Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1995-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1994-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.
NASA Technical Reports Server (NTRS)
Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, A.
1989-01-01
The excitation of the kinetic Alfven wave by resonant mode conversion and longitudinal heating of the plasma by the kinetic Alfven wave were demonstrated on the basis of a macroscale particle simulation. The longitudinal electron current was shown to be cancelled by the ions. The kinetic Alfven wave produced an ordered motion of the plasma particles in the wave propagation direction. The electrons were pushed forward along the ambient magnetic field by absorbing the kinetic Alfven wave through the Landau resonance.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
It had been pointed out by Parker (1974) that the basic cause of the sunspot phenomenon is the enhanced heat transport in the magnetic field of the sunspot. The enhanced transport occurs through convective overstability which operates as a heat engine generating Alfven waves. The characteristics of the convective forces present are investigated along with questions concerning overstability and convectively driven Alfven waves. Relations regarding instability and convectively driven surface waves are discussed and attention is given to individual overstable Alfven modes. It is found that the form of an Alfven wave in the absence of convective forces is entirely arbitrary, so that waves with any arbitrary profile can be fitted into a vertical column of the field without disturbing the fluid outside. With the introduction of convective forces the situation changes so that the presence of lateral boundaries alters the form of the basic wave modes.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Hansen, Shelley C.; Cally, Paul S. E-mail: paul.cally@monash.edu
2012-05-20
Alfven waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvenic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.
Kinetic effects on global Alfven waves
Betti, R.
1992-01-01
A theoretical investigation is carried out on the effects of the kinetic particle response on global type shear-Alfven waves in tokamaks. Two kinds of wave-particle interactions have been identified: (1) resonant interaction between energetic circulating particles and high frequency Alfven waves, (2) nonresonant interaction between trapped particles and low frequency modes. The author focuses on gap modes which are discrete modes whose real frequency lies in gas of the Alfven continuum induced by geometrical effects. A new gap mode, the Ellipticity Induced Alfven Eigenmode (EAE), is induced by the ellipticity of the plasma cross section that couples the m and m + 2 poloidal harmonics. This mode is of the general class as the Toroidicity Induced Alfven Eigenmode (TAE). In configurations with finite ellipticity, the EAE (n; m, m + 2) has a global structure centered about the q = (m + 1)/n surface. In the presence of an energetic ion species any Alfven wave can be destabilized via transit resonance with circulating particles. A sufficient stability criterion is derived for energetic particle-Alfven mode. To include the stabilizing effects of the electron and ion Landau damping a general treatment using a newly derived drift kinetic description of each species is carried out. The analysis has been restricted to Alfven gap modes. Low frequency modes have been investigated using the new drift kinetic model. Focusing on the internal kink mode, the main kinetic contributions arises from trapped particles which process in the toroidal direction. The trapped bulk ions can destabilize the high frequency branch of the internal kink. The numerical solution of the dispersion relation shows that a sharp threshold in [beta][sub p] exists for the instability to grow and that stabilizing effects come from the trapped electron response.
ALFVEN SIMPLE WAVES: EULER POTENTIALS AND MAGNETIC HELICITY
Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D. A.
2010-12-20
The magnetic helicity characteristics of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulae. Two basic Alfven modes are identified: (1) the plane one-dimensional Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis with wave phase {psi} = k{sub 0}(z - {lambda}t), where k{sub 0} is the wave number and {lambda} is the group velocity of the wave and (2) the generalized Barnes simple Alfven wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (1) is analogous to the slab Alfven mode and the generalized Barnes solution (2) is analogous to the two-dimensional mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.
Decay of magnetic helicity producing polarized Alfven waves
Yoshida, Z.; Mahajan, S.M.
1994-02-01
When a super-Alfvenic electron beam propagates along an ambient magnetic field, the left-hand circularly polarized Alfven wave is Cherenkov-emitted (two stream instability). This instability results in a spontaneous conversion of the background plasma helicity to the wave helicity. The background helicity induces a frequency (energy) shift in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it becomes possible for a sub-Alfvenic electron beam to excite a nonsingular Alfven mode.
Electron Signatures and Alfven Waves
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Clemmons, J.; Namgaladze, A. A.; Gustavsson, B.; Wahlund, J.-E.; Eliasson, L.; Yurik, R. Y.
2000-01-01
The electron signatures which appear together with Alfven waves observed by the Freja satellite in the auroral region are reported. Precipitating electrons are detected both with and just before the wave. The observed Alfven waves must therefore be capable of accelerating electrons to higher energies than the local phase velocity of these waves in order for the electrons to move in advance of the wave. The characteristics of such electrons suggest electrons moving infront of the wave have characteristics of origin from warmer and lower density plasma while the electrons moving with the wave have characteristics of cooler and denser plasma. The pitch angle distribution of the electrons moving with the wave indicates that there is continuous acceleration of new particles by the wave, i.e. a propagating Alfven wave is the source of these electrons . A simple model of a propagating source is made to model the electrons that are moving in advance of the wave. Depending on whether accelerated electrons leave the wave above or below the altitude where the Alfven wave has the highest phase velocity, the detected electron signatures will be different; electron dispersion or potential drop like, respectively. It is shown that the Alfven wave acceleration can create electron signatures similar to inverted-V structures.
Macroscale particle simulation of kinetic Alfven waves
NASA Technical Reports Server (NTRS)
Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, Akira
1987-01-01
Two types of simulations of the kinetic Alfven wave are presented using a macroscale particle simulation code (Tanaka and Sato, 1986) which enables individual particle dynamics to be followed in the MHD scales. In this code, low frequency electromagnetic fields are solved by eliminating high frequency oscillations such as the light modes, and the scalar potential electric field is solved by eliminating Lagrangian oscillations. The dependences of the frequency and the Landau damping on the perpendicular wavenumber were studied, and good agreement was found between simulation and theoretical predictions. Some fundamental nonlinear interactions of the kinetic Alfven wave with the particles (parallel acceleration of the electrons) were also noted.
Cascade properties of shear Alfven wave turbulence
NASA Technical Reports Server (NTRS)
Bondeson, A.
1985-01-01
Nonlinear three-wave interactions of linear normal modes are investigated for two-dimensional incompressible magnetohydrodynamics and the weakly three-dimensional Strauss equations in the case where a strong uniform background field B0 is present. In both systems the only resonant interaction affecting Alfven waves is caused by the shear of the background field plus the zero frequency components of the perturbation. It is shown that the Alfven waves are cascaded in wavenumber space by a mechanism equivalent to the resonant absorption at the Alfven resonance. For large wavenumbers perpendicular to B0, the cascade is described by Hamilton's ray equations, dk/dt = -(first-order) partial derivative of omega with respect to vector r, where omega includes the effects of the zero frequency perturbations.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Kinetic Alfven waves on auroral field lines
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1984-01-01
It is suggested on the basis of several observations of Alfven waves near auroral arcs that kinetic Alfven waves play a significant role in the process of particle acceleration. The characteristic properties of kinetic Alfven waves are summarized according to the theoretical classifications provided by Hasegawa and Mima (1979). The resonant coupling of large-scale surface waves to kinetic Alfven waves is also discussed. It is shown that kinetic Alfven waves can explain observations of what have previously been known as 'electrostatic' shocks.
Alfvenic waves in solar spicules
NASA Astrophysics Data System (ADS)
Ebadi, Hossein
2016-07-01
We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.
Toroidal Alfven wave stability in ignited tokamaks
Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.
1989-01-01
The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.
An Alfven wave maser in the laboratory
Maggs, J.E.; Morales, G.J.; Carter, T.A.
2005-01-01
A frequency selective Alfven wave resonator results from the application of a locally nonuniform magnetic field to a plasma source region between the cathode and anode in a large laboratory device. When a threshold in the plasma discharge current is exceeded, selective amplification produces a highly coherent ({delta}{omega}/{omega}<5x10{sup -3}), large amplitude shear Alfven wave that propagates out of the resonator, through a semitransparent mesh anode, into the adjacent plasma column where the magnetic field is uniform. This phenomenon is similar to that encountered in the operation of masers/lasers at microwave and optical frequencies. The current threshold for maser action is found to depend upon the confinement magnetic field strength B{sub 0}. Its scaling is consistent with the condition for matching the drift speed of the bulk plasma electrons with the phase velocity of the mode in the resonator. The largest spontaneously amplified signals are obtained at low B{sub 0} and large plasma currents. The magnetic fluctuations {delta}B associated with the Alfven maser can be as large as {delta}B/B{sub 0}{approx_equal}1.5% and are observed to affect the plasma current. Steady-state behavior leading to coherent signals lasting until the discharge is terminated can be achieved when the growth conditions are well-above threshold. The maser is observed to evolve in time from an initial m=0 mode to an m=1 mode structure in the transition to the late steady state. The laboratory phenomenon reported is analogous to the Alfven wave maser proposed to exist in naturally occurring, near-earth plasmas.
Global Alfven modes: Theory and experiment
Turnbull, A.D.; Strait, E.J.; Heidbrink, W.W.; Chu, M.S.; Duong, H.H.; Greene, J.M.; Lao, L.L.; Taylor, T.S.; Thompson, S.J. )
1993-07-01
It is shown that the theoretical predictions and experimental observations of toroidicity-induced Alfven eigenmodes (TAE's) are now in good agreement, with particularly detailed agreement in the mode frequencies. Calculations of the driving and damping rates predict the importance of continuum damping for low toroidal mode numbers and this is confirmed experimentally. However, theoretical calculations in finite-[beta], shaped discharges predict the existence of other global Alfven modes, in particular the ellipticity-induced Alfven eigenmode (EAE) and a new mode, the beta-induced Alfven eigenmode (BAE). The BAE mode is calculated to be in or below the same frequency range as the TAE mode and may contribute to the experimental observations at high [beta]. Experimental evidence and complementary analyses are presented confirming the presence of the EAE mode at higher frequencies.
Nonlinear waves in an Alfven waveguide
Dmitrienko, I.S.
1992-06-01
A nonlinear Schroedinger equation is derived for the envelopes of weakly nonlinear quasilongitudinal (k{sub 1}<{radical}{omega}/{omega}{sub i}k{sub {parallel}}) Alfven waves in a waveguide, the existence of which is ensured by the presence of ion inertia (m{sub i}{ne}0) in a plasma with a transverse density gradient. It is shown that the nonlinear properties of such waves are associated with the presence of transverse structure in the waveguide modes. Estimates show that weakly nonlinear processes can have a significant effect on the dynamics of Pc 1 geomagnetic pulsations. 7 refs.
Nonlinear inertial Alfven wave in dusty plasmas
Mahmood, S.; Saleem, H.
2011-11-29
Solitary inertial Alfven wave in the presence of positively and negatively charged dust particles is studied. It is found that electron density dips are formed in the super Alfvenic region and wave amplitude is increased for the case of negatively charged dust particles in comparison with positively charged dust particles in electron-ion plasmas.
Do interplanetary Alfven waves cause auroral activity?
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron; Goldstein, Melvyn L.
1990-01-01
A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.
Global structures of Alfven-ballooning modes in magnetospheric plasmas
Vetoulis, G.; Chen, Liu
1994-03-01
The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations.
Alfven Wave Propagation in Inhomogeneous Plasmas
NASA Astrophysics Data System (ADS)
Sears, Stephanie
Damping of Alfven waves is one of the most likely mechanisms for ion heating in the solar corona. Density gradients have significant but poorly-understood effects on energy transfer and Alfven wave propagation in partially ionized plasmas, such as those found in the solar chromosphere. Reflection of Alfven waves at density and magnetic field gradients can give rise to turbulence which sustains particle heating. The density profile in the Hot hELIcon eXperiment (HELIX) varies strongly with radius, giving access to a wide range of Alfven dynamics across the plasma column and providing an ideal environment to observe Alfven wave-driven particle heating. A new internal wave-launching antenna, situated at the edge of the high-density core and the density-gradient region of HELIX has been used to excite low-frequency waves in argon plasma. The propagation behavior of the launched waves was measured with a small-scale (smaller than the ion gyroradius) magnetic sense coil at multiple radial locations across the plasma column (from the high-density core through the density gradient region). Time-resolved laser induced fluorescence (LIF) and Langmuir probe measurements also yield insight into the plasma response to the perturbation. This dissertation presents cross-spectral and wavelet analysis of low-frequency waves in a helicon plasma with a strong density gradient. Building on the work of Houshmandyar, shear Alfven waves were launched in a helicon plasma source with a strong density gradient. Alfven wave turbulence is suggested from phase angle and wavelet analysis of magnetic sense coil probe measurements. The perturbation wavelength derived from phase angle measurements is consistent with predictions from the full Alfven wave dispersion relation (taking electron Landua damping, electron-ion collisions, and finite frequency effects into account). Time-resolved LIF measurements across the plasma column suggest ion heating where the turbulence is strongest. Time
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves
NASA Astrophysics Data System (ADS)
Namikawa, T.; Hamabata, H.
1983-04-01
The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.
THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING
Antolin, P.; Shibata, K. E-mail: shibata@kwasan.kyoto-u.ac.j
2010-03-20
In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. New observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfven wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s{sup -1}) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several
Alfven Wave Tomography for Cold MHD Plasmas
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Alfven wave. DOE Critical Review Series
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Nonlinear evolution of astrophysical Alfven waves
NASA Technical Reports Server (NTRS)
Spangler, S. R.
1984-01-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.
Beam Distribution Modification By Alfven Modes
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2010-01-25
Modification of a deuterium beam distribution in the presence of low amplitude Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes in a toroidal magnetic confinement device is examined. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.
Beam Distribution Modification by Alfven Modes
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2010-04-03
Modification of a deuterium beam distribution in the presence of low amplitude Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes in a toroidal magnetic confinement device is examined. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-01-20
To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V{sub SW}) and analyze its orientation with respect to the local background magnetic field B{sub 0,local}. As an example, we take only measurements made in an outward magnetic sector. When B{sub 0,local} is quasi-perpendicular to V{sub SW}, we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B{sub 0,local}, a property that is characteristic of an oblique Alfven wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B{sub 0,local}, thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle ({theta}{sub kB}) increases toward 90 Degree-Sign . Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B{sub 0,local} seems to indicate that oblique Alfven/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Kinetic Alfven Wave Electron Acceleration on Auroral Field Lines
NASA Technical Reports Server (NTRS)
Kletzing, Craig A.
2001-01-01
Major results of the S3-3 Langmuir sweep study are published. Studies show statistics and average density and temperature variation on auroral field lines up to 8000 km altitude. Alfven wave papers were published. Our model of Alfven wave propagation on auroral field lines was successfully extended to handle varying density and magnetic field for the inertial mode. The study showed that Alfven wave can create time-dispersed electron signatures. A study was undertaken to extend Langmuir sweep I-V curves to handle the case of an kappa electron distribution as well as Maxwellian. The manuscript is in preparation. Participated in International Space Science Institute study of Alfvenic structures which resulted in a group review paper. The proposed work was to develop an extended model of Alfven wave propagation along auroral field lines to study electron acceleration. As part of this work, a major task was to characterize density and temperature along auroral field lines by using spacecraft Langmuir sweep data. The work that was completed under this funding was successful at both tasks. Three papers have been published as part of this work and a fourth manuscript is in preparation.
PULSED ALFVEN WAVES IN THE SOLAR WIND
Gosling, J. T.; Tian, H.; Phan, T. D.
2011-08-20
Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.
Nonlinear Evolution of Alfvenic Wave Packets
NASA Technical Reports Server (NTRS)
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Electron acceleration by inertial Alfven waves
Thompson, B.J.; Lysak, R.L.
1996-03-01
Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when the transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.
Global structures of Alfven-ballooning modes in magnetospheric plasmas
Vetoulis, G.; Chen, L.
1994-09-15
The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to field line resonances. These have been called drift Alfven ballooning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during the recovery phase of geomagnetic storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations. 7 refs., 3 figs.
Stationary nonlinear Alfven waves and solitons
NASA Technical Reports Server (NTRS)
Hada, T.; Kennel, C. F.; Buti, B.
1989-01-01
Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.
Weakening of magnetohydrodynamic interchange instabilities by Alfven waves
Benilov, E. S.; Hassam, A. B.
2008-02-15
Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.
BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA
Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu
2011-09-10
Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.
Effects of unequal particle number densities on Alfven waves
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1989-01-01
Analytic plasma theory and numerical solutions of the dispersion equation are used to show that the assumption that the linear properties of the waves are determined by a charge-neutral plasma in the absence of the nonthermal particles, while the nonthermal particles cause growth or additional damping superposed onto the background, is seriously flawed even for stable plasmas. Even when the nonthermal particles do not contribute significantly to the dispersion equation, unequal thermal electron and ion number densities (due to the presence of the nonthermal particles) may cause fundamental low wave number modifications to the Alfven modes, including the creation of a new resonance and severely modified dispersion. These results are found for both cold and warm plasmas. Previous work on Alfven waves should be reevaluated in view of these results.
Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system
Hiraki, Yasutaka; Watanabe, Tomo-Hiko
2012-10-15
Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.
Growing 'Alfvenic' modes in the upstream region of Saturn
NASA Technical Reports Server (NTRS)
Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.
1994-01-01
Recent studies of low-frequency electromagnetic waves upstream of the Saturn bow shock have shown that these waves, in contrast to those at Earth, are observed not in one, but in at least two, distinct frequency bands. The results of wave mode identification based on the Hall-magnetohydrodynamic (MHD) model of plasma and observed wave polarization suggested that these waves propagate in the high beta intermediate mode. However, the underlying instability was not unambiguously determined. In the present paper we use the full electromagnetic dispersion relation derived from linear Vlasov theory in order to examine which of the plasma modes, with observed properties, are unstable in an isotropic Maxwellian plasma in the presence of backstreaming proton beams consistent with Voyager 2 observations at Saturn. As a result we find that the unstable 'Alfvenic' beam mode, as well as resonant and non-resonant fast magnetosonic modes have properties consistent with the data. Moreover, we find that in contrast to the Earth's upstream waves, at Saturn no 'kinetic' normal mode can account for the observed magnetic polarization.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Anisotropic Alfven-ballooning modes in the Earth's magnetosphere
Chan, A.A. . Dept. of Physics and Astronomy); Xia, Mengfen . Dept. of Physics); Chen, Liu . Plasma Physics Lab.)
1993-05-01
We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P[perpendicular] > P[parallel]. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value [beta][sub o][sup B] [approx] 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P[parallel] > P[perpendicular], or due to increased ballooning-mirror destabilization when P[perpendicular] > P[parallel]. We use a [beta]-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters [bar [beta
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Shah, H. A.; Ali, Z.; Masood, W.
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Generation of magnetoacoustic zonal flows by Alfven waves in a rotating plasma
Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Tsypin, V. S.; Smolyakov, A. I.; Galvao, R. M. O.
2007-08-15
Analytical theory of nonlinear generation of magnetoacoustic zonal flows in a rotating plasma is developed. As the primary modes causing such a generation, a totality of the Alfven waves are considered, along with the kinetic, inertial, and rotational. It is shown that in all these cases of the Alfven waves the generation is possible if the double plasma rotation frequency exceeds the zonal flow frequency.
Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.
1989-01-01
A two-dimensional quasi-linear numerical code was developed for studying ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves. The model assumes that the central plasma sheet is the particle source, and that the last magnetic field lines on which kinetic Alfven waves exist and diffusion occurs can be either open or closed. As the possible source for the excitement of the kinetic Alfven waves responsible for ion diffusion, the resonant mode conversion of the surface waves to kinetic Alfven waves is considered. It is shown that, depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., on whether field lines are open or closed, the ion distribution function may or may not reach a steady state.
Global particle-in-cell simulations of Alfvenic modes
Mishchenko, A.; Koenies, A.; Hatzky, R.
2008-11-01
Global linear gyro-kinetic particle-in-cell (PIC) simulations of electromagnetic modes in pinch and tokamak geometries are reported. The Toroidal Alfven Eigenmode and the Kinetic Ballooning Mode have been simulated. All plasma species have been treated kinetically (i.e. no hybrid fluid-kinetic or reduced-kinetic model has been applied). The main intention of the paper is to demonstrate that the global Alfven modes can be treated with the gyro-kinetic PIC method.
Theory of semicollisional kinetic Alfven modes in sheared magnetic fields
Hahm, T.S.; Chen, L.
1985-02-01
The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum.
Ulysses Observations of Alfven and Magnetosonic Waves at High Latitude
NASA Technical Reports Server (NTRS)
Smith, Edward J.
1997-01-01
Ulysses observations provide a unique opportunity to study diverse problems related to Alfven and magnetosonic waves. The large amplitude of the Alfven waves influences the distribution functions of the spiral angle, the azimuthal field component and, possibly, the radial component such that their averages are not equal to their most probable values.
Global particle-in-cell simulations of plasma pressure effects on Alfvenic modes
Mishchenko, Alexey; Koenies, Axel; Hatzky, Roman
2011-01-15
Global linear gyrokinetic particle-in-cell simulations of electromagnetic modes in realistic tokamak geometry are reported. The effect of plasma pressure on Alfvenic modes is studied. It is shown that the fast-particle pressure can considerably affect the shear Alfven wave continuum structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely stabilize them in a certain parameter range). Ballooning modes are found to be the dominant instabilities if the bulk-plasma pressure gradient is large enough.
Investigation of an ion-ion hybrid Alfven wave resonator
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.
2013-01-15
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
Modulational instability of finite-amplitude, circularly polarized Alfven waves
NASA Technical Reports Server (NTRS)
Derby, N. F., Jr.
1978-01-01
The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.
Ducted kinetic Alfven waves in plasma with steep density gradients
Houshmandyar, Saeid; Scime, Earl E.
2011-11-15
Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.
Alfven waves and associated energetic ions downstream from Uranus
Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )
1991-02-01
The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.
Experiment to Study Alfven Wave Propagation in Plasma Loops
NASA Astrophysics Data System (ADS)
Kendall, Mark; Bellan, Paul
2010-11-01
Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.
Possible evidence for coronal Alfven waves
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Bird, M. K.; Volland, H.; Edenhofer, P.; Stelzried, C. T.; Seidel, B. L.
1982-01-01
A statistical ray analysis is used to analyze observed electron content and Faraday rotation fluctuations in the 2.29 GHz S band carrier signals of the two Helios spacecraft probing the magnetic and density structures of the solar corona inside 0.05 AU. It is found that (1) the observed Faraday rotation fluctuations cannot be due only to electron density fluctuations in the corona, unless the coronal magnetic field is about five times stronger than suggested by current estimates; and (2) the observed Faraday rotation fluctuations are consistent with the hypothesis that the sun radiates Alfven waves whose energies are great enough to heat and accelerate high-speed solar wind streams.
Ground observations of kinetic Alfven waves
Kloecker, N.; Luehr, H.; Robert, P.; Korth, A.
1985-01-01
Ground-based observations with the EISCAT magnetometer of locally confined intense drifting current systems and Geos-2 measurements during four events in November and December 1982 are examined. In the ground-based measurements near the Harang discontinuity, the events are characterized by strong pulsations with amplitudes in the horizontal component up to 1000 nT and periods of about 300 s and longer. They occur in the evening hours adjacent to the poleward side of the discontinuity with the onset of a substorm; at the same time, the inner edge of the plasma sheet passes the Geos-2 position, magnetically conjugate to ground stations. It is shown that the events can be explained in terms of kinetic Alfven waves. 8 references.
On reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.
1993-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the
Cusp Dynamics-Particle Acceleration by Alfven Waves
NASA Technical Reports Server (NTRS)
Ergun, Robert E.; Parker, Scott A.
2005-01-01
Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.
Effect of Dust Grains on Solitary Kinetic Alfven Wave
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-09-07
Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.
E.D. Fredrickson; N. Gorelenkov; C.Z. Cheng; R. Bell; D. Darrow; D. Johnson; S. Kaye; B. LeBlanc; J. Menard; S. Kubota; W. Peebles
2001-10-03
Neutral-beam-driven compressional Alfven eigenmodes (CAE) at frequencies below the ion cyclotron frequency have been observed and identified for the first time in the National Spherical Torus Experiment (NSTX). The modes are observed as a broad spectrum of nearly equally spaced peaks in the frequency range from approximately 0.2 to approximately 1.2 omega(subscript ''ci''). The frequency has a scaling with toroidal field and plasma density consistent with Alfven waves. The modes have been observed with high bandwidth magnetic pick-up coils and with a reflectometer.
Fredrickson, E. D.; Gorelenkov, N.; Cheng, C. Z.; Bell, R.; Darrow, D.; Johnson, D.; Kaye, S.; LeBlanc, B.; Menard, J.; Kubota, S.
2001-10-01
Neutral-beam-driven compressional Alfven eigenmodes at frequencies below the ion cyclotron frequency have been observed and identified for the first time in the National Spherical Torus Experiment. The modes are observed as a broad spectrum of nearly equally spaced peaks in the frequency range from {approx}0.2{omega}{sub ci} to {approx}1.2{omega}{sub ci} . The frequency has a scaling with toroidal field and plasma density consistent with Alfven waves. The modes have been observed with high bandwidth magnetic pickup coils and with a reflectometer.
The Source of Alfven Waves That Heat the Solar Corona
NASA Technical Reports Server (NTRS)
Ruzmaikin, A.; Berger, M. A.
1998-01-01
We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.
Experimental aspects of effects of high-energy particles on Alfven modes
Heidbrink, W.W.
1994-10-01
Global Alfven modes are observed in a number of tokamaks, including DIII-D and TFTR. Instabilities occur during neutral-beam injection and during fast-wave ICRF heating, and may recently have been observed during alpha-particle heating. Identification of toroidicity-induced Alfven eigenmodes (TAE) is based primarily on the scaling of the real frequency of the mode. Other modes, including the beta-induced Alfven eigenmode (BAE), are also observed. The stability threshold of TAE modes agree (to within a factor of two) with theoretical predictions. Toroidal mode numbers of n = 2-6 are usually most unstable, as theoretically expected. Measurements of the poloidal and radial mode structure are consistent with theoretical predictions, but the uncertainties are large. Both TAE and BAE modes can cause large, concentrated losses of fast ions. Phenomenologically, beam-driven Alfven modes usually {open_quotes}saturate{close_quotes} through bursts that expel beam ions, while modes observed during ICPF heating approach a steady saturation amplitude.
Alfven wave filamentation and dispersive phase mixing
Sulem, P. L.; Passot, T.; Laveder, D.; Borgogno, D.
2009-11-10
The formation of three-dimensional magnetic structures from quasi-monochromatic left-hand polarized dispersive Alfven waves, under the effect of transverse collapse and/or the lensing effect of density channels aligned with the ambient magnetic field is discussed, both in the context of the usual Hall-MHD and using a fluid model retaining linear Landau damping and finite Larmor radius corrections. It is in particular shown that in a small-{beta} plasma (that is stable relatively to the filamentation instability in the absence of inhomogeneities), a moderate density enhancement leads the wave energy to concentrate into a filament whose transverse size is prescribed by the dimension of the channel, while for a strong density perturbation, this structure later on evolves to thin helical ribbons where the strong gradients permit dissipation processes to become efficient and heat the plasma. The outcome of this 'dispersive phase mixing' that leads to small-scale formation on relatively extended regions contrasts with the more localized oblique shocks formed in the absence of dispersion. Preliminary results on the effect of weak collisions that lead to an increase of the transverse ion temperature are also briefly mentioned.
Nonlinear standing Alfven wave current system at Io: Theory
Neubauer, F.M.
1980-03-01
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.
Parametric Instabilities of Alfven Waves in the Solar Wind.
NASA Astrophysics Data System (ADS)
Jayanti, Venku Babu
1995-01-01
We consider the stability of a circularly-polarized Alfven wave (the pump wave) propagating along a uniform ambient magnetic field B_{rm O}. The system is linearly perturbed to study the stability of the Alfven wave. The perturbations are also assumed to propagate along the ambient field. Four different problems are addressed relating to the stability of the Alfven wave. The first involves using Floquet's theorem to obtain a dispersion relation for studying the stability. The result is a hierarchy of dispersion relations. However, all the dispersion relations are found to be equivalent. This technique showed that some results of other workers are incorrect. This method is very useful to obtain a dispersion relation for obliquely propagating perturbations. The second problem is to obtain analytical approximations to the dispersion relation using A = (Delta B/BO)^2 as a small expansion parameter; DeltaB is the pump amplitude. The analysis shows the crucial role played by plasma beta ( beta) in determining the behavior of the parametric instabilities of the pump. Expressions for the growth rates are presented for four ranges of beta. The polarizations are also computed to give some physical insight into the properties of the daughter waves (the modes generated as a result of the instability are called daughter waves). The third problem is to study the effects of streaming He ^{++}. The growth rates for new instabilities due to streaming He^{++ } are presented as a function of plasma beta, pump wave frequency, and DeltaB. The studies show that these new instabilities could compete with the well known decay instability. The final problem is to develop a methodology to study kinetic effects on the instabilities. This was done by breaking the plasma into beams, and treating each beam as a fluid. The nonlinear fluid equations are solved iteratively to obtain the perturbed densities and velocities. These are then used to derive the kinetic dispersion relation for the decay
The transmission of Alfven waves through the Io plasma torus
NASA Astrophysics Data System (ADS)
Wright, A. N.; Schwartz, S. J.
1989-04-01
The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.
Enhanced damping of Alfven waves in the solar corona by a turbulent wave spectrum
NASA Technical Reports Server (NTRS)
Kleva, Robert G.; Drake, J. F.
1992-01-01
The effect of a background spectrum of Alfven waves on the rate of dissipation of a test shear Alfven wave is numerically calculated. The results demonstrate that as the classical resistivity eta and classical viscosity mu become small, the damping rate of the Alfven wave remains large and depends only on the amplitude for the scalar potential of the wave spectrum and the wavenumber of the Alfven wave. The damping rate is virtually independent of eta and mu. The wave spectrum need not be turbulent or stochastic to affect the damping rate. The dissipation rate is nonlinear enhanced by nonstochastic spectra as well as by stochastic spectra if two conditions are met. First, the perpendicular magnetic field associated with Alfven wave spectrum must exceed a certain collision-frequency threshold and second, for nonstochastic spectra only, the magnetic field must exceed a threshold proportional to the parallel wavenumber of the shear Alfven wave. These conditions can be easily satisfied in the solar corona.
Transmission of Alfven waves through the earth's bow shock - Theory and observation
NASA Technical Reports Server (NTRS)
Hassam, A. B.
1978-01-01
From both theoretical and experimental bases, the transmission of Alfven waves through the bow shock is investigated. The theory of Alfven wave transmission through fast MHD shocks is extended to all cases of incident wave vectors. Particular consideration is given to Alfven waves propagating parallel to the ambient magnetic field with field perturbations polarized in the plane formed by the ambient magnetic field and the shock normal. An analysis is also made of magnetic field and plasma data from Explorer-35 in the vicinity of the bow shock. It is suggested that hydromagnetic waves are present in all of the 14 shock crossings studied, and that in upstream regions of at least 6 crossings, predominantly Alfvenic fluctuations exist. Average amplitudes of these fluctuations are measured on either side of the shock and the enhancement is measured by comparing their levels. Theoretical and experimental findings are compared and the apparent discrepancy in amplification factors may be explained by the strong damping of any transmitted magnetoacoustic modes downstream with relatively little damping of any transmitted Alfven waves.
Emission of radiation induced by pervading Alfven waves
Zhao, G. Q.; Wu, C. S.
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVEN WAVES IN STRATIFIED SOLAR WAVEGUIDES
Verth, G.; Goossens, M.; Erdelyi, R. E-mail: Marcel.Goossens@wis.kuleuven.b
2010-05-10
There have recently been significant claims of Alfven wave observation in the solar chromosphere and corona. We investigate how the radial and longitudinal plasma structuring affects the observational properties of torsional Alfven waves in magnetic flux tubes for the purposes of solar magnetoseismology. The governing magnetohydrodynamic equations of these waves in axisymmetric flux tubes of arbitrary radial and axial plasma structuring are derived and we study their observable properties for various equilibria in both thin and finite-width magnetic flux tubes. For thin flux tubes, it is demonstrated that observation of the eigenmodes of torsional Alfven waves can provide temperature diagnostics of both the internal and surrounding plasma. In the finite-width flux tube regime, it is shown that these waves are the ideal magnetoseismological tool for probing radial plasma inhomogeneity in solar waveguides.
Anisotropic Alfven-ballooning modes in Earth's magnetosphere
NASA Technical Reports Server (NTRS)
Chan, Anthony A.; Xia, Mengfen; Chen, Liu
1994-01-01
We have carried out a theoretical analysis of the stability and parallel structure of coupled shear Alfven and slow magnetosonic waves in Earth's inner magnetopause (i.e., at equatorial distances between about five and ten Earth radii) including effects of finite anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: (1) The field line eigenfrequency can be significantly lowered by finite pressure effects. (2) The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure, but the compressional magnetic component can become highly peaked near the magnetic equator as a result of increased pressure, especially when P(sub perpendicular to) is greater than P(sub parallel) (here P(sub perpendicular to) and P(sub parallel) are the perpendicular and parallel plasma pressure). (3) For the isotropic (P(sub parallel) = P(sub perpendicular to) = P) case ballooning instability can occur when the ratio of the plasma presure to the magnetic pressure, beta = P/(B squared/8 pi), exceeds a critical value beta(sup B)(sub 0) is approximately equal to 3.5 at the equator. (4) Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field line bending stabilization when P(sub parallel) is greater than P(sub perpendicular to) or due to increased ballooning-mirror destabilization when P(sub perpendicular to) is greater than P(sub parallel). (5) We use a beta-delta stability diagram to display the regions of instability with respect to the equatorial values of the parameters bar beta and delta, where bar beta = (1/3)(beta(sub parallel) + 2 beta(sub perpendicular to)) is an
Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks
Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.
1994-12-31
An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE`s in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles.
Evolution of the alpha particle driven toroidicity induced Alfven mode
Wu, Y.; White, R.B.; Cheng, C.Z.
1994-04-01
The interaction of alpha particles with a toroidicity induced Alfven eigenmode is investigated self-consistently by using a kinetic dispersion relation. All important poloidal harmonics and their radial mode profiles are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. There is no significant alpha particle loss.
Surface Alfven Wave Contribution to Coronal Heating in a Wave-Driven Solar Wind Model
NASA Astrophysics Data System (ADS)
Evans, Rebekah M.; Opher, M.; Oran, R.; Sokolov, I. V.
