTRS)
Saltzman, Edwin J.
1961-01-01
Base pressure measurements have been made on the fuselage, 10 deg.-wedge vertical fin, and side fairing of the X-15 airplane. Data are presented for Mach numbers between 1.1 and 3.2 for both powered and unpowered flight. Comparisons are made with data from small-scale-model tests, semiempirical estimates, and theory. The results of this preliminary study show that operation of the interim rocket engines (propellant flow rate approximately 70 lb/sec) reduces the base drag of the X-15 by 25 to 35 percent throughout the test Mach number range. Values of base drag coefficient for the side fairing and fuselage obtained from X-15 wind-tunnel models were adequate for predicting the overall full-scale performance of the test airplane. The leading-edge sweep of the upper movable vertical fin was not an important factor affecting the fin base pressure. The power-off base pressure coefficients of the upper movable vertical fin (a 10 deg. wedge with chord-to-thickness ratio of 5.5 and semispan-to-thickness ratio of 3.2) are in general agreement with the small-scale blunt-trailing-edge-wing data of several investigators and with two-dimensional theory.
NASA Astrophysics Data System (ADS)
Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip
1990-07-01
During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.
NASA Technical Reports Server (NTRS)
Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip
1990-01-01
During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.
NASA Astrophysics Data System (ADS)
Magri, Luca; Tammisola, Outi; See, Yee Chee; Ihme, Matthias; Juniper, Matthew
2014-11-01
We propose a method to reduce the complexity of the reacting compressible Navier-Stokes equations for global/sensitivity analyses of thermo-acoustic systems. We use multiple space-scale analysis and consider a low Mach number. We assume that reacting hydrodynamic phenomena evolve at small space scales whereas acoustics evolve at larger space scales, a common situation in thermo-acoustics. The reacting hydrodynamics (RH) is governed by the reacting low Mach number equations, and the acoustics (AC) by the reacting Euler equations. The RH feeds into the AC via the heat release by the flame and the AC, in turn, feed back into the RH via the acoustic-pressure gradient (Klein's limit). These two coupling terms enable the thermo-acoustic system to be linearized around time-averaged LES flows and studied as an eigenproblem. We perform global, adjoint and sensitivity analyses, investigating the reciprocal influence of RH/AC interactions and suggest strategies for open-loop control. The analysis is applied to a dump combustor and a complex industrial combustor (Meier's).
NASA Astrophysics Data System (ADS)
Ghadyani, Mohsen; Esfahanian, Vahid; Taeibi-Rahni, Mohammad
2015-06-01
Attempts to simulate compressible flows with moderate Mach number to relatively high ones using Lattice Boltzmann Method (LBM) have been made by numerous researchers in the recent decade. The stability of the LBM is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. The present study proposes an approach for simulation of inviscid flows by a compressible LB model in order to enhance the robustness using a combination of Essentially NonOscillatory (ENO) scheme and Shock-Detecting Sensor (SDS) procedure. A sensor is introduced with adjustable parameters which is active near the discontinuities and affects less on smooth regions. The validity of the improved model to capture shocks and to resolve contact discontinuity and rarefaction waves in the well-known benchmarks such as, Riemann problem, and shock reflection is investigated. In addition, the problem of supersonic flow in a channel with ramp is simulated using a skewed rectangular grid generated by an algebraic grid generation method. The numerical results are compared with analytical ones and those obtained by solving the original model. The numerical results show that the presented scheme is capable of generating more robust solutions in the simulation of compressible flows and is almost free of oscillations for high Mach numbers. Good agreements are obtained for all problems.
Wind-tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1.4
NASA Technical Reports Server (NTRS)
Larson, Terry J.; Moes, Timothy R.; Siemers, Paul M., III
1990-01-01
Flush pressure orifices installed on the nose section of a 1/7-scale model of the F-14 airplane were evaluated for use as a flush airdata system (FADS). Wing-tunnel tests were conducted in the 11- by 11-ft Unitary Wind Tunnel at NASA Ames Research Center. A full-scale FADS of the same configuration was previously tested using an F-14 aircraft at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden). These tests, which were published, are part of a NASA program to assess accuracies of FADS for use on aircraft. The test program also provides data to validate algorithms for the shuttle entry airdata system developed at the NASA Langley Research Center. The wind-tunnel test Mach numbers were 0.73, 0.90, 1.05, 1.20, and 1.39. Angles of attack were varied in 2 deg increments from -4 deg to 20 deg. Sideslip angles were varied in 4 deg increments from -8 deg to 8 deg. Airdata parameters were evaluated for determination of free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and Mach number. These parameters are, in most cases, the same as the parameters investigated in the flight test program. The basic FADS wind-tunnel data are presented in tabular form. A discussion of the more accurate parameters is included.
NASA Technical Reports Server (NTRS)
Smith, J. M.; Juhasz, A. J.
1978-01-01
A short, annular dump diffuser was designed to use suction to establish stabilized vortices on both walls for improved flow expansion in the region of an abrupt area change. The diffuser was tested at near ambient inlet pressure and temperature. The overall diffuser area ratio was 4.0. The inlet height was 2.54 cm and the exit pitot-static rakes were located at a distance from the vortex fence equal to two or six times the inlet height. Performance data were taken at near ambient temperature and pressure for nominal inlet Mach numbers of 0.18 to 0.41 with suction rates of 0 to 18 percent of the total inlet airflow. The exit velocity profile could be shifted toward either wall by adjusting the inner- or outer-wall suction rate. Symmetrical exit velocity profiles were unstable, with a tendency to shift back to hub- or tip-weighted profile. Diffuser effectiveness was increased from about 47 percent without suction to over 85 percent at a total suction rate of about 14 percent. The diffuser total pressure losses at inlet Mach numbers of 0.18 and 0.41 decreased from 1.1 and 5.6 percent without suction to 0.48 and 5.2 percent at total suction rates of 14.4 and 5.6 percent, respectively.
NASA Technical Reports Server (NTRS)
Grant, Frederick C.; Sevier, John R., Jr.
1960-01-01
Wind-tunnel force tests of a number of wing-body combinations designed for high lift-drag ratio at a Mach number of 1.41 are reported. Five wings and six bodies were used in making up the various wing-body combinations investigated. All the wings had the same highly swept dis- continuously tapered plan form with NACA 65A-series airfoil sections 4 percent thick at the root tapering linearly to 3 percent thick at the tip. The bodies were based on the area distribution of a Sears-Haack body of revolution for minimum drag with a given length and volume. These wings and bodies were used to determine the effects of wing twist., wing twist and camber, wing leading-edge droop, a change from circular to elliptical body cross-sectional shape, and body indentation by the area-rule and streamline methods. The supersonic test Mach numbers were 1.41 and 2.01. The transonic test Mach number range was from 0.6 to 1.2. For the transition-fixed condition and at a Reynolds number of 2.7 x 10(exp 6) based on the mean aerodynamic chord, the maximum value of lift- drag ratio at a Mach number of 1.41 was 9.6 for a combination with a twisted wing and an indented body of elliptical cross section. The tests indicated that the transonic rise in minimum drag was low and did not change appreciably up to the highest test Mach number of 2.01. The lower values of lift-drag ratio obtained at a Mach number of 2.01 can be attributed to the increase of drag due to lift with Mach number.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
Experimental Reacting Hydrogen Shear Layer Data at High Subsonic Mach Number
NASA Technical Reports Server (NTRS)
Chang, C. T.; Marek, C. J.; Wey, C.; Wey, C. C.
1996-01-01
The flow in a planar shear layer of hydrogen reacting with hot air was measured with a two-component laser Doppler velocimeter (LDV) system, a schlieren system, and OH fluorescence imaging. It was compared with a similar air-to-air case without combustion. The high-speed stream's flow speed was about 390 m/s, or Mach 0.71, and the flow speed ratio was 0.34. The results showed that a shear layer with reaction grows faster than one without; both cases are within the range of data scatter presented by the established data base. The coupling between the streamwise and the cross-stream turbulence components inside the shear layers was low, and reaction only increased it slightly. However, the shear layer shifted laterally into the lower speed fuel stream, and a more organized pattern of Reynolds stress was present in the reaction shear layer, likely as a result of the formation of a larger scale structure associated with shear layer corrugation from heat release. Dynamic pressure measurements suggest that coherent flow perturbations existed inside the shear layer and that this flow became more chaotic as the flow advected downstream. Velocity and thermal variable values are listed in this report for a computational fluid dynamics (CFD) benchmark.
Aerodynamic characteristics of a canard-controlled missile at Mach numbers of 1.5 and 2.0.
NASA Technical Reports Server (NTRS)
Kassner, D. L.; Wettlaufer, B.
1977-01-01
A typical missile model with nose mounted canards and cruciform tail surfaces was tested in the Ames 6- by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 1.5 and 2.0 and Reynolds number of 1 million based on body diameter. Data were obtained at angles of attack ranging from -3 deg to 12 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). Results were obtained both with the model unrolled and rolled 45 deg. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 10 deg with canard deflections of 9 deg. Also, the tail arrangements studied provided ample pitch stability. there were no appreciable effects of model roll orientation.
Aerothermal tests of quilted dome models on a flat plate at a Mach number of 6.5
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Hunt, L. Roane
1988-01-01
Aerothermal tests were conducted in the NASA Langley 8 Foot High Temperature Tunnel (8'HTT) at a Mach number of 6.5 on simulated arrays of thermally bowed metallic thermal protection system (TPS) tiles at an angle of attack of 5 deg. Detailed surface pressures and heating rates were obtained for arrays aligned with the flow and skewed 45 deg diagonally to the flow with nominal bowed heights of 0.1, 0.2, and 0.4 inch submerged in both laminar and turbulent boundary layers. Aerothermal tests were made at a nominal total temperature of 3300 R, a total pressure of 400 psia, a total enthalpy of 950 Btu/lbm, a dynamic pressure of 2.7 psi, and a unit Reynolds number of 400,000 per foot. The experimental results form a data base that can be used to help protect aerothermal load increases from bowed arrays of TPS tiles.
NASA Technical Reports Server (NTRS)
Lina, Lindsay J.; Maglieri, Domenic J.
1960-01-01
The intensity of shock-wave noise at the ground resulting from flights at Mach numbers to 2.0 and altitudes to 60,000 feet was measured. Meagurements near the ground track for flights of a supersonic fighter and one flight of a supersonic bomber are presented. Level cruising flight at an altitude of 60,000 feet and a Mach number of 2.0 produced sonic booms which were considered to be tolerable, and it is reasonable t o expect that cruising flight at higher altitudes will produce booms of tolerable intensity for airplanes of the size and weight of the test airplanes. The measured variation of sonic-boom intensity with altitude was in good agreement with the variation calculated by an equation given in NASA Technical Note D-48. The effect of Mach number on the ground overpressure is small between Mach numbers of 1.4 and 2.0, a result in agreement with the theory. No amplification of the shock-wave overpressures due to refraction effects was apparent near the cutoff Mach number. A method for estimating the effect of fligh-path angle on cutoff Mach number is shown. Experimental results indicate agreement with the method, since a climb maneuver produced booms of a much decreased intensity as compared with the intensity of those measured in level flight at about the same altitude and Mach number. Comparison of sound pressure levels for the fighter and bomber airp lanes indicated little effect of either airplane size or weight at an altitude of 40,000 feet.
NASA Technical Reports Server (NTRS)
Spearman, M. Leroy; Braswell, Dorothy O.
1993-01-01
Wind-tunnel tests were made for spheres of various sizes over a range of Mach numbers and Reynolds numbers. The results indicated some conditions where the drag was affected by changes in the afterbody pressure due to a shock reflection from the tunnel wall. This effect disappeared when the Mach number was increased for a given sphere size or when the sphere size was decreased for a given Mach number. Drag measurements and Schlieren photographs are presented that show the possibility of obtaining inaccurate data when tests are made with a sphere too large for the test section size and Mach number. Tests were also made of an oblate spheroid. The results indicated a region at high Mach numbers where inherent positive static stability might occur with the oblate-face forward. The drag results are compared with those for a sphere as well as those for various other shapes. The drag results for the oblate spheroid and the sphere are also compared with some calculated results.
NASA Technical Reports Server (NTRS)
Powell, Robert D., Jr.
1959-01-01
An investigation has been conducted on the Langley helicopter test tower to determine experimentally the maximum mean lift-coefficient characteristics at low tip Mach number and a limited amount of drag- divergence data at high tip Mach number of a helicopter rotor having an NACA 64(1)AO12 airfoil section and 8 deg of linear washout. Data are presented for blade tip Mach numbers M(t) of 0.29 to 0.74 with corresponding values 6 6 of tip Reynolds number of 2.59 x 10(exp 6) and 6.58 x 10(exp 6). Comparisons are made between the data from the present rotor with results previously obtained from two other rotors: one having NACA 0012 airfoil sections and the other having an NACA 0009 airfoil tip section. At low tip Mach numbers, the maximum mean lift coefficient for the blade having the NACA 64(1)AO12 section was about 0.08 less than that obtained with the blade having the NACA 0009 tip section and 0.21 less than the value obtained with the blade having the NACA 0012 tip section. Blade maximum mean lift coefficient values were not obtained for Mach number values greater than 0.47 because of a blade failure encountered during the tests. The effective mean lift-curve slope required for predicting rotor thrust varied from 5.8 for the tip Mach nuniber range of 0.29 to 0.55 to a value of 6.65 for a tip Mach number of 0.71. The blade pitching-moment coefficients were small and relatively unaffected by changes in thrust coefficient and Mach number. In the instances in which stall was reached, the break in the blade pitching-moment curve was in a stable direction. The efficiency of the rotor decreased with an increase in tip speed. Expressed as figure of merit, at a tip Mach number of 0.29 the maximum value was about 0.74. Similar measurements made on another rotor having an NACA 0012 airfoil and with a rotor having an NACA 0009 tip section, showed a value of 0.75. Synthesized section lift and profile-drag characteristics for the rotor-blade airfoil section are presented as an
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
NASA Technical Reports Server (NTRS)
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
NASA Technical Reports Server (NTRS)
Spearman, M. Leroy; Braswell, Dorothy O.
1994-01-01
A study has been made of the experimental and theoretical aerodynamic characteristics for some generic high-speed missile concepts at Mach numbers from 2 to 6.8. The basic body for this study had a length-to-diameter ratio of 10 with the forward half being a modified blunted ogive and the rear half being a cylinder. Modifications made to the basic body included the addition of an after body flare, the addition of highly swept cruciform wings and the addition of highly swept aft tails. The effects of some controls were also investigated with all-moving wing controls on the flared body and trailing-edge flap controls on the winged body. The results indicated that the addition of a flare, wings, or tails to the basic body all provided static longitudinal stability with varying amounts of increased axial force. The control arrangements were effective in producing increments of normal-force and pitching-moment at the lower Mach numbers. At the highest Mach number, the flap control on the winged body was ineffective in producing normal-force or pitching-moment but the all-moving wing control on the flared body, while losing pitch effectiveness, still provided normal-force increments. Calculated results obtained through the use of hypersonic impact theory were in generally good agreement with experiment at the higher Mach numbers but were not accurate at the lower Mach numbers.
NASA Technical Reports Server (NTRS)
Harrington, Douglas E.; Burley, Richard R.; Corban, Robert R.
1986-01-01
Wall Mach number distributions were determined over a range of test-section free-stream Mach numbers from 0.2 to 0.92. The test section was slotted and had a nominal porosity of 11 percent. Reentry flaps located at the test-section exit were varied from 0 (fully closed) to 9 (fully open) degrees. Flow was bled through the test-section slots by means of a plenum evacuation system (PES) and varied from 0 to 3 percent of tunnel flow. Variations in reentry flap angle or PES flow rate had little or no effect on the Mach number distributions in the first 70 percent of the test section. However, in the aft region of the test section, flap angle and PES flow rate had a major impact on the Mach number distributions. Optimum PES flow rates were nominally 2 to 2.5 percent wtih the flaps fully closed and less than 1 percent when the flaps were fully open. The standard deviation of the test-section wall Mach numbers at the optimum PES flow rates was 0.003 or less.
NASA Technical Reports Server (NTRS)
Dugan, Duane W.
1959-01-01
The possibility of obtaining useful estimates of the static longitudinal stability of aircraft flying at high supersonic Mach numbers at angles of attack between 0 and +/-180 deg is explored. Existing theories, empirical formulas, and graphical procedures are employed to estimate the normal-force and pitching-moment characteristics of an example airplane configuration consisting of an ogive-cylinder body, trapezoidal wing, and cruciform trapezoidal tail. Existing wind-tunnel data for this configuration at a Mach number of 6.86 provide an evaluation of the estimates up to an angle of attack of 35 deg. Evaluation at higher angles of attack is afforded by data obtained from wind-tunnel tests made with the same configuration at angles of attack between 30 and 150 deg at five Mach numbers between 2.5 and 3.55. Over the ranges of Mach numbers and angles of attack investigated, predictions of normal force and center-of-pressure locations for the configuration considered agree well with those obtained experimentally, particularly at the higher Mach numbers.
NASA Technical Reports Server (NTRS)
Emami, Saied; Trexler, Carl A.; Auslender, Aaron H.; Weidner, John P.
1995-01-01
This report details experimentally derived operational characteristics of numerous two-dimensional planar inlet-combustor isolator configurations at a Mach number of 4. Variations in geometry included (1) inlet cowl length; (2) inlet cowl rotation angle; (3) isolator length; and (4) utilization of a rearward-facing isolator step. To obtain inlet-isolator maximum pressure-rise data relevant to ramjet-engine combustion operation, configurations were mechanically back pressured. Results demonstrated that the combined inlet-isolator maximum back-pressure capability increases as a function of isolator length and contraction ratio, and that the initiation of unstart is nearly independent of inlet cowl length, inlet cowl contraction ratio, and mass capture. Additionally, data are presented quantifying the initiation of inlet unstarts and the corresponding unstart pressure levels.
NASA Astrophysics Data System (ADS)
Rao, Pooja; She, Dan; Lim, Hyunkyung; Glimm, James
2015-11-01
The qualitative and quantitative effect of initial conditions (linear and non-linear) and high Mach number (1.3 and 1.45) is studied on the turbulent mixing induced by the Richtmyer-Meshkov instability in idealized ICF conditions. The Richtmyer-Meshkov instability seeds Rayleigh-taylor instabilities in ICF experiments and is one of the factors that contributes to reduced performance of ICF experiments. Its also found in collapsing cores of stars and supersonic combustion. We use the Stony Brook University code, FronTier, which is verified via a code comparison study against the AMR multiphysics code FLASH, and validated against vertical shock tube experiments done by the LANL Extreme Fluids Team. These simulations are designed as a step towards simulating more realistic ICF conditions and quantifying the detrimental effects of mixing on the yield.
NASA Technical Reports Server (NTRS)
Dods, J. B., Jr.; Hanly, R. D.; Efting, J. H.
1975-01-01
Shadowgraphs of five space shuttle launch configurations are presented. The model was a 4 percent-scale space shuttle vehicle, tested in the 11- by 11-foot Transonic Wind Tunnel at Ames Research Center. The Mach number was varied from 0.8 to 1.4 with three angles of sideslip (0 deg, 5 deg and -5 deg) that were used in conjunction with three angles of attack (4 deg, -4 deg, and 0 deg). The model configurations included both series-burn and parallel-burn configurations, two canopy configurations, two positions of the orbiter nose relative to the HO tank nose, and two HO tank nose-cones angles (15 deg and 20 deg). The data consist entirely of shadowgraph photographs.
Phase Averaged Measurements of the Coherent Structure of a Mach Number 0.6 Jet. M.S. Thesis
NASA Technical Reports Server (NTRS)
Emami, S.
1983-01-01
The existence of a large scale structure in a Mach number 0.6, axisymmetric jet of cold air was proven. In order to further characterize the coherent structure, phase averaged measurements of the axial mass velocity, radial velocity, and the product of the two were made. These measurements yield information about the percent of the total fluctuations contained in the coherent structure. These measured values were compared to the total fluctuation levels for each quantity and the result expressed as a percent of the total fluctuation level contained in the organized structure at a given frequency. These measurements were performed for five frequencies (St=0.16, 0.32, 0.474, 0.95, and 1.26). All of the phase averaged measurements required that the jet be artificially excited.
Forces and Moments on Pointed Blunt-nosed Bodies of Revolution at Mach Numbers from 2.75 to 5.00
NASA Technical Reports Server (NTRS)
Dennis, David H; Cunningham, Bernard E
1952-01-01
Results of tests to determine the aerodynamic forces and moments on bodies of revolution at angles of attack from 0 degrees to 25 degrees are presented and compared with theory. Cones and ogives of fineness ratios 3 to 7 and two blunt-nosed body shapes with fineness ratios 3 and 5 were tested at Mach numbers from 2.75 to 5.00. Reynolds numbers were from 0.5 million to 6.4 million, depending on Mach number and body fineness ratio.
Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas
Tishchenko, V N; Shaikhislamov, I F
2014-02-28
We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)
Effect of Reynolds number variation on aerodynamics of a hydrogen-fueled transport concept at Mach 6
NASA Technical Reports Server (NTRS)
Penland, Jim A.; Marcum, Don C., Jr.
1987-01-01
Two separate tests have been made on the same blended wing-body hydrogen-fueled transport model at a Mach number of about 6 and a range of Reynolds number (based on theoretical body length) of 1.577 to 55.36 X 10 to the 6th power. The results of these tests, made in a conventional hypersonic blowdown tunnel and a hypersonic shock tunnel, are presented through a range of angle of attack from -1 to 8 deg, with an extended study at a constant angle of attack of 3 deg. The model boundary layer flow appeared to be predominately turbulent except for the low Reynolds number shock tunnel tests. Model wall temperatures varied considerably; the blowdown tunnel varied from about 255 F to 340 F, whereas the shock tunnel had a constant 70 F model wall temperature. The experimental normal-force coefficients were essentially independent of Reynolds number. A current theoretical computer program was used to study the effect of Reynolds number. Theoretical predictions of normal-force coefficients were good, particularly at anticipated cruise angles of attack, that is 2 to 5 deg. Axial-force coefficients were generally underestimated for the turbulent skin friction conditions, and pitching-moment coefficients could not be predicted reliably.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1972-01-01
Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel from Sept. 27 to Oct. 7, 1972 on a 0.004 scale model of the NR ATP baseline shuttle orbiter configuration. Six component aerodynamic force and moment data were recorded at 0 deg sideslip angle over an angle of attack range from 0 to 20 deg for Mach numbers of 0.6 to 4.96, 20 to 40 deg for Mach numbers of 0.6, 0.9, 2.99, and 4.96, and 40 to 60 deg for Mach numbers of 2.99 and 4.96. Data were obtained over a sideslip range of -10 to 10 deg at 0, 10, and 20 deg angles of attack over the Mach range and 30 and 50 deg at Mach numbers of 2.99 and 4.96. The purpose of the test was to define the buildup, performance, stability, and control characteristics of the orbiter configuration. The model parameters, were: body alone; body-wing; body-wing-tail; elevon deflections of 0, 10, -20, and -40 deg both full and split); aileron deflections of plus or minus 10 deg (full and split); rudder flares of 10 and 40 deg, and a rudder deflection of 15 deg about the 10 and 40 deg flare positions.
Experimental pitch-, yaw-, and roll-damping characteristics of a shuttle orbiter at Mach number 8
NASA Technical Reports Server (NTRS)
Uselton, B. L.; Freeman, D. C., Jr.; Boyden, R. P.
1975-01-01
Wind tunnel tests were conducted to measure the pitch-, yaw-, and roll-damping characteristics of a modified 089B shuttle orbiter. These tests were conducted for NASA-Langley at the von Karman Gas Dynamics Facility of the Arnold Engineering Development Center. Data were obtained utilizing the small amplitude forced-oscillation technique at angles of attack of -4.9 to 26.5 deg at Reynolds numbers, based on model length, of 1,180,000 to 4,820,000. The orbiter was dynamically stable in pitch, yaw, and roll, and the pitch derivatives were dependent on Reynolds number, while the roll derivatives were independent of Reynolds number.