2010-05-01
We present results from the development of a solar wind model driven by Alfven waves with realistic damping mechanisms. We investigate the contribution of surface Alfven wave damping to the heating of the corona and acceleration of the solar wind. These waves are present and damp in regions of strong gradients in density or magnetic field (e.g., the border between open and closed magnetic fields). Recently Oran et al. (2009) implemented a first principle solar wind model driven by a spectrum of Alfven waves into the Space Weather Modeling Framework. The wave transport equation, including wave advection and dissipation, is coupled to the MHD equations for the wind. The waves contribute to the momentum and energy of the wind through the action of wave pressure. Here we extend this model to include surface Alfven wave damping as a dissipation mechanism, considering waves with frequencies lower than those damped in the chromosphere and on the order of those dominating the heliosphere (0.0001 to 100 Hz.) We demonstrate the influence of the damping by quantifying the differences between a solution that includes surface Alfven wave damping and one driven solely by Alfven wave pressure. We relate to possible observational signatures of heat transfer by surface Alfven wave damping. This work is the first to study surface Alfven waves self-consistently as an energy driven for the solar wind in a 4D (three in space and one in frequency) environment. This work is supported by the NSF CAREER Grant.
Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence
Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.
2012-08-15
The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-12-17
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.
Ion temperature in plasmas with intrinsic Alfven waves
NASA Astrophysics Data System (ADS)
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-15
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Stability of Alfven gap modes in burning plasmas
Betti, R.; Freidberg, J.P. )
1992-06-01
A stability analysis is carried out for energetic particle-Alfven gap modes. Three modes have been identified: the toroidicity, ellipticity, and noncircular triangularity induced Alfven eigenmodes (TAE, EAE, and NAE). In highly elongated plasma cross sections with {kappa}{minus}1{similar to}1, the EAE may be a more robust mode than the TAE and NAE. It is found that electron Landau damping in highly elongated plasmas has a strong stabilizing influence on the {ital n}=1 EAE, while ion Landau damping stabilizes the {ital n}=1 TAE in high-density regimes. Furthermore, the NAE turns out to be stable for all currently proposed ignition experiments. The stability analysis of a typical burning plasma device, Burning Plasma Experiment (BPX) (Phys. Scr. {bold T16}, 89 (1987)) shows that {ital n}{gt}1 gap modes can pose a serious threat to the achievement of ignition conditions.
Generation of Alfven waves by high power pulse at the electron plasma frequency
NASA Astrophysics Data System (ADS)
van Compernolle, Bart Gilbert
The physics of the interaction between plasmas and high power waves with frequencies in the electron plasma frequency range is of importance in many areas of space and plasma physics. A great deal of laboratory research has been done on the interaction of microwaves in a density gradient when o = ope in unmagnetized plasmas. [SWK74, WS78, KSW74]. Extensive studies of HF-ionospheric modifications have been performed [Fej79] as evidenced by experiments at Arecibo [HMD92, BHK86, CDF92, FGI85], at the HAARP facility [RKK98] in Alaska, at the EISCAT observatory in Norway [IHR99], and at SURA in Russia [FKS99]. This dissertation focusses on the interaction with a fully magnetized plasma, capable of supporting Alfven waves. The experiment is performed in the upgraded LArge Plasma Device (LAPD) at UCLA [GPL91] (Helium, n = 1012 cm-3, B = 1 kG - 2.5 kG). A number of experiments have been done at LAPD using antennas, skin depth scale currents and laser produced plasmas to generate Alfven waves [LGM99, GVL97a, GVL97b, VGV01]. In this work a high power pulse 6th, frequency in the electron plasma frequency range is launched into the radial density gradient, perpendicular to the background magnetic field. The microwave pulses last on the order of one ion gyro period and has a maximum power of |E|2/ nT ≃ .5 in the afterglow. The absorption of these waves leads to a pulse of field aligned suprathermal electrons. This electron current pulse then launches with Alfven wave with o ≤ o ci. The experiment was performed bath in ordinary node (O-mode) and extraordinary (X-mode), for different background magnetic fields B0, different temperatures (afterglow vs discharge) and different power levels of the incoming microwaves. It was found that the Alfven wave generation can be explained by Cherenkov radiation of Alfven waves by the suprathermal electron pulse. Theoretical solutions for the perturbed magnetic field due to a pulse of field aligned electrons were obtained, and shown to be
Reflection of Alfven waves from boundaries with different conductivities
Leneman, D.
2007-12-15
The reflection of Alfven waves from the ionosphere plays a crucial role because the reflected wave can reduce or enhance the electric field pattern of the incident wave. The ionosphere is typically treated as a conducting surface, which has a height integrated Pederson conductivity. This approximation is appropriate in considering the reflection of Alfven waves because the wavelengths along the magnetic field are large compared to the height of the ionosphere. Shear Alfven wave reflection experiments have been performed in the large plasma device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. of Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. A single frequency wave is launched from an antenna and reflects from a large plate inserted into the plasma column. By alternatively using a conducting and an insulating plate, the two extremes of conductivity relative to the Alfven conductivity, 1/({mu}{sub o}v{sub A}) are tested. The data are compared with the expected theoretical behavior of the interference pattern of incident and reflected waves. Perhaps due to experimental effects, the conducting reflector is found to behave in much the same fashion as the insulator.
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
NASA Technical Reports Server (NTRS)
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
Resonant Alfven wave instabilities driven by streaming fast particles
Zachary, A.
1987-05-08
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.
Alfvenic modes in a bi-Maxwellian electron-ion plasma
Bashir, M. F.; Iqbal, Z.; Aslam, I.; Murtaza, G.
2010-10-15
Employing linearized Vlasov-Maxwell system, we derive a generalized dielectric tensor for a magnetized nonrelativistic bi-Maxwellian electron-ion plasma. Assuming low frequency waves in a low {beta} plasma, a new dispersion relation describing oblique propagation of the Alfvenic modes is determined, incorporating the temperature anisotropies of both the electrons and ions and their finite Larmor radii effects. From the resulting dispersion relation for kinetic Alfven waves, analytical expressions are determined for both the kinetic (v{sub t||}){sub i}<<{omega}/k{sub ||}<
Quantum effects on compressional Alfven waves in compensated semiconductors
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
On the kinetic dispersion for shear Alfven waves
Lysak, R.L.; Lotko, W.
1996-03-01
Kinetic Alfven waves have been invoked is association with auroral currents and particle acceleration since the pioneering work of Hasegawa. However, to date, no work has considered the dispersion relation including the full kinetic effects for both electrons and ions. Results from such a calculation are presented, with emphasis on the role of Landua damping in dissipating Alfven waves which propogate from the warm plasma of the outer magnetosphere to the cold plasma present in the ionosphere. It is found that the Landua damping is not important when the perpendicular wavelength is larger than the ion acoustic gyroradius and the electron inertial length. In addition, ion gyroradius effects lead to a reduction in the Landua damping by raising the parallel phase velocity of the wave above the electron thermal speed in the short perpendicular wavelength regime. These results indicate that low-frequency Alfven waves with perpendicular wavelengths greater than the order of 10 km when mapped to the ionosphere will not be significantly affected by Landau damping. While these results based on the local dispersion relation, are strictly valid only for short parallel wavelength Alfven waves, they do give an indication of the importance of Landua damping for longer parallel wavelength waves such as field line resonances. 26 refs., 5 fig.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.
1992-01-01
In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.
Analysis and gyrokinetic simulation of MHD Alfven wave interactions
NASA Astrophysics Data System (ADS)
Nielson, Kevin Derek
The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the
Theory of Alfven wave heating in general toroidal geometry
Tataronis, J.A.; Salat, A.
1981-09-01
A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.
Compressibility and cyclotron damping in the oblique Alfven wave
Harmon, J.K. )
1989-11-01
Compressibility, magnetic compressibility, and damping rate are calculated for the obliquely propagating Alfven shear wave in high- and low-beta Vlasov plasmas. There is an overall increase in compressibility as beta is reduced from {beta} = 1 to {beta}{much lt}1. For high obliquity {theta} and low frequency ({omega} {much lt} {Omega}{sub p}) the compressibility C follows a k{sup 2} wave number dependence; for high {theta} and low {beta} the approximation C(k) {approx} k{sub n}{sup 2} {identical to} (kV{sub A}/{Omega}{sub p}){sup 2} holds for wave numbers up to the proton cyclotron resonance, where {Omega}{sub p} is the proton cyclotron frequency and V{sub A} is the Alfven velocity. Strong proton cyclotron damping sets in at k{sub n} of the order of unity; the precise k{sub n} position of the damping cutoff increases with decreasing {beta} and increasing {theta}. Hence compressibility can exceed unity near the damping cutoff for high-{theta} waves in a low-{beta} plasma. The magnetic compressibility of the oblique Alfven wave also has a k{sup 2} dependence and can reach a maximum value of the order of 10% at high wave number. It is shown that Alfven compressibility could be the dominant contributor to the near-Sun solar wind density fluctuation spectrum for k>10{sup {minus}2} km{sup {minus}1} and hence might cause some of the flattening at high wave number seen in radio scintillation measurements. This would also be consistent with the notion that the observed density spectrum inner scale is a signature of cyclotron damping.
The interaction of Io's Alfven waves with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Wright, A. N.
1987-09-01
A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
High-n ideal and resistive shear Alfven waves in tokamaks
Cheng, C.Z.; Chen, L.; Chance, M.S.
1984-05-01
Ideal and resistive MHD equations for the shear Alfven waves are studied in a low-..beta.. toroidal model by employing the high-n ballooning formalism. The ion sound effects are neglected. For an infinite shear slab, the ideal MHD model gives rise to a continuous spectrum of real frequencies and discrete eigenmodes (Alfven-Landau modes) with complex frequencies. With toroidal coupling effects due to nonuniform toroidal magnetic field, the continuum is broken up into small continuum bands and new discrete toroidal eigenmodes can exist inside the continuum gaps. Unstable ballooning eigenmodes are also introduced by the bad curvature when ..beta.. > ..beta../sub c/. The resistivity (n) can be considered perturbatively for the ideal modes. In addition, four branches of resistive modes are induced by the resistivity: (1) Resistive entropy modes which are stable (..delta..' < 0) with frequencies approaching zero as n/sup 3/5/, (3) Resistive periodic shear Alfven waves which approach the finite frequency end points of the continuum bands and n/sup 1/2, and (4) Resistive ballooning modes which are purely growing with growth rate proportional to eta/sup 1/3/..beta../sup 2/3/ as eta ..-->.. O and ..beta.. ..-->.. O.
Laboratory study of magnetic reconnection generated Alfven waves. Final report
Watts, Christopher
2002-02-08
This grant was funded through the Department of Energy, Office of Fusion Energy Junior Faculty Development Program. The grant funded the construction and start-up of the Articulated Large-area Plasma Helicon Array (alpha) experiment, and initial studies of Alfven wave propagation in helicon generated plasmas. The three year grant contract with Auburn University was terminated early (after two years) due to PI'S acceptance of a faculty position at New Mexico Tech. The project continues at New Mexico Tech under a different grant contract. The project met all of the second-year goals outlined in the proposal, and made progress toward meeting some of the third-year goals. The alpha facility was completed and multi-helicon operation was demonstrated. We have made initial measurements of Alfven waves in a helicon plasma source.
Parametric instabilities of parallel-propagating Alfven waves: Some analytical results
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1993-01-01
We consider the stability of a circularly polarized Alfven wave (the pump wave) which propagates parallel to the ambient magnetic field. Only parallel-propagating perturbations are considered, and we ignore dispersive effects due to the ion cyclotron frequency. The dissipationless MHD equations are used throughout; thus possibibly important effects arising from Landau and transit time damping are omitted. We derive a series of analytical approximations to the dispersion relation using A = (Delta B/B(sub O))(exp 2) as a small expansion parameter; Delta B is the pump amplitude, and B(sub O) is the ambient magnetic field strength. We find that the plasma beta (the square of the ratio of the sound speed to the Alfven speed) plays a crucial role in determining the behavior of the parametric instabilities of the pump. If 0 less than beta less than 1 we find the familiar result that the pump decays into a forward propagating sound wave and a backward propagating Alfven wave with maximum growth rate gamma(sub max) varies A(sup 1/2), but beta cannot be too close to 0 or to 1. If beta approx. 1, we find gamma(sub max) varies A(sup 3/4), if beta greater than 1, we find gamma(sub max) varies A(sup 3/2), while if beta approx. 0, we obtain gamma(sub max) varies A(sup 1/3); moreover, if beta approx. 0 there is a nearly purely growing instability. In constrast to the familiar decay instability, for which the backward propagating Alfven wave has lower frequency and wavenumber than the pump, we find that if beta greater than or approx. equal to 1 the instability is really a beat instability which is dominated by a transverse wave which is forward propagating and has frequency and wavenumber which are nearly twice the pump values. Only the decay instability for 0 less than beta less than 1 can be regarded as producing two recognizable normal modes, namely, a sound wave and an Alfven wave. We discuss how the different characteristics of the instabilities may affect the evolution of
Walker, A.D.M. )
1987-09-01
A new hydromagnetic theory is developed for describing compressional pulsations with azimuthal wave number. It is assumed that there are two plasma, one hot, in which pressure effects are important, and the other cold. The equations are derived in a general set of magnetic coordinates which allow realistic calculations including geometrical effects in the magnetosphere. The equations describe the three hydromagnetic modes which are coupled by the geometry. When the azimuthal wave number is large, the fast mode is strongly evanescent. This allows an expansion in 1/m in order to decouple the fast wave. The remaining equations describe the coupled transverse Alfven and magnetosonic modes. Some of the puzzling features of the observations of polarization are discussed.
Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2007-01-01
Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.
Simulation of amplitude-modulated circularly polarized Alfven waves for beta less than one
NASA Technical Reports Server (NTRS)
Machida, S.; Spangler, S. R.; Goertz, C. K.
1987-01-01
The nonlinear properties of the amplitude-modulated circularly polarized Alfven wave are studied for beta less than one. The temporal behavior of the wave packet of the electromagnetic hybrid simulation is compared with a numerical solution of the derivative nonlinear Schroedinger (DNLS) equation. It is shown that the left-hand-polarized mode evolves into a shocklike structure due to the modulational instability. However, both cyclotron damping and a snowplow effect near the steepened wave packet suppress its further steepening, contrary to the predictions of the DNLS equation. For the right-hand mode, formation of the shock does not take place, and the initial time development is well described by the DNLS equation. The daughter Alfven wave and ion acoustic waves are excited due to the decay instability at a later time. Heating or acceleration of the particles takes place for both left- and right-hand waves. Energy transfer from the wave to the particles occurs effectively when substantial modulation in the wave amplitude is present.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
Emission of Alfven Waves by Planets in Close Orbits
NASA Astrophysics Data System (ADS)
MacGregor, Keith B.; Pinsonneault, M. H.
2011-01-01
We examine the electrodynamics of a conducting planet orbiting within a magnetized wind that emanates from its parent star. When the orbital motion differs from corotation with the star, an electric field exists in the rest frame of the planet, inducing a charge separation in its ionosphere. Because the planet is immersed in a plasma, this charge can flow away from it along the stellar magnetic field lines it successively contacts in its orbit. For sufficiently rapid orbital motion, a current system can be formed that is closed by Alfvenic disturbances that propagate along field lines away from the planet. Using a simple model for the wind from a Sun-like star, we survey the conditions under which Alfven wave emission can occur, and estimate the power radiated in the form of linear waves for a range of stellar, planetary, and wind properties. For a Jupiter-like planet in a close (a < 0.10 AU) orbit about a solar-type star, the emitted wave power can be as large as 1027 erg/s. While only a small influence on the planet's orbit, a wave power of this magnitude may have consequences for wind dynamics and localized heating of the stellar atmosphere. NCAR is sponsored by the NSF.
Gravitational damping of Alfven waves in stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. K.; Mullan, D. J.
1994-01-01
We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.
Nonlinear astrophysical Alfven waves - Onset and outcome of the modulational instability
NASA Technical Reports Server (NTRS)
Spangler, S. R.
1985-01-01
The nonlinear development of Alfven waves is numerically studied, with applications to Alfven waves in astrophysical plasmas. It is found that amplitude-modulated Alfven wave packets undergo a collapse instability in which the wave packets become more intense and of smaller spatial extent. The wave packet steepening is eventually halted in a process most aptly described as soliton formation. A simple analytic model based on the method of characteristics can account for many of the results of the numerical calculations. The instability probably cannot prevent particle pitch angle isotropization due to self-generated Alfven waves. Nonlinear effects of the collapse may modify the process by which energetic electrons are reaccelerated by plasma turbulence. The model calculations can semiquantitatively account for properties of shock-associated Alfven waves in the solar system.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2013-01-20
A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.
Plasma transport induced by kinetic Alfven wave turbulence
Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.
2012-10-15
At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.
Motion of ions influenced by enhanced Alfven waves
Wu, C.S.; Yoon, P.H.; Chao, J.K.
1997-03-01
In this paper we discuss the dynamics of an ion interacting with large-amplitude Alfven waves. The objective of the present analysis is to attain an in-depth understanding of the ion-pickup process which has been extensively studied in the literature by means of both quasilinear theory and numerical simulations. In general, results from self-consistent simulations provide a more complete picture of the ion pickup process, but details of the pickup process are not easily comprehended on the basis of these results. For this reason, the present study is carried out in which a test particle approach is used. It is found that for moderately large-amplitude Alfven waves, an approximate analytical solution for the ion equation of motion can be obtained. This solution clarifies a number of basic issues such as (1) whether the cyclotron resonance is a necessary condition for the pickup to occur, (2) what is the role of initial ion phase space position on subsequent pitch angle scattering, and (3) how the wave amplitude affects the maximum velocity that an ion can gain along the direction of the ambient magnetic field during the pickup process. {copyright} {ital 1997 American Institute of Physics.}
The effect of random Alfven waves on the propagation of hydromagnetic waves in a finite-beta plasma
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1990-01-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, the evolution equation of the wave spectrum as well as the nonlinear forces generated by random Alfven waves in a finite-beta plasma with phenomenological Landau-damping effects are obtained. The effect of microscale random Alfven waves on the propagation of large-scale hydromagnetic waves is also investigated by solving the mean-field equations. It is shown that parallel-propagating random Alfven waves are modulationally stable and that obliquely propagating random Alfven waves can be modulationally unstable when the energy of random waves is converted to slow magnetoacoustic waves that can be Landau-damped, providing a dissipation mechanism for the Alfven waves.
Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.
1996-01-01
Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.
He Jiansen; Tu Chuanyi; Yao Shuo; Tian Hui; Marsch, Eckart
2011-04-20
The fluctuating magnetic helicity is considered an important parameter in diagnosing the characteristic modes of solar wind turbulence. Among them is the Alfven-cyclotron wave, which is probably responsible for the solar wind plasma heating, but has not yet been identified from the magnetic helicity of solar wind turbulence. Here, we present the possible signatures of Alfven-cyclotron waves in the distribution of magnetic helicity as a function of {theta}{sub VB}, which is the angle between the solar wind velocity and local mean magnetic field. We use magnetic field data from the STEREO spacecraft to calculate the {theta}{sub VB} distribution of the normalized reduced fluctuating magnetic helicity {sigma}{sub m}. We find a dominant negative {sigma}{sub m} for 1 s < p < 4 s (p is time period) and for {theta}{sub VB} < 30 deg. in the solar wind outward magnetic sector, and a dominant positive {sigma}{sub m} for 0.4 s < p < 4 s and for {theta}{sub VB}>150 deg. in the solar wind inward magnetic sector. These features of {sigma}{sub m} appearing around the Doppler-shifted ion-cyclotron frequencies may be consistent with the existence of Alfven-cyclotron waves among the outward propagating fluctuations. Moreover, right-handed polarized waves at larger propagation angles, which might be kinetic Alfven waves or whistler waves, have also been identified on the basis of the {sigma}{sub m} features in the angular range 40 deg. < {theta}{sub VB} < 140 deg. Our findings suggest that Alfven-cyclotron waves (together with other wave modes) play a prominent role in turbulence cascading and plasma heating of the solar wind.
Heating of ions by low-frequency Alfven waves in partially ionized plasmas
Dong Chuanfei; Paty, Carol S.
2011-03-15
In the solar atmosphere, the chromospheric and coronal plasmas are much hotter than the visible photosphere. The heating of the solar atmosphere, including the partially ionized chromosphere and corona, remains largely unknown. In this letter, we demonstrate that the ions can be substantially heated by Alfven waves with very low frequencies in partially ionized low-beta plasmas. This differs from other Alfven wave related heating mechanisms such as ion-neutral collisional damping of Alfven waves and heating described by previous work on resonant Alfven wave heating. We find that the nonresonant Alfven wave heating is less efficient in partially ionized plasmas than when there are no ion-neutral collisions, and the heating efficiency depends on the ratio of the ion-neutral collision frequency to the ion gyrofrequency.
Coupling of axial plasma jets to compressional Alfven waves
NASA Astrophysics Data System (ADS)
Vincena, Stephen; Gekelman, Walter
2009-11-01
The coupling of mass, energy, and momentum from a localized, dense, and rapidly expanding plasma into a large-scale magnetized background plasma is central to understanding many physical processes; these include galactic jets, coronal mass ejections, tokamak pellet fueling, high-altitude nuclear detonations, chemical releases in the ionosphere, and supernovae. The large-scale magnetized plasmas are capable of supporting Alfv'en waves, which mediate the flow of currents and associated changes of magnetic topology on the largest size scales of the external system. We present initial results from a laboratory experiment wherein a fast-moving, laser-produced plasma (LPP) is allowed to propagate along the magnetic field lines of a pre-existing plasma column (17m long by 60 cm diameter). The LPP is generated using a 1J, 8ns Nd:YAG laser fired at a graphite target. The laser is pulsed along with the background plasma at 1Hz. This work focuses on the coupling of the LPP to compressional Alfv'en waves in the background plasma. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Taylor, J.P.H.; Walker, A.D.M. )
1987-09-01
When the azimuthal wave number is large, the equations describing standing hydromagnetic waves in the magnetosphere can be written as a set of coupled equations describing the couples magnetosonic and Alfven waves. These equations are decoupled when the filed lines are straight. The eigenfrequencies of the decoupled oscillations are computed. For typical conditions in the outer magnetosphere these give periods in the Pc 4-5 band or above. The longitudinal magnetosonic wave consists of oscillations in the plasma pressure, the longitudinal plasma drift velocity and the compressional magnetic field. Higher harmonics of the standing waves have nodes quite near the equator. These higher harmonics have larger fractional pressure perturbations at high latitudes. The compressional magnetic field for all modes, however, is substantially attenuated at higher latitudes, and the theory predicts that compressional oscillations of B are only likely to be seen near the equator. Conditions can be favorable for resonance to occur between the magnetosonic mode and the transverse Alfven mode. The computed results show periods of the right order of magnitude to explain observations of compressional pulsations. The theory has the potential to explain the polarization when coupling is fully taken into account.
Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2007-12-15
Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves.
Garcia-Munoz, M.; Hicks, N.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H.-U.; Igochine, V.; Maraschek, M.; Sassenberg, K.; Voornveld, R. van; Classen, I. G. J.; Jaemsae, S.
2010-05-07
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude.
On field line resonances of hydromagnetic Alfven waves in dipole magnetic field
Chen, Liu; Cowley, S.C. )
1989-08-01
Using the dipole magnetic field model, the authors have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived.
On field line resonances of hydromagnetic Alfven waves in dipole magnetic field
Chen, Liu; Cowley, S.C.
1989-07-01
Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs.
Effect of two ion species on the propagation of shear Alfven waves of small transverse scale
Vincena, S. T.; Morales, G. J.; Maggs, J. E.
2010-05-15
The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.
Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas
Tishchenko, V N; Shaikhislamov, I F
2014-02-28
We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)
Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions
Galvao, R. A.; Ziebell, L. F.; Gaelzer, R.; Juli, M. C. de
2012-12-15
We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.
Alfvenic phenomena triggered by resonant absorption of an O-mode pulse
Tsung, F. S.; Morales, G. J.; Tonge, J.
2007-04-15
A simulation and modeling study is made of the nonlinear interaction of an electromagnetic pulse, in the O-mode polarization, with a magnetized plasma having a cross-field density gradient. For small amplitudes, the pulse propagates up to the cutoff layer where an Airy pattern develops. Beyond a certain power level, the ponderomotive force produced by the standing electromagnetic fields carves density cavities. The excess density piled up on the side of the cavities causes secondary, field-aligned plasma resonances to arise. Strong electron acceleration occurs due to the short scale of the secondary resonant fields. The fast electrons exiting the new resonant layers induce a return current system in the background plasma. This generates a packet of shear Alfven waves of small transverse scale and increasing frequency. The results provide insight into microscopic processes associated with a recent laboratory investigation in which large-amplitude Alfven waves have been generated upon application of high-power microwaves [B. Van Compernolle et al., Phys. Plasmas 13, 092112 (2006)].
Observation of modes at frequencies near the second Alfven gap in TFTR
Fredrickson, E.; Van Dam, J.W.; Budny, R.V.; Darrow, D.; Fu, G.Y.; Hosea, J.; Phillips, C.K.; Wilson, J.R.
2000-04-26
Modes have been observed near the frequency of the second Alfven gap during off-axis H-minority heating experiments in the circular cross-section Tokamak Fusion Test Reactor. The observation of these modes is surprising in that the second gap, which is generally opened with ellipticity, is expected to be small, of order (r/R){sup 2}. A model is proposed in which the second gap is opened by the fast ion beta, which is shown to be able to introduce mode coupling, much as toroidal effects introduce mode coupling for Toroidal Alfven Eigenmodes (TAE). The modes are seen with and without accompanying TAE mode activity.
Experimental Investigation of Driven Alfven Wave Resonances on the Pretext Tokamak.
NASA Astrophysics Data System (ADS)
Booth, William David
The results of the recent Alfven wave experiments conducted on the PRETEXT tokamak are presented. Two quarter -turn toroidal antennas were used to drive 2.1 MHz Alfven waves in the PRETEXT plasma. Three different Global Alfven Eigenmodes were identified. The resonance frequency for each of the three observed modes was compared to the value predicted by calculation.^{dagger } The value of the antenna loading associated with each global resonance was measured and also compared to values predicted by a kinetic model.^ {ddagger} Additionally, the radial profile of the RF magnetic field was measured to a depth of five centimeters past the limiter in the plasma and these magnetic fields were compared to predicted values. Generally good agreement was found between measured and predicted values. The resonance frequencies of the global modes agreed quite well and the value of the antenna loading agreed to within about 20%. The width of the measured resonances was much wider than the width of the calculated resonances. This difference is attributed principally to losses in the antenna impedance matching system but may be due partially to loss mechanisms in the plasma which are not included in the code model. The magnetic fields displayed good agreement at the edge of the plasma, but showed some divergence from predicted values at the deeper radial positions. The general shape of the magnetic fields is consistent with the prediction of broad distribution of the fields across the plasma for a global mode. ftn ^daggerS. M. Mahajan, Phys. Fluids 27, 2238 (1984). ^ddaggerD. W. Ross, G. L. Chen, and S. M. Mahajan, Phys. Fluids 25, 652 (1982).
NASA Astrophysics Data System (ADS)
He, J.; Pei, Z. T.; Wang, L.; Tu, C. Y.; Marsch, E.; Yao, S.
2014-12-01
It is believed that MHD turbulence cascading is mainly caused by the collisions between Alfven waves, which propagate oppositely and are polarized perpendicularly to each other. Nonlinear interaction will vanish if the counter-propagating Alfven waves have their polarization aligned with each other. However, the Alfven waves satisfying these collision criteria have not yet been found in the solar wind observations. Here we report the existence of Alfven waves with opposite propagation and non-aligned polarization in the solar wind. In one case of anti-sunward magnetic sector, with RTN as the coordinates, the magnetic fluctuations in T-component (BT) are anti-correlated with the velocity fluctuations in T-component (VT), while BR and BN fluctuations are in positive correlation with VR and VN fluctuations, respectively. These features suggest a possible nonlinear interaction between outward propagating Alfven wave with polarization in T-direction and inward propagating Alfven wave with polarization in R&N-directions. Moreover, the associated proton kinetics shows the existence of field-aligned sunward beam rather than anti-sunward beam, which may indicate a parallel Landau heating by sunward kinetic Alfven waves. A statistical study including more cases is also conducted.
Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models
NASA Astrophysics Data System (ADS)
Nariyuki, Y.
2014-12-01
Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A. P.; Banerjee, S.
2011-03-15
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Boley, F I; Wilcox, J M
1962-08-17
We have described a set of laboratory experiments which establish the primary properties of Alfvén waves and have mentioned natural phenomena in which these waves exert a strong influence. To date, there have been few technological applications of Alfvén waves, although the waves are being considered for use in hydromagnetic amplifiers and in connection with plasma heating techniques associated with controlled thermonuclear fusion devices. As with any new findings, detailed prediction of future applications is impossible. PMID:17749626
Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.
NASA Technical Reports Server (NTRS)
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Some wave-particle effects on large-scale Alfven wave propagation and damping
NASA Technical Reports Server (NTRS)
Siregar, E.; Goldstein, M. L.
1995-01-01
Phase mixing can reduce greatly the torsional Alfven wave's dissipation length for propagation in complex magnetic field-line geometries. This phase mixing causes significant energy transfers from large to small scales where a conversion from ordered wave energy into a particle kinetic form occurs. This conversion during its initial stages is an entropy conserving process well described by Vlasov theory, Nonlinear stages of wave-particle resonance, particle trapping, and collisional resistivity are often invoked as processes eventually responsible for converting ordered wave motions into random thermal motion. Strictly speaking, this entropy producing phase cannot be described within Vlasov theory, and the large-scale effects of these microscopic events resides at the difficult frontier between generalized fluid and kinetic theories. We attempt to describe certain aspects of such resonances within the framework of fluid theory focusing on torsional Alfven wave energy transport and deposition within flux tubes.
Stability of the kinetic Alfven wave in a current-less plasma
NASA Astrophysics Data System (ADS)
Sreekala, G.; Sebastian, Sijo; Michael, Manesh; Abraham, Noble P.; Renuka, G.; Venugopal, Chandu
2015-06-01
The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities VdH and Vde. For the most general case, the dispersion relation is a polynomial equation of order five; it reduces to a relation which supports only one mode when VdH = 0. For typical parameters at comet Halley, we find that both VdH and Vde can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al. (2009).
Stability of the kinetic Alfven wave in a current-less plasma
NASA Astrophysics Data System (ADS)
Abraham, Noble P.; C, Venugopal; Sebastian, Sijo; Renuka, G.; Balan, Nanan; Sreekala, G.
The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities V_{dH} and V_{de}. For the most general case, the dispersion equation is a polynomial equation of order five; it reduces to a relation which supports only one mode when V_{dH}=0. For typical parameters at comet Halley, we find that both V_{dH} and V_{de} can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al.
Anisotropic Alfven-ballooning modes in the Earth`s magnetosphere
Chan, A.A.; Xia, Mengfen; Chen, Liu
1993-05-01
We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth`s inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P{perpendicular} > P{parallel}. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value {beta}{sub o}{sup B} {approx} 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P{parallel} > P{perpendicular}, or due to increased ballooning-mirror destabilization when P{perpendicular} > P{parallel}. We use a ``{beta}-6 stability diagram`` to display the regions of instability with respect to the equatorial values of the parameters {bar {beta}} and {delta}, where {bar {beta}} = (1/3)({beta}{sub {parallel}} + 2 {beta}{perpendicular}) is an average beta value and {delta} = 1 - P{parallel}/P{perpendicular} is a measure of the plasma anisotropy.
Measurements of Inertial Limit Alfven Wave Dispersion for Finite Perpendicular Wave Number
Kletzing, C. A.; Thuecks, D. J.; Skiff, F.; Bounds, S. R.; Vincena, S.
2010-03-05
Measurements of the dispersion relation for shear Alfven waves as a function of perpendicular wave number are reported for the inertial regime for which V{sub A}>V{sub Te}. The parallel phase velocity and damping are determined as k{sub perpendicular} varies and the measurements are compared to theoretical predictions. The comparison shows that the best agreement between theory and experiment is achieved for a fully complex plasma dispersion relation which includes the effects of electron collisions.
Generation of Alfven waves by deceleration of magnetospheric convection and broadband Pi pulsations
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Longenecker, D. U.; Chiu, Y. T.
1982-01-01
The generation of Alfven waves by the deceleration of magnetospheric convection caused by ionospheric loading effects in the magnetospheric dynamo is considered. A one-dimensional model of that region of the plasma sheet where convection is decelerated due to the dynamo process in the magnetosphere-ionosphere coupling is formulated, and the stability of the region is analyzed in order to derive the growth rate of unstable Alfven waves. The effects of ionospheric damping on unstable Alfven wave packets bounding between hemispheres are estimated. It is found that the overall growth rate is proportional to the height-integrated Pedersen conductivity and the convection speed in the dynamic region, but changes into a damping rate when the Pedersen conductivity is reduced below a specific threshold. The unstable Alfven waves thus generated are also found to contribute to both burstlike and relatively continuous Pi pulsations observed during substorms.
LARGE-AMPLITUDE ALFVEN WAVE IN INTERPLANETARY SPACE: THE WIND SPACECRAFT OBSERVATIONS
Wang Xin; He Jiansen; Tu Chuanyi; Zhang Lei; Marsch, Eckart; Chao, Jih-Kwin
2012-02-20
We present, for the first time, measurements of arc-polarized velocity variations together with magnetic field variations associated with a large-amplitude Alfven wave as observed by the Wind satellite. The module of the magnetic field variance is larger than the magnitude of the average magnetic field, indicating the large amplitude of these fluctuations. When converting to the deHoffman-Teller frame, we find that the magnetic field and velocity vector components, in the plane perpendicular to the minimum-variance direction of the magnetic field, are arc-polarized, and their tips almost lie on the same circle. We also find that the normalized cross helicity and Alfven ratio of the wave are both nearly equal to unity, a result which has not been reported in previous studies at 1 AU. It is worthy to stress here that pure Alfven waves can also exist in the solar wind even near the Earth at 1 AU, but not only near 0.3 AU. Further study could be done to help us know more about the properties of pure Alfven wave at 1 AU that could not be figured out easily before because of the contaminations (e.g., Alfven waves propagating in different directions, magnetic structures, and other compressional waves) on previously reported Alfven wave cases.
Nonlinear standing Alfven wave current system at Io - Theory
NASA Astrophysics Data System (ADS)
Neubauer, F. M.
1980-03-01
A nonlinear analytical model is presented of the Alfven current tubes continuing the currents through Io generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. It was shown that: (1) the portion of the currents needing Io is aligned with the Alfven characteristics at a specific angle to the magnetic field for the special case of perpendicular flow; (2) the Alfven tubes act like an external conductance; (3) the Alfven tubes may be reflected from the torus boundary or the Jovian atmosphere; and (4) from the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites because of its ionosphere arising from ionized volcanic gases and a high external Alfvenic conductance.
Propagation of large amplitude Alfven waves in the solar wind neutral sheet
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.
ION HEATING BY A SPECTRUM OF OBLIQUELY PROPAGATING LOW-FREQUENCY ALFVEN WAVES
Lu Quanming; Chen Liu
2009-10-10
Ion stochastic heating by a monochromatic Alfven wave, which propagates obliquely to the background magnetic field, has been studied by Chen et al. It is shown that ions can be resonantly heated at frequencies a fraction of the ion cyclotron frequency when the wave amplitude is sufficiently large. In this paper, the monochromatic wave is extended to a spectrum of left-hand polarized Alfven waves. When the amplitude of the waves is small, the components of the ion velocity have several distinct frequencies, and their motions are quasi-periodic. However, when the amplitude of the waves is sufficiently large, the components of the ion velocity have a spectrum of continuous frequencies near the ion cyclotron frequency due to the nonlinear coupling between the Alfven waves and the ion gyromotion, and the ion motions are stochastic. Compared with the case of a monochromatic Alfven wave, the threshold of the ion stochastic heating by a spectrum of Alfven waves is much lower. Even when their frequencies are only several percent of the ion cyclotron frequency, the ions can also be stochastically heated. The relevance of this heating mechanism to solar corona is also discussed.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
WINDS FROM LUMINOUS LATE-TYPE STARS. II. BROADBAND FREQUENCY DISTRIBUTION OF ALFVEN WAVES
Airapetian, V.; Ofman, L.; Carpenter, K. G.
2010-11-10
We present the numerical simulations of winds from evolved giant stars using a fully nonlinear, time-dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully nonlinear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of the Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband nonlinear Alfven waves can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities, and the observed mass-loss rates. Comparison of the calculated mass-loss rates with the empirically determined mass-loss rate for {alpha} Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Wave modes facilitating fast magnetic reconnection
NASA Astrophysics Data System (ADS)
Singh, N.
2011-12-01
Whistler and kinetic Alfven waves are often invoked to explain fast magnetic reconnection in collsionless plasmas. But how these wave modes facilitate the reconnection has remained unclear. An important unanswered question deals with the meaning of the wave frequency in the context of magnetic reconnection. New measurement on a fast explosive reconnection event in the Versatile Toroidal Facility (VTF) at MIT provides an interesting example of the meaning of the wave mode and the associated frequency directly related to the time scale of the impulsive reconnection. We examine the measurements in VTF in view of the whistler wave mode, showing that the explosive growth in the reconnection is related to the thinning of the current sheet to a few electron skin depths. We further demonstrate that the fastest measured time scale (~ 3 microseconds) and the largest normalized reconnection rate (~0.35) agree with those predicted from the whistler mode dispersion relation.
Ionospheric Ion Upflows Associated with the Alfven Wave Heating
NASA Astrophysics Data System (ADS)
Song, P.; Tu, J.
2014-12-01
In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.
POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVEN WAVES
Hunana, P.; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2013-04-01
It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly larger than the proton gyroscale r{sub L} , magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the polarization and magnetic compressibility of oblique kinetic Alfven waves and show that, compared with linear kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be ignored even for kr{sub L} << 1.
Standing Alfven wave current system at Io - Voyager 1 observations
NASA Astrophysics Data System (ADS)
Acuna, M. H.; Neubauer, F. M.; Ness, N. F.
1981-09-01
The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io has been explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field-aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the Goddard Space Flight Center magnetic field experiment on Voyager 1 on March 5, 1979, when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 x 10 to the 6th A. A mass density of 7400-13,600 proton mass units/cu cm is derived, which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050-1500/cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.
Stellar winds with non-WKB Alfven waves 1: Wind models for solar coronal conditions
NASA Astrophysics Data System (ADS)
MacGregor, K. B.; Charbonneau, P.
1994-07-01
We have constructed numerical models for stationary, wind-type outflows that include treatment of the force produced by propagating Alfven waves. We make no assumptions regarding the relative sizes of the wavelengths of such disturbances and the scale lengths that characterize the variation of the physical properties of the expanding stellar atmosphere. Consequently, our models take account the process of Alfven wave reflection, and provide for dynamical effects arising from the simultaneous presence of outward and inward traveling waves in the wind. For physical conditions like those prevailing in the outer solar corona and wind, we find that even relatively high frequency, short wavelength waves can suffer some reflection from the gradient in Alfven speed at the vase of the flow. Among the consequences of the interaction between outward and inward directed perturbations in the sub-Alfvenic portion of the wind is a reduction in the magnitude of the time-averaged wave force relative to its value in the Wentzel-Kramer-Brillouin (WKB) (i.e., short-wavelenght) limit. As a result, the flow velocities of our models interior to the Alfven radius are smaller than those of corresponding WKB models. For models containing very low frequency, long wavelength waves, a substantial amount of wave reflection can also take place in the super-Alvenic portion of the wind. The resulting modifications to the spatial dependences of the eave magnetic and velocity amplitudes can lead to a wave force whose magnitude at large distances exceeds that of an equivalent WKB solution.
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Esser, R.; Jayanti, V.
1993-01-01
The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.
Destabilization of the shear Alfven mode by alpha particles and other high energy ions
NASA Astrophysics Data System (ADS)
Belikov, V. S.; Kolesnichenko, Ya. I.; Silivra, O. A.
1992-08-01
Toroidal Alfven eigenmode (TAE) and elliptical Alfven eigenmode (EAE) instabilities in plasmas with high energy ions are considered in the context of local theory. The instability growth rate is found for cases when waves are excited by alpha particles or by ions produced as a result of neutral injection or RF heating. Electron and ion Landau damping due to the toroidal sideband wave-particle interaction is also calculated. The electron damping rate is shown to be much lower than the generally accepted value. The TAE instability observed in the experiment with neutral beam injection on TFTR is analysed and the principal experimental features of TAE instability are explained
Alfven wave-driving mechanism of late-type stellar wind
NASA Astrophysics Data System (ADS)
Yong, Zheng; Li, Xiao-Qing
1990-05-01
Because late-type stellar wind has low temperature, massive outflow, and high terminal velocity, theoretical models of thermal pressure or radiation pressure cannot explain the acceleration of late-type stellar wind. Energy damping of Alfven wave in stellar winds is small, and Alfven wave is perhaps the driving force of late-type stellar wind if the wave energy-flux is large enough. After theoretical analysis and numerical calculation, various velocity distributions are obtained by taking various wave energy-fluxes in reliable range, the terminal velocities accord with observations. If late-type stellar winds are driven by thermal pressure, the temperature is higher that acceptable. The results of Alfven wave driving winds also indicate that massive stellar winds need large energy flux and acceleration is closely related with gravity. In discussion, it is thought that Alfven wave accelerating late-type stellar winds is feasible and the initial energy-flux, damping of Alfven wave in stellar winds need further study.
HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE
Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.
2011-07-20
A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Li, Xing; Shan, Lican; Wang, Shui
2013-07-01
Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.
Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics
Berk, H.L.; Breizman, B.N.; Pekker, M.
1994-01-01
An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
This paper presents a numerical study of the time evolution of plane, cosmic-ray modified shocks with magnetic field parallel to the shock normal, based on the diffusive shock acceleration formalism and including the effects from the finite propagation speed and energy of Alfven waves responsible for controlling the transport of the cosmic rays. The simulations discussed are based on a three-fluid model for the dynamics, but a more complete formalism is laid out for future work. The results of the simulations confirm earlier steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and the gas sound speed are comparable, i.e., when the plasma and magnetic pressures are similar. It is also clear, however, that the impact of Alfven transport effects, which tend to slow shock evolution and reduce the time asymptotic cosmic-ray pressure in the shock, is strongly dependent upon uncertain details in the transport models. Both cosmic-ray advection tied to streaming Alfven waves and dissipation of wave energy are important to include in the models. Further, Alfven transport properties on both sides of the shock are also influential.
Energy Budget of Alfven Wave Interactions with the Auroral Acceleration Region
NASA Astrophysics Data System (ADS)
Pilipenko, V.; Fedorov, E.; Engebretson, M. J.
2003-12-01
Recent Polar satellite observations of intense Alfven ULF bursts over auroral arcs prompted researchers to suggest that ULF wave activity does provide energy to the auroral arc intensification. However, to provide physical grounds for this suggestion, it is important to know possible bounds on the rate of the ULF wave energy transfer into electron acceleration. To estimate the power dissipated in the ionosphere and that transferred into electron acceleration, we consider the interaction of magnetospheric Alfven waves with the auroral ionosphere, comprising the auroral acceleration region (AAR). The AAR is characterized by a mirror resistance to the field-aligned upward current that can provide the potential drop and the acceleration of electrons. Analytical treatment of the interaction of Alfven waves with the combined magnetosphere-AAR-topside ionosphere-E-layer system has been made within the "thin" AAR approximation, which is valid for small-scale disturbances. The input of Alfven waves into the energy balance of the AAR depends critically on their transverse scale. Only waves with scales comparable to the Alfven transit scale, that is kperpendicular to λ A ˜= 1, will provide energy into electron acceleration. This process is expected to be more effective above a conductive ionosphere. These theoretical predictions could be verified with the multi-satellite measurements in the Cluster-2 mission.
Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)
Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S
2001-10-11
An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.
Fast particles-wave interaction in the Alfven frequency range on the Joint European Torus tokamak
Fasoli, A.; Borba, D.; Association EURATOM Breizman, B.; Gormezano, C.; Heeter, R. F.; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 ; Juan, A.; Mantsinen, M.; Sharapov, S.; Testa, D.
2000-05-01
Wave-particle interaction phenomena in the Alfven Eigenmode (AE) frequency range are investigated at the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] using active and passive diagnostic methods. Fast particles are generated by neutral beam injection, ion cyclotron resonance heating, and fusion reactions. External antennas are used to excite stable AEs and measure fast particle drive and damping separately. Comparisons with numerical calculations lead to an identification of the different damping mechanisms. The use of the active AE diagnostic system to generate control signals based on the proximity to marginal stability limits for AE and low-frequency magnetohydrodynamic (MHD) modes is explored. Signatures of the different nonlinear regimes of fast particle driven AE instabilities predicted by theory are found in the measured spectra. The diagnostic use of AE measurements to get information both on the plasma bulk and the fast particle distribution is assessed. (c) 2000 American Institute of Physics.
Observation of modes at frequencies near the second Alfven gap in TFTR
Fredrickson, E.; Van Dam, J. W.; Budny, R. V.; Darrow, D.; Fu, G. Y.; Hosea, J.; Phillips, C. K.; Wilson, J. R.
1999-09-20
Modes have been observed near the frequency of the second Alfven gap during off-axis H-minority heating experiments on TFTR. The observation of these modes is surprising in that the second gap, which is generally opened with ellipticity, is expected to be small, of order (r/R){sup 2}, since TFTR plasmas are circular in cross-section. A model is proposed in which the second gap is opened by the fast ion beta, which is shown to be able to introduce mode coupling, much as toroidal effects introduce mode coupling for Toroidal Alfven Eigenmodes (TAE). The modes are seen with and without accompanying TAE mode activity. (c) 1999 American Institute of Physics.
NASA Technical Reports Server (NTRS)
Lichtenstein, B. R.; Sonett, C. P.
1979-01-01
The paper shows that the experimentally observed close alignment of magnetic field minimum variance direction with the average magnetic field for Alfven waves in the solar wind is consistent with theoretically predicted properties of plane large amplitude Alfven waves in the MHD approximation. The theoretical properties of these Alfven waves constrain the time averaged magnetic field to cluster around the direction of minimum variance, which is aligned with the wave normal. Thus, spacecraft magnetometer observations in the solar wind of minimum variance directions strongly peaked about the average magnetic field direction are consistent with plane large amplitude Alfven waves which have wave normals aligned with the directions of minimum variance. This does not imply that geometrical hydromagnetic calculations for Alfven wave propagation direction in the solar wind are incorrect, but there is a discrepancy between geometrical hydromagnetics theory and observations that IMF minimum variance directions tend to be aligned with the ideal Parker spiral instead of the radial direction.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
NASA Astrophysics Data System (ADS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1988-02-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, a new equation is derived governing the evolution of the spectrum tensor (including the energy and helicity spectrum functions) of the random velocity field as well as the ponderomotive and mean electromotive forces generated by random Alfven waves in a plasma with weak magnetic diffusion. The ponderomotive and mean electromotive forces are expressed as series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of the random velocity field. The effect of microscale random Alfven waves, through ponderomotive and mean electromotive forces generated by them, on the propagation of large-scale Alfven waves is also investigated by solving the mean-field equations, including the transport equation of the helicity spectrum function.
Mechanisms for the Dissipation of Alfven Waves in Near-Earth Space Plasma
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Krivorutsky, E. N.; Davis, John M. (Technical Monitor)
2002-01-01
Alfven waves are a major mechanism for the transport of electromagnetic energy from the distant part of the magnetosphere to the near-Earth space. This is especially true for the auroral and polar regions of the Earth. However, the mechanisms for their dissipation have remained illusive. One of the mechanisms is the formation of double layers when the current associated with Alfven waves in the inertial regime interact with density cavities, which either are generated nonlinearly by the waves themselves or are a part of the ambient plasma turbulence. Depending on the strength of the cavities, weak and strong double layers could form. Such double layers are transient; their lifetimes depend on that of the cavities. Thus they impulsively accelerate ions and electrons. Another mechanism is the resonant absorption of broadband Alfven- wave noise by the ions at the ion cyclotron frequencies. But this resonant absorption may not be possible for the very low frequency waves, and it may be more suited for electromagnetic ion cyclotron waves. A third mechanism is the excitation of secondary waves by the drifts of electrons and ions in the Alfven wave fields. It is found that under suitable conditions, the relative drifts between different ion species and/or between electrons and ions are large enough to drive lower hybrid waves, which could cause transverse accelerations of ions and parallel accelerations of electrons. This mechanism is being further studied by means of kinetic simulations using 2.5- and 3-D particle-in-cell codes. The ongoing modeling efforts on space weather require quantitative estimates of energy inputs of various kinds, including the electromagnetic energy. Our studies described here contribute to the methods of determining the estimates of the input from ubiquitous Alfven waves.
The soliton transform and a possible application to nonlinear Alfven waves in space
NASA Technical Reports Server (NTRS)
Hada, T.; Hamilton, R. L.; Kennel, C. F.
1993-01-01
The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.
Drift-Alfven wave mediated particle transport in an elongated density depression
Vincena, Stephen; Gekelman, Walter
2006-06-15
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.
NASA Astrophysics Data System (ADS)
Koepke, Mark
2008-11-01
A small, off-axis mesh anode electrode at one plasma-column end is used to create a paraxial channel of both electron current and depleted density in the Large Plasma Device Upgrade (LAPD-U) at UCLA. It is shown that the on-axis, larger, surrounding-plasma column rotates about its cylindrical axis because a radial electric field is imposed by a multiple-segmented-disk termination electrode on the same end as the mesh-anode electrode. The radial profile of azimuthal velocity is shown to be consistent with rigid-body rotation. Launched inertial Alfven waves are shown to concentrate in the off-axis channel of electron current and depleted plasma density. In the absence of launched waves, time varying boundary conditions, or spatially structured boundary conditions, we demonstrate that a non-fluctuating, non-traveling pattern in the plasma density arises spontaneously in the channel, but only in the combined presence of electron current, density depletion, and cross-field convection (i.e., rotation). The experimental verification of stationary inertial Alfven waves is based on these results and the predictions from a model of finite-collisionality, finite-pressure stationary Alfven waves that links laboratory and auroral plasma regimes. Ground-based optical observations will be shown that indicate the need for a quasi- static theory of structured electron acceleration within auroral arcs. The properties of the stationary inertial Alfven wave suggest it as promising candidate.
Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.
2013-06-10
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.
Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR
Darrow, D.S.; Zweben, S.J.; Chang, Z.
1996-04-01
Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B{sub T}, and by H-minority ICRF tail ions at higher B{sub T}. The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case.
High-resolution sounding rocket observations of large-amplitude Alfven waves
NASA Technical Reports Server (NTRS)
Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Mozer, F. S.
1990-01-01
Shear Alfven waves with amplitudes greater than 100 mV/m were observed on two recent sounding rocket flights. The largest waveforms are best described as a series of step functions, rather than as broadband noise or as single frequency waves. Complete two-dimensional E and B measurements at 4-ms time resolution were made, showing a downward propagation direction and implying insignificant reflection from the ionosphere at frequencies greater than 1 Hz. Intense, field-aligned, low-energy electron fluxes accompany the waves. Acceleration of these electrons by the Alfven waves is shown to be feasible. The waves in at least one case have a sufficently large ponderomotive potential to generate the observed density fluctuations of order one.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.
2013-03-15
Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.
Small scales formation via Alfven wave propagation in compressible nonuniform media
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: High beta
NASA Technical Reports Server (NTRS)
Ghosh, S.; Vinas, A. F.; Goldstein, M. L.
1994-01-01
The nonlinear dynamics following saturation of the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation in the case of high plasma beta and no wave dispersion. The magnetohydrodynamic (MHD) code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Turbulent cascades develop after saturation of two coupled oblique three-wave parametric instabilities; one of which is an oblique filamentationlike instability reported earlier. Remnants of the parametric processes, as well as of the original Alfven pump wave, persist during late nonlinear times. Nearly incompressible MHD features such as spectral anisotropies appear as well.
Kinetic Alfven waves in a homogeneous dusty magnetoplasma with dust charge fluctuation effects
Zubia, K.; Rubab, N.; Shah, H. A.; Salimullah, M.; Murtaza, G.
2007-03-15
Kinetic Alfven waves with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external/ambient magnetic field. Two-potential theory has been applied for these electromagnetic waves and the dispersion relation is derived which shows a cutoff frequency at the dust-lower-hybrid frequency due to the hybrid motion of magnetized ions and cold and unmagnetized dust dynamics. The dust charge fluctuation effect was analyzed for finding the damping of the electromagnetic kinetic Alfven waves, which arises on account of the electrostatic parallel component of the waves. The dust charge fluctuation damping is seen to be contributed dominantly by the perpendicular motion of electrons and ions in the dusty magnetoplasma.
Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion
NASA Astrophysics Data System (ADS)
Christiansen, P. J.; Dum, C. T.
1989-06-01
The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.
Magnetic fluctuations due to thermally excited Alfven waves
Agim, Y.Z.; Prager, S.C.
1990-01-01
Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-{beta} regimes. 21 refs., 6 figs.
Magnetic fluctuations due to thermally excited Alfven waves
Agim, Y.Z.; Prager, S.C. )
1990-06-01
Magnetic fluctuations resulting from the thermally excited magnetohydrodynamic waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities that are roughly Lorentzian and exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber as a result of dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion resulting from the finite ion gyro-frequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-beta regimes.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
Correlation between excitation of Alfven modes and degradation of ICRF heating efficiency in TFTR
Bernabei, S.; Chang, Z.; Darrow, D.
1997-05-01
Alfven modes are excited by energetic ions in TFTR during intense minority ICRF heating. There is a clear threshold in rf power above which the modes are destabilized. The net effect of these modes is the increase of the fast ion losses, with an associated saturation of the ion tail energy and of the efficiency of the heating. Typically, several modes are excited with progressive n-numbers, with frequencies in the neighborhood of 200 kHz. Results suggest that Energetic Particle Modes (EPM), mostly unseen by the Mirnov coils, are generated near the center and are responsible for the ion losses. Stronger global TAE modes, which are destabilized by the stream of displaced fast ions, appear responsible only for minor losses.
Modification and damping of Alfven waves in a magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.
1994-10-01
The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlations. It is found that in addition to the unusual Landau damping, which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field.
Huysmans, G.T.A.; Kerner, W.; Borba, D.; Holties, H.A.; Goedbloed, J.P.
1995-05-01
The active excitation of global Alfven modes using the saddle coils in the Joint European Torus (JET) [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfven mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfven Spectrum in TORoidal geometry) [18{ital th} {ital EPS} {ital Conference} {ital On} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-{ital n} global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfven and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfven mode with a density and magnetic field.
Supergranulation-driven Alfven waves in the solar chromosphere and related phenomena.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1972-01-01
It has recently been recognized that Alfven waves frequently dominate the microstructure of the solar wind at the orbit of the earth. We seek a solar source for these waves, and consider here their excitation by the supergranular motions. The wave equation is solved in a horizontally stratified, bi-exponential solar atmosphere. The interaction of Alfven wave motions associated with adjacent supergranules is discussed qualitatively. The Alfven wave effectively conveys the supergranular motions to great heights in the chromosphere. These motions are oppositely directed above intersupergranule boundaries, and compress the magnetic field there. A naive calculation of the compression, based on balancing dynamic and magnetic pressures, leads to adequate agreement with observations of the chromospheric network. We find that the magnetic field is appreciably compressed only below about 1500 km, and on this basis we reject theories of spicule formation which require large vertical magnetic fields at the heights reached by spicules. We advance a theory for spicule formation, in which spicules form as a result of matter being squeezed upward, out of the compression region between adjacent supergranules.
Linear and non-linear numerical simulations of poloidal Alfven waves
NASA Astrophysics Data System (ADS)
Ribeiro, A.
2013-05-01
Among the many of numerical simulations of MHD turbulence, few studies had been made of Alfven waves interacting with realistic boundaries. Thus, we have developed a novel hybrid spectral/finite element code, which is capable of simulate properly realistic boundaries properties. Our model is based on a Fourier decompositions of all variables in the azimuthal direction and on a finite element projection in the meridian plan. In order to simulate realistic boundary conditions for the magnetic field we solve the induction equation enforcing continuity of the magnetic field H at the interface with the external insulating medium through a Interior Penalty Galerkin method (IPG) [1]. I will present the results of our investigation of Alfven waves propagating in a cylinder filled of liquid metal submitted to an axial magnetic field. Poloidal Alfven waves are excited magnetically by imposing an azimuthal current pulse at the bottom of the cylinder. In the linear axisymmetric model we find a good agreement with previous experiments in liquid metals by Lundquist and by Lenhert and more recently by Alboussiere et al [2]. This axisymmetric study is extended to the non linear regime, where the amplitudes of the perturbations are comparable to the external applied magnetic field,in this conditions a complex response is found due to waves waves interactions. [1] J. L. Guermond, J.L Leorat, F. Luddens, C. Nore, A. Ribeiro. Effects of discontinuous magnetic permeability on magnetodynamic problems, Journal of Computational Physics Volume 230, Issue 16, 10 July 2011, Pages 6299 -- 6319. [2] T. Alboussiere, P. Cardin, F. Debray, H. C. Nataf, F. Plunian, A. Ribeiro, D. Schmitt, Experimental evidence of Alfven wave propagation in a Gallium alloy, Physics of fluids, 2011, vol. 23, nb 9.
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas; Rudakov, Leonid
2012-10-15
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
NASA Technical Reports Server (NTRS)
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
Biglari, H.; Ono, M. . Plasma Physics Lab.); Diamond, P.H. . Dept. of Physics); Craddock, G.G. )
1991-01-01
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E {times} B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power ({approximately} few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs.
Fast Particle Effects on the Internal Kink, Fishbone and Alfven Modes
N.N. Gorelenkov; S. Bernabei; C.Z. Cheng; G.Y. Fu; K. Hill; S. Kaye; G.J. Kramer; Y. Kusama; K. Shinohara; R. Nazikian; T. Ozeki; W. Park
2000-11-15
The issues of linear stability of low frequency perturbative and nonperturbative modes in advanced tokamak regimes are addressed based on recent developments in theory, computational methods, and progress in experiments. Perturbative codes NOVA and ORBIT are used to calculate the effects of TAEs on fast particle population in spherical tokamak NSTX. Nonperturbative analysis of chirping frequency modes in experiments on TFTR and JT-60U is presented using the kinetic code HINST, which identified such modes as a separate branch of Alfven modes - resonance TAE (R-TAE). Internal kink mode stability in the presence of fast particles is studied using the NOVA code and hybrid kinetic-MHD nonlinear code M3D.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Shrivastava, G. Ahirwar, G.; Shrivastava, J.
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2004-01-01
When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.
Cherenkov radiation of shear Alfven waves in plasmas with two ion species
Farmer, W. A.; Morales, G. J.
2012-09-15
A calculation is presented of the radiation pattern of shear Alfven waves generated by a burst of charged particles in a charge-neutral plasma with two-ions of differing charge-to-mass ratios. The wake pattern is obtained for the inertial and kinetic regimes of wave propagation. Due to the presence of two ion-species, the Alfven waves propagate within two different frequency bands separated by a gap. One band is restricted to frequencies below the cyclotron frequency of the heavier species and the other to frequencies between the ion-ion hybrid frequency and the cyclotron frequency of the lighter species. The radiation pattern in the lower frequency band is found to exhibit essentially the same properties reported in a previous study [Van Compernolle et al., Phys. Plasmas 15, 082101 (2008)] of a single species plasma. However, the upper frequency band differs from the lower one in that it always allows for the Cherenkov radiation condition to be met. The methodology is extended to examine the Alfvenic wake of point-charges in the inertial and adiabatic regimes. The adiabatic regime is illustrated for conditions applicable to fusion-born alpha particles in ITER.
Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection
Ma, Z.W.; Lee, L.C.; Otto, A.
1995-07-01
The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a large portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.
PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES
Russell, A. J. B.; Fletcher, L.
2013-03-10
How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
Chromospheric alfvenic waves strong enough to power the solar wind.
De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S
2007-12-01
Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784
Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.
2015-12-01
Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.
Is the Alfven-wave propagation effect important for energy decay in homogeneous MHD turbulence?
Hossain, Murshed; Gray, Perry C.; Pontius, Duane H. Jr.; Matthaeus, William H.; Oughton, Sean
1996-07-20
We investigate the role of three-point decorrelation due to Alfven wave propagation in three-dimensional incompressible homogeneous MHD turbulence. By comparing numerical simulations with theoretical expectations, we have studied how this effect influences the decay of turbulent energy caused by both an external mean magnetic field and the fluctuating turbulent field. Decay is initially suppressed by a mean magnetic field, as expected, but the effect soon saturates. The decay rate does not scale with mean magnetic field for higher values. The disagreement with theoretical predictions can be accounted for by anisotropic spectral transfer. Thus, phenomenological models for energy decay that include decorrelation due to Alfvenic propagation are not substantiated. This work complements our detailed study of various models of energy decay in homogeneous MHD [Hossain et al., 1995].
Matsumoto, Takuma; Shibata, Kazunari
2010-02-20
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.
Schulze-Berge, S.; Crowley, S.; Chen, Liu.
1991-05-01
We have analyzed field line resonances of Alfven waves in a rectangular box model with a straight uniform magnetic field but three dimensionally varying density. Field line resonances are shown to exist even with this three-dimensional nonuniformity. For a given wave frequency, we can construct the surface on which the resonance occurs and derive the local form of the singular solution. Magnetic perturbations are found to lie predominantly in the resonant surface. In the presence of azimuthal inhomogeneities, the present theory could explain why some satellite measurements show geomagnetic pulsations of comparable magnitude in radial and azimuthal components. 5 refs.
Schulze-Berge, S.; Cowley, S.; Liu Chen )
1992-03-01
The authors have analyzed field line resonances of Alfven waves in a rectangular box model with a straight uniform magnetic field but three-dimensionally varying density. Field line resonances are shown to exist even with this three-dimensional uniformity. For a given wave frequency they can construct the surface on which the resonance occurs and derive the local form of the singular solution. Magnetic perturbations are found to lie predominantly in the resonant surface. In the presence of azimuthal inhomogeneous the present theory could explain why some satellite measurements show geomagnetic pulsations of comparable magnitude in radial and azimuthal components.
PROPAGATING COUPLED ALFVEN AND KINK OSCILLATIONS IN AN ARBITRARY INHOMOGENEOUS CORONA
Pascoe, D. J.; Wright, A. N.; De Moortel, I.
2011-04-10
Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. We perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low {beta} plasma. We consider the cases of distorted cylindrical flux tubes and a randomly generated inhomogeneous medium. When density structuring is present, mode coupling in inhomogeneous regions leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave is observed as energy is transferred to the local Alfven mode. In all cases considered, modest changes in density were capable of efficiently converting energy from the driving footpoint motion to localized Alfven modes. We have demonstrated that mode coupling efficiently couples propagating kink perturbations to Alfven modes in an arbitrary inhomogeneous medium. This has the consequence that transverse footpoint motions at the base of the corona will deposit energy to Alfven modes in the corona.
NASA Astrophysics Data System (ADS)
Cranmer, S. R.; van Ballegooijen, A. A.
2004-05-01
The continually evolving convection below the solar photosphere gives rise to a wide spectrum of magnetohydrodynamic (MHD) fluctuations in the magnetic atmosphere and solar wind. The propagation of waves through the solar atmosphere has been studied for more than a half century, and the mainly incompressible Alfven mode has been believed to be dominant in regions that are open to the heliosphere. As a part of an ongoing study of various aspects of solar MHD waves and turbulence, we present a comprehensive model of the radially evolving properties of Alfvenic fluctuations in a representative open magnetic region. This work differs from previous models in the following ways. (1) The background plasma density, magnetic field, and flow velocity are constrained empirically from below the photosphere to distances past 1 AU. The successive merging of flux tubes on granular and supergranular scales is described using a two-dimensional magnetostatic model of a magnetic network element. (2) The frequency power spectrum of horizontal motions is specified only at the photosphere, based on prior analyses of G-band bright points. Everywhere else in the model the amplitudes of outward and inward propagating waves are computed with no free parameters. We compare the resulting wave properties with observed nonthermal motions in the chromosphere and corona, radio scintillation measurements, and in-situ fluctuation spectra. This work is supported by NASA under grants NAG5-11913, NAG5-12865, and NAG5-10996 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to the ESA PRODEX program.
Alfven cascade modes at high {beta} in the National Spherical Torus Experiment
Crocker, N. A.; Kubota, S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; Darrow, D. S.; Menard, J. E.; LeBlanc, B. P.; Bell, R. E.; Heidbrink, W. W.; Levinton, F. M.; Yuh, H.
2008-10-15
Alfven cascade (AC) modes are observed in the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] reversed shear plasmas over a wide range (up to {approx}25% on axis, or {approx}11% at minimum q) of {beta} (ratio of kinetic pressure to magnetic pressure). At low {beta}, the AC mode spectrum shows characteristics similar to conventional tokamaks. At higher {beta}, distinct {beta} and {nabla}{beta} effects are observed in the spectrum, including a significant reduction in the relative size of the frequency sweep and a toroidal mode number dependence in the minimum mode frequency. AC mode structure is obtained using reflectometry. Fast-ion loss associated with AC mode activity is observed. AC mode polarization at the plasma edge is consistent with expectation. Magnetohydrodynamic (MHD) spectroscopy is shown to be usable to determine q{sub min} at both low {beta} and high {beta}. Observed AC mode structure and frequency are found to be consistent with calculations for the same plasma conditions and geometry using the linear, ideal MHD hybrid kinetic code NOVA-K[C. Z. Cheng, Phys. Rep. 211, 1 (1992)].
Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: Low beta
NASA Technical Reports Server (NTRS)
Ghosh, S.; Goldstein, M. L.
1994-01-01
The nature of turbulent cascades arising from the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation for the case of low plasma Beta and no wave dispersion. The magnetohydrodynamic code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Anisotropic turbulent cascades, similar to those found in early incompressible two-dimensional simulations, occur after nonlinear saturation of the parallel propagating decay instability. The turbulent spectrum can be divided into three regimes: the lowest wave numbers are dominated by lower sideband remnants of the parametric process, intermediate wave numbers display nearly incompressible dynamics, and the highest wave numbers are dominated by acoustic turbulence.
Hybrid simulations of rotational discontinuities. [Alfven wave propagation in astrophysics
NASA Technical Reports Server (NTRS)
Goodrich, C. C.; Cargill, P. J.
1991-01-01
1D hybrid simulations of rotational discontinuities (RDs) are presented. When the angle between the discontinuity normal and the magnetic field (theta-BN) is 30 deg, the RD broadens into a quasi-steady state of width 60-80 c/omega-i. The hodogram has a characteristic S-shape. When theta-BN = 60 deg, the RD is much narrower (10 c/omega-i). For right handed rotations, the results are similar to theta-BN = 30 deg. For left handed rotations, the RD does not evolve much from its initial conditions and the S-shape in the hodogram is much less visible. The results can be understood in terms of matching a fast mode wavelike structure upstream of the RD with an intermediate mode one downstream.
A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVEN WAVES
Van der Holst, B.; Manchester, W. B.; Frazin, R. A.; Toth, G.; Gombosi, T. I.; Vasquez, A. M.
2010-12-10
We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF) that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfven waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers but do address the heating of the protons by the Kolmogorov dissipation of the Alfven waves in open field-line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfven wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme-ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (2008 November 20 through December 17). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated corotating interaction regions (CIRs) with in situ ACE/WIND data. Although we do not capture all MHD variables perfectly, we do find that the time of occurrence and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.
Anomalous perturbative transport in tokamaks due to drift-Alfven-wave turbulence
Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )
1994-03-01
The method developed in Thoul, Similon, and Sudan [Phys. Plasmas [bold 1], 579 (1994)] is used to calculate the transport due to drift-Alfven-wave turbulence, in which electromagnetic effects such as the fluttering of the magnetic field lines are important. Explicit expressions are obtained for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma. Although the magnetic terms leave the transport by trapped electrons unaffected, they are important for the transport by circulating electrons.
Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui
2013-09-15
Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui
2013-09-01
Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.
Winds From Luminous Late-Type Stars. 1; The Effects of Nonlinear Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.
2000-01-01
We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.
THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE
Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.
2013-08-20
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.
Plasma turbulence driven by transversely large-scale standing shear Alfven waves
Singh, Nagendra; Rao, Sathyanarayan
2012-12-15
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
Polarization and Compressibility of Oblique Kinetic Alfven Waves
NASA Technical Reports Server (NTRS)
Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2012-01-01
Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects
Parametric instabilities of circularly polarized Alfven waves in high-beta plasmas
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu
1993-01-01
CGL relations including the effect of finite ion Larmor radius are used to consider a class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in high-beta plasmas. The disperison relation governing the instabilities is a sixth-order polynomial which is solved numerically. There are two types of instabilities: a modulational instability at k is less than k(0) and a relatively weak and narrow bandwidth instability at k is less than approximately k(0), where k and k(0) are the wavenumbers of the unstable density fluctuation and the 'pump' wave, respectively. It is shown that these instabilities can occur for left-handed pump waves and that the modulational instability is unstable over a very broad band in k with a maximum growth rate at finite k is not equal to 0.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2006-01-01
Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.