NASA Technical Reports Server (NTRS)
McClinton, C.; Rondakov, A.; Semenov, V.; Kopehenov, V.
1991-01-01
NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1975-01-01
A short annular diffuser equipped with wall bleed (suction)capability was evaluated at inlet Mach numbers of 0.186 to 0.5. The diffuser had an area ratio of 4.0 and a length-to-inlet height ratio of 1.6. Test results show that the exit velocity profiles, typical of annular jet flow without suction, could be considerably flattened by application of wall suction. This improved performance was also reflected in diffuser effectiveness (static-pressure recovery) and total-pressure loss results. At the inlet Mach number of 0.5 diffuser static-pressure recovery is equal to or better than at lower inlet Mach numbers for comparable suction rates.
NASA Technical Reports Server (NTRS)
Shrout, B. L.; Fournier, R. H.
1979-01-01
An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location.
NASA Technical Reports Server (NTRS)
Henderson, William P.
1960-01-01
An investigation was made at high subsonic speeds in the Langley high-speed 7- by 10-foot tunnel to determine the effect of end plates on the longitudinal aerodynamic characteristics of a sweptback wing-body combination with and without drooped chord-extensions. The wing had 45 deg sweepback of the quarter-chord line, an aspect ratio of 4, a taper ratio of 0.3, and NACA 65AO06 airfoil sections parallel to the plane of symmetry, and was mounted near the rear of a body of revolution having a fineness ratio of approximately 8. The results indicated that the addition of the end plates to either the wing with drooped chord-extensions or to the wing without drooped chord-extensions slightly increased the lift in the low angle-of-attack range but slightly decreased the lift at moderate and high angles of attack. The addition of the end plates to the wing without the chord-extensions caused a small increase in the maximum lift-drag ratio at Mach numbers below 0.65 and a slight decrease at the higher Mach numbers; however, for the addition of the end plates to the wing with the chord- extensions the maximum lift-drag ratio was slightly decreased below a Mach number of 0.88, while a slight increase occurred for the higher Mach numbers. The addition of the end plates to the wings with and without the chord-extensions caused the static longitudinal stability to increase considerably for all Mach numbers; however, only a slight reduction in the aerodynamic-center variation with Mach number was observed.
NASA Technical Reports Server (NTRS)
Harrington, D. E.; Schloemer, J. J.; Skebe, S. A.
1975-01-01
Plug nozzles with chute-type noise suppressors were tested with and without ejector shrouds at free-stream Mach numbers from 0 to 0.45 and over a range of nozzle pressure ratios from 2 to 4. A 36-chute suppressor nozzle with an ejector had an efficiency of 94.6 percent at an assumed takeoff pressure ratio of 3.0 and a Mach number of 0.36. This represents only a 3.4 percent performance penalty when compared with the 98 percent efficiency obtained with a previously tested unsuppressed plug nozzle.
NASA Technical Reports Server (NTRS)
Pendergraft, Odis C., Jr.; Burley, James R., II; Bare, E. Ann
1986-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle drag of nonaxisymmetric two-dimensional convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine, fighter-aircraft model. Tests were conducted over a Mach number range from 0.60 to 1.20 and over an angle-of-attack range from -5 to 9 deg. Nozzle pressure ratio was varied from jet off (1.0) to approximately 10.0, depending on Mach number.
NASA Technical Reports Server (NTRS)
Olstad, Walter B.; Fischetti, Thomas L.
1958-01-01
An investigation was made of the effects of body shape on the drag of a 45 deg sweptback-wing-body combination at Mach numbers from 0.90 to 1.43. Both the expansion and compression fields induced by body indentation were swept back as the stream Mach number increased from 0.94. The line of zero pressure change was generally tangent to the Mach lines associated with the local velocities over the wing and body. The strength of the induced pressure fields over the wing were attenuated with spanwise distance and the major effects were limited to the inboard 60 percent of the wing semispan. Asymmetrical body indentation tended to increase the lift on the forward portion of the wing and reduce the lift on the rearward portion. This redistribution of lift had a favorable effect on the wave drag due to lift. Symmetrical body indentation reduced the drag loading near the wing-body juncture at all Mach numbers. The reduction in drag loading increased in spanwise extent as the Mach number increased and the line of zero induced pressure became more nearly aligned with the line of maximum wing thickness. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag of the basic and symmetrical M = 1.2 body and wing combinations at an angle of attack of 0 deg predicted the effects of indentation within 11 percent of the wing-basic-body drag throughout the Mach number range from 1.0 to 1.43. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag for the basic, symmetrical M = 1.2, and asymmetrical M = 1.4 body and wing combinations predicted the total pressure drag to within 8 percent of the experimental value at M = 1.43.
Turbulent boundary-layer velocity profiles on a nonadiabatic at Mach number 6.5
NASA Technical Reports Server (NTRS)
Keener, E. R.; Hopkins, E. J.
1972-01-01
Velocity profiles were obtained from pitot-pressure and total-temperature measurements within a turbulent boundary layer on a large sharp-edged flat plate. Momentum-thickness Reynolds number ranged from 2590 to 8860 and wall-to-adiabatic-wall temperature ratios ranged from 0.3 to 0.5. Measurements were made both with and without boundary layer trips. Five methods are evaluated for correlating the measured velocity profiles with the incompressible law-of-the-wall and the velocity defect law. The mixing-length generalization of Van Driest gives the best correlation.
Generation of strong MHD Alfvenic turbulence
NASA Technical Reports Server (NTRS)
Akimoto, K.; Winske, D.
1990-01-01
Strong Alfvenic turbulence containing a number of solitonlike structures propagating at super-Alfvenic speeds is generated self-consistently and studied by means of computer simulation. A one-dimensional hybrid (kinetic ions, fluid electrons) code is used to investigate the nonlinear evolution of an electromagnetic ion-beam instability that generates low-frequency Alfven-like waves. As the instability develops, the field-aligned hydromagnetic waves steepen, forming a soliton that bifurcates several times, leading to a fully turbulent state.
ALFVEN SIMPLE WAVES: EULER POTENTIALS AND MAGNETIC HELICITY
Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D. A.
2010-12-20
The magnetic helicity characteristics of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulae. Two basic Alfven modes are identified: (1) the plane one-dimensional Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis with wave phase {psi} = k{sub 0}(z - {lambda}t), where k{sub 0} is the wave number and {lambda} is the group velocity of the wave and (2) the generalized Barnes simple Alfven wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (1) is analogous to the slab Alfven mode and the generalized Barnes solution (2) is analogous to the two-dimensional mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.
NASA Astrophysics Data System (ADS)
Rouillard, A. P.; Illya, P.; Zucca, P.; Tylka, A. J.; Vainio, R. O.; Vourlidas, A.
2015-12-01
Identifying the physical mechanisms that produce the most energetic particles is a long-standing observational and theoretical challenge in astrophysics. Strong shock waves have been proposed as efficient accelerators both in the solar physics and astrophysical contexts via various acceleration mechanisms. The proposed processes rely on shock waves being super-critical or moving several times faster than the characteristic speed of the medium they propagate through (a high MA). Using recent imaging of the NASA STEREO, SOHO and SDO spacecraft, we provide the first observations of the time-dependent 3-dimensional distribution of the expansion speed and MA of a coronal shock wave. These observations show that the high-energy particles measured near Earth are produced at the time of the sharp rise in the shock Mach number (>10) magnetically connected to Earth. These findings provide direct evidence to energetic particles being accelerated during the formation of a strong coronal shock. Using our new technique, we study the longitudinal spread and timing of a number of other energetic particle events during cycle 24.
NASA Technical Reports Server (NTRS)
Kelly, Thomas C.
1961-01-01
Aerodynamic loads results have been obtained in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.80 to 1.20 for a 1/10-scale model of the upper three stages of the Scout vehicle. Tests were conducted through an angle-of-attack range from -8 deg to 8 deg at an average test Reynolds number per foot of about 4.0 x 10(exp 6). Results indicated that the peak negative pressures associated with expansion corners at the nose and transition flare exhibit sizeable variations which occur over a relatively small Mach number range. The magnitude of the variations may cause the critical local loading condition for the full-scale vehicle to occur at a Mach number considerably lower than that at which the maximum dynamic pressure occurs in flight. The addition of protuberances simulating antennas and wiring conduits had slight, localized effects. The lift carryover from the nose and transition flare on the cylindrical portions of the model generally increased with an increase in Mach number.
NASA Technical Reports Server (NTRS)
Holdaway, George H.; Mellenthin, Jack A.
1960-01-01
The models had aspect-ratio-2 diamond, delta, and arrow wings with the leading edges swept 45.00 deg, 59.04 deg, and 70.82 deg, respectively. The wing sections were computed by varying the section shape along with the body radii (blending process) to match the prescribed area distribution and wing plan form. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local chords in a streamwise direction. The models were tested with transition fixed at Reynolds numbers of about 4,000,000 to 9,000,0000, based on the mean aerodynamic chord of the wings. The effect of varying Reynolds number was checked at both subsonic and supersonic speeds. The diamond model was superior to the other plan forms at transonic speeds ((L/D)max = 11.00 to 9.52) because of its higher lift-curve slope and near optimum wave drag due to the blending process. For the wing thickness tested with the diamond model, the marked body and wing contouring required for transonic conditions resulted in a large wave-drag penalty at the higher supersonic Mach numbers where the leading and trailing edges of the wing were supersonic. Because of the low sweep of the trailing edge of the delta model, this configuration was less adaptable to the blending process. Removing a body bump prescribed by the Mach number 1.00 design resulted in a good supersonic design. This delta model with 10 percent less volume was superior to the other plan forms at Mach numbers of 1.55 to 2.35 ((L/D)max = 8.65 to 7.24), but it and the arrow model were equally good at Mach numbers of 2.50 to 3.50 ((L/D)max - 6.85 to O.39). At transonic speeds the arrow model was inferior because of the reduced lift-curve slope associated with its increased sweep and also because of the wing base drag. The wing base-drag coefficients of the arrow model based on the wing planform area decreased from a peak value of 0.0029 at Mach number 1.55 to 0.0003 at Mach number 3.50. Linear supersonic theory was satisfactory
NASA Technical Reports Server (NTRS)
Harrington, D. E.; Schloemer, J. J.
1974-01-01
Plug nozzles with two types of 40-spoke noise suppressor were tested at free-stream Mach numbers from 0 to 0.45 and over a range of nozzle pressure ratios from 1.5 to 4.0. In additon, an unsuppressed plug nozzle and a Supersonic Tunnel Association nozzle were also tested to provide baseline levels of thrust performance. The unsuppressed plug nozzle had an efficiency of 98 percent at an assumed takeoff pressure ratio of 3.0 and at Mach 0.36. At the same condition the suppressor nozzles had efficiencies of approximately 83.5 percent.
NASA Technical Reports Server (NTRS)
Harrington, D. E.; Schloemer, J. J.; Skebe, S. A.
1976-01-01
A series of two-dimensional plug nozzles was tested with and without ejector shrouds at free stream Mach numbers from 0 to 0.45 and over a range of nozzle pressure ratios from 2 to 4. These nozzles were also tested with and without chute noise suppressors. A two-dimensional plug nozzle has an efficiency of 96.1 percent at an assumed takeoff pressure ratio of 3.0 and Mach 0.36. A 12-chute suppressed nozzle with sidewalls has an efficiency of 81.0 percent (15.1 percent below the unsuppressed nozzle).
NASA Technical Reports Server (NTRS)
Putnam, L. E.; Strong, E. G.
1983-01-01
An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to measure static pressure distributions inside a nonaxisymmetric thrust reversing nozzle. The tests were made at nozzle total pressures ranging from ambient to about eight times ambient pressure at a free stream Mach number of zero. Tabulated pressure data are presented.
NASA Technical Reports Server (NTRS)
Thompson, Jim Rogers; Bray, Richard S; COOPER GEORGE E
1950-01-01
The calibrations of four airspeed systems installed in a North American F-86A airplane have been determined in flight at Mach numbers up to 1.04 by the NACA radar-phototheodolite method. The variation of the static-pressure error per unit indicated impact pressure is presented for three systems typical of those currently in use in flight research, a nose boom and two different wing-tip booms, and for the standard service system installed in the airplane. A limited amount of information on the effect of airplane normal-force coefficient on the static-pressure error is included. The results are compared with available theory and with results from wind-tunnel tests of the airspeed heads alone. Of the systems investigated, a nose-boom installation was found to be most suitable for research use at transonic and low supersonic speeds because it provided the greatest sensitivity of the indicated Mach number to a unit change in true Mach number at very high subsonic speeds, and because it was least sensitive to changes in airplane normal-force coefficient. The static-pressure error of the nose-boom system was small and constant above a Mach number of 1.03 after passage of the fuselage bow shock wave over the airspeed head.
NASA Technical Reports Server (NTRS)
Nugent, J.; Couch, L. M.; Webb, L. D.
1975-01-01
The test probe was designed to measure free-stream Mach number and could be incorporated into a conventional airspeed nose boom installation. Tests were conducted in the Langley 4-by 4-foot supersonic pressure tunnel with an approximate angle of attack test range of -5 deg to 15 deg and an approximate angle of sideslip test range of + or - 4 deg. The probe incorporated a variable exit area which permitted internal flow. The internal flow caused the bow shock to be swallowed. Mach number was determined with a small axially movable internal total pressure tube and a series of fixed internal static pressure orifices. Mach number error was at a minimum when the total pressure tube was close to the probe tip. For four of the five tips tested, the Mach number error derived by averaging two static pressures measured at horizontally opposed positions near the probe entrance were least sensitive to angle of attack changes. The same orifices were also used to derive parameters that gave indications of flow direction.
NASA Technical Reports Server (NTRS)
Henderson, Arthur, Jr.; Braswell, Dorothy O.
1961-01-01
Charts are presented for the determination of certain flow properties in the flow properties in the flow field and on the surface of cones and wedges at Mach numbers from about 1 to 100 in a perfect gas wigh a ratio of specific heats of 5/3. In addition, a table of the isentropic subsonic flow parameters is included.
NASA Technical Reports Server (NTRS)
Montoya, L. C.; Lux, D. P.
1975-01-01
Wing pressure distributions obtained in flight with flush orifice and external tubing orifice installations for Mach numbers from 0.50 to 0.97 are compared. The procedure used to install the external tubing orifice is discussed. The results indicate that external tubing orifice installations can give useful results.
Inviscid Flow Computations of the Orbital Sciences X-34 Over a Mach Number Range of 1.25 to 6.0
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
2001-01-01
This report documents the results of an inviscid computational study conducted on the Orbital Sciences X-34 vehicle to compute its inviscid longitudinal aerodynamic characteristics over a Mach number range of 1.25 to 6.0. The unstructured grid software FELISA was used and th e aerodynamic characteristics were computed at Mach numbers 1.25, 1.6, 2.5, 4.0, 4.63, and 6.0, and an angle of attack range of -4 to 32 degrees. These results were compared with available aerodynamic data from wind tunnel test on X-34 models. The comparison showed excellent agreement in C(sub N). The computed pitching moment compared well at Mach numbers 2.5 and higher, and at angles of attack of up to 12 deg. The agreement was not good at higher angles of attack possibly due to viscous effects. At lower Mach numbers there were significant differences between computed and measured C(sub m) values. This could not be explained. Since the present computations are inviscid, the computed C(sub A) was consistently lower than the measured values as expected.
NASA Technical Reports Server (NTRS)
Martin, T. A.; Spring, D. J.
1973-01-01
Wind tunnel test results are presented to show aerodynamic characteristics over the Mach number range of 0.64 to 2.50 of the DCAT missile. Data are presented showing the interference created by the rear mounted reaction control system. Two candidate fins were installed on the model during tests: a flat folding fin and a curved wrap around fin.
Vink, Jacco
2014-01-10
It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M>√5. The reason is that for M≤√5 the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain. This lower limit applies to situations without significant magnetic field pressure. In case that the magnetic field pressure dominates the pressure in the unshocked medium, i.e., for low plasma beta, the resistivity of the magnetic field makes it even more difficult to fulfill the energetic requirements for the formation of shock with an accelerated particle precursor and associated compression of the upstream plasma. We illustrate the effects of magnetic fields for the extreme situation of a purely perpendicular magnetic field configuration with plasma beta β = 0, which gives a minimum Mach number of M = 5/2. The situation becomes more complex, if we incorporate the effects of pre-existing cosmic rays, indicating that the additional degree of freedom allows for less strict Mach number limits on acceleration. We discuss the implications of this result for low Mach number shock acceleration as found in solar system shocks, and shocks in clusters of galaxies.
NASA Technical Reports Server (NTRS)
Persh, Jerome
1950-01-01
An investigation was conducted to determine the effect of the inlet Mach number and entrance-boundary-layer thickness on the performance of a 23 degree 21-inch conical-diffuser - tail-pipe combination with a 2:1 area ratio. The air flows used in this investigation covered an inlet Mach number range from 0.17 to 0.89 and corresponding Reynolds numbers of 1,700,000 to 7,070,000. Results are reported for two inlet-boundary-layer thicknesses. Over the entire range of flows, the mean value of the inlet displacement thickness is about 0.034 inch for the thinner inlet boundary layer and about 0.170 inch for the case of the thicker inlet boundary layer. The performance of the diffuser - tail-pipe combination is presented together with examples of longitudinal static-pressure distribution and the results of boundary-layer pressure surveys made at six points along the diffuser wall. The results indicated a progressive diminution of the static-pressure recovery and a steady increase in the total-pressure losses as the inlet Mach number was increased for both inlet-boundary-layer thicknesses. The ratio of actual static-pressure rise to that theoretically possible was much less and the total-pressure losses were greater for the case of the thicker inlet boundary layer throughout the speed range investigated. With the thinner inlet boundary layer, flow separation occurred at the diffuser exit at all inlet Mach numbers.Unseparated flow alternating with separated flow was observed near the inlet at the higher velocities. For the case of the thicker inlet boundary layer, the origin of the separated region occurred in the vicinity of the inlet-duct-diffuser junction section at all Mach numbers.
Study of Flow Over Oscillating Airfoil Models at a Mach Number of 7.0 in Helium
NASA Technical Reports Server (NTRS)
Arman, Ali
1961-01-01
A wind-tunnel study of unsteady flow at a Mach number of 7 in helium has been conducted on several sting-mounted wedge, double-wedge, and flat-plate airfoil models with three different leading-edge radii. The data were obtained by taking high-speed schlieren motion pictures of the decaying motion of the model as it was released from an initial deflection. The shock-wave position observed on the sharp-leading-edge models during the oscillation was compared with that obtained by use of unsteady flow theory as well as steady-state theory. Comparison of theoretical results indicated that no unsteady-flow effects exist over the range of reduced frequencies k, 0.007 less than equal than k less than or equal 0.030, studied experimentally. The experimental results confirmed this finding as no unsteady-flow effects were detected in this reduced-frequency range. Comparison of shock-wave positions measured for the blunt models with those calculated by steady-state methods indicated fair agreement.
Aerothermal tests of spherical dome protuberances on a flat plate at a Mach number of 6.5
NASA Technical Reports Server (NTRS)
Glass, C. E.; Hunt, L. R.
1986-01-01
Aerothermal tests were conducted in the Langley 8-Foot High-Temperature Tunnel at a Mach number of 6.5 on a series of spherical dome protuberances mounted on a flat-plate test apparatus. Detailed surface pressure and heating-rate distributions were obtained for various dome heights and diameters submerged in both laminar and turbulent boundary layers including a baseline geometric condition representing a thermally bowed metallic thermal protection system (TPS) tile. The present results indicated that the surface pressures on the domes were increased on the windward surface and reduced on the leeward surface as predicted by linearized small-perturbation theory, and the distributions were only moderately affected by boundary-layer variations. Surface heating rates for turbulent flow increased on the windward surface and decreased on the leeward surface similar to the pressure; but for laminar boundary layers, the heating rates remained high on the leeward surface, probably due to local transition. Transitional flow effects cause heat load augmentation to increase by 30 percent for the maximum dome height in a laminar boundary layer. However, the corresponding augmentation for a dome with a height of 0.1 in. and a diameter of 14 in. representative of a bowed TPS tile was 14 percent or less for either a laminar or turbulent boundary layer.
Measurements of Free-Space Oscillating Pressures Near Propellers at Flight Mach Numbers to 0.72
NASA Technical Reports Server (NTRS)
Kurbjun, Max C; Vogeley, Arthur W
1958-01-01
In the course of a short flight program initiated to check the theory of Garrick and Watkins (NACA rep. 1198), a series of measurements at three stations were made of the oscillating pressures near a tapered-blade plan-form propeller and rectangular-blade plan form propeller at flight Mach numbers up to 0.72. In contradiction to the results for the propeller studied in NACA rep. 1198, the oscillating pressures in the plane ahead of the propeller were found to be higher than those immediately behind the propeller. Factors such as variation in torque and thrust distribution, since the blades of the present investigation were operating above their design forward speed, may account for this contradiction. The effect of blade plan form shows that a tapered-blade plan-form propeller will produce lower sound-pressure levels than a rectangular-blade plan-form propeller for the low blade-passage harmonics (the frequencies where structural considerations are important) and produce higher sound-pressure levels for the higher blade-passage harmonics (frequencies where passenger comfort is important).
NASA Technical Reports Server (NTRS)
Moffitt, Thomas P
1958-01-01
The design and experimental investigation of a single-stage supersonic turbine are presented herein. The turbine was designed for a rotor entering relative Mach number of 2. The maximum equivalent specific work output of the turbine at design speed and approximately design over-all pressure ratio was 32.9 BTU per pound at a static efficiency of 0.414. This static efficiency gave good verification to an independent reference that indicated theoretical static efficiencies for similar single-stage turbines within the range 0.40 to 0.45. An experimental ratio of effective rotor blade momentum thickness to mean camber length was determined to be 0.0014, which compares favorably with the results obtained from several transonic and subsonic turbines. The design procedure for this turbine would have been improved by allowing for more rotor losses by assuming a value of this momentum parameter comparable with those obtained from transonic turbines. Removing a large portion of the rotor suction surface enabled a lower static pressure to be felt at the stator exit, at the expense of higher rotor losses. The net result was an improvement in turbine work output of about 3 percent at design setting conditions. No problems associated with supersonic starting were encountered even under the worst conditions of turbine operation with respect to this problem.
NASA Astrophysics Data System (ADS)
Bian, Shiyao; Driscoll, James
2005-11-01
Flow past cavity has been of interest due to its geometrical simplicity and complex flow characteristics. A dual-camera Cinematographic Particle Image Velocimetry (CPIV) system has been developed to study low Mach number flow over a rectangular cavity. This system consists of two high-repetition rate Nd:YAG lasers and two high-speed CMOS cameras registered to have sub-pixel alignment errors. A rectangular cavity with a length-to-depth ratio of 2 was mounted in the test section of a recirculating water tunnel providing free-stream flow speeds between 5˜26 m/s. Consecutive CPIV images with a spatial resolution of 1632 x 800 pixels and 20 μs time delay were obtained at frame rate of 1.5 KHz. Time traces of surface pressures at the bottom of the cavity are acquired simultaneously by using flush-mounted dynamic pressure transducers. The temporal evolution of velocity and vortical fields reveals the time-dependence of the mixing and mass transport between the shear layer and the cavity. The simultaneous velocity and pressure measurements also show the unsteady interaction between vortical structures and the trailing edge of the cavity under resonating and non-resonating conditions. [Sponsored by National Science Foundation Grant: CTM 0203140
NASA Astrophysics Data System (ADS)
Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang
2016-09-01
A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
2001-01-01
This report documents the results of an inviscid computational study conducted on two aeroshell configurations for a proposed '07 Mars Lander. The aeroshell configurations are asymmetric due to the presence of the tabs at the maximum diameter location. The purpose of these tabs was to change the pitching moment characteristics so that the aeroshell will trim at a non-zero angle of attack and produce a lift-to-drag ratio of approximately -0.25. This is required in the guidance of the vehicle on its trajectory. One of the two configurations is called the shelf and the other is called the tab. The unstructured grid software FELISA with the equilibrium Mars gas option was used for these computations. The computations were done for six points on a preliminary trajectory of the '07 Mars Lander at nominal Mach numbers of 2, 3, 5, 10, 15, and 24. Longitudinal aerodynamic characteristics namely lift, drag, and pitching moment were computed for 10, 15, and 20 degrees angles of attack. The results indicated that the two configurations have aerodynamic characteristics that have very similar aerodynamic characteristics, and provide the desired trim LID of approximately -0.25.