NASA Technical Reports Server (NTRS)
Bhattacharjee, A.; Hasegawa, A.
1990-01-01
The Final Technical Report on linear and non-linear studies of Alfven waves in space is presented. Areas of research included relaxation of magnetotail plasmas with field-aligned currents; the equilibrium dayside magnetosphere; macroscale particle simulation of kinetic Alfven wave physics; ballooning stability of plasmas with sheared equilibrium flows; theory of the drift-mirror instability; collisionless tearing instability in magnetotail plasmas; and nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field and the development of stochastic webs.
Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves
Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A. )
1989-08-01
The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma {beta} (the ratio of plasma pressure to the magnetic pressure) varies from {beta} = 1 to {beta} << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet.
Effects of Density Fluctuations on Weakly Nonlinear Alfven Waves: An IST Perspective
NASA Astrophysics Data System (ADS)
Hamilton, R.; Hadley, N.
2012-12-01
The effects of random density fluctuations on oblique, 1D, weakly nonlinear Alfven waves is examined through a numerical study of an analytical model developed by Ruderman [M.S. Ruderman, Phys. Plasmas, 9 (7), pp. 2940-2945, (2002).]. Consistent with Ruderman's application to the one-parameter dark soliton, the effects on both one-parameter bright and dark solitons, the two-parameter soliton as well as pairs of one-parameter solitons were similar to that of Ohmic dissipation found by Hamilton et al. [R. Hamilton, D. Peterson, and S. Libby, J. Geophys. Res 114, A03104,doi:10.1029/2008JA013582 (2009).] It was found in all cases where bright or two-parameter solitons are present initially, that the effects of density fluctuations results in the eventual damping of such compressive wave forms and the formation of a train of dark solitons, or magnetic depressions.
Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons
Panwar, A. E-mail: ryu201@postech.ac.kr Ryu, C. M. E-mail: ryu201@postech.ac.kr; Bains, A. S. E-mail: ryu201@postech.ac.kr
2015-09-15
A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.
Tian Hui; McIntosh, Scott W.; Wang, Tongjiang; Ofman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-11-10
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Carter, T A
2006-11-16
Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Buti, B.
1990-01-01
Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.
Effect of the magnetic field curvature on the generation of zonal flows by drift-Alfven waves
Mikhailovskii, A. B.; Kovalishen, E. A.; Shirokov, M. S.; Tsypin, V. S.; Galvao, R. M. O.
2007-05-15
The generation of zonal flows by drift-Alfven waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm's law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.
Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity
NASA Technical Reports Server (NTRS)
Fatuzzo, Marco; Melia, Fulvio
1993-01-01
Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.
Evans, R. M.; Opher, M.; Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I.; Vasquez, A.
2012-09-10
The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave
A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry
Koenies, Axel; Kleiber, Ralf
2012-12-15
While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.
The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, David
2003-01-01
The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.
Super-alfvenic propagation of cosmic rays: The role of streaming modes
NASA Technical Reports Server (NTRS)
Morrison, P. J.; Scott, J. S.; Holman, G. D.; Ionson, J. A.
1980-01-01
Numerous cosmic ray propagation and acceleration problems require knowledge of the propagation speed of relativistic particles through an ambient plasma. Previous calculations indicated that self-generated turbulence scatters relativistic particles and reduces their bulk streaming velocity to the Alfven speed. This result was incorporated into all currently prominent theories of cosmic ray acceleration and propagation. It is demonstrated that super-Alfvenic propagation is indeed possible for a wide range of physical parameters. This fact dramatically affects the predictions of these models.
Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots
NASA Technical Reports Server (NTRS)
Scheuer, M. A.; Thomas, J. H.
1981-01-01
Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
NASA Astrophysics Data System (ADS)
Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-01
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-15
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Dispersion characteristics of kinetic Alfven waves in a multi-ion cometary plasma
NASA Astrophysics Data System (ADS)
Jayapal, R.; Abraham, Noble P.; Blesson, Jose; Antony, S.; Anilkumar, C. P.; Venugopal, Chandu
We have studied the stability of the kinetic Alfven wave in a plasma composed of hydrogen and positively and negatively charged oxygen ions and electrons which approximates very well the plasma environment around comet Halley. In the direction parallel to the magnetic field, the electrons have been modelled by a drifting Maxwellian distribution. In the perpendicular direction, another ring simulated by a loss cone type distribution, obtained by subtracting two Maxwellians with different temperatures, model all the constituents of the plasma. The dispersion relation derived for KAWs is a generalisation of the pioneering dispersion relation of Hasegawa on two counts: it has been extended to a plasma described by a generalised distribution function and to a multi - ion plasma containing positively and negatively charged ions. We find that the dispersion characteristics of the KAW can be made independent of the heavy ion parameters by an appropriate choice of densities and temperatures. The source of free energy for the instability is the drift velocity of the electrons; the growth rate increases with increasing drift velocity of the electrons. The positively charged heavier ions enhance the instability while the negatively charged heavier ions tend to damp the wave.
Dispersion characteristics of kinetic Alfven waves in a multi-ion plasma
NASA Astrophysics Data System (ADS)
Venugopal, Chandu; Jayapal, R.; Sreekala, G.; Jose, Blesson; Savithri Devi, E.; Antony, S.
2014-06-01
The stability of the kinetic Alfven wave (KAW) has been studied in a plasma composed of electrons, hydrogen and positively and negatively charged oxygen ions. Using the two potential theory of Hasegawa, we have derived an expression for the frequency and growth/damping rate of the KAW. The dispersion relation derived in this paper is a generalization of the dispersion relation of Hasegawa on two counts: (i) we use a more generalized distribution function and show that our relation reduces to the dispersion relation of Hasegawa in the limiting case, and (ii) it is applicable to a multi-ion plasma containing lighter ions and positively and negatively charged heavier ions. We find the growth rate of the wave increases with increasing drift velocities of the electrons. Negatively charged oxygen ions (O-) decrease the growth rate; however, the growth rate is very sensitively dependent on O- ion density, especially when its density is greater than that of the positively charged oxygen ions (O+). Interestingly, the dispersion characteristics of KAWs can be made insensitive to the presence of the heavier ions by an appropriate choice of their densities and temperatures.
Propagation and mode conversion for waves in nonuniform plasmas
Stix, T.H.; Swanson, D.G.
1982-06-01
The following topics are described: (1) the hybrid resonance, (2) Alfven resonance, (3) the intermediate-frequency electromagnetic wave equation, (4) the standard equation, (5) the tunneling equation, (6) asymptotic solutions of the tunneling equation, (7) localized absorption, and (8) matched asymptotic expansions; the low-frequency Alfven resonance. (MOW)
James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves
NASA Astrophysics Data System (ADS)
Chen, Liu
2012-10-01
Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.
THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF FAST-TO-ALFVEN CONVERSION IN SUNSPOTS
Felipe, T.
2012-10-20
The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-{beta} region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 Degree-Sign and low azimuths, while the Alfven wave conversions peak at high inclinations and azimuths between 50 Degree-Sign and 120 Degree-Sign . Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which is reflected due to the gradients of the Alfven speed. The simulations show that the Alfven energy at the chromosphere is comparable to the acoustic energy of the slow mode, being even higher at high inclined magnetic fields.
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.
2015-12-01
Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.
Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales
NASA Astrophysics Data System (ADS)
Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.
2010-12-01
Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.
An analytical solution of finite-amplitude solitary kinetic Alfven waves
Wu, D.; Wang, D.; Faelthammar, C.
1995-12-01
An analytical solution of finite-amplitude solitary kinetic Alfven waves (SKAWs) in a low-{beta} ({beta}{much_lt}{ital m}{sub {ital e}}/{ital m}{sub {ital i}}{much_lt}1) plasma is presented. This solution has been compared with the solution of the Korteweg--de Vries (KdV) equation in the small-amplitude limit. It is found that the KdV soliton solution is valid only for the maximum relative density perturbation {ital N}{sub {ital m}}{lt}0.1. For the larger {ital N}{sub {ital m}}, the exact analytical solution shows that the SKAWs have a much wider structure and much stronger perturbed fields than the KdV solitons with the same {ital N}{sub {ital m}}. Moreover, the relations between the width and the amplitude of SKAWs are also considerably different from that of the KdV solitons. In addition, the possibility for applying these results to some events observed from the Freja scientific satellite is discussed. (The Freja is a Swedish--German scientific project for the investigation of ionospheric and magnetospheric plasmas, and the Freja satellite was launched on a Long-March II rocket of China on October 6, 1992.) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Kinetic Alfven eigenmodes in JET and DIII-D
Jaun, A.; Hellsten, T.; Heidbrink, W.W.; Carolipio, E.
1996-12-31
Kinetic effects are studied for global Alfven eigenmodes in realistic tokamak equilibria with finite aspect ratio and plasmas, comparing calculations from the full wave code PENN with experimental measurements. The kinetic plasma model is based on a Larmor radius expansion in toroidal geometry and takes into account the gradients in the equilibrium density and temperatures. It allows for a consistent description of the mode conversion to the kinetic Alfven wave (KAW) and the effect of diamagnetic drifts on electromagnetic waves. Comparisons axe first carried out for a JET discharge, showing that multiple peeks measured in the low frequency Alfven spectrum are the signature of kinetic Alfven eigenmodes (KAE) induced through coupling between a global ellipticity Alfven eigenmode (EAE) and the KAW. In general, series of modes appear in the proximity of global fluid modes, some with a regular spacing in frequency and a very weak Landau damping of {vert_bar}{gamma}/{omega}{vert_bar} {approx_equal} 0.0007. A kinetic analysis of a DIII-D discharge shows that TAE mode wavefields reach the plasma core through electromagnetic drift waves which propagate because of finite temperature gradients in the regions of small k{sub {parallel}}. They can lead to particle diffusion and may explain the large losses of beam ions observed during the TAE instabilities. Comparisons of frequency and eigenmode structure axe carried out for resistive and kinetic models, between the theoretical calculations using the PENN code and the experimental measurements from magnetic probes.
Radiation from accelerated Alfven solitons in inhomogeneous plasmas
NASA Technical Reports Server (NTRS)
Lakhina, G. S.; Buti, B.; Tsintsadze, N. L.
1990-01-01
In a weakly inhomogeneous plasma, the large-amplitude Alfven waves propagating parallel to the ambient magnetic field are shown to evolve into accelerated Alfven solitons. Nonlinear interaction of the accelerated Alfven solitons with the Langmuir waves results in the emission of coherent radiations. Analytical expression for the power radiated per unit solid angle from a soliton is derived for two inhomogeneity profiles, namely the linear profile and the parabolic profile. For the case of uniform plasmas, the emission occurs via a decay-type process or resonant modes. In the presence of inhomogeneity, nonresonant modes provide a new channel for the emission of radiation. The power radiated per unit solid angle is computed for the parameters relevant to Comet Halley's plasma environment. For the nonresonant modes it is found to be several orders of magnitude higher than that for the case of resonant modes.
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-04-10
The angular distribution of the normalized reduced magnetic helicity density ({sigma} r{sub m}) in solar wind turbulence reveals two components of distinct polarity in different angle ranges. This kind of two-component {sigma}{sup r}{sub m} may indicate the possible wave modes and power spectral densities (PSDs) of the turbulent fluctuations. Here we model the measured angular distribution of {sigma}{sup r}{sub m} by assuming a PSD distribution for Alfven fluctuations in wavevector space, and then fit the model results to the observations by adjusting the pattern of the PSD distribution. It is found that the two-component form of the PSD, which has a major and minor component close to k and k{sub ||}, respectively, seems to be responsible for the observed two-component {sigma}{sup r}{sub m}. On the other hand, both an isotropic PSD and a PSD with only a single component bending toward k fail to reproduce the observations. Moreover, it is shown that the effect of gradual balance between outward and inward wave-energy fluxes with decreasing spatial scale needs to be considered in order to reproduce the observed diminishing of |{sigma}{sup r}{sub m}| at shorter scales. Therefore, we suggest that the observed two-component {sigma}{sup r}{sub m} in the solar wind turbulence may be due to a superposition of Alfven waves with quasi-perpendicular (major part) and quasi-parallel (minor part) propagation. The waves seem to become gradually balanced toward shorter scales.
Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves
NASA Astrophysics Data System (ADS)
Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos
2014-10-01
Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f
COUPLED ALFVEN AND KINK OSCILLATIONS IN CORONAL LOOPS
Pascoe, D. J.; Wright, A. N.; De Moortel, I.
2010-03-10
Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. However, there is ongoing discussion regarding their interpretation as kink or Alfven waves. To investigate the nature of transverse waves propagating in the solar corona and their potential for use as a coronal diagnostic in MHD seismology, we perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low beta plasma. We consider the cases of both a uniform medium and one with loop-like density structure and perform a parametric study for our structuring parameters. When density structuring is present, resonant absorption in inhomogeneous layers leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave as energy is transferred to the local Alfven mode is in good agreement with a modified interpretation of the analysis of Ruderman and Roberts for standing kink modes. Numerical simulations support the most general interpretation of the observed loop oscillations as a coupling of the kink and Alfven modes. This coupling may account for the observed predominance of outward wave power in longer coronal loops since the observed damping length is comparable to our estimate based on an assumption of resonant absorption as the damping mechanism.
Alfven solitons in the solar wind
NASA Technical Reports Server (NTRS)
Ovenden, C.; Schwartz, S. J.
1983-01-01
A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.
FMS and Alfven from the initial disturbance in the FMS waveguide
NASA Astrophysics Data System (ADS)
Dmitrienko, Irina
A description of the evolution of the initial disturbance in the fast magnetosonic (FMS) waveguide in transversely inhomogeneous plasma, given a weak coupling between FMS and Alfven modes, is made. It is shown that the Fourier transform of the FMS waveguide disturbance with respect to the coordinates along which plasma is homogeneous can be presented as a superposition of collective modes of the leading approximation with respect to the weak FMS-Alfven wave coupling from the initial instant of time. Frequencies of such collective modes and dependence of their structures on the coordinate along the inhomogeneity are found without taking the FMS-Alfven resonance into consideration, and the mode decrements are calculated using the perturbation technique. On the basis of such a representation of the FMS waveguide disturbance, the evolution of Alfven waves generating with waveguide mode packets produced by the initial disturbance of an arbitrary longitudinal structure is described. It is shown that the longitudinal structure of the Alfven disturbance generated by the collective mode packet is determined by the ratio between longitudinal scales of the initial disturbance and scales specified by resonance conditions (the resonance longitudinal wave number and the width of the range of the resonance longitudinal wave numbers). The structures of Alfven disturbances for the cases of such different ratios are described.
Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets
NASA Astrophysics Data System (ADS)
Jafelice, L. C.; Opher, R.
1990-11-01
evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS
The energy flux of MHD wave modes excited by realistic photospheric drivers
NASA Astrophysics Data System (ADS)
Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart
The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.
Finnegan, S. M.; Koepke, M. E.; Knudsen, D. J.
2008-05-15
A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.
NON-WKB MODELS OF THE FIRST IONIZATION POTENTIAL EFFECT: THE ROLE OF SLOW MODE WAVES
Laming, J. Martin
2012-01-10
A model for element abundance fractionation between the solar chromosphere and corona is further developed. The ponderomotive force due to Alfven waves propagating through or reflecting from the chromosphere in solar conditions generally accelerates chromospheric ions, but not neutrals, into the corona. This gives rise to what has become known as the first ionization potential effect. We incorporate new physical processes into the model. The chromospheric ionization balance is improved and the effect of different approximations is discussed. We also treat the parametric generation of slow mode waves by the parallel propagating Alfven waves. This is also an effect of the ponderomotive force, arising from the periodic variation of the magnetic pressure driving an acoustic mode, which adds to the background longitudinal pressure. This can have subtle effects on the fractionation, rendering it quasi-mass independent in the lower regions of the chromosphere. We also briefly discuss the change in the fractionation with Alfven wave frequency, relative to the frequency of the overlying coronal loop resonance.
NASA Astrophysics Data System (ADS)
Baru, N. A.; Koloskov, A. V.; Yampolsky, Y. M.; Rakhmatulin, R. A.
2016-03-01
The long-term data of the ionospheric Alfven resonance (IAR) observations recorded at the Ukrainian Antarctic Station "Akademik Vernadsky" from 2002 to 2013 and at Sayan Solar Observatory (Mondy, Russia) from 2010 to 2013 are analyzed. IAR fine spectral structure is studied and a previously unknown effect of splitting of the several lowest resonance modes is discovered. The diurnal and seasonal dependencies of this effect are investigated as well as the dependences of the probability of IAR and splitting detection on Solar and geomagnetic activities in the 11-year cycle. The morphological features of the splitting frequency behavior are analyzed and three main characteristic periods of the splitting are identified, namely: the development, the stationary period and the disappearing. Possible mechanisms of the splitting effect are suggested.
NASA Astrophysics Data System (ADS)
Schiff, Avery; Cranmer, Steven R.
2016-05-01
We simulate the temperature profiles along coronal loops measured with AIA DEM tomography and field-line extrapolation by Nuevo et al (2013). By varying the strength and nature of the heating mechanism, we modeled steady-state, gravitationally stable loops that have temperature profiles with local maxima below the loop apex. Because these loops have negative vertical temperature gradients over much of their length, they have been called "down loops" and were seen to exist primarily in equatorial quiet regions near solar minimum. In our models, the amount of heat deposited in the loop is attributed to two sources: (1) the dissipation of Alfven waves in a turbulent cascade, and (2) the dissipation of compressive waves over a variable length. The compressive waves are generated in a nonlinear process by which some fraction of the Alfven waves undergo mode conversion instead of contributing directly to the heating process. We found that when a large percentage (> 99%) of the Alfven waves underwent this conversion, the heating was greatly concentrated at the base of the loop and stable "down loops" were created. In some cases, we found loops with three extrema that are gravitationally stable. We map the full parameter space to explore which conditions lead to which loop types, and we demonstrate that the simulated characteristics of the loops -- including magnetic field strength, pressure, and temperature -- are consistent with values measured by Nuevo et al. (2013).
Small-scale Solar Wind Turbulence Due to Nonlinear Alfven Waves
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Sharma, R. P.; Moon, Y.-J.
2015-10-01
We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k‑1.67) to the dispersion range (k‑3.0). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.
Analytical theory of interchange and compressional Alfven instabilities in EBT
Cheng, C.Z.; Tsang, K.T.
1981-07-01
The local stability of the EBT plasma is analyzed for the long wavelength perturbations in the frequency regime, ..omega.. approx. less than or equal to ..cap omega../sub i/(..cap omega../sub i/ is ion cyclotron frequency). In addition to the low frequency interchange instability, the plasma can be unstable to the compressional Alfven wave. Contrary to the previously obtained quadratic dispersion relation in ..omega.. for the interchange mode, our dispersion relations for both types of instabilities are cubic in ..omega... New stability boundaries are found, for the hot electron interchange mode, to relate to the enhanced compressibility of the core plasma in the presence of hot electrons. The compressional Alfven instability is driven due to the coupling of hot electron magnetic drifts and diamagnetic drift with the compressional Alfven wave. The stability conditions of these two types of instabilities are opposite to each other.
Maneva, Y. G.; Ofman, L.; Vinas, A. F.
2013-06-13
In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.
Conventional and nonconventional global Alfven eigenmodes in stellarators
Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.
2007-10-15
Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.
Beat, modulational, and decay instabilities of a circularly polarized Alfven wave
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1994-01-01
A circulary polarized low-frequency electomagnetic pump wave propoagating along an ambient magnetic field is known to be unstable to the growth of several parallel-propagating parametric instabilties. If ion-cyclotron effects are retained in a two-fluid description, the dispersion relation is a sixth-order polynomial. We present a series of new analytical approximations to this dispersion relation. We emphasize new results for the beat instability that occurs as an interaction of the forward prpagating upper sideband with the backward propagating lower sideband. The nature of the beat instabitlity depends on beta = (v(sub sound)/v(sub A)(exp 2) and on the sense of polarization of the pump wave. The beat and decay instabilities can occur together if the pump is left-handed (i.e., ion resonant) and if beta is less than or approximately 1, but they cannot occur together if the pump is right-handed. For a left-handed pump the beat mode is the only instability if beta is greater than or approximately 1. If the pump is right-handed and beta is greater than or approximately 1, then the beat instability exists only when the pump amplitude exceeds a threshold value, and the beat will be the only instability if the pump amplitude is large enough to stabilize the modulational instability. If the pump is left-handed and beta is less than or approximately 1, then the beat mode is stabilized when the pump amplitude becomes sufficiently large. The beat instability primarily produces a forward propagating transverse wave in the upper sideband. Thus if beta is greater than or approximately 1, the instabilities considered here do not produce the backward propagating waves which are thought to affect turbulence and the evolution of cross helicity in the solar wind. New analytical results are presented also for the decay and modulational instabilites when beta is approximately equal to 1.
Excitation of dust kinetic Alfven waves by semi-relativistic ion beams
NASA Astrophysics Data System (ADS)
Rubab, N.; Jaffer, G.
2016-05-01
The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.
Wave Forced Normal Modes on Fringing Reefs
NASA Astrophysics Data System (ADS)
Pequignet, A. N.; Becker, J. M.; Merrifield, M. M.; Aucan, J.
2008-12-01
In an effort to assess wave-driven coastal inundation at the shoreline of fringing reefs, pressure and current observations were collected at reefs on Guam (Ipan) and Oahu, Hawaii (Mokuleia) as part of the PILOT (Pacific Island Land-Ocean Typhoon) experiment. Similar to dissipative sandy beaches, nearshore surface elevation at both reefs is dominated by energy in the infragravity frequency band. Coherent infragravity oscillations across the reef tend to occur at discrete frequencies and with standing wave cross-shore structures that are consistent with open basin resonant modes. The modes are forced by swell wave groups, similar to a time-dependent setup. The resonant modes are most apparent during energetic wave events, in part because wave setup over the reef increases the low mode resonant frequencies to a range that is conducive to wave group forcing. Evidence of the excitation of resonant modes during tropical storm Man-Yi at Ipan, Guam is presented.
THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE
Howes, G. G.; Klein, K. G.; TenBarge, J. M.; Bale, S. D.; Chen, C. H. K.; Salem, C. S.
2012-07-01
We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross-correlation C({delta}n, {delta}B{sub ||}) between proton density fluctuations {delta}n and the field-aligned (compressible) component of the magnetic field {delta}B{sub ||} is negative and close to -1. The typical dependence of C({delta}n, {delta}B{sub ||}) on the ion plasma beta {beta}{sub i} is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.
Spatiotemporal mode structure of nonlinearly coupled drift wave modes
Brandt, Christian; Grulke, Olaf; Klinger, Thomas; Negrete, Jose Jr.; Bousselin, Guillaume; Brochard, Frederic; Bonhomme, Gerard; Oldenbuerger, Stella
2011-11-15
This paper presents full cross-section measurements of drift waves in the linear magnetized plasma of the Mirabelle device. Drift wave modes are studied in regimes of weakly developed turbulence. The drift wave modes develop azimuthal space-time structures of plasma density, plasma potential, and visible light fluctuations. A fast camera diagnostic is used to record visible light fluctuations of the plasma column in an azimuthal cross section with a temporal resolution of 10 {mu}s corresponding approximately to 10% of the typical drift wave period. Mode coupling and drift wave dispersion are studied by spatiotemporal Fourier decomposition of the camera frames. The observed coupling between modes is compared to calculations of nonlinearly coupled oscillators described by the Kuramoto model.
Tsiklauri, D.
2014-05-15
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed
Guided wave modes in porous cylinders: Theory.
Wisse, C J; Smeulders, D M J; Chao, G; van Dongen, M E H
2007-10-01
The classical theory of wave propagation in elastic cylinders is extended to poro-elastic mandrel modes. The classical theory predicts the existence of undamped L modes and damped C, I, and Z modes. These waves also appear in poro-elastic mandrels, but all of them become damped because of viscous effects. The presence of the Biot slow bulk wave in the poro-elastic material is responsible for the generation of additional mandrel modes. One of them was already discussed by Feng and Johnson, and the others can be grouped together as so-called D modes. The damping of these D modes is at least as high as the damping of the free-field slow wave. PMID:17902842
Optical evidence for Alfven wave breaking in the near-Earth magnetosphere
NASA Astrophysics Data System (ADS)
Semeter, J.; Blixt, M.
2006-12-01
Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun.
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ``explosion`` occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
Non-WKB Alfven Wave Reflection from the Solar Photosphere to the Distant Heliosphere
NASA Astrophysics Data System (ADS)
Cranmer, S. R.; van Ballegooijen, A.
2003-12-01
Magnetohydrodynamic (MHD) turbulence has been considered for several decades as a possibly substantial heat source for the solar chromosphere, corona, and heliosphere. However, it is still not well understood how the turbulent fluctuations are generated and how they evolve in frequency and wavenumber. Although the dominant population of Alfvén waves near the Sun must be propagating outwards, one also needs waves propagating inwards in order to ``seed'' a turbulent cascade. As a part of an ongoing study of various aspects of solar MHD turbulence, we present a model of linear, non-WKB reflection of Alfvén waves that propagate in both directions along an open magnetic flux tube. Our work differs from previous models in the following ways. (1) The background plasma density, magnetic field, and flow velocity are constrained empirically from below the photosphere to distances past 1 AU. The successive merging of flux tubes on granular and supergranular scales is described using a two-dimensional magnetostatic model of a magnetic network element in the stratified solar atmosphere. (2) The amplitudes of horizontal wave motions are specified only at the photosphere, based on previous analyses of G-band bright point motions. Everywhere else in the model the amplitudes of outward and inward propagating waves are computed self-consistently. We compare the resulting wave properties with observed nonthermal motions in the chromosphere and corona, radio scintillation measurements, and in-situ fluctuation spectra. Quantities such as the MHD turbulent heating rate and the non-WKB wave pressure are computed, and the need for other sources of inward waves (e.g., nonlinear reflection or scattering off density inhomogeneities) will also be discussed. This work is supported by the National Aeronautics and Space Administration under grants NAG5-11913 and NAG5-12865 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to the ESA
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Goldstein, Melvyn L.
2010-01-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
Two-Dimensional Ballooning Transformation with Applications to Toroidal Alfven Eigenmodes.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Dong
A general formulation for high-n (n is the toroidal mode number) modes in an axisymmetric toroidal plasma is presented, based on the two dimensional (2-D) ballooning transformation. It is shown that this formulation is more general than the conventional ballooning theory, and reduces to the conventional theory in a special case. Toroidal Alfven waves are studied using the 2 -D ballooning formulation. A perturbation theory is systematically developed for the continuum damping of the toroidal Alfven eigenmode (TAE). A formula, similar to the Fermi golden rule for decaying systems in quantum mechanics, is derived for the continuum damping rate of the TAE; the decay (damping) rate is expressed explicitly in terms of the coupling of the TAE to the continuum spectrum. Numerical results are obtained and compared to previous calculations. Kinetic effects on toroidal Alfven waves are studied. Multiple -gap coupling is included automatically by the 2-D ballooning formulation. A new branch of modes, the kinetic toroidal Alfven eigenmodes (KTAE), emerges as a result of kinetic effects. This mode resides just above the toroidal shear Alfven gap, and has a structure similar to the TAE. Numerical results for the kinetic damping rates for the TAE and the KTAE are obtained, and multiple-gap coupling effects are studied by comparing with the single gap theory of Mett and Mahajan (Phys. Fluids B 4 2885 (1992)).
Rehman, M. A.; Qureshi, M. N. S.; Shah, H. A.; Masood, W.
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
Mode properties of low-frequency waves: Kinetic theory versus Hall-MHD
NASA Technical Reports Server (NTRS)
Krauss-Varban, D.; Omidi, N.; Quest, K. B.
1994-01-01
In fluid theory, the ordering of low-frequency modes in a homogeneous plasma is based on the phase velocity, since modes do not intersect each other in dispersion diagrams as a function of wavenumber or other parameters. In linear kinetic theory, modes cross each other. Thus a consistent and useful classification should be based on the physical properties of the modes instead. This paper attempts such a classification by documeting the dispersion and general mode properties of the low-frequency waves (omega much less than (OMEGA(sub ci) OMEGA(sub ce) (exp 1/2)), where OMEGA(sub ci), OMEGA(sub ce) are the cyclotron frequencies of the ions and electrons, respectively) in kinetic theory, and by comparing them to the results of two-fluid theory. Kinetic theory gives a seperate Alfven/ion-cyclotron (A/IC) wave with phase speed Omega/k approximately = v(sub A) cos theta for omega much less than OMEGA(sub ci), where v(sub A) is the Alfven velocity and theta the angle of propagation between wave vector k and background magnetic field B(sub o). For a given wavenumber, the magnetosonic mode is a double-valued solution with a singular point in theta, beta parameter space, where beta is the ratio of thermal pressure to magnetic pressure. It is shown that a branch cut starting at the singular point theta approximately 30 deg, beta approximately 3 and leading to larger beta gives a practical and consitent seperation of this double-valued magnetosonic solution. Selection of this branch cut results in a moderately damped fast/magnetos onic and a heavily damped slow/sound wave. A comprehensive review of the polarization, compressibility and other mode properties is given and shown to be consistent with the selected branch cut. At small wavenumbers, the kinetic mode properties typically start to deviate significantly from their fluid counterparts at beta approximately 0.5. At larger beta, there is no longer a consistent correspondence between the fluid and kinetic modes. Kinetic
Ions Gyroresonant Surfing Acceleration by Alfven Waves in the Vicinity of SLAMS Boundary
NASA Astrophysics Data System (ADS)
Agapitov, Oleksiy; Kis, Arpad; Krasnoselskikh, Vladimir
2012-07-01
A well known feature of collisionless shocks which are formed in space plasmas is their capability to accelerate particles to high energies. On the other hand, the exact mechanism how this acceleration takes place is still unknown. This is especially true in the case of the so-called seed particle population, i.e. those particles which are being injected into the process of acceleration. In our study we present a case study of gyroresonant surfing acceleration observed on the quasi-parallel side of the Earth's bow shock. For our analysis we use simultaneous multi-spacecraft measurement data provided by the Cluster spacecraft ion (CIS), magnetic (FGM) and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. Our results show evidence that the gyroresonance surfing acceleration takes place as a consequence of interaction between monochromatic (or quasi-monochromatic) electromagnetic plasma waves and short large amplitude magnetic structures (SLAMS). The magnetic field inhomogeneity mirror force allows to keep the resonant conditions for the ions trapped by wave and thus to increase effectively the particle velocity. Since monochromatic wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in the front of the Earth's quasi-parallel bow shock, thus the gyroresonant surfing acceleration can be an effective particle injection mechanism resulting in the formation of the seed particle population.
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves
NASA Astrophysics Data System (ADS)
Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.
Slow EIT waves as gravity modes
Vranjes, J.
2011-06-15
The EIT waves [named after the extreme-ultraviolet imaging telescope (EIT) onboard the solar and heliospheric observatory (SOHO)] are in the literature usually described as fast magneto-acoustic (FMA) modes. However, observations show that a large percentage of these events propagate with very slow speeds that may be as low as 20 km/s. This is far below the FMA wave speed which cannot be below the sound speed, the latter being typically larger than 10{sup 2} km/s in the corona. In the present study, it is shown that, to account for such low propagation speed, a different wave model should be used, based on the theory of gravity waves, both internal (IG) and surface (SG) ones. The gravity modes are physically completely different from the FMA mode, as they are essentially dispersive and in addition the IG wave is a transverse mode. Both the IG and the SG mode separately can provide proper propagation velocities in the whole low speed range.
A note on runaway electrons in the presence of kinetic Alfven waves
NASA Astrophysics Data System (ADS)
de Assis, A. S.; de Azevedo, C. A.
1993-04-01
It is shown by the quasilinear Fokker-Planck approach that the shear kinetic Alfvén wave (KAW) cannot by itself produce runaway electrons, though it carries an electric field aligned with the ambient magnetic field. However, it can enhance the runaway production rate in case it propagates in presence of a background DC ambient electric field. Therefore, this note answers the question raised by Hollweg (1981) concerning the runaway electrons and nonthermal emission supposedly produced by KWA, without explanation until today. The main result presented here concerning the runaway production rate is valid for space or laboratory plasmas where the KWA and an ambient DC electric field coexist.
On the generation of internal wave modes by surface waves
NASA Astrophysics Data System (ADS)
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Energy absorption due to spatial resonance of Alfven waves at continuum tip
NASA Astrophysics Data System (ADS)
Chen, Eugene; Berk, Herb; Breizman, Boris; Zheng, Linjin
2011-10-01
We investigate the response of tokamak plasma to an external driving source. An impedance-like function depending on the driving frequency that is growing at a small rate, is calculated and interpreted with different source profiles. Special attention is devoted to the case where driving frequency approaches that of the TAE continuum tip. The calculation can be applied to the estimation of TAE damping rate by analytically continuing the inverse of the impedance function to the lower half plane. The root of the analytic continuation corresponds to the existence of a quasi-mode, from which the damping rate can be found.
Transverse mode imaging of guided matter waves
Dall, R. G.; Hodgman, S. S.; Johnsson, M. T.; Baldwin, K. G. H.; Truscott, A. G.
2010-01-15
Ultracold atoms whose de Broglie wavelength is of the same order as an extended confining potential can experience waveguiding along the potential. When the transverse kinetic energy of the atoms is sufficiently low, they can be guided in the lowest order mode of the confining potential by analogy with light guided by a single mode optical fiber. We have obtained the first images of the transverse mode structure of guided matter waves in a confining potential with up to 65% of atoms in the lowest order mode. The coherence of the guided atomic de Broglie waves is demonstrated by the diffraction pattern produced when incident upon a two dimensional periodic structure. Such coherent waveguides will be important atom optic components in devices with applications such as atom holography and atom interferometry.
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.
Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves
F.W. Perkins; R.B. White; P. Bonoli
2000-06-13
Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.
Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com
2013-06-01
We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.
Automatic determination of important mode-mode correlations in many-mode vibrational wave functions
NASA Astrophysics Data System (ADS)
König, Carolin; Christiansen, Ove
2015-04-01
We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.