NASA Technical Reports Server (NTRS)
Miller, B. A.; Dastoli, B. J.; Wesoky, H. L.
1975-01-01
Results of scale model tests of high-throat-Mach-number inlets designed to suppress inlet-emitted engine machinery noise produced in a V/STOL wind tunnel are presented. A vacuum system was used to induce inlet airflow with a siren as a noise source. Inlet mass flow was 11.68 kilograms (25.75 lb. min) per second at a throat Mach number of 0.79. The effect of entry-lip design (contraction ratio and diameter ratio) on inlet total-pressure recovery, steady-state pressure distortion, performance at high incidence angles, and noise suppression was determined. With proper entry-lip design, total-pressure recovery in excess of 0.988 could be obtained statically at an average throat Mach number of 0.79. Total-pressure distortion was 5 percent. The reduction in the siren tone sound pressure level transmitted through the inlet was 10 to 14 db relative to that measured at throat Mach 0.6.
Evaluation of Blended Wing-Body Combinations with Curved Plan Forms at Mach Numbers Up to 3.50
NASA Technical Reports Server (NTRS)
Holdaway, George H.; Mellenthin, Jack A.
1960-01-01
This investigation is a continuation of the experimental and theoretical evaluation of the effects of wing plan-form variations on the aerodynamic performance characteristics of blended wing-body combinations. The present report compares previously tested straight-edged delta and arrow models which have leading-edge sweeps of 59.04 and 70-82 deg., respectively, with related models which have plan forms with curved leading and trailing edges designed to result in the same average sweeps in each case. All the models were symmetrical, without camber, and were generally similar having the same span, length, and aspect ratios. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local wing chords in a streamwise direction. The wing sections were computed by varying their shapes along with the body radii (blending process) to match the selected area distribution and the given plan form. The models were tested with transition fixed at Reynolds numbers of roughly 4,000,000 to 9,000,000, based on the mean aerodynamic chord of the wing. The characteristic effect of the wing curvature of the delta and arrow models was an increase at subsonic and transonic speeds in the lift-curve slopes which was partially reflected in increased maximum lift-drag ratios. Curved edges were not evaluated on a diamond plan form because a preliminary investigation indicated that the curvature considered would increase the supersonic zero-lift wave drag. However, after the test program was completed, a suitable modification for the diamond plan form was discovered. The analysis presented in the appendix indicates that large reductions in the zero-lift wave drag would be obtained at supersonic Mach numbers if the leading- and trailing-edge sweeps are made to differ by indenting the trailing edge and extending the root of the leading edge.
Global Alfven modes: Theory and experiment
Turnbull, A.D.; Strait, E.J.; Heidbrink, W.W.; Chu, M.S.; Duong, H.H.; Greene, J.M.; Lao, L.L.; Taylor, T.S.; Thompson, S.J. )
1993-07-01
It is shown that the theoretical predictions and experimental observations of toroidicity-induced Alfven eigenmodes (TAE's) are now in good agreement, with particularly detailed agreement in the mode frequencies. Calculations of the driving and damping rates predict the importance of continuum damping for low toroidal mode numbers and this is confirmed experimentally. However, theoretical calculations in finite-[beta], shaped discharges predict the existence of other global Alfven modes, in particular the ellipticity-induced Alfven eigenmode (EAE) and a new mode, the beta-induced Alfven eigenmode (BAE). The BAE mode is calculated to be in or below the same frequency range as the TAE mode and may contribute to the experimental observations at high [beta]. Experimental evidence and complementary analyses are presented confirming the presence of the EAE mode at higher frequencies.
NASA Technical Reports Server (NTRS)
Eaves, R. H.; Buchanan, T. D.; Warmbrod, J. D.; Johnson, C. B.
1972-01-01
Heat transfer tests for two delta wing configurations were conducted in the hypervelocity wind tunnel. The 24-inch long models were tested at a Mach number of approximately 10.5 and at angles of attack of 20, 40, and 60 degrees over a length Reynolds number range from 5 million to 23 million on 4 May to 4 June 1971. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.; Grow, J.
1973-01-01
Wind tunnel tests to determine the supersonic aerodynamic characteristics of a delta wing space shuttle orbiter model were conducted. The model was tested at Mach numbers from 1.60 to 4.63, at nominal angles of attack from minus 2 degrees to plus 30 degrees, nominal sideslip angles of minus 4 degrees to plus 10 degrees, and Reynolds numbers from 1.8 to 2.5 times one million per foot.
NASA Technical Reports Server (NTRS)
Mclellan, Charles H; Bertram, Mitchel H; Moore, John A
1957-01-01
The results of pressure-distribution and force tests of four wings at a Mach number of about 6.9 and a Reynolds number of 0.98 x 10(6) in the Langley 11-inch hypersonic tunnel are presented. The wings had a square plan form, a 5-percent-chord maximum thickness, and diamond, half-diamond, wedge, and half-circular sections.
In-flight transition measurement on a 10 deg cone at Mach numbers from 0.5 to 2.0
NASA Technical Reports Server (NTRS)
Fisher, D. F.; Dougherty, N. S., Jr.
1982-01-01
Boundary layer transition measurements were made in flight on a 10 deg transition cone tested previously in 23 wind tunnels. The cone was mounted on the nose of an F-15 aircraft and flown at Mach numbers room 0.5 to 2.0 and altitudes from 1500 meters (5000 feet) to 15,000 meters (50,000 feet), overlapping the Mach number/Reynolds number envelope of the wind tunnel tests. Transition was detected using a traversing pitot probe in contact with the surface. Data were obtained near zero cone incidence and adiabatic wall temperature. Transition Reynolds number was found to be a function of Mach number and of the ratio of wall temperature to adiabatic all temperature. Microphones mounted flush with the cone surface measured free-stream disturbances imposed on the laminar boundary layer and identified Tollmien-Schlichting waves as the probable cause of transition. Transition Reynolds number also correlated with the disturbance levels as measured by the cone surface microphones under a laminar boundary layer as well as the free-stream impact.
NASA Astrophysics Data System (ADS)
Yu, Rixin; Yu, Jiangfei; Bai, Xue-Song
2012-06-01
We present an improved numerical scheme for numerical simulations of low Mach number turbulent reacting flows with detailed chemistry and transport. The method is based on a semi-implicit operator-splitting scheme with a stiff solver for integration of the chemical kinetic rates, developed by Knio et al. [O.M. Knio, H.N. Najm, P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation, Journal of Computational Physics 154 (2) (1999) 428-467]. Using the material derivative form of continuity equation, we enhance the scheme to allow for large density ratio in the flow field. The scheme is developed for direct numerical simulation of turbulent reacting flow by employing high-order discretization for the spatial terms. The accuracy of the scheme in space and time is verified by examining the grid/time-step dependency on one-dimensional benchmark cases: a freely propagating premixed flame in an open environment and in an enclosure related to spark-ignition engines. The scheme is then examined in simulations of a two-dimensional laminar flame/vortex-pair interaction. Furthermore, we apply the scheme to direct numerical simulation of a homogeneous charge compression ignition (HCCI) process in an enclosure studied previously in the literature. Satisfactory agreement is found in terms of the overall ignition behavior, local reaction zone structures and statistical quantities. Finally, the scheme is used to study the development of intrinsic flame instabilities in a lean H2/air premixed flame, where it is shown that the spatial and temporary accuracies of numerical schemes can have great impact on the prediction of the sensitive nonlinear evolution process of flame instability.
NASA Astrophysics Data System (ADS)
Kubiak, Marzena A.; Swaczyna, P.; Bzowski, M.; Sokół, J. M.; Fuselier, S. A.; Galli, A.; Heirtzler, D.; Kucharek, H.; Leonard, T. W.; McComas, D. J.; Möbius, E.; Park, J.; Schwadron, N. A.; Wurz, P.
2016-04-01
Following the high-precision determination of the velocity vector and temperature of the pristine interstellar neutral (ISN) He via a coordinated analysis summarized by McComas et al., we analyzed the Interstellar Boundary Explorer (IBEX) observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010–2014 and cover the region in the Earth's orbit where the Warm Breeze (WB) persists. We used the same simulation model and a parameter fitting method very similar to that used for the analysis of ISN He. We approximated the parent population of the WB in front of the heliosphere with a homogeneous Maxwell–Boltzmann distribution function and found a temperature of ∼9500 K, an inflow speed of 11.3 km s‑1, and an inflow longitude and latitude in the J2000 ecliptic coordinates 251.°6, 12.°0. The abundance of the WB relative to ISN He is 5.7% and the Mach number is 1.97. The newly determined inflow direction of the WB, the inflow directions of ISN H and ISN He, and the direction to the center of the IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the WB. This co-planarity lends support to the hypothesis that the WB is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field (ISMF). The common plane for the direction of the inflow of ISN gas, ISN H, the WB, and the local ISMF is given by the normal direction: ecliptic longitude 349.°7 ± 0.°6 and latitude 35.°7 ± 0.6 in the J2000 coordinates, with a correlation coefficient of 0.85.
NASA Technical Reports Server (NTRS)
Hingst, Warren R.; Williams, Kevin E.
1991-01-01
A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.
NASA Technical Reports Server (NTRS)
Stivers, Louis S., Jr.; Levy, Lionel L., Jr.
1961-01-01
Measurements were made to determine the effects of sting-support diameter on the base pressures of an elliptic cone with ratio of cross-section thickness to width of 1/3 and a plan-form, semi-apex angle of 15 deg. The investigation was made for model angles of attack from -2 deg to +20 deg at Mach numbers from 0.60 to 1.40, and for a constant Reynolds number of 1.4 million, based on the length of the model. The results indicated that the sting interference decreased the base axial-force coefficients by substantial amounts up to a maximum of about one-third the value of the coefficient for no sting interference. There was no practical diameter of the sting for which the effects of the sting on the base pressures would be negligible throughout the Mach number and angle-of-attack ranges of the investigation.
NASA Technical Reports Server (NTRS)
Messing, Wesley E; Simpkinson, Scott H
1950-01-01
Free-flight performance of five 16-inch-diameter ram-jet units was determined over range of free-stream Mach numbers of 0.50 to 1.86 and gas total-temperature ratios between 1.0 and 6.1 Time histories of performance data are presented for each unit. Correlations illustrate effect of free-stream Mach number and gas total-temperature ratio on diffuser total-pressure recovery, net-thrust coefficient, and external drag coefficient. One unit had smooth steady burning throughout the entire flight and encountered a maximum free-stream Mach number of 1.86 with a net acceleration of approximately 4.2 g's.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.
1961-01-01
The static aerodynamic characteristics of a canard airplane configuration having twin vertical stabilizing surfaces are presented. The model consisted of a wing and canard both of triangular plan form and aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and two swept and tapered wing-mounted vertical tails of aspect ratio 1.35. Data are presented for Mach numbers from 0.70 to 2.22 and for angles of attack from -6 to +18 deg. at 0 and 5 deg. sideslip. Tests were made with the canard off and with the canard on. Nominal canard deflection angles ranged from 0 to 10 deg. The Reynolds number was 3.68 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data obtained in this investigation are compared with previously published results for the same model having a single vertical tail instead of twin vertical tails. Without the canard, the directional stability at supersonic Mach numbers and high angles of attack was improved slightly by replacing the single tail with twin tails. However, at a Mach number of 0.70, the directional stability of the twin-tail model deteriorated rapidly with increasing angle of attack above 10 deg. and fell considerably below the level for the single-tail model. At subsonic speeds the directional stability of the twin-tail model with the canard was comparable to that for the single-tail model and at supersonic speed it was considerably greater at high angles of attack. Unlike the single-tail model, the twin-tail model at 50 sideslip exhibited an unstable break in the variation of pitching-moment coefficient with lift coefficient near 10 deg. angle of attack for 0.70 Mach number.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Abeyounis, William K.
1993-01-01
Pressure distributions on three inlets having different cowl lengths were obtained in the Langley 16-Foot Transonic Tunnel. The cowl diameter ratio (highlight diameter to maximum diameter) was 0.85 and the cowl length ratios (cowl length to maximum diameter) were 0.337, 0.439, and 0.547. The cowls had identical nondimensionalized (with respect to cowl length) external geometry and identical internal geometry. The internal contraction ratio (highlight area to throat area) was 1.250. The inlets had longitudinal rows of static pressure orifices on the top and bottom (external) surfaces and on the contraction (internal) and diffuser surfaces. The afterbody was cylindrical in shape, and its diameter was equal to the maximum diameter of the cowl. Depending on the cowl configuration and free-stream Mach number, the mass-flow ratio varied between 0.27 and 0.87 during the tests. Angle of attack varied from 0 to 4.1 deg at selected Mach numbers and mass-flow ratios, and the Reynolds number varied with the Mach number from 3.2x10(exp 6) to 4.2x10(exp 6) per foot.
NASA Technical Reports Server (NTRS)
Sears, R I; Merlet, C F; Putland, L W
1956-01-01
External-drag data are presented for normal-shock nose inlets with NACA 1-series, parabolic, and conic cowling profiles. The tests were made at an angle of attack of 0 degrees by using rocket-propelled models in free flight at Mach numbers from 0.9 to 1.5. The Reynolds number based on body maximum diameter varied from 2.5 x 10 sup 6 to 5.5 x 10 sup 6. At maximum flow rate, the inlet models had about the same external drag at a Mach number of approximately 1.1, but at higher Mach numbers the sharp-lip conic cowling had the least drag. Blunting or beveling the lip of the conic cowling while keeping the fineness ratio constant resulted in drag coefficients slightly higher than for the sharp-lip conic cowling at maximum flow rate. At a mass-flow ratio of about 0.8, the conic cowlings with sharp, blunt, or beveled lips and the parabolic cowling all gave about the same drag. The higher drag of the NACA 1-49-300 cowling, compared with the blunt-lip conic cowling, is associated with the greater fullness back of the inlet.
NASA Technical Reports Server (NTRS)
Coltrane, Lucille C.
1959-01-01
A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.
2006-01-01
This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of
NASA Technical Reports Server (NTRS)
Allan Brian G.; Owens, Lewis, R.
2006-01-01
This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe
NASA Technical Reports Server (NTRS)
Shrout, B. L.; Robins, A. W.
1982-01-01
Longitudinal aerodynamic characteristics of a configuration consisting of an elliptical body with an in plane horizontal tail were investigated. The tests were conducted at Mach numbers of 2.3, 2.96, 4.0, and 4.63. In some cases, the configuration with negative tail deflections yielded higher values of maximum lift drag ratio than did the configuration with an undeflected tail. This was due to body upwash acting on the tail and producing an additional lift increment with essentially no drag penalty. Linear theory methods used to estimate some of the longitudinal aerodynamic characteristics of the model yielded results which compared well with experimental data for all Mach numbers in this investigation and for both small angles of attack and larger angles of attack where nonlinear (vortex) flow phenomena were present.
NASA Technical Reports Server (NTRS)
Schwenk, Francis C; Lewis, George W , Jr; Lieblein, Seymour
1957-01-01
At a corrected speed of 1100 feet per second, the low-blade-angle rotor operated with a relative inlet Mach number of 1.2, a diffusion factor of 0.65, and an axial velocity ratio of 0.71 in the tip region (11 percent of passage height away from the outer wall). The measured minimum-loss coefficient was 0.35, and this value falls above a previous correlation of rotor losses with diffusion factor. Through a comparison with data for three other rotors, the occurrence of high losses was related to a high suction-surface Mach number. These comparisons also indicated that axial velocity ratios between 0.73 and 1.10 have no independent effect on losses.
NASA Technical Reports Server (NTRS)
Plant, T. J.; Nugent, J.; Davis, R. A.
1980-01-01
The paper presents the flight-measured nozzle afterbody surface pressures and engine exhaust nozzle pressure-area integrated axial force coefficients on a twin-jet fighter for varying boattail angles. The objective of the tests was to contribute to a full-scale flight data base applicable to the nozzle afterbody drag of advanced tactical fighter concepts. The data were acquired during the NASA F-15 Propulsion/Airframe Interactions Flight Research Program. Nozzle boattail angles from 7.7 deg to 18.1 deg were investigated. Results are presented for cruise angle of attack at Mach numbers from 0.6 to 2.0 at altitudes from 20,000 to 45,000 feet. The data show the nozle axial force coefficients to be a strong function of nozzle boattail angle and Mach number.
NASA Technical Reports Server (NTRS)
Wagner, Richard D., Jr.; Pine, W. Clint; Henderson, Arthur, Jr.
1961-01-01
An experimental investigation has been conducted in the 2-inch helium tunnel at the Langley Research Center at a Mach number of 19.4 to determine the pressure distributions and heat-transfer characteristics of a family of reentry nose shapes. The pressure and heat-transfer-rate distributions on the nose shapes are compared with theoretical predictions to ascertain the limitations and validity of the theories at hypersonic speeds. The experimental results were found to be adequately predicted by existing theories. Two of the nose shapes were tested with variable-length flow-separation spikes. The results obtained by previous investigators of spike-nose bodies were found to prevail at the higher Mach number of the present investigation.
NASA Technical Reports Server (NTRS)
Gertsma, Laurence W.
1959-01-01
Two methods for reducing the external cowl angle, and hence the cowl pressure drag, were investigated on a two-dimensional model. One method used at both on- and off-design Mach numbers was the addition of a cowl visor that had the inner surface parallel to the free stream at 0 deg angle of attack. The other method investigated consisted in replacing the original cowl by a flatter cowl that also provided internal contraction. Both the visor and the internal-contraction cowl reduced the cowl pressure drag 64 percent or more. The visor had little effect on inlet performance at the design Mach number except to reduce the stability range slightly. At off-design, the visor caused an increase in critical pressure recovery.
NASA Technical Reports Server (NTRS)
Bencze, D. P.
1976-01-01
Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The model was mounted on a six component force balance, and the left hand wing was pressure instrumented. Each of the two right hand nacelles was mounted on a six component force balance housed in the thickness of the nacelle, while each of the left hand nacelles was pressure instrumented. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass flow ratio. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components.
NASA Technical Reports Server (NTRS)
Bohon, Herman L.; Miserentino, Robert
1970-01-01
Deployment characteristics and steady-state performance data were obtained over the Mach number range from 2.2 to 4.4 and at angles of attack from 0 degrees to l0 degrees. All attached inflatable decelerator (AID) models deployed successfully and exhibited flutter-free performance after deployment. Shock loads commonly associated with inflation of parachutes during deployment were not experienced. Force and moment data and ram-air pressure data were obtained throughout the Mach number range and at angles of attack from 0 degrees to l0 degrees. The high drag coefficient of 1.14 was in good agreement with the value predicted by the theory used in the design and indicated other AID shapes may be designed on a rational basis with a high degree of confidence.
NASA Astrophysics Data System (ADS)
Dimmock, A. P.; Balikhin, M. A.; Krasnoselskikh, V. V.; Walker, S. N.; Bale, S. D.; Hobara, Y.
2012-02-01
The cross-shock electrostatic potential at the front of collision-less shocks plays a key role in the distribution of energy at the shock front. Multipoint measurements such as those provided by the Cluster II mission provide an ideal framework for the study of the cross-shock potential because of their ability to distinguish between temporal and spacial variations at the shock front. We present a statistical study of the cross-shock potential calculated for around 50 crossings of the terrestrial bow shock. The statistical dependency of the normalized (with resect to upstream ion kinetic energy) cross-shock potential (ΦK) on the upstream Alfvén Mach number is in good agreement with analytical results that predict decrease of Φk with increasing Mach number.
NASA Technical Reports Server (NTRS)
Carson, G. T., Jr.; Lee, E. E., Jr.
1981-01-01
Quantitative pressure and force data for five axisymmetric boattail nozzle configurations were examined. These configurations simulate the variable-geometry feature of a single nozzle design operating over a range of engine operating conditions. Five nozzles were tested in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.60 to 1.30. The experimental data were also compared with theoretical predictions.
NASA Technical Reports Server (NTRS)
Johns, A. L.; Jones, M. L.
1974-01-01
An 8 by 6 foot supersonic wind tunnel was used to obtain the static pressure distribution on a plate in the region of a flange placed normal to the airstream. Tests were conducted on both a flat plate surface and a corrugated surface using flange heights ranging from 10 to 125 percent of the boundary layer height. Data were obtained at a zero degree angle-of-attack and at Mach numbers from 0.60 to 1.97.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1970-01-01
A 40-foot-nominal-diameter (12.2-meter) modified ringsail parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. The 41-pound (18.6-kg) test parachute system was deployed from a 239.5-pound (108.6-kg) instrumented payload by means of a deployment mortar when the payload was at an altitude of 171,400 feet (52.3 km), a Mach number of 2.95, and a free-stream dynamic pressure of 9.2 lb/sq ft (440 N/m(exp 2)). The parachute deployed properly, suspension line stretch occurring 0.54 second after mortar firing with a resulting snatch-force loading of 932 pounds (4146 newtons). The maximum loading due to parachute opening was 5162 pounds (22 962 newtons) at 1.29 seconds after mortar firing. The first near full inflation of the canopy at 1.25 seconds after mortar firing was followed immediately by a partial collapse and subsequent oscillations of frontal area until the system had decelerated to a Mach number of about 1.5. The parachute then attained a shape that provided full drag area. During the supersonic part of the test, the average axial-force coefficient varied from a minimum of about 0.24 at a Mach number of 2.7 to a maximum of 0.54 at a Mach number of 1.1. During descent under subsonic conditions, the average effective drag coefficient was 0.62 and parachute-payload oscillation angles averaged about &loo with excursions to +/-20 degrees. The recovered parachute was found to have slight damage in the vent area caused by the attached deployment bag and mortar lid.
Exploratory investigation at Mach numbers from 0.40 to 0.95 of the effects of jets blown over a wing
NASA Technical Reports Server (NTRS)
Putnam, L. E.
1973-01-01
An exploratory investigation has been made at Mach numbers from 0.40 to 0.95 to determine the effects on lift, drag, and pitching moment of blowing a jet exhaust over the upper surface of a 50 deg swept leading-edge wing. Also investigated were the effects of varying the longitudinal and vertical location of the nozzle exit on the induced effects of jet blowing.
NASA Technical Reports Server (NTRS)
Decker, J. P.; Jacobs, P. F.
1978-01-01
Tests on a 0.015 scale model of a supersonic transport were conducted at Mach numbers from 0.60 to 1.20. Tests of the complete model with three wing planforms, two different leading-edge radii, and various combinations of component parts, including both leading- and trailing-edge flaps, were made over an angle-of-attack range from about -6 deg to 13 deg and at sideslip angles of 0 deg and 2 deg.
NASA Technical Reports Server (NTRS)
Cruz, Christopher I.; Ware, George M.
1995-01-01
Wind tunnel tests were made with a scale model of the HL-20 in the Langley Unitary Plan Wind Tunnel. Pitch control was investigated by deflecting the elevon surfaces on the outboard fins and body flaps on the fuselage. Yaw control tests were made with the all movable center fin deflected 5 deg. Almost full negative body flap deflection (-30 deg) was required to trim the HL-20 (moment reference center at 0.54-percent body length from nose) to positive values of life in the Mach number range from 1.6 to 2.5. Elevons were twice as effective as body flaps as a longitudinal trim device. The elevons were effective as a roll control, but because of tip-fin dihedral angle, produced about as much adverse yawing moment as rolling moment. The body flaps were less effective in producing rolling moment, but produced little adverse yawing moment. The yaw effectiveness of the all movable center fin was essentially constant over the angle-of-attack range at each Mach number. The value of yawing moment, however, was small. Center-fin deflection produced almost no rolling moments. The model was directionally unstable over most of the Mach number range with tip-fin dihedral angles less than the baseline value of 50 deg.