Generation of strong MHD Alfvenic turbulence
NASA Technical Reports Server (NTRS)
Akimoto, K.; Winske, D.
1990-01-01
Strong Alfvenic turbulence containing a number of solitonlike structures propagating at super-Alfvenic speeds is generated self-consistently and studied by means of computer simulation. A one-dimensional hybrid (kinetic ions, fluid electrons) code is used to investigate the nonlinear evolution of an electromagnetic ion-beam instability that generates low-frequency Alfven-like waves. As the instability develops, the field-aligned hydromagnetic waves steepen, forming a soliton that bifurcates several times, leading to a fully turbulent state.
Formation of quasiparallel Alfven solitons
NASA Technical Reports Server (NTRS)
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Verwichte, E.; Foullon, C.; White, R. S.; Van Doorsselaere, T.
2013-04-10
Two transversely oscillating coronal loops are investigated in detail during a flare on the 2011 September 6 using data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We compare two independent methods to determine the Alfven speed inside these loops. Through the period of oscillation and loop length, information about the Alfven speed inside each loop is deduced seismologically. This is compared with the Alfven speed profiles deduced from magnetic extrapolation and spectral methods using AIA bandpass. We find that for both loops the two methods are consistent. Also, we find that the average Alfven speed based on loop travel time is not necessarily a good measure to compare with the seismological result, which explains earlier reported discrepancies. Instead, the effect of density and magnetic stratification on the wave mode has to be taken into account. We discuss the implications of combining seismological, extrapolation, and spectral methods in deducing the physical properties of coronal loops.
Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas
Heidbrink, W. W.
2008-05-15
Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P{sub {zeta}} is most important. Once a mode is driven unstable, a wide variety
Spin effect on parametric interactions of waves in magnetoplasmas
Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.
2012-11-15
The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfven wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfven wave even in classical regime.
Dual-mode acoustic wave biosensors microarrays
NASA Astrophysics Data System (ADS)
Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng
2003-04-01
We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.
Rayleigh wave interaction and mode conversion in a delamination
NASA Astrophysics Data System (ADS)
Chakrapani, Sunil Kishore; Dayal, Vinay; Dunt, Jamie
2014-02-01
The interaction of Rayleigh waves with a delamination in a fiber reinforced composite plate was analyzed in the present work. Rayleigh waves interacting with delamination, mode convert into Lamb waves in the delamination zone. These guided Lamb modes have the capability to mode convert back into Rayleigh modes when they interact with the edge of the delamination. Unidirectional glass/epoxy laminate with delamination of known size was fabricated and tested using air-coupled ultrasonics. Finite element models were developed to understand the various mode conversions. Experimental and numerical A-Scans, mode velocities were used to identify each mode. A good correlation between experimental and numerical results was observed.
Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.
2009-05-15
Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
ULF Waves in the Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Takahashi, K.
2016-02-01
This chapter presents examples that illustrate how recent spacecraft observations allow us to quantitatively understand the mode structure of various magnetohydrodynamic (MHD)-type ultra-low-frequency (ULF) waves propagating into or excited in the inner magnetosphere. In addition, particle observations provide evidence for specific types of wave-particle interaction. The fast mode waves may be free propagating or evanescent, depending on their frequency and wavelength and the spatial variation of the MHD wave speed. The inhomogeneity of the magnetosphere causes the fast mode energy to be transferred to standing Alfven waves through the well-known field line resonance mechanism. The cold plasma MHD equation for axisymmetric plasma with a dipole magnetic field yields two guided mode solutions called the axisymmetric toroidal mode and guided poloidal mode. Although toroidal and poloidal modes are always coupled in the real magnetosphere, the idealized modes are good approximation to the basic features of observed magnetospheric standing Alfven waves.
NASA Astrophysics Data System (ADS)
Basu, Debjyoti; Pal, Rabindranath
2010-11-01
Experiments with biased electrode inserted in the edge region have been carried out to study the physics behind improve plasma confinement in the SINP-Tokamak, an iron-core tokamak with major and minor radii of 30 and 7.5 cm, respectively. Previously improved confinement with modification of edge current density profile was reportedootnotetextJ. Ghosh, R. Pal, P. K. Chattopadhyaya and D. Basu, Nuclear Fusion 47, 331 (2007) in its very low edge safety factor (1 < qa < 2) operation. The same experiment has been extended now in normal qa (˜ 5 to 7) operational regime of the tokamak. Improvement of plasma confinement is also observed in this case with nearly similar results. Introducing small magnetic and Langmuir probes carefully in the edge region the edge plasma current density profile is seen to be modified as before. Interestingly, analysis of fluctuation measurements in the probes indicates suppression of drift-Alfven mode by biased electrode leading to better confinement. Detailed experimental results will be presented in this paper.
Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes
Cheng, C.Z.
1990-10-01
The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped {alpha}-particles through the wave-particle resonances. Satisfying the resonance condition requires that the {alpha}-particle birth speed v{sub {alpha}} {ge} v{sub A}/2{vert bar}m-nq{vert bar}, where v{sub A} is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the {alpha}-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the {alpha}-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the {alpha}-particle beta {beta}{sub {alpha}}, {alpha}-particle pressure gradient parameter ({omega}{sub {asterisk}}/{omega}{sub A}) ({omega}{sub {asterisk}} is the {alpha}-particle diamagnetic drift frequency), and (v{sub {alpha}}/v{sub A}) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged {alpha}-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged {alpha}-particle beta threshold is in the order of 10{sup {minus}4}. Typical growth rates of the n=1 TAE mode can be in the order of 10{sup {minus}2}{omega}{sub A}, where {omega}{sub A}=v{sub A}/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects.
NASA Astrophysics Data System (ADS)
Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar
2016-03-01
The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Whistler wave mode conversion to lower hybrid waves at a density striation
Bamber, J.F.; Gekelman, W.; Maggs, J.E. )
1994-11-28
The first observation of mode conversion of whistler waves to lower hybrid waves at a density striation has been made in a laboratory plasma. The observed lower hybrid wavelength is consistent with that predicted by linear mode coupling. The lower hybrid waves have amplitudes up to 20% of the incident whistler waves.
Mode conversion by symmetry breaking of propagating spin waves.
Clausen, P.; Vogt, K.; Schultheiss, H.; Schafer, S.; Obry, B.; Wolf, G.; Pirro, P.; Leven, B.; Hillebrands, B.
2011-10-01
We study spin-wave transport in a microstructured Ni{sub 81}Fe{sub 19} waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n = 1, 3,... into a mixed set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripe's width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes.
Inspection of Pipelines Using the First Longitudinal Guided Wave Mode
NASA Astrophysics Data System (ADS)
Lowe, P. S.; Sanderson, R.; Pedram, S. K.; Boulgouris, N. V.; Mudge, P.
Inspection of cylindrical structures using the first longitudinal Ultrasonic Guided Wave (UGW) mode has so far been predominantly neglected. This is due to its attenuative and dispersive behaviour, at common UGW operating frequencies (20-100 kHz). However, with the current knowledge on the level of attenuation in the first longitudinal wave mode and dispersion compensation techniques, the first longitudinal guided wave mode no longer need to be neglected. Furthermore, the first longitudinal guided wave mode has higher number of non-axisymmetric modes compared to other axisymmetric modes in the operating frequency. This will enhance the flaw sizing capability which makes the first longitudinal guided wave mode a viable prospect for UGW inspection of cylindrical structures. This study has been performed to investigate the potential of exciting the first longitudinal guided wave mode in isolation. Numerical investigations have been conducted to investigate the pure excitation of the first longitudinal guided wave mode. It has been shown that the first longitudinal guided wave mode can be used in UGW inspection effectively in isolation by adopting transducers with out of plane vibration for excitation. This can reduces the cost and weight of UGW inspection tooling. Numerical results are empirically validated.
Geometric Effects on the Amplification of First Mode Instability Waves
NASA Technical Reports Server (NTRS)
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
Nature of monster sawteeth and their relationship to Alfven instabilities in tokamaks
Bernabei; Bell; Budny; Fredrickson; Gorelenkov; Hosea; Majeski; Mazzucato; Phillips; Schilling; Wilson
2000-02-01
A correlation is explored between the presence of energetic particle modes (EPM) and long-period sawtooth oscillations in tokamak plasmas heated by rf waves. The eventual crash of these sawteeth is explained in terms of the loss of the stabilizing fast particles due to the EPM. The absence of long-period sawteeth in high q(a) discharges is explained in terms of ion loss due to toroidal Alfven eigenmodes. PMID:11017481
Highly Alfvenic Slow Solar Wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
NASA Technical Reports Server (NTRS)
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
NASA Astrophysics Data System (ADS)
Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.
2015-12-01
The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.
Spin waves and domain wall modes in curved magnetic nanowires.
Bocklage, Lars; Motl-Ziegler, Sandra; Topp, Jesco; Matsuyama, Toru; Meier, Guido
2014-07-01
The confinement of spin waves in inhomogeneous fields and spin wave interaction with domain walls has attracted interest due to possible applications in magnonics. We investigate spin waves in curved ferromagnetic nanowires. The field dispersion and localization of spin waves is revealed by comparison to known modes in stripes and taking into account the specific field reversal of the curved wire. In small wires we find a strongly altered mode spectrum in a certain field regime. Micromagnetic simulations show an extended domain wall within the wire in this field region. The domain wall shows several dynamic modes and changes the remaining spin wave modes. We find mode suppression as well as newly arising modes due to the strong inhomogenous internal field of the wall. PMID:24911994
Asymmetric radiative damping of low shear toroidal Alfven eigenmodes
Nyqvist, R. M.; Sharapov, S. E.
2012-08-15
Radiative damping of toroidicity-induced Alfven eigenmodes (TAEs) in tokamaks, caused by coupling to the kinetic Alfven wave (KAW), is investigated analytically in the limit of low magnetic shear. A significant asymmetry is found between the radiative damping of the odd TAE, whose frequency lies above the central TAE gap frequency {omega}{sub 0}, and that of the even TAE, with frequency {omega}<{omega}{sub 0}. For the even TAE, which consists of a symmetric combination of neighboring poloidal harmonics (and therefore has ballooning-type mode structure), the coupling results in two non-overlapping, outgoing fluxes of KAWs that propagate radially away from each other and the TAE localization region. In contrast, the odd TAE consists of an antisymmetric combination of neighboring poloidal harmonics, resulting in anti-ballooning mode structure. For this mode, the KAWs initially propagate towards each other and form an interference pattern in the TAE localization region, resulting in a negligibly small escaping flux and a correspondingly low radiative damping rate. As a result of the up/down asymmetry in radiative damping with respect to the mode frequency, the odd TAE may be destabilized by fusion born alpha particles more easily than the usual, even TAE.
Mode competition and selection in overmoded surface wave oscillator
NASA Astrophysics Data System (ADS)
Wang, Guangqiang; Wang, Jianguo; Zeng, Peng; Wang, Dongyang; Li, Shuang
2016-05-01
The overmoded surface wave oscillator (SWO) is one of the promising devices to generate high-power millimeter and subterahertz waves for its merits of high efficiency and easy fabrication. But the employed slow wave structure with large diameter may introduce mode competition as the adverse effects. Therefore, the mode competition and selection in the overmoded surface wave oscillator are investigated in detail in this paper. By using the theoretical analysis and particle-in-cell simulation, the potential transverse mode and axial mode competition is pointed out, and the physical mechanisms and methods for mode selection are investigated. At last, the results are verified in the design of a 0.14 THz overmoded SWO without mode competition, which can generate the output power up to 70 MW at the frequency of 146.3 GHz with conversion efficiency almost 20% when beam voltage and current are, respectively, about 313 kV and 1.13 kA.
Electron heating and current drive by mode converted slow waves
Majeski, R.; Phillips, C.K.; Wilson, J.R.
1994-08-01
An approach to obtaining efficient single pass mode conversion at high parallel wavenumber from the fast magnetosonic wave to the slow ion Bernstein wave, in a two ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modelling for the case of deuterium-tritium plasmas in TFTR is presented.
Necessary conditions for mode interactions in parametrically excited waves.
Epstein, T; Fineberg, J
2008-04-01
We study the spatial and temporal structure of nonlinear states formed by parametrically excited waves on a fluid surface (Faraday instability), in a highly dissipative regime. Short-time dynamics reveal that 3-wave interactions between different spatial modes are only observed when the modes' peak values occur simultaneously. The temporal structure of each mode is functionally described by the Hill's equation and is unaffected by which nonlinear interaction is dominant. PMID:18517955
NASA Astrophysics Data System (ADS)
Sears, Stephanie; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Kim, Jungha
2015-11-01
Alfven wave dissipation is an important mechanism behind anomalous ion heating, both in astrophysical and reversed-field pinch (RFP) plasma systems. Additionally, the damping rate has implications for the stability of energetic particle driven modes (EPMs) and their associated nonlinear dynamics and fast ion transport, which are crucial topics for any burning plasma reactor. With a 1 MW neutral beam injector on the MST RFP, a controlled set of EPMs and Alfvenic eigenmodes can be driven in this never-before-probed region of strong magnetic shear and weak externally applied magnetic field. The decay time of the average of 100s of reproducible bursts is computed for different equilibrium profiles. In this work, we report initial measurements of Alfvenic damping rates with varied RFP equilibria (including magnetic shear and flow shear) and the effects on fast ion transport. This research is supported by DOE and NSF.
Anomalous and negative reflection of Lamb waves in mode conversion
NASA Astrophysics Data System (ADS)
Germano, M.; Alippi, A.; Bettucci, A.; Mancuso, G.
2012-01-01
Mode conversion is an important feature of wave propagation used in ultrasonic nondestructive testing with Lamb waves. When a wave packet with a given central frequency, and a correspondent central wavenumber, impinges on the free edge of a plate, the reflected wave generally is a weighed combination of all the possible modes compatible with the given frequency. Under particular conditions, only one wave packet is reflected with a distinct central wavenumber compared to the incident one. In such a case, according to Snell's law, the reflection angle is different from the incident one (anomalous reflection). In this article, experimental results are presented on anomalous reflection on a free edge of a thin plate of a Lamb wave packet; moreover, experimental results are reported on a Lamb wave packet that is reflected at an angle lying on the same side, with respect to the normal direction, of the impinging wave (negative reflection). Negative reflection of Lamb waves has been obtained through mode conversion taking place at the free edge of a thin plate of constant thickness: More precisely, a symmetric S1 Lamb mode has been converted into the same mode but with phase velocity antiparallel to group velocity, so obtaining the so-called backward-propagating Lamb wave packet.
Tsiklauri, D.
2012-08-15
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
Investigation of dominant spin wave modes by domain walls collision
Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S.
2014-06-28
Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.
Joint inversion of fundamental and higher mode Rayleigh waves
Luo, Y.-H.; Xia, J.-H.; Liu, J.-P.; Liu, Q.-S.
2008-01-01
In this paper, we analyze the characteristics of the phase velocity of fundamental and higher mode Rayleigh waves in a six-layer earth model. The results show that fundamental mode is more sensitive to the shear velocities of shallow layers (< 7 m) and concentrated in a very narrow band (around 18 Hz) while higher modes are more sensitive to the parameters of relatively deeper layers and distributed over a wider frequency band. These properties provide a foundation of using a multi-mode joint inversion to define S-wave velocity. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least squares method and the SVD (Singular Value Decomposition) technique to invert Rayleigh waves of fundamental and higher modes can effectively reduce the ambiguity and improve the accuracy of inverted S-wave velocities.
Ionospheric heating via ordinary to extraordinary mode wave coupling
NASA Astrophysics Data System (ADS)
Seliga, T. A.
1985-06-01
The role of mode coupling between ordinary, O, and extraordinary, X, mode waves in the vicinity of the radio wave plasma frequency is examined. For propagation in a stratified inhomogeneous ionosphere the roots of the Booker quartic indicate that coupling is possible over a narrow height range. The amount of coupling depends primarily upon both the launch angle of the radio wave and the vertical variability or gradient of the electron density profile. The basic theory underlying this phenomenon is reviewed, and roots of the quartic and full wave solutions are presented to demonstrate the theory. Of particular importance is the fact that most of the energy transferred to the X mode will be deposited within the ionosphere through deviative absorption and plasma wave generation. Implications of this coupling phenomenon for ionospheric high-power radio wave modification and its relationship to several experimental observations are noted.
Electron acceleration by Z-mode and whistler-mode waves
Lee, K. H.; Omura, Y.; Lee, L. C.
2013-11-15
We carried out a series of particle simulations to study electron acceleration by Z-mode and whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction. The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 2–8 times the initial kinetic energy. We further study the acceleration process by test-particle calculations in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by counter-propagating waves and can have a higher final energy.
Electron acceleration by Z-mode and whistler-mode waves
NASA Astrophysics Data System (ADS)
Lee, K. H.; Omura, Y.; Lee, L. C.
2013-11-01
We carried out a series of particle simulations to study electron acceleration by Z-mode and whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction. The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 2-8 times the initial kinetic energy. We further study the acceleration process by test-particle calculations in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by counter-propagating waves and can have a higher final energy.
NASA Astrophysics Data System (ADS)
Belashov, Vasily
We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega
Magnetospheric ULF Waves with an Increasing Amplitude as a Superposition of Two Wave Modes
NASA Astrophysics Data System (ADS)
Shen, Xiaochen; Zong, Qiugang; Shi, Quanqi; Tian, Anmin; Sun, Weijie; Wang, Yongfu; Zhou, Xuzhi; Fu, Suiyan; Hartinger, Michael; Angelopoulos, Vassilis
2015-04-01
Ultra-low frequency (ULF) waves play an important role in transferring energy by buffeting the magnetosphere with solar wind pressure impulses. The amplitudes of magnetospheric ULF waves, which are induced by solar wind dynamic pressure enhancements or shocks, are thought to damp in half or one wave cycle. We report on in situ observations of the solar wind dynamic pressure impulses-induced magnetospheric ULF waves with increasing amplitudes. We have found six ULF wave events, which were induced by solar wind dynamic pressure enhancements, with slow but clear wave amplitude increase. During three or four wave cycles, the amplitudes of ion velocities and electric field of these waves increased continuously by 1.3 ~4.4 times. Two significant events were selected to further study the characteristics of these ULF waves. We have found that the wave amplitude growth is mainly contributed by the toroidal mode wave. We suggest that the wave amplitude increase in the radial electric field is caused by the superposition of two wave modes, a standing wave excited by the solar wind dynamic impulse and a propagating compressional wave. When superposed, the two wave modes fit observations as does a calculation that superposes electric fields from two wave sources.
Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi
2015-03-16
A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.
CRRES observations of ion composition during EMIC mode wave events
Macdonald, Elizabeth; Larsen, Brian
2010-12-13
EMIC mode waves may play an important role in the dynamics of the growth and loss of the radiation belts. CRRES mission analysis has provided extensive information on the distributions of EMIC mode waves. Less well studied and understood is the role that ion composition plays in the formation of the EMIC mode waves. The CRESS plasma mass spectrometer LOMICS measured all ion species of interest up to 45 keV/q. This preliminary study will examine the characteristics of heavy ions during a multitude of wave events, in particular, the effect of ion composition on wave-particle interactions, amplitude, and frequency. The relevance of such data to the upcoming RBSP mission will be highlighted.
Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator
Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan
2014-09-15
Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.
Chaos in driven Alfven systems
NASA Technical Reports Server (NTRS)
Hada, T.; Kennel, C. F.; Buti, B.; Mjolhus, E.
1990-01-01
The chaos in a one-dimensional system, which would be nonlinear stationary Alfven waves in the absence of an external driver, is characterized. The evolution equations are numerically integrated for the transverse wave magnetic field amplitude and phase using the derivative nonlinear Schroedinger equation (DNLS), including resistive wave damping and a long-wavelength monochromatic, circularly polarized driver. A Poincare map analysis shows that, for the nondissipative (Hamiltonian) case, the solutions near the phase space (soliton) separatrices of this system become chaotic as the driver amplitude increases, and 'strong' chaos appears when the driver amplitude is large. The dissipative system exhibits a wealth of dynamical behavior, including quasiperiodic orbits, period-doubling bifurcations leading to chaos, sudden transitions to chaos, and several types of strange attractors.
Wave-vortex mode coupling in neutrally stable baroclinic flows.
Salhi, Abdelaziz; Pieri, Alexandre B
2014-10-01
Rotating stratified flows in thermal wind balance are at the center of geophysical fluid dynamics. Recently, endeavors were put on studying the linear response of such flows to potential vorticity perturbations. It has been shown that the initial potential vorticity (PV) distribution is fundamental and is responsible for important transient growth of the perturbation and gravity-wave generation. Using Pfeiffer's theorem [J. Differ. Equat. 11, 145 (1972)], we give the mathematical demonstration of the stability of asymmetric perturbations k1≠0 of a uniform, unbounded flow in thermal wind balance. Incidentally, we prove that both the wave mode (that corresponds to a vanishing PV) and the vortex mode (corresponding to a nonzero PV) are stable. The emphasis is put on the nontrivial behavior of inertia-gravity waves (IGWs) when deformed by a background shear. In particular, we show that in the linear limit, sheared inertia-gravity waves asymptotically oscillate at the inertial waves frequency, but their amplitude is sensitive to shear, stratification, and rotation. Last, we study the development of the IGWs dynamics considering isotropic initial conditions. Computations indicate that both the vortex mode and the wave mode generate IGWs, but the energy of the IGWs generated by the vortex mode is more important than the energy of the IGWs generated by the wave mode. It is also found that, at large times, the energy of the IGWs generated by the vortex mode increases as the ratio kv/kh (initial vertical wavenumber over horizontal wavenumber) increases (like kv(2)/kh(2)), while the energy of the IGWs generated by the wave mode oscillates in function of kv/kh. PMID:25375590
Spectrum of resistive MHD modes in cylindrical plasmas
Ryu, C.M.; Grimm, R.C.
1983-07-01
A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfven and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfven spectrum. The stabilizing effect of favorable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed.
Role of Alfven instabilities in energetic ion transport
Bernabei, S.; Gorelenkov, N. N.; Budny, R.; Fredrickson, E. D.; Hosea, J. C.; Majeski, R.; Phillips, C. K.; Wilson, J. R.
1999-09-20
Experiments with plasma heating by waves at the ion cyclotron resonance of a minority species have shown that the heating efficiency degrades above a certain power threshold. It is found that this threshold is due to the destabilization of shear Alfven waves, which causes loss of fast ions. There are two distinct regimes characterized by low q{sub a} and high q{sub a}. In the first case, the fast ion distribution created by ICRF, lies entirely inside r{sub q=1}, away from the location of global TAE. This situation leads to the formation of a very strong fast ion population which stabilizes the sawteeth, but also excites Energetic Particle Modes (EPM), which transport fast ions outside r{sub q=1} causing the giant crash. At higher q{sub a}, the widening of the Alfven gap due to the steeper q profile, brings the global TAE ''in contact'' with the fast ion distribution. This results in an immediate and continuous depletion of fast ions from the core, which prevents the formation of the monster sawtooth and the excitation of EPM. (c) 1999 American Institute of Physics.
Gravitational wave polarization modes in f (R ) theories
NASA Astrophysics Data System (ADS)
Kausar, H. Rizwana; Philippoz, Lionel; Jetzer, Philippe
2016-06-01
Many studies have been carried out in the literature to evaluate the number of polarization modes of gravitational waves in modified theories, in particular in f (R ) theories. In the latter ones, besides the usual two transverse-traceless tensor modes present in general relativity, there are two additional scalar ones: a massive longitudinal mode and a massless transverse mode (the so-called breathing mode). This last mode has often been overlooked in the literature, due to the assumption that the application of the Lorenz gauge implies transverse-traceless wave solutions. We however show that this is in general not possible and, in particular, that the traceless condition cannot be imposed due to the fact that we no longer have a Minkowski background metric. Our findings are in agreement with the results found using the Newman-Penrose formalism and thus clarify the inconsistencies found so far in the literature.
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
Contained Modes In Mirrors With Sheared Rotation
Abraham J. Fetterman and Nathaniel J. Fisch
2010-10-08
In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________
Dual mode acoustic wave sensor for precise pressure reading
NASA Astrophysics Data System (ADS)
Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong
2014-09-01
In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.
LH wave absorption by mode conversion near ion cyclotron harmonics
Ko, K.; Bers, A.; Fuchs, V.
1981-02-01
Numerical studies of the dispersion relation near the lower-hybrid frequency in an inhomogeneous plasma (..delta.. n, ..delta.. T, ..delta.. B) show that portions of an incident lower-hybrid wave spectrum undergo successive but partial mode conversions to warm-plasma waves in the presence of ion cyclotron harmonics. Wave absorption beyond the first mode conversion occurs near an ion cyclotron harmonic where ion Landau damping is enhanced. A second-order dispersion relation numerically in good agreement with the full dispersion relation in the mode conversion region is derived using the condition par. delta D/par. delta k = 0. The mode conversion efficiency at each confluence is evaluated by solving the corresponding differential equation.
Preliminary assessment of combustion modes for internal combustion wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi
1995-01-01
Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.
Generalized theory of helicon waves. I. Normal modes
Chen, F.F.; Arnush, D.
1997-09-01
The theory of helicon waves is extended to include finite electron mass. This introduces an additional branch to the dispersion relation that is essentially an electron cyclotron or Trivelpiece{endash}Gould (TG) wave with a short radial wavelength. The effect of the TG wave is expected to be important only for low dc magnetic fields and long parallel wavelengths. The normal modes at low fields are mixtures of the TG wave and the usual helicon wave and depend on the nature of the boundaries. Computations show, however, that since the TG waves are damped near the surface of the plasma, the helicon wave at high fields is almost exactly the same as is found when the electron mass is neglected. {copyright} {ital 1997 American Institute of Physics.}
Coupling between whistler waves and slow-mode solitary waves
Tenerani, A.; Califano, F.; Pegoraro, F.; Le Contel, O.
2012-05-15
The interplay between electron- and ion-scale phenomena is of general interest for both laboratory and space plasma physics. In this paper, we investigate the linear coupling between whistler waves and slow magnetosonic solitons through two-fluid numerical simulations. Whistler waves can be trapped in the presence of inhomogeneous external fields such as a density hump or hole where they can propagate for times much longer than their characteristic time scale, as shown by laboratory experiments and space measurements. Space measurements have detected whistler waves also in correspondence to magnetic holes, i.e., to density humps with magnetic field minima extending on ion-scales. This raises the interesting question of how ion-scale structures can couple to whistler waves. Slow magnetosonic solitons share some of the main features of a magnetic hole. Using the ducting properties of an inhomogeneous plasma as a guide, we present a numerical study of whistler waves that are trapped and transported inside propagating slow magnetosonic solitons.
Mirror Mode Waves observed in the Kronian Magnetosphere
NASA Astrophysics Data System (ADS)
Rodriguez-Martinez, M.; Blanco-Cano, X.; Russell, C. T.; Leisner, J. S.; Wilson, R. J.; Dougherty, M. K.; Perez-Enriquez, R.
2013-05-01
Mirror Mode Waves (MMW) have been observed by Cassini spacecraft in the Saturnian middle magnetosphere. They are a compressive waves characterized by strong deeps in the magnetic field which are anti-correlated with the density. Furthermore, MMW share a common origin with the Ion Cyclotron Waves (ICW), requiring the condition of anisotropy in the plasma temperature (pressure) (T⊥/T‖>>1). In this work we analyze four Cassini's orbits, with low inclination angle <0.5o, of 2005. The data were obtained from MAG and CAPS instruments. We analyze and study the wave properties and their region of occurrence. We found that the MMW can appear between 6 RS and 6.9 RS, with respect to Saturn's center, indicating that they are further away than ICW. Finally, we use linear kinetic theory to determine conditions for wave growth in a plasma resembling the regions where these modes were observed.
Properties of Mirror Mode Waves observed in the Kronian Magnetosphere
NASA Astrophysics Data System (ADS)
Rodriguez-Martinez, M. R.; Blanco-Cano, X.; Russell, C. T.; Aguilar-Rodriguez, E.; Wilson, R. J.; Dougherty, M. K.
2014-12-01
Mirror Mode Waves (MMW) were observed with Cassini spacecraft in the Kronian middle magnetosphere. They are compressive waves characterized by strong deeps in the magnetic field magnitude and anti-correlated with density. Furthermore, MMW share a common origin with the Ion Cyclotron Waves (ICW), requiring the condition of anisotropy in the plasma temperature (pressure) (T⊥/T‖>>1). In this work we analyze four Cassini's orbits, with low inclination angle <0.5º, of 2005. The data were obtained from MAG and CAPS instruments. We perform a study about the wave properties and their region of occurrence. We found that the MMW can appear between 6 Rs and 6.9 Rs, with respect to Saturn's center, indicating that they are further away than ICW. Finally, we use linear kinetic theory, using WHAMP code, in order to determine conditions for wave growth in a plasma resembling the regions where these modes were observed.
Low-frequency waves in a high-beta collisionless plasma Polarization, compressibility and helicity
NASA Technical Reports Server (NTRS)
Gary, S. P.
1986-01-01
This paper considers the linear theory of waves near and below the ion cyclotron frequency in an isothermal electron-ion Vlasov plasma which is isotropic, homogeneous and magnetized. Numerical solutions of the full dispersion equation for the magnetosonic/whistler and Alfven/ion cyclotron modes at beta(i) = 1.0 are presented, and the polarizations, compressibilities, helicities, ion Alfven ratios and ion cross-helicities are exhibited and compared. At sufficiently large beta(i) and theta, the angle of propagation with respect to the magnetic field, the real part of the polarization of the Alfven/ion cyclotron wave changes sign, so that, for such parameters, this mode is no longer left-hand polarized. The Alfven/ion cyclotron mode becomes more compressive as the wavenumber increases, whereas the magnetosonic/whistler becomes more compressive with increasing theta.
Localized spin wave modes in parabolic field wells
NASA Astrophysics Data System (ADS)
McMichael, Robert; Tartakovskaya, Elena; Pardavi-Horvath, Martha
We describe spin wave modes trapped in parabolic-profile field wells. Trapped spin waves can be used as local probes of magnetic properties with resolution down to 100 nm in ferromagnetic resonance force microscopy. Localized modes have been shown to form around field minima from a number of sources, including stray fields from magnetic probe tips and inhomogeneous magnetostatic fields near film edges. Here, we address the most basic trap, which is a parabolic minimum in the applied field. The magnetic eigenmodes in this trap are tractable enough to serve as approximations in more realistic situations. For a parabolic field, we select basis mode profiles proportional to Hermite functions because they are eigenfuctions of the applied field and exchange parts of the equations of motion. Additionally, we find that these Hermite modes are approximate eigenfunctions of magnetostatic interactions, showing good agreement with micromagnetic calculations. More precise agreement is achieved by diagonalizing the equations of motion using only a few modes.
Characteristics of Short Wavelength Compressional Alfven Eigenmodes
Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-12-19
Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Ruchko, L. F.; Elfimov, A. G.; Teixeira, C. M.; Elizondo, J. I.; Sanada, E.; Galvao, R. M. O.; Manso, M. E.; Silva, A.
2011-02-15
A frequency scanning O-mode reflectometer was used for studies of plasma density oscillations during local Alfven wave (LAW) excitation in the Tokamak Chauffage Alfven Bresilien (TCABR) at the frequency f{sub A}= 5 MHz. It was found that the spectrum of the reflectometer output signal, which consists mainly of the ''beat'' frequency f{sub B}, is modified by the LAW excitation, and two additional frequency peaks appear, which are symmetrical in relation to the LAW excitation frequency f=f{sub A}{+-}f{sub B}. This result opens the possibility to improve the efficiency of studying the LAW induced density oscillations. The symmetry of these frequency peaks yields the possibility of finding the microwave frequency at which the reflectometer cutoff layer coincides with radial position of the LAW resonance zone in the TCABR tokamak.
Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey N.; Uralov, Arkadiy M.
2016-05-01
Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.
On apparent temperature in low-frequency Alfvenic turbulence
Nariyuki, Yasuhiro
2012-08-15
Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.
Observations of High Frequency Harmonics of the Ionospheric Alfven Resonator
NASA Astrophysics Data System (ADS)
Mann, Ian; Usanova, Maria; Bortnik, Jacob; Milling, David; Kale, Andy; Shao, Leo; Miles, David; Rae, I. Jonathan
We present observations of high frequency harmonics of the ionospheric Alfven Resonator (IAR). These are seen in the form of spectral resonance structures (SRS) recorded by a ground-based search coil magnetometer sampling at 100 samples/s at the Ministik Lake station at L=4.2 within the expanded CARISMA magnetometer array. Previous observational studies have indicated that such SRS are typically confined to frequencies <~5 Hz with only several SRS harmonics being observed. We report the first observations of clear and discrete SRS, which we believe are harmonics of the IAR, and which extend to around 20 Hz in at least 10-12 clear SRS harmonics. We additionally demonstrate the utility of the Bortnik et al. (2007) auto-detection algorithm, designed for Pc1 wavepackets, for characterising the properties of the IAR. Our results also indicate that the cavity supporting SRS in the IAR at this time must be structured to support and trap much higher frequency IAR harmonics than previously assumed. This impacts the potential importance of the IAR for magnetosphere-ionosphere coupling, especially in relation to the impacts of incident Alfven waves on the ionosphere including Alfvenic aurora. Our observations also highlight the potential value of IAR observations for diagnosing the structure of the topside ionosphere, not least using the observed structure of the SRS. These are the first mid-latitude observations demonstrating that the IAR can extend to frequencies beyond those of the lowest few harmonics of the Schumann resonances - significantly suggesting the possibility that the Schumann resonance modes and the IAR may be coupled. The in-situ structure of the IAR is also examined by combining satellite data with conjugate measurements from the ground, and the impacts of the IAR for magnetosphere-ionosphere-thermosphere coupling examined.