NASA Technical Reports Server (NTRS)
Maiden, D. L.
1976-01-01
A wind tunnel investigation has been conducted to determine the aeropropulsion performance (thrust minus drag) of an isolated, two-dimensional wedge nozzle with a simulated variable-wedge mechanism and a fixed cowl. The investigation was conducted statically and at Mach numbers from 0.60 to 1.20 in the Langley 16-foot transonic tunnel and at a Mach number of 2.01 in the Langley 4-foot supersonic pressure tunnel. The ratio of exhaust jet total pressure to free-stream static pressure was varied up to 27 depending on free-stream Mach number. The results indicate that the aeropropulsion performance of the two-dimensional fixed-cowl variable-wedge nozzle is slightly lower (0.7 to 1.4 percent of ideal thrust) than that achieved for a two-dimensional wedge nozzle with a translating shroud, although part of the difference in performance is attributed to internal-performance differences. The effects of cowl boattail angle, internal expansion area ratio, and wedge half-angle on the performance of the two-dimensional wedge nozzle are discussed.
NASA Technical Reports Server (NTRS)
Keenan, James A.; Kuhlman, John M.
1991-01-01
A computational study was conducted on two wings, of aspect ratios 1.244 and 1.865, each having 65 degree leading edge sweep angles, to determine the effects of nonplanar winglets at supersonic Mach numbers. A Mach number of 1.62 was selected as the design value. The winglets studied were parametrically varied in alignment, length, sweep, camber, thickness, and dihedral angle to determine which geometry had the best predicted performance. For the computational analysis, an available Euler marching technique was used. The results indicated that the possibility existed for wing-winglet geometries to equal the performance of wing-alone bodies in supersonic flows with both bodies having the same semispan. The first wing with winglet used NACA 1402 airfoils for the base wing and was shown to have lift-to-pressure drag ratios within 0.136 percent to 0.360 percent of the NACA 1402 wing-alone. The other base wing was a natural flow wing which was previously designed specifically for a Mach number of 1.62. The results obtained showed that the natural wing-alone had a slightly higher lift-to-pressure drag than the natural wing with winglets.
NASA Technical Reports Server (NTRS)
Buglia, James J.
1961-01-01
A highly polished hemisphere-cone having a ratio of nose radius to base radius of 0.74 and a half-angle of 14.5 was flight tested at Mach numbers up to 4.70. Temperature and pressure data were obtained at Mach numbers up to 3.14 and a free-stream Reynolds number of 24 x 10(exp 6) based on body diameter. The nose of the model had a surface roughness of 2 to 5 microinches as measured with an interferometer. The measured Stanton numbers were in good agreement with theory. Transition Reynolds numbers based on the laminar boundary-layer momentum thickness at transition ranged from 2,190 to 794. Comparison with results from previous tests of blunt shapes having a surface roughness of 20 to 40 microinches showed that the high degree of polish was instrumental in delaying the transition from laminar to turbulent flow.
NASA Technical Reports Server (NTRS)
Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.
2005-01-01
A wind tunnel test was conducted on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at mass flow coefficients (C(sub mu)) from 0.0 to 0.12. The test data was acquired in the NASA Langley Transonic Dynamics Tunnel at Mach numbers of 0.8 and 0.3 at Reynolds numbers per foot of 1.05 x 10(exp 6) and 2.43 x 10(exp 5) respectively. For the transonic condition, (Mach = 0.8 at alpha = +3 deg), it was generally found that the smaller slot and larger Coanda surface were more effective overall than other slot/Coanda surface combinations. Generally it was found at Mach = 0.3 at alpha = 6 deg that the smaller slot and smaller Coanda surface were more effective overall than other slot/Coanda surface combinations.
NASA Technical Reports Server (NTRS)
Blanchard, Willard S.
1953-01-01
Drag and longitudinal trim at low lift of the North American YF-100A airplane at Mach numbers from 0.76 to 1.77 as determined from the flight test of a 0.11-scale rocket model are presented herein. Also included are some longitudinal stability and some qualitative pitch-damping data. The subsonic external-drag-coefficient level was about 0.012, and the supersonic level was about 0.043. The drag rise occurred at a Mach number of 0.95. The longitudinal trim change at low lift consisted basically of a mild nose-up tendency at a Mach number of 0.90. An indication of wing flutter was present at Mach numbers from 0.95 to 1.11. However, the full-scale airplane wing has approximately twice the scaled first-bending frequency as the model tested and, hence, will probably be free of this type of flutter. The aerodynamic-center location was 71 percent behind the leading edge of the mean aerodynamic chord at a Mach number of 1.03 and 62 percent at a Mach number of 1.74. Qualitative measurement of damping in pitch indicates that at low lift coefficients damping will be low at a Mach number of 1.03.
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1992-01-01
Reynolds number and cowl position effects on the internal shock structure and the resulting performance of a generic three-dimensional sidewall compression scramjet inlet with a leading edge sweep of 45 degrees at Mach 10 have been examined both computationally and experimentally. Prior to the experiment, a three-dimensional Navier-Stokes code was adapted to perform preliminary parametric studies leading to the design of the present configuration. Following this design phase, the code was then utilized as an analysis tool to provide a better understanding of the flow field and the experimental static pressure data for the final experimental configuration. The wind tunnel model possessed 240 static pressure orifices distributed on the forebody plane, sidewalls, and cowl and was tested in the NASA Langley 31 Inch Mach 10 Tunnel.
NASA Technical Reports Server (NTRS)
Biermann, A.E.; Braithwaite, Willis M.
1955-01-01
An investigation of the endurance characteristics, at high Mach number, of the J65-W-7 engine was made in an altitude chamber at the Lewis laboratory. The investigation was made to determine whether this engine can be operated at flight conditions of Mach 2 at 35,000-feet altitude (inlet temperature, 250 F) as a limited-service-life engine Failure of the seventh-stage aluminum compressor blades occurred in both engines tested and was attributed to insufficient strength of the blade fastenings at the elevated temperatures. For the conditions of these tests, the results showed that it is reasonable to expect 10 to 15 minutes of satisfactory engine operation before failure. The high temperatures and pressures imposed upon the compressor housing caused no permanent deformation. In general, the performance of the engines tested was only slightly affected by the high ram conditions of this investigation. There was no discernible depreciation of performance with time prior to failure.
NASA Technical Reports Server (NTRS)
Hastings, Earl C.; Mitcham, Grady L.
1954-01-01
A flight test has been conducted to determine the longitudinal stability and control characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane with windmilling propellers for the Mach number range between 0.70 and 1.13. The variation of lift-curve slope C(sub L(sub alpha) with Mach number was gradual with a maximum value of 0.074 occurring at a Mach number of 0.97. Propellers had little effect upon the values of lift-curve slope or the linearity of lift coefficient with angle of attack. At lift coefficients between approximately 0.25 and 0.45 with an elevon angle of approximately -l0 deg, there was a region of neutral longitudinal stability at Mach numbers below 0.93 introduced by the addition of windmilling propellers. Below a lift coefficient of 0.10 and above a lift coefficient of 0.45, the model was longitudinally stable throughout the Mach number range of the test. There was a forward shift in the aerodynamic center of about 3-percent mean aerodynamic chord introduced by the addition of propellers. The aerodynamic center as determined at low lift moved gradually from a value of 28.5-percent mean aerodynamic chord at a Mach number of 0.75 to a value of 47-percent mean aerodynamic chord at a Mach number of 1.10. There was an abrupt decrease in pitch damping between Mach numbers of 0.88 and 0.99 followed by a rapid increase in damping to a Mach number of 1.06. The propellers had little effect upon the pitch damping characteristics . The transonic trim change was a large pitching-down tendency with and without windmilling propellers. The elevons were effective pitch controls throughout the speed range; however, their effectiveness was reduced about 50 percent at supersonic speeds. The propellers had no appreciable effect upon the control effectiveness.
NASA Technical Reports Server (NTRS)
Noonan, K. W.; Bingham, G. J.
1980-01-01
An investigation was conducted in the Langely 6 by 28 inch transonic tunnel to determine the two dimensional aerodynamic characteristics of three helicopter rotor airfoils at Reynolds numbers from typical model scale to full scale at Mach numbers from about 0.35 to 0.90. The model scale Reynolds numbers ranged from about 700,00 to 1,500,000 and the full scale Reynolds numbers ranged from about 3,000,000 to 6,600,000. The airfoils tested were the NACA 0012 (0 deg Tab), the SC 1095 R8, and the SC 1095. Both the SC 1095 and the SC 1095 R8 airfoils had trailing edge tabs. The results of this investigation indicate that Reynolds number effects can be significant on the maximum normal force coefficient and all drag related parameters; namely, drag at zero normal force, maximum normal force drag ratio, and drag divergence Mach number. The increments in these parameters at a given Mach number owing to the model scale to full scale Reynolds number change are different for each of the airfoils.
PULSED ALFVEN WAVES IN THE SOLAR WIND
Gosling, J. T.; Tian, H.; Phan, T. D.
2011-08-20
Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.
NASA Technical Reports Server (NTRS)
Eaves, R. H.; Buchanan, T. D.
1972-01-01
Heat transfer tests for the delta wing orbiter were conducted in a hypervelocity wind tunnel. A 1.1 percent scale model was tested at a Mach number of approximately 10.5 over an angle of attack range from 10 to 60 degrees over a length Reynolds number range from 5 times 10 to the 6th power to 24 times 10 to the 6th power. Heat transfer results were obtained from model surface heat gage measurements and thermographic phosphor paint. Limited pressure measurements were obtained.
NASA Technical Reports Server (NTRS)
Brewer, E. B.; Haberman, D. R.
1974-01-01
Heat transfer rates and pressures were measured on a 0.0175-scale model of the space shuttle external tank (ET), model MCR0200. Tests were conducted with the ET model separately and while mated with a 0.0175-scale model of the orbiter, model 21-OT (Grumman). The tests were conducted in the AEDC-VKF Hypervelocity Wind Tunnel (F) at Mach numbers 16 and 19. The primary data consisted of the interaction heating rates experienced by the ET while mated with the orbiter in the flight configuration. Data were taken for a range of Reynolds numbers from 50,000 to 65,000 under laminar flow conditions.
NASA Technical Reports Server (NTRS)
Perkins, Edward W; Jorgensen, Leland H; Sommer, Simon C
1958-01-01
Experimental drag measurements at zero angle of attack for various theoretical minimum drag nose shapes, hemispherically blunted cones, and other more common profiles of fineness ratios of about 3 are compared with theoretical results for a Mach number and Reynolds number range of 1.24 to 7.4 and 1.0 x 10 to the 6th power to 7.5 x 10 to the 6th power (based on body length), respectively. The results of experimental pressure-distribution measurements are used for the development of an empirical expression for predicting the pressure drag of hemispherically blunted cones.
NASA Technical Reports Server (NTRS)
Katzen, Elliott D; Kaattari, George E
1956-01-01
The drag of a body alone, six triangular wings of various aspect ratios, and the combinations were measured at Mach numbers of 1.50 and 2.02 at a Reynolds number of 5.5 million (based on the body length). The experimental drag-interference results were in accordance with calculations based on NACA RM A9E19, 1949, with skin-friction effects taken into account, the interference effect being principally the result of fixing transition on the body by adding a wing.
NASA Technical Reports Server (NTRS)
Ferri, Antonio
1945-01-01
Two-dimensional data were obtained in Mach range of from 0.40 to 0.94 and Reynolds Number range of (3.4 - 4.2) X 10 Degrees. Results indicate that thickness ratio is dominating shape parameter at high Mach numbers and that aerodynamic advantages are attainable by using thinnest possible sections. Effects of jet boundaries, Reynolds Number, and Data presented are free from jet-boundary and humidity effects.
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Murphy, Kelly J.
1993-01-01
Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Murphy, Kelly J.
1993-01-01
The effects of the decrease in the ratio of specific heats have been investigated in generic 3D sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air. In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo
2014-12-10
Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.
Effect of Tail Surfaces on the Base Drag of a Body of Revolution at Mach Numbers of 1.5 and 2.0
NASA Technical Reports Server (NTRS)
Spahr, J Richard; Dickey, Robert R
1951-01-01
Wind-tunnel tests were performed at Mach numbers of 1.5 and 2.0 to investigate the influence of tail surfaces on the base drag of a body of revolution without boattailing and having a turbulent boundary layer. The tail surfaces were of rectangular plan form of aspect ratio 2.33 and has symmetrical, circular-arc airfoil section. The results of the investigation showed that the addition of these tail surfaces with the trailing edges at or near the body base incurred a large increase in the base-drag coefficient. For a cruciform tail having a 10-percent-thick airfoil section, this increase was about 70 percent at a Mach number of 1.5 and 35 percent at a Mach number of 2.0. As the trailing edge of the tail was moved forward or rearward of the base by about one tail-chord length, the base-drag increment was reduced to nearly zero. The increments in base-drag coefficient due to the presence of 10-percent-thick tail surfaces were generally twice those for 5-percent-thick surfaces. The base-drag increments due to the presence of a cruciform tail were less than twice those for a plane tail. An estimate of the change in base pressure due to the tail surfaces was made, based on a simple superposition of the airfoil-pressure field onto the base-pressure field behind the body. A comparison of the results with the experimental values indicated that in most cases the trend in the variation of the base-drag increment with changes in tail position could be predicted by this approximate method but that the quantitative agreement at most tail locations was poor.
NASA Technical Reports Server (NTRS)
Langhans, R. A.; Flechner, S. G.
1972-01-01
The results of the investigation showed that the configuration exhibits a sufficiently high drag divergence Mach number to cruise at near sonic speeds. The configuration is longitudinally stable through the cruise Mach number and lift coefficient range, but at higher lift coefficients displays pitchup and becomes unstable. The configuration was directionally stable at all test conditions and laterally stable in the angle of attack range required for cruise.
NASA Technical Reports Server (NTRS)
Tyson, R. W.; Muraca, R. J.
1975-01-01
The local linearization method for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure distribution on slender bodies at free-stream Mach numbers from .8 to 1.2. This is an approximate solution to the transonic flow problem which yields results applicable during the preliminary design stages of a configuration development. The method can be used to determine the aerodynamic loads on parabolic arc bodies having either circular or elliptical cross sections. It is particularly useful in predicting pressure distributions and normal force distributions along the body at small angles of attack. The equations discussed may be extended to include wing-body combinations.
Development of flow distortions in a full-scale nacelle inlet at Mach numbers 0.63 and 1.6 to 2.0
NASA Technical Reports Server (NTRS)
Piercy, Thomas G; Chiccine, Bruce G
1956-01-01
The nature of flow-distortion development in the subsonic diffuser was determined for a typical full-scale axisymmetric nose inlet at Mach numbers to 2.0 and angles of attack to -8 degrees. Inlet design variables studied included 14 degrees and 17 degrees internalcowl lip angles conical compression surfaces with and without boundary-layer removal slots, and cone tip translation. Data presented include the inlet overall pressure recovery, mass flow, and distortion at the diffuser exit. Primary emphasis in the data, however, is placed on critical inlet operation, for which the flow distortion is traced from the inlet throat to the diffuser exit.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.
1989-01-01
Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.
NASA Technical Reports Server (NTRS)
Calleja, John; Tamagno, Jose
1993-01-01
A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Klein, R I; Li, P S; McKee, C F; Fisher, R
2008-04-10
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.
NASA Technical Reports Server (NTRS)
Bencze, D. P.
1977-01-01
Detailed interference force-and-pressure data were obtained on a representative supersonic transport wing-body-nacelle combination at Mach numbers of 0.9 to 1.4. The basic model consisted of a delta wing-body aerodynamic model with a length of 158.0 cm (62.2 in.) and a wingspan of 103.6 cm (40.8 in.) and four independently supported nacelles positioned beneath the model. The experimental program was conducted in the Ames 11- by 11-Foot Wind Tunnel at a constant unit Reynolds number. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass-flow ratio. Under the most favorable conditions, the net interference drag was equal to 50 percent the drag of four isolated nacelles at M = 1.4, 75 percent at M = 1.15, and 144 percent at M = 0.90. The overall interference effects were found to be rather constant over the operating angle-of-attack range of the configuration. The effects of mass-flow ratio on the interference pressure distributions were limited to the lip region of the nacelle and the local wing surface in the immediate vicinity of the nacelle lip. The net change in the measured interference forces resulting from variations in the nacelle mass-flow ratio were found to be quite small.
NASA Technical Reports Server (NTRS)
Stivers, Louis S., Jr.; Levy, Kionel L., Jr.
1961-01-01
An investigation has been made to determine the aerodynamic characteristics of four elliptic cones having plan-form semiapex angles ranging from about 9 to 31 deg., and also for one of these cones modified on the upper surface to reduce the base area by about one half. The tests were made for angles of attack from about -2 to +21 deg., at Mach numbers from 0.60 to 1.40, and for a constant Reynolds number of 1.4 million, based on the length of the models. For each model, lift, pitching-moment, and drag coefficients, and lift-drag ratios are presented for the forebody, and axial-force coefficients are presented for the base. Calculated lift and pitching- moment curves for the elliptic cones, and lift-curve slopes for each model at supersonic Mach numbers are shown for comparison with the corresponding experimental values. Lift-drag ratios are also given for the forebody and base combined. These data are presented without discussion.
NASA Astrophysics Data System (ADS)
Devade, Kiran D.; Pise, Ashok T.
2016-04-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
Gas-jet and tangent-slot film cooling tests of a 12.5 deg cone at Mach number of 6.7
NASA Technical Reports Server (NTRS)
Nowak, Robert J.
1988-01-01
Tests were conducted in the Langley 8-Foot High Temperature Tunnel to determine the aerothermal effects of gaseous nitrogen-coolant ejection on a 3-ft base-diameter, 12.5 degree half-angle cone. Free-stream Mach number, total temperature, and unit Reynolds number per foot were 6.7, 3300 deg R, and 1.4 million, respectively. Two coolant ejection noses were tested, an ogive frustum with a forward-facing 0.8-in radius gas-jet tip, and a 3-in radius hemisphere with a 0.243-in high rearward-facing tangent slot. Data include surface pressures and heating rates, shock shapes, and shock-layer profiles; results are compared with no-cooling data obtained with 1-in and 3-in radius solid noses. Surface pressures were reduced with gas-jet ejection but were affected little by tangent-slot ejection. For both gas-jet and tangent-slot ejection, high coolant flow rates reduced heating even far downstream from the region of ejection; however, low coolant rates caused transition to turbulence and increased heating. Shock-layer profiles of pitot pressure, Mach number, and total temperature were reduced for both gas-jet and tangent-slot ejection. Insight into the gas-jet heat-flux mechanisms was obtained by using shock-layer rake data and established, no-cooling, heat-transfer equations.
NASA Technical Reports Server (NTRS)
Anderson, Bianca Trujillo; Meyer, Robert R., Jr.
1990-01-01
The results are discussed of the variable sweep transition flight experiment (VSTFE). The VSTFE was a natural laminar flow experiment flown on the swing wing F-14A aircraft. The main objective of the VSTFE was to determine the effects of wing sweep on boundary layer transition at conditions representative of transport aircraft. The experiment included the flight testing of two laminar flow wing gloves. Glove 1 was a cleanup of the existing F-14A wing. Glove 2, not discussed herein, was designed to provide favorable pressure distributions for natural laminar flow at Mach number (M) 0.700. The transition locations presented for glove 1 were determined primarily by using hot film sensors. Boundary layer rake data was provided as a supplement. Transition data were obtained for leading edge wing sweeps of 15, 20, 25, 30, and 35 degs, with Mach numbers ranging from 0.700 to 0.825, and altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number of 13.7 x 10(exp 6) was obtained for the condition of 15 deg of sweep, M = 0.800, and an altitude of 20,000 ft.
NASA Technical Reports Server (NTRS)
Jones, Jim J.
1959-01-01
The heat-transfer rates were measured on a series of cones of various surface finishes at a Mach number of 4.95 and Reynolds numbers per foot varying from 20 x 10(exp 6) to 100 x 10(exp 6). The range of surface finish was from a very smooth polish to smooth machining with no polish (65 micro inches rms). Some laminar boundary-layer data were obtained, since transition was not artificially tripped. Emphasis, however, is centered on the turbulent boundary layer. The results indicated that the turbulent heat-transfer rate for the highest roughness tested was only slightly greater than that for the smoothest surface. The laminar-sublayer thickness was calculated to be about half the roughness height for the roughest model at the highest value of unit Reynolds number tested.
NASA Technical Reports Server (NTRS)
Disher, John H; Rabinowitz, Leonard
1950-01-01
Performance of four 16-inch-diameter ram-jet units was determined at free-stream Mach numbers of 0.49 to 1.78 over range of gas total-temperature ratios of 1.0 to 6.1. Time histories of each flight and data on thrust, drag, diffuser efficiency, and combustion are presented. A maximum thrust coefficient of 0.88 and a maximum net acceleration of 5.13 g's were observed for the four units.
NASA Technical Reports Server (NTRS)
Anderson, Bianca Trujillo; Meyer, Robert R., Jr.
1990-01-01
The variable sweep transition flight experiment (VSTFE) was conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude of 10,000 ft.
NASA Technical Reports Server (NTRS)
Pittman, J. L.
1979-01-01
Aerodynamic predictions from supersonic linear theory and hypersonic impact theory were compared with experimental data for three hypersonic research airplane concepts over a Mach number range from 1.10 to 2.86. The linear theory gave good lift prediction and fair to good pitching-moment prediction over the Mach number (M) range. The tangent-cone theory predictions were good for lift and fair to good for pitching moment for M more than or equal to 2.0. The combined tangent-cone theory predictions were good for lift and fair to good for pitching moment for M more than or equal to 2.0. The combined tangent-cone/tangent-wedge method gave the least accurate prediction of lift and pitching moment. The zero-lift drag was overestimated, especially for M less than 2.0. The linear theory drag prediction was generally poor, with areas of good agreement only for M less than or equal to 1.2. For M more than or equal to 2.), the tangent-cone method predicted the zero-lift drag most accurately.
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1988-01-01
A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.
NASA Technical Reports Server (NTRS)
Musial, Norman T.; Ward, James J.
1961-01-01
A generalized study of base flow phenomena has been conducted with four 500-pound-thrust JP-4 fuel-liquid-oxygen rocket motors installed in the base of a 12-inch-diameter cylindrical model. Data were obtained over a Mach number and nozzle pressure ratio range of 2.0 to 3.5 and 340 to 600, respectively. Base heat flux, gas temperature, and pressure were highest in the center of the cluster core and decreased in a radial direction. Although a maximum heat flux of 93 Btu per square foot per second was measured within the cluster core, peripheral heat fluxes were low, averaging about 5 Btu per square foot per second for all configurations. Generally base heat flux was found to be independent of Mach number over the range investigated. Base heat flux within the cluster core was decreased by increasing motor spacing, motor extension, a combination of increasing nozzle area ratio and decreasing exit angle and gimbaling the two side engines. Small amounts of nitrogen injected within the cluster core sharply reduced core heat flux.
Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-force data
NASA Technical Reports Server (NTRS)
Bencze, D. P.
1976-01-01
Detailed interference force and pressure data were obtained on a representative wing-body-nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The model was mounted on a six-component force balance, and the left-hand wing was pressure-instrumented. Each of the two right-hand nacelles was mounted on a six-component force balance housed in the thickness of the nacelle, while each of the left-hand nacelles was pressure-instrumented. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass-flow ratio. Four different configurations were tested to identify various interference forces and pressures on each component; these included tests of the isolated nacelle, the isolated wing-body combination, the four nacelles as a unit, and the total wing-body-nacelle combination. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.; Sutton, Kenneth (Technical Monitor)
2001-01-01
This report documents the results of a study conducted to compute the inviscid longitudinal aerodynamic characteristics of three aeroshell configurations of the proposed '07 Mars lander. This was done in support of the activity to design a smart lander for the proposed '07 Mars mission. In addition to the three configurations with tabs designated as the shelf, the canted, and the Ames, the baseline configuration (without tab) was also studied. The unstructured grid inviscid CFD software FELISA was used, and the longitudinal aerodynamic characteristics of the four configurations were computed for Mach number of 2.3, 2.7, 3.5, and 4.5, and for an angle of attack range of -4 to 20 degrees. Wind tunnel tests had been conducted on scale models of these four configurations in the Unitary Plan Wind Tunnel, NASA Langley Research Center. Present computational results are compared with the data from these tests. Some differences are noticed between the two results, particularly at the lower Mach numbers. These differences are attributed to the pressures acting on the aft body. Most of the present computations were done on the forebody only. Additional computations were done on the full body (forebody and afterbody) for the baseline and the Shelf configurations. Results of some computations done (to simulate flight conditions) with the Mars gas option and with an effective gamma are also included.
NASA Technical Reports Server (NTRS)
Bencze, D. P.
1976-01-01
Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass flow ratio. Four different configurations were tested to identify various interference forces and pressures on each component; these included tests of the isolated nacelle, the isolated wing-body combination, the four nacelles as a unit, and the total wing-body-nacelle combination. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components. The overall interference effects were found to be essentially constant over the operating angle-of-attack range of the configuration, and nearly independent of nacelle mass flow ratio.
NASA Technical Reports Server (NTRS)
Nason, Martin L.; Brown, Clarence A., Jr.; Rock, Rupert S.
1955-01-01
A linear stability analysis and flight-test investigation has been performed on a rolleron-type roll-rate stabilization system for a canard-type missile configuration through a Mach number range from 0.9 to 2.3. This type damper provides roll damping by the action of gyro-actuated uncoupled wing-tip ailerons. A dynamic roll instability predicted by the analysis was confirmed by flight testing and was subsequently eliminated by the introduction of control-surface damping about the rolleron hinge line. The control-surface damping was provided by an orifice-type damper contained within the control surface. Steady-state rolling velocities were at all times less than 1 radian per second between the Mach numbers of 0.9 to 2.3 on the configurations tested. No adverse longitudinal effects were experienced in flight because of the tendency of the free-floating rollerons to couple into the pitching motion at the low angles of attack and disturbance levels investigated herein after the introduction of control-surface damping.
Park, Jaehong; Ren Chuang; Workman, Jared C.; Blackman, Eric G.
2013-03-10
Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new two-dimensional particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime of E {approx}< 40 {approx} 100 keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler instabilities are identified using numerical solutions of the kinetic dispersion relations. We also show that the results from PIC simulations with reduced ion/electron mass ratio can be scaled to those with the realistic mass ratio.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.; Allen, J. M.; Hernandez, G.
1983-01-01
An experimental wind-tunnel investigation was conducted at Mach numbers from 1.60 to 3.50 to obtain the longitudinal and lateral-directional aerodynamic characteristics of a circular, cruciform, canard-controlled missile with variations in tail-fin span. In addition, comparisons were made with the experimental aerodynamic characteristics using three missile aeroprediction programs: MISSILE1, MISSILE2, and NSWCDM. The results of the investigation indicate that for the test Mach number range, canard roll control at low angles of attack is feasible on tail-fin configurations with tail-to-canard span ratios of less than or equal to 0.75. The conards are effective pitch and yaw control devices on each tail-fin span configuration tested. Programs MISSILE1 and MISSILE2 provide very good predictions of longitudinal aerodynamic characteristics and fair predictions of lateral-directional aerodynamic characteristics at low angles of attack, with MISSILE2 predictions generally in better agreement with test data. Program NSWCDM provides good longitudinal and lateral-directional aerodynamic predictions that improve with increases in tail-tin span.
NASA Technical Reports Server (NTRS)
Re, R. J.; Capone, F. J.
1978-01-01
A Au aircraft model with a close-coupled canard mounted above the wing chord plane was considered. Model angle of attack was varied from -4 deg to 15 deg; canard incidence was varied from -5 deg to 18 deg; and selected canard and wing flap deflections were investigated. By using the canard incidence for trim, maximum trimmed lift-drag ratios of about 8.8, 7.7, and 4.7 were obtained at free-stream Mach numbers of 0.40, 0.90, and 1.20, respectively. At a lift coefficient of 0.60, model trim angle of attack could be varied over an incremental range between 3.0 deg and 3.8 deg, depending on Mach number, by different combinations of control settings. At high lift coefficients, larger trimmed lift-drag ratios were obtained by using the deflection capability of the canard leading- and trailing-edge flaps before increasing canard incidence angle.
NASA Technical Reports Server (NTRS)
Mitcham, Grady L.; Stevens, Joseph E.; Crabill, Norman L.; Hinners, Arthur H., Jr.
1951-01-01
A flight investigation has been made to determine the external drag and pressure recovery of a 1/8.25 - scale flight model of the Consolidated Vultee XF-92 from Mach numbers 0.7 to 1.4 and Reynolds numbers from 8.5 x 10(exp 6) to 19.2 x 10(exp 6) at or near zero lift. Relative mass flow, average pressure recovery, total drag, internal drag, and external drag are presented as functions of Mach number. Between Mach numbers of 0.90 and 0.975, the external drag of the configuration (including base drag of the inner body and additive drag) was about equal to that of a similar model with a faired nose and no mass flow; however, at supersonic speeds the drag coefficient for the faired-nose model remained relatively constant whereas the drag coefficient for the ducted model continued to increase sharply. The internal drag coefficient of the duct was roughly constant at 0.013 up to a Mach number of 1.20; after which it decreased to 0.0075 at a Mach number of 1.4. The over-all pressure recovery of the inlet and duct varied from 94 percent at a Mach number of 0.7 to about 91 percent at a Mach number of 1.4 at a relative-mass-flow ratio of about 0.30. The losses in pressure recovery were believed to be caused by the possible occurrence of separation of flow from the inner body and by an aerodynamically unclean internal configuration which did not duplicate the form proposed for the original XF-92 airplane.
Wind-Tunnel Investigation of a Balloon as a Towed Decelerator at Mach Numbers from 1.47 to 2.50
NASA Technical Reports Server (NTRS)
McShera, John T.; Keyes, J. Wayne
1961-01-01
A wind-tunnel investigation has been conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 deg. Towed spherical balloons were found to be stable at supersonic speeds. The drag coefficient of the balloon is reduced by the presence of a tow cable and a further reduction occurs with the addition of a payload. The balloon inflation pressure required to maintain an almost spherical shape is about equal to the free-stream dynamic pressure. Measured pressure and temperature distribution around the balloon alone were in fair agreement with predicted values. There was a pronounced decrease in the pressure coefficients on the balloon when attached to a tow cable behind a payload.
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Collins, I. K.; Howell, D. T.; Hayes, C.
1979-01-01
Tabulated surface pressure data for a series of forebodies which have analytically defined cross sections and are based on a 20 degs half-angle cone are presented without analysis. Five of the cross sections were ellipses having axis ratios of 3/1, 2/1, 1/1, 1/2, and 1/3. The sixth cross section was defined by a curve having a single lobe. The data generally cover angles of attack from -5 degs to 20 degs at angles of sideslip from 0 degs to 5 degs for Mach numbers of 1.70, 2.50, 3.95, and 4.50 at a constant Reynolds number.
NASA Technical Reports Server (NTRS)
Robins, A. Warner; Harris, Roy V., Jr.; Jackson, Charlie M., Jr.
1960-01-01
A series of semispan wing models having various spanwise distributions of both thickness ratio and chord but having the same effective thickness ratio was tested in the Langley 4-by 4-foot supersonic pressure tunnel at Mach number 2.03 and Reynolds numbers from 1.9 x 10(exp 6) to 6.5 x 10(exp 6) complex wing forms with thickened roots, extended root chords, and higher volumes show appreciably lower zero-lift wave drag coefficients than the plain swept wings. A calculative technique for the determination of wave drag has been applied to one of the complex wings of the series and good agreement is shown with experimental results. The complex wing forms showed higher drags due to lift than the plain swept wings.
NASA Technical Reports Server (NTRS)
Lord, D. R.
1957-01-01
An investigation has been made at Mach numbers of 1.61 and 2.01 and Reynolds numbers of 1.7 x l0(exp 6) and 3.6 x l0(exp 6) to determine the pressure distributions over a swept wing with a series of 14 control configurations. The wing had 40 deg of sweep of the quarter-chord line, an aspect ratio of 3.1, and a taper ratio of 0.4. Measurements were made at angles of attack from 0 deg to +/- 15 deg for control deflections from -60 deg to 60 deg. This report contains tabulated pressure data for the complete range of test conditions.
NASA Technical Reports Server (NTRS)
Robins, A. W.; Lamb, M.; Miller, D. S.
1979-01-01
An exploratory, experimental, and theoretical investigation was made of a cambered, twisted, and blended wing-body concept with and without integral canard surfaces. Theoretical calculations of the static longitudinal and lateral aerodynamic characteristics of the wing-body configurations were compared with the characteristics obtained from tests of a model in the Langley Unitary Plan wind tunnel. Mach numbers of 1.5, 1.8, and 2.0 and a Reynolds number per meter of 6.56 million were used in the calculations and tests. Overall results suggest that planform selection is extremely important and that the supplemental application of new calculation techniques should provide a process for the design of supersonic wings in which spanwise distribution of upwash and leading-edge thrust might be rationally controlled and exploited.
NASA Technical Reports Server (NTRS)
Hedstrom, E.; Whitcomb, W. M.
1977-01-01
A 0.035-scale model fo a modified NKC-135 airplane was tested in 12-foot pressure wind tunnel to determine the effects on the static aerodynamic characteristics of modifications to the basic aircraft. Modifications investigated included: nose, lower fuselage, and upper fuselage radomes; wing pylons and pods; overwing probe; and air conditioning inlets. The investigation was performed at a Mach number of 0.28 over a Reynolds number range from 6.6 to 26.2 million per meter. Angles of attack and sideslip varied from -8 deg to 20 deg and from -18 deg to 8 deg, respectively, for various combinations of flap, aileron, and rudder deflections. A limited analysis of the test results indicates that the addition of the radomes reduces lateral-directional stability and control effectiveness of the basic aircraft.
NASA Technical Reports Server (NTRS)
Stone, D. R.; Spencer, B., Jr.
1974-01-01
The longitudinal and summary lateral-directional stability characteristics have been obtained for a variety of irregular planform wings applied to a conceptual space shuttle orbiter. Three basic wing planforms with leading-edge sweep angles of 53.2 deg, 46.8 deg, and 35 deg were studied in conjunction with a series of inboard planform fillets with sweep angles up to 78 deg. The spanwise intersection point of the fillets and the basic wings was held constant. The data were obtained in the Langley 22-inch helium tunnel at a Mach number of 20.3 and a Reynolds number of 2.10 million based on model length. Model angle-of-attack range was from 0 deg to 54 deg at sideslip angles of 0 deg and minus 3.8 deg. Also included are results of a flow-visualization study consisting of electron-beam-illuminated flow and surface oil-flow patterns.
NASA Technical Reports Server (NTRS)
Capone, F. J.
1976-01-01
An investigation was conducted in the Langley 16-foot transonic tunnel to determine the induced lift characteristics of a vectored-thrust concept in which jet-exhaust nozzles were located in the fuselage at or near the wing trailing edge. The effects of moving twin rectangular nozzles rearward from the wing trailing edge and of round nozzles at the trailing edge only were studied at Mach numbers from 0.4 to 1.2, angles of attack up to 14 deg, and thrust coefficients up to 0.35. Nozzle deflection angle varied from 0 deg to 45 deg. Separate force balances were used to determine both total aerodynamic and thrust forces and thrust forces alone which allowed for a direct measurement of jet turning angle at forward speeds. The Reynolds number per meter varied from 8.20 x 1 million to 13.12 x 1 million.
NASA Technical Reports Server (NTRS)
Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.
2014-01-01
This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
NASA Technical Reports Server (NTRS)
Arbic, Richard G.; Gillespie, Warren, Jr.
1953-01-01
Flight tests were conducted between Mach numbers of 0.9 and 1.8 over a Reynolds number range of 9(exp 6) to 30(exp 6) to determine the zero-lift drag and some rolling-effectiveness characteristics of the Northrop MX -775B missile with small and large body. The MX-775B is a proposed long range, supersonic, ground-to-ground missile having an arrow wing with 67.5 degree leading-edge sweep, 15 deg trailing-edge sweep, and a modified NACA 0004 airfoil section. The configuration has no horizontal tail but has wing trailing-edge elevons which serve a dual purpose as elevators and ailerons. The ratio of body frontal area to wing plan-form area is 0.0127 for the small-body configuration and 0.0330 for the large-body configuration. Five 1/4-scale models were flown permitting determination of the drag coefficient for the basic small-body configuration, the incremental drag due to the large body, the incremental drag resulting from a blunt wing trailing edge, the wing-plus-interference drag, and some rolling-effectiveness data. Results indicated that the MX-775B has low supersonic zero-lift drag, the maximum zero-lift drag coefficients being respectively 0.0125 and 0.0155 at a Mach number of M = 1803 for the small- and large-body configurations. The effect of a blunt wing trailing edge, obtained by cutting off 10 percent of the wing chord, was to increase the zero-lift drag by 13 to 21 percent. Wing-plus-interference drag accounted for 78 percent of the total drag at M = 0.9 and 70 percent at M = 195 for the small-body configuration. The ailerons produced positive rolling effectiveness for the wing stiffness of the test models and the dynamic pressures of the test.
NASA Technical Reports Server (NTRS)
Petersen, R. B.
1957-01-01
Comparisons are made of experimental and theoretical zero-lift wave drag for several nose shapes, wing-body combinations, and models of current airplanes at Mach numbers up to 1.0. The experimental data were obtained from tests in the Ames 6- by6-foot supersonic wind tunnel and at the NACA Wallops Island facility. The theoretical drag was found by use of linear theory utilizing model area distributions. The agreement between theoretical and experimental zero-lift wave-drag coefficients was generally very good, especially for a fuselage or for fuselage-wing combinations that were vertically symmetrical. For other models that had rapid changes in body shape and/or were not vertically symmetrical, the agreement of theory with experiment ranged from fair to poor, depending on the severity of the change in shape.
Experimental Investigation of a Two-dimensional Split-wing Ram-jet Inlet at Mach Number of 3.85
NASA Technical Reports Server (NTRS)
Connors, James F; Woollett, Richard R
1952-01-01
Performance characteristics of a two-dimensional isentropic diffuser have been experimentally determined at a Mach number of 3.85. At zero angle of attack, a maximum total-pressure recovery of 0.41 was obtained with a supercritical mass-flow ratio of 0.95. As a consequence of the twin-duct arrangement of the diffuser, a large discontinuity in pressure recovery and mass flow with a characteristic hysteresis was encountered between critical and subcritical operation. An asymmetric shock pattern with large-scale separation and flow reversal in one of the passages occurred at reduced mass flows. Pressure and force data presented for an angle-of-attack range from zero to 4 degrees.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Dryer, M.; Hearth, D. P.
1957-01-01
The performance of a full-scale translating-spike inlet was obtained at Mach numbers of 1.8 and 2.0 and at angles of attach from 0 deg to 6 deg. Comparisons were made between the full-scale production inlet configuration and a geometrically similar quarter-scale model. The inlet pressure-recovery, cowl pressure-distribution, and compressor-face distortion characteristics of the full-scale inlet agreed fairly well with the quarter-scale results. In addition, the results indicated that bleeding around the periphery ahead of the compressor-face station improved pressure recovery and compressor-face distortion, especially at angle of attack.
NASA Technical Reports Server (NTRS)
Lanfranco, M. J.; Sparks, V. W.; Kavanaugh, A. T.
1973-01-01
An experimental investigation was conducted in a 9- by 7-foot supersonic wind tunnel to determine the effect of plume-induced flow separation and aspiration effects due to operation of both the orbiter and the solid rocket motors on a 0.019-scale model of the launch configuration of the space shuttle vehicle. Longitudinal and lateral-directional stability data were obtained at Mach numbers of 1.6, 2.0, and 2.2 with and without the engines operating. The plumes exiting from the engines were simulated by a cold gas jet supplied by an auxiliary 200 atmosphere air supply system, and by solid body plume simulators. Comparisons of the aerodynamic effects produced by these two simulation procedures are presented. The data indicate that the parameters most significantly affected by the jet plumes are the pitching moment, the elevon control effectiveness, the axial force, and the orbiter wing loads.
NASA Technical Reports Server (NTRS)
Maglieri, D. J.; Huckel, V.; Henderson, H. R.
1972-01-01
Sonic-boom pressure signatures produced by the SR-71 aircraft at altitudes from 10,668 to 24,384 meters and Mach numbers 1.35 to 3.0 were obtained as an adjunct to the sonic boom evaluation program relating to structural and subjective response which was conducted in 1966-1967 time period. Approximately 2000 sonic-boom signatures from 33 flights of the SR-71 vehicle and two flights of the F-12 vehicle were recorded. Measured ground-pressure signatures for both on-track and lateral measuring station locations are presented and the statistical variations of the overpressure, positive impulse, wave duration, and shock-wave rise time are illustrated.
NASA Technical Reports Server (NTRS)
Reubush, D. E.; Mercer, C. E.
1974-01-01
A wind-tunnel investigation has been conducted to determine the exhaust-nozzle aerodynamic and propulsive characteristics for a twin-jet variable-wing-sweep fighter airplane model. The powered model was tested in the Langley 16-foot transonic tunnel and in the Langley 4-foot supersonic pressure tunnel at Mach numbers to 2.2 and at angles of attack from about minus 2 to 6 deg. Compressed air was used to simulate the nozzle exhaust flow at values of jet total-pressure ratio from approximately 1 (jet off) to about 21. Effects of configuration variables such as speed-brake deflection, store installation, and boundary-layer thickness on the the nozzle characteristics were also investigated.
NASA Astrophysics Data System (ADS)
Jacobs, A. M.; Zingale, M.; Nonaka, A.; Almgren, A. S.; Bell, J. B.
2016-08-01
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway. Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.
NASA Technical Reports Server (NTRS)
Mason, M. L.; Putnam, L. E.
1979-01-01
The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.
NASA Technical Reports Server (NTRS)
Capone, F. J.
1975-01-01
An investigation was conducted in the Langley 16-foot transonic tunnel to determine the induced lift characteristics of a vectored thrust concept in which a rectangular jet exhaust nozzle was located in the fuselage at the wing trailing edge. The effects of nozzle deflection angles of 0 deg to 45 deg were studied at Mach numbers from 0.4 to 1.2, at angles of attack up to 14 deg, and with thrust coefficients up to 0.35. Separate force balances were used to determine total aerodynamic and thrust forces as well as thrust forces which allowed a direct measurement of jet turning angle at forward speeds. Wing pressure loading and flow characteristics using oil flow techniques were also studied.
NASA Technical Reports Server (NTRS)
Dods, J. B., Jr.; Hanly, R. D.; Efting, J. H.
1973-01-01
Overall fluctuating pressure levels of seven space shuttle launch configurations are presented. The model was a 4-percent-scale space shuttle vehicle, tested in both a 11- by 11-foot transonic wind tunnel and a 9- by 7-foot supersonic wind tunnel. Mach numbers varied from 0.8 to 2.2, and the angle of attack range was from -8 deg to 8 deg at angles of sideslip of -5 deg, and 5 deg. The model configurations included both series-burn and parallel-burn configurations, two canopy configurations, two positions of the orbiter nose relative to the HO tank nose and two HO tank nose-cone angles (15 deg and 20 deg). The fluctuating pressure levels are presented in three forms.
NASA Technical Reports Server (NTRS)
Cortright, Edgar M , Jr; Schroeder, Albert H
1951-01-01
Experimental side and bade pressure distributions over a series of conical boattails without and with jet flow from the base are presented at a Mach number of 1.91. For the case of no jet flow the methods of characteristics and linearized theory are shown to overpredict the side pressure drag. A semi-empirical theory is presented to predict the effect of boattail angle on base pressure. With the boattail extending to a sharp edge at the nozzle exit, the over-pressure jet is shown to decrease the side pressure drag. Presence of an annular base may eliminate the effect of the jet on the side pressure drag, but the jet effect on the base pressure drag may greatly increase or decrease the total boattail drag.
NASA Astrophysics Data System (ADS)
Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir
2015-10-01
A numerical method for calculating the wavenumbers of axisymmetric plane waves in rigid-walled low-Mach-number turbulent flows is proposed, which is based on solving the linearized Navier-Stokes equations with an eddy-viscosity model. In addition, theoretical models for the wavenumbers are reviewed, and the main effects (the viscothermal effects, the mean flow convection and refraction effects, the turbulent absorption, and the moderate compressibility effects) which may influence the sound propagation are discussed. Compared to the theoretical models, the proposed numerical method has the advantage of potentially including more effects in the computed wavenumbers. The numerical results of the wavenumbers are compared with the reviewed theoretical models, as well as experimental data from the literature. It shows that the proposed numerical method can give satisfactory prediction of both the real part (phase shift) and the imaginary part (attenuation) of the measured wavenumbers, especially when the refraction effects or the turbulent absorption effects become important.
NASA Technical Reports Server (NTRS)
Carlson, H. W.
1979-01-01
A new linearized-theory pressure-coefficient formulation was studied. The new formulation is intended to provide more accurate estimates of detailed pressure loadings for improved stability analysis and for analysis of critical structural design conditions. The approach is based on the use of oblique-shock and Prandtl-Meyer expansion relationships for accurate representation of the variation of pressures with surface slopes in two-dimensional flow and linearized-theory perturbation velocities for evaluation of local three-dimensional aerodynamic interference effects. The applicability and limitations of the modification to linearized theory are illustrated through comparisons with experimental pressure distributions for delta wings covering a Mach number range from 1.45 to 4.60 and angles of attack from 0 to 25 degrees.
NASA Technical Reports Server (NTRS)
Berrier, B. L.
1972-01-01
Twin-jet afterbody models were investigated by using two balances to measure separately the thrust minus total drag and the afterbody drag at Mach numbers of 0.0 and 0.50 to 2.20 for a constant angle of attack of 0. Translating shroud cone plug nozzles were tested at dry and maximum afterburning power settings with a high-pressure air system used to provide jet total-pressure ratios up to 20.0. Two nozzle lateral spacings were studied by using afterbodies with several interfairing shapes. The close- and wide-spaced afterbodies had identical cross-sectional area distributions when similar interfairings were installed on each. Nozzle cant angles of -5, 0, and 5 degrees were investigated. The results show that the highest overall performance was generally obtained with the close-spaced afterbody, basic interfairings (no base), and uncanted nozzles.
NASA Technical Reports Server (NTRS)
Hopkins, Edward J.; Jillie, Don W.; Levin, Alan D.
1959-01-01
Measurements were made of the lift, drag, and pitching moments on an arrow wing (taper ratio of zero) having an aspect ratio of 1.4 and a leading-edge sweepback of 80 (degrees). The wing was designed to have a subsonic leading-edge and a Clark-Y airfoil with a thickness ratio of 12 percent of the chord perpendicular to the wing leading edge. The wing was tested both with and without the wing tips bent upward in an attempt to alleviate possible flow separation in the vicinity of the wing tips. Small jets of air were used to fix transition near the wing leading edge. Force results are presented for Mach numbers of 2.48, 2.75, 3.04, 3.28, and 3.51 at Reynolds numbers of 3.5 and 9.0 million and for a Mach number of 3.04 at a Reynolds number of 11.0 million. The measured aerodynamic characteristics are compared with those estimated by linear theory. The maximum lift-drag ratio measured was much less than that predicted. This difference is attributed to lack of full leading-edge thrust and to the experimental lift-curve slope being about 20 percent below the theoretical value.
NASA Astrophysics Data System (ADS)
Bzowski, M.; Swaczyna, P.; Kubiak, M. A.; Sokół, J. M.; Fuselier, S. A.; Galli, A.; Heirtzler, D.; Kucharek, H.; Leonard, T. W.; McComas, D. J.; Möbius, E.; Schwadron, N. A.; Wurz, P.
2015-10-01
We analyzed observations of interstellar neutral helium (ISN He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN He simulation model, presented in the companion paper by Sokół et al. (2015b), along with a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ˜6°, with the other parameters varying accordingly along the parameter tube, and the minimum χ2 value is larger than expected. We found, however, that the Mach number of the ISN He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal or a process that is not accounted for in the current physical model of ISN He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to λISNHe = 255.°8 ± 0.°5, βISNHe = 5.°16 ± 0.°10, TISNHe = 7440 ± 260 K, vISNHe = 25.8 ± 0.4 km s-1, and MISNHe = 5.079 ± 0.028, with uncertainties strongly correlated along the parameter tube.
NASA Technical Reports Server (NTRS)
Martin, Norman J.
1959-01-01
Exploratory tests of a circular internal-contraction inlet were made at Mach numbers of 2.00 and 2.35 to determine the effect of a cowl-type boundary-layer control located downstream of the inlet throat. The inlet was designed for a Mach number of 2.5. Tests were also made of the inlet modified to correspond to design Mach numbers of 2.35 and 2.25. Surveys near the minimum area section of the inlet without boundary-layer control indicated maximum averaged pressure recoveries between 0.90 and 0.92 at a free-stream Mach number, M(sub infinity), of 2.35 for the inlets. Farther downstream, after partial subsonic diffusion, a maximum pressure recovery of 0.842 was obtained with the inlet at M(sub infinity) = 2.35. The pressure recovery of the inlet was increased by 0.03 at a Mach number of 2.35 and decreased by 0.02 at a Mach number of 2.00 by the application of cowl-type boundary-layer control. Further investigation with the inlet without bleed demonstrated that an increase of angle of attack from 0 deg to 3 deg reduced the pressure recovery 0.04. The effect of Reynolds number was to increase pressure recovery 0.07 (from 0.785 to 0.855) with an increase in Reynolds number (based on inlet diameter) from 0.79 x 10(exp 6) to 3.19 x 10(exp 6).
NASA Technical Reports Server (NTRS)
Jones, Robert A.
1959-01-01
An investigation has been conducted at a Mach number of 3 of the effect of turbulence level and sandpaper-type roughness on transition for a flat plate. The Reynolds number varied from 0.8 x 10(exp 6) to 1.8 x 10(exp 6) per inch; the settling-chamber turbulence level varied from 0.7 percent to 35 percent; and the heat transfer between the plate and the stream was negligible. Transition locations were determined by an optical method. This method was indicative of a permanent change in the boundary-layer density distribution rather than the onset of turbulent bursts. Results showed that, when transition was influenced by roughness, it moved in a way similar to its movement on a smooth plate. That is, it gradually approached the roughness location with either an increase in unit Reynolds number or an increase in turbulence level. For roughness submerged in the linear portion of the boundary-layer velocity profile, the square root of the roughness Reynolds number and the ratio of roughness height to boundary-layer displacement thickness gave similar results as parameters for predicting the effects of roughness. A range of each of these parameters which moved transition less than 10 percent was found and this range was a function of turbulence level.
NASA Technical Reports Server (NTRS)
Kilgore, R. A.; Davenport, E. E.
1974-01-01
Wind tunnel tests of a proposed HL-10 lifting body vehicle were conducted to determine the subsonic and transonic aerodynamic characteristics. The conditions under which the tests were conducted are described. The tests indicate that the configuration has slightly positive damping in pitch except at higher angles of attack at Mach numbers of 0.8, 0.9, and 1.0. At supersonic speeds, the configuration has positive damping in pitch for all test conditions. At subsonic and transonic speed, the configuration has positive damping and positive stability in yaw for all test conditions.
NASA Technical Reports Server (NTRS)
Crawford, Davis H; Mccauley, William D
1957-01-01
A program to investigate the aerodynamic heat transfer of a nonisothermal hemisphere-cylinder has been conducted in the Langley 11-inch hypersonic tunnel at a Mach number of 6.8 and a Reynolds number from approximately 0.14 x 10(6) to 1.06 x 10(6) based on diameter and free-stream conditions. The experimental heat-transfer coefficients were slightly less over the whole body than those predicted by the theory of Stine and Wanlass (NACA technical note 3344) for an isothermal surface. For stations within 45 degrees of the stagnation point the heat-transfer coefficients could be correlated by a single relation between local Stanton number and local Reynolds number. Pitot pressure profiles taken at a Mach number of 6.8 on a hemisphere-cylinder have verified that the local Mach number or velocity outside the boundary layer required in the theories may be computed from the surface pressures by using isentropic flow relations and conditions immediately behind a normal shock. The experimental pressure distribution at Mach number of 6.8 is closely predicted by the modified Newtonian theory.
NASA Technical Reports Server (NTRS)
Swanson, A. G.
1958-01-01
Heat-transfer measurements were made on a simulated glide-rocket shape in free flight at Mach numbers up to 10 and free-stream Reynolds numbers of 2 x 10 based on distance along surface from apex and 3 x 10 based on nominal leading-edge diameter. The model simulated the bottom of a 75 deg delta wing at 8O deg angle of attack. The data indicated that for the test conditions a modified three-dimensional stagnation-point theory will predict to reasonable engineering accuracy the heating on a highly swept wing leading edge, the heating being reduced by sweep by the 3/2 power of the cosine of the sweep angle. The data also indicate that laminar heating rates over the windward surface of a highly swept flat glider wing at moderate angles of attack can be predicted with reasonable engineering accuracy by flat-plate theory using wedge local flow conditions and basing Reynolds numbers on lengths from the wing leading edge parallel to the surface center line.
NASA Astrophysics Data System (ADS)
Tichenor, Nathan Ryan
High-speed high Reynolds number boundary layer flows with mechanical non-equilibrium effects have numerous practical applications; examples include access-to-space ascent, re-entry and descent, and military hypersonic systems. However, many of the basic turbulent flow processes in this regime are poorly understood and are beyond the realm of modern direct numerical simulations Previous studies have shown that curvature driven pressure gradients significantly alter the state of the turbulence in high-speed boundary layers; the turbulence levels have been shown to decrease by large amounts (up to 100%) and the Reynolds shear stress has been shown to change sign. However, most of our understanding is based on point measurement techniques such as hot-wire and Laser Doppler anemometry acquired at low to moderate supersonic Mach numbers (i.e., M = 2-3). After reviewing the available literature, the following scientific questions remain unanswered pertaining to the effect of favorable pressure gradients: (1) How is state of the mean flow and turbulence statistics altered? (2) How is the structure of wall turbulence; break-up, stretch or a combination? (3) How are the Reynolds stress component production mechanisms altered? (4) What is the effect of Mach number on the above processes? To answer these questions and to enhance the current database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties using two-dimensional particle image velocimetry (PIV) along with flow visualizations of a high speed (M = 4.88), high Reynolds number (Retheta ≈ 36,000) supersonic turbulent boundary layer with curvature-driven favorable pressure gradients (a nominally zero, a weak, and a strong favorable pressure gradient). From these data, detailed turbulence analyses were performed including calculating classical mean flow and turbulence statistics, examining turbulent stress production, and performing quadrant
NASA Technical Reports Server (NTRS)
Jorgensen, Leland H; Perkins, Edward W
1958-01-01
For a body consisting of a fineness-ratio-3 ogival nose tangent to a cylindrical afterbody 7.3 diameters long, pitot-pressure distributions in the flow field, pressure distributions over the body, and downwash distributions along a line through the vortex centers have been measured for angles of attack to 20 degrees. The Reynolds numbers, based on body diameter, were 0.15 x 10 to the 6th power and 0.44 x 10 to the 6th power. Comparisons of computed and measured vortex paths and downwash distributions are made. (author)
NASA Technical Reports Server (NTRS)
Powers, Sheryll Goecke
1988-01-01
The use of external modifications in the base region to reduce the base drag of a blunt-base body in the presence of jet engine exhaust was investigated in flight. Base pressure data were obtained for the following configurations: (1) blunt base; (2) blunt base modified with splitter plate; and (3) blunt base modified with two variations of a vented cavity. Reynolds number based on the length of the aircraft ranged from 1.2 to 3.1 x 10 to the 8th. Mach number M ranges were 0.71 less than or = M less than or = 0.95 and 1.10 less than or = M less than or = 1.51. The data were analyzed using the blunt base for a reference, or baseline condition. For 1.10 less than or = M less than or = 1.51, the reduction in base drag coefficient provided by the vented cavity configuration ranged from 0.07 to 0.05. These increments in base drag coefficient at M = 1.31 and 1.51 result in base drag reductions of 27 and 24 percent, respectively, when compared to the blunt base drag. For M less than 1, the drag increment between the blunt base and the modification is not significant.
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1993-01-01
Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at a Mach number of 6 and a free-stream ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with static pressure orifices distributed on the sidewalls, baseplate, and cowl. Schlieren movies were made of selected tunnel runs for flow visualization of the entrance plane and cowl region. Although these movies could not show the internal flow, the effect of the internal flow on the external flow was evident by way of spillage. The purpose is to provide a preliminary data release for the investigation. The models, facility, and testing methods are described, and the test matrix and a tabulation of tunnel runs are provided. Line plots highlighting the stated parametric effects and a representative set of schlieren photographs are presented without analysis.
NASA Technical Reports Server (NTRS)
Jaquet, Byron M.
1961-01-01
A wind-tunnel investigation was made at a Mach number of 3.10 (Reynolds number per foot of 16.3 x 10(exp 6) to 16.9 x 10(exp 6)) to determine the aerodynamic characteristics of various modifications of the payload section of the fourth stage of the Scout research vehicle. It was found that, for the combination of stages 3 and 4, increasing the size of the nose of the basic Scout to provide a cylindrical section of the same diameter as the third stage increased the normal-force slope by about 30 percent, the axial force by about 39 percent, and moved the center of pressure forward by about one fourth-stage base diameter. By reducing the diameter of the cylinder, at about one nose length behind the base of the enlarged nose frustum, to that of the basic Scout and thereafter retaining the shape of the basic Scout, the center of pressure was moved rearward by about one-half fourth-stage base diameter at the expense of an additional 19-percent increase in axial force. A spike-hemisphere configuration had the largest forces and moments and the most forward center-of-pressure location of the configurations considered. Except for the axial force and pitching-moment slope, the experimental trends or magnitudes could not be estimated with the desired accuracy by Newtonian or-slender body theory.
NASA Astrophysics Data System (ADS)
Powers, Sheryll Goecke
1988-02-01
The use of external modifications in the base region to reduce the base drag of a blunt-base body in the presence of jet engine exhaust was investigated in flight. Base pressure data were obtained for the following configurations: (1) blunt base; (2) blunt base modified with splitter plate; and (3) blunt base modified with two variations of a vented cavity. Reynolds number based on the length of the aircraft ranged from 1.2 to 3.1 x 10 to the 8th. Mach number M ranges were 0.71 less than or = M less than or = 0.95 and 1.10 less than or = M less than or = 1.51. The data were analyzed using the blunt base for a reference, or baseline condition. For 1.10 less than or = M less than or = 1.51, the reduction in base drag coefficient provided by the vented cavity configuration ranged from 0.07 to 0.05. These increments in base drag coefficient at M = 1.31 and 1.51 result in base drag reductions of 27 and 24 percent, respectively, when compared to the blunt base drag. For M less than 1, the drag increment between the blunt base and the modification is not significant.
NASA Technical Reports Server (NTRS)
James, Carlton S.
1960-01-01
An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.
NASA Technical Reports Server (NTRS)
Dillon, J. L.; Pittman, J. L.
1977-01-01
An experimental investigation of the static aerodynamic characteristics of a model of one design concept for the proposed National Hypersonic Flight Research Facility was conducted in the Langley 8 foot transonic pressure tunnel. The experiment consisted of configuration buildup from the basic body by adding a wing, center vertical tail, and a three module or six module scramjet engine. The freestream test Mach numbers were 0.33, 0.80, 0.90, 0.95, 0.98, 1.10, and 1.20 at Reynolds numbers per meter ranging from 4.8 x 1 million to 10.4 x 1 million. The test angle of attack range was approximately -4 deg to 22 deg at constant angles of sideslip of 0 deg and 4 deg; the angle of sideslip ranged from about -6 deg to 6 deg at constant angles of attack of 0 deg and 17 deg. The elevons were deflected 0 deg, -10 deg, and -20 deg with rudder deflections of 0 deg and 15.6 deg.
NASA Technical Reports Server (NTRS)
Pearson, Albin O.
1959-01-01
An investigation was conducted in the Langley 8-foot transonic pressure tunnel to investigate the static pitching-moment, normal-force, and axial-force characteristics on a model of a nonlifting vehicle suit- able for reentry. The vehicle was designed to use a heat sink and blunt shape to alleviate the effects of the heating encountered during reentry of the earth's atmosphere. The effects of modifying the intersection of the face of the model with the afterbody from a sharp corner to a rounded edge were also investigated. Tests were conducted at Mach numbers from 0.40 to 1.14 and at angles of attack from approximately -3 deg to 20 deg. The Reynolds number varied from about 2.0 x 10(exp 6) to 3.6 x 10(exp 6). The results show that the model had a low positive static-stability level, low normal-force coefficients, and large axial-force coefficients. The model trimmed, for the angle-of-attack range investigated, at angles of attack near zero. The effects on the stability as a result of rounding the corner were negligible.
NASA Technical Reports Server (NTRS)
Landrum, Emma Jean; Czarnecki, K. R.
1961-01-01
An investigation has been made at Mach numbers of 1.61 and 2.01 to determine the aerodynamic characteristics of three wings having a sweepback of 50 deg at the quarter-chord line, a taper ratio of 0.20, an NACA 65A005 thickness distribution, and an aspect ratio of 3.5. One wing was flat, one had at each spanwise station an a = 0 mean line modified to have a maximum height of 4-percent chord, and one had a linear variation of twist with 6 deg of washout at the tip. Tests were made with natural and fixed transition at Reynolds numbers ranging from 1.2 x 10(exp 6) to 3.6 x 10(exp 6) through an angle-of-attack range of -20 deg to 20 deg. When compared with the flat wing, the effect of the linear variation of twist with 6 deg of washout at the tip was to increase the lift-drag ratio when the leading edge was subsonic; but little increase in lift-drag ratio was obtained when the leading edge was supersonic. Pitching moment was increased and gave a positive trim point without greatly affecting the rate of change of pitching moment with lift coefficient. For the cambered wing the high minimum drag resulted in comparatively low lift-drag ratios. In addition, the pitching moments were decreased so that a negative trim point was obtained.
NASA Technical Reports Server (NTRS)
Deveikis, W. D.; Bartlett, W.
1978-01-01
An experimental aerodynamic heating investigation was conducted to determine effects of hot boundary-layer ingestion into the cove on the windward surface between a wing and elevon for cove seal leak areas nominally between 0 and 100 percent of cove entrance area. Pressure and heating-rate distributions were obtained on the wing and elevon surfaces and on the cove walls of a full-scale model that represented a section of the cove region on the space shuttle orbiter. Data were obtained for both attached and separated turbulent boundary layers upstream of the unswept cove entrance. Average free-stream Mach number was 6.9, average free-stream unit Reynolds numbers were 1.31 x 10 to the 6th power and 4.40 x 10 to the 6th power per meter (0.40 x 10 to the 6th power and 1.34 x 10 to the 6th power per foot), and average total temperature was 1888 K (3400 R). Cove pressures and heating rates varied as a function of seal leak area independent of leak aspect ratio. Although cove heating rates for attached flow did not appear intolerable, it was postulated that convective heating in the cove may increase with time. For separated flow, the cove environment was considered too severe for unprotected interior structures of control surfaces.
NASA Technical Reports Server (NTRS)
Berry, S. A.
1986-01-01
An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.
Conventional and nonconventional global Alfven eigenmodes in stellarators
Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.
2007-10-15
Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.
NASA Technical Reports Server (NTRS)
Driver, Cornelius
1956-01-01
Tests have been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.41, 1.61, and 2.01 to determine the static longitudinal stability and control characteristics of various arrangements of the Grumman F11F-1 airplane. Tests were made of the complete model and various combinations of its component parts and, in addition, the effects of various body modifications, a revised vertical tail, and wing fences on the longitudinal characteristics were determined. The results indicate that for a horizontal-tail incidence of -10 deg the trim lift coefficient varied from 0.29 at a Mach number of 1.61 to 0.23 at a Mach number of 2.01 with a corresponding decrease in lift-drag trim from 3.72 to 3.15. Stick-position instability was indicated in the low-supersonic-speed range. A photographic-type nose modification resulted in slightly higher values of minimum drag coefficient but did not significantly affect the static stability or lift-curve slope. The minimum drag coefficient for the complete model with the production nose remained essentially constant at 0.047 throughout the Mach number range investigated.
NASA Technical Reports Server (NTRS)
Ferri, Antonio; Nucci, Louis M
1954-01-01
Contains theoretical and experimental analysis of circular inlets having a central body at Mach numbers of 3.30, 2.75, and 2.45. The inlets have been designed in order to have low drag and high pressure recovery. The pressure recoveries obtained are of the same order of magnitude as those previously obtained by inlets having very large external drag.
NASA Technical Reports Server (NTRS)
Stack, John; Draley, Eugene C; Delano, James B; Feldman, Lewis
1950-01-01
As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.
NASA Technical Reports Server (NTRS)
Sinclair, Archibald R; Mace, William D
1956-01-01
A limited calibration of a combined pitot-static tube and vane-type flow-angularity indicator has been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.61 and 2.01. The results indicated that the angle-of-yaw indications were affected by unsymmetric shock effects at low angles of attack.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
NASA Technical Reports Server (NTRS)
Johnson, J. Blair
1988-01-01
A preliminary flight experiment was flown to generate a full-scale supersonic data base to aid the assessment of computational codes, to improve instrumentation for measuring boundary layer transition at supersonic speeds, and to provide preliminary information for the definition of follow-on programs. The experiment was conducted using an F-15 aircraft modified with a small cleanup test section on the right wing. Results are presented for Mach (M) numbers from 0.9 to 1.8 at altitudes from 25,000 to 55,000 ft. At M greater than or = 1.2, transition occurred near or at the leading edge for the clean configuration. The furthest aft that transition was measured was 20 percent chord at M = 0.9 and M = 0.97. No change in transition location was observed after the addition of a notch-bump on the leading edge of the inboard side of the test section which was intended to minimize attachment line transition problems. Some flow visualization was attempted during the flight experiment with both subliming chemicals and liquid crystals. However, difficulties arose from the limited time the test aircraft was able to hold test conditions and the difficulty of positioning the photo chase aircraft during supersonic test points. Therefore, no supersonic transition results were obtained.
NASA Astrophysics Data System (ADS)
Motheau, E.; Abraham, J.
2016-05-01
A novel and efficient algorithm is presented in this paper to deal with DNS of turbulent reacting flows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral accuracy. The temporal integration of the equations relies on an operating-split strategy, where chemical reactions are solved implicitly with a stiff solver and the convection-diffusion operators are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with high-order compact schemes, and a FFT based constant-coefficient spectral solver is employed to solve a variable-coefficient Poisson equation. The numerical implementation takes advantage of the 2DECOMP&FFT libraries developed by [1], which are based on a pencil decomposition method of the domain and are proven to be computationally very efficient. An enhanced pressure-correction method is proposed to speed up the achievement of machine precision accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary conditions. The software developed to implement the present algorithm is called HOLOMAC, and its numerical efficiency opens the way to deal with DNS of reacting flows to understand complex turbulent and chemical phenomena in flames.
NASA Astrophysics Data System (ADS)
Sayadi, Taraneh; Hamman, Curtis; Moin, Parviz
2011-11-01
Transition to turbulence via spatially evolving secondary instabilities in compressible, zero-pressure-gradient flat plate boundary layers is numerically simulated for both the Klebanoff K-type and Herbert H-type disturbances. The objective of this work is to evaluate the universality of the breakdown process between different routes through transition in wall-bounded shear flows. Each localized linear disturbance is amplified through weak non-linear instability that grows into lambda-vortices and then hairpin-shaped eddies with harmonic wavelength, which become less organized in the late-transitional regime once a fully populated spanwise turbulent energy spectrum is established. For the H-type transition, the computational domain extends from Rex =105 , where laminar blowing and suction excites the most unstable fundamental and a pair of oblique waves, to fully turbulent stage at Rex = 10 . 6 ×105 . The computational domain for the K-type transition extends to Rex = 9 . 6 ×105 . The computational algorithm employs fourth-order central differences with non-reflective numerical sponges along the external boundaries. For each case, the Mach number is 0.2. Supported by the PSAAP program of DoE, ANL and LLNL.
NASA Technical Reports Server (NTRS)
Lamb, M.
1981-01-01
A wind-tunnel missile model with either a lower vertical tail fin with a pair of horizontal fins having 0 deg, 22.5 deg, or 30 deg dihedral or an upper vertical tail fin with horizontal fins having 0 deg, -22.5 deg, or -30 deg dihedral was investigated. The results indicated that those configurations with horizontal fins at or below the horizontal plane had nearly linear pitching-moment characteristics, while those with the horizontal fins above the horizontal plane experienced pitch-up which increased with increasing horizontal-fin-dihedral angle. At zero angle of attack, the configurations were directionally stable at most test Mach numbers. Generally, those configurations with the upper vertical fin had positive effective dihedral at zero angle of attack, while those with he lower vertical fin had negative effective dihedral. For roll control, three deflected tail fins produced more total roll control than two horizontal fins. For yaw control, three tail fins deflected equally or differentially produced more total yaw control than the single vertical fin.
NASA Astrophysics Data System (ADS)
Marconcini, Michele; Pacciani, Roberto; Arnone, Andrea
2015-11-01
The aerodynamic performance of a gas turbine nozzle vane cascade was investigated over a range of Mach and Reynolds numbers. The work is part of a vast research project aimed at the analysis of fluid dynamics and heat transfer phenomena in cooled blades. In this paper computed results on the "solid vane" (without cooling devices) are presented and discussed in comparison with experimental data. Detailed measurements were provided by the University of Bergamo where the experimental campaign was carried out by means of a subsonic wind tunnel. The impact of boundary layer transition is investigated by using a novel laminar kinetic energy transport model and the widely used Langtry-Menter γ- Re θ,t model. The comparison between calculations and measurements is presented in terms of blade loading distributions, total pressure loss coefficient contours downstream of the cascade, and velocity/turbulence-intensity profiles within the boundary layer at selected blade surface locations at mid-span. It will be shown how transitional calculations compare favorably with experiments.
NASA Technical Reports Server (NTRS)
Schrecker, G. O.; Maus, J. R.
1974-01-01
An experimental investigation of the aerodynamic noise and flow field characteristics of internal-flow jet-augmented flap configurations (abbreviated by the term jet flap throughout the study) is presented. The first part is a parametric study of the influence of the Mach number (subsonic range only), the slot nozzle aspect ratio and the flap length on the overall radiated sound power and the spectral composition of the jet noise, as measured in a reverberation chamber. In the second part, mean and fluctuating velocity profiles, spectra of the fluctuating velocity and space correlograms were measured in the flow field of jet flaps by means of hot-wire anemometry. Using an expression derived by Lilley, an attempt was made to estimate the overall sound power radiated by the free mixing region that originates at the orifice of the slot nozzle (primary mixing region) relative to the overall sound power generated by the free mixing region that originates at the trailing edge of the flap (secondary mixing region). It is concluded that at least as much noise is generated in the secondary mixing region as in the primary mixing region. Furthermore, the noise generation of the primary mixing region appears to be unaffected by the presence of a flap.
NASA Astrophysics Data System (ADS)
Huber, Grégory; Tanguy, Sébastien; Béra, Jean-Christophe; Gilles, Bruno
2015-10-01
This paper is focused on the numerical simulation of the interaction of an ultrasound wave and an air bubble surrounded by water. Our interest is to develop a fully compressible solver in the two phases and to account for surface tension effects. As the volume oscillation of the bubble occurs in a low Mach number regime, a specific attention must be paid to the effectiveness of the numerical method chosen to solve the compressible Euler equations. Several numerical methods are implemented and confronted on a benchmarck. This preliminary test highlights that the projection method is the most accurate one. Then a basic implementation of the surface tension leads to strong spurious currents and numerical instabilities. A specific velocity/pressure time splitting is thus proposed to overcome this issue. Numerical evidences of the efficiency of this new numerical scheme are provided with the numerical simulation of the interaction between a bubble and a wavefront. Indeed, both the accuracy and the stability of the overall algorithm are enhanced using this new numerical method.
NASA Technical Reports Server (NTRS)
Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.
1977-01-01
The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.
NASA Technical Reports Server (NTRS)
Ashby, George C., Jr.; Cary, Aubrey M., Jr.
1965-01-01
Force tests were conducted at a Mach number of 6.0 on nose-cylinder-flare bodies to determine the effect of nose shape, cylinder length, flare angle, and flare length on the longitudinal aerodynamic characteristics. A particular investigation was conducted to determine the effect of flare angle for constant flare length, surface area, and diameter. Results indicated that at a Reynolds number of approximately 0.92 x l0 (exp 6) (based on body diameter), the boundary-layer separation effects were significant only with respect to the slope of the normal-force and pitching-moment curve at low angles of attack. The variations of the aerodynamic characteristics with the various parameters were, in general, similar to those predicted by Newtonian theory below a flare angle of 30 degrees and a ratio of flare base diameter to cylinder diameter of less than approximately 2.2. The limiting diameter ratio is consistent with the extent of the low-constant dynamic-pressure region near the body caused by the bow-shock influences as predicted by axisymmetric characteristic theory. The effects of the various parameters for the flares that exceeded the limiting diameter ratio follow the trends predicted by the computed flow-field properties. The axial force for these flare configurations at zero angle of attack was, in general, computed within 10 percent by using these properties. For a constant flare length and surface area the flare effectiveness increased with increasing flare angle; however, for constant flare diameter only the axial-force coefficient was affected by flare angle.
NASA Technical Reports Server (NTRS)
Lewis, B. W.
1961-01-01
A limited investigation of the deterioration characteristics of 22 refractory materials was conducted by exposing them to a stagnation temperature of 3,800 F in a Mach number 2 ceramic-heated jet at the Langley Research Center. The materials tested were six materials whose major constituent was silicon carbide, five cermets whose major constituent was titanium carbide, six materials whose major constituents were metal borides, four cermets containing alumina, and one silicon nitride model. Tests consisted of obtaining weight change and appearance changes for 1/2-inch-diameter hemispherical-nose cylindrical models exposed to the air jet for 30 seconds at a time for a total of four runs or 2 minutes exposure. Curves of weight changes plotted against the number of 30-second tests in the jet were obtained. Estimates of average surface temperature near the stagnation point of the model were obtained by use of a special temperature-measuring camera. The models were examined before and after the completion of the tests for possible changes in microstructure; no significant changes were found. The data obtained were analyzed with the view that the oxidation characteristics of the materials were the main factor in deterioration of the materials under the conditions of the tests. It was concluded that only those materials which changed in weight the least could be recommended for further extensive application-oriented evaluations. The following materials fell in this category: silicon carbide - silicon, chromium - 28-percent alumina cermet, titanium boride - 5-percent boron carbide. The remainder of the materials tested had oxidation characteristics which appeared to be too severely limiting of their general applications to flight vehicles.
NASA Technical Reports Server (NTRS)
Burrows, Dale L; Newman, Ernest E
1954-01-01
An investigation at medium to high subsonic speeds has been conducted in the Langley low-turbulence pressure tunnel to determine the static stability and control characteristics and to measure the fin normal forces and moments for a model of a wingless fin-controlled missile. The data were obtained at Reynolds number of 2.1 x 10(6) based on the missile maximum diameter or 17.7 x 10(6) based on missile length; this Reynolds number was found to be large enough to avoid any large scale effects between the test and the expected flight Reynolds number. With the horizontal-fin deflection limited to a maximum of 6 degrees, longitudinally stable and trimmed flight could not be maintained beyond an angle of attack of 17 degrees for a Mach number of 0.88 and beyond 20 degrees for a Mach number of 0.50 for any center-of-gravity location without the use of some auxiliary stability or control device such as jet vanes. Mach number had no appreciable effect on the center-of-pressure positions and only a slight effect on neutral-point position. There was a shift in neutral-point position of about 1 caliber as the angle of attack was varied through the range for which the neutral point could be determined. Yawing the model to angles of sideslip up to 7 degrees had little effect on the longitudinal stability at angles of attack up to 15 degrees; however, above 15 degrees, the effect of sideslip was destabilizing. With the vertical fins at a plus-or-minus 6 degree roll deflection, the rolling moment caused by yawing the model at high angles of attack could be trimmed out up to angles of sideslip of 6.5 degrees and an angle of attack of 26 degrees for a Mach number of 0.50; this range of sideslip angles was reduced to 3 degrees at a Mach number of 0.88. The data indicated that, at lower angles of attack, the trim range extended to higher angles of sideslip. The total normal-force and hinge-moment coefficients for both horizontal fins were slightly nonlinear with both angle
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Cohen, L.; Taleghani, J.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics, at high angles of attack, of a tangent ogive forebody with a fineness ratio of 3.5. The investigation included the effects of nose bluntness, nose strakes, nose booms, a simulated canopy, and boundary-layer trips. The forebody was also tested with a short afterbody attached. Static longitudinal and lateral-directional stability data were obtained at Reynolds numbers ranging from 0.3 mil. to 3.8 mil. (based on base diameter) at a Mach number of 0.25, and at a Reynolds number of 0.8 mil. at Mach numbers ranging from 0.1 to 0.7. Angle of attack was varied from 0 to 88 deg at zero sideslip, and the sideslip angle was varied from -10 to 30 deg at angles of attack of 40, 55, and 70 deg.
NASA Technical Reports Server (NTRS)
Landrum, E. J.
1977-01-01
The tabulated results of wind tunnel pressure tests are presented without analysis. The data were obtained for a series of six bodies of revolution at Mach numbers of 1.6, 2.3, 2.96, and 4.63 for angles of attack from -4 deg. to 60 deg. The Reynolds number used for these tests was 6.6 x 6/million per meter.
NASA Technical Reports Server (NTRS)
Gapcynski, John P; Carlson, Harry W
1955-01-01
The changes in the aerodynamic characteristics of a body of revolution with a fineness ratio of 8 have been determined at Mach numbers of 1.41 and 2.01, a Reynolds number, based on body length, of 4.54 x 10 to the 6th power, and angles of incidence of 0 degrees and plus or minus 3 degrees as the position of the body is varied with respect to a reflection plane. The data are compared with theoretical results.
NASA Technical Reports Server (NTRS)
Martin, Norman J.
1959-01-01
Pressure coefficients were measured over the vehicle and over the forward part of the booster at Reynolds numbers of 3.0 x 10(exp 6) per foot. Tabular results are presented for two nose shapes at Mach numbers of 1.55, 1.75, 2.00, and 2.35, at angles of attack from -4 deg to +10 deg, and at 0 deg sideslip.
NASA Technical Reports Server (NTRS)
Nielsen, Jack N; Katzen, Elliott D; Tang, Kenneth K
1956-01-01
The lift and pitching-moment characteristics of a body alone, six triangular wings of various aspect ratios, and the combinations were measured at Mach numbers of 1.50 and 2.02 at a Reynolds number of 5.5 million (based on the body length) for angles of attack up to 5.5 degrees. The total lift and pitching-moment interference were determined and compared with theory. The agreement was found to be good.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B; Lee, Dorothy B
1958-01-01
Skin-temperature measurements have been made at several locations on a flat-faced cone-cylinder nose which was flight tested on a fivestage rocket-propeller model to a Mach number of 14.64 and a free-stream Reynolds number of 2.0 x 10(exp 6), based on flat-face diameter, at an altitude of 66,300 feet. The copper nose had a 29 deg total-angle conical section which was 1.6 flat-face diameters long. The aerodynamic-heating rates determined from the temperature measurements reached 1,440 Btu/( sec) (sq ft) on the flat face. The heating rates near the center of the flat face agreed well at Mach numbers up to 13.6 with those obtained by a theory for laminar stagnation-point heating in equilibrium dissociated air (Avco Res. Rep. 1). At Mach numbers above 13.6, the heating rates at locations near the center of the flat face became progressively lower than stagnation-point theory and. were 29 percent lower at Mach number 14.6 at the end. of the test. The reason for this behavior of the heating on the central part of the flat face was not determined. Excluding the relatively low heating rates that occurred on the central part of the nose at the highest Mach numbers, the distribution of experimental heating along the innermost 0.79 of the flat-face radius, expressed as a percentage of stagnation-point heating, was in fair agreement with the distribution predicted by laminar theory. At a location of 0.71 radii from the stagnation point, the experimental heating was very near 130 percent of the theoretical stagnation-point rate at Mach numbers from 11 to 14.5. The experimental beating rates on the conical section of the nose were in good agreement with laminar-cone theory using the assumption of theoretical sharp-cone static pressure on the conical section.
NASA Technical Reports Server (NTRS)
Morris, O. A.; Fuller, D. E.; Watson, C. B.
1978-01-01
Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.
NASA Technical Reports Server (NTRS)
Critzos, Chris C.
1954-01-01
An investigation has been made in the Langley low-turbulence pressure tunnel of the aerodynamic characteristics of the NACA 0012, 64(sub 2)-015, and 64(sub 3)-018 airfoil sections. Data were obtained at Mach numbers from 0.3 to that for tunnel choke, at angles of attack from -2deg to 30deg, and with the surface. of each airfoil smooth-and with roughness applied at the leading edge.The Reynolds numbers of the tests ranged from 0.8 x 10(exp 6) to 4.4 x 10(exp 6). The results are presented as variations of lift, drag, and quarter-chord pitching-moment coefficients with Mach number.
NASA Technical Reports Server (NTRS)
Re, R. J.
1974-01-01
An investigation was conducted in the Langley 16-foot transonic tunnel to determine the performance of seven inlets having NACA 1-series contours and one inlet having an elliptical contour over a range of mass-flow ratios and at angle of attack. The inlet diameter ratio varied from 0.81 to 0.89; inlet length ratio varied from 0.75 to 1.25; and internal contraction ratio varied from 1.009 to 1.093. Reynolds number based on inlet maximum diameter varied from 3.4 million at a Mach number of 0.4 to 5.6 million at a Mach number of 1.29.
NASA Technical Reports Server (NTRS)
Czarnecki, K R; Sinclair, Archibald R
1955-01-01
Report presents the results of an investigation conducted to determine the effects of heat transfer on boundary-layer transition on a parabolic body of revolution (NACA rm-10 without fins) at Mach number of 1.61 and over a Reynolds number range from 2.5 x 10(6) to 35 x 10(6). The maximum cooling of the model used in these tests corresponded to a temperature ratio (ratio of model-surface temperature to free-stream temperature) of 1.12, a value somewhat higher than the theoretical value required for infinite boundary-layer stability at this Mach number. The maximum heating corresponded to a temperature ratio of about 1.85. Included in the investigation was a study of the effects of surface irregularities and disturbances generated in the airstream on the ability of heat transfer to influence boundary-layer transition.
Global structures of Alfven-ballooning modes in magnetospheric plasmas
Vetoulis, G.; Chen, Liu
1994-03-01
The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations.
NASA Technical Reports Server (NTRS)
Kruse, R. L.; Keener, E. R.; Chapman, G. T.; Claser, G.
1979-01-01
Wind-tunnel tests were conducted to investigate the side forces and yawing moments that can occur at high angles of attack and zero sideslip for cylindrical bodies of revolution. Two bodies having several tangent ogive forebodies with fineness ratios of 0.5, 1.5, 2.5, and 3.5 were tested. The forebodies with fineness ratios of 2.5 and 3.5 had several bluntnesses. The cylindrical afterbodies had fineness ratios of 7 and 13. The model components - tip, forebody, and afterbody - were tested in various rotational positions about their axes of symmetry. Most of the tests were conducted at a Mach number of 0.25, a Reynolds number of 0.32 x 10 to the 6th power, and with the afterbody that had a fineness ratio of 7 and with selected forebodies. The effect of Mach number was determined with the afterbody that had a fineness ratio of 13 and with selected forebodies at mach numbers from 0.25 to 2 at Reynolds number = 0.32 X 10 to the 6th power. Maximum angle of attack was 58 deg.
Electron Signatures and Alfven Waves
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Clemmons, J.; Namgaladze, A. A.; Gustavsson, B.; Wahlund, J.-E.; Eliasson, L.; Yurik, R. Y.
2000-01-01
The electron signatures which appear together with Alfven waves observed by the Freja satellite in the auroral region are reported. Precipitating electrons are detected both with and just before the wave. The observed Alfven waves must therefore be capable of accelerating electrons to higher energies than the local phase velocity of these waves in order for the electrons to move in advance of the wave. The characteristics of such electrons suggest electrons moving infront of the wave have characteristics of origin from warmer and lower density plasma while the electrons moving with the wave have characteristics of cooler and denser plasma. The pitch angle distribution of the electrons moving with the wave indicates that there is continuous acceleration of new particles by the wave, i.e. a propagating Alfven wave is the source of these electrons . A simple model of a propagating source is made to model the electrons that are moving in advance of the wave. Depending on whether accelerated electrons leave the wave above or below the altitude where the Alfven wave has the highest phase velocity, the detected electron signatures will be different; electron dispersion or potential drop like, respectively. It is shown that the Alfven wave acceleration can create electron signatures similar to inverted-V structures.
Alfven solitons in the solar wind
NASA Technical Reports Server (NTRS)
Ovenden, C.; Schwartz, S. J.
1983-01-01
A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.
NASA Technical Reports Server (NTRS)
Bond, Aleck C.; Swanson, Andrew G.
1953-01-01
A free-flight 0.12-scale rocket-boosted model of the North American MX-770 (X-10) missile has been tested in flight by the Pilotless Aircraft Research Division of the Langley Aeronautical Laboratory. Drag, longitudinal stability, and duct performance data were obtained at Mach numbers from 0.8 to 1.7 covering a Reynolds number range of about 9 x 10(exp 6) to 24 x 10(exp 6) based on wing mean aerodynamic chord. The lift-curve slope, static stability, and damping-in-pitch derivatives showed similar variations with Mach number, the parameters increasing from subsonic values in the transonic region and decreasing in the supersonic region. The variations were for the most part fairly smooth. The aerodynamic center of the configuration shifted rearward in the transonic region and moved forward gradually in the supersonic region. The pitching effectiveness of the canard control surfaces was maintained throughout the flight speed range, the supersonic values being somewhat greater than the subsonic. Trim values of angle of attack and lift coefficient changed abruptly in the transonic region, the change being associated with variations in the out-of-trim pitching moment, control effectiveness, and aerodynamic-center travel in this speed range. Duct total-pressure recovery decreased with increase in free-stream Mach number and the values were somewhat less than normal-shock recovery. Minimum drag data indicated a supersonic drag coefficient about twice the subsonic drag coefficient and a drag-rise Mach number of approximately 0.90. Base drag was small subsonically but was about 25 percent of the minimum drag of the configuration supersonically.
NASA Technical Reports Server (NTRS)
Falanga, Ralph A.; Janos, Joseph J.
1961-01-01
An investigation at a Reynolds number per foot of 14.4 x 10(exp 6) was made to determine the pressure loads produced on a flat-plate wing by rocket jets exhausting in a spanwise direction beneath the wing and perpendicular to a free-stream flow of Mach number 2.0. The ranges of the variables involved were (1) nozzle types - one sonic (jet Mach number of 1.00), two supersonic (jet Mach numbers of 1.74 and 3.04),. and one two-dimensional supersonic (jet Mach number of 1.71); (2) vertical nozzle positions beneath the wing of 4, 8 and 12 nozzle-throat diameters; and (3) ratios of rocket-chamber total pressure to free- stream static pressure from 0 to 130. The incremental normal force due to jet interference on the wing varied from one to two times the rocket thrust and generally decreased as the pressure ratio increased. The chordwise coordinate of the incremental-normal-force center of pressure remained upstream of the nozzle center line for the nozzle positions and pressure ratios of the investigation. The chordwise coordinate approached zero as the jet vertical distance beneath the wing increased. In the spanwise direction there was little change due to varying rocket-jet position and pressure ratio. Some boundary-layer flow separation on the wing was observed for the rocket jets close to the wing and at the higher pressure ratios. The magnitude of the chordwise and spanwise pressure distributions due to jet interference was greatest for rocket jets close to the wing and decreased as the jet was displaced farther from the wing. The design procedure for the rockets used is given in the appendix.
NASA Technical Reports Server (NTRS)
Kehlet, Alan B.
1961-01-01
A free-flight investigation of an airplane configuration having a low 52.5 deg. delta wing and an unswept horizontal tail has been conducted over a Mach number range of 1.40 to 2.78. At a fixed tail setting of -3.0 deg., the trim lift coefficient and angle of attack varied from about 0.12 to 0.04 and 3.8 deg. to 2.0 deg., respectively. The base drag was approximately 5 percent of the total drag at trim lift. Lift-curve slope, static longitudinal stability, and damping in pitch were obtained only at Mach numbers of 2.59 t o 2.74. Theoretical calculations of lift-curve slope and aerodynamic-center location were in good agreement with experimental results.
NASA Technical Reports Server (NTRS)
Re, R. J.; Capone, F. J.
1977-01-01
The canard panels had 5 deg of dihedral and were deflected differentially or individually over an incidence range from 10 deg to -10 deg and a model angle-of-attack range from -4 deg to 15 deg. Significant side forces were generated in a transonic tunnel by differential and single canard-panel deflections over the Mach number and angle-of-attack ranges. The yawing moment resulting from the forward location of the generated side force would necessitate a vertical tail/rudder trim force which would augment the forebody side force and be of comparable magnitude. Incremental side forces, yawing moments, lift, and pitching moments due to single canard-panel deflections were additive; that is, their sums were essentially the same as the forces and moments produced by differential canard-panel deflections of the same magnitude. Differential and single canard-panel deflections produced negligible rolling moments over the Mach number and angle-of-attack ranges.
NASA Technical Reports Server (NTRS)
Nelms, W. P.; Durston, D. A.; Lummus, J. R.
1981-01-01
Tests were conducted in the Ames 9 by 7 ft supersonic wind tunnel to measure the aerodynamic characteristics of two horizontal attitude takeoff and landing V/STOL fighter/attack aircraft concepts. One concept featured a jet diffuser ejector for its vertical lift system and the other employed a remote augmentation lift system (RALS). Test results for Mach numbers from 1.6 to 2.0 are reported. Effects of varying the angle of attack (-4 deg to +17 deg), angle of sideslip (-4 deg to +8 deg) Mach number, and configuration building were investigated. The effects of wing trailing edge flap deflections, canard incidence, and vertical tail deflections were also explored as well as the effects of varying the canard longitudinal location and shapes of the inboard nacelle body strakes.
NASA Technical Reports Server (NTRS)
Cooper, Morton; Mayo, Edward E.
1959-01-01
Measurements of the local heat transfer and pressure distribution have been made on six 2-inch-diameter, blunt, axially symmetric bodies in the Langley gas dynamics laboratory at a Mach number of 4.95 and at Reynolds numbers per foot up to 81 x 10(exp 6). During the investigation laminar flow was observed over a hemispherical-nosed body having a surface finish from 10 to 20 microinches at the highest test Reynolds number per foot (for this configuration) of 77.4 x 10(exp 6). Though it was repeatedly possible to measure completely laminar flow at this Reynolds number for the hemisphere, it was not possible to observe completely laminar flow on the flat-nosed body for similar conditions. The significance of this phenomenon is obscured by the observation that the effects of particle impacts on the surface in causing roughness were more pronounced on the flat-nosed body. For engineering purposes, a method developed by M. Richard Dennison while employed by Lockheed Aircraft Corporation appears to be a reasonable procedure for estimating turbulent heat transfer provided transition occurs at a forward location on the body. For rearward-transition locations, the method is much poorer for the hemispherical nose than for the flat nose. The pressures measured on the hemisphere agreed very well with those of the modified Newtonian theory, whereas the pressures on all other bodies, except on the flat-nosed body, were bracketed by modified Newtonian theory both with and without centrifugal forces. For the hemisphere, the stagnation-point velocity gradient agreed very well with Newtonian theory. The stagnation-point velocity gradient for the flat- nosed model was 0.31 of the value for the hemispherical-nosed model. If a Newtonian type of flow is assumed, the ratio 0.31 will be independent of Much number and real-gas effects.
NASA Technical Reports Server (NTRS)
Bushnell, P.; Gruber, M.; Parzych, D.
1988-01-01
Unsteady blade surface pressure data for the Large-Scale Advanced Prop-Fan (LAP) blade operation with angular inflow, wake inflow and uniform flow over a range of inflow Mach numbers of 0.02 to 0.70 is provided. The data are presented as Fourier coefficients for the first 35 harmonics of shaft rotational frequency. Also presented is a brief discussion of the unsteady blade response observed at takeoff and cruise conditions with angular and wake inflow.
NASA Technical Reports Server (NTRS)
Hoffman, Sherwood; Wolff, Austin L.
1954-01-01
The effect on drag of positioning symmetrically mounted Douglas Aircraft Company, Inc. stores in pairs on a parabolic fuselage of fineness ratio 10.0 has been determined by flight tests of rocket-propelled, zero-lift models through a range of Mach number from 0.9 to 1.8. The stores were mounted in half-submerged positions and on pylons and were tested in three longitudinal locations on the fuselage with the forward position being located at the maximum diameter of the fuselage. The effects on drag of removing the half-submerged stores or extending them outward on pylons also was investigated by tests of models with half-submerged-store cavities on the fuselage. Two pylons differing in airfoil section and thickness were tested at the forward position of the stores on the fuselage with cavities. The half-submerged stores gave the smallest drag increments, which were approximately equal regardless of their respective longitudinal locations. Removing the half-submerged stores to expose the cavities increased the drag increments from two to three times. For the pylon-mounted stores, the store in the midposition had less drag than in the forward or rear positions at supersonic speeds. Adding the half-submerged-store cavities to the pylon-mounted-store configurations reduced the drag at the rear position between Mach numbers 0.95 and 1.50 and increased the drag at the midposition throughout the speed range. Changing from the 6-percent-thick flat pylon to the 10-percent-thick airfoil pylon increased the total drag slightly above Mach number 1.10. Good agreement was obtain& between the experimental and theoretical interference drag coefficients for the pylon-mounted stores (without fuselage cavities} in the three longitudinal locations tested at Mach numbers 1.2 and 1.5.
Formation of quasiparallel Alfven solitons
NASA Technical Reports Server (NTRS)
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Toroidal Alfven wave stability in ignited tokamaks
Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.
1989-01-01
The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.
NASA Technical Reports Server (NTRS)
Lee, J. B.; Basford, R. C.
1957-01-01
As a continuation of an investigation of the ejection release characteristics of an internally carried MB-1 rocket in the Convair F-106A airplane, fin modifications at additional Mach numbers and simulated altitudes have been studied in the 27- by 27-inch preflight jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. The MB-1 rocket was ejected with fins open, fins closed, fins closed with a shroud around the fins, and fins folded with a "boattail" placed in between the fins. Dynamically scaled models (0.0^956 scale) were tested at simulated altitudes of 12,000, 18,850, and 27,500 feet at subsonic Mach numbers and at 18,850, 27,500, and 40,000 feet for Mach numbers of 1-39, 1-59, and 1.98. Successful ejections can be obtained for over 10 store diameters from release point by the use of a shroud around the folded fins with the proper ejection velocity and nose-down pitching moment at release. In one case investigated it was found desirable to close off the front one-third of the bomb bay. It appeared that the fins should be opened after release and within 5 "to 6 rocket diameters if no modifications are made on the rocket. An increase in fuselage angle of attack caused higher nose-up pitch rates after release.
NASA Technical Reports Server (NTRS)
Wallskog, Harvey A.
1954-01-01
A 1/5-scale, rocket-propelled model of the Convair F-102 configuration was tested in free flight to determine zero-lift drag at Mach numbers up to 1.34 and at Reynolds numbers comparable to those of the full-scale airplane. This large-scale model corresponded to the prototype airplane and had air flow through the duct. Additional zero-lift drag tests involved a series of small equivalent bodies of revolution which were launched by means of a helium gun. The several small-scale models tested corresponded to: the basic configuration, the 1/5-scale rocket-propelled model configuration, a 2-foot (full-scale) fuselage-extension configuration, and a 7-foot (full-scale) fuselage-extension configuration. Models designed to correspond to the area distribution at a Mach number of 1.0 were flown for each of these 'shapes and, in addition, models designed to correspond to the area distribution at a Mach number of 1.2 were flown for the 1/5-scale rocket-propelled model and the 7-foot-fuselage-extension configuration. The value of external pressure drag coefficient (including base drag) obtained from the large-scale rocket model was 0.0190 at a Mach number of 1..05 and the corresponding values from the equivalent-body tests varied from 0.0183 for the rocket-propelled model shape to 0.0137 for the 7-foot-fuselage-extension configuration. From the results of tests of equivalent bodies designed to correspond to the area distribution at a Mach number of 1.0, it is evident that the small changes in shape incorporated in the basic and 2-foot-fuselage-extension configurations from that of the rocket-propelled model configuration will provide no significant change in pressure drag. On the other hand, the data from the 7-foot-fuselage-extension model indicate a substantial reduction in pressure drag at transonic speeds.
NASA Technical Reports Server (NTRS)
Black, D. M.; Menthe, R. W.; Wainauski, H. S.
1978-01-01
The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of from 15 to 28 percent may be realized by the use of an advanced high speed turboprop. The turboprop must be capable of high efficiency at Mach 0.8 above 10.68 km (35,000 ft) altitude if it is to compete with turbofan powered commercial aircraft. An advanced turboprop concept was wind tunnel tested. The model included such concepts as an aerodynamically integrated propeller/nacelle, blade sweep and power (disk) loadings approximately three times higher than conventional propeller designs. The aerodynamic design for the model is discussed. Test results are presented which indicate propeller net efficiencies near 80 percent were obtained at high disk loadings at Mach 0.8.
Kinetic Alfven waves on auroral field lines
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1984-01-01
It is suggested on the basis of several observations of Alfven waves near auroral arcs that kinetic Alfven waves play a significant role in the process of particle acceleration. The characteristic properties of kinetic Alfven waves are summarized according to the theoretical classifications provided by Hasegawa and Mima (1979). The resonant coupling of large-scale surface waves to kinetic Alfven waves is also discussed. It is shown that kinetic Alfven waves can explain observations of what have previously been known as 'electrostatic' shocks.
NASA Technical Reports Server (NTRS)
Madden, Robert T; Kremzier, Emil J
1951-01-01
Investigation to determine lift, drag, and pitching-moment characteristics of several engine-strut-body combinations was conducted over range of angles of attack from 0 degrees to 10 degrees at Mach numbers of 1.8 and 2.0. The average Reynolds number based on body length was 28x106. Data are presented without analysis and indicate decreases in minimum drag and lift curve slope with decreasing in minimum drag and lift curve slope with decreasing strut length. Decreases in minimum drag also noted with rear-ward movement of engines.
NASA Technical Reports Server (NTRS)
Vahl, W. A.
1982-01-01
Experimental tests have been conducted to determine possible aerodynamic interference effects due to the lateral positioning of two dimensional propulsion nacelles mounted on a wing surface in close proximity to a vehicle body. The tests were conducted at a Mach number of 6 and a Reynolds number 7 million per foot. The angle of attack range for force tests was -9 deg to 9 deg. The model configurations consisted of combinations of rectangular and trapezoidal cross section bodies with a wing swept 65 and a rectangular planform wing. A pair of two dimensional, flow through propulsion nacelles simulated full capture inlet operation.
A Whitham-Theory Sonic-Boom Analysis of the TU-144 Aircraft at a Mach Number of 2.2
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1999-01-01
. Therefore, an analysis of the Tu-144 was made to obtain predictions of pressure signature shape and shock strengths at cruise conditions so that the range and characteristics of the required pressure gages could be determined well in advance of the tests. Cancellation of the sonic-boom signature measurement part of the tests removed the need for these pressure gages. Since CFD methods would be used to analyze the aerodynamic performance of the Tu-144 and make similar pressure signature predictions, the relatively quick and simple Whitham-theory pressure signature predictions presented in this paper could be used for comparisons. Pressure signature predictions of sonic-boom disturbances from the Tu- 144 aircraft were obtained from geometry derived from a three-view description of the production aircraft. The geometry was used to calculate aerodynamic performance characteristics at supersonic-cruise conditions. These characteristics and Whitham/Walkden sonic-boom theory were employed to obtain F-functions and flow-field pressure signature predictions at a Mach number of 2.2, at a cruise altitude of 61000 feet, and at a cruise weight of 350000 pounds.
NASA Technical Reports Server (NTRS)
Trexler, C. A.; Souders, S. W.
1975-01-01
The development of a concept for a modular supersonic combustion ramjet which is designed to integrate with the airframe of a hypersonic vehicle is presented. The design philosophy and results of experiments at Mach 6 to evaluate the performance of the scramjet inlet are given. The inlet was designed with modest contraction ratio, fixed geometry, and three fuel injection struts which contributed to the inlet flow compression and provided a short combustor design that resulted in low internal cooling requirements. Results indicate that the inlet performance is well within the acceptable range for high engine performance.
NASA Technical Reports Server (NTRS)
Henning, Allen B.
1959-01-01
Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.
NASA Technical Reports Server (NTRS)
Guy, Lawrence D; Hadaway, William M
1955-01-01
Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.
NASA Technical Reports Server (NTRS)
Allison, D. O.
1976-01-01
A 20.8 percent-thick airfoil shape was designed to have shockless inviscid flow at a Mach number of 0.68 and a lift coefficient of 0.40. In order to determine the actual airfoils which would yield this same shockless flow when viscous effects are included, boundary layer displacement thicknesses were subtracted from the inviscid shape for Reynolds numbers of 100 and 35 million. This process yielded airfoils with thicknesses of 20.7 and 20.6 percent, respectively. Subtraction of boundary layer displacement thicknesses for Reynolds numbers below 35 million yielded nonphysical airfoils, that is airfoils with negative thicknesses near tHe trailing edge. The pitching moment about the quarter-chord point at the design condition was -0.082 for the inviscid shape and, consequently, for both airfoils. Off-design calculations for the two airfoils were made using a computer program which provides for the interaction of the inviscid flow and boundary layer solutions. The pressure distributions of the airfoils were shockless for conditions from the design point to lower Mach numbers and lift coefficients. No boundary layer separation was predicted except in the last 3 percent chord on the upper surface.
Highly Alfvenic Slow Solar Wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
NASA Technical Reports Server (NTRS)
Schmeer, James W.; Cassetti, Marlowe D.
1960-01-01
An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model with the outer wing panels swept 75 deg. has been conducted in the Langley 16-foot transonic tunnel. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. The engine nacelles incorporated swept lateral and vertical fins for aerodynamic stability and control. Jet-off data were obtained with flow-through nacelles, simulating inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained at Mach numbers from 0.60 to 1.05 through a range of angles of attack and angles of side-slip. Control characteristics were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control. The results indicate that the basic wing-body configuration becomes neutrally stable or unstable at a lift coefficient of 0.15; addition of nacelles with fins delayed instability to a lift coefficient of 0.30. Addition of nacelles to the wing-body configuration increased minimum drag from 0.0058 to 0.0100 at a Mach number of 0.60 and from 0.0080 to 0.0190 at a Mach number of 1.05 with corresponding reductions in maximum lift-drag ratio of 12 percent and 33 percent, respectively. The nacelle-fin combinations were ineffective as longitudinal controls but were adequate as directional and lateral controls. The model with nacelles and fins was directionally and laterally stable; the stability generally increased with increasing lift. Jet interference effects on stability and control characteristics were small but the adverse effects on drag were greater than would be expected for isolated nacelles.
Do interplanetary Alfven waves cause auroral activity?
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron; Goldstein, Melvyn L.
1990-01-01
A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.
NASA Technical Reports Server (NTRS)
Goelzer, H Fred; Cortright, Edgar M , Jr
1951-01-01
Experimental investigation was conducted at Mach number 1.88 to determine performance characteristics of half a 50 degree-conical-spike inlet mounted on a flat plate. Initial boundary layer was removed up-stream of inlet by a ram-type scoop of variable height. Initial boundary-layer thickness was also varied. With complete removal of initial boundary layer, total-pressure recovery of approximately 70 percent. Several alternative boundary-layer-removal systems were investigated which decreased the adverse effect of operating the ram scoop sub-critically.
NASA Technical Reports Server (NTRS)
Robinson, Ross B
1957-01-01
An investigation has been made in the Langley 4-by-4-foot supersonic pressure tunnel to determine the aerodynamic characteristics of a series of missile configurations having low-aspect-ratio wings at a Mach number of 2.01. The effects of wing plan form and size, length-diameter ratio, forebody and afterbody length, boattailed and flared afterbodies, and component force and moment data are presented for combined angles of attack and sideslip to about 28 degrees. No analysis of the data was made in this report.
NASA Technical Reports Server (NTRS)
Graves, E. B.; Fournier, R. H.
1979-01-01
The tests were performed at a Mach number of 2.50 and at angles of attack from about -4 deg to 32 deg. The results indicate that increasing nose bluntness increases zero lift drag and decreases both the maximum lift-drag ratio and the level of directional stability. The center of pressure generally moves forward with increasing nose size; however, small nose radii on the modified elliptical configurations move the center of pressure rearward. The circular bodied configurations exhibit the greatest longitudinal stability and the least directional stability. Concepts with the variable geometry afterbody contour display the most directional stability and the greatest zero lift drag.
NASA Technical Reports Server (NTRS)
Morrow, John D; Katz, Ellis
1955-01-01
Results of an exploratory free-flight investigation at zero lift of several rocket-powered drag-research models having rectangular 6-percent-thick wings are presented for a Mach number range of 0.6 to 1.7. Wings having diamond, circular-arc, and blunt-trailing-edge airfoil sections were tested. Pressures over the base of the blunt-trailing-edge airfoil were measured. The drags of all the models were measured and are compared with theory in this paper.
NASA Technical Reports Server (NTRS)
Delano, James B
1951-01-01
As part of a general investigation of propellers at high forward speeds, tests of two-blade propellers having the NACA 4-(5)(08)-03 and NACA 4-(10)(08)-03 blade designs were made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.70 to determine the effect of camber and compressibility on propeller characteristics. Results previously reported for similar tests of a two-blade propeller having the NACA 4-(3)(08)-03 blade design are included for comparison.
NASA Technical Reports Server (NTRS)
Kilgore, R. A.; Davenport, E. E.
1975-01-01
Wind tunnel tests were conducted using a model of a proposed manned lifting entry vehicle to determine the aerodynamic damping and oscillatory stability in pitch. The model was tested at Mach numbers of 1.80, 2.16, and 2.86. Angles of attack varied from minus 2 degrees to plus 30 degrees at zero angle of sideslip using a small-amplitude, forced-oscillation technique. It was determined that, in general, all the configurations have near zero or slightly positive damping in pitch throughout the angle of attack range. The effects of the deflection of flaps on aerodynamic damping are discussed.
Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; White, R. B.; Yakovenko, Yu. V.
2004-09-17
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E.
NASA Technical Reports Server (NTRS)
Norton, Harry T., Jr.; Keith, Arvid L., Jr.
1960-01-01
An investigation of four exhaust-nozzle-afterbody combinations has been conducted in the Langley 9- by 12-inch blowdown tunnel at Mach numbers of 1.93, 2.55, and 3.05. The models were tested on a pylon-mounted nacelle and the jet exhaust was simulated with cold air. Base bleed w a s varied from 0 to about 12 percent of the primary jet weight flow and was discharged in to the base region through either a sonic or supersonic bleed nozzle. The models were tested at zero degree angle of attack and the Reynolds number range was from 8 x 10(exp 6) to 9 x 10(exp 6) per foot. The results indicate that the base pressure and the performance of the exhaust-nozzle-afterbody combinations were little affected gy the high-velocity base bleed. The efficiency of the terminal-fairing model was only slightly less than that of the convergent-divergent nozzle-afterbody combinations; this difference indicates the loss associated with improved transonic efficiency at higher Mach numbers.
NASA Technical Reports Server (NTRS)
Crabill, Norman L.
1956-01-01
The National Advisory Committee for Aeronautics has conducted a flight test of a model approximating the McDonnell F3H-lN airplane configuration to determine its pitch-up and buffet boundaries, as well as the usual longitudinal stability derivatives obtainable from the pulsed- tail technique. The test was conducted by the freely flying rocket- boosted model technique developed at the Langley Laboratory; results were obtained at Mach numbers from 0.40 to 1.27 at corresponding Reynolds numbers of 2.6 x 10(exp 6) and 9.0 x 10(exp 6). The phenomena of pitch-up, buffet, and maximum lift were encountered at Mach numbers between 0.42 and 0.85. The lift-curve slope and wing-root bending-moment slope increased with increasing angle of attack, whereas the static stability decreased with angle of attack at subsonic speeds and increased at transonic speeds. There was little change in trim at low lift at transonic speeds.
Stabilizing effect of ionized background of trans-Alfvenic expansion of exploding plasmas
Zakharov, Yu.P.; Ponomarenko, A.G.; Dudnikova, G.I.; Vshivkov, V.A.
1995-12-31
Recently a lot of theoretical and numerical calculations have been performed devoted to the study of Large-Larmor-Flute Instability (LLFI). Such instability was discovered initially in laboratory and later in active experiments (AMPTE, CRRES) on expansion of a quasispherical plasma cloud in a ``vacuum`` magnetic field {rvec B}{sub 0}. In the laser-produced plasma experiments at KI-1 facility it was established for the first time, that such non-MHD instability and LHD-instability of skin-layer may effectively be suppressed by ionized background at high-Alfven Mach numbers M{sub A} {much_gt} 1 as well as in a transient regime M{sub A} {approximately} 1. In the present paper on the basis of laboratory and computer simulation the value of M{sub A} was defined more exactly and other similarity parameters characterizing the development of LLFI was founded. The laser experiments were realized in hydrogen and argon background plasmas. The computer simulations were carried out with 2D electromagnetic hybrid code. It was exposed the transition from flute increase to decrease one when M{sub A} changed from M{sub A} = 1 to M{sub A} = 3.
NASA Technical Reports Server (NTRS)
Bushnell, Peter
1988-01-01
The aerodynamic pressure distribution was determined on a rotating Prop-Fan blade at the S1-MA wind tunnel facility operated by the Office National D'Etudes et de Recherches Aerospatiale (ONERA) in Modane, France. The pressure distributions were measured at thirteen radial stations on a single rotation Large Scale Advanced Prop-Fan (LAP/SR7) blade, for a sequence of operating conditions including inflow Mach numbers ranging from 0.03 to 0.78. Pressure distributions for more than one power coefficient and/or advanced ratio setting were measured for most of the inflow Mach numbers investigated. Due to facility power limitations the Prop-Fan test installation was a two bladed version of the eight design configuration. The power coefficient range investigated was therefore selected to cover typical power loading per blade conditions which occur within the Prop-Fan operating envelope. The experimental results provide an extensive source of information on the aerodynamic behavior of the swept Prop-Fan blade, including details which were elusive to current computational models and do not appear in the two-dimensional airfoil data.
Samir, U.; Wildman, P.J.; Rich, F.; Brinton, H.C.; Sagalyn, R.C.
1981-12-01
Measurements of ion current, electron temperature, and density and values of satellite potential from the U.S. Air Force Satellite S3-2 together with ion composition measurements from the Atmosphere Explorer (AE-E) satellite were used to examine the variation of the ratio ..cap alpha.. = (I/sub +/(wake))/(I/sub +/(ambient)) (where I/sub +/ is the ion current) with altitude and to examine the significance of the parametric interplay between ionic Mach number, normalized body size R/sub D/( = R0/lambda/sub D/, where R/sub 0/ is the satellite radius and lambda/sub D/ is the ambient debye length) and normalized body potenital phi/sub N/( = ephis/KT/sub e/, where phi/sub s/ is the satellite potential, T/sub e/ is the electron temperature, and e and K are constants). It was possible to separate between the influence of R/sub D/ and phi/sub N/ on ..cap alpha.. for a specific range parameters. Uncertainty, however, remains regarding the competiton between R/sub D/ and S(H/sup +/) and S(O/sup +/) are oxygen and hydrogen ionic Mach numbers, respectively) in determining the ion distribution in the nearest vicincity to the satellite surface. A brief discussion relevant to future experiments in the area of body plasma flow interactions to be conducted on board the Shuttle/Spacelab facility, is also included.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1978-01-01
The efficacy of using a ram-air-jet spoiler roll control device on a typical canard-controlled missile configuration was investigated. For roll control comparisons, conventional aileron controls on the tail fins were also tested. The results indicate that the roll control of the ram-air-jet spoiler tail fins at the highest free-stream Mach number compared favorably with that of the conventional 11-70 area-ratio tail fin ailerons, each deflected 10 deg. The roll control of the tail fin ailerons decreased while that of the ram-air-jet spoiler increased with free-stream Mach number. The addition of the ram-air-jet spoiler tail fins or flow-through tip chord nacelles on the tail fins resulted in only small changes in basic missile longitudinal stability. The axial force coefficient of the operating ram-air-jet spoiler is significantly larger than that of conventional ailerons and results primarily from the total pressure behind a normal shock in front of the nacelle inlets.
NASA Technical Reports Server (NTRS)
Johns, A. L.
1980-01-01
A test was conducted to determine the flow characteristics of the Titan forward skirt compartment vent over a free stream Mach number range of 0.80 to 1.96. The vent was mounted in a flat plate and the plate was flush mounted to the tunnel side wall with coinciding center lines. Air was discharged from a duct, located on the tunnel side wall behind the plate, through a canted aft 30 deg honeycomb vent into the free stream. Data for the analysis of the Titan forward skirt compartment venting during ascent through the atmosphere are provided. Full scale simulated flight hardware, such as the honeycomb vent, duct corrugations and field joint ring were used. Boundary layer thicknesses were used to vary boundary height. The highest vent discharge coefficient for any given Mach number and vent pressure ratio generally occurred at the maximum displacement thickness. With no vent flow the static pressure in the vent region was generally less than the free stream static pressure. With vent flow, the static pressures upstream of the vent increased, and those downstream of the vent decreased.
NASA Technical Reports Server (NTRS)
Rohrbach, C.; Metzger, F. B.; Black, D. M.; Ladden, R. M.
1982-01-01
The increased emphasis of fuel conservation in the world and the rapid increase in the cost of jet fuel has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. The results of these studies indicate that a fuel saving of 15 to 30 percent may be realized by the use of an advanced high-speed turboprop (Prop-Fan) compared to aircraft equipped with high bypass turbofan engines of equivalent technology. The Prop-Fan propulsion system is being investigated as part of the NASA Aircraft Energy Efficient Program. This effort includes the wind tunnel testing of a series of 8 and 10-blade Prop-Fan models incorporate swept blades. Test results indicate efficiency levels near the goal of 80 percent at Mach 0.8 cruise and an altitude of 10.67 km (35,000 ft). Each successive swept model has shown improved efficiency relative to the straight blade model. The fourth model, with 45 deg swept blades reported herein, shows a net efficiency of 78.2 at the design point with a power loading of 301 kW/sq meter and a tip speed of 243.8 m/sec (800 ft/sec.).
NASA Technical Reports Server (NTRS)
Hunt, L. Roane; Notestine, Kristopher K.
1990-01-01
Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.
1993-01-01
A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.
1993-01-01
A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.
1989-01-01
An experimental and analytical study was conducted at Mach 0.7 to investigate the effects of spanwise curvature on flutter. Two series of rectangular planform wings of aspect ration 1.5 and curvature ranging from zero (uncurved) to 1.04/ft were flutter tested in the NASA Langley Transonic Dynamics Tunnel (TDT). One series consisted of models with a NACA 65 A010 airfoil section and the other of flat plate cross section models. Flutter analyses were conducted for correlation with the experimental results by using structural finite element methods to perform vibration analysis and two aerodynamic theories to obtain unsteady aerodynamic load calculations. The experimental results showed that for one series of models the flutter dynamic pressure increased significantly with curvature while for the other series of models the flutter dynamic pressure decreased with curvature. The flutter analyses, which generally predicted the experimental results, indicated that the difference in behavior of the two series of models was primarily due to differences in their structural properties.
Nonlinear inertial Alfven wave in dusty plasmas
Mahmood, S.; Saleem, H.
2011-11-29
Solitary inertial Alfven wave in the presence of positively and negatively charged dust particles is studied. It is found that electron density dips are formed in the super Alfvenic region and wave amplitude is increased for the case of negatively charged dust particles in comparison with positively charged dust particles in electron-ion plasmas.
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
Ship wakes: Kelvin or Mach angle?
Rabaud, Marc; Moisy, Frédéric
2013-05-24
From the analysis of a set of airborne images of ship wakes, we show that the wake angles decrease as U(-1) at large velocities, in a way similar to the Mach cone for supersonic airplanes. This previously unnoticed Mach-like regime is in contradiction with the celebrated Kelvin prediction of a constant angle of 19.47° independent of the ship's speed. We propose here a model, confirmed by numerical simulations, in which the finite size of the disturbance explains this transition between the Kelvin and Mach regimes at a Froude number Fr=U/√[gL]~/=0.5, where L is the hull ship length. PMID:23745883
Global structures of Alfven-ballooning modes in magnetospheric plasmas
Vetoulis, G.; Chen, L.
1994-09-15
The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to field line resonances. These have been called drift Alfven ballooning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during the recovery phase of geomagnetic storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations. 7 refs., 3 figs.
NASA Technical Reports Server (NTRS)
Garrett, L. V.; Buchanan, T. D.; Fryberger, P. E.
1988-01-01
An updated Space Shuttle aerodynamic data base was obtained in Tunnel B for two phases of the Glide Return to Launch Site (GRTLS) abort maneuver. One-and-a-quarter percent scale models of the Space Shuttle Orbiter and External Tank were used to measure the effects of various combinations of Reaction Control System (RCS) jet thrusters at Mach number 6. The angle-of-attack range for the isolated orbiter was -10 to 15 deg at sideslip angles from -5 to 10 deg during Phase 1 of testing. The angle-of-attack range for the mated orbiter and external tank was -5 to 15 deg with sideslip angles of -2 to 5 deg during Phase 2. The test was conducted at a unit Reynolds number of 0.75 million per foot.
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Brownson, J. J.
1979-01-01
Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.
NASA Technical Reports Server (NTRS)
Cohen, Robert J
1951-01-01
The effects of fineness ratio (14.2 and 12.2) and boattailing on aerodynamic characteristics of four bodies of revolution at Mach numbers from 1.50 to 1.99 within a range of angles of attack from 0 degrees 10 degrees at an approximate Reynolds number of 35x10(superscript)6 based on body length were investigated. A comparison of experimental data with available theory is included. At zero angle of attack, fineness ratio has no appreciable effect on model characteristics while boattailing and boattail convergence significantly affect fore drag and base drag. At angle of attack the effects are singular. The theory presented by H. J. Allen is a significant improvement over linearized potential theory in predicting aerodynamic characteristics.