Longitudinal flexural mode utility in quantitative guided wave evaluation
NASA Astrophysics Data System (ADS)
Li, Jian
2001-07-01
Longitudinal Non-axisymmetric flexural mode utility in quantitative guided wave evaluation is examined for pipe and tube inspection. Attention is focused on hollow cylinders. Several source loading problems such as a partial-loading angle beam, an axisymmetric comb transducer and an angle beam array are studied. The Normal Mode Expansion method is employed to simulate the generated guided wave fields. For non-axisymmetric sources, an important angular profile feature is studied. Based on numerical calculations, an angular profile varies with frequency, mode and propagating distance. Since an angular profile determines the energy distribution of the guided waves, the angular profile has a great impact on the pipe inspection capability of guided waves. The simulation of non-axisymmetric angular profiles generated by partialloading is verified by experiments. An angular profile is the superposition of harmonic axisymmetric and non-axisymmetric modes with various phase velocities. A simpler equation is derived to calculate the phase velocities of the non-axisymmetric guided waves and is used for discussing the characteristics of non-axisymmetric guided waves. Angular profiles have many applications in practical pipe testing. The procedure of building desired angular profiles and also angular profile tuning is discussed. This angular profile tuning process is implemented by a phased transducer array and a special computational algorithm. Since a transducer array plays a critical role in guided wave inspection, the performance of a transducer array is discussed in terms of guided wave mode control ability and excitation sensitivity. With time delay inputs, a transducer array is greatly improved for its mode control ability and sensitivity. The algorithms for setting time delays are derived based on frequency, element spacing and phase velocity. With the help of the conclusions drawn on non- axisymmetric guided waves, a phased circumferential partial-loading array is
Whistler Modes with Wave Magnetic Fields Exceeding the Ambient Field
Stenzel, R.L.; Urrutia, J.M.; Strohmaier, K.D.
2006-03-10
Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.
On the standing wave mode of giant pulsations
NASA Technical Reports Server (NTRS)
Takahashi, K.; Sato, N.; Warnecke, J.; Luehr, H.; Spence, H. E.; Tonegawa, Y.
1992-01-01
In order to determine the standing wave mode of giant pulsations, a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE was made. One giant pulsation was associated with a compressional wave, while no giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator. It is concluded that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure, which places a strong constraint on the generation mechanism of giant pulsations.
Surface wave sensitivity: mode summation versus adjoint SEM
NASA Astrophysics Data System (ADS)
Zhou, Ying; Liu, Qinya; Tromp, Jeroen
2011-12-01
We compare finite-frequency phase and amplitude sensitivity kernels calculated based on frequency-domain surface wave mode summation and a time-domain adjoint method. The adjoint calculations involve a forward wavefield generated by an earthquake and an adjoint wavefield generated at a seismic receiver. We determine adjoint sources corresponding to frequency-dependent phase and amplitude measurements made using a multitaper technique, which may be applied to any single-taper measurement, including box car windowing. We calculate phase and amplitude sensitivity kernels using an adjoint method based on wave propagation simulations using a spectral element method (SEM). Sensitivity kernels calculated using the adjoint SEM are in good agreement with kernels calculated based on mode summation. In general, the adjoint SEM is more computationally expensive than mode summation in global studies. The advantage of the adjoint SEM lies in the calculation of sensitivity kernels in 3-D earth models. We compare surface wave sensitivity kernels computed in 1-D and 3-D reference earth models and show that (1) lateral wave speed heterogeneities may affect the geometry and amplitude of surface wave sensitivity; (2) sensitivity kernels of long-period surface waves calculated in 1-D model PREM and 3-D models S20RTS+CRUST2.0 and FFSW1+CRUST2.0 do not show significant differences, indicating that the use of a 1-D reference model is adequate in global inversions of long-period surface waves (periods of 50 s and longer); and (3) the differences become significant for short-period Love waves when mode coupling is sensitive to large differences in reference crustal structure. Finally, we show that sensitivity kernels in anelastic earth models may be calculated in purely elastic earth models provided physical dispersion is properly accounted for.
The Wavelet Approach to Solving the Mode Conversion Wave Equation
NASA Astrophysics Data System (ADS)
Smith, S. P.; Phillips, C. K.; Valeo, E. J.; Smithe, D. N.
2006-10-01
Existing ``state of the art'' full wave radio frequency (RF) field codes utilize a Fourier expansion for the wave fields on a fixed grid. In plasmas in which both short and long wavelength modes co-exist due to mode conversion, this solution method entails the filling and subsequent inversion of very large matrices, which limits the attainable resolution and requires significant computational time, even on the largest supercomputers. An alternate approach based on wavelet expansions for solving wave equations arising in the context of mode conversion between a fast and slow wave is presented. The merits of using either Gabor or modified Morlet wavelet expansions, as well as the effects of irregularly spacing the wavelets to increase the spatial resolution, are discussed. Initial results indicate that it is possible to reduce the computational load while maintaining numerical accuracy by utilizing the wavelet expansion to avoid computing matrix elements for short wavelength modes in regions where such waves should not exist, based on a dispersion relation analysis.
On the standing wave mode of giant pulsations
Takahashi, K. ); Sato, N. ); Warnecke, J.; Luehr, H. ); Spence, H.E. ); Tonegawa, Y. )
1992-07-01
Both odd-mode and even-mode standing were structures have been proposed for giant pulsations. Unless a conclusion is drawn on the field-aligned mode structure, little progress can be made in understanding the excitation mechanism of giant pulsations. In order to determine the standing wave mode, the authors have made a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE. They selected time intervals when CCE was close to the magnetic equator and also magnetically close to Syowa and stations in Iceland, and when either transverse or compressional Pc 4 waves were observed at CCE. Magnetograms from the ground stations were then examined to determine if there was a giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator (Hillebrand et at., 1982). In agreement with Hillebrand et al., they conclude that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure. This conclusion places a strong constraint on the generation mechanism of giant pulsations.
Optical rogue waves in whispering-gallery-mode resonators
NASA Astrophysics Data System (ADS)
Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.
2014-01-01
We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.
High frequency single mode traveling wave structure for particle acceleration
NASA Astrophysics Data System (ADS)
Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.
2016-09-01
The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.
Cyclotron emission asymmetry from Kirchhoff's law in a mode-conversion layer
Swanson, D.G.; Cho, S. )
1989-09-25
Cyclotron radiation of both fast (Alfven waves) and slow (Bernstein) waves from a mode-conversion layer is considered to find relations between cyclotron absorption and emission in an inhomogeneous plasma. The relative emission ratios among various modes are calculated and asymmetries of emission are discussed. From relations between emission and absorption, a form of Kirchhoff's law for a mode-conversion layer is proved from general thermodynamic arguments and from the mode-conversion tunneling equation.
Fateri, Sina; Boulgouris, Nikolaos V; Wilkinson, Adam; Balachandran, Wamadeva; Gan, Tat-Hean
2014-09-01
Ultrasonic guided waves can be used to assess and monitor long elements of a structure from a single position. The greatest challenges for any guided wave system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency-dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this paper, a novel signal processing technique is presented using a combination of frequency-sweep measurement, sampling rate conversion, and Fourier transform. The technique is applied to synthesized and experimental data to identify different modes in complex ultrasonic guided wave signals. It is demonstrated throughout the paper that the technique also has the capability to derive the time of flight and group velocity dispersion curve of different wave modes in field inspections. PMID:25167151
Structured interfaces for flexural waves - trapped modes and transmission resonances
NASA Astrophysics Data System (ADS)
Haslinger, S. G.; McPhedran, R. C.; Movchan, N. V.; Movchan, A. B.
2013-07-01
The article combines the analytical models of scattering and Bloch waves for a stack of periodic gratings in an infinite elastic plate. The waves represent flexural deflections of the plate governed by a fourth-order partial differential equation. The emphasis is on the analysis of trapped modes and transmission resonances for different configurations of the grating stack and physical parameters of the flexural waves. Special attention is given to the phenomenon of Elasto-Dynamically Inhibited Transmission (EDIT). The analytical model is supplemented with comprehensive numerical examples.
Whistler mode wave intensities in the radiation belts
Helliwell, R.A.; Walworth, K.F.
1996-07-01
A critical factor in the equilibrium of the Earth{close_quote}s radiation belts is the intensity of the whistler mode waves that scatter trapped electrons into the loss cone. Whistler-mode waves include whistlers (from lightning), signals from ground based VLF stations, chorus, hiss and impulses. Those signals that are not trapped in magnetospheric ducts are observed with rockets or satellites, both inside and outside the plasmapause. Ducted signals, occurring mostly inside the plasmapause, have been difficult to observe {ital in} {ital situ}, but are commonly observed at ground stations from which equatorial wave intensities can be estimated only crudely. Models of the process of coherent wave growth based on interaction with gyro resonant counter streaming electrons in an interaction region near the equator, fall into two classes depending on whether the wave field is less or greater than that required for trapping of resonant electrons in the wave{close_quote}s potential wall. Data on the estimated {ital B}{sub in} and {ital B}{sub out} of ducted signals at the input and output of the interaction region, respectively, together with associated total growth (20{endash}35 dB) appear to support the small-signal model. Since the ratios between predictions of the small-signal and large-signal models are of the order of 20 dB, it is critically important to test both models with measurements of appropriate wave fields and associated particle fluxes. {copyright} {ital 1996 American Institute of Physics.}
Eikonal waves, caustics and mode conversion in tokamak plasmas
NASA Astrophysics Data System (ADS)
Jaun, A.; Tracy, E. R.; Kaufman, A. N.
2007-01-01
Ray optics is used to model the propagation of short electromagnetic plasma waves in toroidal geometry. The new RAYCON code evolves each ray independently in phase space, together with its amplitude, phase and focusing tensor to describe the transport of power along the ray. Particular emphasis is laid on caustics and mode conversion layers, where a linear phenomenon splits a single incoming ray into two. The complete mode conversion algorithm is described and tested for the first time, using the two space dimensions that are relevant in a tokamak. Applications are shown, using a cold plasma model to account for mode conversion at the ion-hybrid resonance in the Joint European Torus.
Triple-mode squeezing with dressed six-wave mixing
NASA Astrophysics Data System (ADS)
Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing
2016-05-01
The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging.
Triple-mode squeezing with dressed six-wave mixing.
Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing
2016-01-01
The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging. PMID:27169878
Triple-mode squeezing with dressed six-wave mixing
Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing
2016-01-01
The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging. PMID:27169878
Mean flow generation mechanism by inertial waves and normal modes
NASA Astrophysics Data System (ADS)
Will, Andreas; Ghasemi, Abouzar
2016-04-01
The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2
S-Wave Normal Mode Propagation in Aluminum Cylinders
Lee, Myung W.; Waite, William F.
2010-01-01
Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.
Quasinormal modes and classical wave propagation in analogue black holes
Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.
2004-12-15
Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.
Surface wave and linear operating mode of a plasma antenna
NASA Astrophysics Data System (ADS)
Bogachev, N. N.; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A.
2015-10-01
The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.
Surface wave and linear operating mode of a plasma antenna
Bogachev, N. N. Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A.
2015-10-15
The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.
Time dependent simulation of cosmic-ray shocks including Alfven transport
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Time evolution of plane, cosmic-ray modified shocks was simulated numerically for the case with parallel magnetic fields. Computations were done in a 'three-fluid' dynamical model incorporating cosmic-ray and Alfven wave energy transport equations. Nonlinear feedback from the cosmic-rays and Alfven waves is included in the equation of motion for the underlying plasma, as is the finite propagation speed and energy dissipation of the Alfven waves. Exploratory results confirm earlier, steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and gas sound speeds are comparable. As noted earlier Alfven transport effects tend to reduce the transfer of energy through a shock from gas to energetic particles. These studies show as well that the time scale for modification of the shock is altered in nonlinear ways. It is clear, however, that the consequences of Alfven transport are strongly model dependent and that both advection of cosmic-rays by the waves and dissipation of wave energy in the plasma will be important to model correctly when quantitative results are needed. Comparison is made between simulations based on a constant diffusion coefficient and more realistic diffusion models allowing the diffusion coefficient to vary in response to changes in Alfven wave intensity. No really substantive differences were found between them.
Heating and acceleration of ions in nonresonant Alfvenic turbulence
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2010-07-15
Nonlinear scattering of protons and alpha particles during the dissipation of the finite amplitude, low-frequency Alfvenic turbulence is studied. The process discussed here is not the coherent scattering and acceleration, as those often treated in the past studies, but is an incoherent process in which it is essential that the Alfvenic turbulence has a broadband spectrum. The presence of such an Alfvenic turbulence is widely recognized observationally both in the solar corona and in the solar wind. Numerical results suggest that, although there is no apparent sign of the occurrence of any parametric instabilities, the ions are heated efficiently by the nonlinear Landau damping, i.e., trapping and phase mixing by Alfven wave packets which are generated by beating of finite amplitude Alfven waves. The heating occurs both in the parallel and in the perpendicular directions, and the ion distribution function which is asymmetric with respect to the parallel velocity is produced. Eventual perpendicular energy of ions is much influenced by the spectrum and polarization of the given Alfvenic turbulence since the turbulence initially possess transverse energy as specified by Walen's relation.
NASA Technical Reports Server (NTRS)
Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-01-01
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Seismic waves from elephant vocalizations: A possible communication mode?
NASA Astrophysics Data System (ADS)
Günther, Roland H.; O'Connell-Rodwell, Caitlin E.; Klemperer, Simon L.
2004-06-01
We conducted experiments with trained African elephants that show that low-frequency elephant vocalizations produce Rayleigh waves. We model a potential range for these seismic waves, under ideal conditions, of c. 2 km. In appropriate conditions, surface waves from an elephant's infrasonic vocalizations might propagate further than airborne sound and provide advantages over acoustic communication. However, if we use the detection capabilities of the human ear as a benchmark for the signal-detection thresholds of elephants, our estimates of attenuation and ambient seismic noise suggest that the seismic detection range is unlikely to exceed the acoustic detection range under normal atmospheric conditions. We conclude that elephants may benefit from seismic detection in circumstances where the range of acoustic communication is limited, or in cases where multimodal communication is advantageous. Given our current understanding, elephants are unlikely to rely on seismic waves as their primary mode for long-range communication.
DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves
Bell, T.F.; Inan, U.S.; Lauben, D.; Sonwalkar, V.S.; Helliwell, R.A.; Sobolev, Ya.P.; Chmyrev, V.M.; Gonzalez, S.
1994-04-15
Past work demonstrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength {lambda}. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which {lambda} {le} 3.5 m when excitation occurs at a frequency roughly equal to the lower hybrid resonance frequency. This wavelength limit is a factor of {approximately} 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H{sup +} ions with energy {le} 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells. 19 refs., 3 figs.
DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves
NASA Technical Reports Server (NTRS)
Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.
1994-01-01
Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.
Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.
Traveling wave modes of a plane layered anelastic earth
NASA Astrophysics Data System (ADS)
Odom, Robert I.
2016-05-01
Incorporation of attenuation into the normal mode sum representations of seismic signals is commonly effected by applying perturbation theory. This is fine for weak attenuation, but problematic for stronger attenuation. In this work modes of the anelastic medium are represented as complex superpositions of elastic eigenfunctions. For the P-SV system a generalized eigenvalue equation for the complex eigenwavenumbers and complex coefficients used to construct the anelastic eigenfunctions is derived. The generalized eigenvalue problem for the P-SV problem is exactly linear in the eigenwavenumber at the expense of doubling the dimension. The SH problem is exactly linear in the square of the eigenwavenumber. This is in contrast to a similar standing wave problem for the earth free oscillations (Tromp and Dahlen, 1990). Attenuation is commonly incorporated into synthetic seismogram calculations by introduction of complex frequency dependent elastic moduli. The moduli depend nonlinearly on the frequency. The independent variable in the standing wave free oscillation problem is the frequency, which makes the eigenvalue problem nonlinear. The choice of the wavenumber as the independent variable for the traveling wave problem leads to a linear problem. The Earth model may be transversely isotropic. Compressional waves, and both polarizations of shear waves (SV, SH) are treated.
Travelling wave modes of a plane layered anelastic earth
NASA Astrophysics Data System (ADS)
Odom, Robert I.
2016-08-01
Incorporation of attenuation into the normal mode sum representations of seismic signals is commonly effected by applying perturbation theory. This is fine for weak attenuation, but problematic for stronger attenuation. In this work, modes of the anelastic medium are represented as complex superpositions of elastic eigenfunctions. For the P-SV system, a generalized eigenvalue equation for the complex eigenwavenumbers and complex coefficients used to construct the anelastic eigenfunctions is derived. The generalized eigenvalue problem for the P-SV problem is exactly linear in the eigenwavenumber at the expense of doubling the dimension. The SH problem is exactly linear in the square of the eigenwavenumber. This is in contrast to a similar standing wave problem for the earth free oscillations. Attenuation is commonly incorporated into synthetic seismogram calculations by introduction of complex frequency-dependent elastic moduli. The moduli depend nonlinearly on the frequency. The independent variable in the standing wave free oscillation problem is the frequency, which makes the eigenvalue problem nonlinear. The choice of the wavenumber as the independent variable for the travelling wave problem leads to a linear problem. The Earth model may be transversely isotropic. Compressional waves and both polarizations of shear waves (SV, SH) are treated.
Mode separation of Lamb waves based on dispersion compensation method.
Xu, Kailiang; Ta, Dean; Moilanen, Petro; Wang, Weiqi
2012-04-01
Ultrasonic Lamb modes typically propagate as a combination of multiple dispersive wave packets. Frequency components of each mode distribute widely in time domain due to dispersion and it is very challenging to separate individual modes by traditional signal processing methods. In the present study, a method of dispersion compensation is proposed for the purpose of mode separation. This numerical method compensates, i.e., compresses, the individual dispersive waveforms into temporal pulses, which thereby become nearly un-overlapped in time and frequency and can thus be extracted individually by rectangular time windows. It was further illustrated that the dispersion compensation also provided a method for predicting the plate thickness. Finally, based on reversibility of the numerical compensation method, an artificial dispersion technique was used to restore the original waveform of each mode from the separated compensated pulse. Performances of the compensation separation techniques were evaluated by processing synthetic and experimental signals which consisted of multiple Lamb modes with high dispersion. Individual modes were extracted with good accordance with the original waveforms and theoretical predictions. PMID:22501050
Quasinormal modes in de Sitter space: Plane wave method
NASA Astrophysics Data System (ADS)
Tanhayi, M. Reza
2014-09-01
Recently, in the context of dS/CFT correspondence, quasinormal modes have been put forward to address certain features of this conjecture. In particular, it is argued that the dual states of quasinormal modes are in fact the states of CFT3 which are created by operator insertions. For a scalar field in dS4, quasinormal modes which are singular on the past horizon of the south pole and decay exponentially towards the future have been considered in [G. S. Ng and A. Strominger, Classical Quantum Gravity 30, 104002 (2013); D. L. Jafferis et al., arXiv:1305.5523]; these modes lie in two complex highest-weight representations of the dS4 isometry group. In this work, we present a simple group representation analysis of these modes so that the de Sitter invariance is obviously manifest. By making use of the so-called plane wave method, we will show that the quasinormal modes correspond to one class of the unitary irreducible representation of the de Sitter group. This consideration could be generalized straightforwardly for higher-spin fields and higher dimensions; in particular, we will study the quasinormal modes for gauge and spinor fields, and, in the case of a scalar field, the generalization to higher dimensions is also obtained.
Parameter spaces for linear and nonlinear whistler-mode waves
Summers, Danny; Tang, Rongxin; Omura, Yoshiharu; Lee, Dong-Hun
2013-07-15
We examine the growth of magnetospheric whistler-mode waves which comprises a linear growth phase followed by a nonlinear growth phase. We construct time-profiles for the wave amplitude that smoothly match at the transition between linear and nonlinear wave growth. This matching procedure can only take place over a limited “matching region” in (N{sub h}/N{sub 0},A{sub T})-space, where A{sub T} is the electron thermal anisotropy, N{sub h} is the hot (energetic) electron number density, and N{sub 0} is the cold (background) electron number density. We construct this matching region and determine how the matching wave amplitude varies throughout the region. Further, we specify a boundary in (N{sub h}/N{sub 0},A{sub T})-space that separates a region where only linear chorus wave growth can occur from the region in which fully nonlinear chorus growth is possible. We expect that this boundary should prove of practical use in performing computationally expensive full-scale particle simulations, and in interpreting experimental wave data.
Wave mode extraction from multimodal wave signals in an orthotropic composite plate.
Ratassepp, M; Fan, Z; Lasn, K
2016-09-01
In this paper the post-processing procedure based on the mode orthogonality is applied to extract individual waveforms at a composite plate edge from multimodal signals. To obtain the amplitudes of individual modes, numerically predicted modal through-thickness stress and displacement field values are used in the orthogonality relation. The performance of the mode extraction technique is evaluated by processing signals obtained from Finite Element (FE) modeling and experimental measurements. The propagation of the overlapping wave packets of Lamb modes S0 and A0 is considered along the fiber direction and perpendicular to that direction. The required experimental two-dimensional displacement components at the plate edge are measured by 3D Scanning Laser Doppler Vibrometer (3D SLDV). It is demonstrated that S0 mode can be extracted very well from the signal but A0 mode with slightly poorer accordance with the original waveforms and numerical predictions. PMID:27403641
Bass, E. M.; Waltz, R. E.
2013-01-15
The unstable spectrum of Alfven eigenmodes (AEs) driven by neutral beam-sourced energetic particles (EPs) in a benchmark DIII-D discharge (142111) is calculated in a fully gyrokinetic model using the GYRO code's massively parallel linear eigenvalue solver. One cycle of the slow (equilibrium scale) frequency sweep of the reverse shear Alfven eigenmode (RSAE) at toroidal mode number n=3 is mapped. The RSAE second harmonic and an unstable beta-induced Alfven eigenmode (BAE) are simultaneously tracked alongside the primary RSAE. An observed twist in the eigenmode pattern, caused mostly by shear in the driving EP profile, is shown through artificially varying the E Multiplication-Sign B rotational velocity shear to depend generally on shear in the local wave phase velocity. Coupling to the BAE and to the toroidal Alfven eigenmode limit the RSAE frequency sweeps at the lower and upper end, respectively. While the present fully gyrokinetic model (including thermal ions and electrons) constitutes the best treatment of compressibility physics available, the BAE frequency is overpredicted by about 20% against experiment here and is found to be sensitive to energetic beam ion pressure. The RSAE frequency is more accurately matched except when it is limited by the BAE. Simulations suggest that the experiment is very close to marginal AE stability at points of RSAE-BAE coupling. A recipe for comparing the radial profile of quasilinear transport flux from local modes to that from global modes paves the way for the development of a stiff (critical gradient) local AE transport model based on local mode stability thresholds.
Experimental Study and Simulation of W7-AS Transient MHD Modes
Pokol, G.; Papp, G.; Por, G.; Zoletnik, S.; Weller, A.
2008-03-19
Transient MHD modes present in pure ECRH W7-AS plasmas have been shown to be in correlation with transient transport events (ELM-like modes). Here the spatial structure of the individual transients is analyzed using short-time Fourier transform and continuous analytical wavelet transform based techniques. Processing of Mirnov coil data partly confirms the properties derived from earlier, simpler analyses. Theoretical explanation of the properties of these modes (spatial structure and rapid damping) is attempted by models based involving drift-Alfven turbulence or shear Alfven waves.
Wave mode extraction from multimodal guided wave signal in a plate
NASA Astrophysics Data System (ADS)
Ratassepp, M.; Fan, Z.
2016-02-01
One of the challenges in wide-band multimode guided wave testing is the decomposition of multimodal response signal into individual components. In this study the post-processing procedure based on plate wave mode orthogonality is proposed to extract individual waveforms at a plate edge from multimodal signals [1]. To obtain the amplitudes of the individual modes, the numerically predicted modal through-thickness stress and displacement field values are used in the orthogonality relation. Two-dimensional wave propagation cases at normal incidence are considered: signals of overlapping fundamental Lamb modes A0 and S0 and shear horizontal modes SH0 and SH1 are analyzed. The performance of the mode extraction technique is evaluated by processing the signals obtained from Finite Element (FE) modeling and experimental measurements. The required experimental displacement components at the plate edge are measured by 3D Scanning Laser Doppler Vibrometer (3D SLDV) [2]. It is demon-strated that individual modes can be extracted with good accordance with the original waveforms from numerical predictions and experimental measurements.
Constructing the frequency and wave normal distribution of whistler-mode wave power
NASA Astrophysics Data System (ADS)
Watt, C. E. J.; Degeling, A. W.; Rankin, R.
2013-05-01
We introduce a new methodology that allows the construction of wave frequency distributions due to growing incoherent whistler-mode waves in the magnetosphere. The technique combines the equations of geometric optics (i.e., raytracing) with the equation of transfer of radiation in an anisotropic lossy medium to obtain spectral energy density as a function of frequency and wavenormal angle. We describe the method in detail and then demonstrate how it could be used in an idealized magnetosphere during quiet geomagnetic conditions. For a specific set of plasma conditions, we predict that the wave power peaks off the equator at ˜15° magnetic latitude. The new calculations predict that wave power as a function of frequency can be adequately described using a Gaussian function, but as a function of wavenormal angle, it more closely resembles a skew normal distribution. The technique described in this paper is the first known estimate of the parallel and oblique incoherent wave spectrum as a result of growing whistler-mode waves and provides a means to incorporate self-consistent wave-particle interactions in a kinetic model of the magnetosphere over a large volume.
Modes in light wave propagating in semiconductor laser
NASA Technical Reports Server (NTRS)
Manko, Margarita A.
1994-01-01
The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.
An Analysis of Fundamental Mode Surface Wave Amplitude Measurements
NASA Astrophysics Data System (ADS)
Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.
2014-12-01
Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.
NASA Astrophysics Data System (ADS)
Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.
2016-01-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.
Dispersion properties of electrostatic sound wave modes in carbon nanotubes
Moradi, Afshin
2010-01-15
The theoretical analysis of electrostatic sound wave modes in multiwalled carbon nanotubes is presented within the framework of the fluid theory in conjunction with the Poisson's equation. The electron and ion components of each wall of nanotubes are regarded as two-species plasma system, in which the perturbed electron number density is deduced by means of the quantum hydrodynamic model, while the ion density perturbation follows the classical expression. An analytical expression of the dispersion relation is obtained for the quantum ion-acoustic wave oscillations in the system. Numerical result is prepared for a two-walled carbon nanotube, giving rise to a splitting of the frequencies of the electrostatic oscillations due to the small coupling between the two cylinders.
Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance
NASA Technical Reports Server (NTRS)
Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.
1978-01-01
The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.
Nonlinear, dispersive, elliptically polarized Alfven wavaes
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.
1988-01-01
The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-09-15
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.
NASA Technical Reports Server (NTRS)
Bell, T. F.; Ngo, H. D.
1990-01-01
This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.
A Polar Coordinate Approach to Identify and Remove Higher Mode Rayleigh Waves
NASA Astrophysics Data System (ADS)
Gribler, G.; Liberty, L. M.; Michaels, P.; Mikesell, T. D.
2015-12-01
We present an approach to isolate and separate higher mode Rayleigh wave signals using active source multicomponent seismic data. Our approach allows for improved subsurface shear wave velocity estimates compared to established single component, multi-channel (MASW) methods. We show that the phase velocity vs. frequency relationship of the fundamental Rayleigh wave mode can become contaminated when higher mode Rayleigh waves interfere with the fundamental mode dispersion. Under many geological models, we observe higher mode contamination and these higher velocity modes can lead to low relative coherence along the fundamental mode dispersion path or an overestimation of shear wave velocities with depth. For a typical range of frequencies utilized in active source surface wave analysis (5-100 Hz), the fundamental mode propagates in retrograde motion at the surface. For many earth models, higher mode Rayleigh waves can propagate in prograde motion. By utilizing vertical and horizontal inline seismic components, we can measure particle motion direction and selectively remove the prograde higher mode Rayleigh wave signals via our polar mute approach. We show with numerical models and field results that by removing these higher modes, we can better isolate the fundamental Rayleigh wave dispersion to improve our confidence of shear wave velocity estimates with depth compared to a single channel approach.
Azimuthal-spin-wave-mode-driven vortex-core reversals
Yoo, Myoung-Woo; Kim, Sang-Koog
2015-01-14
We studied, by micromagnetic numerical calculations, asymmetric vortex-core reversals driven by the m = −1 and m = +1 azimuthal spin-wave modes' excitations in soft magnetic circular nano-disks. We addressed the similarities and differences between the asymmetric core reversals in terms of the temporal evolutions of the correlated core-motion speed, locally concentrated perpendicular gyrofield, and magnetization dip near the original vortex core. The criterion for the core reversals was found to be the magnetization dip that must reach the out-of-plane magnetization component, m{sub z} = −p, with the initial polarization p, where p = +1 (−1) for the upward (downward) core magnetization. The core-motion speed and the associated perpendicular gyrofield, variable and controllable with static perpendicular field, H{sub z}, applied perpendicularly to the disk plane, must reach their threshold values to meet the ultimate core-reversal criterion. Also, we determined the H{sub z} strength and direction dependence of the core-switching time and threshold exciting field strength required for the core reversals, whose parameters are essential in the application aspect. This work offers deeper insights into the azimuthal spin-wave-driven core-reversal dynamics as well as an efficient means of controlling the azimuthal-modes-driven core reversals.
Electron Bernstein Wave Emission and Mode Conversion Physics on NSTX
Diem, S J; Caughman, J B; Efthimion, P; Kugel, H; LeBlanc, B P; Preinhaelter, J; Sabbagh, S A; Urban, J; Wilgen, J
2008-05-21
NSTX is a spherical tokamak (ST) that operates with ne up to 1020 m-3 and BT less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for Te measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local Te measurements in the ST. Practically, a robust Te(R,t) EBE diagnostic requires EBW transmission efficiencies of > 90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While Te(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge ne scale length resulted in > 20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency 2 during H-modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H-modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when Te < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H-modes have shown that evaporated lithium can increase Te inside the B-X-O MC layer, significantly increasing B-X-O transmission.
Study of magnetostatic mode waves using scanning Kerr imaging
NASA Astrophysics Data System (ADS)
Tamaru, Shingo
2005-07-01
This dissertation discusses a technique developed to measure microscopic ferromagnetic resonance, and the results of the excitation and relaxation of magnetostatic mode waves (MSW) obtained by this technique. In this technique, named spatially resolved ferromagnetic resonance-scanning Kerr effect microscopy (SRFMR-SKEM), a sample under measurement is excited by a sinusoidal field in the microwave frequency range and the entire waveform of the magnetization response over one cycle is captured by an optical system identical to that used for time resolved scanning Kerr effect microscopy. This allows one to determine not only the amplitude but also the phase of the local precessional motion with optical diffraction limited spatial and picosecond timing resolution. Using this technique, magnetic excitation and relaxation in Permalloy thin films under various conditions were measured. In the first experiment, the uniform mode (Kittel mode) was excited. The phenomenological damping parameter showed an anomalous increase in the low bias field region. 2D mapped images of magnetization response suggest that the formation of multidomain structure and ripple domains are most likely to be responsible for this behavior. In the second experiment, decaying plane MSWs were observed from which the wave number and the decay length were determined. It was found that the extended Damon-Eshbach model which includes the effect of finite damping can be used explain the results. The third experiment showed a clear signature of mode quantization of MSWs excited in a confined geometry. Finally, the fourth experiment captured spatial propagation patterns of MSWs under various conditions. Experiments suggest that these patterns are diffraction patterns of MSWs. A theory for calculating the diffraction patterns of MSWs was presented in order to understand the observation results in the fourth experiment. In this theory, the Green's function for MSWs was first derived, then a convolution
An ultrasonic linear motor using ridge-mode traveling waves.
Tominaga, Masahiko; Kaminaga, Ryuta; Friend, James R; Nakamura, Kentaro; Ueha, Sadayuki
2005-10-01
A new type of ultrasonic linear motor is presented using traveling waves excited along a ridge atop a substrate. The ridge cross section was designed to permit only the fundamental mode to be excited during operation of the motor, with a Langevin transducer used as the source of vibration in this study. The ridge waveguide was first made of lossy media to avoid reflecting vibration energy back toward the vibration source, forming a traveling wave. A 5-mm-wide, 15-mm-tall rectangular acrylic ridge was used to move a slider placed upon it toward the vibration source, in opposition to the direction of the traveling wave transmitted along the waveguide ridge. Using a low-loss 3 x 6-mm aluminum rectangular ridge combined with a damper clamped onto the far end of the waveguide, similar results were obtained. To obtain bidirectional operation, the damper was replaced with a second Langevin transducer, giving a pair of transducers located perpendicularly to the ends of the ridge and driven with an appropriate phase difference. The moving direction of the slider was reversed by shifting this phase difference by about 180 degrees. With this simple configuration, it may soon be possible to fabricate a linear micromotor system on a silicon substrate or other semiconductor wafer adjacent to other electronic and optoelectronic devices. PMID:16382624
Whistler-mode wave propagation in the pre-noon magnetosphere
NASA Astrophysics Data System (ADS)
Watt, C. E.; Rankin, R.; Degeling, A. W.
2012-12-01
Statistical surveys of the occurrence of whistler-mode waves by CRRES and THEMIS [Meredith et al., 2003 and Li et al., 2009] indicate whistler-mode waves are most common on the dawnside magnetosphere. We perform extensive raytracing to analyse the growth and propagation of millions of whistler-mode raypaths, in an attempt to include all possible source regions of whistler-mode waves over a wide region in latitude. We describe the observational constraints on the myriad of choices for those plasma properties which control wave growth, focusing specifically on the pre-noon sector. We demonstrate that waves observed at any particular location are often a superposition of different waves with different paths and histories. We compare solutions from an uncompressed and compressed magnetosphere to investigate the effects of magnetic field topology on the possible source region of whistler-mode waves in the pre-noon magnetosphere and compare the results with statistical surveys of wave amplitudes.
Low-frequency electromagnetic waves driven by gyrotropic gyrating ion beams
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Patel, V. L.
1986-01-01
The origin of left- and right-hand-polarized low-frequency waves in space plasmas is analyzed. It has been shown that a gyrotropic gyrating ion beam, a ring in velocity space, can excite electromagnetic modes in the plasma near the beam gyrofrequency. It excites left-hand-polarized shear Alfven waves and their harmonics via the coupling of Alfven modes with the beam modes. It can also excite right-hand-polarized fast-mode magnetosonic waves and their harmonics as well. The excitation is possible for beam ions heavier than the plasma ions. The growth rate varies as one-third power of the beam density and decreases with the angle of wave propagation with respect to the ambient magnetic field. The nonlocality has a stabilizing effect on the instability. The predicted values of the wave frequencies compare reasonably well with those observed in satellite data.
A sub-Alfvenic solar wind - Interplanetary and magnetosheath observations
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Russell, C. T.
1982-01-01
During much of an approximately 5-hour period on November 22, 1979, plasma and field instruments on ISEE 3 measured a solar wind flow that was simultaneously supersonic and sub-Alfvenic (about 320 km/s) due to an abnormally low ion density (about 0.07 per cu cm). The nature of the disturbed flow adjacent to the magnetosphere is examined. This examination suggests that the earth's bow wave retained its shock-like character when the solar wind flow was sub-Alfvenic.
Higher Order Mode Coupler Heating in Continuous Wave Operation
NASA Astrophysics Data System (ADS)
Solyak, N.; Awida, M.; Hocker, A.; Khabibobulline, T.; Lunin, A.
Electromagnetic heating due to higher order modes (HOM) propagation is particularly a concern for continuous wave (CW) particle accelerator machines. Power on the order of several watts could flow out of the cavity's HOM ports in CW operations. The upgrade of the Linac Coherent Light Source (LCLS-II) at SLAC requires a major modification of the design of the higher order mode (HOM) antenna and feed through of the conventional ILC elliptical 9-cell cavity in order to utilize it for LCLS-II. The HOM antenna is required to bear higher RF losses, while relatively maintaining the coupling level of the higher order modes. In this paper, we present a detailed analysis of the heating expected in the HOM coupler with a thorough thermal quench study in comparison with the conventional ILC design. We discuss also how the heat will be removed from the cavity through RF cables with specially designed cooling straps. Finally, we report on the latest experimental results of cavity testing in vertical and horizontal cryostats.
Finite Pressure Effects on Reversed Shear Alfven Eigenmodes
G.J. Kramer; N.N. Gorelenkov; R. Nazikian; C.Z. Cheng
2004-09-03
The inclusion of finite pressure in ideal-magnetohydrodynamic (MHD) theory can explain the Reversed magnetic Shear Alfven Eigenmodes (RSAE) (or Alfven cascades) that have been observed in several large tokamaks without the need to invoke the energetic particle mechanism for the existence of these modes. The chirping of the RSAEs is cased by changes in the minimum of the magnetic safety factor, q(sub)min, while finite pressure effects explains the observed non-zero minimum frequency of the RSAE when qmin has a rational value. Finite pressure effects also play a dominant role in the existence of the downward chirping RSAE branch.
Can a Fast-Mode EUV Wave Generate a Stationary Front?
NASA Astrophysics Data System (ADS)
Chen, P. F.; Fang, C.; Chandra, R.; Srivastava, A. K.
2016-06-01
The discovery of stationary "EIT waves" about 16 years ago posed a big challenge to the then favorite fast-mode wave model for coronal "EIT waves". It encouraged various non-wave models and played an important role in convergence of the opposing viewpoints toward the recent consensus that there are two types of EUV waves. However, it was recently discovered that a stationary wave front can also be generated when a fast-mode wave passes through a magnetic quasi-separatrix layer (QSL). In this article, we perform a magnetohydrodynamic (MHD) numerical simulation of the interaction between a fast-mode wave and a magnetic QSL, and a stationary wave front is reproduced. The analysis of the numerical results indicates that near the plasma beta {˜} 1 layer in front of the magnetic QSL, part of the fast-mode wave is converted to a slow-mode MHD wave, which is then trapped inside the magnetic loops, forming a stationary wave front. Our results imply that we have to be cautious in identifying the nature of a wave, since there may be mode conversion during the propagation of the waves driven by solar eruptions.
Jones, B; Efthimion, P C; Taylor, G; Munsat, T; Wilson, J R; Hosea, J C; Kaita, R; Majeski, R; Maingi, R; Shiraiwa, S; Spaleta, J; Ram, A K
2003-04-25
In the CDX-U spherical torus, agreement between radiation temperature and Thomson scattering electron temperature profiles indicates approximately 100% conversion of thermally emitted electron Bernstein waves to the X mode. This has been achieved by controlling the electron density scale length (L(n)) in the conversion region with a local limiter outside the last closed flux surface, shortening L(n) to the theoretically required value for optimal conversion. From symmetry of the conversion process, prospects for efficient coupling in heating and current drive scenarios are strongly supported. PMID:12731979
NASA Astrophysics Data System (ADS)
Hashimoto, K.; Yamaashi, K.; Kimura, I.
1987-08-01
Three-dimensional ray tracing is performed for electrostatic electron cyclotron harmonic waves and Z mode electromagnetic waves in the earth's magnetosphere using the hot dispersion relation. Propagation characteristics of cyclotron harmonic waves under the electrostatic approximation are considered, and it is noted that waves starting near the equator can propagate over a long distance without damping. Ray tracing without the electrostatic approximation confirms mode conversion from cyclotron harmonic waves to Z mode electromagnetic waves, and the conditions for the conversion are clarified. It is suggested that further conversion to the L-O mode continuum radiation is possible under strict constraints. The present results are not inconsistent with the conversion mechanism for the generation of escaping continuum radiation in the magnetosphere.
Dynamic mode decomposition identifies internal wave and vortical modes in stably stratified wakes
NASA Astrophysics Data System (ADS)
Xiang, Xinjiang; Chen, Kevin; Madison, Trystan; Spedding, Geoffrey
2015-11-01
Though detailed information has been assembled to describe the late wakes behind various objects in stably stratified fluids, less is known about the dynamics at early stages, when the flow first interacts with the ambient density gradient, beginning the transition to the late wake regime. Detailed velocity fields (and derivatives) were reported by Xiang et al. (J. Fluid Mech. 775, 149-177, 2015) for the near wake of a towed grid, with Re ∈ { 2700 , 11000 } and Fr ∈ { 0 . 6 , 9 . 1 } . Here using dynamic mode decomposition (DMD), the spatial and temporal evolution of the lee wave and shearing modes are extracted and examined for the same data set. Both dynamic modes show systematic dependence on Fr and Re, consistent with previous analysis. The results show the potential of DMD in analyzing the contribution of different modes in a complex, near wake evolution, including, but not limited to towed grids, and the wakes of more complicated towed geometries. Support from ONR N00014-11-1-0553 is most gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Collins, William
1989-01-01
The dispersion equation of Barnes (1966) is used to study the dissipation of asymptotic wave packets generated by localized periodic sources. The solutions of the equation are linear waves, damped by Landau and transit-time processes, in a collisionless warm plasma. For the case of an ideal MHD system, most of the waves emitted from a source are shown to cancel asympotically through destructive interference. The modes transporting significant flux to asymptotic distances are found to be Alfven waves and fast waves with theta (the angle between the magnetic field and the characteristics of the far-field waves) of about 0 and about pi/2.
Mass transport by mode-2 internal solitary-like waves
NASA Astrophysics Data System (ADS)
Deepwell, David; Stastna, Marek
2016-05-01
We present the first three-dimensional numerical simulations of the mass transport capabilities of mode-2 waves formed by a lock-release mechanism with both single and double pycnocline stratifications. Single pycnoclines and double pycnoclines with a small spacing between the pycnocline centres were found to exhibit large Lee instabilities which formed during the collapse of the intermediate density region. These instabilities led to the generation of vorticity dipoles across the mid-depth, and thereby contributed to the reduction in the mass transported by the wave. A double pycnocline with a separation of approximately 12% of the depth between the two pycnocline centres was found to transport a passive tracer optimally for the longest time-period. Increasing Schmidt number correlated with increasing mass transport, while decreasing the tracer diffusivity led to increasing mass transport, but only when a trapped core existed. Contrasted two-dimensional simulations reveal that in certain cases, most noticeably the optimal transport case, the mass transport is significantly different from the corresponding three-dimensional simulation.
Wave Modes of Vertical Dust Chains in Complex Plasma
NASA Astrophysics Data System (ADS)
Harris, Brandon; Burkart, Audrey; Fowler, Raymond; Matthews, Lorin; Hyde, Truell
2013-10-01
Plasma sheaths are notoriously complicated; however, the recent use of micron size dust particles as in-situ probes of this region is beginning to provide data that can be employed to better understand these phenomena. In this study, longitudinal and transverse waves are explored for vertically aligned dust particle chains consisting of 3 to 5 particles. These spherical particles are levitated in the sheath above the powered lower electrode in a GEC reference cell and are confined in the horizontal direction using a glass box. Under appropriate power and pressure conditions, the horizontal confinement provided by the box is great enough to create the chains, which can then be perturbed by applying time-varying potentials to a vertical probe attached to a Zyvex S100 nanomanipulator. The probe can be positioned over a range of locations, allowing both longitudinal and transverse waves to be driven through the chains. Particles exhibit coupled oscillator motion, individually producing all of the pure three-particle longitudinal normal modes. Dispersion relations previously derived for particles aligned in the horizontal plane exhibit similar relevant forces; these are adapted to the vertical direction and compared to experimental results.
Mazur, V. A. Chuiko, D. A.
2013-06-15
Oscillations of the 'magnetosphere-solar wind' system are studied analytically in the framework of a plane-stratified model of the medium. The properties of oscillations are determined by three phenomena: Kelvin-Helmholtz instability on the tangential discontinuity (magnetopause) separating the magnetosphere and the solar wind, the presence of a waveguide for fast magnetosonic waves in the magnetosphere, and the Alfven resonance-a sharp increase in the amplitude of oscillations having the properties of Alfven waves-in the inner magnetosphere. The oscillations of the system form a discrete spectrum of eigenmodes. Analytical expressions are obtained for the frequency and growth rate of instability of each mode, as well as for the functions describing the spatial structure of these modes. All these characteristics of the eigenmodes are shown to depend on the velocity of the solar wind as a parameter. The dependences of the main mode characteristics (such as the instability thresholds, the points of the maximum and minimum growth rate, and the spatial distributions of the oscillation energy) on this parameter are determined for each eigenmode.
Acoustic wave flow sensor using quartz thickness shear mode resonator.
Qin, Lifeng; Zeng, Zijing; Cheng, Hongbin; Wang, Qing-Ming
2009-09-01
A quartz thickness shear mode (TSM) bulk acoustic wave resonator was used for in situ and real-time detection of liquid flow rate in this study. A special flow chamber made of 2 parallel acrylic plates was designed for flow measurement. The flow chamber has a rectangular flow channel, 2 flow reservoirs for stabilizing the fluid flow, a sensor mounting port for resonator holding, one inlet port, and one outlet port for pipe connection. A 5-MHz TSM quartz resonator was edge-bonded to the sensor mounting port with one side exposed to the flowing liquid and other side exposed to air. The electrical impedance spectra of the quartz resonator at different volumetric flow rate conditions were measured by an impedance analyzer for the extraction of the resonant frequency through a data-fitting method. The fundamental, 3rd, 5th, 7th, and 9th resonant frequency shifts were found to be around 920, 3572, 5947, 8228, and 10,300 Hz for flow rate variation from 0 to 3000 mL/min, which had a corresponding Reynolds number change from 0 to 822. The resonant frequency shifts of different modes are found to be quadratic with flow rate, which is attributed to the nonlinear effect of quartz resonator due to the effective normal pressure imposing on the resonator sensor by the flowing fluid. The results indicate that quartz TSM resonators can be used for flow sensors with characteristics of simplicity, fast response, and good repeatability. PMID:19811997
Parametric Decay of Pump Waves into two Linear Modes in SINP MaPLE Device
Biswas, Subir; Pal, Rabindranath
2010-11-23
Parametric decay of incident waves of ion cyclotron frequency range into linear modes is observed in experiment performed in the SINP MaPLE device where nitrogen plasma produced by ECR discharge. Along with a mode in drift wave frequency range, sideband of the incident waves are observed when amplitude of the exciter signal goes above a threshold value. Sideband of the second harmonic is also seen. Preliminary studies point towards excitation of ion Bernstein wave. Details of the experimental results are presented.
Parametric Decay of Pump Waves into two Linear Modes in SINP MaPLE Device
NASA Astrophysics Data System (ADS)
Biswas, Subir; Pal, Rabindranath
2010-11-01
Parametric decay of incident waves of ion cyclotron frequency range into linear modes is observed in experiment performed in the SINP MaPLE device where nitrogen plasma produced by ECR discharge. Along with a mode in drift wave frequency range, sideband of the incident waves are observed when amplitude of the exciter signal goes above a threshold value. Sideband of the second harmonic is also seen. Preliminary studies point towards excitation of ion Bernstein wave. Details of the experimental results are presented.
Suret, Pierre; Picozzi, Antonio; Randoux, Stéphane
2011-08-29
We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a statistically stationary state. The evolution of the power spectrum of the field is characterized by the rapid growth of spectral tails that exhibit damped oscillations, until the whole spectrum ultimately reaches a steady state. The kinetic approach allows us to derive an analytical expression of the damped oscillations, which is found in agreement with the numerical simulations of both the NLS and kinetic equations. We report the experimental observation of this peculiar relaxation process of the integrable NLS equation. PMID:21935152
NASA Astrophysics Data System (ADS)
Amjad, Umar; Yadav, Susheel Kumar; Kundu, Tribikram
2016-01-01
Applicability of specific Lamb wave modes for delamination detection and quantification in a laminated aluminum plate is investigated. The Lamb modes were generated in the plate using a broadband piezoelectric transducer structured with a rigid electrode. Appropriate excitation frequencies and modes for inspection were selected from theoretical dispersion curves. Sensitivity of antisymmetric and symmetric modes for delamination detection and quantification has been investigated using the Hilbert-Huang transform. The mode conversion phenomenon of Lamb waves during progressive delamination is observed. The antisymmetric mode is found to be more reliable for delamination detection and quantification. In this investigation, the changes in the phase of guided Lamb wave modes are related to the degree of delamination, unlike other studies, where mostly the attenuation of the propagating waves has been related to the extent of the internal damage, such as cracks and corrosions. Appropriate features for delamination detection and quantification are extracted from the experimental data.
Lu, T H; Lin, Y C; Liang, H C; Huang, Y J; Chen, Y F; Huang, K F
2010-02-01
We investigate the lasing modes in large-Fresnel-number laser systems with astigmatism effects. Experimental results reveal that numerous lasing modes are concentrated on exotic patterns corresponding to intriguing geometries. We theoretically use the quantum operator algebra to construct the wave representation for manifesting the origin of the localized wave patterns. PMID:20125716
Observations of fast ion losses due to toroidal Alfven eigenmodes in TFTR
Darrow, D.S.; Zweben, S.J.; Chang, Z.
1993-08-01
In a tokamak, knowledge of the rate of fast ion loss is of importance in determining the energy balance of the discharge. Heating of the discharge may be diminished if losses are significant, since neutral beam ions, ICRF heating tail ions, and alpha particles all heat the plasma and may all be lost through processes which expel fast ions. In addition, a loss of fast ions which is sufficiently intense and localized may damage plasma facing components in the vacuum vessel. For these reasons, knowledge of the fast ion loss mechanisms is desirable. Loss processes for fast ions in a tokamak fit into two broad categories: single particle and collective. Single particle losses are those, such as first orbit loss, which are independent of the number of fast ions present. These have been seen in numerous instances on TFIR with DD fusion products, and are reported elsewhere. Collective losses arise when the fast ion density is sufficient to drive instabilities which then cause loss. The drive can come from {partial_derivative}f{sub fi}/{partial_derivative}{psi} (where f{sub fi} is the fast ion distribution function), {partial_derivative}f{sub fi}/{partial_derivative}E, and resonances. Examples of collective instabilities include the toroidal Alfven eigenmode (TAE), the kinetic ballooning mode, alpha driven sawteeth, alpha driven fishbones, Alfven waves, and ion cyclotron waves. This paper limits itself to the presentation of observations made during what are believed to be TAEs which were excited under two conditions in TFTR: at low field (1.5 T), with neutral beam ions driving the mode, and at intermediate field (3.4 T) with the hydrogen minority ICRF tail ions driving the mode.
MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures
NASA Astrophysics Data System (ADS)
Verth, G.; Jess, D. B.
2016-02-01
Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.
Kelvin waves and the singular modes of the Lamb Oseen vortex
NASA Astrophysics Data System (ADS)
Fabre, David; Sipp, Denis; Jacquin, Laurent
2006-03-01
Columnar vortices are known to support a family of waves initially discovered by Lord Kelvin (1880) in the case of the Rankine vortex model. This paper presents an exhaustive cartography of the eigenmodes of a more realistic vortex model, the Lamb Oseen vortex. Some modes are Kelvin waves related to those existing in the Rankine vortex, while some others are singular damped modes with a completely different nature. Several families are identified and are successively described. For each family, the underlying physical mechanism is explained, and the effect of viscosity is detailed. In the axisymmetric case (with azimuthal wavenumber m {=} 0), all modes are Kelvin waves and weakly affected by viscosity. For helical modes (m {=} 1), four families are identified. The first family, denoted D, corresponds to a particular wave called the displacement wave. The modes of the second family, denoted C, are cograde waves, except in the long-wave range where they become centre modes and are strongly affected by viscosity. The modes of the third family, denoted V, are retrograde, singular modes which are always strongly damped and do not exist in the inviscid limit. The modes of the last family, denoted L, are regular, counter-rotating waves for short wavelengths, but they become singular damped modes for long wavelengths. In an intermediate range of wavelengths between these two limits, they display a particular structure, with both a wave-like profile within the vortex core and a spiral structure at its periphery. This kind of mode is called a critical layer wave, and its significance is explained from both a physical and a mathematical point of view. Double-helix modes (m {=} 2) can similarly be classified into the C, V and L families. One additional mode, called F, plays a particular role. For short wavelenghs, this mode corresponds to a helical flattening wave, and has a clear physical significance. However, for long wavelenghts, this mode completely changes its structure
NASA Astrophysics Data System (ADS)
Ekardt, W.
1987-09-01
The wave-vector dispersion of collective modes in small particles is investigated within the time-dependent local-density approximation as applied to a self-consistent jellium particle. It is shown that the dispersion of the volume plasmons can be understood from that in an infinite electron gas. For a given multipole an optimum wave vector exists for the quasiresonant excitation of the volume mode but not for the surface mode. It is pointed out that-for the volume modes-the hydrodynamic approximation gives a reasonable first guess for the relation between frequencies and size-quantized wave vectors.
Collective Modes and f-Wave Pairing Interactions in Superfluid {sup 3}He
Davis, J. P.; Choi, H.; Pollanen, J.; Halperin, W. P.
2006-09-15
Precision measurements of collective mode frequencies in superfluid {sup 3}He-B are sensitive to quasiparticle and f-wave pairing interactions. Measurements were performed at various pressures using interference of transverse sound in an acoustic cavity. We fit the measured collective mode frequencies, which depend on the strength of f-wave pairing and the Fermi liquid parameter F{sub 2}{sup s}, to theoretical predictions and discuss what implications these values have for observing new order parameter collective modes.
Phase velocity spectrum analysis for a time delay comb transducer for guided wave mode excitation
Quarry, M J; Rose, J L
2000-09-26
A theoretical model for the analysis of ultrasonic guided wave mode excitation of a comb transducer with time delay features was developed. Time delay characteristics are included via a Fourier transform into the frequency domain. The phase velocity spectrum can be used to determine the mode excitation on the phase velocity dispersion curves for a given structure. Experimental and theoretical results demonstrate the tuning of guided wave modes using a time delay comb transducer.
On the resonant generation of breaking, mode-2 solitary-like waves
NASA Astrophysics Data System (ADS)
Stastna, M.; Peltier, R.
2004-05-01
The weakly nonlinear theory of the resonant generation of internal solitary waves by temporally varying background currents over small amplitude topography (i.e as recently discussed by Wang and Redekopp, Dyn. Atm. Oceans, vol. 33, pg. 263) shows no preference for mode-1 waves over higher mode waves. In this talk we discuss numerical modeling efforts we have undertaken to resonantly generate mode-2 solitary-like waves. After briefly reviewing the reasons why mode-2 waves cannot, in general, be truly solitary we show examples of mode-2 wave generation for a stratification typical of the coastal ocean. We demonstrate that for certain physically reasonable situations the energy lost to a mode-1 tail is of secondary importance, when compared to the changes in the wave shape due to the existence of a highly active core. We discuss diagnostics based on weakly nonlinear theory that can be employed to diagnose whether a given situation (stratification and background current) can reasonably be expected to yield resonantly generated mode-2 solitary-like waves.
Multiple continuous-wave and pulsed modes of a figure-of-eight fibre laser
NASA Astrophysics Data System (ADS)
Pottiez, O.; Martinez-Rios, A.; Monzon-Hernandez, D.; Salceda-Delgado, G.; Hernandez-Garcia, J. C.; Ibarra-Escamilla, B.; Kuzin, E. A.
2013-03-01
We study experimentally a figure-of-eight fibre laser including a polarization-imbalanced nonlinear optical loop mirror and a Mach-Zehnder optical filter formed by two fibre tapers placed in series. Depending on the adjustments of two wave retarders included in the setup, different modes of operation of the laser are found. In continuous-wave mode, tunable single-wavelength operation as well as multiwavelength lasing are observed. For some adjustments, self-pulsing also takes place, although the pulses are very unstable. Finally, for some adjustments a mechanical stimulation (a kick) leads to the onset of passive mode locking. Measurements reveal that the mode-locked pulses actually are noise-like pulses. Both stable fundamental mode locking and second-harmonic mode locking with particular dynamics were obtained. In this work, we analyse how simple wave plate adjustments can lead to such a variety of operational modes of the fibre laser.
Observations and Simulations of Whistler-mode Waves Detected by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Bengtson, M.; Rosborough, S.; Stein, R. L.; Streltsov, A. V.; Matheny, M. M.
2015-12-01
In March of 2014, Van Allen Probe A observed several packets of whistler-mode waves while passing through the apogee of an orbit on the dayside magnetosphere. These waves were localized in regions of strong density inhomogeneity. For one observed wave, the wave maximum occurred within the center of the channel formed by a density enhancement. The other two waves were observed on either side of strong density depletion. We first determine the wave characteristics using data from Van Allen Probe A. Then, we use the observations to specify parameters in an electron MHD simulation to model the propagation of whistler-mode waves inside density structures. These observations and simulations demonstrate how whistler-mode waves can become trapped inside density structures, a phenomenon known as ducting. The density ducts serve to guide the whistler-mode waves into the earth's radiation belt while minimizing damping effects. The purpose of this research is to understand the role of density ducts in guiding whistler-mode waves, which will have important applications for remediation of energetic particles from the radiation belt.
NASA Astrophysics Data System (ADS)
Tacchi, S.; Botters, B.; Madami, M.; Kłos, J. W.; Sokolovskyy, M. L.; Krawczyk, M.; Gubbiotti, G.; Carlotti, G.; Adeyeye, A. O.; Neusser, S.; Grundler, D.
2012-07-01
We report spin wave excitations in a nanopatterned antidot lattice fabricated from a 30-nm thick Ni80Fe20 film. The 250-nm-wide circular holes are arranged in a rhombic unit cell with a lattice constant of 400 nm. By Brillouin light scattering, we find that quantized spin wave modes transform to propagating ones and vice versa by changing the in-plane orientation of the applied magnetic field H by 30∘. Spin waves of either negative or positive group velocity are found. In the latter case, they propagate in narrow channels exhibiting a width of below 100 nm. We use the plane wave method to calculate the spin wave dispersions for the two relevant orientations of H. The theory allows us to explain the wave-vector-dependent characteristics of the prominent modes. Allowed minibands are formed for selected modes only for specific orientations of H and wave vector. The results are important for applications such as spin wave filters and interconnected waveguides in the emerging field of magnonics where the control of spin wave propagation on the nanoscale is key.
Three mode interaction noise in laser interferometer gravitational wave detectors
NASA Astrophysics Data System (ADS)
Ju, Li; Zhao, Chunnong; Ma, Yiqiu; Blair, David; Danilishin, Stefan L.; Gras, Slawek
2014-07-01
Triply resonant three mode interactions in long optical cavities have been shown to lead to enhanced scattering of carrier light by the ultrasonic acoustic modes of the test mass mirrors. At high optical power, this can lead to parametric instability (parametric gain R>1) for a few acoustic modes with strong spectral and spatial overlap. Numerous \\sim {{10}^{3}} acoustic modes of the test masses are predicted to have R>{{10}^{-2}}. Experimental studies have shown that such modes also strongly scatter the carrier light, enabling very sensitive readout of the acoustic modes. The three-mode scattering from the thermal fluctuation of large population of ultrasonic modes would causes random changes in occupation number of the carrier light and cavity transverse optical modes. Because the thermal fluctuation time scale (set by the acoustic mode relaxation times) is typically a few seconds, the noise spectrum from thermally induced photon number fluctuations is strongly peaked at low frequency. The noise level depends on the acoustic mode structure and acoustic losses of the test masses, the transverse optical mode spectrum of the optical cavities and on the test mass temperature. We theoretically investigate the possible effect of this noise and show that in advanced detectors under construction three mode interaction noise is below the standard quantum limit, but could set limits on future low frequency detectors that aim to exceed the free mass standard quantum limit.
Ion stochastic heating by obliquely propagating magnetosonic waves
Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui
2012-06-15
The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.
Spatio-Temporal Evolutions of Non-Orthogonal Equatorial Wave Modes Derived from Observations
NASA Astrophysics Data System (ADS)
Barton, C.; Cai, M.
2015-12-01
Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCF), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. In this study, we propose a methodology that seeks to identify individual wave modes in instantaneous fields of observations by determining their projections on PCF modes according to the equatorial wave theory. The new method has the benefit of yielding a closed system with a unique solution for all waves' spatial structures, including IG waves, for a given instantaneous observed field. We have applied our method to the ERA-Interim reanalysis dataset in the tropical stratosphere where the wave-mean flow interaction mechanism for the quasi-biennial oscillation (QBO) is well-understood. We have confirmed the continuous evolution of the selection mechanism for equatorial waves in the stratosphere from observations as predicted by the theory for the QBO. This also validates the proposed method for decomposition of observed tropical wave fields into non-orthogonal equatorial wave modes.
Quasi-periodic Whistler Mode Waves Detected by the Van Allen Probes Spacecraft
NASA Astrophysics Data System (ADS)
Hospodarsky, G. B.; Santolik, O.; Nemec, F.; Kurth, W. S.; Kletzing, C.; Bounds, S. R.; Wygant, J. R.; Bonnell, J. W.
2014-12-01
Quasi-periodic (QP) whistler mode electromagnetic emissions have been detected in Earth's magnetosphere by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves instrument. These emissions typically consist of intervals of enhanced wave power between a few hundred Hz to a few kHz with modulation periods on the order of minutes. These emissions are primarily observed on the dayside and detected between L shells of 3 to 6, though some events are observed down to L shells of ~2. EMFISIS simultaneously measures the vector wave magnetic field and, with the support of the Electric Fields and Waves (EFW) instrument sensors, the vector wave electric field at two locations in Earth's magnetosphere in a continuous survey mode (typically with a 6 second cadence) along with a number of different burst modes to provide high time resolution waveforms (35000 samples per second). These two modes allow a systematic survey of the occurrence of these waves. By measuring all six wave components simultaneously, the wave propagation parameters, such as the wave normal angle and Poynting vector, of these plasma wave emissions are obtained. We will present a statistical survey of the properties of these waves as detected by the Van Allen Probes, examine their occurrence location and use burst data to examine the fine structure of individual events.
Backward mode of the ion-cyclotron wave in a semi-bounded magnetized Lorentzian plasma
Ki, Dae-Han; Jung, Young-Dae
2012-08-15
The backward modes of the surface ion-cyclotron wave are investigated in a semi-bounded magnetized Lorentzian plasma. The dispersion relation of the backward mode of the surface ion-cyclotron wave is obtained using the specular reflection boundary condition with the plasma dielectric function. The result shows that the nonthermal effect suppresses the wave frequency as well as the group velocity of the surface ion-cyclotron wave. It is also found that the nonthermal effect on the surface ion-cyclotron wave increases with an increase of the wave number. In addition, it is found that the propagation domain of the surface ion-cyclotron wave increases with an increase of the ratio of the electron plasma frequency to the electron gyrofrequency. It is also found that the nonthermal effect increases the propagation domain of the surface ion-cyclotron wave in a semi-bounded magnetized Lorentzian plasma.
Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection
NASA Astrophysics Data System (ADS)
Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.
2010-12-01
We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
NASA Astrophysics Data System (ADS)
Imbert-Gérard, Lise-Marie
2015-12-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Rayleigh surface waves, phonon mode conversion, and thermal transport in nanostructures
NASA Astrophysics Data System (ADS)
Maurer, Leon; Knezevic, Irena
We study the effects of phonon mode conversion and Rayleigh (surface) waves on thermal transport in nanostructures. We present a technique to calculate thermal conductivity in the elastic-solid approximation: a finite-difference time-domain (FDTD) solution of the elastic or scalar wave equations combined with the Green-Kubo formula. The technique is similar to an equilibrium molecular dynamics simulation, captures phonon wave behavior, and scales well to nanostructures that are too large to simulate with many other techniques. By imposing fixed or free boundary conditions, we can selectively turn off mode conversion and Rayleigh waves to study their effects. In the example case of graphenelike nanoribbons with rough edges, we find that mode conversion among bulk modes has little effect on thermal transport, but that conversion between bulk and Rayleigh waves can significantly reduce thermal conductivity. With increasing surface disorder, Rayleigh waves readily become trapped by the disorder and draw energy away from the propagating bulk modes, which lowers thermal conductivity. We discuss the implications on the accuracy of popular phonon-surface scattering models that stem from scalar wave equations and cannot capture mode conversion to Rayleigh waves.
Resonance structure and mode transition of quarter-wave ULF pulsations around the dawn terminator
NASA Astrophysics Data System (ADS)
Obana, Yuki; Waters, Colin L.; Sciffer, Murray D.; Menk, Frederick W.; Lysak, Robert L.; Shiokawa, Kazuo; Hurst, Anthony W.; Petersen, Tanja
2015-06-01
Quarter-wave modes are standing shear Alfvén waves supported along geomagnetic field lines in space. They are predicted to be generated when the ionosphere has very different conductance between the north compared with the south ionosphere. Our previous observation reported that the resonant frequency is sometimes very low around the dawn terminator and suggested these were due to quarter-wave modes. In this paper, we examine the resonance structure that provides further evidence of the presence of quarter-wave modes. Data from three magnetometers in New Zealand were analyzed. Four events are discussed which show extraordinarily low eigenfrequencies, wide resonance widths, and strong damping when the ionosphere above New Zealand was in darkness while the conjugate northern hemisphere ionosphere was sunlit. Later in the morning, the eigenfrequencies and resonance widths changed to normal daytime values. The wide resonance width and the strong damping of the quarter-wave modes arise from strong energy dissipation in the dark side ionosphere. One event exhibited field line resonance structure continuously through a transition from very low frequency to the normal daytime values. The frequency change began when the dawn terminator passed over New Zealand and finished 1 h later when the ratio of the interhemispheric ionospheric conductances decreased and reached ~5. These observations are strong evidence of the presence of quarter-wave modes and mode conversion from quarter- to half-wave resonances. These experimental results were compared with the ULF wave fields obtained from a 2.5-dimensional simulation model.
How to adapt broad-band gravitational-wave searches for r-modes
Owen, Benjamin J.
2010-11-15
Up to now there has been no search for gravitational waves from the r-modes of neutron stars in spite of the theoretical interest in the subject. Several oddities of r-modes must be addressed to obtain an observational result: The gravitational radiation field is dominated by the mass current (gravitomagnetic) quadrupole rather than the usual mass quadrupole, and the consequent difference in polarization affects detection statistics and parameter estimation. To astrophysically interpret a detection or upper limit it is necessary to convert the gravitational-wave amplitude to an r-mode amplitude. Also, it is helpful to know indirect limits on gravitational-wave emission to gauge the interest of various searches. Here I address these issues, thereby providing the ingredients to adapt broad-band searches for continuous gravitational waves to obtain r-mode results. I also show that searches of existing data can already have interesting sensitivities to r-modes.
Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L
2013-05-01
Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves. PMID:23654370
One-dimensional full wave simulation on XB mode conversion in electron cyclotron heating
Kim, S. H.; Lee, H. Y.; Jo, J. G.; Hwang, Y. S.
2014-06-15
The XB mode conversion in electron cyclotron resonance frequency heating has been studied in detail through 1D full wave simulation. The field pattern depends on the density scale length, and the wave absorption near upper hybrid resonance is maximized beyond the R(X) mode cutoff density for optimized density scale length. The simulated mode conversion efficiency has been compared with that of an analytic formula, showing good agreements except for the phase dependent term of the X wave. The mode conversion efficiency is calculated for oblique injections as well, and it is found that the efficiency decreases as the injection angles increases. Short magnetic field scale length is confirmed to relax the short density scale length condition maximizing the XB mode conversion efficiency. Finally, the simulation code is used to analyze the mode conversion and power absorption of a pre-ionization plasma in versatile experiment spherical torus.
Power deposition by mode converted electron Bernstein waves in the DIII-D heat pinch experiments
Forest, C.B.; Harvey, R.W.; Smirnov, A.P.
2001-05-01
Mode converted electron Bernstein waves are shown to play an important role in power deposition in the off-axis electron cyclotron heating experiments on the DIII-D tokamak in which the effect known as the 'heat pinch' was inferred. Ray tracing shows that the mode converted Bernstein modes (generated when the launched X mode reflects from an outboard upper hybrid layer) are damped in the central region where the previous analysis had assumed no power was being deposited.
A numerical investigation of head waves and leaky modes in fluid- filled boreholes.
Paillet, Frederick L.; Cheng, C.H.
1986-01-01
Although synthetic borehole seismograms can be computed for a wide range of borehole conditions, the physical nature of shear and compressional head waves in fluid-filled boreholes is poorly understood. Presents a series of numerical experiments designed to explain the physical mechanisms controlling head-wave propagation in boreholes. These calculations demonstrate the existence of compressional normal modes equivalent to shear normal modes, or pseudo-Rayleigh waves, with sequential cutoff frequencies spaced between the cutoff frequencies for the shear normal modes.-from Authors
NASA Astrophysics Data System (ADS)
Stubailo, I.; Davis, P. M.
2014-12-01
The Mexico subduction zone is characterized by both steep and flat subduction, and a volcanic arc that appears to be oblique to the trench. It has excellent seismic data coverage due to the 2005-2007 Middle America Subduction Experiment (MASE) and the permanent Mexican stations. Here, we study the anisotropy of the region using Surface waves, shear-wave splitting measurements, and higher modes. Our goal is to verify and complement the three-dimensional model of shear-wave velocity and anisotropy in the region constructed using Rayleigh wave phase velocity dispersion measurements (Stubailo et al., JGR, 2012) and constrain the depth of the shear-wave splitting anisotropy with the help of the n1-3 overtones. The 3D model contains lateral variations in shear wave velocity consistent with the presence of flat and steep subduction, as well as variations in azimuthal anisotropy, that suggest a tear between the flat and steep portions of the slab. Shear-wave splitting is effective for studying mantle anisotropy beneath the receivers and has a better lateral resolution than the Rayleigh wave phase velocity dispersion measurements, although it suffers from a poor depth resolution. To better resolve the anisotropy at depth, we also calculate the anisotropy based on the higher mode surface waves of different overtones for Mexican stations using least-squares fitting of the synthetic higher mode seismograms to the data collected from the deep earthquakes. The three methods allow us to separate the anisotropy and its strength at different depths. We will report on our shear-wave splitting and higher mode results, and their comparison, and present evidence that anisotropy under Mexico is of deep origin.
Decay of electrostatic hydrogen cyclotron waves into ion acoustic modes in auroral field lines
NASA Astrophysics Data System (ADS)
Bergmann, R.; Hudson, M. K.
1987-03-01
The coherent three-wave decay of a linearly unstable electrostatic hydrogen cyclotron (EHC) wave into stable EHC and ion acoustic modes is considered. The general problem of the three weakly interacting electrostatic normal modes in a Maxwellian plasma is discussed. EHC is examined in a fluid description, and the results are used to guide a similar study in a Vlasov plasma system intended to model the aurora acceleration region parameters. The time dependence of the decay in a simple three-wave interaction is presented in order to show how wave saturation can arise.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
Method of description of the Alfven and magnetosonic branches of inhomogeneous plasma oscillations
Klimushkin, D.Yu.
1994-12-31
A method of description of the Alfven and magnetosonic branches of the 3-D inhomogeneous plasma oscillations is proposed. In the absence of kinetic effects, the electric field of the MHD-wave is two-dimensional and can be split into potential and eddy components. The first component is identified with the Alfven wave, and the second one with the FMS-wave. It was shown that this approach can be applied to analyze the Earth`s magnetosphere oscillations (geomagnetic pulsations). 21 refs.
Study of a high-order-mode gyrotron traveling-wave amplifier
Chiu, C. C.; Tsai, C. Y.; Kao, S. H.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.
2010-11-15
Physics and performance issues of a TE{sub 01}-mode gyrotron traveling-wave amplifier are studied in theory. For a high order mode, absolute instabilities on neighboring modes at the fundamental and higher cyclotron harmonic frequencies impose severe constraints to the device capability. Methods for their stabilization are outlined, on the basis of which the performance characteristics are examined in a multidimensional parameter space under the marginal stability criterion. The results demonstrate the viability of a high-order-mode traveling-wave amplifier and provide a roadmap for design tradeoffs among power, bandwidth, and efficiency. General trends are observed and illustrated with specific examples.
Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate
NASA Astrophysics Data System (ADS)
Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe
2014-05-01
Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small
An overmoded relativistic backward wave oscillator with efficient dual-mode operation
Xiao, Renzhen; Li, Jiawei; Bai, Xianchen; Song, Zhimin; Teng, Yan; Ye, Hu; Li, Xiaoze; Sun, Jun; Chen, Changhua; Zhang, Xiaowei
2014-03-03
A dual-mode operation mechanism in an overmoded relativistic backward wave oscillator is presented. The electron beam interacts with the −1st space harmonic of TM{sub 01} mode synchronously in the slow wave structure. Then the backward propagating TM{sub 01} mode is converted to the forward propagating TM{sub 02} mode. As the phase velocity of the volume harmonic of TM{sub 02} mode is about twice that of the surface harmonic of TM{sub 01} mode, the TM{sub 02} mode also plays an important role in the high-power microwave generation. Particle-in-cell simulation shows that an efficiency of 48% and a significant improvement of the power capacity have been obtained.
Three-dimensional coupled mode analysis of internal-wave acoustic ducts.
Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik
2014-05-01
A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting. PMID:24815234
NASA Technical Reports Server (NTRS)
Kouznetsov, Igor; Lotko, William
1995-01-01
The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the
Wasilewski, Wojciech; Raymer, M. G.
2006-06-15
We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes, and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, Bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems [S. L. Braunstein, Phys. Rev. A 71, 055801 (2005)]. We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored atomic polarization using the anti-Stokes scattering process. We prove that the readout process can also be decomposed into multiple mode pairs, each pair undergoing independent evolution analogous to a beam-splitter transformation. We show that this process can have unit efficiency under realistic experimental conditions. The shape of the output light wave packet can be predicted. In the case of unit readout efficiency it contains only excitations originating from a specified atomic excitation mode.
Modes of climate variability and heat waves in Victoria, southeastern Australia
NASA Astrophysics Data System (ADS)
Parker, Teresa J.; Berry, Gareth J.; Reeder, Michael J.; Nicholls, Neville
2014-10-01
Summertime heat waves in the southeastern state of Victoria, Australia, are associated with broad anticyclonic upper level potential vorticity (PV) anomalies. The current research establishes the relationship between heat waves, precipitation, and three modes of climate variability of importance for rainfall in Australia: the El Niño-Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), and Southern Annular Mode (SAM). Heat waves in Victoria in summer are more common during phases 3-6 of the MJO (when convection is enhanced over the eastern Indian Ocean, Maritime Continent, and western Pacific Ocean) and La Niña phases of ENSO. The PV-Theta (Θ) structure of the heat wave and pattern of convection varies with the phase of each mode of variability. Enhanced tropical convection results in a heat wave characterized by a monopole of anticyclonic PV, whereas suppressed convection is associated with a dipole of anticyclonic and cyclonic PV.
MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS
Zhao, Hui; Chou, Dean-Yi
2013-11-20
We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |Δn|, where Δn ≡ n' – n. The scattered waves of Δn = ±1 are visible for n ≤ 1, and significant for n ≥ 2. For the scattered wave of Δn = ±2, only few cases are visible. None of the scattered waves of Δn = ±3 are visible. The properties of scattered waves for Δn = 0 and Δn ≠ 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for Δn = 0, while it increases with n for Δn ≠ 0. The scattered wave amplitudes of Δn = 0 are greater for the larger sunspot, while those of Δn ≠ 0 are insensitive to the sunspot size.
NASA Astrophysics Data System (ADS)
Ye, Hu; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing; Wu, Ping
2015-06-01
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM03 mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM03 mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM03 mode. In addition, the TM03 mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM03 mode than on the TM01 mode.
Ye, Hu; Wu, Ping; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing
2015-06-15
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.
Bellucci, Stefano; Capozziello, Salvatore; De Laurentis, Mariafelicia; Faraoni, Valerio
2009-05-15
Alternative theories of gravity predict the presence of massive scalar, vector, and tensor gravitational wave modes in addition to the standard massless spin 2 graviton of general relativity. The deflection and frequency shift effects on light from distant sources propagating through a stochastic background of gravitational waves, containing such modes, differ from their counterparts in general relativity. Such effects are considered as a possible signature for alternative gravity in attempts to detect deviations from Einstein's gravity by astrophysical means.
Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; White, R. B.; Yakovenko, Yu. V.
2004-09-17
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E.
The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock
NASA Technical Reports Server (NTRS)
Tokar, R. L.; Gurnett, D. A.
1985-01-01
In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.
Higher-mode ambient-noise Rayleigh waves in sedimentary basins
NASA Astrophysics Data System (ADS)
Ma, Yiran; Clayton, Robert W.; Li, Dunzhu
2016-06-01
We show that higher modes are an important component of high-frequency Rayleigh waves in the cross-correlations over sedimentary basins. The particle motions provide a good test for distinguishing and separating the fundamental from the first higher mode, with the fundamental mode having retrograde and the first higher mode having prograde motion in the 1-10 s period of interest. The basement depth controls the cut-off period of the first higher mode, which coincides with a rapid increase (over period) in the particle-motion ellipticity or H/V ratio of the fundamental mode. The strong higher mode we observed is not only due to the low-velocity sedimentary layer, but also the noise sources with significant radial component such as the basin edge scattering. It is important to correctly identify the mode order when inverting the dispersion curves, because misidentifying the higher mode as fundamental will lead to an anomalous high VSV velocity.
NASA Astrophysics Data System (ADS)
Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.
1994-12-01
Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.
Transducer arrays for omnidirectional guided wave mode control in plate like structures
NASA Astrophysics Data System (ADS)
Koduru, Jaya P.; Rose, Joseph L.
2013-01-01
For structural health monitoring applications, ultrasonic guided wave mode control is critical for obtaining simple signals that can be easily analyzed as well as special modes and frequencies for improved sensitivity to certain defects. This paper discusses the development of an annular array transducer for omnidirectional guided wave mode control in plate like structures. Using a flexible piezoelectric material like polyvinlydine fluoride (PVDF), annular array transducers that are low cost, low profile and conformable to the structure can be made rapidly. Two different array patterns, namely ones of comb and inter-digital (IDT) type, are studied. The loadings of these transducers on a structure differ from one another and hence so do their source influences. An axi-symmetric finite element modeling is employed to study the surface displacement pattern of these two transducer configurations. The source influence of the transducer configurations is studied experimentally by exciting an anti-symmetric (A1) and a symmetric (S1) type guided wave mode in a steel plate. It was observed that IDT type transducers were able to couple well to the guided wave modes at the wavelengths that they are designed for. The comb type transducers have a weak coupling to symmetric guided wave modes at frequencies where the wave structure has high in-plane displacement and negligible out-of-plane displacement on the surface of the structure.
Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes
NASA Astrophysics Data System (ADS)
Cheng, Li; Hong, Wei; Hao, Zhang-Cheng
2014-04-01
Recently, much attention has been focused on beams carrying orbital angular momentum (OAM) for radio communication. Here we experimentally demonstrate a planar-spiral phase plate (planar-SPP) for generating arbitrary mixed OAM beams. This proposed planar-SPP uses the concept of transmit array antenna having a perforated substrate to control the outputting phase for generating beams carrying OAM with arbitrary modes. As demonstrations, three planar-SPPs with a single OAM mode and two mixed OAM modes around 94 GHz have been investigated with design and experiments in this paper, respectively. The typical experimental intensity and phase patterns show that the proposed method of generating OAM beams really works.
The onset of Alfvenic turbulence
NASA Technical Reports Server (NTRS)
Ghosh, S.; Papadopoulos, K.
1987-01-01
An investigation is conducted on how low-frequency MHD oscillations in a warm plasma may undergo a transition from a coherent state to one of turbulence. A driven/dissipative derivative nonlinear Schroedinger equation is derived from the fluid equations. The time evolution of an arbitrary spectrum of waves is analyzed in the case where one k-mode is unstable, with the rest damped. It is found that the transition from order to chaos in the driven/dissipative system is correlated with the existence or absence of 'breathing' solitons in the associated conservative system.
Alfven soliton and multisoliton dynamics perturbed by nonlinear Landau damping
Sanchez-Arriaga, G.
2010-08-15
The evolution of weakly dispersive nonlinear Alfven waves propagating either parallel or oblique to the ambient magnetic field is investigated through the derivative nonlinear Schroedinger equation (DNLS) perturbed by nonlinear Landau damping. The dynamics is analyzed with the aid of a numeric algorithm based on the inverse scattering transform (IST) and an adiabatic model that takes advantages of the perturbed DNLS invariants. Both techniques are applied to five types of DNLS soliton and multisoliton solutions: (i) the parallel Alfven soliton, (ii) the bright and dark one-parameter oblique, (iii) the breather two-parameter oblique, (iv) two parallel Alfven solitons, and (v) the combination of a dark and a bright oblique solitons. For the parallel solitons, the adiabatic model describes correctly the dynamics and it also recovers the well-known result given by the perturbed IST. Due to the radiation emission and the formation of dark solitons, the behavior of oblique solitons is more complicated and multisoliton solutions are required in the adiabatic model. The analysis shows that parallel solitons develop into the normal regime, whereas the oblique waves leads to the formation of dark solitons and breathers with a wavepacket form.
Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.
2014-01-01
Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.
NASA Astrophysics Data System (ADS)
Supranata, Yosep Erwin
One of the factors, which contributes to errors in shear wave velocity profile obtained from the inversion of surface wave dispersion data is non-uniqueness due to the limited number of field dispersion data. In this research, a new procedure is developed to improve the uniqueness of the shear wave velocity profile resulting from the inversion. A new forward modeling algorithm using the smallest absolute eigenvalue as the screening parameter to generate Rayleigh wave modes from a theoretical model is developed. The theoretical model adopted in this research is the Dynamic Stiffness Matrix. The results indicate that the new technique is more reliable than the traditional method using the determinant as the screening parameter. The performance of the Broyden-Fletcher-Goldfarb-Shanno and Levenberg-Marquardt methods are evaluated in this research to determine the most suitable gradient method for surface wave inversion. Comparison of the performance of the two methods shows that the Levenberg-Marquardt method produces more accurate results than the Broyden-Fletcher-Goldfarb-Shanno method. An updated inversion technique which divides the inversion process into a number of stages, with each successive stage utilizing the shear wave velocities obtained from the previous stage as its initial model, is introduced. The number of stages is the same as the highest Rayleigh wave mode number, and the kth stage of the inversion utilizes the dispersion data from the 1st through kth modes. Shear wave velocities obtained from the updated inversion technique are more accurate than those obtained from the inversion procedure using an initial model constructed from fundamental mode dispersion data.
Emission of Whistler-mode waves and diffusion of electrons around interplanetary shocks
NASA Technical Reports Server (NTRS)
Pierre, F.; Solomon, J.; Cornilleau-Wehrlin, N.; Canu, P.; Scime, E. E.; Phillips, J. L.; Balogh, A.; Forsyth, R.
1995-01-01
Whistler-mode wave emissions are frequently observed at and downstream of interplanetary shocks. Using electron distribution functions measured onboard Ulysses in the energy range 1.6 to 862 eV, we calculate the temperature anisotropy and the wave growth rate of the electromagnetic electron cyclotron instability, Results of the calculations are compared to the whistler wave spectra observed simultaneously. For the studied events there is a good correlation between the wave growth rates and the wave spectra. Particularly, upstream of the shock front where no wave emissions are observed, the anisotropy lies below the wave instability threshold, i.e. the critical anisotropy Ac; on the contrary, downstream of the shock, the anisotropy exceeds Ac in some frequency range. Moreover. the tact that the anisotropy is close to Ac in a large frequency range gives prominence to the effect of velocity space diffusion of the electrons by the waves.
Resonant Interactions Between Discrete Coherent Whistler-mode Waves and Energetic Electrons
NASA Astrophysics Data System (ADS)
Inan, U.
2009-04-01
Cyclotron resonant interactions between whistler-mode waves and energetic electrons have long been known to be important in the dynamics of the radiation belts, both from the point of view of amplification of waves and the pitch angle scattering and precipitation loss of the energetic particles. In most cases, the interactions have been treated using linear or diffusion analyses, with the inherent assumption that the waves involved are broadband and incoherent. However, in actual fact many of the waves that permeate the radiation belts can be highly coherent, and discrete, with particular frequency-time signatures, such as lightning generated whistlers, emissions triggered by externally injected signals, and spontaneously generated chorus emissions. Cyclotron resonant interactions involving such waves are fundamentally different than those involving broadband incoherent waves, since the energetic electrons can be phase trapped in the wave potential well, and follow specific paths in velocity space, with their pitch angles (for example) changing over many degrees in one interaction, rather than following a random-walk involving many encounters, with each encounter amounting to an only small variation in particle energy or pitch angle. There is clear evidence from controlled wave-injection experiments that the coherence of the waves involved in such interactions is the crucial ingredient that leads to nonlinear exponential wave growth, which is suppressed if the waves are incoherent. It is thus evident that the high amplitudes of whistler-mode wave energy that permeate the radiation belts must have initially originated in coherent form, as is also evident from the extremely coherent and discrete nature of chorus emissions, especially when they are observed in and near their source regions. In this talk, we present a review and comparative perspective of nonlinear versus linear and coherent versus incoherent wave-particle interactions, specifically those involving
Nonlinear whistler wave scattering in space plasmas
Yukhimuk, V.; Roussel-Dupre, R.
1997-04-01
In this paper the evolution of nonlinear scattering of whistler mode waves by kinetic Alfven waves (KAW) in time and two spatial dimensions is studied analytically. The authors suggest this nonlinear process as a mechanism of kinetic Alfven wave generation in space plasmas. This mechanism can explain the dependence of Alfven wave generation on whistler waves observed in magnetospheric and ionospheric plasmas. The observational data show a dependence for the generation of long periodic pulsations Pc5 on whistler wave excitation in the auroral and subauroral zone of the magnetosphere. This dependence was first observed by Ondoh T.I. For 79 cases of VLF wave excitation registered by Ondoh at College Observatory (L=64.6 N), 52 of them were followed by Pc5 geomagnetic pulsation generation. Similar results were obtained at the Loparskaia Observatory (L=64 N) for auroral and subauroral zone of the magnetosphere. Thus, in 95% of the cases when VLF wave excitation occurred the generation of long periodic geomagnetic pulsations Pc5 were observed. The observations also show that geomagnetic pulsations Pc5 are excited simultaneously or insignificantly later than VLF waves. In fact these two phenomena are associated genetically: the excitation of VLF waves leads to the generation of geomagnetic pulsations Pc5. The observations show intensive generation of geomagnetic pulsations during thunderstorms. Using an electromagnetic noise monitoring system covering the ULF range (0.01-10 Hz) A.S. Fraser-Smith observed intensive ULF electromagnetic wave during a large thunderstorm near the San-Francisco Bay area on September 23, 1990. According to this data the most significant amplification in ULF wave activity was observed for waves with a frequency of 0.01 Hz and it is entirely possible that stronger enhancements would have been measured at lower frequencies.
NASA Astrophysics Data System (ADS)
Imadera, K.; Kishimoto, Y.; Sen, S.; Vahala, G.
2016-02-01
The ion-temperature-driven modes are studied in the presence of radio frequency waves by the use of the Gyro-Kinetic simulation Code. It is shown that the radio frequency waves through the ponderomotive force can stabilise the ion-temperature-gradient instabilities and contrary to the usual belief no radio frequency wave-induced flow generation hypothesis is required. This might be a major way to create a transport barrier in the fusion energy generation.
Mode competition in superradiant scattering of matter waves
Vogt, Thibault; Lu Bo; Liu Xinxing; Xu Xu; Zhou Xiaoji; Chen Xuzong
2011-05-15
Superradiant Rayleigh scattering in a Bose gas released from an optical lattice is analyzed with incident light pumping at the Bragg angle for resonant light diffraction. We show that competition between superradiance scattering into the Bragg mode and into end-fire modes clearly leads to suppression of the latter at even relatively low lattice depths. A quantum light-matter interaction model is proposed for qualitatively explaining this result.
Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers.
Xiao, Yuzhe; Essiambre, René-Jean; Desgroseilliers, Marc; Tulino, Antonia M; Ryf, Roland; Mumtaz, Sami; Agrawal, Govind P
2014-12-29
We study intermodal four-wave mixing (FWM) in few-mode fibers in the presence of birefringence fluctuations and random linear mode coupling. Two different intermodal FWM processes are investigated by including all nonlinear contributions to the phase-matching condition and FWM bandwidth. We find that one of the FWM processes has a much larger bandwidth than the other. We include random linear mode coupling among fiber modes using three different models based on an analysis of the impact of random coupling on differences of propagation constants between modes. We find that random coupling always reduces the FWM efficiency relative to its vale in the absence of linear coupling. The reduction factor is relatively small (about 3 dB) when only a few modes are linearly coupled but can become very large (> 40 dB) when all modes couple strongly. In the limit of a coupling length much shorter than the nonlinear length, intermodal FWM efficiency becomes vanishingly small. These results should prove useful in the context of space-division multiplexing with few-mode and multimode fibers. PMID:25607171
Fast magnetosonic waves of the magnetotail
NASA Astrophysics Data System (ADS)
Dmitrienko, Irina
Propagation of FMS waves in the cylindrical model of the magnetotail with plasma and current sheets are described. It is shown that the presence of the plasma sheet affects significantly the magnetotail transparency for FMS waves. Positions are calculated of reflecting cylindrical surfaces for the modes with different azimuthal numbers. It is also shown that the large azimuthal length FMS waves with sufficiently small longitudinal phase velocity penetrating into the magnetotail and propagating along the azimuthal coordinate concentrate in the lobes being very weak in the plasma sheet. Radial structures of FMS modes penetrating from the solar wind and those generating in the current sheet as well as the structures along PSBL of Alfven waves into which such FMS modes are mode converting and corresponding aurora are described.
Collective modes in strongly correlated yukawa liquids: waves in dusty plasmas.
Kalman, G; Rosenberg, M; DeWitt, H E
2000-06-26
We determine the collective mode structure of a strongly correlated Yukawa fluid, with the purpose of analyzing wave propagation in a strongly coupled dusty plasma. We identify a longitudinal plasmon and a transverse shear mode. The dispersion is characterized by a low- k acoustic behavior, a frequency maximum well below the plasma frequency, and a high- k merging of the two modes around the Einstein frequency of localized oscillations. The damping effect of collisions between neutrals and dust grains is estimated. PMID:10991116
Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.
2013-12-15
Linear mode conversion of Langmuir/z waves to electromagnetic radiation near the plasma and upper hybrid frequency in the presence of density gradients is potentially relevant to type II and III solar radio bursts, ionospheric radar experiments, pulsars, and continuum radiation for planetary magnetospheres. Here, we study mode conversion in warm, magnetized plasmas using a numerical electron fluid simulation code when the density gradient has a wide range of angle, δ, to the ambient magnetic field, B{sub 0}, for a range of incident Langmuir/z wavevectors. Our results include: (1) Left-handed polarized ordinary (oL) and right-handed polarized extraordinary (xR) mode waves are produced in various ranges of δ for Ω{sub 0} = (ωL/c){sup 1/3}(ω{sub ce}/ω) < 1.5, where ω{sub ce} is the (angular) electron cyclotron frequency, ω is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light; (2) the xR mode is produced most strongly in the range, 40° < δ < 60°, for intermediately magnetized plasmas with Ω{sub 0} = 1.0 and 1.5, while it is produced over a wider range, 0° ≤ δ ≤ 90°, for weakly magnetized plasmas with Ω{sub 0} = 0.1 and 0.7; (3) the maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%–99% and the corresponding energy conversion efficiencies are 5%–14% (depending on the adiabatic index γ and β = T{sub e}/m{sub e}c{sup 2}, where T{sub e} is the electron temperature and m{sub e} is the electron) for various Ω{sub 0}; (4) the mode conversion window becomes wider as Ω{sub 0} and δ increase. Hence, the results in this paper confirm that linear mode conversion under these conditions can explain the weak total circular polarization of interplanetary type II and III solar radio bursts because a strong xR mode can be generated via linear mode conversion near δ ∼ 45°.
Electron beam excitation of upstream waves in the whistler mode frequency range
NASA Technical Reports Server (NTRS)
Wong, Hung K.; Smith, Charles W.
1994-01-01
We examine whistler mode instabilities arising from electron beams in interplanetary space at 1 AU. Both parallel and obliquely propagating solutions are considered. We demonstrate that the generation of two simultaneous whistler mode waves is possible, and even reasonably likely, for beam parameters frequently encountered upstream of the Earth's bow shock and at interplanetary shocks. We also explore the generation of left-hand polarized waves at whistler mode frequencies under these same conditions. We offer both parametric variations derived from numerical solutions of the various instabilities as well as an analytical treatment of the problem which succeeds in unifying the various numerical results.
G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit
Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.; Kao, B. H.; Chen, Chien-Hsiang; Lin, T. Y.; Guo, Y. W.
2014-12-15
Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA. An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.
G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit
NASA Astrophysics Data System (ADS)
Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.; Kao, B. H.; Chen, Chien-Hsiang; Lin, T. Y.; Guo, Y. W.
2014-12-01
Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE01 drive wave, the second harmonic component of the beam current initiates a TE02 wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA. An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes ( TE 21 , TE 51 , TE 22 , and TE 03 ). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.
Study of Rotating-Wave Electromagnetic Modes for Applications in Space Exploration
NASA Astrophysics Data System (ADS)
Velazco, J. E.
2016-08-01
Rotating waves are circularly polarized electromagnetic wave fields that behave like traveling waves but have discrete resonant frequencies of standing waves. In JPL's Communications Ground Systems Section (333), we are making use of this peculiar type of electromagnetic modes to develop a new generation of devices and instruments for direct applications in space exploration. In this article, we present a straightforward analysis about the phase velocity of these wave modes. A derivation is presented for the azimuthal phase velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Computer simulations and experimental measurements are also presented that corroborate the theory developed. It is shown that the phase velocity of rotating waves inside cavity resonators increases with radial position within the cavity and decreases when employing higher-order operating modes. The exotic features of rotating modes, once better understood, have the potential to enable the implementation of a plethora of new devices that range from amplifiers and frequency multipliers to electron accelerators and ion thrusters.
NASA Astrophysics Data System (ADS)
Grant, S. D. T.; Jess, D. B.; Moreels, M. G.; Morton, R. J.; Christian, D. J.; Giagkiozis, I.; Verth, G.; Fedun, V.; Keys, P. H.; Van Doorsselaere, T.; Erdélyi, R.
2015-06-01
We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period ˜290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82, and 15.°97 between the 4170 Å continuum-G-band, G-band-Na i D1, and Na i D1-Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ˜0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 W m-2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.
NASA Astrophysics Data System (ADS)
Koduru, Jaya P.; Momeni, Sepandarmaz; Rose, Joseph L.
2013-12-01
Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1-3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes.
NASA Astrophysics Data System (ADS)
Guo, C.; Chen, X.
A numerical study of the propagation and transformation of large amplitude second mode concave internal solitary waves (ISWs) over a slope-shelf topography is presented. A fully nonlinear and non-hydrostatic numerical model is employed and solved. The fluid stratification, amplitude of the incident wave, and inclination of the bottom topography are taken close to those in the northern South China Sea (SCS), where the continental slope and shelf span quite a large area. It is found that the incoming wave adjusts permanently to the changing depth in deep water without essential changes of the wave profile until it gets close to the shelf break, where the frontal face becomes flatter and the rear face steeper. A very steep wave structure is formed at the leading edge just after the wave passes by the shelf break. This steep structure does not progress into a new soliton of concave type, but slopes more and more gently. The trailing edge of the initial concave wave becomes steeper and steeper and gradually develops into a packet of convex ISWs. Finally the rear convex wave packet catches up with the frontal concave wave. The two wave systems then "merge" and travel forward steadily with almost permanent profile. No events of wave breaking occur with the model configuration close to the realistic slope-shelf of the northern SCS. Finally, amplitudes of the incident wave and inclination of the slope are varied, and different scenarios take place before and after the wave reaches the shelf break.
Measurements and computations of second-mode instability waves in three hypersonic wind tunnels.
Lewis, Daniel R.; Alba, Christopher R.; Rufer, Shann J.; Beresh, Steven Jay; Casper, Katya M.; Berridge, Dennis C.; Schneider, Steven P.
2010-06-01
High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7{sup o}-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 {micro}s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N {approx} 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes.
Theory of spin wave modes in tangentially magnetized thin cylindrical dots: A variational approach
NASA Astrophysics Data System (ADS)
Zivieri, R.; Stamps, R. L.
2006-04-01
We present a theoretical study of the quantized spin wave spectrum in tangentially magnetized cylindrical thin magnetic dots. Low-energy spin waves in magnetic dots may be subdivided into four families: Damon-Eshbach like, backward like, mixed, and end modes. Frequencies and mode profiles are found using a variational approach based on carefully chosen trial functions. The variational method has the advantage that it can be used for large dots that are not practical to treat using numerical finite-element methods. Results for small dots generated using the variational method compare well with micromagnetic results. The variational method is demonstrated with an analysis of data obtained from experimental Brillouin light scattering data from saturated thin cylindrical Permalloy dots. Our approach allows for the definition of parameters describing important contributions to the spin wave energies. As an example, we show that a variational parameter γ provides a measure of spin wave localization near the dot border for one class of modes.
The structure and stability of mode-2 internal solitary-like waves
NASA Astrophysics Data System (ADS)
Carr, Magda; Davies, Peter; Hoebers, Ruud
2015-04-01
Recent observational examples of Mode-2 internal solitary-like waves (ISWs) in the ocean (e.g. Yang et al., 2009; Schroyer et al., 2010) have motivated modelling studies. The present laboratory study investigates the structure and stability of mode-2 ISWs. A rank-ordered train of mode-2 ISWs is generated using a lock release configuration. The pycnocline is centred either on the mid-depth of the water column (the 0% offset case) or it is offset in the positive vertical direction by a fraction of 5%, 10% or 20% of the total fluid depth. It is found that offsetting the pycnocline has little effect on the basic wave properties but it does significantly affect wave stability. Instability takes the form of small K-H-like billows in the rear of the wave and small scale overturning in the core of the wave. In the 0% offset case, instability occurs on both the upper and lower interfaces of the pycnocline and is similar in extent and vigour over the two interfaces. As the offset percentage is increased, however, instability is more pronounced on the lower interface with little or no evidence of instability being observed on the upper interface. In the 20% offset case a mode-1 tail is associated with the wave and the wave characteristics resemble qualitatively the recent field observations of Shroyer et al., (2010).
Generation of electromagnetic waves with arbitrary orbital angular momentum modes.
Cheng, Li; Hong, Wei; Hao, Zhang-Cheng
2014-01-01
Recently, much attention has been focused on beams carrying orbital angular momentum (OAM) for radio communication. Here we experimentally demonstrate a planar-spiral phase plate (planar-SPP) for generating arbitrary mixed OAM beams. This proposed planar-SPP uses the concept of transmit array antenna having a perforated substrate to control the outputting phase for generating beams carrying OAM with arbitrary modes. As demonstrations, three planar-SPPs with a single OAM mode and two mixed OAM modes around 94 GHz have been investigated with design and experiments in this paper, respectively. The typical experimental intensity and phase patterns show that the proposed method of generating OAM beams really works. PMID:24770669
Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes
Cheng, Li; Hong, Wei; Hao, Zhang-Cheng
2014-01-01
Recently, much attention has been focused on beams carrying orbital angular momentum (OAM) for radio communication. Here we experimentally demonstrate a planar-spiral phase plate (planar-SPP) for generating arbitrary mixed OAM beams. This proposed planar-SPP uses the concept of transmit array antenna having a perforated substrate to control the outputting phase for generating beams carrying OAM with arbitrary modes. As demonstrations, three planar-SPPs with a single OAM mode and two mixed OAM modes around 94 GHz have been investigated with design and experiments in this paper, respectively. The typical experimental intensity and phase patterns show that the proposed method of generating OAM beams really works. PMID:24770669
E.D. Fredrickson; N. Gorelenkov; C.Z. Cheng; R. Bell; D. Darrow; D. Johnson; S. Kaye; B. LeBlanc; J. Menard; S. Kubota; W. Peebles
2001-10-03
With the first injection of neutral beams on the National Spherical Torus Experiment (NSTX), a broad and complicated spectrum of coherent modes was seen between approximately 0.4 MHz and 2.5 MHz [where f(subscript ''ci'')] for deuterium is approximately 2.2 MHz. The modes have been observed with high bandwidth magnetic pick-up coils and with a reflectometer. The parametric scaling of the mode frequency with density and magnetic field is consistent with Alfvenic modes (linear in B, inversely with the square root of density). These modes have been identified as magnetosonic waves or compressional Alfven eigenmodes (CAE) excited by a cyclotron resonance with the neutral-beam ions. Modes have also been observed in the frequency range 50-150 kHz with toroidal mode numbers n = 1-5. These lower frequency modes are thought to be related to the TAE [Toroidal Alfven Eigenmode] seen commonly in tokamaks and driven by energetic fast ion populations resulting from ICRF [ion cyclotron range of frequency] and NBI [neutral-beam injection] heating. There is no clear indication of enhanced fast ion losses associated with the modes.
Effective action approach and Carlson-Goldman mode in d-wave superconductors
NASA Astrophysics Data System (ADS)
Sharapov, Sergei G.; Beck, Hans
2002-04-01
We theoretically investigate the Carlson-Goldman (CG) mode in two-dimensional clean d-wave superconductors using the effective ``phase-only'' action formalism. In conventional s-wave superconductors, it is known that the CG mode is observed as a peak in the structure factor of the pair susceptibility S(Ω,K) only just below the transition temperature Tc and only in dirty systems. On the other hand, our analytical results support the statement by Ohashi and Takada [Phys. Rev. B 62, 5971 (2000)] that in d-wave superconductors the CG mode can exist in clean systems down to much lower temperatures, T~0.1Tc. We also consider the manifestations of the CG mode in the density-density and current-current correlators and discuss the gauge independence of the obtained results.
Simulation of a low magnetic field relativistic backward wave oscillator with single mode structure
NASA Astrophysics Data System (ADS)
Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Ning, Qi; Liang, Xu
2016-02-01
A low magnetic field relativistic backward wave oscillator with single mode structure is presented. Particle-in-cell simulation results show that 1.25 GW output power with 37% efficiency is generated under 0.88 T. The mode purity of the output signal is high because higher modes are cut off by the structure. According to the analytical results, the influence of bombardment of electrons on the surface of the slow wave structures is minor. A modulation cavity is adopted to enhance beam-wave interaction and realize mechanical frequency tunability. The power capacity is increased though redistribution of electric field. The computational results indicate that the device with a single mode structure is a competitive candidate for devices working at low magnetic field especially for devices focused with permanent magnet.
Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
NASA Astrophysics Data System (ADS)
Huang, Ping-Ping; Yao, Yuan-Wei; Wu, Fu-Gen; Zhang, Xin; Li, Jing; Hu, Ai-Zhen
2015-05-01
We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is composed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374068 and 11374066), the Science & Technology Star of Zhujiang Foundation of Guangzhou, China (Grant No. 2011J2200013), and the Natural Science Foundation of Guangdong, China (Grant No. S2012020010885).
Computer simulation of Alfven resonance in a cylindrical, axially bounded flux tube
NASA Technical Reports Server (NTRS)
Strauss, H. R.; Lawson, William S.
1989-01-01
The resonant absorption of Alfven waves in an axially bounded cylindrical flux tube is investigated in a dissipative MHD simulation. It is found that in an axially bounded flux tube, in contrast to an infinite periodic model, the resonant frequency is nearly independent of the poloidal component of the magnetic field. This is a consequence of the 'ballooning' structure of the resonant Alfven waves. The scaling with resistivity and viscosity of the width of the resonance layer, the dissipation rate, and the time for steady state absorption to occur, are all in agreement with theory.
Effect of alpha particles on Toroidal Alfven Eigenmodes
Berk, H.L.
1992-11-01
An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods.
On the stability of shear-Alfven vortices
Jovanovic, D.; Horton, W.
1993-08-01
Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex.