Alfven Wave Generated Electron Time Dispersion
NASA Technical Reports Server (NTRS)
Kletzing, C. A.; Hu, S.
2001-01-01
The results from a model of kinetic Alfven waves which includes varying magnetic field and density show that time-dispersed bursts of auroral electrons can be accelerated by Alfven, wave pulses propagating from the magnetosphere to the ionosphere. The modeled electron signatures have similar energy range and temporal structure to those observed on sounding rockets and satellites suggesting that electron time dispersion is generated by Alfven waves.
Brecht, S H; Hewett, D W; Larson, D J
2009-03-12
In this letter the transition of a strong 3-D collisionless shock into sub-Alfvenic waves is examined numerically. The transition occurs because the Alfven speed eventually exceeds the shock speed, not because the shock runs out of energy. At this velocity transition, the shock disassembles into two types of waves: the usual compressional Alfven wave and a left-hand polarized electromagnetic shear Alfven wave. This later wave shows remarkable 3-D coherence, and preliminary analysis suggests that it is coupled to the strong electromagnetic waves that exist within the collisionless shock.
Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
NASA Astrophysics Data System (ADS)
Cai, D. S.; Lembege, B.; Esmaeili, A.; Nishikawa, K.
2013-12-01
Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA)~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the spatial extension of this layer on the magnetosphere flanks for a fixed Northward IMF configuration; (ii) a parametric study in order to analyze the impact of the IMF rotation from north to south on the persistence and the main features of this transition layer. The locations of this transition layer slightly radially expand and shrink during the IMF rotation and the thickness of the layer increases during the rotation. We show how these transition layers render the flow from super to sub Alfvenic and allow the particles enter into the magnetic cusp region. Alfven
Alfvenically driven slow shocks in the solar chromosphere and corona
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1992-01-01
The nonlinear evolution of an Alfvenic impulse launched from the photosphere and its dynamical effects on the chromosphere, transition region (TR), and corona are investigated using a simple 1D model. It is found that the leading edge of the torsional pulse can steepen into a fast shock in the chromosphere if the pulse is of sufficiently large amplitude and short duration. A slow shock which develops behind the Alfvenic pulse can reflect downgoing Alfven waves back up to the corona. The upgoing reflected wave can induce a significant upward ejection of the TR. Nonlinear dynamics are found to lead to very impulsive behavior at later times. It is suggested that impulsive events occurring in the TR or corona need not be interpreted in terms of reconnection-driven microflares. It is also found that B(0) in the chromosphere can be amplified when the TR and chromosphere fall.
The animation shows the difference between planet transit timing of single and multiple planet system. In tightly packed planetary systems, the gravitational pull of the planets among themselves ca...
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
Effect of Dust Grains on Solitary Kinetic Alfven Wave
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-09-07
Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.
Transit satellite system timing capabilities
NASA Technical Reports Server (NTRS)
Finsod, T. D.
1978-01-01
Current time transfer capabilities of the Transit Satellite System are reviewed. Potential improvements in the changes in equipment and operational procedures using operational satellites are discussed.
Transit Timing Study of Kepler Planets
NASA Astrophysics Data System (ADS)
Xie, Jiwei
2015-08-01
Kepler space telescope has found over 4000 transiting planet candidates. Transit timing is a powerful tool to study these transit planet candidates. In this talk, I will talk about two transit timing techniques, i.e., transit timing variation (TTV) and transit duration (TD), which enable confirming their planetary nature and obtaining insight into their orbital properties.
Alfven wave absorption in dissipative plasma
NASA Astrophysics Data System (ADS)
Gavrikov, M. B.; Taiurskii, A. A.
2017-01-01
We consider nonlinear absorption of Alfven waves due to dissipative effects in plasma and relaxation of temperatures of electrons and ions. This study is based on an exact solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of their amplitudes whose evolution is described by a system of ordinary differential equations (ODEs) obtained in this paper. On finite time intervals, the system of equations on the amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman theorem) is used to examine its large-time behavior.
Resonant Alfven Wave Excitation
NASA Astrophysics Data System (ADS)
Hameiri, Eliezer
1999-11-01
Much of the theory of the Alfven wave resonance phenomenon was developed for a tokamak configuration where the magnetic field winds around the torus without entering the boundary. Thus, boundary conditions did not have to be considered.( J. Tataronis and W. Grossmann, Z. Phys. 261), 203 (1973). In most space plasma situations such as the magnetosphere or the Sun, as well as in the scrape-off layer of a divertor tokamak, this is not the case. When boundary conditions are considered, it is generally assumed for simplicity that the boundary is perfectly conducting, which implies that the Alfven wave bounce frequencies are real and the resonance phenomenon can be detected by some singularity in the equations. The nature of the singularity is usually described in terms of a Frobenius series.( A.N. Wright and M.J. Thompson, Phys. Plamsas 1), 691 (1994). In this work we consider resistive boundaries, which imply that the fast wave eigenfrequency is real, but the Alfven frequency is not. Thus, there is no exact resonance and no singularity in the equations. The solution of the problem is carried out asymptotically by finding an exact Laplace integral representation for the solution and then matching various regions. The energy transferred to the Alfven wave appears to be rather small.
A Study of Alfven Wave Propagation and Heating the Chromosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2013-12-01
Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of
Transit times in turbulent flows.
Pécseli, H L; Trulsen, J
2010-04-01
Statistics of the motion of passively convected point particles in turbulent flows are studied. The database used is obtained by direct numerical solution of the Navier-Stokes equation. We estimate the probability distribution of the transit times of such particles through reference volumes with given forms and sizes. A selected position within the reference volume is moving with the local flow velocity, thus determining the motion of the entire surface. The transit time is defined as the interval between entrance and exit times of surrounding particles convected through the volume by the turbulent motions. Spherical as well as hemispherical surfaces are studied. Scale sizes in the inertial as well as in the viscous subranges of the turbulence are considered. Simple, and seemingly universal, scaling laws are obtained for the probability density of the transit times in terms of the basic properties of the turbulent flow and the geometry. In the present formulation, the results of the analysis are relevant for chemical reactions, but also for understanding details of the feeding rate of micro-organisms in turbulent waters, for instance.
Analyses of some exoplanets' transits and transit timing variations
NASA Astrophysics Data System (ADS)
Püsküllü, ćaǧlar; Soydugan, Faruk
2017-02-01
We present solutions of the transit light curves and transit timing variations (TTVs) analyses of the exoplanets HAT-P-5b, HAT-P-9b and HAT-P-25b. Transit light curves were collected at Çanakkale Onsekiz Mart University Observatory and TUBITAK National Observatory. The models were produced by WINFITTER program and stellar, planetary and orbital properties were obtained and discussed. We gave new transit times and generated TTVs with them by appending additional data based on Exoplanet Transit Database (ETD). Significant signals at the TTVs were also investigated.
Parametric instabilities of parallel-propagating Alfven waves: Some analytical results
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1993-01-01
We consider the stability of a circularly polarized Alfven wave (the pump wave) which propagates parallel to the ambient magnetic field. Only parallel-propagating perturbations are considered, and we ignore dispersive effects due to the ion cyclotron frequency. The dissipationless MHD equations are used throughout; thus possibibly important effects arising from Landau and transit time damping are omitted. We derive a series of analytical approximations to the dispersion relation using A = (Delta B/B(sub O))(exp 2) as a small expansion parameter; Delta B is the pump amplitude, and B(sub O) is the ambient magnetic field strength. We find that the plasma beta (the square of the ratio of the sound speed to the Alfven speed) plays a crucial role in determining the behavior of the parametric instabilities of the pump. If 0 less than beta less than 1 we find the familiar result that the pump decays into a forward propagating sound wave and a backward propagating Alfven wave with maximum growth rate gamma(sub max) varies A(sup 1/2), but beta cannot be too close to 0 or to 1. If beta approx. 1, we find gamma(sub max) varies A(sup 3/4), if beta greater than 1, we find gamma(sub max) varies A(sup 3/2), while if beta approx. 0, we obtain gamma(sub max) varies A(sup 1/3); moreover, if beta approx. 0 there is a nearly purely growing instability. In constrast to the familiar decay instability, for which the backward propagating Alfven wave has lower frequency and wavenumber than the pump, we find that if beta greater than or approx. equal to 1 the instability is really a beat instability which is dominated by a transverse wave which is forward propagating and has frequency and wavenumber which are nearly twice the pump values. Only the decay instability for 0 less than beta less than 1 can be regarded as producing two recognizable normal modes, namely, a sound wave and an Alfven wave. We discuss how the different characteristics of the instabilities may affect the evolution of
NO TRANSIT TIMING VARIATIONS IN WASP-4
Petrucci, R.; Schwartz, M.; Buccino, A. P.; Mauas, P. J. D.; Jofré, E.; Cúneo, V.; Gómez, M.; Martínez, C.
2013-12-20
We present six new transits of the system WASP-4. Together with 28 light curves published in the literature, we perform a homogeneous study of its parameters and search for variations in the transits' central times. The final values agree with those previously reported, except for a slightly lower inclination. We find no significant long-term variations in i or R{sub P} /R {sub *}. The O-C mid-transit times do not show signs of transit timing variations greater than 54 s.
Alfvenic waves in solar spicules
NASA Astrophysics Data System (ADS)
Ebadi, Hossein
2016-07-01
We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.
An Exoplanet Radius and Transit Timing Survey
NASA Astrophysics Data System (ADS)
Deming, Drake; Jennings, Jonald; Sada, Pedro
2010-02-01
Many exoplanet systems contain Jupiter-mass planets on close-in orbits. Theories of planetary system formation account for these hot Jupiters as being end states of inward migration. Variants of those theories also predict terrestrial planets to be captured in mean motion resonance with the hot Jupiters. A continuing explosion of discoveries by transit surveys have given us a sample of 45 hot Jupiters transiting planets brighter than V=13. A transit timing survey of these systems could detect hot Earths in resonance, via the large (~ 180 second) perturbations they induce on the giant planet transits. Moreover, the discovery photometry for these systems usually provides only relatively coarse photometric precision, but larger-aperture follow-up can determine the giant planet radius to a precision limited only by knowledge of the stellar mass, and thereby reveal the diversity of giant exoplanet structure, such as the presence of heavy element cores. The relatively large sample now available means that a radius- and transit timing-survey is well matched to classical observing and telescope scheduling. We propose continued observations to perform transit photometry using FLAMINGOS on the 2.1-meter in the J-band, where stellar limb darkening is minimal and transit photometry has excellent sensitivity to planetary radii and shifts in transit time.
An Exoplanet Radius and Transit Timing Survey
NASA Astrophysics Data System (ADS)
Deming, Drake; Jennings, Jonald; Sada, Pedro
2009-08-01
Many exoplanet systems contain Jupiter-mass planets on close-in orbits. Theories of planetary system formation account for these hot Jupiters as being end states of inward migration. Variants of those theories also predict terrestrial planets to be captured in mean motion resonance with the hot Jupiters. A recent explosion of discoveries by transit surveys have given us a sample of 37 hot Jupiters transiting planets brighter than V=13. A transit timing survey of these systems could detect hot Earths in resonance, via the large (~ 180 second) perturbations they induce on the giant planet transits. Moreover, the discovery photometry for these systems usually provides only relatively coarse photometric precision, but larger-aperture follow-up can determine the giant planet radius to a precision limited only by knowledge of the stellar mass, and thereby reveal the diversity of giant exoplanet structure, such as the presence of heavy element cores. The relatively large sample now available means that a radius- and transit timing-survey is well matched to classical observing and telescope scheduling. We propose continued observations to perform transit photometry using FLAMINGOS on the 2.1-meter in the J-band, where stellar limb darkening is minimal and transit photometry has excellent sensitivity to planetary radii and shifts in transit time.
Magnetic transit-time flowmeter
Forster, George A.
1976-07-06
The flow rate of a conducting fluid in a stream is determined by disposing two permanent-magnet flowmeters in the stream, one downstream of the other. Flow of the conducting fluid causes the generation of both d-c and a-c electrical signals, the a-c comprising flow noise. Measurement of the time delay between similarities in the a-c signals by cross-correlation methods provides a measure of the rate of flow of the fluid.
ERIC Educational Resources Information Center
Yarrough, Jamie L.; Skinner, Christopher H.; Lee, Young Ju; Lemmons, Cathy
2004-01-01
Campbell and Skinner used an A-B design to evaluate the effects of the Timely Transitions Game (TTG) on room-to-room transitions in a sixth-grade classroom. The TTG incorporated explicit timing, publicly posted feedback, and an interdependent group contingency with randomly selected transitions and criteria. The purpose of the current study was to…
Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence
Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.
2012-08-15
The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.
Late-time cosmological phase transitions
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
It is shown that the potential galaxy formation and large scale structure problems of objects existing at high redshifts (Z approx. greater than 5), structures existing on scales of 100 M pc as well as velocity flows on such scales, and minimal microwave anisotropies ((Delta)T/T) (approx. less than 10(exp -5)) can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random Gaussian fluctuations and/or topological defects can form. Scale lengths of approx. 100 M pc for large scale structure as well as approx. 1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition.
Late-time cosmological phase transitions
Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )
1990-11-01
It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z {approx gt} 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies ({Delta}T/T) {approx lt} 10{sup {minus}5} can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of {approximately}100M pc for large-scale structure as well as {approximately}1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs.
Highly Alfvenic Slow Solar Wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
Investigation of global Alfven instabilities in TFTR
Wong, K.L.; Paul, S.F.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Cohen, S.; Hammett, G.W.; Jobes, F.C.; Johnson, L.; Meade, D.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Synakowski, E.J.; Durst, R.; Fonck, R.J.; Roberts, D.R.; Sabbagh, S.
1992-01-01
Toroidal Alfven Eigenmodes (TAE) were excited by the energetic neutral beam ions tangentially injected into TFTR plasmas at low magnetic field such that the injection velocities were comparable to the Alfven speed. The modes were identified by measurements from Mirnov coils and beam emission spectroscopy (BES). TAE modes appear in bursts whose repetition rate increases with beam power. The neutron emission rate exhibits sawtooth-like behavior and the crashes always coincide with TAE bursts. This indicates ejection of fast ions from the plasma until these modes are stabilized. The dynamics of growth and stabilization was investigated at various plasma current and magnetic field. The results indicate that the instability can effectively clamp the number of energetic ions in the plasma. The observed instability threshold is discussed in the light of recent theories. In addition to these TAE modes, intermittent oscillations at three times the fundamental TAE frequency were observed by Mirnov coils, but no corresponding signal was found in BES. It appears that these high frequency oscillations do not have direct effect on the plasma neutron source strength.
Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; White, R. B.; Yakovenko, Yu. V.
2004-09-17
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E.
Transition Path Time Distribution, Tunneling Times, Friction, and Uncertainty
NASA Astrophysics Data System (ADS)
Pollak, Eli
2017-02-01
A quantum mechanical transition path time probability distribution is formulated and its properties are studied using a parabolic barrier potential model. The average transit time is well defined and readily calculated. It is smaller than the analogous classical mechanical average transit time, vanishing at the crossover temperature. It provides a direct route for determining tunneling times. The average time may be also used to define a coarse grained momentum of the system for the passage from one side of the barrier to the other. The product of the uncertainty in this coarse grained momentum with the uncertainty in the location of the particle is shown under certain conditions to be smaller than the ℏ/2 formal uncertainty limit. The model is generalized to include friction in the form of a bilinear interaction with a harmonic bath. Using an Ohmic friction model one finds that increasing the friction, increases the transition time. Only moderate values of the reduced friction coefficient are needed for the quantum transition time and coarse grained uncertainty to approach the classical limit which is smaller than ℏ/2 when the friction is not too small. These results show how one obtains classical dynamics from a pure quantum system without invoking any further assumptions, approximations, or postulates.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Simulation of Alfven wave-resonant particle interaction
Berk, H.L.; Breizman, B.N.; Pekker, M.
1995-07-01
New numerical simulations are presented on the self-consistent dynamics of energetic particles and a set of unstable discrete shear Alfven modes in a tokamak. Our code developed for these simulations has been previously tested in the simulations of the bump-on-tail instability model. The code has a Hamiltonian structure for the mode-particle coupling, with the superimposed wave damping, particle source and classical relaxation processes. In the alpha particle-Alfven wave problem, we observe a transition from a single mode saturation to the mode overlap and global quasilinear diffusion, which is qualitatively similar to that observed in the bump-on-tail model. We demonstrate a considerable enhancement in the wave energy due to the resonance overlap. We also demonstrate the effect of global diffusion on the energetic particle losses.
Turbulent Alfven boundary layer in the polar ionosphere. 1. Excitation conditions and energetics
Trakhtengerts, V.Y. ); Feldstein, A.Ya. )
1991-11-01
Instability of laminar magnetospheric convection with respect to the strongly anisotropic Alfven waves which are of small scale in the horizontal plane is examined. The waves prove to be trapped in the ionospheric Alfven resonator, bounded from below by the ionospheric E layer and form above by a zone of rapidly increasing Alfven velocity at altitudes of up to {approximately}10{sup 4} km. The finite-amplitude Alfven waves dissipate within a layer of anomalous resistance formed near the upper wall of the resonator. As a result, a high-energy particle source appears in the upper ionosphere. Further evolution results in the transition of laminar convection to turbulent flow conditions and in the formation of a turbulent Alfven boundary layer in the polar ionosphere at altitudes from 10{sup 2} to 10{sup 4} km. The energy status of the turbulent Alfven boundary layer is calculated. It has been shown that the accelerated-electron energy flux density can reach {approximately}100 ergs cm{sup {minus}2} s{sup {minus}1}.
Linking age, survival, and transit time distributions
NASA Astrophysics Data System (ADS)
Calabrese, Salvatore; Porporato, Amilcare
2015-10-01
Although the concepts of age, survival, and transit time have been widely used in many fields, including population dynamics, chemical engineering, and hydrology, a comprehensive mathematical framework is still missing. Here we discuss several relationships among these quantities by starting from the evolution equation for the joint distribution of age and survival, from which the equations for age and survival time readily follow. It also becomes apparent how the statistical dependence between age and survival is directly related to either the age dependence of the loss function or the survival-time dependence of the input function. The solution of the joint distribution equation also allows us to obtain the relationships between the age at exit (or death) and the survival time at input (or birth), as well as to stress the symmetries of the various distributions under time reversal. The transit time is then obtained as a sum of the age and survival time, and its properties are discussed along with the general relationships between their mean values. The special case of steady state case is analyzed in detail. Some examples, inspired by hydrologic applications, are presented to illustrate the theory with the specific results. This article was corrected on 11 Nov 2015. See the end of the full text for details.
Ion Acceleration in Plasmas with Alfven Waves
O.Ya. Kolesnychenko; V.V. Lutsenko; R.B. White
2005-06-15
Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered.
Phenomenon of Alfvenic Vortex Shedding
Gruszecki, M.; Nakariakov, V. M.; Van Doorsselaere, T.; Arber, T. D.
2010-07-30
Generation of Alfvenic (magnetohydrodynamic) vortices by the interaction of compressible plasma flows with magnetic-field-aligned blunt obstacles is modeled in terms of magnetohydrodynamics. It is found that periodic shedding of vortices with opposite vorticity is a robust feature of the interaction in a broad range of plasma parameters: for plasma beta from 0.025 to 0.5, and for the flow speeds from 0.1 to 0.99 of the fast magnetoacoustic speed. The Strouhal number is the dimensionless ratio of the blunt body diameter to the product of the period of vortex shedding and the inflow speed. It is found to be consistently in the range 0.15-0.25 in the whole range of parameters. The induced Alfvenic vortices are compressible and contain spiral-armed perturbations of the magnetic field strength and plasma mass density up to 50%-60% of the background values. The generated electric current also has the spiral-armed structuring.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves
NASA Astrophysics Data System (ADS)
Namikawa, T.; Hamabata, H.
1983-04-01
The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Transit Timing Study with Kepler and its synergy with LAMOST
NASA Astrophysics Data System (ADS)
Xie, Jiwei; Dong, Subo; Zhu, Zhaohuan; Luo, A.-Li; Zhou, Ji-Lin
2015-12-01
Kepler space telescope has found over 4000 transiting planet candidates. Transit timing is a powerful tool to study these transit planet candidates. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST: http://www.lamost.org) provides mass and radius measurements of the stars thus helps with modeling transit timing. Here, we will show two transit timing techniques, i.e., transit timing variation (TTV) and transit duration (TD), which enable confirming their planetary nature and obtaining insight into their orbital properties by combining Kepler and LAMOST.
Transit Timing Variations In Binary Star Systems
NASA Astrophysics Data System (ADS)
Sansone, Eric; Haghighipour, N.
2012-01-01
We present the results of a study of the effect of a stellar companion on the transit timing variations (TTV) of a planetary system. The purpose of our study is to determine the ranges of the orbital elements of a secondary star for which the amplitude of a currently existing TTV is enhanced. We chose the system of Kepler 9 as this system represents the first planetary system detected by the transit timing variation method, and studied its TTVs by considering a hypothetical secondary star in this system. By varying the mass, semi-major axis, and eccentricity of the fictitious binary companion, we tested the stability of the known planets Kepler-9c and Kepler-9b and identified the region of the parameter-space for which the binary planetary system would be stable. We calculated TTVs for the two planets of the system for different values of the orbital elements of the secondary star and calculated its difference with the system's already existing TTVs. Results of our study indicate that the effect of the binary companion is significant only when the secondary star is in a highly eccentric orbit and/or the planets of the system are within the range of Super-Earth or terrestrial sizes. This work was funded by the National Science Foundation in the form of a Research Experience for Undergraduates program at the University of Hawaii at Manoa.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
Alfven wave. DOE Critical Review Series
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Nonlinear Landau damping and Alfven wave dissipation
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.
2014-01-01
Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.
HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE
Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.
2011-07-20
A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
PULSED ALFVEN WAVES IN THE SOLAR WIND
Gosling, J. T.; Tian, H.; Phan, T. D.
2011-08-20
Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.
Phenomenology of Compressional Alfven Eigenmodes
E.D. Fredrickson; N.N. Gorelenkov; J. Menard
2004-05-13
Coherent oscillations with frequency 0.3 {le} {omega}/{omega}{sub ci} {le} 1, are seen in the National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y-K.M. Peng, et al., Nucl. Fusion 40, 557 (2000)]. This paper presents new data and analysis comparing characteristics of the observed modes to the model of compressional Alfven eigenmodes (CAE). The toroidal mode number has been measured and is typically between 7 < n < 9. The polarization of the modes, measured using an array of four Mirnov coils, is found to be compressional. The frequency scaling of the modes agrees with the predictions of a numerical 2-D code, but the detailed structure of the spectrum is not captured with the simple model. The fast ion distribution function, as calculated with the beam deposition code in TRANSP [R.V. Budny, Nucl. Fusion 34, 1247 (1994)], is shown to be qualitatively consistent with the constraints of the Doppler-shifted cyclotron resonance drive model. This model also predicts the observed scaling of the low frequency limit for CAE.
Decay of magnetic helicity producing polarized Alfven waves
Yoshida, Z.; Mahajan, S.M.
1994-02-01
When a super-Alfvenic electron beam propagates along an ambient magnetic field, the left-hand circularly polarized Alfven wave is Cherenkov-emitted (two stream instability). This instability results in a spontaneous conversion of the background plasma helicity to the wave helicity. The background helicity induces a frequency (energy) shift in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it becomes possible for a sub-Alfvenic electron beam to excite a nonsingular Alfven mode.
Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.
2013-03-15
Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.
Mazeh, Tsevi; Nachmani, Gil; Holczer, Tomer; Sokol, Gil; Fabrycky, Daniel C.; Ford, Eric B.; Ragozzine, Darin; Sanchis-Ojeda, Roberto; Rowe, Jason F.; Lissauer, Jack J.; Zucker, Shay; Agol, Eric; Carter, Joshua A.; Quintana, Elisa V.; Steffen, Jason H.; Welsh, William
2013-10-01
Following the works of Ford et al. and Steffen et al. we derived the transit timing of 1960 Kepler objects of interest (KOIs) using the pre-search data conditioning light curves of the first twelve quarters of the Kepler data. For 721 KOIs with large enough signal-to-noise ratios, we obtained also the duration and depth of each transit. The results are presented as a catalog for the community to use. We derived a few statistics of our results that could be used to indicate significant variations. Including systems found by previous works, we have found 130 KOIs that showed highly significant times of transit variations (TTVs) and 13 that had short-period TTV modulations with small amplitudes. We consider two effects that could cause apparent periodic TTV—the finite sampling of the observations and the interference with the stellar activity, stellar spots in particular. We briefly discuss some statistical aspects of our detected TTVs. We show that the TTV period is correlated with the orbital period of the planet and with the TTV amplitude.
NASA Astrophysics Data System (ADS)
Mazeh, Tsevi; Nachmani, Gil; Holczer, Tomer; Fabrycky, Daniel C.; Ford, Eric B.; Sanchis-Ojeda, Roberto; Sokol, Gil; Rowe, Jason F.; Zucker, Shay; Agol, Eric; Carter, Joshua A.; Lissauer, Jack J.; Quintana, Elisa V.; Ragozzine, Darin; Steffen, Jason H.; Welsh, William
2013-10-01
Following the works of Ford et al. and Steffen et al. we derived the transit timing of 1960 Kepler objects of interest (KOIs) using the pre-search data conditioning light curves of the first twelve quarters of the Kepler data. For 721 KOIs with large enough signal-to-noise ratios, we obtained also the duration and depth of each transit. The results are presented as a catalog for the community to use. We derived a few statistics of our results that could be used to indicate significant variations. Including systems found by previous works, we have found 130 KOIs that showed highly significant times of transit variations (TTVs) and 13 that had short-period TTV modulations with small amplitudes. We consider two effects that could cause apparent periodic TTV—the finite sampling of the observations and the interference with the stellar activity, stellar spots in particular. We briefly discuss some statistical aspects of our detected TTVs. We show that the TTV period is correlated with the orbital period of the planet and with the TTV amplitude.
Sawtooth Stabilization and Onset of Alfvenic Instabilities
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Cheng, C. Z.
2011-10-01
Tokamak sawtooth instabilities can be stabilized by high energy particles as a consequence of conservation of the third adiabatic invariant.On the other hand, termination of the stabilized period is reported due to the onset of Alfvenic instabilities (and thus the absence of the stabilizing mechanism). In this work, employing a kinetic-fluid model, the interaction of m=1 resistive kink mode and high energy particles is investigated. The onset of Alfvenic instabilities is examined as a function of the inversion radius location. D.J. Campbell et al., Phys. Rev. Lett. 60, 2148 (1988); F. Porcelli, Plasma Phys. Controlled Fusion 33, 1601 (1991).
Nonlinear Landau damping of Alfven waves.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Matsumoto, Takuma; Shibata, Kazunari
2010-02-20
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.
Transit timing analysis in the HAT-P-32 system
NASA Astrophysics Data System (ADS)
Seeliger, M.; Dimitrov, D.; Kjurkchieva, D.; Mallonn, M.; Fernandez, M.; Kitze, M.; Casanova, V.; Maciejewski, G.; Ohlert, J. M.; Schmidt, J. G.; Pannicke, A.; Puchalski, D.; Göğüş, E.; Güver, T.; Bilir, S.; Ak, T.; Hohle, M. M.; Schmidt, T. O. B.; Errmann, R.; Jensen, E.; Cohen, D.; Marschall, L.; Saral, G.; Bernt, I.; Derman, E.; Gałan, C.; Neuhäuser, R.
2014-06-01
We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI (Young Exoplanet Transit Initiative) network. In 25 cases, complete transit light curves with a timing precision better than 1.4 min have been obtained. These light curves have been used to refine the system properties, namely inclination i, planet-to-star radius ratio Rp/Rs, and the ratio between the semimajor axis and the stellar radius a/Rs. First analyses by Hartman et al. suggests the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also the literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21 ms. Thus, we can exclude TTV amplitudes of more than ˜1.5 min.
Nonresonant Alfven waves driven by cosmic rays
Melrose, Don
2005-08-01
Nonresonant growth of Alfven waves due to streaming cosmic rays is considered, emphasizing the relation between resonant and nonresonant growth and the polarization of the growing waves. The suggested application of this mechanism to the scattering of higher energy cosmic rays in diffusive shock acceleration is discussed critically.
Nonlinear Evolution of Alfvenic Wave Packets
NASA Technical Reports Server (NTRS)
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Mean first-passage time of quantum transition processes
NASA Astrophysics Data System (ADS)
Qiu, Rong-Tao; Dai, Wu-Sheng; Xie, Mi
2012-10-01
In this paper, we consider the problem of mean first-passage time (MFPT) in quantum mechanics; the MFPT is the average time of the transition from a given initial state, passing through some intermediate states, to a given final state for the first time. We apply the method developed in statistical mechanics for calculating the MFPT of random walks to calculate the MFPT of a transition process. As applications, we (1) calculate the MFPT for multiple-state systems, (2) discuss transition processes occurring in an environmental background, (3) consider a roundabout transition in a hydrogen atom, and (4) apply the approach to laser theory.
Verwichte, E.; Foullon, C.; White, R. S.; Van Doorsselaere, T.
2013-04-10
Two transversely oscillating coronal loops are investigated in detail during a flare on the 2011 September 6 using data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We compare two independent methods to determine the Alfven speed inside these loops. Through the period of oscillation and loop length, information about the Alfven speed inside each loop is deduced seismologically. This is compared with the Alfven speed profiles deduced from magnetic extrapolation and spectral methods using AIA bandpass. We find that for both loops the two methods are consistent. Also, we find that the average Alfven speed based on loop travel time is not necessarily a good measure to compare with the seismological result, which explains earlier reported discrepancies. Instead, the effect of density and magnetic stratification on the wave mode has to be taken into account. We discuss the implications of combining seismological, extrapolation, and spectral methods in deducing the physical properties of coronal loops.
Transit light curves with finite integration time: Fisher information analysis
Price, Ellen M.; Rogers, Leslie A.
2014-10-10
Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal to noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curve photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal to noise (constant total integration time in the absence of read noise). Uncertainties on the transit ingress/egress time increase by a factor of 34 for Earth-size planets and 3.4 for Jupiter-size planets around Sun-like stars for integration times of 30 minutes compared to instantaneously sampled light curves. Similarly, uncertainties on the mid-transit time for Earth and Jupiter-size planets increase by factors of 3.9 and 1.4. Uncertainties on the transit depth are largely unaffected by finite integration times. While correlations among the transit depth, ingress duration, and transit duration all increase in magnitude with longer integration times, the mid-transit time remains uncorrelated with the other parameters. We provide code in Python and Mathematica for predicting the variances and covariances at www.its.caltech.edu/∼eprice.
Can we explain the Jovian decametric arc pattern with the multiple reflection Alfven wave model?
NASA Astrophysics Data System (ADS)
Leblanc, Y.; Bagenal, F.
The pattern of arcs made by bursts of Io-modulated dkm-band emission in frequency time spectrograms has been examined for the A and B sources and compared with predictions of the Alfven-wave model. Planetary Radio Astronomy data from the Voyager 1 and 2 Jupiter encounters are employed, and the observations of the A and B sources are organized with respect to the Io phase for fixed 30-deg longitude intervals. A clear pattern of regions of strong emission separated by holes (regions with weak or no emission) is found. This preliminary study suggests the bunching of dkm arcs matches the Alfven wave pattern generated by Io. This implies that each Alfven current generates multiple beams of dkm emission.
{beta}-Induced Alfven Eigenmodes Destabilized by Energetic Electrons in a Tokamak Plasma
Chen, W.; Ding, X. T.; Yang, Q. W.; Liu, Yi; Ji, X. Q.; Zhang, Y. P.; Zhou, J.; Yuan, G. L.; Sun, H. J.; Li, W.; Zhou, Y.; Huang, Y.; Dong, J. Q.; Feng, B. B.; Song, X. M.; Shi, Z. B.; Liu, Z. T.; Song, X. Y.; Li, L. C.; Duan, X. R.
2010-10-29
The {beta}-induced Alfven eigenmode (BAE) excited by energetic electrons has been identified for the first time both in the Ohmic and electron cyclotron resonance heating plasma in HL-2A. The features of the instability, including its frequency, mode number, and propagation direction, can be observed by magnetic pickup probes. The mode frequency is comparable to that of the continuum accumulation point of the lowest frequency gap induced by the shear Alfven continuous spectrum due to finite {beta} effect, and it is proportional to Alfven velocity at thermal ion {beta} held constant. The experimental results show that the BAE is related not only with the population of the energetic electrons, but also their energy and pitch angles. The results indicate that the barely circulating and deeply trapped electrons play an important role in the mode excitation.
Exploring the Use of Alfven Waves in Magnetometer Calibration at Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Bentley, John; Sheppard, David; RIch, Frederick; Redmon, Robert; Loto'aniu, Paul; Chu, Donald
2016-01-01
An Alfven wave is a type magnetohydrodynamicwave that travels through a conducting fluid under the influence of a magnetic field. Researchers have successfully calculated offset vectors of magnetometers in interplanetary space by optimizing the offset to maximize certain Alfvenic properties of observed waves (Leinweber, Belcher). If suitable Alfven waves can be found in the magnetosphere at geosynchronous altitude then these techniques could be used to augment the overall calibration plan for magnetometers in this region such as on the GOES spacecraft, possibly increasing the time between regular maneuvers. Calibration maneuvers may be undesirable because they disrupt the activities of other instruments. Various algorithms to calculate an offset using Alfven waves were considered. A new variation of the Davis-Smith method was derived because it can be mathematically shown that the Davis-Smith method tolerates filtered data, which expands potential applications. The variant developed was designed to find only the offset in the plane normal to the main field because the overall direction of Earth's magnetic field rarely changes, and theory suggests the Alfvenic disturbances occur transverse to the main field. Other variations of the Davis-Smith method encounter problems with data containing waves that propagate in mostly the same direction. A searching algorithm was then designed to look for periods of time with potential Alfven waves in GOES 15 data based on parameters requiring that disturbances be normal to the main field and not change field magnitude. Final waves for calculation were hand-selected. These waves produced credible two-dimensional offset vectors when input to the Davis-Smith method. Multiple two-dimensional solutions in different planes can be combined to get a measurement of the complete offset. The resulting three dimensional offset did not show sufficient precision over several years to be used as a primary calibration method, but reflected
WASP-14 b: transit timing analysis of 19 light curves
NASA Astrophysics Data System (ADS)
Raetz, St.; Maciejewski, G.; Seeliger, M.; Marka, C.; Fernández, M.; Güver, T.; Göğüş, E.; Nowak, G.; Vaňko, M.; Berndt, A.; Eisenbeiss, T.; Mugrauer, M.; Trepl, L.; Gelszinnis, J.
2015-08-01
Although WASP-14 b is one of the most massive and densest exoplanets on a tight and eccentric orbit, it has never been a target of photometric follow-up monitoring or dedicated observing campaigns. We report on new photometric transit observations of WASP-14 b obtained within the framework of Transit Timing Variations @ Young Exoplanet Transit Initiative (TTV@YETI). We collected 19 light curves of 13 individual transit events using six telescopes located in five observatories distributed in Europe and Asia. From light-curve modelling, we determined the planetary, stellar, and geometrical properties of the system and found them in agreement with the values from the discovery paper. A test of the robustness of the transit times revealed that in case of a non-reproducible transit shape the uncertainties may be underestimated even with a wavelet-based error estimation methods. For the timing analysis, we included two publicly available transit times from 2007 and 2009. The long observation period of seven years (2007-2013) allowed us to refine the transit ephemeris. We derived an orbital period 1.2 s longer and 10 times more precise than the one given in the discovery paper. We found no significant periodic signal in the timing-residuals and, hence, no evidence for TTV in the system.
Pharyngeal Pressure and Timing During Bolus Transit.
Walczak, Chelsea C; Jones, Corinne A; McCulloch, Timothy M
2017-02-01
Determining intrabolus pressure (IBP) at the upper esophageal sphincter (UES) and in the esophagus has given compelling evidence that IBP can be a predictor for swallowing dysfunction. Studies have looked most superiorly at the low hypopharynx region but there has been no inquiry into what IBP measures throughout the entire pharynx can tell us. We present a study to describe the pressures within and surrounding the moving bolus throughout the pharynx and into the UES. Simultaneous high-resolution manometry (HRM) and videofluoroscopy were performed in ten healthy subjects swallowing ten 10 mL thin-liquid barium boluses. Three events surrounding bolus movement were tracked via videofluoroscopy, and two additional events were found using manometric measures. As the bolus passes through the pharynx, low pressure is created at and below the head of the bolus. A modest pressure increase is seen as the bolus passes through the pharynx, and finally, high pressure is observed at the bolus tail, followed by an even larger pressure generation of a clearance event. HRM allows for greater resolution in data collection in the pharynx and in this study, aided in identifying semi-unique characteristics around the hypopharynx and the UES which are consistent with the complex anatomy of the regions and the transition of the UES from active closure to relaxed opening. In the future, additional studies designed to look at aged and diseased populations may lead to better understanding of disease etiology, and treatment options.
Correcting transit time distributions in coarse MODFLOW-MODPATH models.
Abrams, Daniel
2013-01-01
In low to medium resolution MODFLOW models, the area occupied by sink cells often far exceeds the surface area of the streams they represent. As a result, MODPATH will calculate inaccurate particle traces and transit times. A frequency distribution of transit times for a watershed will also be in error. Such a distribution is used to assess the long-term impact of nonpoint source pollution on surface waters and wells. Although the inaccuracies for individual particles can only be avoided by increased model grid resolution or other advanced modeling techniques, the frequency distribution can be improved by scaling the particle transit times by an adjustment factor during post-processing.
Stability of the toroidicity-induced Alfven eigenmodes in JT-60U ICRF experiments
Fu, G.Y.; Cheng, C.Z.; Kimura, H.; Ozeki, T.; Saigusa, M.
1996-04-01
It is shown that the stability of toroidicity-induced Alfven eigenmodes (TIE) in JT-60U ICRF experiments is strongly dependent on mode location. This dependence results in sequential excitation of high-n TIE modes as the central safety factor, q, drops in time.
Transition path time distribution and the transition path free energy barrier.
Pollak, Eli
2016-10-19
The recent experimental measurement of the transition path time distributions of proteins presents several challenges to theory. Firstly, why do the fits of the experimental data to a theoretical expression lead to barrier heights which are much lower than the free energies of activation of the observed transitions? Secondly, there is the theoretical question of determining the transition path time distribution, without invoking the Smoluchowski limit. In this paper, we derive an exact expression for a transition path time distribution which is valid for arbitrary memory friction using the normal mode transformation which underlies Kramers' rate theory. We then recall that for low barriers, there is a noticeable difference between the transition path time distribution obtained with absorbing boundary conditions and free boundary conditions. For the former, the transition times are shorter, since recrossings of the boundaries are disallowed. As a result, if one uses the distribution based on absorbing boundary conditions to fit the experimental data, one will find that the transition path barrier will be larger than the values found based on a theory with free boundary conditions. We then introduce the paradigm of a transition path barrier height, and show that one should always expect it to be much smaller than the activation energy.
Ford, Eric B.; Ragozzine, Darin; Holman, Matthew J.; Rowe, Jason F.; Barclay, Thomas; Borucki, William J.; Bryson, Stephen T.; Caldwell, Douglas A.; Kinemuchi, Karen; Koch, David G.; Lissauer, Jack J.; Still, Martin; Tenenbaum, Peter; Steffen, Jason H.; Batalha, Natalie M.; Fabrycky, Daniel C.; and others
2012-09-10
Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on the excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased ({approx}68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate.
Global Alfven eigenmodes in WELDELSTEIN 7-AS
Weller, A.; Goerner, C.; Jaenicke, R.
1995-09-01
In the presence of fast particle populations marginally stable global modes in the shear Alfven branch can be destabilized by wave particle resonances. This is particularly of concern in future large devices, where losses of resonant particles ({alpha}-particles in a reactor) may then limit the available heating power and also may cause damage of the first wall. In tokamaks TAE modes inside toroidicity induced gaps of the shear Alfven continua have been found. In stellarators with very weak shear like W7-AS low-n TAE-gaps do not occur but gaps below the shear Alfven continua with mode numbers m and n, if the resonant values {tau} = n/m do not exist in the plasma volume (k{sub {parallel}} = (m{sm_bullet}{tau} - n )/R {ne} 0 ). Under these conditions GAE modes with frequencies {omega}{sub GAE} < (k{sub {parallel}}{sm_bullet}V{sub A}){sub min} are the favoured modes. The investigation of GAE modes could also be of relevance in the case of advanced tokamak equilibria with flat or inverted q-profiles in the central region.
Characteristics of Short Wavelength Compressional Alfven Eigenmodes
Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-12-19
Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
AMON: Transition to real-time operations
NASA Astrophysics Data System (ADS)
Cowen, D. F.; Keivani, A.; Tešić, G.
2016-04-01
The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.
Alfven continuum and Alfven eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O.P.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; White, R.B.; Yakovenko, Yu.V.
2004-12-01
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) [G. H. Neilson et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94/IC-1] is investigated with the AC code COBRA [Ya. I. Kolesnichenko et al., Phys. Plasmas 8, 491 (2001)]. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gap of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E [V. V. Lutsenko et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94-TH/P3-16].
Experiment to Study Alfven Wave Propagation in Plasma Loops
NASA Astrophysics Data System (ADS)
Kendall, Mark; Bellan, Paul
2010-11-01
Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.
Pulse wave transit time for monitoring respiration rate.
Johansson, A; Ahlstrom, C; Lanne, T; Ask, P
2006-06-01
In this study, we investigate the beat-to-beat respiratory fluctuations in pulse wave transit time (PTT) and its subcomponents, the cardiac pre-ejection period (PEP) and the vessel transit time (VTT) in ten healthy subjects. The three transit times were found to fluctuate in pace with respiration. When applying a simple breath detecting algorithm, 88% of the breaths seen in a respiration air-flow reference could be detected correctly in PTT. Corresponding numbers for PEP and VTT were 76 and 81%, respectively. The performance during hypo- and hypertension was investigated by invoking blood pressure changes. In these situations, the error rates in breath detection were significantly higher. PTT can be derived from signals already present in most standard monitoring set-ups. The transit time technology thus has prospects to become an interesting alternative for respiration rate monitoring.
Riemann solvers and Alfven waves in black hole magnetospheres
NASA Astrophysics Data System (ADS)
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
Alfven waves in current-carrying inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Shigueoka, H.; de Azevedo, C. A.; de Assis, A. S.; Sakanaka, P. H.
The Hain and Lust (1958) equation is here used to numerically solve the Alfven modes in inhomogeneous cylindrical current-carrying plasmas. It is shown in this way that the distance of the eigenfrequencies for dc density from the lower edge of the Alfven continuum depends on its profile. The WKB approximation is used to show that a discrete MHD Alfven mode exists. These efforts are relevant to both solar prominence heating and oscillations and the Alfven wave-based heating and oscillations of the chromosphere.
Developments in Planet Detection using Transit Timing Variations
Steffen, Jason H.; Agol, Eric; /Washington U., Seattle, Astron. Dept.
2006-12-01
In a transiting planetary system, the presence of a second planet will cause the time interval between transits to vary. These transit timing variations (TTV) are particularly large near mean-motion resonances and can be used to infer the orbital elements of planets with masses that are too small to detect by any other means. The author presents the results of a study of simulated data where they show the potential that this planet detection technique has to detect and characterize secondary planets in transiting systems. These results have important ramifications for planetary transit searches since each transiting system presents an opportunity for additional discoveries through a TTV analysis. They present such an analysis for 13 transits of the HD 209458 system that were observed with the Hubble Space Telescope. This analysis indicates that a putative companion in a low-order, mean-motion resonance can be no larger than the mass of the Earth and constitutes, to date, the most sensitive probe for extrasolar planets that orbit main sequence stars. The presence or absence of small planets in low-order, mean-motion resonances has implications for theories of the formation and evolution of planetary systems. Since TTV is most sensitive in these regimes, it should prove a valuable tool not only for the detection of additional planets in transiting systems, but also as a way to determine the dominant mechanisms of planet formation and the evolution of planetary systems.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Domain wall formation in late-time phase transitions
NASA Technical Reports Server (NTRS)
Kolb, Edward W.; Wang, Yun
1992-01-01
We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.
Oral transit time: a critical review of the literature
SOARES, Thais Jacóe; MORAES, Danielle Pedroni; de MEDEIROS, Gisele Chagas; SASSI, Fernanda Chiarion; ZILBERSTEIN, Bruno; de ANDRADE, Claudia Regina Furquim
2015-01-01
Introduction Oral transit time is one of the parameters observed during the clinical assessment of the swallowing function. The importance of this parameter is due to its impact on the total duration of a meal, whose consequence can be an unfavorable nutritional prognostic. Objective To document scientific papers that measure oral transit time in healthy subjects. Method The review followed the steps proposed by the Cochrane Handbook. The search was done via the PubMed database through the use of descriptors related to the oral phase of swallowing, as well as to types of food consistency. Results The articles on the theme had different definitions for oral transit time, as well as heterogeneity of tested volumes, age and gender of the participants. The times found varied from 0.35 s to 1.54 s for liquids, from 0.39 s to 1.05 s for pasty foods and from 1 s to 12.8 s for solid foods. Also, regardless of volume or consistency, oral transit time in elderly people is significantly longer than in adults. Conclusion There's no consensus in the literature about oral transit time in healthy subjects. However, this parameter should be valued during the assessment of the swallowing function due to its negative impact on the dynamics of swallowing, which can cause high energy expenditure during feeding. PMID:26176255
TTVFaster: First order eccentricity transit timing variations (TTVs)
NASA Astrophysics Data System (ADS)
Agol, Eric; Deck, Katherine
2016-04-01
TTVFaster implements analytic formulae for transit time variations (TTVs) that are accurate to first order in the planet-star mass ratios and in the orbital eccentricities; the implementations are available in several languages, including IDL, Julia, Python and C. These formulae compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems.
Nonadiabatic transitions in finite-time adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2007-06-01
To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Toroidal Alfven Waves in Advanced Tokamaks
NASA Astrophysics Data System (ADS)
Berk, Herbert L.
2003-10-01
In burning plasma experiments, alpha particles have speeds that readily resonate with shear Alfven waves. It is essential to understand this Alfven wave spectrum for toroidal plasma confinement. Most interest has focused on the Toroidal Alfven Eigenmode (TAE), and a method of analysis has been developed to understand the structure of this mode at a flux surface with a given magnetic shear. However, this model fails when the shear is too low or reversed. In this case a new method of analysis is required, which must incorporate novel fluid-like effects from the energetic particles [1] and also include effects that are second order in the inverse toroidal aspect ratio. With this new method [2] we can obtain spectral features that agree with experimental results. In particular, this theory gives an explanation for the so-called Cascade modes that have been observed in JT-60 [3], JET [4], and TFTR [5]. For these Cascade modes, slow upward frequency sweeping is observed, beginning from frequencies below the TAE range but then often blending into the TAE range of frequencies. The theoretical understanding of the Cascades modes has evolved to the point where these modes can be used as a diagnostic "signature" [6] to experimentally optimize the formation of thermal barriers in reversed-shear operation when the minimum q value is an integer. [1] H. L. Berk et al., Phys. Rev. Lett. 87, 185 (2002). [2] B. N. Breizman et al., submitted to Phys. Plasmas (2003). [3] H. Kimura et al., Nucl. Fusion 38, 1303 (1998). [4] S. Sharapov et al., Phys. Lett. A 289, 127 (2001); S. Sharapov, Phys. Plasmas 9, 2027 (2002). [5] R. Nazikian, H. L. Berk, et al., Bull. Am. Phys. Soc. 47, 327 (2002). [6] E. Joffrin et al., Plasma Phys. Contr. Fusion 44, 1739 (2002); E. Joffrin et al., in Proc. 2002 IAEA Fusion Energy Conference, submitted to Nucl. Fusion.
Free-boundary toroidal Alfven eigenmodes
Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.
2011-05-15
A numerical study is presented for the n = 1 free-boundary toroidal Alfven eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.
Drift-Alfven eigenmodes in inhomogeneous plasma
Vranjes, J.; Poedts, S.
2006-03-15
A set of three nonlinear equations describing drift-Alfven waves in a nonuniform magnetized plasma is derived and discussed both in linear and nonlinear limits. In the case of a cylindric radially bounded plasma with a Gaussian density distribution in the radial direction the linearized equations are solved exactly yielding general solutions for modes with quantized frequencies and with radially dependent amplitudes. The full set of nonlinear equations is also solved yielding particular solutions in the form of rotating radially limited structures. The results should be applicable to the description of electromagnetic perturbations in solar magnetic structures and in astrophysical column-like objects including cosmic tornados.
Transit time and charge storage measurements in heavily doped emitters
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Park, J. S.; Hwang, B. Y.
1986-01-01
A first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer is reported. The value was obtained by a high-frequency conductance method recently developed and used for low-doped Si. The transit time coupled with the steady-state current enables the determination of the quasi-static charge stored in the emitter and the quasi-static emitter capacitance. Using a transport model, from the measured transit time, the value for the minority-carrier diffusion coefficient and mobility is estimated. The measurements were done using a heavily doped emitter of the Si p(+)-n-p bipolar transistor. The new result indicates that the position-averaged minority-carrier diffusion coefficients may be much smaller than the corresponding majority-carrier values for emitters having a concentration ranging from about 3 x 10 to the 19th per cu cm to 10 to the 20th per cu cm.
Nonlinear standing Alfven wave current system at Io: Theory
Neubauer, F.M.
1980-03-01
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.
Noise-induced transition in human reaction times
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2016-09-01
The human reaction/response time can be defined as the time elapsed from the onset of stimulus presentation until a response occurs in many sensory and cognitive processes. A reaction time model based on Piéron’s law is investigated. The model shows a noise-induced transition in the moments of reaction time distributions due to the presence of strong additive noise. The model also demonstrates that reaction times do not follow fluctuation scaling between the mean and the variance but follow a generalized version between the skewness and the kurtosis. The results indicate that noise-induced transitions in the moments govern fluctuations in sensory-motor transformations and open an insight into the macroscopic effects of noise in human perception and action. The conditions that lead to extreme reaction times are discussed based on the transfer of information in neurons.
Evolution of toroidal Alfven eigenmode instability in TFTR
Wong, K.L.; Majeski, R.; Petrov, M.
1996-07-01
The nonlinear behavior of the Toroidal Alfven Eigenmode (TAE) driven unstable by energetic ions in TFTR is studied. The evolution of instabilities can take on several scenarios: a single mode or several modes can be driven unstable at the same time, the spectrum can be steady or pulsating and there can be negligible or anomalous loss associated with the instability. This paper presents a comparison between experimental results and recently developed nonlinear theory. The authors find many features observed in experiment are compatible with the consequences of the nonlinear theory. Examples include the structure of the saturated pulse that emerges from the onset of instability of a single mode and the decrease but persistence of TAE signals when the applied rf power is reduced or shut off.
Stabilizing effect of ionized background of trans-Alfvenic expansion of exploding plasmas
Zakharov, Yu.P.; Ponomarenko, A.G.; Dudnikova, G.I.; Vshivkov, V.A.
1995-12-31
Recently a lot of theoretical and numerical calculations have been performed devoted to the study of Large-Larmor-Flute Instability (LLFI). Such instability was discovered initially in laboratory and later in active experiments (AMPTE, CRRES) on expansion of a quasispherical plasma cloud in a ``vacuum`` magnetic field {rvec B}{sub 0}. In the laser-produced plasma experiments at KI-1 facility it was established for the first time, that such non-MHD instability and LHD-instability of skin-layer may effectively be suppressed by ionized background at high-Alfven Mach numbers M{sub A} {much_gt} 1 as well as in a transient regime M{sub A} {approximately} 1. In the present paper on the basis of laboratory and computer simulation the value of M{sub A} was defined more exactly and other similarity parameters characterizing the development of LLFI was founded. The laser experiments were realized in hydrogen and argon background plasmas. The computer simulations were carried out with 2D electromagnetic hybrid code. It was exposed the transition from flute increase to decrease one when M{sub A} changed from M{sub A} = 1 to M{sub A} = 3.
Alfv'enic Modes in HSX Stellarator
NASA Astrophysics Data System (ADS)
Deng, C.; Brower, D. L.; Spong, D. A.; Breizman, B. N.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Guttenfelder, W.; Likin, K.; Lore, J.; Lu, J.; Oh, S.; Radder, J. W.; Schmitt, J.; Zhai, K.
2007-11-01
Coherent, global fluctuations in the range of 20-120 kHz are observed for quasi-helically-symmetric, 2^nd Harmonic X-mode ECRH produced plasmas in HSX (BT=0.5T). Measurements and theory indicate that the mode with helicity m/n=1/1 is likely a global Alfv'en eigenmode (GAE) driven by nonthermal electrons. Under certain conditions, a satellite mode of same helicity is observed with frequency ˜20 kHz higher than the primary mode. Radial structure of both the primary and satellite modes are obtained by inversion of interferometry data showing peaks at different spatial locations. Finite pressure effects, even at low plasma beta, distort the Alfven continuum and mode frequency for these low m,n modes. For HSX operation at BT=1T with first Harmonic O-mode ECRH, the fast electron population is reduced and the mode is no longer observed. *Supported by USDOE contracts DE-FG03-01ER54615 and DE-FG02-93EE54222.
Alfven wave stability in D-III-D
Campbell, R.B. ); Samec, T.K. )
1989-09-01
Within the framework of the global Alfven eigenmode theory in a cylindrical background plasma, I examine the excitation of global Alfven eigenmodes by intense neutral beam injection in the D III-D tokamak operating at General Atomics. I have considered two separate sets of experimental conditions, a low power'' set of cases using 10MW of hydrogen beams, and a high power'' shot of 20MW of deuterium beams. My results are particularly sensitive to the background density profile. For parabolic background density profiles, n{sub 0} {times} (1 {minus} (r/{tilde a}){sup 2}), I have determined that the plasma is stable to all toroidal and poloidal mode numbers for both high and low power cases. For density profiles which are of the form n{sub 0} {times} (1 {minus} (r/{tilde a}){sup 2}){sup {1/2}}, for the same n{sub 0}, my calculation indicates that the m = {minus}1, l = 0 mode is unstable in each case. The high power case has a considerably higher growth rate at the baseline conditions, which motivated me to study this case more extensively. The results are also sensitive to the beam source radial scalelength, L{sub s}, and the electron temperature T{sub e}. By narrowing the source from the baseline 36 cm to 20 cm, the growth rate of the (0,{minus}1) actually decreases, but the (0,{minus}2) mode appears with a substantial growth rate. If the source could be made even narrower, L{sub s} {approx} 10 cm, the (1,{minus}1) mode would appear, also with a large growth rate. 12 refs., 16 figs., 6 tabs.
Transit Timing Variations for Eccentric and Inclined Exoplanets
NASA Astrophysics Data System (ADS)
Nesvorný, David
2009-08-01
The Transit Timing Variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets. Nontransiting planets in the system can be inferred from TTVs by their gravitational interactions with the transiting planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Inferring the orbital elements and mass of the nontransiting planets from TTVs, however, is more challenging than for other planet detection schemes. It is a difficult inverse problem. Here, we extended the new inversion method proposed by Nesvorný & Morbidelli to eccentric transiting planets and inclined orbits. We found that the TTV signal can be significantly amplified for hierarchical planetary systems with substantial orbital inclinations and/or for an eccentric transiting planet with anti-aligned orbit of the planetary companion. Thus, a fortuitous orbital setup of an exoplanetary system may significantly enhance our chances of TTV detection. We also showed that the detailed shape of the TTV signal is sensitive to the orbital inclination of the nontransiting planetary companion. The TTV detection method may thus provide important constraints on the orbital inclination of exoplanets and be used to test theories of planetary formation and evolution.
TRANSIT TIMING VARIATIONS FOR ECCENTRIC AND INCLINED EXOPLANETS
Nesvorny, David
2009-08-20
The Transit Timing Variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets. Nontransiting planets in the system can be inferred from TTVs by their gravitational interactions with the transiting planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Inferring the orbital elements and mass of the nontransiting planets from TTVs, however, is more challenging than for other planet detection schemes. It is a difficult inverse problem. Here, we extended the new inversion method proposed by Nesvorny and Morbidelli to eccentric transiting planets and inclined orbits. We found that the TTV signal can be significantly amplified for hierarchical planetary systems with substantial orbital inclinations and/or for an eccentric transiting planet with anti-aligned orbit of the planetary companion. Thus, a fortuitous orbital setup of an exoplanetary system may significantly enhance our chances of TTV detection. We also showed that the detailed shape of the TTV signal is sensitive to the orbital inclination of the nontransiting planetary companion. The TTV detection method may thus provide important constraints on the orbital inclination of exoplanets and be used to test theories of planetary formation and evolution.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Shrivastava, G. Ahirwar, G.; Shrivastava, J.
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
Transit timing velocimetry /TTV/ for two-phase reacting flows
Holve, D.J.
1982-10-01
A simple single-beam transit timing velocimetry (TTV) method has been developed for determining particle size and mean speed measurements. The method uses a single-beam light scattering system with the addition of two commercial nuclear instrumentation modules to obtain timing information from the trailing edge of the scattering pulses. Results of test studies show that the modal value of transit time remained constant over a wide range of particle sizes, even for particles approaching 50% of the total beam width. Applications of the TTV method to combustion systems include studies of liquid-fuel laminar flames, where integrated reaction times, and thus local droplet velocities, are needed in addition to particle size information.
Radial electron-beam-breakup transit-time oscillator
Mostrom, M.A.; Kwan, T.J.T.
1995-01-01
A new radially-driven electron-beam-breakup transit-time oscillator has been investigated analytically and through computer simulation as a compact low-impedance high-power microwave generator. In a 1MV, 50kA device 35cm in radius and 15cm long, with no external magnetic field, 5GW of extracted power and a growth rate of 0.26/ns have been observed. Theoretical maximum efficiencies are several times higher.
Transit timing at Toruń Center for Astronomy
NASA Astrophysics Data System (ADS)
Bykowski, W.; Maciejewski, G.
2011-01-01
The transit monitoring is one of well-known methods for discovering and observing new extrasolar planets. Among various advantages, this way of searching other worlds does not require complex and expensive equipment -- it can be performed with a relatively small telescope and high-quality CCD camera. At the Center for Astronomy of Nicolaus Copernicus University in Toruń, Poland, we collect observational data using the 60-cm Cassegrain telescope hoping that it would be possible to discover new objects in already known planetary systems using the transit timing variation method. Our observations are a part of a bigger cooperation between observatories from many countries.
Time delay between cardiac and brain activity during sleep transitions
NASA Astrophysics Data System (ADS)
Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme
2015-04-01
Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.
Psychiatric and Familial Predictors of Transition Times Between Smoking Stages
Sartor, Carolyn E.; Xian, Hong; Scherrer, Jeffrey F.; Lynskey, Michael T.; Duncan, Alexis E.; Haber, J. Randolph; Grant, Julia D.; Bucholz, Kathleen K.; Jacob, Theodore
2008-01-01
The modifying effects of psychiatric and familial risk factors on age at smoking initiation, rate of progression from first cigarette to regular smoking, and transition time from regular smoking to nicotine dependence (ND) were examined in 1,269 offspring of male twins from the Vietnam Era Twin Registry. Mean age of the sample was 20.1 years. Cox proportional hazard regression analyses adjusting for paternal alcohol dependence and ND status and maternal ND were conducted. Both early age at first cigarette and rapid transition from initiation to regular smoking were associated with externalizing disorders, alcohol consumption, and cannabis use. Rapid escalation from regular smoking to ND was also predicted by externalizing disorders, but in contrast to earlier transitions, revealed a strong association with internalizing disorders and no significant relationship with use of other substances. Findings characterize a rarely examined aspect of the course of ND development and highlight critical distinctions in risk profiles across stages of tobacco involvement. PMID:17900819
NASA Astrophysics Data System (ADS)
Kane, Mackenzie; Ragozzine, Darin; Flowers, Xzavier
2016-10-01
By noticing the dimming and brightening of the star as an exoplanet transit occurs, NASA's Kepler Space Telescope records the times when the exoplanet passes in front of its star. If other planets are gravitationally influencing the transiting planet, the planet might transit late or early; these deviations from a perfectly periodic set of transits are called transit timing variations (TTVs). Therefore, Kepler TTVs have been very useful in determining exoplanet masses which can be hard to measure in other ways.We visually analyzed the TTV data of all ~6000 Kepler objects of interest (KOIs) to determine whether interesting TTV signals would be missed by purely statistical analyses. Using data from Rowe et al. 2014 and Holczer et al. 2016, we examined TTV plots, periodograms, and folded quadratic+sinusoid fits. To find the most likely KOIs containing visible TTVs and to organize the over 6000 KOIs analyzed, a rating system was developed based on numerous visual factors. By sorting KOIs as such, we were able to compare our findings of the strongest candidates with the same KOIs statistically analyzed by Holczer et al. 2016. It was found that the majority of our findings matched those of Holczer et al. 2016, with only small discrepancies that were understandable based on our different methodologies. Still, our visual inspection of the full list of KOIs contributed multiple planets that were not identified statistically.We combined all of these results with planet properties from the NASA Exoplanet Archive, confirmed and cumulative, to investigate the demographics of planetary systems with and without TTVs. We investigated multi-transiting systems with TTVs not attributable to any of the known planets in the system to better understand exoplanetary system architectures in cases where not all of the planets are transiting.
Cusp Dynamics-Particle Acceleration by Alfven Waves
NASA Technical Reports Server (NTRS)
Ergun, Robert E.; Parker, Scott A.
2005-01-01
Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.
Visual Analysis and Comparison of Kepler Transit Timing Variations
NASA Astrophysics Data System (ADS)
Kane, Mackenzie; Ragozzine, Darin; Holczer, Tomer; Mazeh, Tsevi; Rowe, Jason
2016-01-01
NASA's Kepler Space Telescope is designed to find extrasolar planets by watching a section of the sky and observing if an object transits in front its parent star. By noticing the dimming and brightening of the star as a prospective transit occurs, Kepler records the times when the planet moves in front of its star. If other planets are gravitationally influencing the transiting planet, the planet might transit late or early; these deviations from a perfectly periodic set of transits are called "transit timing variations (TTVs). Therefore, Kepler TTVs are useful in determining exoplanet masses which are hard to measure in other ways.We decided to visually analyze the TTV data of all ~6000 Kepler objects of interest (KOIs) to determine whether interesting TTV signals would be missed by purely statistical analyses. Using data from Rowe et al. 2014 and Holczer et al. 2015, submitted, we created combined TTV plots, periodigrams, and folded quadratic+sinusoid fits. The raw TTV data and ancillary plots were visually inspected for each of the ~6000 KOIs. To find the most likely KOIs containing visible TTVs and to organize the over 6000 KOIs analyzed, a rating system was developed based on numerous visual factors. These rating factors include the amount of outliers, if there is a clear sinusoidal period within the folded plots, and if there is a clear peak in the periodigram. By sorting KOIs as such, we were able to compare our findings of the strongest candidates with the same KOIs statistically analyzed by Holczer et al. 2015 (submitted, see also Mazeh et al. 2013).It was found that the majority of our findings matched those of Holczer et al. 2015, with only small discrepancies that were understandable based on our different methodologies. Our visual inspection of the full list of KOIs contributed multiple systems that were not included in the initial list of KOIs with significant TTVs identified statistically.
Electron transit time measurements of 5-in photomultiplier tubes
NASA Astrophysics Data System (ADS)
Richards, T.; Peatross, J.; Ware, M.; Rees, L.
2016-08-01
We investigated the uniformity of electron transit times for two 5-in photomultiplier tubes: the Hamamatsu R1250 and the Adit B133D01S. We focused a highly attenuated short-pulse laser on the tubes while they were mounted on a programmable stage. The stage translated the tubes relative to the incident beam so that measurements could be made with light focused at points along a grid covering the entire photocathodes. A portion of the incident light was split from the incident beam and measured and recorded by a fast photodiode. Electron transit times were measured by computing the time delay between the recorded photodiode signal and photomultiplier signal using software constant-fraction discrimination. The Hamamatsu tube exhibited a uniform timing response that varied by no more than 1.7 ns. The Adit tube was much less uniform, with transit times that varied by as much as 57 ns. The Adit response also exhibited a spatially varying double-peak structure in its response. The technique described in this paper could be usefully employed by photomultiplier tube manufacturers to characterize the performance of their products.
New contributions to transit-time damping in multidimensional systems
NASA Technical Reports Server (NTRS)
Robinson, P. A.
1989-01-01
The existence of two previously unrecognized contributions to transit-time damping in systems of more than one dimension is demonstrated and discussed. It is shown that these contributions cannot be treated by one-dimensional analyses unless it is assumed that the gradient of the field perpendicular to itself always vanishes. Such an assumption is unjustified in general and the new contributions can dominate damping by fast particles in more general situations. Analytic expressions obtained using a Born approximation are found to be in excellent agreement with numerical test-particle calculations of transit-time damping for a variety of field configurations. These configurations include those of a resonance layer and of a spherical wave packet, which approximates a collapsing wave packet in a strongly turbulent plasma. It is found that the fractional power absorption can be strongly enhanced in non-slablike field configurations.
Coupling of transit time instabilities in electrostatic confinement fusion devices
Gruenwald, J. Fröhlich, M.
2015-07-15
A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.
The time of a photoinduced spin-Peierls phase transition
Semenov, A. L.
2015-02-15
The time τ of the spin-Peierls phase transition is analyzed theoretically as a function of the duration τ{sub p} of the exciting light pulse and the average number x{sub 0} of absorbed photons per magnetic ion after the transmission of the pulse. It is shown that the phase transition occurs at x{sub 0} > x{sub c}. The critical value x{sub c} is determined as a function of the duration τ{sub p} of the light pulse. A photoinduced variation in the optical reflection coefficient R is calculated as a function of time t. The results of calculation are compared with experimental data on ultrafast photoinduced melting of the low-temperature spin-Peierls phase into potassium tetracyanoquinodimethan (K-TCNQ)
Studying time-like baryonic transitions with HADES
NASA Astrophysics Data System (ADS)
Ramstein, B.
2016-05-01
Recent results of the HADES collaboration are presented with emphasis on the e+e- production in elementary reactions. Via the Dalitz decay of baryonic resonances (R →Ne+e-), access is given to the time-like electromagnetic structure of baryonic transitions. This process could be measured for the first time for Δ(1232) in pp reactions at 1.25 GeV. At higher energies, the sensitivity of e+e- emission to transition form factors of the Vector Dominance type has been demonstrated. Very recently, experiments with the GSI pion beam started, allowing for more direct studies of baryonic resonances Dalitz decays. In addition, the measurement of hadronic channels provides a new data base for baryon spectroscopy issues, in particular in the 2πN channel.
Watching excitons move: the time-dependent transition density matrix
NASA Astrophysics Data System (ADS)
Ullrich, Carsten
2012-02-01
Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.
Tunnel transit-time (TUNNETT) devices for terahertz sources
NASA Technical Reports Server (NTRS)
Haddad, G. I.; East, J. R.; Kidner, C.
1991-01-01
The potential and capabilities of tunnel transit-time (TUNNETT) devices for power generation in the 100-1000 GHz range are presented. The basic properties of these devices and the important material parameters which determine their properties are discussed and criteria for designing such devices are presented. It is shown from a first-order model that significant amounts of power can be obtained from these devices in the terahertz frequency range.
Estimation of liquid volume fraction using ultrasound transit time spectroscopy
NASA Astrophysics Data System (ADS)
Al-Qahtani, Saeed M.; Langton, Christian M.
2016-12-01
It has recently been proposed that the propagation of an ultrasound wave through complex structures, consisting of two-materials of differing ultrasound velocity, may be considered as an array of parallel ‘sonic rays’, the transit time of each determined by their relative proportion; being a minimum (t min) in entire higher velocity material, and a maximum (t max) in entire lower velocity material. An ultrasound transit time spectrum (UTTS) describes the proportion of sonic rays at an individual transit time. It has previously been demonstrated that the solid volume fraction of a solid:liquid composite, specifically acrylic step-wedges immersed in water, may be reliably estimated from the UTTS. The aim of this research was to investigate the hypothesis that the volume fraction of a two-component liquid mixture, of unequal ultrasound velocity, may also be estimated by UTTS. A through-transmission technique incorporating two 1 MHz ultrasound transducers within a horizontally-aligned cylindrical tube-housing was utilised, the proportion of silicone oil to water being varied from 0% to 100%. The liquid volume fraction was estimated from the UTTS at each composition, the coefficient of determination (R 2%) being 98.9 ± 0.7%. The analysis incorporated a novel signal amplitude normalisation technique to compensate for absorption within the silicone oil. It is therefore envisaged that the parallel sonic ray concept and the derived UTTS may be further applied to the quantification of liquid mixture composition assessment.
Kepler Planet Masses and Eccentricities from Transit Timing Variations
NASA Astrophysics Data System (ADS)
Hadden, Sam; Lithwick, Yoram
2017-01-01
The Kepler mission’s census of transiting exoplanets has shown that planets between one and four times the radius of Earth with short orbital periods are extremely common. Given their small sizes, the properties of these planets can be difficult or impossible to constrain via radial velocity observations. Mutual gravitational interactions in multi-planet systems induce variations in the arrival times of planets’ transits. These variations can used to probe planets’ masses and eccentricities, which in turn constrain their compositions and formation histories. I will discuss the results of our analysis of the transit timing variations (TTVs) of 145 Kepler planets from 55 multi-planet systems. Bulk densities inferred from TTVs imply that many of these planets are covered in gaseous envelopes ranging from a few percent to ~20% of their total mass. Eccentricities in these systems are small but in a many instances definitively non-zero. These results support theoretical predictions for super-Earth/sub-Neptune planets accreting their envelopes from a depleting proto-planetary disk.
Emission of radiation induced by pervading Alfven waves
Zhao, G. Q.; Wu, C. S.
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
A global 3-D MHD model of the solar wind with Alfven waves
NASA Technical Reports Server (NTRS)
Usmanov, A. V.
1995-01-01
A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.
Conventional and nonconventional global Alfven eigenmodes in stellarators
Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.
2007-10-15
Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.
The making of an Alfvenic fluctuation: The resolution of a second-order analysis
NASA Technical Reports Server (NTRS)
Vasquez, Bernard J.; Hollweg, Joseph V.
1995-01-01
Ulysses observations of the high speed polar streams show that they are largely occupied by very large amplitude Alfvenic fluctuations accompanied by many rotational discontinuities. These fluctuations have a nearly constant magnetic intensity or amplitude, and the magnetic field direction per wave cycle sweeps only through a limited arc, much as a car wiperblade would do. Barnes and Hollweg (JGR, 79, 2302, 1974) suggested that this unusual waveform could arise from an obliquely propagating and linearly polarized Alfven wave of finite amplitude. From a second-order analysis, they showed that the existence of a particular solution with a constant amplitude but could not resolve the outcome of the homogeneous solution which consisted of fast waves. They suggested that Landau damping of these fast waves may be needed to get the observed waveform. We present a 1 1/2 D hybrid simulation which is fully nonlinear and correctly describes the ion kinetics for an initially monochromatic and linearly polarized Alfven wave propagating obliquely to the background magnetic field. The wave has a large amplitude and a wavelength so long that it can be considered dispersionless for simulation times. At early times, the second harmonic in density and in magnetic field transverse to the initial wave magnetic field are generated and have more power than other harmonics. Steepening is observed with a weak fast shock emerging, but no rotational discontinuity is left behind, and instead a constant amplitude and an arc-shaped waveform is made. The compressional component which develops after the shocks have dissipated is to zeroth order better described as a pure acoustic wave than as a fast wave. This might be explained by the relaxing of the Alfven wave to a state where its ponderomotive force vanishes so that the compressional component can travel almost independently of it.
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-12-17
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.
Small scales formation via Alfven wave propagation in compressible nonuniform media
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
Masses of Kepler-46b, c from Transit Timing Variations
NASA Astrophysics Data System (ADS)
Saad-Olivera, Ximena; Nesvorný, David; Kipping, David M.; Roig, Fernando
2017-04-01
We use 16 quarters of the Kepler mission data to analyze the transit timing variations (TTVs) of the extrasolar planet Kepler-46b (KOI-872). Our dynamical fits confirm that the TTVs of this planet (period P={33.648}-0.005+0.004 days) are produced by a non-transiting planet Kepler-46c (P={57.325}-0.098+0.116 days). The Bayesian inference tool MultiNest is used to infer the dynamical parameters of Kepler-46b and Kepler-46c. We find that the two planets have nearly coplanar and circular orbits, with eccentricities ≃ 0.03 somewhat higher than previously estimated. The masses of the two planets are found to be {M}b={0.885}-0.343+0.374 and {M}c={0.362}-0.016+0.016 Jupiter masses, with M b being determined here from TTVs for the first time. Due to the precession of its orbital plane, Kepler-46c should start transiting its host star a few decades from now.
Zonca, F.; Chen, L.
2008-11-01
We briefly discuss the unified theoretical framework that allows explaining a variety of experimental observations with one single 'fishbone-like' dispersion relation. We also point out the relationship of MHD and shear Alfven waves in the kinetic thermal ion frequency gap with microturbulence, Zonal Flows and Geodesic Acoustic Modes, emphasizing its importance in determining long time scale dynamic behaviors in burning plasmas.
Reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.; Moore, R. L.
1994-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare Wentzel-Kramers-Brillouin (WKB) and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer and that non-WKB Alfven waves are no more effective in accelerating the solar wind than in WKB waves. There are several recently published papers that seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purposse of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinimann and Olbert, namely, calculate the efficieny of Alfven wave reflection by using the reflection coefficient and identfy the region of strongest wave reflection in different wind models. To achieve these goals, we investigate the influence of temperature, electron desity distribution, wind velocity, and magnetic field strength on te waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7)/cu cm. In these models as well as in the models with lower temperatures and higher densities Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective
On reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.
1993-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the
NASA Technical Reports Server (NTRS)
Heller, Rene; Hippke, Michael; Placek, Ben; Angerhausen, Daniel; Agol, Eric
2016-01-01
We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is suciently slow.We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio.We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10 percent moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.
Detection and Characterization of Non-Transiting Planets from Transit Timing Variations
NASA Astrophysics Data System (ADS)
Nesvorny, David; Kipping, David; Terrell, Dirk
2014-11-01
The Transit Timing Variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Here we conduct a photo-dynamical analysis of several Kepler Objects of Interest (KOIs) that exhibit significant TTVs. We show that KOI-142, KOI-227 and KOI-319 are (at least) two planet systems. KOI-142.01's TTVs uniquely detect a non-transiting companion with a mass 0.63 that of Jupiter. KOI-142.01's mass inferred from the TTVs is consistent with the measured transit depth, suggesting a Neptune-class planet. The orbital period ratio 2.03 indicates that the two planets are just wide of the 2:1 resonance. For KOI-319 and KOI-884, the observed TTVs of the inner transiting planet are used to detect an outer non-transiting planet. The outer planet in KOI-884 is 2.6 Jupiter masses and has the orbital period just narrow of the 3:1 resonance with the inner planet (orbital period ratio 2.93). The distribution of parameters inferred from KOI-319.01's TTVs is bimodal with either a 1.6 Neptune-mass planet wide of the 5:3 resonance (period 80.1 d) or a Saturn-mass planet wide of the 7:3 resonance (period 109.2 d). The radial velocity measurements can be used in this case to determine which of these parameter modes is correct. We discuss how the orbital architecture of KOI-142, KOI-227 and KOI-319 systems constrains their formation.
NASA Astrophysics Data System (ADS)
Heller, René; Hippke, Michael; Placek, Ben; Angerhausen, Daniel; Agol, Eric
2016-06-01
We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is sufficiently slow. We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio. We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10% moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.
Times of transition: elder abuse and neglect in Israel.
Lowenstein, Ariela; Doron, Israel
2008-01-01
The present paper addresses the advancement of research, policies, legislation, and practice experiences designed to deal with the phenomenon of elder abuse and neglect in Israel in times of transition. The paper presents a short overview of the demographic scene, reflecting population characteristics and needs that impact care giving as well as elder abuse and neglect. The developments of scientific knowledge and its accumulation, especially the empirical data from the first national survey on elder abuse and neglect are discussed. Further, legislative developments relating to four generational laws and the advancement of policies and innovative practice experiences are described and analyzed. Finally, future challenges in the field are identified.
Radial electron-beam-breakup transit-time oscillator
Kwan, Thomas J. T.; Mostrom, Michael A.
1998-01-01
A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.
Time-Delayed Theory of the Neolithic Transition in Europe
NASA Astrophysics Data System (ADS)
Fort, Joaquim; Méndez, Vicenç
1999-01-01
The classical wave-of-advance model of the neolithic transition (i.e., the shift from hunter-gatherer to agricultural economies) is based on Fisher's reaction-diffusion equation. Here we present an extension of Einstein's approach to Fickian diffusion, incorporating reaction terms. On this basis we show that second-order terms in the reaction-diffusion equation, which have been neglected up to now, are not in fact negligible but can lead to important corrections. The resulting time-delayed model agrees quite well with observations.
Numerical and Analytical Modeling of Transit Timing Variations
NASA Astrophysics Data System (ADS)
Hadden, Sam; Lithwick, Yoram
2016-09-01
We develop and apply methods to extract planet masses and eccentricities from observed transit timing variations (TTVs). First, we derive simple analytic expressions for the TTV that include the effects of both first- and second-order resonances. Second, we use N-body Markov chain Monte Carlo simulations, as well as the analytic formulae, to measure the masses and eccentricities of 10 planets discovered by Kepler that have not previously been analyzed. Most of the 10 planets have low densities. Using the analytic expressions to partially circumvent degeneracies, we measure small eccentricities of a few percent or less.
Controllability of timed continuous Petri nets with uncontrollable transitions
NASA Astrophysics Data System (ADS)
Vázquez, C. Renato; Ramírez-Treviño, Antonio; Silva, Manuel
2014-03-01
This paper is concerned with controllability of Timed Continuous Petri nets, under infinite server semantics, with uncontrollable transitions, which are a class of hybrid systems (piecewise-linear). This class of hybrid systems is suitable for representing biological systems, high traffic information networks, heavily loaded supply chains, etc. By adopting a Control Theory approach, the contribution of this paper is the characterisation of controllability over sets of equilibrium markings (potential equilibrium points), first inside a single marking region (or linear mode) and later extended to several regions.
Analytical approximation of transit time scattering due to magnetosonic waves
NASA Astrophysics Data System (ADS)
Bortnik, J.; Thorne, R. M.; Ni, B.; Li, J.
2015-03-01
Recent test particle simulations have shown that energetic electrons traveling through fast magnetosonic (MS) wave packets can experience an effect which is specifically associated with the tight equatorial confinement of these waves, known as transit time scattering. However, such test particle simulations can be computationally cumbersome and offer limited insight into the dominant physical processes controlling the wave-particle interactions, that is, in determining the effects of the various wave parameters and equatorial confinement on the particle scattering. In this paper, we show that such nonresonant effects can be effectively captured with a straightforward analytical treatment that is made possible with a set of reasonable, simplifying assumptions. It is shown that the effect of the wave confinement, which is not captured by the standard quasi-linear theory approach, acts in such a way as to broaden the range of particle energies and pitch angles that can effectively resonate with the wave. The resulting diffusion coefficients can be readily incorporated into global diffusion models in order to test the effects of transit time scattering on the dynamical evolution of radiation belt fluxes.
Delivering on the promise of transit timing variations
NASA Astrophysics Data System (ADS)
Agol, Eric; Deck, Katherine
2015-01-01
Transiting timing variations (TTVs) have held the promise of enabling the measurement of planet masses and radii in multi-transiting planet systems found with the Kepler spacecraft. However, when a single TTV frequency is detected, a degeneracy commonly exists between the eccentricities and masses of the planets (Lithwick, Xie & Wu 2012), making the masses and eccentricities indeterminate. In some cases this degeneracy has been broken with n-body integrations, but this enshrouds the answer in complex numerics. It may also be broken statistically, but this still does not provide measurements for individual planets.We show how this degeneracy may be broken with a measurement of TTV at the synodic frequency, which has an amplitude that depends strongly on the planet-star mass ratios and on the planets' semi-major axis ratio, yet weakly on their eccentricities. This "chopping" signal is generally modest in amplitude, but when it is detected it can provide the primary constraint upon planet masses, such as in Kepler 11d&e and KOI-872c. We show by example how harmonic analysis of TTVs combined with analytic formulae can break the eccentricity-mass degeneracy without the need for dynamical integrations, thus delivering on the promise of TTVs, while at the same time clarifying the origin of the planetary mass constraints resulting from TTV analysis.
Excitation signal's influence on ultrasonic transit time flow meter's performance
NASA Astrophysics Data System (ADS)
Svilainis, L.; Kabisius, P.; Aleksandrovas, A.; Chaziachmetovas, A.
2012-12-01
Ultrasonic flow meter performance was analyzed. Ultrasound transit time was used for flow rate estimation. Time of flight was measured using cross correlation processing. Simultaneous channels excitation was used. Ultrasonic signals were excited using low voltage (4V pp) signal generator, received signals were amplified 30 dB and simultaneously acquired by 100 Ms/s 10 bit analog-to-digit converters. Subsample delay estimation was used. Flow rate was varied from 10 l/h to 200 l/h. Measurement channel diameter 8 mm was used. It is complicated to obtain the unbiased reference signal for correlation processing. Various combinations of signals travelling in measurement channel were used for cross-correlation processing. Performance of correlation function and time of flight estimator variance were studied. Variable gain amplifier usually is used for signal dynamic range matching to A/D converter input. Gain influence on time of flight was a subject to study. It has been concluded that gain control introduces systematic errors in time of flight estimator. Influence of the temperature of electronics (pulser, receiver, A/D converter, reference clock etc.) and ultrasonic transducers on the delay estimator was studied. It was concluded that the major temperature-related systematic error comes from the pulser. Performance of the meter was studied when narrowband and spread spectrum signals were used for ultrasound excitation across temperature and flow rate range. It has been concluded that spread spectrum signal allows for better zero flow stability over temperature and lower time of flight variation.
Space and time renormalization in phase transition dynamics
Francuz, Anna; Dziarmaga, Jacek; Gardas, Bartłomiej; ...
2016-02-18
Here, when a system is driven across a quantum critical point at a constant rate, its evolution must become nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξˆ set at the time tˆ=τˆ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigatingmore » an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.« less
Space and time renormalization in phase transition dynamics
Francuz, Anna; Dziarmaga, Jacek; Gardas, Bartłomiej; Zurek, Wojciech H.
2016-02-18
Here, when a system is driven across a quantum critical point at a constant rate, its evolution must become nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξˆ set at the time tˆ=τˆ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigating an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.
Generation and propagation of Alfvenic waves in spicules
NASA Astrophysics Data System (ADS)
De Pontieu, B.; Okamoto, T. J.; Rouppe van der Voort, L.; Hansteen, V. H.; Carlsson, M.
2011-12-01
Both spicules and Alfven waves have recently been implicated in playing a role in the heating of the outer atmosphere. Yet we do not know how spicules or Alfven waves are generated. Here we focus on the properties of Alfvenic waves in spicules and their role in forming spicules. We use high-resolution observations taken with the Solar Optical Telescope onboard Hinode, and with the CRISP Fabry-Perot Interferometer at the Swedish Solar Telescope (SST) in La Palma to study the generation and propagation of Alfvenic waves in spicules and their disk counterparts. Using automated detection algorithms to identify propagating waves in limb spicules, we find evidence for both up- and downward propagating as well as standing waves. Our data suggests significant reflection of waves in and around spicules and provides constraints for theoretical models of spicules and wave propagation through the chromosphere. We also show observational evidence (using SST data) of the generation of Alfven waves and the role they play in forming spicules.
RSRM Chamber Pressure Oscillations: Transit Time Models and Unsteady CFD
NASA Technical Reports Server (NTRS)
Nesman, Tom; Stewart, Eric
1996-01-01
Space Shuttle solid rocket motor low frequency internal pressure oscillations have been observed since early testing. The same type of oscillations also are present in the redesigned solid rocket motor (RSRM). The oscillations, which occur during RSRM burn, are predominantly at the first three motor cavity longitudinal acoustic mode frequencies. Broadband flow and combustion noise provide the energy to excite these modes at low levels throughout motor burn, however, at certain times during burn the fluctuating pressure amplitude increases significantly. The increased fluctuations at these times suggests an additional excitation mechanism. The RSRM has inhibitors on the propellant forward facing surface of each motor segment. The inhibitors are in a slot at the segment field joints to prevent burning at that surface. The aft facing segment surface at a field joint slot burns and forms a cavity of time varying size. Initially the inhibitor is recessed in the field joint cavity. As propellant burns away the inhibitor begins to protrude into the bore flow. Two mechanisms (transit time models) that are considered potential pressure oscillation excitations are cavity-edge tones, and inhibitor hole-tones. Estimates of frequency variation with time of longitudinal acoustic modes, cavity edge-tones, and hole-tones compare favorably with frequencies measured during motor hot firing. It is believed that the highest oscillation amplitudes occur when vortex shedding frequencies coincide with motor longitudinal acoustic modes. A time accurate computational fluid dynamic (CFD) analysis was made to replicate the observations from motor firings and to observe the transit time mechanisms in detail. FDNS is the flow solver used to detail the time varying aspects of the flow. The fluid is approximated as a single-phase ideal gas. The CFD model was an axisymmetric representation of the RSRM at 80 seconds into burn.Deformation of the inhibitors by the internal flow was determined
TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS
Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri
2010-03-20
We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. < i < 170 deg., only reducing in amplitude for i>170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. < i < 135 deg., and then declining for i>135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i {<=} 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.
Transit times of baseflow in New Zealand rivers
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Stewart, Mike; Daughney, Chris; Townsend, Dougal
2015-04-01
Water quantity and quality responses of catchments to climate and land-use changes are difficult to understand and predict due to complexities of subsurface water flow paths and potentially large groundwater stores. It is difficult to relate the hydrologic responses of catchments to measurable catchment properties. Tritium is ideally suited to provide a measurable parameter of hydrologic response. Tritium, a component of meteoric water, decays with a half-life of 12.32 years after the water enters the groundwater system, and can therefore provide information on transit time of water through the groundwater system over the time range 0 to 200 years mean residence time (MRT). Transit time of the water discharge is one of the most crucial parameters for understanding the response of catchments. In recent years it has become possible to use tritium in a straightforward way for dating of stream and river water due to the decay of the bomb-tritium from atmospheric thermo-nuclear weapons testing, and to improved measurement accuracy for the extremely low natural tritium concentrations. Tritium dating of river water during baseflow conditions from over 120 sites throughout New Zealand show consistent patterns and a good correlation between geology and residence times of the water discharges. Basement rock catchments (greywacke, schist) have very young water of MRT less than 1year, sand-, mud-, limestone catchments have moderately old water of MRT 3-15 years, and porous ignimbrite catchments have very old water of MRT greater than 100 years. For example, the tritium data indicate MRT of 6 - 7 years in the Whanganui River, 3 - 3.5 years in the Rangitikei River, and 9 - 11 years in the large discharges from the Tertiary sediments in the Manawatu catchment. The discharges from the greywacke Ruahine and Tararua Ranges contain very young water with MRT of 0 - 2 years. Associated groundwater stores for the Rangitikei, Manawatu, and Whanganui Rivers are 1, 2, and 5 x 109 m3 of
Evaluation of blood pressure changes using vascular transit time.
Foo, Jong Yong Abdiel; Lim, Chu Sing; Wang, Ping
2006-08-01
Imbalance of the human haemodynamic system can provide a prognosis of syncope, dizziness or hypertension. This can be assessed by monitoring its responses to postural change. Examining variations in blood pressure (BP) is deemed an effective means to identify symptoms of this associated condition. However, conventional methods do not promote prolonged monitoring due to the discomfort caused to patients. Established correlations between BP and pulse wave transmission have shown its usefulness in clinical applications. In this study, photoplethysmography and phonocardiography were used to estimate BP changes via observed variations in delay transmission or vascular transit time (VTT) at the upper limb. Thirty-one healthy adults (21 male) were recruited to perform three test activities, namely the arm held at heart level, fully raised up and held down. Association of the three BP indices and heart rate variations with transit time changes was then computed. The results showed that observed VTT changes were related to systolic BP (R(2) = 0.820; p < 0.05), diastolic BP (R(2) = 0.517; p < 0.05), mean arterial pressure (R(2) = 0.673; p < 0.05) and heart rate (R(2) = 0.000; p > 0.05). As systolic BP had the strongest correlation, a regression equation was formulated to associate the two parameters. The non-invasive measuring nature of VTT can be more accommodating to patients, especially during continual monitoring. Moreover, it has the added advantage that the pre-ejection period is not included in its time-related derivations.
On the existence of finite amplitude, transverse Alfven waves in the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Sari, J. W.
1977-01-01
Interplanetary magnetic field data from the Mariner 10 spacecraft were examined for evidence of small and finite amplitude transverse Alfven waves, general finite amplitude Alfven waves, and magnetosonic waves. No evidence for transverse Alfven waves was found. Instead, the field fluctuations were found to be dominated by the general finite amplitude Alfven wave. Such wave modes correspond to non-plane-wave solutions of the nonlinear magnetohydrodynamic equations.
Analytic formulae for transit timing variations of planets
NASA Astrophysics Data System (ADS)
Deck, Katherine Michele; Agol, Eric
2015-12-01
Gravitational interactions between planets in transiting exoplanetary systems lead to variations in the times of transit (TTVs) that are diagnostic of the planetary masses and the dynamical state of the system. I will present analytic formulae for TTVs which can be applied to planetary systems with nearly circular orbits which are not caught in a mean motion resonance. The formulae relate physical parameters, like masses and orbital elements, to direct TTV observables, including shape, amplitude, and timescales. Importantly, the formulae highlight which components of TTVs break degeneracies to allow for unique measurements of planet masses and eccentricities. Additionally, modeling of TTV data using our analytic formulae can be nearly 4 orders of magnitude faster compared with n-body integration. For a number of Kepler systems with TTVs, I will show that our formulae lead to accurate mass and orbital element measurements without full dynamical analyses involving direct integration of the equations of motion. The analytic formulae may ultimately allow for a homogenous analysis of the TTVs (or lack thereof) of many multi-planet systems.
Time-Distance Seismology and the Solar Transition Region
NASA Astrophysics Data System (ADS)
Hansen, Shelley C.; Cally, Paul S.
2014-12-01
Time-Distance `travel time' perturbations (as inferred from wave phase) are calculated relative to the quiet-Sun as a function of wave orientation and field inclination in a uniform inclined magnetic field. Modelling indicates that the chromosphere-corona Transition Region (TR) profoundly alters travel times at inclinations from the vertical θ for which the ramp-reduced acoustic cutoff frequency ω c cos θ is similar to the wave frequency ω. At smaller inclinations phase shifts are much smaller as the waves are largely reflected before reaching the TR. At larger inclinations, the shifts resume their quiet-Sun values, although with some resonant oscillatory behaviour. Changing the height of the TR in the model atmosphere has some effect, but the thickness and temperature jump do not change the results substantially. There is a strong correspondence between travel-time shifts and the Alfvén flux that emerges at the top of the modelled region as a result of fast/Alfvén mode conversion. We confirm that the TR transmission coefficient for Alfvén waves generated by mode conversion in the chromosphere is far larger (typically 30 % or more) than for Alfvén waves injected from the photosphere.
Alfven ion-cyclotron heating of ionospheric O(+) ions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.
1988-01-01
Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.
MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVEN WAVES IN STRATIFIED SOLAR WAVEGUIDES
Verth, G.; Goossens, M.; Erdelyi, R. E-mail: Marcel.Goossens@wis.kuleuven.b
2010-05-10
There have recently been significant claims of Alfven wave observation in the solar chromosphere and corona. We investigate how the radial and longitudinal plasma structuring affects the observational properties of torsional Alfven waves in magnetic flux tubes for the purposes of solar magnetoseismology. The governing magnetohydrodynamic equations of these waves in axisymmetric flux tubes of arbitrary radial and axial plasma structuring are derived and we study their observable properties for various equilibria in both thin and finite-width magnetic flux tubes. For thin flux tubes, it is demonstrated that observation of the eigenmodes of torsional Alfven waves can provide temperature diagnostics of both the internal and surrounding plasma. In the finite-width flux tube regime, it is shown that these waves are the ideal magnetoseismological tool for probing radial plasma inhomogeneity in solar waveguides.
Dissipative solitary kinetic Alfven wave and energetic electron acceleration
NASA Astrophysics Data System (ADS)
Wu, D. J.
Some recent studies of observations in situ by space satellites show that low frequency electromagnetic fluctuations in the auroral ionosphere and magnetosphere can often be identified as soliatry kinetic Alfven waves (SKAWs), and further analyses of data reveal clearly that electron collisional dissipation can considerably affect the structure and evolution of SKAWs. Here, we report a model of nonlinear kinetic Alfven waves that takes dissipative effect into account, called a dissipative SKAW (DSKAW). The results show that DSKAW can produce a local shock-like structure with a net parallel electric potential drop, in which the associated parallel electric field is primarily caused by nonlinear electron inertia. In particular, it is argued that DSKAW can accelerate electrons efficiently to the order of the local Alfven velocity. We suggest that DSKAW can provide an efficient acceleration mechanism for energetic electrons of tens keV, which can frequently be encountered in solar micro-wave radio and hard X-ray bursts.
On the generation of Alfven waves in the solar photosphere
NASA Astrophysics Data System (ADS)
Tsap, Yuriy; Stepanov, Alexander; Kopylova, Yulia
The influence of collisions between neutrals and ions on the energy flux of Alfven waves in the weakly ionized plasma based on the three-fluid equations is considered. As distinguished from Vranjes et al. (2008) and Soler et al. (2013) it has been shown that amplitudes of Alfven waves that are generated in the solar photosphere do not depend on the ionization ratio and the initial conditions for ions, if the wave frequency is much less that the effective frequency of collisions between ions and neutral atoms. This is explained by the strong coupling due to ion-neutral collisions and the magnetic field freezing-in effect. Alfven waves can be effectively excited in the photosphere of the Sun by the convective motions.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1995-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1994-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.
Observation of mode conversion of m = minus 1 fast waves on the Alfven resonance layer
Amagishi, Y. )
1990-03-12
Fast waves or MHD surface waves of {ital m}={minus}1 (poloidal mode number of left-hand rotation) have been observed to be mode converted on the Alfven resonance layer. The converted waves are a quasielectrostatic form of the shear Alfven waves, i.e., kinetic Alfven wave and/or the resistive mode.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.
1992-01-01
In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.
The Timing of School Transitions and Early Adolescent Problem Behavior
ERIC Educational Resources Information Center
Lippold, Melissa A.; Powers, Christopher J.; Syvertsen, Amy K.; Feinberg, Mark E.; Greenberg, Mark T.
2013-01-01
This longitudinal study investigates whether rural adolescents who transition to a new school in sixth grade have higher levels of risky behavior than adolescents who transition in seventh grade. Our findings indicate that later school transitions had little effect on problem behavior between sixth and ninth grades. Cross-sectional analyses found…
Toward a Smartphone Application for Estimation of Pulse Transit Time
Liu, He; Ivanov, Kamen; Wang, Yadong; Wang, Lei
2015-01-01
Pulse transit time (PTT) is an important physiological parameter that directly correlates with the elasticity and compliance of vascular walls and variations in blood pressure. This paper presents a PTT estimation method based on photoplethysmographic imaging (PPGi). The method utilizes two opposing cameras for simultaneous acquisition of PPGi waveform signals from the index fingertip and the forehead temple. An algorithm for the detection of maxima and minima in PPGi signals was developed, which includes technology for interpolation of the real positions of these points. We compared our PTT measurements with those obtained from the current methodological standards. Statistical results indicate that the PTT measured by our proposed method exhibits a good correlation with the established method. The proposed method is especially suitable for implementation in dual-camera-smartphones, which could facilitate PTT measurement among populations affected by cardiac complications. PMID:26516861
Detecting nonstationarity and state transitions in a time series
NASA Astrophysics Data System (ADS)
Gao, J. B.
2001-06-01
One cause of complexity in a time series may be due to nonstationarity and transience. In this paper, we analyze the nonstationarity and transience in a number of dynamical systems. We find that the nonstationarity in the metastable chaotic Lorenz system is due to nonrecurrence. The latter determines a lack of fractal structure in the signal. In 1/fα noise, we find that the associated correlation dimension are local graph dimensions calculated from sojourn points. We also design a transient Lorenz system with a slowly oscillating controlling parameter, and a transient Rossler system with a slowly linearly increasing parameter, with parameter ranges covering a sequence of chaotic dynamics with increased phase incoherence. State transitions, from periodic to chaotic, and vice versa, are identified, together with different facets of nonstationarity in each phase.
Factors influencing stream baseflow transit times in tropical montane watersheds
NASA Astrophysics Data System (ADS)
Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.
2016-04-01
Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.
Ion-neutral collision effect on an Alfven wave
Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )
1993-07-19
This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-15
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Resonant Alfven wave instabilities driven by streaming fast particles
Zachary, A.
1987-05-08
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.
Ion temperature in plasmas with intrinsic Alfven waves
NASA Astrophysics Data System (ADS)
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
The transmission of Alfven waves through the Io plasma torus
NASA Astrophysics Data System (ADS)
Wright, A. N.; Schwartz, S. J.
1989-04-01
The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
NASA Technical Reports Server (NTRS)
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH).
Gutiérrez-Jiménez, Eugenio; Cai, Changsi; Mikkelsen, Irene Klærke; Rasmussen, Peter Mondrup; Angleys, Hugo; Merrild, Mads; Mouridsen, Kim; Jespersen, Sune Nørhøj; Lee, Jonghwan; Iversen, Nina Kerting; Sakadzic, Sava; Østergaard, Leif
2016-12-01
Functional hyperemia reduces oxygen extraction efficacy unless counteracted by a reduction of capillary transit-time heterogeneity of blood. We adapted a bolus tracking approach to capillary transit-time heterogeneity estimation for two-photon microscopy and then quantified changes in plasma mean transit time and capillary transit-time heterogeneity during forepaw stimulation in anesthetized mice (C57BL/6NTac). In addition, we analyzed transit time coefficient of variance = capillary transit-time heterogeneity/mean transit time, which we expect to remain constant in passive, compliant microvascular networks. Electrical forepaw stimulation reduced, both mean transit time (11.3% ± 1.3%) and capillary transit-time heterogeneity (24.1% ± 3.3%), consistent with earlier literature and model predictions. We observed a coefficient of variance reduction (14.3% ± 3.5%) during functional activation, especially for the arteriolar-to-venular passage. Such coefficient of variance reduction during functional activation suggests homogenization of capillary flows beyond that expected as a passive response to increased blood flow by other stimuli. This finding is consistent with an active neurocapillary coupling mechanism, for example via pericyte dilation. Mean transit time and capillary transit-time heterogeneity reductions were consistent with the relative change inferred from capillary hemodynamics (cell velocity and flux). Our findings support the important role of capillary transit-time heterogeneity in flow-metabolism coupling during functional activation.
Acute Appendicitis as Complication of Colon Transit Time Study; A Case Report
Ghahramani, Leila; Roshanravan, Reza; Khodaei, Shahin; Rahimi Kazerooni, Salar; Moslemi, Sam
2015-01-01
Colon transit time study with radio opaque markers is a simple method for assessment of colon motility disorder in patients with chronic idiopathic constipation. We report a case of acute appendicitis that was induced by impaction of radio opaque markers after colon transit time study. We think that this case report is first significant complication of colon transit time study until now PMID:26396723
Remotely detected differential pulse transit time as a stress indicator
NASA Astrophysics Data System (ADS)
Kaur, Balvinder; Tarbox, Elizabeth; Cissel, Marty; Moses, Sophia; Luthra, Megha; Vaidya, Misha; Tran, Nhien; Ikonomidou, Vasiliki N.
2015-05-01
The human cardiovascular system, controlled by the autonomic nervous system (ANS), is one of the first sites where one can see the "fight-or-flight" response due to the presence of external stressors. In this paper, we investigate the possibility of detecting mental stress using a novel measure that can be measured in a contactless manner: Pulse transit time (dPTT), which refers to the time that is required for the blood wave (BW) to cover the distance from the heart to a defined remote location in the body. Loosely related to blood pressure, PTT is a measure of blood velocity, and is also implicated in the "fight-or-flight" response. We define the differential PTT (dPTT) as the difference in PTT between two remote areas of the body, such as the forehead and the palm. Expanding our previous work on remote BW detection from visible spectrum videos, we built a system that remotely measures dPTT. Human subject data were collected under an IRB approved protocol from 15 subjects both under normal and stress states and are used to initially establish the potential use of remote dPPT detection as a stress indicator.
NASA Astrophysics Data System (ADS)
Miller-Ricci, Eliza; Rowe, Jason F.; Sasselov, Dimitar; Matthews, Jaymie M.; Guenther, David B.; Kuschnig, Rainer; Moffat, Anthony F. J.; Rucinski, Slavek M.; Walker, Gordon A. H.; Weiss, Werner W.
2008-07-01
We report on the measurement of transit times for the HD 209458 planetary system from photometry obtained with the MOST (Microvariability and Oscillations of Stars) space telescope. Deviations from a constant orbital period can indicate the presence of additional planets in the system that are yet undetected, potentially with masses approaching an Earth mass. The MOST data sets of HD 209458 from 2004 and 2005 represent unprecedented time coverage with nearly continuous observations spanning 14 and 43 days and monitoring three transits and 12 consecutive transits, respectively. The transit times that we obtain show no variations on three scales: (1) no long-term change in P since before 2004 at 25 ms level, (2) no trend in transit timings during the 2005 run, and (3) no individual transit timing deviations above 80 s level. Together with previously published transit times from Agol & Steffen, this allows us to place limits on the presence of additional close-in planets in the system, in some cases down to below an Earth mass. This result, along with previous radial velocity work, now eliminates the possibility that a perturbing planet could be responsible for the additional heat source needed to explain HD 209458b's anomalous low density.
A Transit Timing Posterior Distribution Catalog for all Kepler Planet Candidates
NASA Astrophysics Data System (ADS)
Montet, Benjamin; Becker, Juliette; Johnson, John
2015-01-01
Thanks to the unprecedented precision of Kepler, the first unambiguous observations of transit timing variations (TTVs) are now in hand. TTVs have afforded us the ability to precisely characterize both transiting and non-transiting exoplanets by observing dynamical interactions in multi-transiting systems. Catalogs attempting to publish transit times of large numbers of Kepler systems exist. However, these catalogs are incomplete: for each event only a point estimate and assumed Gaussian uncertainity of the transit time is included. Moreover, published catalogs only include long-cadence data, do not cover the full Kepler observing baseline, and assume the Kepler noise is perfectly uncorrelated. Here, we present a complete TTV catalog, in which we produce full posterior distributions on the time of each transit for every Kepler planet candidate without any assumptions of Gaussianity in the transit times.
Solitary Alfven wave envelopes and the modulational instability
Kennel, C.F.
1987-06-01
The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs.
Quantum effects on compressional Alfven waves in compensated semiconductors
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
Reflection of Alfven waves from boundaries with different conductivities
Leneman, D.
2007-12-15
The reflection of Alfven waves from the ionosphere plays a crucial role because the reflected wave can reduce or enhance the electric field pattern of the incident wave. The ionosphere is typically treated as a conducting surface, which has a height integrated Pederson conductivity. This approximation is appropriate in considering the reflection of Alfven waves because the wavelengths along the magnetic field are large compared to the height of the ionosphere. Shear Alfven wave reflection experiments have been performed in the large plasma device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. of Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. A single frequency wave is launched from an antenna and reflects from a large plate inserted into the plasma column. By alternatively using a conducting and an insulating plate, the two extremes of conductivity relative to the Alfven conductivity, 1/({mu}{sub o}v{sub A}) are tested. The data are compared with the expected theoretical behavior of the interference pattern of incident and reflected waves. Perhaps due to experimental effects, the conducting reflector is found to behave in much the same fashion as the insulator.
Observation of Alfven Waves in the Solar Corona (Invited)
NASA Astrophysics Data System (ADS)
Tomczyk, S.
2013-12-01
I will review the extensive progress made in recent years on the observation of Alfven waves in the solar corona, with an emphasis on the measurements made with the Coronal Multi-channel Polarimeter. Application of the wave measurements to coronal seismology will be presented. Future prospects in the field will be discussed.
Propagation of global shear Alfven waves in gyrokinetic tokamak plasmas
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Lin, Z.; Holod, I.; Chen, L.; Decyk, V.; Klasky, S.; Ma, K.; Adams, M.; Ethier, S.; Hahm, T.; Lee, W.; Lewandowski, J.; Rewoldt, G.; Wang, W.
2006-04-01
Employing the electromagnetic gyrokinetic simulation models, Alfven wave dynamics in global tokamak geometry is studied. Based on a small parameter expansion by the square-root of the electron-ion mass ratio, the fluid-kinetic hybrid electron model solves the adiabatic response in the lowest order and solves the kinetic response in the higher orders. We verify the propagation of shear Alfven waves in the absence of drives or damping mechanisms by perturbing the magnetic field lines at t=0 in a global eigenmode structure. The Alfven wave experiences continuum damping. In the presence of energetic particles, excitations of toroidal Alfven eigenmode (TAE) is expected within the frequency gap. With the ηi gradient drive, at a critical β value, the kinetic ballooning mode (KBM) is excited below the ideal MHD limit. W.W.Lee et al., Phys. Plasmas 8, 4435 (2001). Z.Lin and L.Chen, Phys. Plasmas 8, 1447 (2001). J.A.Tataronis and W. Grossman, Z. Phys. 14, 203 (1973). C.Z.Cheng, L.Chen, and M.S.Chance, Ann.Phys. 161, 21 (1984). C.Z.Cheng, Nucl. Fusion 22, 773 (1982).
Theory of Alfven wave heating in general toroidal geometry
Tataronis, J.A.; Salat, A.
1981-09-01
A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.
Deconfinement phase transition in an expanding quark system in the relaxation time approximation
NASA Astrophysics Data System (ADS)
Yang, Zhenwei; Zhuang, Pengfei
2004-03-01
We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while the collisions among quarks and mesons change the time structure of the phase transition significantly.
Conductivity and transit time estimates of a soil liner
Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.H.; Herzog, B.L.
1990-01-01
A field-scale soil linear was built to assess the feasibilty of constructing a liner to meet the saturated hydraulic conductivity requirement of the U.S. EPA (i.e., less than 1 ?? 10-7 cm/s), and to determine the breakthrough and transit times of water and tracers through the liner. The liner, 8 ?? 15 ?? 0.9 m, was constructed in 15-cm compacted lifts using a 20,037-kg pad-foot compactor and standard engineering practices. Estimated saturated hydraulic conductivities were 2.4 ?? 10-9 cm/s, based on data from large-ring infiltrometers; 4.0 ?? 10-8 cm/s from small-ring infiltrometers; and 5.0 ?? 10-8 cm/s from a water-balance analysis. These estimates were derived from 1 year of monitoring water infiltration into the linear. Breakthrough of tracers at the base of the liner was estimated to be between 2 and 13 years, depending on the method of calculation and the assumptions used in the calculation.
Pulse transit time and heart rate variability in sleep staging.
Shahrbabaki, Sobhan Salari; Ahmed, Beena; Penzel, Thomas; Cvetkovic, Dean
2016-08-01
This paper presents a new and robust algorithm for detection of sleep stages by using the lead I of the Electrocardiography (ECG) and a fingertip Photoplethysmography (PPG) sensor, validated using multiple overnight PSG recordings consisting of 20 human subjects (9 insomniac and 11 healthy). Heart Rate Variability (HRV) and Pulse Transit Time (PTT) biomarkers which were extracted from ECG and PPG biosignals then employed to extract features. Distance Weighted k-Nearest Neighbours (DWk-NN) was used as classifier to differentiate sleep epochs. The validation of the algorithm was evaluated by Leave-One-Out-Cross-Validation method. The average accuracy of 73.4% with standard deviation of 6.4 was achieved while the algorithm could distinguish stages 2, 3 of non-rapid eye movement sleep by average sensitivity of almost 80%. The lowest mean sensitivity of 53% was for stage 1. These results demonstrate that an algorithm based on PTT and HRV spectral analysis is able to classify and distinguish sleep stages with high accuracy and sensitivity. In addition the proposed algorithm is capable to be improved and implemented as a wearable, comfortable and cheap instrument for sleep screening.
Transit time kinetics in ordered and disordered vascular trees.
Karshafian, Raffi; Burns, Peter N; Henkelman, Mark R
2003-10-07
Imaging modalities exploit tracer-dilution methods to measure bulk haemodynamic parameters such as blood flow and volume at the level of the microcirculation. Here, we ask the question of whether the kinetics of a tracer can reveal morphological information about the vessels through which the tracers flow. The goal is to relate the acquired time-intensity characteristic to details of the vascular structure that lies below the imaging resolution. Two fractal vascular models are developed that represent organized 'kidney-like' and disorganized 'tumour-like' structures. The models are generated using simple rules of branching and fractal geometry in two dimensions. Blood flow and tracer kinetics are simulated using fundamental laws of haemodynamics. The flow conditions are matched in the two models. The fractal box dimensions of the kidney (D(B) = 1.67 +/- 0.01) and the tumour (D(B) = 1.80 +/- 0.01) vasculatures fall in the range given in the literature (D(B) = 1.61 +/- 0.06 and D(B) = 1.84 +/- 0.04, respectively). The tracer kinetic curves of the kidney and the tumour vasculatures have the same initial slope and final asymptote, corresponding to the same flow rate and vascular volume, but have different forms. The difference in the two curves is related to the distribution function of transit times of the vascular models, and is a consequence of the randomness introduced in vessel diameter and length. In principle, the form of the tracer kinetic curve from a contrast imaging study may offer information relating not only to vascular volume and flow rate, but also to the organization of a microvascular network.
Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.
2015-12-01
Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.
Modeling hyporheic exchange and in-stream transport with time-varying transit time distributions
NASA Astrophysics Data System (ADS)
Ball, A.; Harman, C. J.; Ward, A. S.
2014-12-01
Transit time distributions (TTD) are used to understand in-stream transport and exchange with the hyporheic zone by quantifying the probability of water (and of dissolved material) taking time T to traverse the stream reach control volume. However, many studies using this method assume a TTD that is time-invariant, despite the time-variability of the streamflow. Others assume that storage is 'randomly sampled' or 'well-mixed' with a fixed volume or fixed exchange rate. Here we present a formulation for a time-variable TTD that relaxes both the time-invariant and 'randomly sampled' assumptions and only requires a few parameters. The framework is applied to transient storage, representing some combination of in-stream and hyporheic storage, along a stream reach. This approach does not assume that hyporheic and dead-zone storage is fixed or temporally-invariant, and allows for these stores to be sampled in more physically representative ways determined by the system itself. Instead of using probability distributions of age, probability distributions of storage (ranked by age) called Ω functions are used to describe how the off-stream storage is sampled in the outflow. Here the Ω function approach is used to describe hyporheic exchange during diurnal fluctuations in streamflow in a gaining reach of the H.J. Andrews Experimental Forest. The breakthrough curves of salt slugs injected four hours apart over a 28-hour period show a systematic variation in transit time distribution. This new approach allows us to relate these salt slug TTDs to a corresponding time-variation in the Ω function, which can then be related to changes in in-stream storage and hyporheic zone mobilization under varying flow conditions. Thus, we can gain insights into how channel storage and hyporheic exchange are changing through time without having to specify difficult to measure or unmeasurable quantities of our system, such as total storage.
TRANSIT MONITORING IN THE SOUTH (TraMoS) PROJECT: DISCARDING TRANSIT TIMING VARIATIONS IN WASP-5b
Hoyer, S.; Rojo, P.; Lopez-Morales, M. E-mail: pato@das.uchile.cl
2012-03-20
We report nine new transit epochs of the extrasolar planet WASP-5b, observed in the Bessell I band with the Southern Astrophysical Research Telescope at the Cerro Pachon Observatory and with the SMARTS 1 m Telescope at the Cerro Tololo Inter-American Observatory, between 2008 August and 2009 October. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variation (TTV) analysis of its orbit. We find no evidence of TTV rms variations larger than 1 minute over a 3 year time span. This result discards the presence of planets more massive than about 5 M{sub Circled-Plus }, 1 M{sub Circled-Plus }, and 2 M{sub Circled-Plus} around the 1:2, 5:3, and 2:1 orbital resonances, respectively. These new detection limits exceed by {approx}5-30 times the limits imposed by current radial velocity observations in the mean motion resonances of this system. Our search for the variation of other parameters, such as orbital inclination and transit depth, also yields negative results over the total time span of the transit observations. This result supports formation theories that predict a paucity of planetary companions to hot Jupiters.
NASA Astrophysics Data System (ADS)
Wessel, Nate; Widener, Michael J.
2017-01-01
Schedule padding is the extra time added to transit schedules to reduce the risk of delay. Where there is more random delay, there should be more schedule padding. While schedule padding is a product of transit planners, a method for detecting when and where it exists could provide valuable feedback as transit agencies continually develop their networks. By analyzing transit schedules and real-time vehicle location data at the level of stop-to-stop segments, we can locate padding in space and time and identify the places that may be most effected by stochastic delay. Such information could be used to target delay-reduction interventions such as fare prepayment or transit-only rights of way. The Toronto Transit Commission is used as a case study, and initial results suggest that highly delayed segments appear mostly in the expected, but some surprising, places.
Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut.
Roager, Henrik M; Hansen, Lea B S; Bahl, Martin I; Frandsen, Henrik L; Carvalho, Vera; Gøbel, Rikke J; Dalgaard, Marlene D; Plichta, Damian R; Sparholt, Morten H; Vestergaard, Henrik; Hansen, Torben; Sicheritz-Pontén, Thomas; Nielsen, H Bjørn; Pedersen, Oluf; Lauritzen, Lotte; Kristensen, Mette; Gupta, Ramneek; Licht, Tine R
2016-06-27
Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.
Transitive Lie groups on S^1\\times S^{2m}
NASA Astrophysics Data System (ADS)
Gorbatsevich, Vladimir V.
2007-10-01
The structure of Lie groups acting transitively on the direct product of a circle and an even-dimensional sphere is described. For products of two spheres of dimension >1 a similar problem has already been solved by other authors. The minimal transitive Lie groups on S^1 and S^{2m} are also indicated. As an application of these results, the structure of the automorphism group of one class of geometric structures, generalized quadrangles (a special case of Tits buildings) is considered. A conjecture put forward by Kramer is proved: the automorphism group of a connected generalized quadrangle of type (1,2m) always contains a transitive subgroup that is the direct product of a compact simple Lie group and a one-dimensional Lie group. Bibliography: 16 titles.
Signatures of mode conversion and kinetic Alfven waves at the magnetopause
Jay R. Johnson; C. Z. Cheng
2000-07-21
It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations.
Steffen, Jason H.; Fabrycky, Daniel C.; Ford, Eric B.; Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Rowe, Jason F.; Ragozzine, Darin; Welsh, William F.; Borucki, William J.; /NASA, Ames /UC, Santa Barbara
2012-01-01
We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate.
ERIC Educational Resources Information Center
Hine, Jeffrey F.; Ardoin, Scott P.; Foster, Tori E.
2015-01-01
Research suggests that students spend a substantial amount of time transitioning between classroom activities, which may reduce time spent academically engaged. This study used an ABAB design to evaluate the effects of a computer-assisted intervention that automated intervention components previously shown to decrease transition times. We examined…
Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER
N.N. Gorelenkov and R.B. White
2012-10-29
The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.
The interaction of Io's Alfven waves with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Wright, A. N.
1987-09-01
A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.
IDENTIFICATION OF KINETIC ALFVEN WAVE TURBULENCE IN THE SOLAR WIND
Salem, C. S.; Sundkvist, D.; Bale, S. D.; Chaston, C. C.; Chen, C. H. K.; Mozer, F. S.; Howes, G. G.
2012-01-20
The nature of small-scale turbulent fluctuations in the solar wind is investigated using a comparison of Cluster magnetic and electric field measurements to predictions arising from models consisting of either kinetic Alfven waves or whistler waves. The electric and magnetic field properties of these waves from linear theory are used to construct spacecraft-frame frequency spectra of (|{delta}E|/|{delta}B|){sub s/c} and (|{delta}B{sub ||}|/|{delta}B|){sub s/c}, allowing for a direct comparison to spacecraft data. The measured properties of the small-scale turbulent fluctuations, found to be inconsistent with the whistler wave model, agree well with the prediction of a spectrum of kinetic Alfven waves with nearly perpendicular wavevectors.
Observational evidence for Alfven waves in the solar atmosphere (Invited)
NASA Astrophysics Data System (ADS)
De Pontieu, B.
2013-12-01
Alfven waves have long been suspected of playing an important role in both heating the corona and accelerating the solar wind. Recently, more and more observational evidence for the presence of such waves has been reported in both the corona and the lower solar atmosphere. I will review observations of the properties and presence of Alfven waves from CoMP, Hinode, AIA and ground-based telescopes in both coronal lines and the lower solar atmosphere. I will discuss our current understanding of the importance of these waves for the energy balance of the corona. I will also present initial results of the Interface Region Imaging Spectrograph (IRIS) which was launched in June 2013 and obtains images and spectra in both the far and near ultraviolet.
Kinetic Alfven wave instability in a Lorentzian dusty magnetoplasma
Rubab, N.; Biernat, H. K.; Erkaev, N. V.; Langmayr, D.
2010-10-15
This study presents a theoretical approach to analyze the influence of kappa distributed streaming ions and magnetized electrons on the plasma wave propagation in the presence of dust by employing two-potential theory. In particular, analytical expressions under certain conditions are derived for various modes of propagation comprising of kinetic Alfven wave streaming instability, two stream instability, and dust acoustic and whistler waves. A dispersion relation for kinetic Alfven-like streaming instability has been derived. The effects of dust particles and Lorentzian index on the growth rates and the threshold streaming velocity for the excitation of the instability are examined. The streaming velocity is observed to be destabilizing for slow motion and stabilizing for fast streaming motions. It is also observed that the presence of magnetic field and superthermal particles hinders the growth rate of instability. Possible applications to various space and astrophysical situations are discussed.
Super-Alfvenic particle streaming in astrophysical settings
NASA Technical Reports Server (NTRS)
Holman, G. D.; Morrison, P. J.; Scott, J. S.; Ionson, J. A.
1979-01-01
The pitch angle scattering of relativistic particles by self-generated hydromagnetic waves is discussed. It is shown that in a hot background plasma, because of the resonant damping of short wavelength waves by thermal protons, cosmic rays need not slow down to a mean streaming speed which is of order the Alfven speed. The effects of a high cosmic ray energy density upon the destabilized wave model are also discussed. Recent work indicates that when the cosmic ray energy density is on the order of or exceeds the energy density in the ambient magnetic field, the velocity of the amplified waves is significantly greater than the Alfven speed. These effects have important implications for recent cosmic ray acceleration models and are important for studies of particle propagation in many astrophysical plasmas.
Weakening of magnetohydrodynamic interchange instabilities by Alfven waves
Benilov, E. S.; Hassam, A. B.
2008-02-15
Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.
Evolution of the alpha particle driven toroidicity induced Alfven mode
Wu, Y.; White, R.B.; Cheng, C.Z.
1994-04-01
The interaction of alpha particles with a toroidicity induced Alfven eigenmode is investigated self-consistently by using a kinetic dispersion relation. All important poloidal harmonics and their radial mode profiles are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. There is no significant alpha particle loss.
Existence and damping of toroidicity-induced Alfven eigenmodes
Mahajan, S.M.; Mett, R.R.
1991-12-01
A new method of analyzing the toroidicity-induced Alfven eigenmode (TAE) from kinetic theory is presented. The analysis includes electron parallel dynamics non-perturbatively, an effect which is found to strongly influence the character and damping of the TAE -- contrary to previous theoretical predictions. The normal electron Landau damping of the TAE is found to be higher than previously expected, and may explain recent experimental measurements of the TAE damping coefficient. 11 refs., 1 fig., 1 tab.
Transitions into and out of daylight saving time compromise sleep and the rest-activity cycles
Lahti, Tuuli A; Leppämäki, Sami; Lönnqvist, Jouko; Partonen, Timo
2008-01-01
Background The aim of this study was to analyze the effects of transition out of and into daylight saving time on the rest-activity cycles and sleep. Rest-activity cycles of nine healthy participants aged 20 to 40 years were measured around transitions out of and into daylight saving time on fall 2005 and spring 2006 respectively. Rest-activity cycles were measured using wrist-worn accelerometers. The participants filled in the Morningness-Eveningness and Seasonal Pattern Assessment Questionnaires before starting the study and kept a sleep diary during the study. Results Fall transition was more disturbing for the more morning type and spring transition for the more evening type of persons. Individuals having a higher global seasonality score suffered more from the transitions. Conclusion Transitions out of and into daylight saving time enhanced night-time restlessness and thereby compromised the quality of sleep. PMID:18269740
Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2007-01-01
Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.; Crocker, N. A.; Levinton, F. M.; Yuh, H.
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Ellipticity and triangularity effects in tokamak Alfven spectrum
NASA Astrophysics Data System (ADS)
Puerta, Julio; Martin, Pablo; Castro, Enrique; Valdeblanquez, Eder
2006-10-01
Plasma configurations with ellipticity and triangularity are usual in tokamak experiments. These plasmas can be studied using a new system of coordinates of recent publications. Here this method has been applied to study Alfven spectrum in axisymmetric tokamaks with different values of ellipticity and triangularity [1-3]. Previous authors have developed numerical methods to obtain the Alfven spectrum using the Shafranov-Solove'v equilibrium flux function where the parameter ellipticity is also included [3]. Here more general configurations are treated and compared with the results of these authors, as well as those derived for the geometric optics or WKBJ approximation. The Alfven wave dispersion relation is obtained by the linearization of the MHD equations around a stationary equilibrium and the results are obtained by numerical calculations. [1] P. Martin, M. G. Haines and E. Castro, Phys. Plasma 12, 082506 (2005) [2] L. L. Lao, S. P. Hishman and R. M. Wieland, Phys. Fluids 24, 1431 (1981); H. Weitzner's Appendix. [3] G. O. Ludwig, Plasma Phys. Controlled Fusion 37, 633 (1995) [4] S. Novo, M. N'uñez and J. Rojo, Phys. Fluids B 3, 2967 (1991)
Gregersen, Tine; Haase, Anne-Mette; Schlageter, Vincent; Gronbaek, Henning; Krogh, Klaus
2015-01-01
Background/Aims The paucity of knowledge regarding gastrointestinal motility in patients with neuroendocrine tumors and carcinoid diarrhea restricts targeted treatment. 3D-Transit is a novel, minimally invasive, ambulatory method for description of gastrointestinal motility. The system has not yet been evaluated in any group of patients. We aimed to test the performance of 3D-Transit in patients with carcinoid diarrhea and to compare the patients’ regional gastrointestinal transit times (GITT) and colonic motility patterns with those of healthy subjects. Methods Fifteen healthy volunteers and seven patients with neuroendocrine tumor and at least 3 bowel movements per day were investigated with 3D-Transit and standard radiopaque markers. Results Total GITT assessed with 3D-Transit and radiopaque markers were well correlated (Spearman’s rho = 0.64, P = 0.002). Median total GITT was 12.5 (range: 8.5–47.2) hours in patients versus 25.1 (range: 13.1–142.3) hours in healthy (P = 0.007). There was no difference in gastric emptying (P = 0.778). Median small intestinal transit time was 3.8 (range: 1.4–5.5) hours in patients versus 4.4 (range: 1.8–7.2) hours in healthy subjects (P = 0.044). Median colorectal transit time was 5.2 (range: 2.9–40.1) hours in patients versus 18.1 (range: 5.0–134.0) hours in healthy subjects (P = 0.012). Median frequency of pansegmental colonic movements was 0.45 (range: 0.03–1.02) per hour in patients and 0.07 (range: 0–0.61) per hour in healthy subjects (P = 0.045). Conclusions Three-dimensional Transit allows assessment of regional GITT in patients with diarrhea. Patients with carcinoid diarrhea have faster than normal gastrointestinal transit due to faster small intestinal and colorectal transit times. The latter is caused by an increased frequency of pansegmental colonic movements. PMID:26130638
Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D. G.
2015-12-01
The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.
THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE
Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.
2013-08-20
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.
Propagation of large amplitude Alfven waves in the solar wind neutral sheet
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.
NASA Astrophysics Data System (ADS)
Smith, David R.; Fonck, R. J.; McKee, G. R.; Diallo, A.; Kaye, S. M.; Leblanc, B. P.; Sabbagh, S. A.
2016-10-01
Edge localized mode (ELM) saturation mechanisms, filament dynamics, and multi-mode interactions require nonlinear models, and validation of nonlinear ELM models requires fast, localized measurements on Alfven timescales. Recently, we investigated characteristic ELM evolution patterns with Alfven-scale measurements from the NSTX/NSTX-U beam emission spectroscopy (BES) system. We applied clustering algorithms from the machine learning domain to ELM time-series data. The algorithms identified two or three groups of ELM events with distinct evolution patterns. In addition, we found that the identified ELM groups correspond to distinct parameter regimes for plasma current, shape, magnetic balance, and density pedestal profile. The observed characteristic evolution patterns and corresponding parameter regimes suggest genuine variation in the underlying physical mechanisms that influence the evolution of ELM events and motivate nonlinear MHD simulations. Here, we review the previous results for characteristic ELM evolution patterns and parameter regimes, and we report on a new effort to explore the identified ELM groups with 2D BES measurements and nonlinear MHD simulations. Supported by U.S. Department of Energy Award Numbers DE-SC0001288 and DE-AC02-09CH11466.
Hillslope permeability architecture controls on subsurface transit time distribution and flow paths
NASA Astrophysics Data System (ADS)
Ameli, A. A.; Amvrosiadi, N.; Grabs, T.; Laudon, H.; Creed, I. F.; McDonnell, J. J.; Bishop, K.
2016-12-01
Defining the catchment transit time distribution remains a challenge. Here, we used a new semi-analytical physically-based integrated subsurface flow and advective-dispersive particle movement model to assess the subsurface controls on subsurface water flow paths and transit time distributions. First, we tested the efficacy of the new model for simulation of the observed groundwater dynamics at the well-studied S-transect hillslope (Västrabäcken sub-catchment, Sweden). This system, like many others, is characterized by exponential decline in saturated hydraulic conductivity and porosity with soil depth. The model performed well relative to a tracer-based estimate of transit time distribution as well as observed groundwater depth-discharge relationship within 30 m of the stream. Second, we used the model to assess the effect of changes in the subsurface permeability architecture on flow pathlines and transit time distribution in a set of virtual experiments. Vertical patterns of saturated hydraulic conductivity and porosity with soil depth significantly influenced hillslope transit time distribution. Increasing infiltration rates significantly decreased mean groundwater age, but not the distribution of transit times relative to mean groundwater age. The location of hillslope hydrologic boundaries, including the groundwater divide and no-flow boundary underlying the hillslope, changed the transit time distribution less markedly. These results can guide future decisions on the degree of complexity that is warranted in a physically-based rainfall-runoff model to efficiently and explicitly estimate time invariant subsurface pathlines and transit time distribution.
Hydrogen breath test assessment of orocecal transit time: comparison with barium meal study.
Hirakawa, M; Iida, M; Kohrogi, N; Fujishima, M
1988-12-01
Orocecal transit time was measured simultaneously by the hydrogen breath test and a barium meal study in 12 hospitalized patients, the objective being to determine whether the former test accurately represents the orocecal transit time, and to establish an adequate criterion for the transit time, based on the former test. Two definitions of orocecal transit time by the hydrogen breath test were evaluated: the time from lactulose ingestion to a sustained increase of over 5 ppm above fasting levels in the end-expiratory hydrogen concentration (definition A) and the interval to that of over 10 ppm (definition B). The orocecal transit time measured by the radiologic method was 63 +/- 9 min (mean +/- SEM), whereas that using definition A of the hydrogen breath test was 74 +/- 9 min, and that using definition B was 87 +/- 10 min. Transit times determined by both definitions closely correlated with that obtained by the radiologic method (A, r = 0.86, p less than 0.01; B, r = 0.81, p less than 0.01). Therefore, elevation of end-expiratory hydrogen concentrations seemed to coincide with cecal appearance of the head of the lactulose load. When the mean transit times were compared with findings in case of the radiologic method, definition A rather than B appeared to be more appropriate to determine orocecal transit time.
Kelvin-Helmholtz instability in an Alfven resonant layer of a solar coronal loop
NASA Technical Reports Server (NTRS)
Uchimoto, E.; Strauss, H. R.; Lawson, W. S.
1991-01-01
A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfven resonant layer in an axially bounded, straight cylindrical coronal loop. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfven driving amplitude and inversely proportional to the width of the Alfven resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfven resonant layer width, and decreases at higher azimuthal mode number.
Theory and Observations of High Frequency Alfven Eigenmodes in Low Aspect Ratio Plasma
N.N. Gorelenkov; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; S. Kaye; R. White
2003-06-27
New observations of sub-cyclotron frequency instability in low aspect ratio plasma in National Spherical Torus Experiments (NSTX) are reported. The frequencies of observed instabilities correlate with the characteristic Alfven velocity of the plasma. A theory of localized Compressional Alfven Eigenmodes (CAE) and Global shear Alfven Eigenmodes (GAE) in low aspect ratio plasma is presented to explain the observed high frequency instabilities. CAE's/GAE's are driven by the velocity space gradient of energetic super-Alfvenic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAE's, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instabilities ions are presented.
The physical origins of transit time measurements for rapid, single cell mechanotyping.
Nyberg, Kendra D; Scott, Michael B; Bruce, Samuel L; Gopinath, Ajay B; Bikos, Dimitri; Mason, Thomas G; Kim, Jin Woong; Choi, Hong Sung; Rowat, Amy C
2016-08-16
The mechanical phenotype or 'mechanotype' of cells is emerging as a potential biomarker for cell types ranging from pluripotent stem cells to cancer cells. Using a microfluidic device, cell mechanotype can be rapidly analyzed by measuring the time required for cells to deform as they flow through constricted channels. While cells typically exhibit deformation timescales, or transit times, on the order of milliseconds to tens of seconds, transit times can span several orders of magnitude and vary from day to day within a population of single cells; this makes it challenging to characterize different cell samples based on transit time data. Here we investigate how variability in transit time measurements depends on both experimental factors and heterogeneity in physical properties across a population of single cells. We find that simultaneous transit events that occur across neighboring constrictions can alter transit time, but only significantly when more than 65% of channels in the parallel array are occluded. Variability in transit time measurements is also affected by the age of the device following plasma treatment, which could be attributed to changes in channel surface properties. We additionally investigate the role of variability in cell physical properties. Transit time depends on cell size; by binning transit time data for cells of similar diameters, we reduce measurement variability by 20%. To gain further insight into the effects of cell-to-cell differences in physical properties, we fabricate a panel of gel particles and oil droplets with tunable mechanical properties. We demonstrate that particles with homogeneous composition exhibit a marked reduction in transit time variability, suggesting that the width of transit time distributions reflects the degree of heterogeneity in subcellular structure and mechanical properties within a cell population. Our results also provide fundamental insight into the physical underpinnings of transit measurements
NASA Astrophysics Data System (ADS)
Shen, Wenxian; Shen, Zhongwei
2017-03-01
The present paper is devoted to the investigation of various properties of transition fronts in one-dimensional nonlocal equations in heterogeneous media of ignition type, whose existence has been established by the authors of the present paper in a previous work. It is first shown that transition fronts are continuously differentiable in space with uniformly bounded and uniformly Lipschitz continuous space partial derivative. This is the first time that space regularity of transition fronts in nonlocal equations is ever studied. It is then shown that transition fronts are uniformly steep. Finally, asymptotic stability, in the sense of exponentially attracting front-like initial data, of transition fronts is studied.
Orbital parameter estimation of extrasolar multi-planet systems by Transit Time Variation
NASA Astrophysics Data System (ADS)
Korth, J.; Grziwa, S.; Pätzold, M.
2014-04-01
Transit Time Variation (TTV) is the earlier or later occurrence of a planetary transit relative to the time of a reference transit. TTV may be dominantly caused by the gravitational perturbation of the orbit of the transiting planet by another still unknown planet(s) inside or outside of the orbit of the known transiting planet. Gravitational interactions perturb the velocity of the transiting planet in its orbit which manifests in the periodical perturbation of the revolution period. Measurements of the transit times and the identification of differences from a mean transit period may then indicate the presence of another unknown planet and is therefore proof for the existence of further planets. The estimation of the mass of the transiting planet and the orbital parameters of the undetected planet(s) are constrained by the amplitude of the periodical variation of the transit times. Simulations of known multi-planet systems which show TTV shall be presented. The resulting TTV amplitude is analyzed with regard to the main dependencies: mass of the perturbing planet and the orbit eccentricities.
Integral definition of transition time in the Landau-Zener model
Yan Yue; Wu Biao
2010-02-15
We give a general definition for the transition time in the Landau-Zener model. This definition allows us to compute numerically the Landau-Zener transition time at any sweeping rate without ambiguity in both diabatic and adiabatic bases. With this new definition, analytical results are obtained in both the adiabatic limit and the sudden limit.
Generalizing memories over time: sleep and reinforcement facilitate transitive inference.
Werchan, Denise M; Gómez, Rebecca L
2013-02-01
The use of reinforcement and rewards is known to enhance memory retention. However, the impact of reinforcement on higher-order forms of memory processing, such as integration and generalization, has not been directly manipulated in previous studies. Furthermore, there is evidence that sleep enhances the integration and generalization of memory, but these studies have only used reinforcement learning paradigms and have not examined whether reinforcement impacts or is critical for memory integration and generalization during sleep. Thus, the aims of the current study were to examine: (1) whether reinforcement during learning impacts the integration and generalization of memory; and (2) whether sleep and reinforcement interact to enhance memory integration and generalization. We investigated these questions using a transitive inference (TI) task, which is thought to require the integration and generalization of disparate relational memories in order to make novel inferences. To examine whether reinforcement influences or is required for the formation of inferences, we compared performance using a reinforcement or an observation based TI task. We examined the impact of sleep by comparing performance after a 12-h delay containing either wake or sleep. Our results showed that: (1) explicit reinforcement during learning is required to make transitive inferences and that sleep further enhances this effect; (2) sleep does not make up for the inability to make inferences when reinforcement does not occur during learning. These data expand upon previous findings and suggest intriguing possibilities for the mechanisms involved in sleep-dependent memory transformation.
Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions
Zhang, Fan; Liu, Ming; Huang, He
2015-01-01
Current powered prosthetic legs require switching control modes according to the task the user is performing (e.g. level-ground walking, stair climbing, walking on slopes, etc.). To allow prosthesis users safely and seamlessly transition between tasks, it is critical to determine when to switch the prosthesis control mode during task transitions. Our previous study defined critical timings for different types of task transitions in ambulation; however, it is unknown whether it is the unique timing that allows safe and seamless transitions. The goals of this study were to (1) systematically investigate the effects of mode switch timing on the prosthesis user’s performance in task transitions, and (2) identify appropriate timing to switch the prosthesis control mode so that the users can seamlessly transition between different locomotion tasks. Five able-bodied (AB) and two transfemoral (TF) amputee subjects were tested as they wore a powered knee prosthesis. The prosthesis control mode was switched manually at various times while the subjects performed different types of task transitions. The subjects’ task transition performances were evaluated by their walking balance and success in performing seamless task transitions. The results demonstrated that there existed a time window within which switching the prosthesis control mode neither interrupted the subjects’ task transitions nor disturbed their walking balance. Therefore, the results suggested the control mode switching of a lower limb prosthesis can be triggered within an appropriate time window instead of a specific timing or an individual phase. In addition, a generalized criterion to determine the appropriate mode switch timing was proposed. The outcomes of this study could provide important guidance for future designs of neurally controlled powered knee prostheses that are safe and reliable to use. PMID:26197084
Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy
Reed, B W; Armstrong, M R; Blobaum, K J; Browning, N D; Burnham, A K; Campbell, G H; Gee, R; Kim, J S; King, W E; Maiti, A; Piggott, W T; Torralva, B R
2007-02-22
The Dynamic Transmission Electron Microscope (DTEM) project is developing an in situ electron microscope with nanometer- and nanosecond-scale resolution for the study of rapid laser-driven processes in materials. We report on the results obtained in a year-long LDRD-supported effort to develop DTEM techniques and results for phase transitions in molecular crystals, reactive multilayer foils, and melting and resolidification of bismuth. We report the first in situ TEM observation of the HMX {beta}-{delta} phase transformation in sub-{micro}m crystals, computational results suggesting the importance of voids and free surfaces in the HMX transformation kinetics, and the first electron diffraction patterns of intermediate states in fast multilayer foil reactions. This project developed techniques which are applicable to many materials systems and will continue to be employed within the larger DTEM effort.
Frequency of close companions among Kepler planets—a transit time variation study
Xie, Ji-Wei; Wu, Yanqin; Lithwick, Yoram E-mail: wu@astro.utoronto.ca
2014-07-10
A transiting planet exhibits sinusoidal transit time variations (TTVs) if perturbed by a companion near a mean-motion resonance. We search for sinusoidal TTVs in more than 2600 Kepler candidates, using the publicly available Kepler light curves (Q0-Q12). We find that the TTV fractions rise strikingly with the transit multiplicity. Systems where four or more planets transit enjoy a TTV fraction that is roughly five times higher than those where a single planet transits, and about twice as high as those for doubles and triples. In contrast, models in which all transiting planets arise from similar dynamical configurations predict comparable TTV fractions among these different systems. One simple explanation for our results is that there are at least two different classes of Kepler systems, one closely packed and one more sparsely populated.
Frequency of Close Companions among Kepler Planets—a Transit Time Variation Study
NASA Astrophysics Data System (ADS)
Xie, Ji-Wei; Wu, Yanqin; Lithwick, Yoram
2014-07-01
A transiting planet exhibits sinusoidal transit time variations (TTVs) if perturbed by a companion near a mean-motion resonance. We search for sinusoidal TTVs in more than 2600 Kepler candidates, using the publicly available Kepler light curves (Q0-Q12). We find that the TTV fractions rise strikingly with the transit multiplicity. Systems where four or more planets transit enjoy a TTV fraction that is roughly five times higher than those where a single planet transits, and about twice as high as those for doubles and triples. In contrast, models in which all transiting planets arise from similar dynamical configurations predict comparable TTV fractions among these different systems. One simple explanation for our results is that there are at least two different classes of Kepler systems, one closely packed and one more sparsely populated.
The use of transit timing to detect terrestrial-mass extrasolar planets.
Holman, Matthew J; Murray, Norman W
2005-02-25
Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.
TEE, an estimator for the precision of eclipse and transit minimum times
NASA Astrophysics Data System (ADS)
Deeg, H. J.; Tingley, B.
2017-03-01
Context. Transit or eclipse timing variations have proven to be a valuable tool in exoplanet research. However, no simple way to estimate the potential precision of such timing measures has been presented yet, nor are guidelines available regarding the relation between timing errors and sampling rate. Aims: A timing error estimator (TEE) equation is presented that requires only basic transit parameters as input. With the TEE, estimating timing precision for actual data and for future instruments, such as the TESS and PLATO space missions, is straightforward. Methods: A derivation of the timing error based on a trapezoidal transit shape is given. We also verify the TEE on realistically modelled transits using Monte Carlo simulations and determine its validity range, exploring in particular the interplay between ingress/egress times and sampling rates. Results: The simulations show that the TEE gives timing errors very close to the correct value, as long as the temporal sampling is faster than transit ingress/egress durations and transits with very low S/N are avoided. Conclusions: The TEE is a useful tool for estimating eclipse or transit timing errors in actual and future data sets. In combination with a previously published equation to estimate period-errors, predictions for the ephemeris precision of long-coverage observations are possible as well. The tests for the TEE's validity range also led to implications for instrumental design. Temporal sampling has to be faster than transit ingress or egress durations, or a loss in timing precision will occur. An application to the TESS mission shows that transits close to its detection limit will have timing uncertainties that exceed 1 h within a few months of their acquisition. Prompt follow-up observations will be needed to avoid "losing" their ephemerides.
Not ready for prime time: transitional events in the extremely preterm infant.
Armentrout, Debra
2014-01-01
Successful transition from intrauterine to extrauterine life involves significant physiologic changes. The majority of these changes occur relatively quickly during those first moments following delivery; however, transition for the extremely preterm infant occurs over a longer period of time. Careful assessment and perceptive interventions on the part of neonatal care providers is essential as the extremely preterm infant adjusts to life outside the womb. This article will focus on respiratory, cardiovascular, gastrointestinal, and neurologic transitional events experienced by the extremely premature infant.
The role of hillslopes in stream flow response: connectivity, flow path, and transit time
NASA Astrophysics Data System (ADS)
McGuire, K. J.; McDonnell, J. J.
2006-12-01
Subsurface flow from hillslopes is widely recognized as an important contributor to stream flow generation; however, processes that control how and when hillslopes connect to streams remain unclear. Much of the difficulty in deciphering hillslope response in the stream is due to riparian zone modulation of these inputs. We investigated stream and hillslope runoff dynamics in a 10 ha catchment in the western Cascades of Oregon where the riparian zone has been removed by debris flows, providing an unambiguous hillslope hydrologic signal to the stream channel. Water transit time was used as a framework to develop a conceptual stream flow generation model for the small basin. We based our conceptualization on observations of hydrometric, stable isotope, and applied tracer responses and computed transit times for multiple runoff components using a simple linear systems model. Event water mean transit times (8 to 34 h) and rapid breakthrough from applied hillslope tracer additions, demonstrated that contributing areas extend far upslope during events. Despite rapid hillslope transport processes during events, vadose zone water and runoff mean transit times during non-storm conditions were greater than the timescale of storm events. Vadose zone water mean transit times ranged between 10 and 25 days. Hillslope seepage and catchment baseflow mean transit times were between 1 and 2 years. We describe a conceptual model that captures variable physical flow pathways and transit times through changing antecedent wetness conditions that illustrate the different stages of hillslope and stream connectivity.
Wille, Marie-Luise; Langton, Christian M
2016-02-01
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
How to assess regional and whole gut transit time with wireless motility capsule.
Lee, Yeong Yeh; Erdogan, Askin; Rao, Satish S C
2014-04-30
Assessment of transit through the gastrointestinal tract provides useful information regarding gut physiology and patho-physiology. Although several methods are available, each has distinct advantages and limitations. Recently, an ingestible wire-less motility capsule (WMC), similar to capsule video endoscopy, has become available that offers a less-invasive, standardized, radiation-free and office-based test. The capsule has 3 sensors for measurement of pH, pressure and temperature, and collec-tively the information provided by these sensors is used to measure gastric emptying time, small bowel transit time, colonic transit time and whole gut transit time. Current approved indications for the test include the evaluation of gastric emptying in gastroparesis, colonic transit in constipation and evaluation of generalised dysmotility. Rare capsule retention and malfunc-tion are known limitations and some patients may experience difficulty with swallowing the capsule. The use of WMC has been validated for the assessment of gastrointestinal transit. The normal range for transit time includes the following: gastric empty-ing (2-5 hours), small bowel transit (2-6 hours), colonic transit (10-59 hours) and whole gut transit (10-73 hours). Besides avoiding the use of multiple endoscopic, radiologic and functional gastrointestinal tests, WMC can provide new diagnoses, leads to a change in management decision and help to direct further focused work-ups in patients with suspected disordered motility. In conclusion, WMC represents a significant advance in the assessment of segmental and whole gut transit and mo-tility, and could prove to be an indispensable diagnostic tool for gastrointestinal physicians worldwide.
The acceleration of energetic particles in the interplanetary medium by transit-time damping
NASA Technical Reports Server (NTRS)
Fisk, L. A.
1976-01-01
Transit time damping is examined as a possible means for accelerating low energy particles in co-rotating streams and interstellar ions. Data show that: the protons in co-rotating streams may be accelerated by transient-time damping the small-scale variations in the field magnitude that are observed at a low level in the inner solar system. The interstellar ions may be accelerated by transit time damping large-scale field variations in the outer solar system.
NASA Astrophysics Data System (ADS)
Nariyuki, Y.; Seough, J.
2015-12-01
It is well known that low-frequency Alfven waves are unstable to parametric instabilities, in which these waves are nonlinearly coupled with density fluctuations [e.g, Nariyuki+Hada, JGR, 2007 and references therein]. In solar wind plasmas, low-frequency fluctuations with non-zero cross-helicity are frequently observed [e.g., Bruno+Carbone, Living Rev. Solar Phys. (2013) and references therein]. When the absolute values of normalized cross helicities are close to the unity, the fluctuations may be composed of uni-directionally (anti-sunward) propagating Alfven waves. The derivative nonlinear Schrodinger equation (DNLS) has been known as the mode of modulational instabilities of unidirectional Alfven waves [Mio et al, JPSJ, 1976; Mjolhus, JPP, 1976]. In the DNLS, the density fluctuations are assumed to be the quasi-static state, which is determined according to the ponderomotive force of envelope-modulated Alfven waves. The DNLS was extended to include the obliquely propagating, compressional component of magnetic field by Mjolhus and Wyller (JPP, 1988). The kinetically modified DNLS (KDNLS) has also been discussed by many authors [Rogister, POF, 1971; Mjolhus and Wyller, Phys. Scr, 1986; JPP, 1988; Spangler, POF B, 1989; 1990; Medvedev+Diamond, POP, 1996; Nariyuki et al, POP, 2013]. On the other hand, ion acoustic modes [Hada, 1993], large scale inhomogeneity of plasmas [Buti et al, APJ, 1999; Nariyuki, POP, 2015] and random density fluctuations [Ruderman, POP, 2002] can also affect nonlinear evolution of Alfven waves. At the present time, combined effects of these effects are not fully understood. In this presentation, we discuss two models: one of them is the model including both ion kinetic effects and ion acoustic mode and another is the model including finite thermal effects and random density fluctuations. In the former case, ion kinetic effects on both longitudinal [Nariyuki+Hada, JPSJ, 2007] and transverse modulational instabilities are discussed, while the
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis
Chiba, Tomoaki; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group’s sales beat GM’s sales, which is a reasonable scenario. PMID:28076383
Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.
Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2017-01-01
In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.
Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity
NASA Technical Reports Server (NTRS)
Fatuzzo, Marco; Melia, Fulvio
1993-01-01
Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.
NASA Astrophysics Data System (ADS)
Hartmann, Andreas; Kobler, Johannes; Kralik, Martin; Dirnboeck, Thomas; Humer, Franko; Weiler, Markus
2014-05-01
Karst systems contribute around 50% to Austria's drinking water supply. Distributions of transit times of water and hence other water quality parameters can be highly valuable when assessing the risk of contamination of a karst aquifer. In this study we assess the transit time distributions of a dolomite karst system in Austria. Using a new type of semi-distributed model that considers the spatial heterogeneity of the karst system by distribution functions we simulated a range of spatially variable pathways through the karst system. To assure a reliable calibration of the model we used observations of discharge at 2 different locations and 3 time series of solute concentrations (DOC, NO3 and SO4). We benchmarked the model with a split sample test using all 5 types of observations. Having enough indication for a realistic representation of the system and its flow and storage behaviour, the range of simulated pathways through the karst system was used to derive transit time distributions for different initial conditions. We use experimentally derived information about transit times (water ages, O 18 observations, tracer experiments) to evaluate the simulated residence time distributions. Finally, the process-based structure of the model allows to attribute the different transit time distributions to physical processes and pathways in the karst system and to assess the system's vulnerability on contamination.
NASA Astrophysics Data System (ADS)
Harman, Ciaran; Kim, Minseok
2014-05-01
The time-varying transport dynamics of complex hydrodynamic systems with long transit times are difficult to observe even in experimental systems due to the need for multiple tracer injections. Where only one or two distinct tracers are available, overprinting in the output concentrations limits the injection frequency. We will present an experimental method (the PERiodic Tracer Hierarchy - PERTH) that allows overprinted breakthrough curves to be decomposed into contributions from multiple injections of the same tracer, so long as the transporting flow is periodic. This method allows the time varying transit time distributions to be observed efficiently while making no a priori assumptions about the transport processes operating in the system. Simulations of transport through a soil column subject to a periodic sequence of irrigation events demonstrate that the distinct transit time distributions associated with each irrigation event can be retrieved almost exactly.
Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.
1996-01-01
Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.
Critical capacity, travel time delays and travel time distribution of rapid mass transit systems
NASA Astrophysics Data System (ADS)
Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang
2014-07-01
We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.
ERIC Educational Resources Information Center
Silbereisen, Rainer K.; And Others
This study was conducted to examine the timing of adolescent transitions. Its first aim was to investigate the hypothesis that cumulated family adversities during childhood would predict earlier transitions in domains such as behavioral autonomy and friendship formation during adolescence. Subjects (N=1,631) were adolescents between the ages of 13…
Supporting Students in Military Families during Times of Transition: A Call for Awareness and Action
ERIC Educational Resources Information Center
Cole, Rebekah F.
2016-01-01
Throughout their time in school, students in military families face many challenging periods of transition, which include deployments, relocations, and the family's separation from the military. During these transitions, students in military families may be especially susceptible to social, emotional, and academic challenges both in their home…
Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes
Cheng, C.Z.
1990-10-01
The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped {alpha}-particles through the wave-particle resonances. Satisfying the resonance condition requires that the {alpha}-particle birth speed v{sub {alpha}} {ge} v{sub A}/2{vert bar}m-nq{vert bar}, where v{sub A} is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the {alpha}-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the {alpha}-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the {alpha}-particle beta {beta}{sub {alpha}}, {alpha}-particle pressure gradient parameter ({omega}{sub {asterisk}}/{omega}{sub A}) ({omega}{sub {asterisk}} is the {alpha}-particle diamagnetic drift frequency), and (v{sub {alpha}}/v{sub A}) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged {alpha}-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged {alpha}-particle beta threshold is in the order of 10{sup {minus}4}. Typical growth rates of the n=1 TAE mode can be in the order of 10{sup {minus}2}{omega}{sub A}, where {omega}{sub A}=v{sub A}/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects.
Nonlinear Interaction of Shear Alfven Waves with Gradient Driven Instabilities
NASA Astrophysics Data System (ADS)
Auerbach, David William
An experimental study of the interactions between gradient-driven instabilities (GDI) and beat waves driven between two Alfven waves is presented. A cylindrical density depletion is imposed on the otherwise uniform plasma in the Large Plasma Device (LAPD) by selectively blocking the electron beam that produces the plasma. Coherent, single mode fluctuations in density, temperature, plasma potential, and magnetic field are observed to be unstable on the gradient. Measurements of the relative cross-phase between the density and potential fluctuations indicate that the fluctuations are not likely to drive significant cross field transport. Comparisons of the properties of the modes to theoretical predictions for Kelvin-Helmholtz (KH) and drift wave modes indicate that the fluctuations are likely to be a hybrid of the two instabilities. Analytic eigenmode solutions to the linearized Braginskii fluid equations using the experimentally measured gradient profiles support the conclusion that both instabilities are active. A beat wave between two driven Alfven waves is broadcast into the gradient region using a pair of loop antennas with independently controlled frequency and power. This beat wave is observed to resonantly drive the unstable mode, as well as a second otherwise stable mode slightly higher in frequency and azimuthal mode number. During the drive of the secondary stable mode, the growth of the primary instability is suppressed. The broadcast of the Alfven waves and the beat wave is also observed to drive other fluctuations in the plasma at frequencies higher than either the spontaneous instability or the second, stable mode. Both the resonant drive of the modes and the control of the mode number are observed to have non-linear threshold and saturation behavior.
The use of content and timing to predict turn transitions
Garrod, Simon; Pickering, Martin J.
2015-01-01
For addressees to respond in a timely fashion, they cannot simply process the speaker's utterance as it occurs and wait till it finishes. Instead, they predict both when the speaker will conclude and what linguistic forms will be used. While doing this, they must also prepare their own response. To explain this, we draw on the account proposed by Pickering and Garrod (2013a), in which addressees covertly imitate the speaker's utterance and use this to determine the intention that underlies their upcoming utterance. They use this intention to predict when and how the utterance will end, and also to drive their own production mechanisms for preparing their response. Following Arnal and Giraud (2012), we distinguish between mechanisms that predict timing and content. In particular, we propose that the timing mechanism relies on entrainment of low-frequency oscillations between speech envelope and brain. This constrains the context that feeds into the determination of the speaker's intention and hence the timing and form of the upcoming utterance. This approach typically leads to well-timed contributions, but also provides a mechanism for resolving conflicts, for example when there is unintended speaker overlap. PMID:26124728
First-time viewers' comprehension of films: bridging shot transitions.
Ildirar, Sermin; Schwan, Stephan
2015-02-01
Which perceptual and cognitive prerequisites must be met in order to be able to comprehend a film is still unresolved and a controversial issue. In order to gain some insights into this issue, our field experiment investigates how first-time adult viewers extract and integrate meaningful information across film cuts. Three major types of commonalities between adjacent shots were differentiated, which may help first-time viewers with bridging the shots: pictorial, causal, and conceptual. Twenty first-time, 20 low-experienced and 20 high-experienced viewers from Turkey were shown a set of short film clips containing these three kinds of commonalities. Film clips conformed also to the principles of continuity editing. Analyses of viewers' spontaneous interpretations show that first-time viewers indeed are able to notice basic pictorial (object identity), causal (chains of activity), as well as conceptual (links between gaze direction and object attention) commonalities between shots due to their close relationship with everyday perception and cognition. However, first-time viewers' comprehension of the commonalities is to a large degree fragile, indicating the lack of a basic notion of what constitutes a film.
The use of content and timing to predict turn transitions.
Garrod, Simon; Pickering, Martin J
2015-01-01
For addressees to respond in a timely fashion, they cannot simply process the speaker's utterance as it occurs and wait till it finishes. Instead, they predict both when the speaker will conclude and what linguistic forms will be used. While doing this, they must also prepare their own response. To explain this, we draw on the account proposed by Pickering and Garrod (2013a), in which addressees covertly imitate the speaker's utterance and use this to determine the intention that underlies their upcoming utterance. They use this intention to predict when and how the utterance will end, and also to drive their own production mechanisms for preparing their response. Following Arnal and Giraud (2012), we distinguish between mechanisms that predict timing and content. In particular, we propose that the timing mechanism relies on entrainment of low-frequency oscillations between speech envelope and brain. This constrains the context that feeds into the determination of the speaker's intention and hence the timing and form of the upcoming utterance. This approach typically leads to well-timed contributions, but also provides a mechanism for resolving conflicts, for example when there is unintended speaker overlap.
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
Alfven wave dispersion behavior in single- and multicomponent plasmas
Rahbarnia, K.; Grulke, O.; Klinger, T.; Ullrich, S.; Sauer, K.
2010-03-15
Dispersion relations of driven Alfven waves (AWs) are measured in single- and multicomponent plasmas consisting of mixtures of argon, helium, and oxygen in a magnetized linear cylindrical plasma device VINETA [C. Franck, O. Grulke, and T. Klinger, Phys. Plasmas 9, 3254 (2002)]. The decomposition of the measured three-dimensional magnetic field fluctuations and the corresponding parallel current pattern reveals that the wave field is a superposition of L- and R-wave components. The dispersion relation measurements agree well with calculations based on a multifluid Hall-magnetohydrodynamic model if the plasma resistivity is correctly taken into account.
Theoretical Studies of Drift-Alfven and Energetic Particle Physics
CHEN, L.
2014-05-14
The research program supported by this DOE grant has been rather successful and productive in terms of both scientific investigations as well as human resources development; as demonstrated by the large number (60) of journal articles, 6 doctoral degrees, and 3 postdocs. This PI is particularly grateful to the generous support and flexible management of the DOE–SC-OFES Program. He has received three award/prize (APS Excellence in Plasma Physics Research Award, 2004; EPS Alfven Prize, 2008; APS Maxwell Prize, 2012) as the results of research accomplishments supported by this grant.
The Jupiter-Io connection - An Alfven engine in space
NASA Technical Reports Server (NTRS)
Belcher, John W.
1987-01-01
Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfven wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.
Effect of alpha particles on Toroidal Alfven Eigenmodes
Berk, H.L.
1992-11-01
An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods.
The Jupiter-Io connection - an Alfven engine in space
NASA Astrophysics Data System (ADS)
Belcher, J. W.
1987-10-01
Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfven wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.
NASA Astrophysics Data System (ADS)
Farlin, Julien; Maloszewski, Piotr; Schneider, Wilfried; Gallé, Tom
2014-05-01
Groundwater transit time is of interest in environmental studies pertaining to the transport of pollutants from its source to the aquifer outlet (spring or pumping well) or to an observation well. Different models have been proposed to describe the distribution of transit times within groundwatersheds, the most common being the dispersion model, the exponential-piston-flow model (EPM) both proposed by Maloszewski and Zuber (Maloszewski and Zuber, 1982) and the (two or three parameter) gamma model (Amin and Campana, 1996; Kirchner et al., 1999). Choosing which function applies best is a recurrent and controversial problem in hydrogeology. The object of this study is to revisit the applicability of the EPM for unconfined aquifers, and to introduce an alternative model based explicitly on groundwater hydraulics. The alternative model is based on the transit time of water from any point at the groundwater table to the aquifer outlet, and is used to calculate inversely the hydraulic parameters of a fractured unconfined sandstone aquifer from tritium measurements made in a series of contact springs. This model is compared to the EPM, which is usually adopted to describe the transit time distribution of confined and unconfined aquifers alike. Both models are tested against observations, and it is shown that the EPM fails the test for some of the springs, and generally seems to overestimate the older water component. Amin, I. E., and M. E. Campana (1996), A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems, Journal of Hydrology, 179, 1-21, doi: 10.1016/0022-1694(95)02880-3. Kirchner, J. W., X. H. Feng, and C. Neal (1999), Fractal stream chemistry and its implications for contaminant transport in catchments, Nature physics, 403, 524-527, doi: 10.1038/35000537. Maloszewski, P., and A. Zuber (1982), Determining the turnover time of groundwater systems with the aid of environmental tracers, Journal of
TTVFast: An efficient and accurate code for transit timing inversion problems
Deck, Katherine M.; Agol, Eric; Holman, Matthew J.; Nesvorný, David
2014-06-01
Transit timing variations (TTVs) have proven to be a powerful technique for confirming Kepler planet candidates, for detecting non-transiting planets, and for constraining the masses and orbital elements of multi-planet systems. These TTV applications often require the numerical integration of orbits for computation of transit times (as well as impact parameters and durations); frequently tens of millions to billions of simulations are required when running statistical analyses of the planetary system properties. We have created a fast code for transit timing computation, TTVFast, which uses a symplectic integrator with a Keplerian interpolator for the calculation of transit times. The speed comes at the expense of accuracy in the calculated times, but the accuracy lost is largely unnecessary, as transit times do not need to be calculated to accuracies significantly smaller than the measurement uncertainties on the times. The time step can be tuned to give sufficient precision for any particular system. We find a speed-up of at least an order of magnitude relative to dynamical integrations with high precision using a Bulirsch-Stoer integrator.
TTVFast: An Efficient and Accurate Code for Transit Timing Inversion Problems
NASA Astrophysics Data System (ADS)
Deck, Katherine M.; Agol, Eric; Holman, Matthew J.; Nesvorný, David
2014-06-01
Transit timing variations (TTVs) have proven to be a powerful technique for confirming Kepler planet candidates, for detecting non-transiting planets, and for constraining the masses and orbital elements of multi-planet systems. These TTV applications often require the numerical integration of orbits for computation of transit times (as well as impact parameters and durations); frequently tens of millions to billions of simulations are required when running statistical analyses of the planetary system properties. We have created a fast code for transit timing computation, TTVFast, which uses a symplectic integrator with a Keplerian interpolator for the calculation of transit times. The speed comes at the expense of accuracy in the calculated times, but the accuracy lost is largely unnecessary, as transit times do not need to be calculated to accuracies significantly smaller than the measurement uncertainties on the times. The time step can be tuned to give sufficient precision for any particular system. We find a speed-up of at least an order of magnitude relative to dynamical integrations with high precision using a Bulirsch-Stoer integrator.
Dakos, Vasilis; Carpenter, Stephen R.; Brock, William A.; Ellison, Aaron M.; Guttal, Vishwesha; Ives, Anthony R.; Kéfi, Sonia; Livina, Valerie; Seekell, David A.; van Nes, Egbert H.; Scheffer, Marten
2012-01-01
Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data. PMID:22815897
Studies in Transition and Time Varying Turbulent Flows
NASA Technical Reports Server (NTRS)
Grosch, Chester E.
2004-01-01
The research focused on two areas: (a) the dynamics of forced turbulent flows and (b) time filtered Large Eddy Simulations (TLES). The dynamics of turbulent flows arising from external forcing of the turbulence are poorly understood. In particular, here are many unanswered questions relating the basic dynamical balances and the existence or nonexistence of statistical equilibrium of forced turbulent flows. The research used direct numerical simulations to explore these questions. The properties of the temporally filtered Navier-Stokes equations were also studied.
FAST INVERSION METHOD FOR DETERMINATION OF PLANETARY PARAMETERS FROM TRANSIT TIMING VARIATIONS
Nesvorny, David; Beauge, Cristian
2010-01-20
The transit timing variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets. Non-transiting planets in the system can be inferred from TTVs by their gravitational interaction with the transiting planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Here we describe a fast algorithm that can be used to determine the mass and orbit of the non-transiting planets from the TTV data. We apply our code, ttvim.f, to a wide variety of planetary systems to test the uniqueness of the TTV inversion problem and its dependence on the precision of TTV observations. We find that planetary parameters, including the mass and mutual orbital inclination of planets, can be determined from the TTV data sets that should become available in near future. Unlike the radial velocity technique, the TTV method can therefore be used to characterize the inclination distribution of multi-planet systems.
Caride, V.J.; Prokop, E.K.; Troncale, F.J.; Buddoura, W.; Winchenbach, K.; McCallum, R.W.
1984-04-01
The hydrogen breath test was used as a standard against which a scintigraphic method for determination of small intestinal transit time was evaluated and compared. A total of 19 male volunteers ranging in age from 23 to 28 yr participated in the study. The subjects ingested an isosmotic lactulose solution containing /sup 99m/technetium-diethylenetriaminepentaacetic acid (Sn) and then remained supine under a large field of view gamma-camera that interfaced with a computer system. Data were visually analyzed and then quantified to determine gastric emptying and small intestinal transit time. The small intestinal transit time ranged from 31 to 139 min with the scintigraphic method and 30 to 190 min with the hydrogen breath test (r . 0.77). The mean small intestinal transit time for 20 individual determinations with the scintigraphic method, 73.0 +/- 6.5 min (mean +/- SEM), was similar to the results from the hydrogen breath test technique, 75.1 +/- 8.3 min. Thirteen volunteers underwent two studies with the scintigraphic method separated by intervals ranging from 2 days to 8 wk. Individual variations in small intestinal transit time were significantly correlated with individual variations in gastric emptying (p less than 0.05). We conclude that the scintigraphic method allows accurate determination of gastrocecal time and is a noninvasive technique which may be a useful clinical test for small intestinal transit time as well as for providing information on the pathophysiology and pharmacology of intestinal motility.
A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry
Koenies, Axel; Kleiber, Ralf
2012-12-15
While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.
Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Rankin, R.; Blanco, M.
2015-12-01
In this paper we study the interaction of kinetic Alfven waves generated near the equatorial plane of the magnetosphere with electrons having initial energies up to ˜100 eV. Wave-particle interactions are investigated using a theoretical model of trapping into an effective potential generated by the wave parallel electric field and the mirror force acting along geomagnetic field lines. It is demonstrated that waves with an effective potential amplitude on the order of ˜100-400 V and with perpendicular wavelengths on the order of the ion gyroradius can trap and efficiently accelerate electrons up to energies of several keV. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented, and the application of the proposed model is discussed.
Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.
Buehler, Martin G; Kindle, Michael L; Carter, Brady P
2015-06-01
Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form.
Steffen, Jason H.; Ford, Eric B.; Rowe, Jason F.; Fabrycky, Daniel C.; Holman, Matthew J.; Welsh, William F.; Borucki, William J.; Batalha, Natalie M.; Bryson, Steve; Caldwell, Douglas A.; Ciardi, David R.; /Caltech /NASA, Ames /SETI Inst., Mtn. View
2012-01-01
We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.
VizieR Online Data Catalog: 4 Kepler systems transit timing observations (Steffen+, 2012)
NASA Astrophysics Data System (ADS)
Steffen, J. H.; Fabrycky, D. C.; Ford, E. B.; Carter, J. A.; Desert, J.-M.; Fressin, F.; Holman, M. J.; Lissauer, J. J.; Moorhead, A. V.; Rowe, J. F.; Ragozzine, D.; Welsh, W. F.; Batalha, N. M.; Borucki, W. J.; Buchhave, L. A.; Bryson, S.; Caldwell, D. A.; Charbonneau, D.; Ciardi, D. R.; Cochran, W. D.; Endl, M.; Everett, M. E.; Gautier, T. N., III; Gilliland, R. L.; Girouard, F. R.; Jenkins, J. M.; Horch, E.; Howell, S. B.; Isaacson, H.; Klaus, T. C.; Koch, D. G.; Latham, D. W.; Li, J.; Lucas, P.; MacQueen, P. J.; Marcy, G. W.; McCauliff, S.; Middour, C. K.; Morris, R. L.; Mullally, F. R.; Quinn, S. N.; Quintana, E. V.; Shporer, A.; Still, M.; Tenenbaum, P.; Thompson, S. E.; Twicken, J. D.; van Cleve, J.
2013-03-01
We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate. (4 data files).
Steffen, Jason H.; Ford, Eric B.; Rowe, Jason F.; Borucki, William J.; Bryson, Steve; Caldwell, Douglas A.; Jenkins, Jon M.; Koch, David G.; Sanderfer, Dwight T.; Seader, Shawn; Twicken, Joseph D.; Fabrycky, Daniel C.; Welsh, William F.; Batalha, Natalie M.; Ciardi, David R.; Prsa, Andrej
2012-09-10
We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through quarter six of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.
Scintigraphic Small Intestinal Transit Time and Defaecography in Patients with J-Pouch.
Kjaer, Mie Dilling; Simonsen, Jane Angel; Hvidsten, Svend; Kjeldsen, Jens; Gerke, Oke; Qvist, Niels
2015-10-10
Objective methods for examination of pouch function are warranted for a better understanding of the functional result and treatment of dysfunction. The objective of this study was to evaluate the results of scintigraphic intestinal transit time and defaecography compared to the results of pouch function, mucosal condition and a questionnaire on quality of life (QoL). This cross-sectional study included 21 patients. Scintigraphic transit time and defaecography was determined with the use of Tc-99m. Pouch function was assessed by number of bowel movements, pouch volume, and continence. Pouch mucosal condition was evaluated by endoscopy and histology. Median transit time was 189 min (105-365). Median ejection fraction at defaecography (EF) was 49% (3-77) and 62% (17-98) after first and second defecation. Median pouch volume was 223 mL (100-360). A median daily stool frequency of nine (4-25) was reported and three (14%) patients suffered from daytime incontinence. No patients had symptomatic or endoscopic pouchitis; however, the histology showed unspecific inflammation in 19 (90%) patients. There was no correlation between transit time, evacuation fraction (EF) and pouch function in univariate analysis. However, we found a high body mass index (BMI) and a low bowel movement frequency to be associated with a longer transit time by multivariate analysis. Scintigraphic determination of transit time and defaecography are feasible methods in patients with ileal pouch anal anastomosis, but the clinical relevance is yet doubtful.
Scintigraphic Small Intestinal Transit Time and Defaecography in Patients with J-Pouch
Kjaer, Mie Dilling; Simonsen, Jane Angel; Hvidsten, Svend; Kjeldsen, Jens; Gerke, Oke; Qvist, Niels
2015-01-01
Objective methods for examination of pouch function are warranted for a better understanding of the functional result and treatment of dysfunction. The objective of this study was to evaluate the results of scintigraphic intestinal transit time and defaecography compared to the results of pouch function, mucosal condition and a questionnaire on quality of life (QoL). This cross-sectional study included 21 patients. Scintigraphic transit time and defaecography was determined with the use of Tc-99m. Pouch function was assessed by number of bowel movements, pouch volume, and continence. Pouch mucosal condition was evaluated by endoscopy and histology. Median transit time was 189 min (105–365). Median ejection fraction at defaecography (EF) was 49% (3–77) and 62% (17–98) after first and second defecation. Median pouch volume was 223 mL (100–360). A median daily stool frequency of nine (4–25) was reported and three (14%) patients suffered from daytime incontinence. No patients had symptomatic or endoscopic pouchitis; however, the histology showed unspecific inflammation in 19 (90%) patients. There was no correlation between transit time, evacuation fraction (EF) and pouch function in univariate analysis. However, we found a high body mass index (BMI) and a low bowel movement frequency to be associated with a longer transit time by multivariate analysis. Scintigraphic determination of transit time and defaecography are feasible methods in patients with ileal pouch anal anastomosis, but the clinical relevance is yet doubtful. PMID:26854162
Effects of alpha-glucosidase inhibitors on mouth to caecum transit time in humans.
Ladas, S D; Frydas, A; Papadopoulos, A; Raptis, S A
1992-09-01
The alpha-glucosidase inhibitors acarbose and miglitol have been successfully used to control postprandial hyperglycaemia in diabetics. They probably work by slowing carbohydrate digestion and absorption, but their effect on mouth to caecum transit time has not been studied. The effect acarbose (100 mg), miglitol (100 mg), and placebo on mouth to caecum transit time (380 kcal breakfast with 20 g of lactulose) was investigated in 18 normal volunteers using breath hydrogen analysis. Both miglitol and acarbose significantly increased breath hydrogen excretion (F2,34 = 6.31, p = 0.005) and shortened the mouth to caecum transit time (F2,34 = 3.49, p = 0.04) after breakfast compared with placebo. There was a significant negative correlation between breath hydrogen excretion and mouth to caecum transit time suggesting that with shorter transit times significantly more carbohydrates were spilled into the colon. These results indicate that alpha-glucosidase inhibitors accelerate mouth to caecum transit time by inducing carbohydrate malabsorption.
Shear Alfven waves with Landau and collisional effects
Hedrick, C.L.; Leboeuf, J.; Spong, D.A.
1995-06-01
Shear Alfven waves can be driven unstable by hot particles such as alpha particles in an ignited fusion device or hot ions in existing devices. Motivated by rather collisional Wendelstein 7 Advanced Stellarator (W7-AS) [Phys. Rev. Lett. {bold 72}, 1220 (1994)] beam-driven global Alfven instability experiments, the effect of electron and ion collisions on these modes has been examined. Collisions broaden and suppress the peak associated with Landau effects. This broadening makes ion damping more important, while the electron damping is suppressed. Additional resistive effects provide increased damping for the main part of the spectrum, which can have a rather high phase velocity. Of more general interest is the fact that collisional and collisionless resistivity has a numerically stabilizing effect that is known to be important for nonlinear resistive magnetohydrodynamics (MHD). This can preclude the need for introducing and testing the sensitivity to similar ad hoc effects. Numerical and analytic results for both a particle-conserving Krook collision operator and a Lorentz (pitch angle) collision operator are compared and contrasted.
Nonlinear Frequency Chirping of β-induced Alfven Eigenmode
NASA Astrophysics Data System (ADS)
Zhang, Huasen
2012-03-01
The β-induced Alfven eigenmode (BAE) have been observed in many tokamaks. The BAE oscillates with the GAM frequency φ0, and therefore, has strong interactions with both thermal and energetic particles. In this work, linear gyrokinetic particle simulations show that nonperturbative contributions by energetic particles and kinetic effects of thermal particles modify BAE mode structure and frequency relative to the MHD theory. Gyrokinetic simulations have been verified by theory-simulation comparison and by benchmark with MHD-gyrokinetic hybrid simulation. Nonlinear simulations show that the unstable BAE saturates due to nonlinear wave-particle interactions with thermal and energetic particles. Wavelet analysis shows that the mode frequency chirping occurs in the absence of sources and sinks, thus it complements the standard ``bump-on-tail'' paradigm for the frequency chirping of Alfven eigenmodes. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of coherent structures in the energetic particle phase space of (ζ,φd) with toroidal angle ζ and precessional frequency φd. The dynamics of the coherent structures is controlled by the formation and destruction of phase space islands of energetic particles in the canonical variables of (ζ,Pζ) with canonical angular momentum Pζ. Our studies use the gyrokinetic toroidal code (GTC) recently upgraded with a comprehensive formulation for simulating kinetic-MHD processes. In collaborations with GTC team and SciDAC GSEP Center.
Effects of compressional magnetic perturbation on kinetic Alfven waves
NASA Astrophysics Data System (ADS)
Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong
2016-10-01
Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.
Gravitational damping of Alfven waves in stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. K.; Mullan, D. J.
1994-01-01
We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.
Investigation of an ion-ion hybrid Alfven wave resonator
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.
2013-01-15
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2013-01-20
A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.
Chaotic Dynamics of Alfven Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
BorottoChavez, Felix Aldo
2001-01-01
The objective of this work is to study the chaotic dynamics of AIN& waves in the solar wind. This study is carried out in two parts. Firstly, motivated by the simultaneous observation of Langmuir waves and electromagnetic waves of low frequency in magnetic holes in the solar wind, we propose a theory based on the nonlinear interaction process involving three waves. We use the Pomcare' method to characterize the Pomeau-Manneville intermittency and show two examples of interior crises produced by the collision of unstable periodic orbits with a chaotic attractor Secondly, the chaotic dynamics of Alfven waves is modelled in a dissipative system in the presence of an external periodic source, using the Derivative Nonlinear Schrodinger Equation (DNLS). By solving the DNLS numerically in the low-dimension limit, assisted again by the Poincare' method, we identify two types of intermittency: Pomeau-Manneville intermittency and interior crisis-induced intermittency. In addition, we have found a very complex region associated with the coexistence of various attractors. This region presents a number of boundary crises arising from a homoclinic tangency. We discuss the application of AIN& chaos for the interpretation of the observations of Alfvenic turbulence in the solar wind.
TRANSIT TIMING OBSERVATIONS FROM KEPLER. I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS
Ford, Eric B.; Rowe, Jason F.; Caldwell, Douglas A.; Jenkins, Jon M.; Li Jie; Fabrycky, Daniel C.; Lissauer, Jack J.; Borucki, William J.; Bryson, Steve; Koch, David G.; Steffen, Jason H.; Batalha, Natalie M.; Dunham, Edward W.; Gautier, Thomas N.; Marcy, Geoffrey W.; McCauliff, Sean
2011-11-01
The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASA's Kepler mission has identified 1235 transiting planet candidates. The method of transit timing variations (TTVs) has already confirmed seven planets in two planetary systems. We perform a transit timing analysis of the Kepler planet candidates. We find that at least {approx}11% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least {approx}65 TTV candidates. In all cases, the time span of observations must increase for TTVs to provide strong constraints on planet masses and/or orbits, as expected based on N-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least {approx}12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least seven years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.
Timing of the maturation transition in haddock Melanogrammus aeglefinus.
Tobin, D; Wright, P J; O'Sullivan, M
2010-10-01
The timing of maturation in haddock Melanogrammus aeglefinus was examined using changes in gonad development, follicle stimulating hormone β (FSH-β) transcript expression profile, growth and condition of 1 year old females held under a common environment between the summer and winter solstices. The circumnuclear ring, cortical alveolus and vitellogenic oocyte stages were first observed in August, October and November, respectively. FSH-β transcript levels did not change significantly until September but increased markedly thereafter in maturing fish. A combined analysis of the mean oocyte diameter of the leading cohort, histological staging and FSH-β transcript profile provided evidence of a commitment to maturation by October or November. Contrary to that previously proposed for gadoid species, histological analysis of field-caught immature M. aeglefinus during the spawning season indicated that cortical alveolar, rather than circumnuclear ring, stage oocytes provided definitive evidence of maturation. A decrease in relative liver size following the summer solstice suggested a possible link between energy status and maturation.
Chronic Obstructive Pulmonary Disease Subtypes. Transitions over Time
Esteban, Cristóbal; Arostegui, Inmaculada; Aburto, Myriam; Moraza, Javier; Quintana, José M.; García-Loizaga, Amaia; Basualdo, Luis V.; Aramburu, Amaia; Aizpiri, Susana; Uranga, Ane; Capelastegui, Alberto
2016-01-01
Background Although subtypes of chronic obstructive pulmonary disease are recognized, it is unknown what happens to these subtypes over time. Our objectives were to assess the stability of cluster-based subtypes in patients with stable disease and explore changes in clusters over 1 year. Methods Multiple correspondence and cluster analysis were used to evaluate data collected from 543 stable patients included consecutively from 5 respiratory outpatient clinics. Results Four subtypes were identified. Three of them, A, B, and C, had marked respiratory profiles with a continuum in severity of several variables, while the fourth, subtype D, had a more systemic profile with intermediate respiratory disease severity. Subtype A was associated with less dyspnea, better health-related quality of life and lower Charlson comorbidity scores, and subtype C with the most severe dyspnea, and poorer pulmonary function and quality of life, while subtype B was between subtypes A and C. Subtype D had higher rates of hospitalization the previous year, and comorbidities. After 1 year, all clusters remained stable. Generally, patients continued in the same subtype but 28% migrated to another cluster. Together with movement across clusters, patients showed changes in certain characteristics (especially exercise capacity, some variables of pulmonary function and physical activity) and changes in outcomes (quality of life, hospitalization and mortality) depending on the new cluster they belonged to. Conclusions Chronic obstructive pulmonary disease clusters remained stable over 1 year. Most patients stayed in their initial subtype cluster, but some moved to another subtype and accordingly had different outcomes. PMID:27611911
The effect of conjunctions on the transit timing variations of exoplanets
Nesvorný, David; Vokrouhlický, David E-mail: vokrouhl@cesnet.cz
2014-07-20
We develop an analytic model for transit timing variations produced by orbital conjunctions between gravitationally interacting planets. If the planetary orbits have tight orbital spacing, which is a common case among the Kepler planets, the effect of a single conjunction can be best described as: (1) a step-like change of the transit timing ephemeris with subsequent transits of the inner planet being delayed and those of the outer planet being sped up, and (2) a discrete change in sampling of the underlying oscillations from eccentricity-related interaction terms. In the limit of small orbital eccentricities, our analytic model gives explicit equations for these effects as a function of the mass and orbital separation of planets. We point out that a detection of the conjunction effect in real data is of crucial importance for the physical characterization of planetary systems from transit timing variations.
Landau level transitions in doped graphene in a time dependent magnetic field
NASA Astrophysics Data System (ADS)
Ardenghi, J. S.; Bechthold, P.; Jasen, P.; Gonzalez, E.; Nagel, O.
2013-10-01
The aim of this work is to describe the Landau level transitions of Bloch electrons in doped graphene with an arbitrary time dependent magnetic field in the long wavelength approximation. In particular, transitions from the m Landau level to the m±1 and m±2 Landau levels are studied using the time dependent perturbation theory. Time intervals are computed in which transition probabilities tend to zero at a low order in the coupling constant. In particular, Landau level transitions are studied in the case of Bloch electrons traveling in the direction of the applied magnetic force and the results are compared with classical and revival periods of electrical current in graphene. Finally, current probabilities are computed for the n=0 and n=1 Landau levels showing expected oscillating behavior with modified cyclotron frequency.
THE IMPACT OF CIRCUMPLANTARY JETS ON TRANSIT SPECTRA AND TIMING OFFSETS FOR HOT JUPITERS
Dobbs-Dixon, Ian; Agol, Eric; Burrows, Adam
2012-06-01
We present theoretical wavelength-dependent transit light curves for the giant planet HD 209458b based on a number of state-of-the-art three-dimensional radiative hydrodynamical models. By varying the kinematic viscosity in the model, we calculate observable signatures associated with the emergence of a super-rotating circumplanetary jet that strengthens with decreased viscosity. We obtain excellent agreement between our mid-transit transit spectra and existing data from Hubble and Spitzer, finding the best fit for intermediate values of viscosity. We further exploit dynamically driven differences between eastern and western hemispheres to extract the spectral signal imparted by a circumplanetary jet. We predict that (1) the transit depth should decrease as the jet becomes stronger; (2) the measured transit times should show timing offsets of up to 6 s at wavelengths with higher opacity, which increases with jet strength; (3) wavelength-dependent differences between ingress and egress spectra increase with jet strength; and (4) the color-dependent transit shape should exhibit stronger asymmetry for planets with stronger jets. These techniques and trends should be valid for other hot Jupiters as well. Observations of transit timing offsets may be accessible with current instrumentation, though the other predictions may require the capabilities of the James Webb Space Telescope and other future missions. Hydrodynamical models utilized solve the three-dimensional Navier-Stokes equations together with decoupled thermal and radiative energy equations and wavelength-dependent stellar heating.
Transit Timing Variations as a Tool for the Bayesian Characterization of Exoplanets
NASA Astrophysics Data System (ADS)
Ford, Eric B.; Jontof-Hutter, Daniel; Dawson, Rebekah; Fabrycky, Daniel; Mills, Sean; Ragozzine, Darin; Rogers, Leslie Anne; Shabram, Megan
2015-08-01
NASA's Kepler mission has revolutionized time-domain photometry with its photometric precision, high duty cycle, and long observing baseline. In addition to discovering thousands of planet candidates that pass in front of their host star, Kepler's has enabled the precise measurement of transit timing variations (TTV), deviations of transit times from a Keplerian ephemeris due to gravitational interactions among planets (or more massive bodies in the same planetary system). For dozens of planets, TTVs enable the precise characterization of planet masses and orbits, including many planets for which characterization via Doppler observations is impractical.For example, TTVs have: 1) characterized of masses of planets in systems with 2-6 transiting exoplanets, 2) measured densities for low-mass, low-density mass planets that orbit stars with periods of ~50-200 days, and provided precise measurements of orbital eccentricities even in the challenging regime of e<0.1. In addition to characterizing properties of individual planets, analysing the transit times for populations of transiting planets (including those for which no deviations from Keplerian orbits are detected) enable the characterization of the exoplanet distribution function.In both cases, attention to details of the statistical model and computational methods are essential for drawing robust conclusions. I will present selected TTV success stories, describing how these studies dealt with various statistical and computational challenges. Finally, I will describe opportunities for further improvements in the statistical analyses of transit timing variations and the potential science return.
Daylight saving time transitions and hospital treatments due to accidents or manic episodes
Lahti, Tuuli A; Haukka, Jari; Lönnqvist, Jouko; Partonen, Timo
2008-01-01
Background Daylight saving time affects millions of people annually but its impacts are still widely unknown. Sleep deprivation and the change of circadian rhythm can trigger mental illness and cause higher accident rates. Transitions into and out of daylight saving time changes the circadian rhythm and may cause sleep deprivation. Thus it seems plausible that the prevalence of accidents and/or manic episodes may be higher after transition into and out of daylight saving time. The aim of this study was to explore the effects of transitions into and out of daylight saving time on the incidence of accidents and manic episodes in the Finnish population during the years of 1987 to 2003. Methods The nationwide data were derived from the Finnish Hospital Discharge Register. From the register we obtained the information about the hospital-treated accidents and manic episodes during two weeks before and two weeks after the transitions in 1987–2003. Results The results were negative, as the transitions into or out of daylight saving time had no significant effect on the incidence of accidents or manic episodes. Conclusion One-hour transitions do not increase the incidence of manic episodes or accidents which require hospital treatment. PMID:18302734
ERIC Educational Resources Information Center
Thompson, Sandy, Ed.; And Others
1990-01-01
This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…
Exploring business process modelling paradigms and design-time to run-time transitions
NASA Astrophysics Data System (ADS)
Caron, Filip; Vanthienen, Jan
2016-09-01
The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.
NASA Astrophysics Data System (ADS)
Müller, Markus; Meztler, Holger; Glatt, Anna; Sierra, Carlos
2016-04-01
We present theoretical methods to compute dynamic residence and transit time distributions for non-autonomous systems of pools governed by coupled nonlinear differential equations. Although transit time and age distributions have been used to describe reservoir models for a long time, a closer look to their assumptions reveals two major restrictions of generality in previous studies. First, the systems are assumed to be in equilibrium; and second, the equations under consideration are assumed to be linear. While both these assumptions greatly ease the computation and interpretation of transit time and age distributions they are not applicable to a wide range of problems. Moreover, the transfer of previous results learned from linear systems in steady state to the more complex nonlinear non-autonomous systems that do not even need to have equilibria, can be dangerously misleading. Fortunately the topic of time dependent age and transit time distributions has received some attention recently in hydrology, we aim to compute these distributions for systems of multiple reservoirs. We will discuss how storage selection functions can augment the information represented in an ODE system describing a system of reservoirs. We will present analytical and numerical algorithms and a Monte Carlo simulator to compute solutions for system transit time and age distributions for system-wide storage selection functions including the most simple, but important case of well mixed pools.
BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA
Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu
2011-09-10
Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.
Finite-time quantum-to-classical transition for a Schroedinger-cat state
Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.; Maniscalco, Sabrina
2011-07-15
The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.
The detection and characterization of a nontransiting planet by transit timing variations.
Nesvorný, David; Kipping, David M; Buchhave, Lars A; Bakos, Gáspár Á; Hartman, Joel; Schmitt, Allan R
2012-06-01
The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.
NASA Technical Reports Server (NTRS)
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Transit times and mean ages for nonautonomous and autonomous compartmental systems
Rasmussen, Martin; Hastings, Alan; Smith, Matthew J.; Agusto, Folashade B.; Chen-Charpentier, Benito M.; Hoffman, Forrest M.; Jiang, Jiang; Todd-Brown, Katherine E. O.; Wang, Ying; Wang, Ying -Ping; Luo, Yiqi
2016-04-01
In this study, we develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie–Ames–Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model.
Transit times and mean ages for nonautonomous and autonomous compartmental systems
Rasmussen, Martin; Hastings, Alan; Smith, Matthew J.; ...
2016-04-01
In this study, we develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of themore » Carnegie–Ames–Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model.« less
The Ebb and Flow of Filipino First-Time Fatherhood Transition Space: A Grounded Theory Study.
Villamor, Neil Jupiter E; de Guzman, Allan B; Matienzo, Evangeline T
2016-11-01
Fatherhood, as a developmental process, is both a human experience and a text that needs to be read. For developing nations like the Philippines, little is known about the process undergone by first-time fathers on their transition to fatherhood, and how nurses can play a significant role in assisting them. This grounded theory study purported to conceptualize the multifaceted process of transition from the lens of Filipino first-time fathers' lived experiences. A total of 20 first-time fathers from Metro Manila, Philippines, were purposively selected to take part in an individual, semistructured, and in-depth interview. The Glaserian (classical) method of analysis was specifically used, and field texts were inductively analyzed using a repertory grid. Member checking and correspondence were done to validate the findings of the study. Six surfacing stages emerged relative to the process of transition. Interestingly, The B.R.I.D.G.E. Theory of First-Time Fatherhood Transition Space describes how these fathers progress from the beholding, reorganizing, inhibiting, delivering, grasping, and embracing phases toward successful transition. This emerged theoretical model can be used in framing health care programs where the needs of fathers during this period are met and addressed. Finally, it can also be used in guiding nurses in their provision of a more empathetic care for first-time fathers.
NASA Technical Reports Server (NTRS)
Koenig, S. C.; Reister, C. A.; Schaub, J.; Swope, R. D.; Ewert, D.; Fanton, J. W.; Convertino, V. A. (Principal Investigator)
1996-01-01
The Physiology Research Branch at Brooks AFB conducts both human and nonhuman primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to identify the particular mechanisms that invoke these responses. Primary investigative efforts in our nonhuman primate model require the determination of total peripheral resistance, systemic arterial compliance, and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. This study evaluated accuracy, linearity, biocompatability, and anatomical features of commercially available electromagnetic (EMF) and transit-time flow measurement techniques. Five rhesus monkeys were instrumented with either EMF (3 subjects) or transit-time (2 subjects) flow sensors encircling the proximal ascending aorta. Cardiac outputs computed from these transducers taken over ranges of 0.5 to 2.0 L/min were compared to values obtained using thermodilution. In vivo experiments demonstrated that the EMF probe produced an average error of 15% (r = .896) and 8.6% average linearity per reading, and the transit-time flow probe produced an average error of 6% (r = .955) and 5.3% average linearity per reading. Postoperative performance and biocompatability of the probes were maintained throughout the study. The transit-time sensors provided the advantages of greater accuracy, smaller size, and lighter weight than the EMF probes. In conclusion, the characteristic features and performance of the transit-time sensors were superior to those of the EMF sensors in this study.
Foo, Jong Yong Abdiel
2008-01-01
Ankle brachial index is useful in monitoring the pathogenesis of peripheral arterial occlusive diseases. Sphygmomanometer is the standard instrument widely used but frequent prolonged monitoring can be less comfortable for patients. Pulse transit time is known to be inversely correlated with blood pressure and a ratio-based pulse transit time measurement has been proposed as a surrogate ankle brachial index marker. In this study, 17 normotensive adults (9 men; aged 25.4 +/- 3.9 years) were recruited. Two postural change test activities were performed to induce changes in the stiffness of the arterial wall of the moved periphery. Results showed that only readings from the limbs that adopted a new posture registered significant blood pressure and pulse transit time changes (P < .05). Furthermore, there was significant correlation between the ankle brachial index and pulse transit time ratio measure for both test activities (R(2) > or = 0.704). The findings herein suggest that pulse transit time ratio is a surrogate and accommodating ankle brachial index marker.
Koenig, S C; Reister, C A; Schaub, J; Swope, R D; Ewert, D; Fanton, J W
1996-01-01
The Physiology Research Branch at Brooks AFB conducts both human and nonhuman primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to identify the particular mechanisms that invoke these responses. Primary investigative efforts in our nonhuman primate model require the determination of total peripheral resistance, systemic arterial compliance, and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. This study evaluated accuracy, linearity, biocompatability, and anatomical features of commercially available electromagnetic (EMF) and transit-time flow measurement techniques. Five rhesus monkeys were instrumented with either EMF (3 subjects) or transit-time (2 subjects) flow sensors encircling the proximal ascending aorta. Cardiac outputs computed from these transducers taken over ranges of 0.5 to 2.0 L/min were compared to values obtained using thermodilution. In vivo experiments demonstrated that the EMF probe produced an average error of 15% (r = .896) and 8.6% average linearity per reading, and the transit-time flow probe produced an average error of 6% (r = .955) and 5.3% average linearity per reading. Postoperative performance and biocompatability of the probes were maintained throughout the study. The transit-time sensors provided the advantages of greater accuracy, smaller size, and lighter weight than the EMF probes. In conclusion, the characteristic features and performance of the transit-time sensors were superior to those of the EMF sensors in this study.
Timing of Parenthood in Relation to Other Life Transitions and Adult Social Functioning
ERIC Educational Resources Information Center
Kokko, Katja; Pulkkinen, Lea; Mesiainen, Paivi
2009-01-01
The timing of having one's first child, in relation to the timing of other transitions into adulthood and to social functioning, was investigated based on the Finnish Jyvaskyla Longitudinal Study of Personality and Social Development, conducted from age 8 (173 females and 196 males) to 42. Results showed that in women, relatively early (less than…
Propagation velocity of Alfven wave packets in a dissipative plasma
Amagishi, Y.; Nakagawa, H. ); Tanaka, M. )
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
Heating of ionospheric O(+) ions by shear Alfven waves
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Ashour-Abdalla, M.; Sydora, R. D.
1987-01-01
Ionospheric ions, in particular O(+) ions, which have been transversely heated, are often observed flowing upward along auroral field lines. A new mechanism, heating by current-driven shear (or kinetic) Alfven waves (SAW), is proposed. An electron current drives oblique SAWs unstable near a wave frequency of about the oxygen cyclotron frequency, and these waves are in turn gyroresonantly absorbed by the ions. The mechanism is similar to ion heating by current-driven electrostatic ion cyclotron waves (EICW). However, the SAW differs from the EICW in that as the perpendicular temperature of the ions increases, growth of the SAW can still occur, whereas growth of the EICW becomes suppressed. As a consequence, the SAW is able to provide sustained perpendicular heating of ions with smaller currents being required for the heating than for heating via EICWs.
Gyrokinetic particle simulation of beta-induced Alfven eigenmode
Zhang, H. S.; Lin, Z.; Holod, I.; Xiao, Y.; Wang, X.; Zhang, W. L.
2010-11-15
The beta-induced Alfven eigenmode (BAE) in toroidal plasmas is studied using global gyrokinetic particle simulations. The BAE real frequency and damping rate measured in the initial perturbation simulation and in the antenna excitation simulation agree well with each other. The real frequency is slightly higher than the ideal magnetohydrodynamic (MHD) accumulation point frequency due to the kinetic effects of thermal ions. Simulations with energetic particle density gradient show exponential growth of BAE with a growth rate sensitive to the energetic particle temperature and density. The nonperturbative contributions by energetic particles modify the mode structure and reduce the frequency relative to the MHD theory. The finite Larmor radius effects of energetic particles reduce the BAE growth rate. Benchmarks between gyrokinetic particle simulation and hybrid MHD-gyrokinetic simulation show good agreement in BAE real frequency and mode structure.
Nonlinear dynamics of beta-induced Alfven eigenmode in tokamak
Zhang, H. S.; Lin, Z.; Deng, W.; Holod, I.; Wang, Z. X.; Xiao, Y.; Zhang, W. L.
2013-01-15
The beta-induced Alfven eigenmode (BAE) excited by energetic particles in toroidal plasmas is studied in the global gyrokinetic simulations. It is found that the nonlinear BAE dynamics depends on the deviation from the marginality. In the strongly driven case, the mode exhibits a bursting state with fast and repetitive chirping. The nonlinear saturation is determined by the thermal ion nonlinearity and has no clear dependence on the linear growth rate. In the weakly driven case, the mode reaches a nearly steady state with small frequency chirping. The nonlinear dynamics is dominated by the energetic particle nonlinearity. In both cases, the nonlinear intensity oscillation and frequency chirping are correlated with the evolution of the coherent structures in the energetic particle phase space. Due to the radial variation of the mode amplitude and the radially asymmetric guiding center dynamics, the wave-particle interaction in the toroidal geometry is much more complex than the conventional one-dimensional wave-particle interaction paradigm.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Dust kinetic Alfven and acoustic waves in a Lorentzian plasma
Rubab, N.; Biernat, H. K.; Erkaev, N. V.
2009-10-15
Dust kinetic Alfven waves (DKAWs) with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external magnetic field. A dispersion relation of low-frequency DKAW on the dust acoustic velocity branch is obtained in a low-{beta} Lorentzian plasma. It is found that the influence of the Lorentzian distribution function is more effective for perpendicular component of group velocity as compared with parallel one. Lorentzian-type charging currents are obtained with the aid of Vlasov theory. Damping/instability due to dust charge fluctuation is found to be insensitive with the form of distribution function for DKAW. The possible applications to dusty space plasmas are pointed out.
Wille, Marie-Luise; Almualimi, Majdi A; Langton, Christian M
2016-01-01
Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer-simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of 10 acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both 'primary' (internal sample interface) and 'secondary' (external sample interface) echoes. A transit time spectrum was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7% ± 3.7% of the simulated data were within ±1 standard deviation of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R(2)%) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Furthermore, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts.
Determining the architecture of the Kepler-297 system using transit timing variations
NASA Astrophysics Data System (ADS)
Diamond-Lowe, Hannah; Stevenson, Kevin B.; Fabrycky, Daniel; Ballard, Sarah; Agol, Eric; Bean, Jacob; Holman, Matthew J.; Ragozzine, Darin
2015-01-01
It is essential to explore the architectures of exoplanetary systems as we attempt to understand planet formation histories and determine the rate of occurrence of habitable-zone rocky planets. We focus on the Kepler-297 system which hosts three transiting planets, Kepler-297b, Kepler-297c, and KOI-1426.03. We re-analyze extant Kepler data of the system, as well as new Spitzer data of Kepler-297c, to constrain the transit time variations (TTVs) of the three transiting planets in the system. We feed these results into a dynamical analysis in which the TTVs of the transiting planets constrain their orbital parameters, as well as those of potential non-transiting planets. The gravitational interactions between the Kepler-297 planets allow us to derive their mass ratios. We find that the orbital parameters of the three transiting planets are well-fit by a model that includes a non-transiting fourth planet outside of the three transitors. We are also able to constrain the orbital parameters of the outer-most transitor, thereby confirming it as the planet Kepler-297d.
Alfven waves and associated energetic ions downstream from Uranus
Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )
1991-02-01
The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.
NASA Astrophysics Data System (ADS)
Qi, Wenhai; Gao, Xianwen
2016-01-01
This paper focuses on the problem of finite-time H∞ control for stochastic time-delayed Markovian switching systems with partly known transition rates and nonlinearity. By employing an appropriate Lyapunov function and some appropriate free-weighting matrices, a state feedback controller is designed to ensure H∞ finite-time boundedness of the resulting closed-loop system that contains time-varying delay, admissible external disturbance, It ?-type stochastic disturbance and nonlinearity. All the proposed conditions are established in the form of linear matrix inequalities. Finally, an example is given to demonstrate the validity of the main results.
Transition state geometry of driven chemical reactions on time-dependent double-well potentials.
Junginger, Andrej; Craven, Galen T; Bartsch, Thomas; Revuelta, F; Borondo, F; Benito, R M; Hernandez, Rigoberto
2016-11-09
Reaction rates across time-dependent barriers are difficult to define and difficult to obtain using standard transition state theory approaches because of the complexity of the geometry of the dividing surface separating reactants and products. Using perturbation theory (PT) or Lagrangian descriptors (LDs), we can obtain the transition state trajectory and the associated recrossing-free dividing surface. With the latter, we are able to determine the exact reactant population decay and the corresponding rates to benchmark the PT and LD approaches. Specifically, accurate rates are obtained from a local description regarding only direct barrier crossings and to those obtained from a stability analysis of the transition state trajectory. We find that these benchmarks agree with the PT and LD approaches for obtaining recrossing-free dividing surfaces. This result holds not only for the local dynamics in the vicinity of the barrier top, but also for the global dynamics of particles that are quenched at the reactant or product wells after their sojourn over the barrier region. The double-well structure of the potential allows for long-time dynamics related to collisions with the outside walls that lead to long-time returns in the low-friction regime. This additional global dynamics introduces slow-decay pathways that do not result from the local transition across the recrossing-free dividing surface associated with the transition state trajectory, but can be addressed if that structure is augmented by the population transfer of the long-time returns.
Hine, Jeffrey F; Ardoin, Scott P; Foster, Tori E
2015-09-01
Research suggests that students spend a substantial amount of time transitioning between classroom activities, which may reduce time spent academically engaged. This study used an ABAB design to evaluate the effects of a computer-assisted intervention that automated intervention components previously shown to decrease transition times. We examined the effects of the intervention on the latency to on-task behavior of 4 students in 2 classrooms. Data also were collected on students' on-task behavior during activities and teachers' use of prompts and praise statements. Implementation of the intervention substantially decreased students' latencies to on-task behavior and increased on-task behavior overall. Further, the 2 teachers used fewer prompts to cue students to transition and stay on task and provided more praise during intervention phases. We discuss how automating classroom interventions may affect student and teacher behavior as well as how it may increase procedural fidelity.
The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface
NASA Technical Reports Server (NTRS)
Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen
2015-01-01
The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.
Transit time of a freely falling quantum particle in a background gravitational field
NASA Astrophysics Data System (ADS)
Davies, P. C. W.
2004-12-01
Using a model quantum clock, I evaluate an expression for the time of a non-relativistic quantum particle to transit a piecewise geodesic path in a background gravitational field with small spacetime curvature (gravity gradient), in the case in which the apparatus is in free fall. This calculation complements and extends an earlier one (Davies 2004) in which the apparatus is fixed to the surface of the Earth. The result confirms that, for particle velocities not too low, the quantum and classical transit times coincide, in conformity with the principle of equivalence. I also calculate the quantum corrections to the transit time when the de Broglie wavelengths are long enough to probe the spacetime curvature. The results are compared with the calculation of Chiao and Speliotopoulos (2003), who propose an experiment to measure the foregoing effects.
Finite-time thermodynamics and the gas-liquid phase transition
NASA Astrophysics Data System (ADS)
Santoro, M.; Schön, J. C.; Jansen, M.
2007-12-01
In this paper, we study the application of the concept of finite-time thermodynamics to first-order phase transitions. As an example, we investigate the transition from the gaseous to the liquid state by modeling the liquification of the gas in a finite time. In particular, we introduce, state, and solve an optimal control problem in which we aim at achieving the gas-liquid first-order phase transition through supersaturation within a fixed time in an optimal fashion, in the sense that the work required to supersaturate the gas, called excess work, is minimized by controlling the appropriate thermodynamic parameters. The resulting set of coupled nonlinear differential equations is then solved for three systems, nitrogen N2 , oxygen O2 , and water vapor H2O .
Nonlinear light behaviors near phase transition in non-parity-time-symmetric complex waveguides.
Nixon, Sean; Yang, Jianke
2016-06-15
Many classes of non-parity-time (PT)-symmetric waveguides with arbitrary gain and loss distributions still possess all-real linear spectrum or exhibit phase transition. In this Letter, nonlinear light behaviors in these complex waveguides are probed analytically near a phase transition. Using multi-scale perturbation methods, a nonlinear ordinary differential equation (ODE) is derived for the light's amplitude evolution. This ODE predicts that a single class of these non-PT-symmetric waveguides supports soliton families and amplitude-oscillating solutions both above and below linear phase transition, in close analogy with PT-symmetric systems. For the other classes of waveguides, the light's intensity always amplifies under the effect of nonlinearity, even if the waveguide is below the linear phase transition. These analytical predictions are confirmed by direct computations of the full system.
Reconciling transition path time and rate measurements in reactions with large entropic barriers
NASA Astrophysics Data System (ADS)
Makarov, Dmitrii E.
2017-02-01
Recent experiments and simulation studies showed that protein/DNA folding barriers inferred from folding rates or from potentials of mean force are often much higher than the barriers estimated from the distributions of transition path times. Here a toy model is used to explain a possible origin of this effect: It is shown that when the transition in question involves an entropic barrier, the one-dimensional Langevin model commonly used to interpret experimental data, while adequately predicting the transition rate, fails to describe the properties of the subset of the trajectories that form the transition path ensemble; the latter may still be describable in terms of a one-dimensional model, but with a different potential, just as observed experimentally.
Koutsouris, D; Guillet, R; Wenby, R B; Meiselman, H J
1989-01-01
A new red blood cell filtration system, termed the Cell Transit Time Analyzer (CTTA), has been developed in order to measure the individual transit times of a large number of cells through cylindrical micropores in special "oligopore" filters; the system operates on the electrical conductometric principle and employs special computer software to provide several measures of the resulting transit time histogram. Using this system with filters having pore diameters of 4.5 or 5.0 microns and length to diameter ratios of 3.0 to 4.7, we have evaluated the effects of several experimental factors on the flow behavior of normal and modified human RBC. Our results indicate: 1) linear RBC pressure-flow behavior over a driving pressure range of 2 to 10.5 cm H2O with zero velocity intercepts at delta P = 0, thus suggesting the Poiseuille-like nature of the flow; 2) resistance to flow or "apparent viscosities" for normal RBC which are between 3.1 to 3.9 cPoise and are independent of driving pressure and pore geometry; 3) increased flow resistance (i.e., increased transit times) for old versus young RBC and for RBC made less deformable by DNP-induced crenation or by heat treatment at 48 degrees C; 4) increased mean transit time and poorer reproducibility when using EDTA rather than heparin as the anticoagulant agent. Further, using mixtures of heat-treated and normal RBC and various percentile values of the transit time histogram, we have been able to demonstrate the presence of sub-populations of rigid cells and thus the value of measurements which allow statistical analyses of RBC populations.
NASA Astrophysics Data System (ADS)
Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Mozer, F.; Frey, H. U.
2013-12-01
The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. These auroral acceleration processes in turn accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. The complex interplay between field-aligned current system formation, the development of parallel electric fields, and resultant changes in the plasma constituents that occur during substorms within or just above the auroral acceleration zone remain unclear. We present Cluster multi-point observations within the high-altitude acceleration region (> 3 Re altitude) at key instances during the development of a substorm. Of particular emphasis is on the time-development of the plasma, potentials and currents that occur therein with the aim of ascertaining high-altitude drivers of substorm active auroral acceleration processes and auroral emission consequences. Preliminary results show that the initial onset is dominated by Alfvenic activity as evidenced by the sudden occurrence of relatively intense, short-spatial scale Alfvenic currents and attendant energy dispersed, counterstreaming electrons poleward of the growth-phase arc. The Alfvenic currents are locally planar structures with characteristic thicknesses on the order of a few tens of kilometers. In subsequent passages by the other spacecraft, the plasma sheet region became hotter and thicker via the injection of new hot, dense plasma of magnetospheric origins poleward of the pre-existing growth phase arc. In association with the heating and/or thickening of the plasma sheet, the currents appeared to broaden to larger scales as Alfven dominated activity gave way to either inverted-V dominated or mixed inverted-V and Alfvenic behavior depending on location. The transition from Alfven dominated to inverted-V dominated
Drift-Alfven instabilities of a finite beta plasma shear flow along a magnetic field
NASA Astrophysics Data System (ADS)
Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June
2016-02-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows.
Shear Alfv'en spectrum and mode structures for 3D configurations
NASA Astrophysics Data System (ADS)
Spong, D. A.; Todo, Y.
2007-11-01
Energetic particle destabilized Alfv'en modes are observed in a wide range of stellarator experiments. We have developed a code (AE3D) to calculate the full shear Alfv'en frequency spectrum and associated mode structures for arbitrary stellarator equilibria. This is based on a Galerkin approach using a combined Fourier mode (poloidal/toroidal angle) finite element (radial) representation. It has been applied to an LHD case where Alfv'en activity and enhanced ion losses were seen. Applications also are underway to other experiments, such as HSX, where ECH-driven Alfv'en modes were observed. This model can form the basis for stellarator optimization targets, synthetic diagnostics, and reduced linear/nonlinear stability models. It is also applicable to tokamaks with symmetry-breaking effects. By matching observed frequencies with calculated mode structures, improved understanding of the physics mechanisms of AE modes, such as sideband coupling, damping, and enhanced fast particle losses can be developed.
Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system
Hiraki, Yasutaka; Watanabe, Tomo-Hiko
2012-10-15
Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Morgenstern, Uwe; Irvine, Dylan
2016-04-01
Headwater streams contribute a significant proportion of the total discharge of many river systems. However, despite their importance, the time taken for rainfall to pass through the catchment into the streams (the transit time) in headwater catchments is largely unknown as are the catchment characteristics (such as drainage density, topography, landuse, or geology) that determine variations in transit times. Because the peak in Tritium activities in rainfall produced by atmospheric nuclear tests in the1950's and 1960's (the "bomb-pulse") was several orders of magnitude lower in the southern hemisphere than in the northern hemisphere, Tritium activities of remnant bomb pulse water in the southern hemisphere have decayed below those of modern rainfall. This allows mean transit times to be estimated from single Tritium measurements. Here we use Tritium to estimate transit times of water contributing to perennial streams in the adjacent upper catchments of the Yarra and Latrobe Rivers (southeast Australia). Samples were collected at varying flow from six headwater tributary sites in the Latrobe catchment, which is largely forested and four tributaries in the Yarra catchment which has been extensively cleared for dryland agriculture. The lowest Tritium activities were recorded during summer baseflow conditions and are between 1.25 and 1.75 TU, these are significantly below the Tritium activity of local rainfall (~2.8 TU). Mean transit times calculated using an exponential-piston flow lumped parameter model are 21 to 47 years. Tritium activities during the recession periods following winter high flows are higher (1.54 to 2.1 TU), which may reflect either the dilution of a baseflow component with recent surface runoff or mobilisation of different stores of water with different residence times (e.g., from the soils or the regolith) from within the catchment. The variation of major ion concentrations with discharge suggests it is more likely that that different stores of
Nonlinear ion dynamics in Hall thruster plasma source by ion transit-time instability
NASA Astrophysics Data System (ADS)
Lim, Youbong; Choe, Wonho; Mazouffre, Stéphane; Park, Jae Sun; Kim, Holak; Seon, Jongho; Garrigues, L.
2017-03-01
High-energy tail formation in an ion energy distribution function (IEDF) is explained in a Hall thruster plasma with the stationary crossed electric and magnetic fields whose discharge current is oscillated at the ion transit-time scale with a frequency of 360 kHz. Among ions in different charge states, singly charged Xe ions (Xe+) have an IEDF that is significantly broadened and shifted toward the high-energy side, which contributes to tail formation in the entire IEDF. Analytical and numerical investigations confirm that the IEDF tail is due to nonlinear ion dynamics in the ion transit-time oscillation.
Application of transit timing variation method (TTV) to exoplanet system TrES-3
NASA Astrophysics Data System (ADS)
Kuznyetsova, Yu.; Shliakhetskaya, Y.; Matsiaka, O.; Krushevska, V.; Romanyuk, Ya.
2015-10-01
On the basis of the original photometric data, the light curves of several transits in the exoplanet system TrES-3 were simulated by Monte Carlo method. Using these curves, the estimates of precise values of mid-transit time were calculated to assess the possibility of finding new planets by timing method in already known exoplanet systems using ground-based observations at small telescopes. More accurate values of the some orbital and physical parameters of TrES-3 system were also obtained including following the planet-star radius ratio (RP/R*), the angle of the planet orbital plane inclination (i).
Study of the transit time of pressure propagation in an acoustic delay line
NASA Astrophysics Data System (ADS)
Song, Yunn-Fang; Chen, Ching-Iue; Chang, Chu-Nan; You, Jean-Luh; Hwang, Fu-Kwun; Hsu, Chih-Ying
1986-12-01
A fast sensor was used as a vacuum gauge to measure the transit time of a gas pressure through an acoustic delay line (ADL). The results were compared with the predictions of two theoretical models. We found that in the rupture pressure range of 101 to 104 Pa, the predictions of Jean and Rauss' model, based on the assumption that the flow of gas be a gas fluid, set lower boundaries for the observed transit times; while the predictions of our model, based on the molecular motion, set the upper ones.
Vlahandonis, Anna; Biggs, Sarah N; Nixon, Gillian M; Davey, Margot J; Walter, Lisa M; Horne, Rosemary S C
2014-08-01
Pulse transit time has been proposed as a surrogate measure of systolic arterial pressure, as it is dependent upon arterial stiffness. Past research has shown that pulse transit time has a significant inverse relationship to systolic arterial pressure in adults; however, studies in children are limited. This study aimed to explore the relationship between systolic arterial pressure and pulse transit time in children during sleep. Twenty-five children (13.1 ± 1.6 years, 48% male) underwent overnight polysomnography (PSG) with a simultaneous recording of continuous systolic arterial pressure and photoplethysmography. Pulse transit time was calculated as the time delay between the R-wave peak of the electrocardiogram (ECG) to the 50% point of the upstroke of the corresponding photoplethysmography waveform; 500 beats of simultaneous systolic arterial pressure and pulse transit time were analysed in each sleep stage for each child. Pulse transit time was normalized to each subject's mean wake pulse transit time. The ability of pulse transit time to predict systolic arterial pressure change was determined by linear mixed-effects modelling. Significant negative correlations between pulse transit time and systolic arterial pressure were found for individual children for each sleep stage [mean correlations for cohort: non-rapid eye movement (NREM) sleep 1 and 2 r = -0.57, slow wave sleep (SWS) r = -0.76, REM r = -0.65, P < 0.01 for all]. Linear mixed-model analysis demonstrated that changes in pulse transit time were a significant predictor of changes in systolic arterial pressure for each sleep stage (P < 0.001). The model of pulse transit time-predicted systolic arterial pressure closely tracked actual systolic arterial pressure changes over time. This study demonstrated that pulse transit time was accurate in tracking systolic arterial pressure changes over time. Thus, the use of pulse transit time as a surrogate measure of changes in systolic arterial pressure in
Gender Transitions in Later Life: The Significance of Time in Queer Aging
Fabbre, Vanessa D.
2014-01-01
Concepts of time are ubiquitous in studies of aging. This article integrates an existential perspective on time with a notion of queer time based on the experiences of older transgender persons who contemplate or pursue a gender transition in later life. Interviews were conducted with male-to-female identified persons aged 50 years or older (N=22), along with participant observation at three national transgender conferences (N=170 hours). Interpretive analyses suggest that an awareness of “time left to live” and a feeling of “time served” play a significant role in later life development and help expand gerontological perspectives on time and queer aging. PMID:24798691
NASA Astrophysics Data System (ADS)
Peralta-Tapia, A.; Soulsby, C.; Tetzlaff, D.; Sponseller, R.; Bishop, K.; Laudon, H.
2016-12-01
Understanding how water moves through catchments - from the time it enters as precipitation to when it exits via streamflow - is of fundamental importance to understanding hydrological and biogeochemical processes. A basic descriptor of this routing is the Transit Time Distribution (TTD) which is derived from the input-output behavior of conservative tracers, the mean of which represents the average time elapsed between water molecules entering and exiting a flow system. In recent decades, many transit time studies have been conducted, but few of these have focused on snow-dominated catchments. We assembled a 10-year time series of isotopic data (δ18O and δ2H) for precipitation and stream water to estimate the characteristics of the transit time distribution in a boreal catchment in northern Sweden. We applied lumped parameter models using a gamma distribution to calculate the Mean Transit Time (MTT) of water over the entire period of record and to evaluate how inter-annual differences in transit times relate to hydroclimatic variability. The best fit MTT for the complete 10-year period was 650 days (Nash-Sutcliff Efficiency = 0.65), while the best fit inter-annual MTT ranged from 300 days up to 1200 days. Whilst there was a weak negative correlation between mean annual total precipitation and the annual MTT, this relationship was stronger (r2 = 0.53, p = 0.02) for the annual rain water input. This strong connection between the MTT and annual rainfall, rather than snowmelt, has strong implications for understanding future hydrological and biogeochemical processes in boreal regions, given that predicted warmer winters would translate into a greater proportion of precipitation falling as rain and thus shorter MTT in catchments. Such a change could have direct implications for the export of solutes and pollutants.
QUANTIFYING THE CHALLENGES OF DETECTING UNSEEN PLANETARY COMPANIONS WITH TRANSIT TIMING VARIATIONS
Veras, Dimitri; Ford, Eric B.; Payne, Matthew J.
2011-02-01
Both ground- and space-based transit observatories are poised to significantly increase the number of known transiting planets and the number of precisely measured transit times. The variation in a planet's transit times may be used to infer the presence of additional planets. Deducing the masses and orbital parameters of such planets from transit time variations (TTVs) alone is a rich and increasingly relevant dynamical problem. In this work, we evaluate the extent of the degeneracies in this process, systematically explore the dependence of TTV signals on several parameters, and provide phase space plots that could aid observers in planning future observations. Our explorations are focused on a likely-to-be prevalent situation: a known transiting short-period Neptune- or Jupiter-sized planet and a suspected external low-mass perturber on a nearly coplanar orbit. Through {approx}10{sup 7} N-body simulations, we demonstrate how TTV signal amplitudes may vary by orders of magnitude due to slight variations in any one orbital parameter (10{sup -3} AU in a semimajor axis, 0.005 in eccentricity, or a few degrees in orbital angles), and quantify the number of consecutive transit observations necessary in order to obtain a reasonable opportunity of characterizing the unseen planet ({approx}>50 observations). Planets in or near period commensurabilities of the form p:q, where p {<=} 20 and q {<=} 3, produce distinct TTV signatures, regardless of whether the planets are actually locked in a mean motion resonance. We distinguish these systems from the secular systems in our explorations. Additionally, we find that computing the autocorrelation function of a TTV signal can provide a useful diagnostic for identifying possible orbits for additional planets and suggest that this method could aid integration of TTV signals in future studies of particular exosystems.
Super-alfvenic propagation of cosmic rays: The role of streaming modes
NASA Technical Reports Server (NTRS)
Morrison, P. J.; Scott, J. S.; Holman, G. D.; Ionson, J. A.
1980-01-01
Numerous cosmic ray propagation and acceleration problems require knowledge of the propagation speed of relativistic particles through an ambient plasma. Previous calculations indicated that self-generated turbulence scatters relativistic particles and reduces their bulk streaming velocity to the Alfven speed. This result was incorporated into all currently prominent theories of cosmic ray acceleration and propagation. It is demonstrated that super-Alfvenic propagation is indeed possible for a wide range of physical parameters. This fact dramatically affects the predictions of these models.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2003-01-01
A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.
NASA Astrophysics Data System (ADS)
Cartwright, I.; Morgenstern, U.
2015-06-01
Headwater streams contribute a significant proportion of the total flow to many river systems, especially during summer low-flow periods. However, despite their importance, the time taken for water to travel through headwater catchments and into the streams (the transit time) is poorly constrained. Here, 3H activities of stream water are used to define transit times of water contributing to streams from the upper reaches of the Ovens River in southeast Australia at varying flow conditions. 3H activities of the stream water varied from 1.63 to 2.45 TU, which are below the average 3H activity of modern local rainfall (~3 TU). The highest 3H activities were recorded following higher winter flows and the lowest 3H activities were recorded at summer low-flow conditions. Variations of major ion concentrations and 3H activities with streamflow imply that different stores of water from within the catchment (e.g. from the soil or regolith) are mobilised during rainfall events rather than there being simple dilution of an older groundwater component by event water. Mean transit times calculated using an exponential-piston flow model range between 5 and 31 years and are higher at summer low-flow conditions. Mean transit times calculated using other flow models (e.g. exponential flow or dispersion) are similar. There are broad correlations between 3H activities and the percentage of rainfall exported from each catchment and between 3H activities and Na and Cl concentrations that allow first-order estimates of mean transit times in adjacent catchments or at different times in these catchments to be made. Water from the upper Ovens River has similar mean transit times to the headwater streams implying there is no significant input of old water from the alluvial gravels. The observation that the water contributing to the headwater streams in the Ovens catchment has a mean transit time of years to decades implies that these streams are buffered against rainfall variations on
NASA Astrophysics Data System (ADS)
Cartwright, I.; Morgenstern, U.
2015-09-01
Headwater streams contribute a significant proportion of the total flow to many river systems, especially during summer low-flow periods. However, despite their importance, the time taken for water to travel through headwater catchments and into the streams (the transit time) is poorly understood. Here, 3H activities of stream water are used to define transit times of water contributing to streams from the upper reaches of the Ovens River in south-east Australia at varying flow conditions. 3H activities of the stream water varied from 1.63 to 2.45 TU, which are below the average 3H activity of modern local rainfall (2.85 to 2.99 TU). The highest 3H activities were recorded following higher winter flows and the lowest 3H activities were recorded at summer low-flow conditions. Variations of major ion concentrations and 3H activities with streamflow imply that different stores of water from within the catchment (e.g. from the soil or regolith) are mobilised during rainfall events rather than there being simple dilution of an older groundwater component by event water. Mean transit times calculated using an exponential-piston flow model range from 4 to 30 years and are higher at summer low-flow conditions. Mean transit times calculated using other flow models (e.g. exponential flow or dispersion) are similar. There are broad correlations between 3H activities and the percentage of rainfall exported from each catchment and between 3H activities and Na and Cl concentrations that allow first-order estimates of mean transit times in adjacent catchments or at different times in these catchments to be made. Water from the upper Ovens River has similar mean transit times to the headwater streams implying there is no significant input of old water from the alluvial gravels. The observation that the water contributing to the headwater streams in the Ovens catchment has a mean transit time of years to decades implies that these streams are buffered against rainfall variations on
The Real Time Disintegration of an Asteroid Transiting a White Dwarf
NASA Astrophysics Data System (ADS)
Xu, Siyi; Rappaport, Saul; DeVore, John; Ivanov, Valentin; Debes, John; Provencal, Judith; Vanderburg, Andrew; Croll, Bryce; Dufour, Patrick; Zuckerman, Ben
2016-08-01
There is strong evidence that an actively disintegrating asteroid is orbiting the white dwarf WD 1145+017. This scenario is supported by several observations, including: (i) transits from multiple objects within the white dwarf's tidal radius; (ii) infrared excess from a circumstellar dust disk; (iii) ubiquitous high-velocity absorption lines from circumstellar gas; (iv) a heavily polluted atmosphere from the accretion of the circumstellar material. We were awarded Spitzer DDT time to perform photometric observation simultaneously with a few other telescopes on March 29, 2016. Our preliminary analysis has returned the first detection of a color-dependent transit. Here, we propose to monitor this system over the next two years to understand the change of the transiting material as well as the possible change of the dust disk. This system provides a unique window to study the real time disintegration of an asteroid around a white dwarf.
Modifications to the shear Alfv'en continua due to the presence of a magnetic island
NASA Astrophysics Data System (ADS)
Cook, C. R.; Hirshman, S. P.; Spong, D. A.; Hegna, C. C.; Anderson, D. T.; Sanchez, R.
2012-10-01
Most studies of the shear Alfv'en spectrum of toroidal confinement devices assume the existence of topologically toroidal magnetic surfaces. In this work, we will address how the presence of a magnetic island alters these calculations. In particular, the analytic theory of gaps induced by an island in the Alfv'en continua of a cylindrical plasma will be presented. This calculation will be compared to the well-known results for the toroidicity-induced Alfv'en eigenmode gap. This theory utilizes island straight field-line coordinates, which will be detailed. Early and planned work will be discussed regarding the use of SIESTA along with STELLGAP to analyze the effects of islands and quasi-single-helicity states on the Alfv'en continua in RFPs. SIESTA is a 3D MHD equilibrium code capable of resolving islands. The Hessian matrix computed in SIESTA can be used to solve the MHD eigenmode equations, allowing the Alfv'en continua to be determined in the presence of islands. STELLGAP is a code that computes the Alfv'en spectrum from a toroidal VMEC equilibrium converted to Boozer coordinates through the BoozXform code. Comparing the continua from the STELLGAP case without islands to the SIESTA case with islands will allow us to verify the presented theory in the future.
Transition time of nonlinear Landau-Zener model in adiabatic limit
NASA Astrophysics Data System (ADS)
Liu, Xuan-Zuo; Tian, Dong-Ping; Chong, Bo
2016-06-01
The impact of nonlinear interaction on the loop structure of lower energy level and on the time evolution curve of canonical momentum which corresponds to the lower eigenstate are analyzed respectively. We find that the curve changes from single-valued to multi-valued as nonlinear interaction grows. The fascinating part is that the time range delimited by turning points in the loop of energy level and the period between two inflexion points on the multi-valued part of the evolution curve of canonical momentum are the same. Therefore, we propose a characteristic time in the transition process of nonlinear Landau-Zener model in adiabatic limit. Last, the physical meaning of the transition time as a measure of how much time the system experiences a structural change which directly results in the breakdown of adiabaticity is discussed.
Measuring the Masses and Radii of Sub-Neptunes with Transit Timing Variations
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Lissauer, J. J.; Rowe, J. F.; Fabrycky, D.
2013-10-01
The bounty of sub-Neptunes discovered by Kepler enables us to study a regime in planetary size and mass that is absent from the Solar System. This regime includes a transition from rocky planets to those with substantial amounts of volatiles-- in either ice mantles or deep atmospheres. Characterizing these worlds by their bulk densities can probe this transition, and this requires mass and radius determinations. Outside our solar system, there is a small sample of planets with known masses and radii, mostly hot jupiters whose radii are known from transit depths, and whose masses are determined from radial velocity spectroscopy (RV). In the absence of mass determinations via RV observations, transit timing variations (TTVs) offer a chance to probe perturbations between planets that pass close to one another or are near resonance, and hence dynamical fits to observed transit times can measure planetary masses and orbital parameters. Such modelling can probe planetary masses at longer orbital periods than RV targets, although not without some challenges. For example, in modeling pairwise planetary perturbations, a degeneracy between eccentricity and mass exists that limits the accuracy of mass determinations. Nevertheless, in several compact multiplanet systems, fitting complex TTV signals can break the degeneracy, permitting useful mass determinations. The precision in measuring the radius of a transiting planet rests on the uncertainty in the stellar radius, which is typically ~10% for targets with spectral follow-up. With dynamical fits, however, solutions for the orbital parameters including the eccentricity vectors can, alongside the transit lightcurves, tightly constrain the stellar density and radius. Revisiting the six-planet system of Kepler-11, our dynamical fits to TTVs, alongside spectroscopic data on the host star, reduced the stellar and hence planetary radius uncertainties to just 2%, permitting useful planetary density determinations. In the case of
Long-term transit timing monitoring and homogenous study of WASP-32
NASA Astrophysics Data System (ADS)
Sun, Lei-Lei; Gu, Sheng-Hong; Wang, Xiao-Bin; Collier Cameron, Andrew; Cao, Dong-Tao; Wang, Yi-Bo; Xiang, Yue; Hui, Ho-Keung; Kwok, Chi-Tai; Yeung, Bill; Leung, Kam-Cheung
2015-01-01
We report new photometric observations of the transiting exoplanetary system WASP-32 made by using CCD cameras at Yunnan Observatories and Ho Koon Nature Education cum Astronomical Centre, China from 2010 to 2012. Following our usual procedure, the observed data are corrected for systematic errors according to the coarse decorrelation and SYSREM algorithms so as to enhance the signal of the transit events. Combined with radial velocity data presented in the literature, our newly observed data and earlier photometric data in the literature are simultaneously analyzed to derive the physical parameters describing the system by employing the Markov chain Monte Carlo technique. The derived parameters are consistent with the result published in the original paper about WASP-32b, but the uncertainties of the new parameters are smaller than those in the original paper. Moreover, our modeling result supports a circular orbit for WASP-32b. Through the analysis of all available mid-transit times, we have refined the orbital period of WASP-32b; no evident transit timing variation is found in these transit events.
Transit Timing Observations from Kepler. IX. Catalog of the Full Long-cadence Data Set
NASA Astrophysics Data System (ADS)
Holczer, Tomer; Mazeh, Tsevi; Nachmani, Gil; Jontof-Hutter, Daniel; Ford, Eric B.; Fabrycky, Daniel; Ragozzine, Darin; Kane, Mackenzie; Steffen, Jason H.
2016-07-01
We present a new transit timing catalog of 2599 Kepler Objects of Interest (KOIs), using the PDC-MAP long-cadence light curves that include the full 17 quarters of the mission (ftp://wise-ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough S/N, we derived the timing, duration, and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing of 225,273 transits. After removal of outlier timings, we derived various statistics for each KOI that were used to indicate significant variations. Including systems found by previous works, we have detected 260 KOIs that showed significant TTVs with long-term variations (>100 days), and another 14 KOIs with periodic modulations shorter than 100 days and small amplitudes. For five of those, the periodicity is probably due to the crossing of rotating stellar spots by the transiting planets.
ERIC Educational Resources Information Center
Long, Kathy; Kamii, Constance
2001-01-01
Interviews 120 children in kindergarten and grades 2, 4, and 6 with five Piagetian tasks to determine the grade level at which most have constructed transitive reasoning, unit iteration, and conservation of speed. Indicates that construction of the logic necessary to make sense of the measurement of time is generally not complete before sixth…
The Influence of Unpaid Work on the Transition out of Full-Time Paid Work
ERIC Educational Resources Information Center
Carr, Dawn C.; Kail, Ben Lennox
2013-01-01
Purpose: Continued employment after retirement and engagement in unpaid work are both important ways of diminishing the negative economic effects of the retirement of baby boomer cohorts on society. Little research, however, examines the relationship between paid and unpaid work at the transition from full-time work. Using a resource perspective…
The Importance of Timing of Transitions for Risk of Regular Smoking and Nicotine Dependence
Dierker, Lisa; He, Jianping; Kalaydjian, Amanda; Swendsen, Joel; Degenhardt, Louisa; Glantz, Meyer; Conway, Kevin; Anthony, James; Chiu, Wai Tat; Sampson, Nancy A.; Kessler, Ronald; Merikangas, Kathleen
2009-01-01
Purpose To investigate the association between the timing and speed of transition among major smoking milestones (onset, weekly and daily smoking) and onset and recovery from nicotine dependence. Method Analyses are based on data from The National Comorbidity Survey-Replication (NCS-R), a nationally representative face-to-face household survey conducted between February 2001 and April 2003. Results Of those who had ever smoked (n=5,692), 71.3% had reached weekly smoking levels and 67.5% had reached daily smoking. Four in ten who had ever smoked met criteria for nicotine dependence. A shorter time since the onset of weekly and daily smoking was associated with a transition to both daily smoking and nicotine dependence, respectively. The risk for each smoking transition was highest within the year following the onset of the preceding milestone. Recovery was associated with a longer period of time between smoking initiation and the development of dependence and a later age of smoking onset. Conclusions These findings shed light on the clinical course of smoking and nicotine dependence. Given the importance of timing of smoking transitions, prevalence may be further reduced through intervention targeted at adolescents and young adults in the months most proximal to smoking initiation. PMID:18704617
ERIC Educational Resources Information Center
Bloom, Dan; And Others
Florida's Family Transition Program (FTP) combines a welfare time limit of 24-36 months with services, requirements, and financial incentives designed to help welfare recipients find and hold jobs. Aid to Families with Dependent Children (AFDC) applicants who were not incapacitated, disabled, or otherwise exempt from the FTP program were randomly…
Dating Violence, Bullying, and Sexual Harassment: Longitudinal Profiles and Transitions over Time
ERIC Educational Resources Information Center
Miller, Shari; Williams, Jason; Cutbush, Stacey; Gibbs, Deborah; Clinton-Sherrod, Monique; Jones, Sarah
2013-01-01
Although there is growing recognition of the problem of dating violence, little is known about how it unfolds among young adolescents who are just beginning to date. This study examined classes (subgroups) and transitions between classes over three time points based on dating violence, bullying, and sexual harassment perpetration and victimization…
The barrier method: a technique for calculating very long transition times.
Adams, D A; Sander, L M; Ziff, R M
2010-09-28
In many dynamical systems, there is a large separation of time scales between typical events and "rare" events which can be the cases of interest. Rare-event rates are quite difficult to compute numerically, but they are of considerable practical importance in many fields, for example, transition times in chemical physics and extinction times in epidemiology can be very long, but are quite important. We present a very fast numerical technique that can be used to find long transition times (very small rates) in low-dimensional systems, even if they lack detailed balance. We illustrate the method for a bistable nonequilibrium system introduced by Maier and Stein and a two-dimensional (in parameter space) epidemiology model.
Myagmarjalbuu, Bolormaa; Moon, Myeong Ju; Heo, Suk Hee; Jeong, Seo In; Park, Jong-Seong; Jun, Jae Yeoul; Kang, Heoung Keun
2013-01-01
Objective The purpose of this study was to establish a minimally invasive and reproducible protocol for estimating the gastrointestinal (GI) transit time in mice using barium and radiopaque markers. Materials and Methods Twenty 5- to 6-week-old Balb/C female mice weighing 19-21 g were used. The animals were divided into three groups: two groups that received loperamide and a control group. The control group (n = 10) animals were administered physiological saline (1.5 mL/kg) orally. The loperamide group I (n = 10) and group II (n = 10) animals were administered 5 mg/kg and 10 mg/kg loperamide orally, respectively. Thirty minutes after receiving the saline or loperamide, the mice was administered 80 µL of barium solution and six iron balls (0.5 mm) via the mouth and the upper esophagus by gavage, respectively. Afterwards, the mice were continuously monitored with fluoroscopic imaging in order to evaluate the swallowing of the barium solution and markers. Serial fluoroscopic images were obtained at 5- or 10-min intervals until all markers had been excreted from the anal canal. For analysis, the GI transit times were subdivided into intestinal transit times (ITTs) and colon transit times (CTTs). Results The mean ITT was significantly longer in the loperamide groups than in the control group (p < 0.05). The mean ITT in loperamide group II (174.5 ± 32.3) was significantly longer than in loperamide group I (133.2 ± 24.2 minute) (p < 0.05). The mean CTT was significantly longer in loperamide group II than in the control group (p < 0.05). Also, no animal succumbed to death after the experimental procedure. Conclusion The protocol for our study using radiopaque markers and barium is reproducible and minimally invasive in determining the GI transit time of the mouse model. PMID:23323030
Changes in Sleep Duration and Sleep Timing Associated with Retirement Transitions
Hagen, Erika W.; Barnet, Jodi H.; Hale, Lauren; Peppard, Paul E.
2016-01-01
Study Objectives: Investigate whether retirement transitions are associated with changes in sleep duration and sleep timing, and whether these associations are modified by age, sex, mental health, or circadian preference. Methods: The Retirement and Sleep Trajectories (REST) study is a longitudinal study consisting of four annual mailed surveys that collected information about employment, sleep, and health. Differences in reported sleep duration, bedtime and wake time between successive surveys were calculated to estimate change over 1, 2, and 3 y. Linear regression models were used to estimate changes in these sleep parameters associated with retirement 1, 2, and 3 y posttransition. Results: Retiring from full-time work was associated with bedtimes that were 30, 31, and 36 min later 1, 2, and 3 y postretirement; wake times that were 63, 69, and 78 min later; and sleep durations that were 15, 16, and 22 min longer 1, 2, and 3 y postretirement. These associations did not differ by sex or mental health status. Age and circadian preference modified the associations between retirement and change in sleep parameters; the increase in sleep duration was shorter and the wake time extension was lesser with advancing retirement age; those with evening preference had longer wake time extensions than those with morning preference. Conclusion: Transitioning to retirement is associated with longer sleep duration, later bedtimes, and later wake times. These changes were detectable about 1 y postwork transition and were persistent up to 3 y later. Citation: Hagen EW, Barnet JH, Hale L, Peppard PE. Changes in sleep duration and sleep timing associated with retirement transitions. SLEEP 2016;39(3):665–673. PMID:26564125
Late time cosmological phase transitions 1: Particle physics models and cosmic evolution
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Hill, Christopher T.; Watkins, Richard
1991-01-01
We described a natural particle physics basis for late-time phase transitions in the universe. Such a transition can seed the formation of large-scale structure while leaving a minimal imprint upon the microwave background anisotropy. The key ingredient is an ultra-light pseudo-Nambu-Goldstone boson with an astronomically large (O(kpc-Mpc)) Compton wavelength. We analyze the cosmological signatures of and constraints upon a wide class of scenarios which do not involve domain walls. In addition to seeding structure, coherent ultra-light bosons may also provide unclustered dark matter in a spatially flat universe, omega sub phi approx. = 1.
Linear and nonlinear theory of the proton beam transit-time oscillator (TTO)
NASA Astrophysics Data System (ADS)
Walsh, John E.; Mostrom, Michael A.; Clark, Randy M.; Arman, M. Joseph; Campbell, Mark M.
1989-07-01
A theoretical characterization is presented for both the small- and large-amplitude behaviors of the intense beam-driven transit-time oscillator device which encompasses the effects of the beam self-fields and space-charge effects. The theory has been employed in the development of expressions for comparison with particle simulation results. Attention is given to the effect of beam-plasma frequency on gain, saturation growth in the monotron, the effects of space-charge depression on the transit angle, and the dependence of monotron performance on beam energy.
The Diversity of Low-mass Exoplanets Characterized via Transit Timing
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack. J.; Fabrycky, Daniel C.
2016-10-01
Transit timing variations (TTV) in multi-transiting systems enables precise characterizations of low-mass planets and their orbits. The range of orbital periods and incident fluxes with detailed TTV constraints complements the radial velocity sample for low-mass planets, pushing exoplanet characterization to the regime sub-Earth size planets and out to Mercury-like distances. This has revealed an astonishing diversity in the density of super-Earth mass planets. We summarize these and other contributions to exoplanet science from TTVs.
LONG-TERM TRANSIT TIMING MONITORING AND REFINED LIGHT CURVE PARAMETERS OF HAT-P-13b
Fulton, Benjamin J.; Shporer, Avi; Winn, Joshua N.; Holman, Matthew J.; Pal, Andras; Zachary Gazak, J.
2011-09-15
We present 10 new transit light curves of the transiting hot Jupiter HAT-P-13b, obtained during two observational seasons by three different telescopes. When combined with 12 previously published light curves, we have a sample consisting of 22 transit light curves, spanning 1041 days across four observational seasons. We use this sample to examine the recently observed large-amplitude transit timing variations (TTVs) by Pal et al. and give refined system parameters. We find that the transit times are consistent with a linear ephemeris, with the exception of a single transit time, from UT 2009 November 5, for which the measured mid-transit time significantly deviates from our linear ephemeris. The nature of this deviation is not clear, and the rest of the data do not show any significant TTVs.
Radiographic analysis of the effect of dietary fibers on rat colonic transit time
Lupton, J.R.; Meacher, M.M. )
1988-11-01
The effect of different fiber sources on colonic transit time was charted using serial radiographs. Sixty male Sprague-Dawley rats, 10 rats per group, were provided with either a fiber-free control diet or the control diet uniformly diluted to provide 8% dietary fiber from guar, pectin, cellulose, wheat bran, or oat bran. At surgery, radiopaque markers were inserted at defined distances in the mesentary closest to the large bowel. Three weeks postsurgery, the animals were intubated with 0.5 ml of a radiopaque marker, and radiographs were taken at 15-min intervals. Of the two poorly fermented fibers, cellulose was as slow as and wheat bran was faster than the fiber-free controls at five out of the six bowel segments measured. The fermentable fibers (pectin, guar, and oat bran) were fast through some bowel segments and slow through others. This study provides in vivo data on colonic transit time and shows that neither 24-h fecal weight nor total transit time is a good predictor of the rate of transit through particular gut segments.
Measurement of Planet Masses with Transit Timing Variations Due to Synodic “Chopping” Effects
NASA Astrophysics Data System (ADS)
Deck, Katherine M.; Agol, Eric
2015-04-01
Gravitational interactions between planets in transiting exoplanetary systems lead to variations in the times of transit that are diagnostic of the planetary masses and the dynamical state of the system. Here we show that synodic “chopping” contributions to these transit timing variations (TTVs) can be used to uniquely measure the masses of planets without full dynamical analyses involving direct integration of the equations of motion. We present simple analytic formulae for the chopping signal, which are valid (generally \\lt 10% error) for modest eccentricities e≲ 0.1. Importantly, these formulae primarily depend on the mass of the perturbing planet, and therefore the chopping signal can be used to break the mass/free-eccentricity degeneracy, which can appear for systems near first-order mean motion resonances. Using a harmonic analysis, we apply these TTV formulae to a number of Kepler systems, which had been previously modeled with full dynamical analyses. We show that when chopping is measured, the masses of both planets can be determined uniquely, in agreement with previous results, but without the need for numerical orbit integrations. This demonstrates how mass measurements from TTVs may primarily arise from an observable chopping signal. The formula for chopping can also be used to predict the number of transits and timing precision required for future observations, such as those made by TESS or PLATO, in order to infer planetary masses through analysis of TTVs.
Dating violence, bullying, and sexual harassment: longitudinal profiles and transitions over time.
Miller, Shari; Williams, Jason; Cutbush, Stacey; Gibbs, Deborah; Clinton-Sherrod, Monique; Jones, Sarah
2013-04-01
Although there is growing recognition of the problem of dating violence, little is known about how it unfolds among young adolescents who are just beginning to date. This study examined classes (subgroups) and transitions between classes over three time points based on dating violence, bullying, and sexual harassment perpetration and victimization experienced by youth. The sample was ethnically diverse, consisting of 795 seventh-grade students from schools that were part of a multi-site, longitudinal evaluation of a dating violence initiative (50 % female; 27 % White, 32 % African American, 25 % Latino, 16 % other or multiple races). Results from latent transition analyses revealed five classes of students with distinct behavioral profiles: multi-problem (victimization and perpetration), bullying and sexual harassment (victimization and perpetration), bullying (victimization and perpetration) and sexual harassment (victimization only), bullying (victimization and perpetration), and a least problem group. The majority of classes were characterized by reports of both perpetration and victimization for at least one behavior. Girls were more likely to be in the less problematic classes. Class membership was fairly stable across the three time points. When students transitioned to a different class, the shift was most often from a more problematic to a less problematic class, particularly for girls. The findings support understanding dating violence within a dynamic, developmental process that recognizes related behaviors within and across individuals. Overall, the findings highlight the utility of person-oriented approaches to enhance our understanding of longitudinal profiles and transitions over time for dating violence and related behaviors.
He,P.; Blaskiewicz, M.; Fischer, W.
2009-01-02
In this report we summarize electron-cloud simulations for the RHIC dipole regions at injection and transition to estimate if scrubbing over practical time scales at injection would reduce the electron cloud density at transition to significantly lower values. The lower electron cloud density at transition will allow for an increase in the ion intensity.
Transit time estimation using tritium and stable isotopes in a Mediterranean mountain catchment
NASA Astrophysics Data System (ADS)
Roig-Planasdemunt, Maria; Stewart, Mike; Latron, Jérôme; Llorens, Pilar; Morgenstern, Uwe
2015-04-01
Water resources of Mediterranean regions mainly depend on runoff generated in mountain areas. Therefore, study of the time water spends travelling through Mediterranean mountains is important for water resources management as it reflects the ability of catchments to retain and release water. Natural isotopes (tritium and stable isotopes) have been used in different environments to quantify the ages of water within catchments. However, there are relatively few studies of water transit times in Mediterranean mountain regions. Additionally, tritium dating is more common in Southern Hemisphere streams because they were less affected by tritium produced mainly in the North Hemisphere by nuclear weapons testing in the 1950s and 60s. With the aim of improving knowledge of the hydrological catchment functioning of Mediterranean mountain areas, this work estimates water transit times in spring water, groundwater and stream water using tritium and stable isotope (δ18O and δ2H) measurements in the Vallcebre Research Catchments (NE Spain, 42° 12'N, 1° 49'E). Tritium measurements from a previous study carried out in 1996-1998 (Herrmann et al., 1999) were supplemented by new samples collected on 3 November 2013. Difficulties with the age interpretation of the tritium measurements arise from the determination of the tritium input function, the different accuracies of the tritium measurements and the ambiguous ages resulting from past input of tritium from nuclear testing to the atmosphere. Water stable isotope samples were collected in rainfall, spring water, groundwater and streamwater at baseflow conditions every 15 days over a 27 month period. Detailed distributed hydrometric measurements (precipitation, potential evapotranspiration, discharge and water table level) were obtained during the same period. Preliminary results using δ18O, δ2H and tritium show that mean transit times in the Cal Rodó catchment (4.2 km2) ranged between 1.3 and 11.6 years. The lowest mean
Single-point position and transition defects in continuous time quantum walks
Li, Z. J.; Wang, J. B.
2015-01-01
We present a detailed analysis of continuous time quantum walks (CTQW) with both position and transition defects defined at a single point in the line. Analytical solutions of both traveling waves and bound states are obtained, which provide valuable insight into the dynamics of CTQW. The number of bound states is found to be critically dependent on the defect parameters, and the localized probability peaks can be readily obtained by projecting the state vector of CTQW on to these bound states. The interference between two bound states are also observed in the case of a transition defect. The spreading of CTQW probability over the line can be finely tuned by varying the position and transition defect parameters, offering the possibility of precision quantum control of the system. PMID:26323855
POSSIBLE TRANSIT TIMING VARIATIONS OF THE TrES-3 PLANETARY SYSTEM
Jiang, Ing-Guey; Wu, Yu-Ting; Chien, Ping; Lin, Yi-Ling; Chen, Hong-Yu; Hu, Juei-Hwa; Yeh, Li-Chin; Thakur, Parijat; Sun Zhao; Ji Jianghui
2013-03-15
Five newly observed transit light curves of the TrES-3 planetary system are presented. Together with other light-curve data from the literature, 23 transit light curves in total, which cover an overall timescale of 911 epochs, have been analyzed through a standard procedure. From these observational data, the system's orbital parameters are determined and possible transit timing variations (TTVs) are investigated. Given that a null TTV produces a fit with reduced {chi}{sup 2} = 1.52, our results agree with previous work, that TTVs might not exist in these data. However, a one-frequency oscillating TTV model, giving a fit with a reduced {chi}{sup 2} = 0.93, does possess a statistically higher probability. It is thus concluded that future observations and dynamical simulations for this planetary system will be very important.
Possible Transit Timing Variations of the TrES-3 Planetary System
NASA Astrophysics Data System (ADS)
Jiang, Ing-Guey; Yeh, Li-Chin; Thakur, Parijat; Wu, Yu-Ting; Chien, Ping; Lin, Yi-Ling; Chen, Hong-Yu; Hu, Juei-Hwa; Sun, Zhao; Ji, Jianghui
2013-03-01
Five newly observed transit light curves of the TrES-3 planetary system are presented. Together with other light-curve data from the literature, 23 transit light curves in total, which cover an overall timescale of 911 epochs, have been analyzed through a standard procedure. From these observational data, the system's orbital parameters are determined and possible transit timing variations (TTVs) are investigated. Given that a null TTV produces a fit with reduced χ2 = 1.52, our results agree with previous work, that TTVs might not exist in these data. However, a one-frequency oscillating TTV model, giving a fit with a reduced χ2 = 0.93, does possess a statistically higher probability. It is thus concluded that future observations and dynamical simulations for this planetary system will be very important.
Folwaczny, C; Läritz, M; Meurer, M; Endres, S P; König, A; Schindlbeck, N
1997-10-01
The intestine is involved in about half of the cases with progressive-systemic sclerosis. Intestinal transit disturbances which are caused by neuropathy of the enteric nerve system occur frequently. However, upto-date only few studies which determined the effect of prokinetic drugs exist. Patients with intestinal involvement caused by progressive-systemic sclerosis were treated with the prokinetic drugs cisapride (20 mg, TID; n = 9), erythromycin (250 mg, TID; n = 7) and octreotide (50 micrograms s. c., at night time; n = 5) over a period of four weeks. At study entry and after each treatment period the transit times through the stomach, small and large intestine were evaluated by use of the metal-detector test. Gastric emptying was only accelerated by erythromycin (42 +/- 3 min vs. 54 +/- 6 min; p = 0.0422), whereas treatment with cisapride and octreotide did not result in significant changes (48 +/- 4 min; p = 0.3743 and 44 +/- 4 min; p = 0.1975; resp.). Small intestinal transit times were not altered significantly by cisapride (108 +/- 15 min vs. 108 +/- 9 min; p = 0.2733), crythromycin (92 +/- 8 min; p = 0.0707) or octreotide (106 +/- 12 min; p = 0.8927). Furthermore colonic transit was not fastened by none of the prokinetic agents (study entry: 68 +/- 12 h; cisapride: 88 +/- 12 h; p = 0.0569; erythromycin 77 +/- 14 h; p = 0.7349; octreotide 107 +/- 14 h; p = 0.8927). Four patients were withdrawn from the study because of diarrhea. Prokinetic drugs do not seem to have a major impact on intestinal transit times in patients with progressive-systemic sclerosis. The use of these drugs is limited because of frequent side effects.
Transit Timing Variation analysis with Kepler light curves of KOI 227 and Kepler 93b
NASA Astrophysics Data System (ADS)
Dulz, Shannon; Reed, Mike
2017-01-01
By searching for transit signals in approximately 150,000 stars, NASA’s Kepler Space telescope found thousands of exoplanets over its primary mission from 2009 to 2013 (Tenenbaum et al. 2014, ApJS, 211, 6). Yet, a detailed follow-up examination of Kepler light curves may contribute more evidence on system dynamics and planetary atmospheres of these objects. Kepler’s continuous observing of these systems over the mission duration produced light curves of sufficient duration to allow for the search for transit timing variations. Transit timing variations over the course of many orbits may indicate a precessing orbit or the existence of a non-transiting third body such as another exoplanet. Flux contributions of the planet just prior to secondary eclipse may provide a measurement of bond albedo from the day-side of the transiting planet. Any asymmetries of the transit shape may indicate thermal asymmetries which can measure upper atmosphere motion of the planet. These two factors can constrain atmospheric models of close orbiting exoplanets. We first establish our procedure with the well-documented TTV system, KOI 227 (Nesvorny et al. 2014, ApJ, 790, 31). Using the test case of KOI 227, we analyze Kepler-93b for TTVs and day-side flux contributions. Kepler-93b is likely a rocky planet with R = 1.50 ± 0.03 Earth Radii and M = 2.59 ± 2.0 Earth Masses (Marcy et al. 2014, ApJS, 210, 20). This research is funded by a NASA EPSCoR grant.
Spong, D. A.; Bass, E. M.; Deng, W.; Heidbrink, W. W.; Lin, Z.; Tobias, B.; Van Zeeland, M. A.; Austin, M. E.; Domier, C. W.; Luhmann, N. C. Jr.
2012-08-15
A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (no. 142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.
NASA Astrophysics Data System (ADS)
Damiano, P. A.; Johnson, J.; Chaston, C. C.; Fox, W. R., II; Delamere, P. A.; Stauffer, B. H.
2015-12-01
Alfvenic current systems are a ubiquitous feature of planetary magnetospheres that can be generated by several mechanisms including the braking of flows (e.g. associated with reconnection at substorm onset) and via moon-planet interactions. The energetic electrons needed to carry the field-aligned currents are generally thought to be accelerated on either electron inertial or ion acoustic gyroradius scale lengths in the limit of inertial and kinetic Alfven waves respectively. Recent 2D dipolar hybrid gyrofluid-kinetic electron simulations of kinetic Alfven waves (Damiano et al., JGR, 2015), associated with the braking of fast flows in the terrestrial magnetotail, have illustrated that hot ion effects can act to limit the extent of the parallel current (all along the field line) from what would be expected in the cold ion limit. This correspondingly affects the characteristics of the electron energization, reducing both the parallel elongation in the electron distribution function associated with electron trapping in the kinetic Alfven wave regime and the extent of high energy tails evident in the inertial Alfven wave region above the ionosphere. In this presentation, we build on these initial simulation results analyzing the characteristics of the parallel current system and electron acceleration (associated with both inertial and kinetic Alfven waves) for a range of wave amplitudes and ratios of the electron to ion temperature. One finding is that for a given ion temperature, increasing wave amplitude recovers some of the features of the electron energization evident in the cold ion limit, but this is modulated by the effect of wave energy dispersion perpendicular to the ambient magnetic field. These results will be summarized and the relevance and extension of this work to consider Alfvenic aurora in the Jupiter magnetosphere (e.g. via either interchange motion or the Io-Jupiter interaction) will also be discussed.
Ionospheric Ion Upflows Associated with the Alfven Wave Heating
NASA Astrophysics Data System (ADS)
Song, P.; Tu, J.
2014-12-01
In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.
Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp
NASA Technical Reports Server (NTRS)
Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.
2009-01-01
The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.
Standing Alfven wave current system at Io: Voyager 1 observations
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Neubauer, F. M.; Ness, N. F.
1980-01-01
The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io is explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the magnetic field experiment on Voyager 1 on 5 March 1979 when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 million amps. A mass density of 7400 to 13600 proton mass units per Cu cm is derived which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050 to 1500 per cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Models for Alfv'en instabilities in stellarators
NASA Astrophysics Data System (ADS)
Spong, Donald
2012-03-01
Stellarators, helical RFPs and 3D tokamaks introduce symmetry-breaking effects that alter the structure of Alfv'en instabilities and their impact on energetic particle confinement. Loss of symmetry precludes an ignorable coordinate and requires taking into account both poloidal and toroidal couplings. New techniques for near term progress in 3D EP modeling have been developed, such as scalable algorithms (e.g., perturbative particle methods and windowed frequency solvers) and reduced-dimensionality models (e.g., gyro-Landau fluid). These methods have been developed for a range of 3D (tokamak/stellarator/RFP) configurations and have been compared with experimental measurements on LHD, TJ-II, HSX and RFX. Both modes with weak 3D couplings (TAE's in LHD) and strong 3D couplings (HAE's in TJ-II) will be discussed. Also, code-benchmarking activities have been started and will be described. In addition to their impact on fast ion confinement, the coherent frequencies of these AE modes (directly related to iota) can be useful markers for 3D equilibrium reconstruction.
Combined ideal and kinetic effects on reversed shear Alfven eigenmodes
Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.
2011-10-15
A reversed shear Alfven eigenmodes (RSAEs) theory has been developed for reversed magnetic field shear plasmas when the safety factor minimum, q{sub min}, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that, strictly speaking, the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with q{sub min} above integer values. Corrected by a special analytic finite Larmor radius (FLR) condition, MHD dispersion of these modes nevertheless can be developed. Numerically, MHD structure can serve as a good approximation for the RSAEs.The large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Alfvenic fluctuations in the solar wind observed by Ulysses
NASA Technical Reports Server (NTRS)
Smith, E. J.; Neugebauer, M; Tsurutani, B. T.; Balogh, A.; McComas, D. J.
1995-01-01
One of the striking results of the Sun's south polar pass by Ulysses was the discovery of large amplitude, long period Alfvenic fluctuations that were continuously present in the solar wind flow from the polar coronal hole. The fluctuations dominate the variances and power spectra at periods greater than or equal to 1 hour and are evident as correlated fluctuations in the magnetic field and solar wind velocity components. Various properties of the fluctuations in the magnetic field, in the velocity, and in the electric field have been established. The waves appear to have important implications for galactic cosmic rays and for the solar wind, topics which have continued to be investigated. Their origin is also under study, specifically whether or not they represent motions of the ends of the field lines at the Sun. The resolution of these issues has benefited from the more recent observations as the spacecraft traveled northward toward the ecliptic and passed into the northern solar hemisphere. All these observations will be presented and their implications will be discussed.
The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.
Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B
2015-06-18
Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.
El Oufir, L; Flourié, B; Bruley des Varannes, S; Barry, J L; Cloarec, D; Bornet, F; Galmiche, J P
1996-01-01
BACKGROUND/AIMS: To investigate whether transit time could influence H2 consuming flora and certain indices of colonic bacterial fermentation. METHODS: Eight healthy volunteers (four methane excretors and four non-methane excretors) were studied for three, three week periods during which they received a controlled diet alone (control period), and then the same diet with cisapride or loperamide. At the end of each period, mean transit time (MTT) was estimated, an H2 lactulose breath test was performed, and stools were analysed. RESULTS: In the control period, transit time was inversely related to faecal weight, sulphate reducing bacteria counts, concentrations of total short chain fatty acids (SCFAs), propionic and butyric acids, and H2 excreted in breath after lactulose ingestion. Conversely, transit time was positively related to faecal pH and tended to be related to methanogen counts. Methanogenic bacteria counts were inversely related to those of sulphate reducing bacteria and methane excretors had slower MTT and lower sulphate reducing bacteria counts than non-methane excretors. Compared with the control period, MTT was significantly shortened (p < 0.05) by cisapride and prolonged (p < 0.05) by loperamide (73 (11) hours, 47 (5) hours and 147 (12) hours for control, cisapride, and loperamide, respectively, mean (SD)). Cisapride reduced transit time was associated with (a) a significant rise in faecal weight, sulphate reducing bacteria, concentrations of total SCFAs, and propionic and butyric acids and breath H2 as well as (b) a significant fall in faecal pH and breath CH4 excretion, and (c) a non-significant decrease in the counts of methanogenic bacteria. Reverse relations were roughly the same during the loperamide period including a significant rise in the counts of methanogenic bacteria and a significant fall in those of sulphate reducing bacteria. CONCLUSIONS: Transit time differences between healthy volunteers are associated with differences in H2
Transition from lognormal to χ2-superstatistics for financial time series
NASA Astrophysics Data System (ADS)
Xu, Dan; Beck, Christian
2016-07-01
Share price returns on different time scales can be well modelled by a superstatistical dynamics. Here we provide an investigation which type of superstatistics is most suitable to properly describe share price dynamics on various time scales. It is shown that while χ2-superstatistics works well on a time scale of days, on a much smaller time scale of minutes the price changes are better described by lognormal superstatistics. The system dynamics thus exhibits a transition from lognormal to χ2 superstatistics as a function of time scale. We discuss a more general model interpolating between both statistics which fits the observed data very well. We also present results on correlation functions of the extracted superstatistical volatility parameter, which exhibits exponential decay for returns on large time scales, whereas for returns on small time scales there are long-range correlations and power-law decay.
NASA Astrophysics Data System (ADS)
Stockinger, Michael P.; Bogena, Heye R.; Lücke, Andreas; Diekkrüger, Bernd; Cornelissen, Thomas; Vereecken, Harry
2016-10-01
The streamwater transit time distribution (TTD) of a catchment is used to derive insights into the movement of precipitation water via various flow paths to the catchment's stream. Typically, TTDs are estimated by using the convolution integral to model a weekly tracer signal measured in streamflow. Another approach for evaluating the transit time of water to the catchment stream is the fraction of young water (Fyw) in streamflow that is younger than a certain threshold age, which also relies on tracer data. However, few studies used tracer data with a higher sampling frequency than weekly. To investigate the influence of the sampling frequency of tracer data on estimates of TTD and Fyw, we estimated both indicators for a humid, mesoscale catchment in Germany using tracer data of weekly and higher sampling frequency. We made use of a 1.5 year long time series of daily to sub-daily precipitation and streamwater isotope measurements, which were aggregated to create the weekly resolution data set. We found that a higher sampling frequency improved the stream isotope simulation compared to a weekly one (0.35 vs. 0.24 Nash-Sutcliffe Efficiency) and showed more pronounced short-term dynamics in the simulation result. The TTD based on the high temporal resolution data was considerably different from the weekly one with a shift towards faster transit times, while its corresponding mean transit time of water particles was approximately reduced by half (from 9.5 to 5 years). Similar to this, Fyw almost doubled when applying high resolution data compared to weekly one. Thus, the different approaches yield similar results and strongly support each other. This indicates that weekly isotope tracer data lack information about faster water transport mechanisms in the catchment. Thus, we conclude that a higher than weekly sampling frequency should be preferred when investigating a catchment's water transport characteristics. When comparing TTDs or Fyw of different catchments, the
Assessing the effect of the time since transition to organic farming on plants and butterflies.
Jonason, Dennis; Andersson, Georg K S; Ockinger, Erik; Rundlöf, Maj; Smith, Henrik G; Bengtsson, Jan
2011-06-01
1.Environmental changes may not always result in rapid changes in species distributions, abundances or diversity. In order to estimate the effects of, for example, land-use changes caused by agri-environment schemes (AES) on biodiversity and ecosystem services, information on the time-lag between the application of the scheme and the responses of organisms is essential.2.We examined the effects of time since transition (TST) to organic farming on plant species richness and butterfly species richness and abundance. Surveys were conducted in cereal fields and adjacent field margins on 60 farms, 20 conventional and 40 organic, in two regions in Sweden. The organic farms were transferred from conventional management between 1 and 25 years before the survey took place. The farms were selected along a gradient of landscape complexity, indicated by the proportion of arable land, so that farms with similar TST were represented in all landscape types. Organism responses were assessed using model averaging.3.Plant and butterfly species richness was c.20% higher on organic farms and butterfly abundance was about 60% higher, compared with conventional farms. Time since transition affected butterfly abundance gradually over the 25-year period, resulting in a 100% increase. In contrast, no TST effect on plant or butterfly species richness was found, indicating that the main effect took place immediately after the transition to organic farming.4.Increasing landscape complexity had a positive effect on butterfly species richness, but not on butterfly abundance or plant species richness. There was no indication that the speed of response to organic farming was affected by landscape complexity.5.Synthesis and applications. The effect of organic farming on diversity was rapid for plant and butterfly species richness, whereas butterfly abundance increased gradually with time since transition. If time-lags in responses to AESs turn out to be common, long-term effects would need to be
Malik, Nishant; Marwan, Norbert; Zou, Yong; Mucha, Peter J.; Kurths, Jürgen
2016-01-01
A method to identify distinct dynamical regimes and transitions between those regimes in a short univariate time series was recently introduced [1], employing the computation of fluctuations in a measure of nonlinear similarity based on local recurrence properties. In the present work, we describe the details of the analytical relationships between this newly introduced measure and the well known concepts of attractor dimensions and Lyapunov exponents. We show that the new measure has linear dependence on the effective dimension of the attractor and it measures the variations in the sum of the Lyapunov spectrum. To illustrate the practical usefulness of the method, we identify various types of dynamical transitions in different nonlinear models. We present testbed examples for the new method’s robustness against noise and missing values in the time series. We also use this method to analyze time series of social dynamics, specifically an analysis of the U.S. crime record time series from 1975 to 1993. Using this method, we find that dynamical complexity in robberies was influenced by the unemployment rate until the late 1980’s. We have also observed a dynamical transition in homicide and robbery rates in the late 1980’s and early 1990’s, leading to increase in the dynamical complexity of these rates. PMID:25019852
NASA Astrophysics Data System (ADS)
Malik, Nishant; Marwan, Norbert; Zou, Yong; Mucha, Peter J.; Kurths, Jürgen
2014-06-01
A method to identify distinct dynamical regimes and transitions between those regimes in a short univariate time series was recently introduced [N. Malik et al., Europhys. Lett. 97, 40009 (2012), 10.1209/0295-5075/97/40009], employing the computation of fluctuations in a measure of nonlinear similarity based on local recurrence properties. In this work, we describe the details of the analytical relationships between this newly introduced measure and the well-known concepts of attractor dimensions and Lyapunov exponents. We show that the new measure has linear dependence on the effective dimension of the attractor and it measures the variations in the sum of the Lyapunov spectrum. To illustrate the practical usefulness of the method, we identify various types of dynamical transitions in different nonlinear models. We present testbed examples for the new method's robustness against noise and missing values in the time series. We also use this method to analyze time series of social dynamics, specifically an analysis of the US crime record time series from 1975 to 1993. Using this method, we find that dynamical complexity in robberies was influenced by the unemployment rate until the late 1980s. We have also observed a dynamical transition in homicide and robbery rates in the late 1980s and early 1990s, leading to increase in the dynamical complexity of these rates.
Malik, Nishant; Marwan, Norbert; Zou, Yong; Mucha, Peter J; Kurths, Jürgen
2014-06-01
A method to identify distinct dynamical regimes and transitions between those regimes in a short univariate time series was recently introduced [N. Malik et al., Europhys. Lett. 97, 40009 (2012)], employing the computation of fluctuations in a measure of nonlinear similarity based on local recurrence properties. In this work, we describe the details of the analytical relationships between this newly introduced measure and the well-known concepts of attractor dimensions and Lyapunov exponents. We show that the new measure has linear dependence on the effective dimension of the attractor and it measures the variations in the sum of the Lyapunov spectrum. To illustrate the practical usefulness of the method, we identify various types of dynamical transitions in different nonlinear models. We present testbed examples for the new method's robustness against noise and missing values in the time series. We also use this method to analyze time series of social dynamics, specifically an analysis of the US crime record time series from 1975 to 1993. Using this method, we find that dynamical complexity in robberies was influenced by the unemployment rate until the late 1980s. We have also observed a dynamical transition in homicide and robbery rates in the late 1980s and early 1990s, leading to increase in the dynamical complexity of these rates.
Fabrycky, Daniel C.; Ford, Eric B.; Steffen, Jason H.; Rowe, Jason F.; Carter, Joshua A.; Moorhead, Althea V.; Batalha, Natalie M.; Borucki, William J.; Bryson, Steve; Buchhave, Lars A.; Christiansen, Jessie L.; /SETI Inst., Mtn. View /NASA, Ames /Caltech
2012-01-01
Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present 4 sets of lightcurves from the Kepler spacecraft, which each show multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems architectures, even in cases for which high-precision Doppler follow-up is impractical.
Characterizing Low-Mass Planets in Kepler's Multi-Planet Systems with Transit Timing
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Lissauer, Jack; Rowe, Jason; Fabrycky, Daniel
2014-11-01
The Kepler mission has revealed an abundance of planets in a regime of mass and size that is absent from the Solar System. This includes systems of high multiplicity within 1 AU, where low-mass volatile-rich planets have been observed in compact orbital configurations. Smaller, rocky planets have also been observed in such systems. The existing sample of characterized planets on the mass-radius diagram shows no abrupt transition from rocky planets to those that must be volatile-rich, but characteristic trends are beginning to emerge. More precise characterizations of planets by mass, radius, and incident flux will aid in revealing fundamental properties of a common class of exoplanets. There is a small sample of exoplanets with known masses and radii, mostly hot jupiters whose radii are known from transit depths, and whose masses are determined from radial velocity spectroscopy (RV). In the absence of mass determinations via RV observations, transit timing variations (TTVs) offer a chance to probe perturbations between planets that pass close to one another or are near resonance, and hence dynamical fits to observed transit times can be used to measure planetary masses and orbital parameters. Such modelling with Kepler data probes planetary masses over orbital periods ranging from ~5-100 days, complementing the sample of RV detections. Furthermore, in select cases, dynamical fits to observed TTVs can tightly constrain the orbital eccentricity vectors, which can, alongside the transit light curve, tightly constrain the density and radius of the host star, and hence reduce the uncertainty on planetary radius. TTV studies have revealed a class of low-mass low-density objects with a substantial mass fraction in the form of a voluminous H-rich atmosphere. To these we add precise mass measurements of the outer planets of Kepler-33, a compact system with five known transiting planets, three of which show detectable transit timing variations. These results will be placed
Gyrokinetic Simulation of Reverse Shear Alfven Eigenmodes in DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Chen, Yang; Parker, Scott; Fu, Guo-Yong
2012-03-01
We present simulation results of the beam driven Reverse Shear Alfven Eigenmodes (RSAE) observed in DIII-D discharge 142111 using the Particle-in-Cell gyrokinetic code GEM [1]. Bulk ions and energetic particles are gyrokinetic, but electrons are described by a mass-less fluid model. Two schemes for obtaining the electric potential are implemented, one by solving the gyrokinetic Poisson equation for φ directly, the other by solving the gyrokinetic moment (GKM) equation for φ/t and then integrating in time. The GKM approach is found to be more robust for linear simulations (allowing larger time steps) but less robust for nonlinear simulations. Previous simulations reproduced the chirping in frequency as seen in the experiment. Recently it has been reported by other simulation codes (GTC, GYRO and TAEFL) that the shearing direction of the mode structure in the poloidal plane disagrees with observation. We found that the mode structure, including the shearing in the poloidal plane, is in general sensitive to the beam distribution. By changing the radial profile of the beam density while keeping the velocity dependence fixed, both shearing directions can be produced in the simulation. [4pt] [1] Y. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007)
ERIC Educational Resources Information Center
Arens, A. Katrin; Yeung, Alexander Seeshing; Craven, Rhonda G.; Watermann, Rainer; Hasselhorn, Marcus
2013-01-01
The often observed decline in students' self-perceptions across transition to secondary school after grade 6 is often attributed to students' entry to puberty. This study aims to examine whether lowered self-perceptions can be observed after transition in Germany which occurs after grade 4 and thus takes place before puberty. Fifth graders (N =…
Buttafava, Mauro Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto; Dalla Mora, Alberto
2014-08-15
We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
NASA Astrophysics Data System (ADS)
Clark, Logan W.; Feng, Lei; Chin, Cheng
2016-11-01
The dynamics of many-body systems spanning condensed matter, cosmology, and beyond are hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics are expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop antiferromagnetic spatial correlations resulting from the sub-Poisson distribution of the spacing between topological defects. The fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum critical dynamics.
High-power transit-time oscillator: Onset of oscillation and saturation
NASA Astrophysics Data System (ADS)
Luginsland, J. W.; Arman, M. J.; Lau, Y. Y.
1997-12-01
A simple circuit model is used to investigate the transit-time oscillator (TTO) driven by a high-current diode. A novel condition for the onset of oscillation is derived in terms of the diode impedance. It is shown that a low impedance is required for the production of high-power microwaves in a TTO. The initial growth is calculated, and the saturation level is numerically computed using the one-dimensional model. These one-dimensional (1-D) results are in excellent agreement with a full scale two-dimensional Particle-in-Cell simulation. The success of the much simpler 1-D model allows a close examination of the roles played by the convection current and by the displacement current, as well as the modification in the transit time due to the intense space charge within the gap.
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition.
Clark, Logan W; Feng, Lei; Chin, Cheng
2016-11-04
The dynamics of many-body systems spanning condensed matter, cosmology, and beyond are hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics are expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop antiferromagnetic spatial correlations resulting from the sub-Poisson distribution of the spacing between topological defects. The fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum critical dynamics.
Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces
NASA Astrophysics Data System (ADS)
Craven, Galen T.; Hernandez, Rigoberto
2015-10-01
Thermalized chemical reactions driven under dynamical load are characteristic of activated dynamics for arbitrary nonautonomous systems. Recent generalizations of transition state theory to obtain formally exact rates have required the construction of a time-dependent transition state trajectory. Here, we show that Lagrangian descriptors can be used to obtain this structure directly. By developing a phase space separatrix that is void of recrossings, these constructs allow for the principal criterion in the implementation of modern rate theories to be satisfied. Thus, the reactive flux over a time-varying barrier can be determined without ambiguity in chemical reactions. The generality of the formalism suggests that this approach is applicable to any activated system subjected to arbitrary driving and thermal fluctuations.
Using Latent Transition Analysis in Nursing Research to Explore Change Over Time
Roberts, Tonya J.; Ward, Sandra E.
2011-01-01
Background Latent transition analysis is a method of modeling change over time in categorical variables. It has been used in the social sciences for many years, but not in nursing research. Objective To illustrate the utility of latent transition analysis for nursing research by presenting a case example (a secondary analysis of data from a previously conducted randomized control trial testing the effectiveness of a tailored psychoeducational intervention to decrease patient-related attitudinal barriers to cancer pain management) and to understand for whom, and in what direction, the tailored intervention resulted in change with respect to attitudinal barriers and pain symptoms. Method The model was developed by (a) defining a class structure based on individuals’ barrier patterns, (b) adding demographic predictors and distal pain outcomes, and (c) modeling and testing transitions across classes. Results There were two classes of individuals: Low Barriers and High Barriers. Older, less educated individuals were more likely to be in the High Barriers class at time 1. Individuals in either class did not have different pain outcomes at the end of the study. Of those individuals that transitioned across classes, those who received the intervention were statistically more likely to move in a favorable direction (to the Low Barriers class). Furthermore, there is evidence that some individuals in the control group had unfavorable outcomes. Discussion The results from the example provide useful information about for whom, and in what direction, the intervention resulted in change. Latent transition analysis is a valuable procedure for nurse researchers because it collapses large arrays of categorical data into meaningful patterns. It is a flexible modeling procedure with extensions allowing further understanding of a change process. PMID:21127448
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Lissauer, Jack J.; Rowe, Jason; Fabrycky, Daniel C.
2014-05-01
Outside our solar system, there is a small sample of planets with known masses and radii, mostly hot jupiters whose radii are known from transit depths, and whose masses are determined from radial velocity spectroscopy (RV). In the absence of mass determinations via RV observations, transit timing variations (TTVs) offer a chance to probe perturbations between planets that pass close to one another or are near resonance, and hence dynamical fits to observed transit times can measure planetary masses and orbital parameters. Such modeling can probe planetary masses at longer orbital periods than RV targets, although not without some challenges. For example, in modeling pairwise planetary perturbations near first order mean motion resonances, a degeneracy between eccentricity and mass exists that limits the accuracy of mass determinations. Nevertheless, in several compact multiplanet systems, fitting complex TTV signals can break the degeneracy, permitting useful mass constraints, and precise measures of small but non-zero eccentricity.The precision in measuring the radius of a transiting planet rests on the uncertainty in the stellar radius, which is typically ~10% for targets with spectral follow-up. With dynamical fits, however, solutions for the orbital parameters including the eccentricity vectors can, alongside the transit light curves, tightly constrain the stellar density and radius. Alongside spectroscopic data, our dynamical fits to TTVs reduced the stellar and hence planetary radius uncertainties at Kepler-11 and Kepler-79 to just 2%, permitting useful planetary density determinations. In the case of Kepler-79, planetary bulk densities are remarkably low given the planetary masses. Indeed, several multiplanet systems characterized by TTV show much lower planetary densities than typical RV determinations in the same mass range. While this reflects the detection biases of both techniques, it also represents a growing sample of characterized systems of
Tunnel injection transit-time diodes for W-band power generation
NASA Technical Reports Server (NTRS)
Kidner, C.; Eisele, H.; Haddad, G. I.
1992-01-01
GaAs p(+ +)n(+)n(-)n(+) single-drift tunnel injection transit-time (TUNNETT) diodes for W-band operation have been successfully designed and tested. An output power of 32 mW at 93.5 GHz with a dc to RF conversion efficiency of 2.6 percent was obtained. The oscillations have a clean spectrum in a conventional waveguide cavity.
Some properties of asymmetric Hopfield neural networks with finite time of transition between states
NASA Astrophysics Data System (ADS)
Suleimenov, Ibragim; Mun, Grigoriy; Panchenko, Sergey; Pak, Ivan
2016-11-01
There were implemented samples of asymmetric Hopfield neural networks which have finite time of transition from one state to another. It was shown that in such systems, various oscillation modes could occur. It was revealed that the oscillation of the output signal of certain neuron could be treated as extra logical variable, which describes the state of the neuron. Asymmetric Hopfield neural networks are described in terms of ternary logic. Such logic may be employed in image recognition procedure.
Van Zeeland, Michael; Heidbrink, W.; Nazikian, Raffi; Austin, M. E.; Cheng, C Z; Chu, M. S.; Gorelenkov, Nikolai; Holcomb, C T; Hyatt, A. W.; Kramer, G.; Lohr, J.T.; Mckee, G. R.; Petty, C C.; Prater, R.; Solomon, W. M.; Spong, Donald A
2009-01-01
Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including toroidicity and ellipticity induced Alfven eigenmodes (TAE/EAE, respectively) and reversed shear Alfven eigenmodes (RSAE) as well as their spatial coupling. These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. It is found that ideal MHD modelling of eigenmode spectral evolution, coupling and structure are in excellent agreement with experimental measurements. It is also found that higher radial envelope harmonic RSAEs are clearly observed and agree with modelling. Some discrepancies with modelling such as that due to up/down eigenmode asymmetries are also pointed out. Concomitant with the Alfvenic activity, fast ion (FIDA) spectroscopy shows large reductions in the central fast ion profile, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. The sensitivity of this effect to deposition power and current drive phasing as well as ECH modulation are presented.
Reliable estimation of capillary transit time distributions using DSC-MRI
Mouridsen, Kim; Hansen, Mikkel Bo; Østergaard, Leif; Jespersen, Sune Nørhøj
2014-01-01
The regional availability of oxygen in brain tissue is traditionally inferred from the magnitude of cerebral blood flow (CBF) and the concentration of oxygen in arterial blood. Measurements of CBF are therefore widely used in the localization of neuronal response to stimulation and in the evaluation of patients suspected of acute ischemic stroke or flow-limiting carotid stenosis. It was recently demonstrated that capillary transit time heterogeneity (CTH) limits maximum oxygen extraction fraction (OEFmax) that can be achieved for a given CBF. Here we present a statistical approach for determining CTH, mean transit time (MTT), and CBF using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). Using numerical simulations, we demonstrate that CTH, MTT, and OEFmax can be estimated with low bias and variance across a wide range of microvascular flow patterns, even at modest signal-to-noise ratios. Mean transit time estimated by singular value decomposition (SVD) deconvolution, however, is confounded by CTH. The proposed technique readily identifies malperfused tissue in acute stroke patients and appears to highlight information not detected by the standard SVD technique. We speculate that this technique permits the non-invasive detection of tissue with impaired oxygen delivery in neurologic disorders such as acute ischemic stroke and Alzheimer's disease during routine diagnostic imaging. PMID:24938401
The effects of capillary transit time heterogeneity (CTH) on brain oxygenation
Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N
2015-01-01
We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911
A New Method for Increasing Output Power of a Three-Cavity Transit-Time Oscillator
NASA Astrophysics Data System (ADS)
He, Jun-Tao; Zhong, Hui-Huang; Qian, Bao-Liang; Liu, Yong-Gui
2004-07-01
We propose a new method to increase the output power of a three-cavity transit-time oscillator (TC-TTO). Conventional transit-time effect oscillators, such as the split-cavity oscillator (SCO), super-Reltron, and TC-TTO (or double-foil SCO), etc., have a common feature that the span of any modulating cavity is uniform. The new method is to vary the three-cavity spans from uniform to nonuniform. Its configuration is called the nonuniform three-cavity transit-time oscillator (NTC-TTO). Numerical simulations show that the electron-beam is modulated more deeply in certain NTC-TTOs than that in the TC-TTO with the same whole modulating length, and the output microwave power in certain NTC-TTOs is higher than that in the TC-TTO. The experimental results are in agreement with those of the numerical simulations. The results show that the new method can increase the output power of a microwave tube based on the TC-TTO.
Influence of temperature on transit times and microwave noise performances of SiGe HBT
NASA Astrophysics Data System (ADS)
Diaz-Albarran, L. M.; Ramirez-Garcia, E.; Zerounian, N.; Aniel, F.; Rodriguez-Mendez, L. M.; Valdez-Perez, D.; Galaz-Larios, M. C.; Enciso-Aguilar, M. A.
2016-03-01
The influence of temperature (300 K and 40 K) on intrinsic transit times and microwave noise performances of silicon germanium (SiGe) heterojunction bipolar transistors (HBTs) is investigated. At 300 K, we compared measured and modelled S-parameters and four noise parameters, and we found a good agreement. At 40 K, we compared measured and modelled S-parameters, and we deduced noise performances from the S-parameter measurements. The electric model includes correlated junction noise sources and a proper extraction of the transit times involved in these sources. Moreover, the microwave noise model considers all the physical phenomena that impact noise performances in SiGe HBTs. We analysed three devices having different Ge content (10%-20%, 10%-25% and 10%-30%). At 40 K, the device with 10%-25% reaches one of the lowest base transit times (τ B), the lowest minimum noise figure (NFmin), and the lowest equivalent noise resistance (R n), for operation frequencies up to the maximum device dynamic performances (f ≈ f T) These results demonstrate the excellent potential to develop cryogenic applications of SiGe HBTs.
A novel continuous cardiac output monitor based on pulse wave transit time.
Sugo, Yoshihiro; Ukawa, Teiji; Takeda, Sunao; Ishihara, Hironori; Kazama, Tomiei; Takeda, Junzo
2010-01-01
Monitoring cardiac output (CO) is important for the management of patient circulation in an operation room (OR) or intensive care unit (ICU). We assumed that the change in pulse wave transit time (PWTT) obtained from an electrocardiogram (ECG) and a pulse oximeter wave is correlated with the change in stroke volume (SV), from which CO is derived. The present study reports the verification of this hypothesis using a hemodynamic analysis theory and animal study. PWTT consists of a pre-ejection period (PEP), the pulse transit time through an elasticity artery (T(1)), and the pulse transit time through peripheral resistance arteries (T(2)). We assumed a consistent negative correlation between PWTT and SV under all conditions of varying circulatory dynamics. The equation for calculating SV from PWTT was derived based on the following procedures. 1. Approximating SV using a linear equation of PWTT. 2. The slope and y-intercept of the above equation were determined under consideration of vessel compliance (SV was divided by Pulse Pressure (PP)), animal type, and the inherent relationship between PP and PWTT. Animal study was performed to verify the above-mentioned assumption. The correlation coefficient of PWTT and SV became r = -0.710 (p 〈 0.001), and a good correlation was admitted. It has been confirmed that accurate continuous CO and SV measurement is only possible by monitoring regular clinical parameters (ECG, SpO2, and NIBP).
NASA Astrophysics Data System (ADS)
Luiz Silva, Cesar
2004-10-01
The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c
times every collision providing the drift time as an additional variable to determine points for the charged particle's track. In this presentation we will show results on e/π separation for momentum above 1 GeV/c and momentum resolution using TEC/TRD in Au-Au collisions at √s=200 GeV/c and √s=62.4 GeV/c.
Xu, Jason; Minin, Vladimir N.
2016-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377
ERIC Educational Resources Information Center
Crockett, Lisa J.; Beal, Sarah J.
2012-01-01
Adolescents' expectations about the timing of adult role transitions have the potential to shape their actual transitions, setting the stage for their adult lives. Although expectations about timing emerge by early adolescence, little is known about how these expectations develop across adolescence. This longitudinal study examined developmental…
Accuracy of PET rCBF measurements: Effect of transit time delay
Dhawan, V.; Conti, J.; Mernyk, M.; Jarden, J.; Rottenberg, D.A.
1984-01-01
Analytic expressions were derived for estimating the error in PET rCBF measurements associated with the time lag between brain and blood radioactivity (1) following 0-15 water injection and (2) during non-steady-state 0-15 CO/sub 2/ inhalation. This lag time reflects the physiological difference in arrival times of 0-15 activity at brain and radial arterial sampling site as well as the experimentally introduced resistance to flow offered by the arterial catheter/stopcock assembly. Multiple measurements of transit time delay were made in 2 patients using Rb-82. The arrival of radioactivity in the brain was detected by a pair of PET detectors operating in coincidence. The arrival of radioactivity at the radial arterial catheter was estimated from consecutive 5-sec blood samples (catheter flow rate 7-10 ml/min). Transit time delays varied between 1 and 8 sec. For non-steady-state 0-15 CO/sub 2//PET measurements, estimated errors in rCBF ranged from 0.02 to 30% for delays of 2-8 sec and scan lengths of 30-180 sec. In the range 20-100 ml/min/100 g, variations in rCBF only marginally affected these errors. Errors increased with scan length and with longer delays but decreased sharply with scan duration > 60 sec. For 30-180 sec scans, even larger errors are associated with the 0-15 water injection technique (peak blood activity at 10 sec): 1-60% for delays of 2-8 sec. A ''slow'' bolus peaking at 20 sec decreased the error by 40%. For the 0-15 water method it is essential to determine the transit time delay to within 2 sec if accurate flow measurements (error < 5%) are to be obtained from 40-60 sec scans.
Glass transition temperature of PIB, PDMS and PMMA from small-time simulations
NASA Astrophysics Data System (ADS)
Duki, Solomon; Tsige, Mesfin; Taylor, Philip
2009-03-01
We have applied some new techniques to obtain predictions of the glass transition temperatures Tg of poly(isobutylene), poly(dimethyl-siloxane), and poly(methyl methacrylate) from small-time atomistic molecular dynamics simulations. The different fragilities of these materials are reflected in the results of the simulations. One approach involved measurement of the apparent softening of the ``cage'' in which a monomer is bound, while another involved studying autocorrelation of a convolution of the velocity with a smoothing function in order to detect the frequency of escapes from the ``cage.'' To check the accuracy of the short-time methods, the Tg of the polymers was also found using conventional diffusion simulations in which the rate of increase of the root mean squared displacement of an atom, monomer, or molecule is measured at very long times. The economical short-time simulations yielded results for Tg that were identical to those of the computer-intensive long-time simulations.
An analytical solution for ground water transit time through unconfined aquifers.
Chesnaux, R; Molson, J W; Chapuis, R P
2005-01-01
An exact, closed-form analytical solution is developed for calculating ground water transit times within Dupuit-type flow systems. The solution applies to steady-state, saturated flow through an unconfined, horizontal aquifer recharged by surface infiltration and discharging to a downgradient fixed-head boundary. The upgradient boundary can represent, using the same equation, a no-flow boundary or a fixed head. The approach is unique for calculating travel times because it makes no a priori assumptions regarding the limit of the water table rise with respect to the minimum saturated aquifer thickness. The computed travel times are verified against a numerical model, and examples are provided, which show that the predicted travel times can be on the order of nine times longer relative to existing analytical solutions.
Drift-Alfven wave mediated particle transport in an elongated density depression
Vincena, Stephen; Gekelman, Walter
2006-06-15
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.
Gyrokinetic Particle Simulation of Fast Electron Driven Beta-induced Alfven Eigenmodes
NASA Astrophysics Data System (ADS)
Zhang, Wenlu; Cheng, Junyi; Lin, Zhihong
2016-10-01
The fast electron driven beta induced Alfven eigenmode (e-BAE) has been routinely observed in HL-2A tokamak. We study e-BAE for the first time using global gyrokinetic GTC simulation, where the fast electrons are described by the drift kinetic model. Frequency chirping is observed in nonlinear simulations in the absence of sources and sinks, which provide a new nonlinear paradigm beyond the standard ``bump-on-tail'' model. For weakly driven case, nonlinear frequency is observed to be in phase with particle flux, and nonlinear mode structure is almost the same as linear stage. In the strongly driven case, BAAE is also unstable and co-exists with BAE after the BAE saturation. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of the coherent structures in the fast electron phase space, where the dynamics of the coherent structure is controlled by the formation and destruction of phrase space islands in the canonical variables. Zonal fields are found to affect wave-particle resonance in the nonlinear e-BAE simulations.
Simulation study of Alfven eigenmode induced energetic-ion transport in LHD
NASA Astrophysics Data System (ADS)
Nishimura, Seiya; Todo, Yasushi; Nakajima, Noriyoshi; Osakabe, Masaki; Yamamoto, Satoshi; Spong, Donald A.; Suzuki, Yasuhiro
2012-10-01
For the achievement of magnetic confinement fusion, the interaction between Alfven eigenmodes (AEs) and energetic ions is an important issue to be resolved. In the Large Helical Device(LHD), the AE bursts and the energetic-ion transport and losses have been observed during the neutral beam injection. However, it has not been clarified yet how the 3-dimensional magnetic field affects the AE induced energetic-ion transport. It is worth investigating this problem since the particle dynamics in the 3-dimensional configuration such as the helical trapping might enhance the transport. In this study, we perform the reduced simulation, where the AE spatial profile calculated with AE3D code is assumed to be constant in time and the evolution of the amplitude and the frequency is computed in a way consistent with the interaction between the energetic ions and AE. The energetic-ion dynamics is followed in the electromagnetic field that is the sum of the equilibrium field by HINT code and the AE perturbation. It is found that the AE amplitude continues to increase gradually after the exponential growth for the isotropic energetic-ion velocity distribution, whereas the saturation takes place for the beam-type distribution. We will report on the detailed analysis of the energetic-ion dynamics.
Explaining Signatures of Auroral Arcs based on the Stationary Inertial Alfven Wave
NASA Astrophysics Data System (ADS)
Nogami, Sh; Koepke, Me; Knudsen, Dj; Gillies, Dm; Donovan, E.; Vincena, S.
2016-10-01
Optical emission data from the THEMIS array of All Sky Imagers are analyzed to determine the lifetime of an auroral arc (i.e., the elapsed time during which an arc is visible). Lifetime is an important temporal signature related to the arc generation mechanism, by which arcs can be distinguished. An arc with a lifetime greater than ten minutes is consistent with arc generation by Stationary Inertial Alfven Wave (StIAW) which supports a steady-state wave electric field component parallel to a background magnetic field. An StIAW is a non-fluctuating, non-travelling, spatially periodic pattern of perturbed ion density that is static in the laboratory frame. StIAWs are the predicted result of the interaction between a magnetic-field-aligned electron current and plasma convection perpendicular to a background magnetic field. Electrostatic probes measure the fixed pattern of perturbed ion density in LAPD-U. Electron acceleration due to StIAWs is being investigated as a mechanism for the formation and support of long-lived auroral arcs. Preliminary evidence of electron acceleration from laboratory experiment is reported. This work was supported by NSF Grant PHY-130-1896, Grants from the Canadian Space Agency, and the THEMIS ASI teams at UCalgary and UC Berkeley. Facility use and experimental assistance from BaPSF is gratefully acknowledged.
Non-WKB Alfven waves in the solar wind: Propagation and reflection of pulses
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1995-01-01
The non-WKB propagation of Alfven waves has been studied either for harmonic waves, or in terms of the evolution of power spectra. Here we present analytical and numerical solutions for the propagation of pulses, the goal being to understand how waves reflect in a smoothly varying medium. We here limit our discussion to a radial magnetic field. If we launch an outward-propagating delta function, it leaves behind an inward-propagaing signal which is roughly a square wave whose amplitude is proportional to the area under the initial pulse. The inward-propagating signal also reflects, producing an outward propagating pulse which is roughly triangular in shape and which grows with time. These signals also oscillate if v is less than v(A), but they grow if v is greater than v(A). The result reported by us earlier, that the 'ingoing Elsasser variable' can have outgoing phase, is now understood to be a consequence of interference. The inward-propagating signal depends to lowest order on the integral of the outgoing waves which have preceded it. Thus the ingoing signal can be expected to develop as a random walk. This will affect the radial evolution of cross-helicity in the solar wind.
Transit Times In A Shallow Aquifer From Tracer Measurements In The Aquifer And A Gaining Stream
NASA Astrophysics Data System (ADS)
Solomon, D. K.; Genereux, D. P.; Gilmore, T. E.; Solder, J. E.
2015-12-01
The mean transit time (MTT) is a fundamental property of a groundwater flow system that is related to recharge rate and storage volume. However, estimating the MTT using environmental tracers is problematic as flow-weighted samples over the full spectrum of transit times are needed and computed MTTs depend on the transit time distribution (TTD) that is not usually determined directly. We studied the TTD and MTT in the baseflow of a gaining stream (West Bear Creek) and in the surrounding shallow aquifer in the North Carolina Coastal Plain. Groundwater seepage to the stream was quantified using the dilution of an injected Br tracer, velocity-area flow measurements, seepage meters, and Darcy calculations from discrete point measurements of vertical K and gradient. Environmental tracers concentrations (CFCs, SF6, 3H-3He) were measured in multi-level monitoring wells, in streambed piezometers, seepage meters, and stream samples. Apparent (piston flow) ages from monitoring wells are generally consistent with an exponential TTD. Discrete samples from streambed piezometers have concentrations from multiple age-dating tracers suggesting that mixing of a wide range of groundwater ages was not occurring as groundwater converged below the streambed and that piston flow apparent ages were reasonable estimates of the transit time of groundwater. Stream water samples that are corrected for exchange with the atmosphere yield SF6 concentrations that are similar to flow weighted values from streambed piezometers. The MTT of 25-30 years derived from well samples is similar to that based on streambed piezometer samples and the exchange-corrected stream samples. The flow-weighted cumulative distribution of apparent ages from streambed samples can be modeled with a gamma distribution having a shape factor (α) that is greater than 1. Numerical modeling of some ideal cases indicates that spatial variations in recharge might be discerned from the cumulative TTD with α >1 for recharge
NASA Astrophysics Data System (ADS)
Huhn, Oliver; Hauck, Judith; Hoppema, Mario; Rhein, Monika; Roether, Wolfgang
2010-05-01
We use a 20 year time series of chlorofluorocarbon (CFC) observations along the Prime Meridian to determine the temporal evolution of anthropogenic carbon (Cant) in the two deep boundary currents which enter the Weddell Basin in the south and leave it in the north. The Cant is inferred from transit time distributions (TTDs), with parameters (mean transit time and dispersion) adjusted to the observed mean CFC histories in these recently ventilated deep boundary currents. We optimize that "classic" TTD approach by accounting for water exchange of the boundary currents with an old but not CFC and Cant free interior reservoir. This reservoir in turn, is replenished by the boundary currents, which we parameterize as first order mixing. Furthermore, we account for the time-dependence of the CFC and Cant source water saturation. A conceptual model of an ideal saturated mixed layer and exchange with adjacent water is adjusted to observed CFC saturations in the source regions. The time-dependence for the CFC saturation appears to be much weaker than for Cant. We find a mean transit time of 14 years and an advection/dispersion ratio of 5 for the deep southern boundary current. For the northern boundary current we find a mean transit time of 8 years and a much advection/dispersion ratio of 140. The fractions directly supplied by the boundary currents are in both cases in the order of 10%, while 90% are admixed from the interior reservoirs, which are replenished with a renewal time of about 14 years. We determine Cant ~ 11 umol/kg (reference year 2006) in the deep water entering the Weddell Sea in the south (~2.1 Sv), and 12 umol/kg for the deep water leaving the Weddell Sea in the north (~2.7 Sv). These Cant estimates are, however, upper limits, considering that the Cant source water saturation is likely to be lower than that for the CFCs. Comparison with Cant intrusion estimates based on extended multiple linear regression (using potential temperature, salinity, oxygen, and
Simple magneto-optic transition metal models for time-domain simulations.
Wolff, Christian; Rodríguez-Oliveros, Rogelio; Busch, Kurt
2013-05-20
Efficient modelling of the magneto-optic effects of transition metals such as nickel, cobalt and iron is a topic of growing interest within the nano-optics community. In this paper, we present a general discussion of appropriate material models for the linear dielectric properties for such metals, provide parameter fits and formulate the anisotropic response in terms of auxiliary differential equations suitable for time-domain simulations. We validate both our material models and their implementation by comparing numerical results obtained with the Discontinuous Galerkin time-domain (DGTD) method to analytical results and previously published experimental data.
NASA Astrophysics Data System (ADS)
Medina-Tanco, G. A.; Opher, R.
1990-11-01
RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES
Transit timing variations for planets co-orbiting in the horseshoe regime
Vokrouhlický, David; Nesvorný, David E-mail: davidn@boulder.swri.edu
2014-08-10
Although not yet detected, pairs of exoplanets in 1:1 mean motion resonance probably exist. Low eccentricity, near-planar orbits, which in the comoving frame follow horseshoe trajectories, are one of the possible stable configurations. Here we study transit timing variations (TTVs) produced by mutual gravitational interaction of planets in this orbital architecture, with the goal to develop methods that can be used to recognize this case in observational data. In particular, we use a semi-analytic model to derive parametric constraints that should facilitate data analysis. We show that characteristic traits of the TTVs can directly constrain the (1) ratio of planetary masses and (2) their total mass (divided by that of the central star) as a function of the minimum angular separation as seen from the star. In an ideal case, when transits of both planets are observed and well characterized, the minimum angular separation can also be inferred from the data. As a result, parameters derived from the observed transit timing series alone can directly provide both planetary masses scaled to the central star mass.
Transit Timing Variations for Planets Co-orbiting in the Horseshoe Regime
NASA Astrophysics Data System (ADS)
Vokrouhlický, David; Nesvorný, David
2014-08-01
Although not yet detected, pairs of exoplanets in 1:1 mean motion resonance probably exist. Low eccentricity, near-planar orbits, which in the comoving frame follow horseshoe trajectories, are one of the possible stable configurations. Here we study transit timing variations (TTVs) produced by mutual gravitational interaction of planets in this orbital architecture, with the goal to develop methods that can be used to recognize this case in observational data. In particular, we use a semi-analytic model to derive parametric constraints that should facilitate data analysis. We show that characteristic traits of the TTVs can directly constrain the (1) ratio of planetary masses and (2) their total mass (divided by that of the central star) as a function of the minimum angular separation as seen from the star. In an ideal case, when transits of both planets are observed and well characterized, the minimum angular separation can also be inferred from the data. As a result, parameters derived from the observed transit timing series alone can directly provide both planetary masses scaled to the central star mass.
NASA Astrophysics Data System (ADS)
Ye, Jing Yong; Hattori, Toshiaki; Nakatsuka, Hiroki; Maruyama, Yoshihiro; Ishikawa, Mitsuru
1997-09-01
The microscopic dynamics of several monomeric and polymeric glass-forming materials has been investigated by time-resolved fluorescence measurements of doped malachite green molecules in a wide temperature region. For monomers, 1-propanol, propylene glycol, and glycerol, and a polymer without side chains, poly- butadiene, the temperature dependence of nonradiative decay time of doped malachite green molecules behaves in a similar way through the glass-transition region. Besides a kink around the calorimetric glass-transition temperature Tg, another crossover at a critical temperature Tc about 30-50 K above Tg has been clearly observed. This experimental finding is in agreement with the prediction of the mode-coupling theory that a dynamical transition exists well above Tg. On the other hand, for the complex polymers with side chains, poly(vinyl acetate), poly(methyl acrylate), and poly(ethyl methacrylate), the crossover at Tg is less pronounced than those for the monomers and the polymer without side chains. Moreover, although we could not distinguish any singularities above Tg for these complex polymers, we observed another kink below Tg, which may be attributed to the side-chain motions.
VizieR Online Data Catalog: Kepler transit timing observations. VIII. (Mazeh+, 2013)
NASA Astrophysics Data System (ADS)
Mazeh, T.; Nachmani, G.; Holczer, T.; Fabrycky, D. C.; Ford, E. B.; Sanchis-Ojeda, R.; Sokol, G.; Rowe, J. F.; Zucker, S.; Agol, E.; Carter, J. A.; Lissauer, J. J.; Quintana, E. V.; Ragozzine, D.; Steffen, J. H.; Welsh, W.
2013-10-01
Following the works of Ford et al. (2011, Cat. J/ApJS/197/2; 2012ApJ...756..185F) and Steffen et al. (2012ApJ...756..186S) we derived the transit timing of 1960 Kepler objects of interest (KOIs) using the pre-search data conditioning light curves of the first twelve quarters of the Kepler data. For 721 KOIs with large enough signal-to-noise ratios, we obtained also the duration and depth of each transit. The results are presented as a catalog for the community to use. We derived a few statistics of our results that could be used to indicate significant variations. Including systems found by previous works, we have found 130 KOIs that showed highly significant times of transit variations (TTVs) and 13 that had short-period TTV modulations with small amplitudes. We consider two effects that could cause apparent periodic TTV -- the finite sampling of the observations and the interference with the stellar activity, stellar spots in particular. We briefly discuss some statistical aspects of our detected TTVs. We show that the TTV period is correlated with the orbital period of the planet and with the TTV amplitude. (7 data files).
Comprehensive time series analysis of the transiting extrasolar planet WASP-33b
NASA Astrophysics Data System (ADS)
Kovács, G.; Kovács, T.; Hartman, J. D.; Bakos, G. Á.; Bieryla, A.; Latham, D.; Noyes, R. W.; Regály, Zs.; Esquerdo, G. A.
2013-05-01
Context. HD 15082 (WASP-33) is the hottest and fastest rotating star known to harbor a transiting extrasolar planet (WASP-33b). The lack of high precision radial velocity (RV) data stresses the need for precise light curve analysis and gathering further RV data. Aims: By using available photometric and RV data, we perform a blend analysis, compute more accurate system parameters, confine the planetary mass, and, attempt to cast light on the observed transit anomalies. Methods: We combined the original HATNet observations and various followup data to jointly analyze the signal content and extract the transit component and used our RV data to aid the global parameter determination. Results: The blend analysis of the combination of multicolor light curves yields the first independent confirmation of the planetary nature of WASP-33b. We clearly identify three frequency components in the 15-21 d-1 regime with amplitudes 7-5 mmag. These frequencies correspond to the δ Scuti-type pulsation of the host star. None of these pulsation frequencies or their low-order linear combinations are in close resonance with the orbital frequency. We show that these pulsation components explain some but not all of the observed transit anomalies. The grand-averaged transit light curve shows that there is a ~1.5 mmag brightening shortly after the planet passes the mid-transit phase. Although the duration and amplitude of this brightening varies, it is visible even through the direct inspections of the individual transit events (some 40-60% of the followup light curves show this phenomenon). We suggest that the most likely explanation of this feature is the presence of a well-populated spot belt which is highly inclined to the orbital plane. This geometry is consistent with the inference from the spectroscopic anomalies. Finally, we constrain the planetary mass to Mp = 3.27 ± 0.73 MJ by using our RV data collected by the TRES spectrograph. Appendix A is available in electronic form at http
NASA Astrophysics Data System (ADS)
Akimoto, Takuma; Yamamoto, Eiji
2016-12-01
Local diffusion coefficients in disordered systems such as spin glass systems and living cells are highly heterogeneous and may change over time. Such a time-dependent and spatially heterogeneous environment results in irreproducibility of single-particle-tracking measurements. Irreproducibility of time-averaged observables has been theoretically studied in the context of weak ergodicity breaking in stochastic processes. Here, we provide rigorous descriptions of equilibrium and non-equilibrium diffusion processes for the annealed transit time model, which is a heterogeneous diffusion model in living cells. We give analytical solutions for the mean square displacement (MSD) and the relative standard deviation of the time-averaged MSD for equilibrium and non-equilibrium situations. We find that the time-averaged MSD grows linearly with time and that the time-averaged diffusion coefficients are intrinsically random (irreproducible) even in the long-time measurements in non-equilibrium situations. Furthermore, the distribution of the time-averaged diffusion coefficients converges to a universal distribution in the sense that it does not depend on initial conditions. Our findings pave the way for a theoretical understanding of distributional behavior of the time-averaged diffusion coefficients in disordered systems.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
Alfv'en mode structure/stability properties of stellarators and broken-symmetry tokamaks
NASA Astrophysics Data System (ADS)
Spong, Don
2009-05-01
Energetic particle driven shear Alfv'en wave (SAW) instabilities are frequently observed in both stellarator and tokamak experiments. Three-dimensional effects are present in all toroidal devices and can significantly influence both stability properties of energetic particle populations and their loss patterns on the first wall. Three-dimensional equilibrium variations in stellarators and broken symmetry tokamaks provide new couplings that increase the complexity and density of the Alfv'en mode spectrum. An eigenmode solver, the AE3D code, has been developed for calculating Alfv'en mode structures in such configurations and identifying the most likely modes for resonant energetic tail destabilization. Applications of this model to a variety of stellarators (LHD, TJ-II, HSX, QPS, NCSX) and broken symmetry tokamaks (ITER with TF ripple and ferritic materials) have been made and results will be presented. Possible extensions to include sound wave couplings and gyro-Landau closures will be discussed.
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Esser, R.; Jayanti, V.
1993-01-01
The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.
Two dimensional PIC simulations of plasma heating by the dissipation of Alfven waves
NASA Technical Reports Server (NTRS)
Liewer, P. C.; Kruecken, T. J.; Ferraro, R. D.; Decyk, V. K.; Goldstein, B. E.
1992-01-01
Two dimensional plasma particle simulations of the evolution of large amplitude circularly polarized Alfven waves propagating parallel to the magnetic field show that the waves decay via both one- and two- dimensional parametric decay instabilities. For parameters studied, one-dimensional processes dominate the simulations, but two-dimensional decay processes, including the recently predicted filamentation instability are also observed. The daughter waves generated by the parametric decay are primarily damped by the ions, leading to ion heating. The parametric decay processes efficiently convert the ordered fluid ion motion in the Alfven wave into ion thermal energy. These processes may be important for the dissipation of Alfven waves in the solar wind, the corona and other space plasma environments. The computations were performed on the Intel Touchstone parallel supercomputer.
NASA Astrophysics Data System (ADS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1988-02-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, a new equation is derived governing the evolution of the spectrum tensor (including the energy and helicity spectrum functions) of the random velocity field as well as the ponderomotive and mean electromotive forces generated by random Alfven waves in a plasma with weak magnetic diffusion. The ponderomotive and mean electromotive forces are expressed as series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of the random velocity field. The effect of microscale random Alfven waves, through ponderomotive and mean electromotive forces generated by them, on the propagation of large-scale Alfven waves is also investigated by solving the mean-field equations, including the transport equation of the helicity spectrum function.
NASA Astrophysics Data System (ADS)
Pradhan, A.; Saha, B.; Rikhvitsky, V.
2015-05-01
The Einstein's field equations with variable gravitational and cosmological "constants" for a spatially homogeneous and anisotropic Bianchi type-I space-time are obtained in present study. To study the transit behaviour of Universe, we consider a law of variation of scale factor a(t) = ( tk et) ^{1/n}, which yields a time dependent deceleration parameter q = -1 + nk/(k + t)2, comprising a class of models that depicts a transition of the universe from the early decelerated phase to the recent accelerating phase. We find that the time dependent deceleration parameter is reasonable for the present day Universe and gives an appropriate description of the evolution of the universe. For n = 0.27k, we obtain q0 = -0.73, which is similar to observed value of deceleration parameter at present epoch. It is also observed that for n ≥ 2 and k = 1, we obtain a class of transit models of the universe from early decelerating to present accelerating phase. For k = 0, the universe has non-singular origin. In these models, we arrive at the decision that, from the structure of the field equations, the behaviour of cosmological and gravitational constants and are related. Taking into consideration the observational data, we conclude that the cosmological constant behaves as a positive decreasing function of time, whereas gravitational constant is increasing and tends to a constant value at late time. H(z)/(1+z) data (32 points) and model prediction as a function of redshift for different k and n are successfully presented by using recent data. Some physical and geometric properties of the models are also discussed.
Using long-term data sets to understand transit times in contrasting headwater catchments
NASA Astrophysics Data System (ADS)
Hrachowitz, M.; Soulsby, C.; Tetzlaff, D.; Dawson, J. J. C.; Dunn, S. M.; Malcolm, I. A.
2009-04-01
SummaryLong-term tracer data collected over an 8 year period were analyzed to explore the transit times of two small (˜1 km 2), contrasting headwater catchments in the uplands of Scotland. At Loch Ard, the catchment was characterized by low permeability gleyed soils overlying metamorphic geology. At Sourhope, more freely draining podzolic soils were dominant, which mantled fractured and faulted volcanic rocks. Hydrometric data and chemically-based hydrograph separations indicated that Loch Ard was a flashy catchment dominated by runoff processes in the upper soil horizons. In contrast, around 77% of annual flow at Sourhope was sustained by well-buffered groundwater sources. Weekly Cl - time series in precipitation and stream flow revealed similar variability in inputs at both sites, but much greater damping in outputs at Sourhope. Despite this, both catchments filtered white noise frequencies in precipitation inputs into 1/ f outputs. These input-output relationships were modeled with a range of transit time distributions (TTD). At the responsive Loch Ard catchment, mean transit times (MTT) for the study period were estimated at 135-202 days. Models based on a gamma distribution or two parallel linear reservoirs were best able to capture the short- and long-term fluctuations in stream water in response to input variations. At Sourhope, the highly damped tracer signal in stream waters was poorly captured by all the TTDs used. Resulting MTT estimates of 1830-1970 days are based on weak model fits and poorly identifiable parameter sets, indicating that natural tracers such as Cl - are inadequate for catchments where MTTs are greater than a few years. At both sites, estimates of MTT using moving windows over the 8 year data sets revealed sensitivity to precipitation amounts and the length of monitoring period. It is concluded that time series of around 4 years are required to adequately constrain MTT estimates.
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Baños, Raquel Alvarez; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvion, Jose Miguel; Gordillo-Guerrero, Antonio; Guidetti, Marco; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Seoane, Beatriz; Tarancon, Alfonso; Tellez, Pedro; Tripiccione, Raffaele; Yllanes, David
2012-01-01
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method. PMID:22493229
Pulse transit time differential measurement by fiber Bragg grating pulse recorder.
Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan
2015-05-01
The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.
Groundwater transit time distribution and transfer of nitrates from soils to river network
NASA Astrophysics Data System (ADS)
Michalczyk, Tomasz; Bar-Michalczyk, Dominika; Duliński, Marek; Kania, Jarosław; Malina, Grzegorz; Różański, Kazimierz; Szklarczyk, Tadeusz; Wachniew, Przemysław; Witczak, Stanisław; Zięba, Damian; Żurek, Anna
2016-04-01
Measures undertaken to reduce nitrate loadings of agricultural origin to surface waters have to take into account delays associated with pollution transport between the root zone and groundwater abstraction wells or natural discharge zones. Parts of an important fissured-carbonate aquifer (Major Groundwater Basin No. 326) located in southern Poland are polluted, with concentrations of nitrates significantly exceeding the European Union limit of 50 mg/L. The polluted groundwater discharges to the streams of the Kocinka river catchment affecting their water quality. The MODFLOW and MT3DMS codes were used to model flow and transport of contaminants in the aquifer. Transport of conservative solutes was performed in a transient mode, with the steady-state flow field calibrated using present-day distribution of hydraulic heads and discharges of streams draining the aquifer. Time series of tritium data available for 21 production wells and springs, some of them extending over the period of 30 years, were used for calibration of flow and transport model resulting in significant changes in the original conceptual framework of this groundwater system. The regional-scale numerical model of flow and transport allowed for identification of the gaining stream reaches and for estimation of groundwater contributions to streamflow. Observations of in stable isotope composition and stream water chemistry confirmed the results of the numerical model for these particular stream reaches. The numerical model provided also the transit time distribution of groundwater flow through the saturated zone with an average value of 8 years and dominant transit times in the range from 3 to 20 years. Transit times of water through the unsaturated zone are in the range from less than 5 to 25 years with an average value of 10 years. Because of these delays, the results of measures aimed at reducing nitrate loads to the river network will be visible only within the relevant timescales.
NASA Astrophysics Data System (ADS)
Erlandsson, Martin; Bishop, Kevin; Köhler, Stephan; Amvrosiadi, Nino
2016-04-01
Soil mineral weathering is one of the major sources of base cations (BC), which play a dual role for a forest ecosystem; they function both as plant nutrients, and for buffering against acidification of catchment runoff. On a long-term basis, the soil weathering rates will determine the highest sustainable forest productivity without causing acidification. It is believed that the hydrologic residence time play a key role in determining weathering rates on a landscape scale. In this study, we investigate the significance of the water transit residence time (WTT) distribution for the transport of base cations to catchment runoff. By modelling hillslope flowpaths with different transit times, using the geochemical computing code PHREEQC, we demonstrate how in-stream dynamics as exemplified by elemental ratios can be explained by mineral dissolution kinetics and equilibria. Specifically, we hypothesize that equilibrium of plagioclase regulates the delivery of base cations and silica to catchment runoff. These patters can be seen in field data from 10 years of sampling from a nested-catchment, where the Na+/BC and the Si/BC-ratios vary systematically with WTT on both a temporal and a spatial scale. This behavior has implications for the total transport of products from mineral dissolution to catchment runoff. As the water entering the stream is a mixture of water with different transit times, the composition of stream water will not only be dependent on the average WTT, but also on the shape of the WTT distribution. For the base cations associated with minerals that becomes supersaturated or with precipitating secondary phases within the range of WTT, i.e. Na+ and K+, the tails of "old water" of the WRT-distribution will not contribute to any extra transport of these elements. Finally, we use the derived relationships to estimate the transport of weathering products from a forested hillslope, given the modelled WRT distribution.
Generation of Alfven waves by high power pulse at the electron plasma frequency
NASA Astrophysics Data System (ADS)
van Compernolle, Bart Gilbert
The physics of the interaction between plasmas and high power waves with frequencies in the electron plasma frequency range is of importance in many areas of space and plasma physics. A great deal of laboratory research has been done on the interaction of microwaves in a density gradient when o = ope in unmagnetized plasmas. [SWK74, WS78, KSW74]. Extensive studies of HF-ionospheric modifications have been performed [Fej79] as evidenced by experiments at Arecibo [HMD92, BHK86, CDF92, FGI85], at the HAARP facility [RKK98] in Alaska, at the EISCAT observatory in Norway [IHR99], and at SURA in Russia [FKS99]. This dissertation focusses on the interaction with a fully magnetized plasma, capable of supporting Alfven waves. The experiment is performed in the upgraded LArge Plasma Device (LAPD) at UCLA [GPL91] (Helium, n = 1012 cm-3, B = 1 kG - 2.5 kG). A number of experiments have been done at LAPD using antennas, skin depth scale currents and laser produced plasmas to generate Alfven waves [LGM99, GVL97a, GVL97b, VGV01]. In this work a high power pulse 6th, frequency in the electron plasma frequency range is launched into the radial density gradient, perpendicular to the background magnetic field. The microwave pulses last on the order of one ion gyro period and has a maximum power of |E|2/ nT ≃ .5 in the afterglow. The absorption of these waves leads to a pulse of field aligned suprathermal electrons. This electron current pulse then launches with Alfven wave with o ≤ o ci. The experiment was performed bath in ordinary node (O-mode) and extraordinary (X-mode), for different background magnetic fields B0, different temperatures (afterglow vs discharge) and different power levels of the incoming microwaves. It was found that the Alfven wave generation can be explained by Cherenkov radiation of Alfven waves by the suprathermal electron pulse. Theoretical solutions for the perturbed magnetic field due to a pulse of field aligned electrons were obtained, and shown to be
A TORSIONAL ALFVEN WAVE EMBEDDED WITHIN A SMALL MAGNETIC FLUX ROPE IN THE SOLAR WIND
Gosling, J. T.; Teh, W.-L.; Eriksson, S.
2010-08-10
We describe and use novel techniques to analyze a striking and distinct solar wind event observed by two spacecraft. We show that the event is consistent with an interpretation as a torsional Alfven wave embedded within a small, nearly radially aligned, magnetic flux rope of total width {approx}10{sup 6} km. It seems likely that the torsional wave was generated by distortions produced within a pre-existing flux rope that erupted from the Sun. Our examination of many events previously identified as flux ropes in the solar wind indicates that torsional Alfven waves are extremely rare in such events.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
Global particle-in-cell simulations of plasma pressure effects on Alfvenic modes
Mishchenko, Alexey; Koenies, Axel; Hatzky, Roman
2011-01-15
Global linear gyrokinetic particle-in-cell simulations of electromagnetic modes in realistic tokamak geometry are reported. The effect of plasma pressure on Alfvenic modes is studied. It is shown that the fast-particle pressure can considerably affect the shear Alfven wave continuum structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely stabilize them in a certain parameter range). Ballooning modes are found to be the dominant instabilities if the bulk-plasma pressure gradient is large enough.
Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Gorelenkov, N.; Fredrickson, E.; Kaye, S.; Mazzucato, E.
2009-03-20
We report the observation of a correlation between shear Alfven eigenmode activity and electron transport in plasma regimes where the electron temperature gradient is flat, and thus the drive for temperature gradient microinstabilities is absent. Plasmas having rapid central electron transport show intense, broadband global Alfven eigenmode (GAE) activity in the 0.5-1.1 MHz range, while plasmas with low transport are essentially GAE-free. The first theoretical assessment of a GAE-electron transport connection indicates that overlapping modes can resonantly couple to the bulk thermal electrons and induce their stochastic diffusion.
A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence
Biglari, H. . Plasma Physics Lab.); Diamond, P.H. . Dept. of Physics)
1992-01-01
The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.
A sunspot model for study of discrete Alfven waves and instabilities
NASA Astrophysics Data System (ADS)
Ochi, Marcia M.; Sakanaka, P. H.; Faria, R. T., Jr.; Deazevedo, C. A.; Deassis, A. S.
1994-01-01
We present a model for sunspots where both the umbral and the penumbral regions are considered. The equilibrium configuration is described by a two-plasma vertical cylindrical model with an axial current. Twisted magnetic fields, with a small B(theta)/B(z) are assumed. Using the ideal magnetohydrodynamics (MHD) model, the analysis of discrete Alfven modes and instabilities is based on the numerical investigation of the Hain-Lust equation. The period of the discrete Alfven mode is found to present the same order of magnitude of those observed for running penumbral waves. Good prediction of the sunspot lifetime can also be obtained.
Time-varying coupling functions: Dynamical inference and cause of synchronization transitions
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav
2017-02-01
Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.
Time-varying coupling functions: Dynamical inference and cause of synchronization transitions.
Stankovski, Tomislav
2017-02-01
Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.
Ellingsen, Sidsel; Roxberg, Åsa; Kristoffersen, Kjell; Rosland, Jan Henrik; Alvsvåg, Herdis
2014-09-01
The aim of this study is to describe the experience of time as it presents itself at the place being situated when living with severe incurable disease and receiving palliative care. The empirical data consist of 26 open-ended interviews with 23 patients receiving palliative care at home, at a palliative day care, in a palliative bed unit in hospital or in a nursing home in Norway. A common meaning of a shifting space for living emerged from the analysis and was revealed through three different aspects: (i) Transition from a predictable to an unpredictable time: To live with severe incurable disease marks a transition to a changed life involving an ongoing weakened and altered body with bothersome symptoms making experience of time different and unpredictable. (ii) Transition between a safe and unsafe time: When time is unpredictable, feeling safe is revealed as essential to how time is experienced at the place being situated. (iii) To be in transition from a homely to a homeless existence: In a time of increased bodily weakness, unpredictable ailments and displacements, the sense of belonging to the place is revealed as significant to the experience of time. Not knowing where to be in a time of change is like an existential cry of distress where the foothold in existence is lost. The findings are discussed and interpreted as an embodied experience originating from the passage of time continually affecting life sometimes so fundamentally that it marks a transition to a changed space of life that is reflected in the experience of time.
Zhang, Y G; Shao, W J; Gu, Y F; Qiu, J F; Yuan, L; Li, G D
2016-09-23
Sacral nerve stimulation (SNS) is an alternative surgical approach to alleviate fecal incontinence and constipation. This study aimed to explore the effects and underlying mechanisms of SNS with acupuncture on gut transit time and colon c-kit protein expression in rats with slow transit constipation (STC). Fifty Sprague-Dawley rats were randomly divided into five groups: blank control, SNS, Mosapride, sham SNS, and STC model control group. The STC model was established by subcutaneous injection of morphine. Each group was treated over a 15-day period. Gut transit time was measured 1 day before the treatment started and after 5, 10, and 15 days of treatment. After the 15-day treatment, animals were sacrificed and colonic tissues were collected for analysis of c-kit protein expression, using western blot analysis. We found significant differences in gut transit time in the SNS group compared with the Mosapride group after 5 (P = 0.001) and 10 (P = 0.004) days of treatment. After 15 days of treatment, there were no differences in gut transit time among the SNS, Mosapride, and blank control groups. However, significant differences were observed when comparing the SNS and Mosapride groups with the STC model and sham SNS groups. A decreased c-kit protein expression was observed in the STC model control, sham SNS, and Mosapride groups, compared with the SNS group (P = 0.001). Our data indicate that SNS can decrease gut transit time and increase the expression of c-kit protein in rats with STC to improve colon transit function.
Tottey, William; Feria-Gervasio, David; Gaci, Nadia; Laillet, Brigitte; Pujos, Estelle; Martin, Jean-François; Sebedio, Jean-Louis; Sion, Benoit; Jarrige, Jean-François; Alric, Monique; Brugère, Jean-François
2017-01-01
Background/Aims Human gut microbiota harbors numerous metabolic properties essential for the host’s health. Increased intestinal transit time affects a part of the population and is notably observed with human aging, which also corresponds to modifications of the gut microbiota. Thus we tested the metabolic and compositional changes of a human gut microbiota induced by an increased transit time simulated in vitro. Methods The in vitro system, Environmental Control System for Intestinal Microbiota, was used to simulate the environmental conditions of 3 different anatomical parts of the human colon in a continuous process. The retention times of the chemostat conditions were established to correspond to a typical transit time of 48 hours next increased to 96 hours. The bacterial communities, short chain fatty acids and metabolite fingerprints were determined. Results Increase of transit time resulted in a decrease of biomass and of diversity in the more distal compartments. Short chain fatty acid analyses and metabolite fingerprinting revealed increased activity corresponding to carbohydrate fermentation in the proximal compartments while protein fermentations were increased in the lower parts. Conclusions This study provides the evidence that the increase of transit time, independently of other factors, affects the composition and metabolism of the gut microbiota. The transit time is one of the factors that explain some of the modifications seen in the gut microbiota of the elderly, as well as patients with slow transit time. PMID:27530163
Trugenberger, Carlo A
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension d(H)=4. The model has a geometric quantum phase transition with disorder parameter (d(H)-d(s)), where d(s) is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
NASA Astrophysics Data System (ADS)
Dittmann, Jason; Close, L.; Scuderi, L.
2011-05-01
The large number of hot Jupiter planets allows one to probe these systems for additional unseen planets via transit timing variations (TTVs). Even relatively small terrestrial planets, when placed in an energetically favorable mean motion resonance (MMR), can cause detectable TTVs with an amplitude of several minutes (Holman and Murray 2005, Agol et al. 2005). In an effort to discover and characterize such companions, we have embarked on a systematic study of known transiting hot Jupiters, utilizing the 1.55 meter Kuiper telescope on Mt. Bigelow to measure multiple individual transits in an observing season to within 30 second precision, and constrain the nature of any planetary companions. Here, we present current and preliminary results on this study, and show that the systems HAT-P-5, HAT- P-6, HAT-P-8, HAT-P-9, WASP-11/HAT-P-10, HAT-P-11, TrES-2, and WASP-10 do not contain small mass companions in MMRs, or moderate mass companions in close enough proximity to induce TTVs on the order of 1.5 minutes.
Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
NASA Astrophysics Data System (ADS)
Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.
2014-08-01
We present measurements of the thermal conductance, G, and effective time constants, , of three transition-edge sensors (TESs) populated in arrays operated from 80-87 mK with T 120 mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power, the lowest , and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: (1) a TES with straight support beams of 1 mm length, (2) a TES with meander support beams of total length 2 mm and with two phonon-filter blocks per beam, and (3) a TES with meander support beams of total length 2 mm and with six phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R and increase the sharpness of the transition dlogR/dlogT at the transition temperature T. We find an upper limit of given by (), and G values of 200 fW/K for (1), 15 fW/K for (2), and 10 fW/K for (3). The value of can be improved by slightly increasing the length of our thermistors.
A mechanism-based approach for absorption modeling: the Gastro-Intestinal Transit Time (GITT) model.
Hénin, Emilie; Bergstrand, Martin; Standing, Joseph F; Karlsson, Mats O
2012-06-01
Absorption models used in the estimation of pharmacokinetic drug characteristics from plasma concentration data are generally empirical and simple, utilizing no prior information on gastro-intestinal (GI) transit patterns. Our aim was to develop and evaluate an estimation strategy based on a mechanism-based model for drug absorption, which takes into account the tablet movement through the GI transit. This work is an extension of a previous model utilizing tablet movement characteristics derived from magnetic marker monitoring (MMM) and pharmacokinetic data. The new approach, which replaces MMM data with a GI transit model, was evaluated in data sets where MMM data were available (felodipine) or not available (diclofenac). Pharmacokinetic profiles in both datasets were well described by the model according to goodness-of-fit plots. Visual predictive checks showed the model to give superior simulation properties compared with a standard empirical approach (first-order absorption rate + lag-time). This model represents a step towards an integrated mechanism-based NLME model, where the use of physiological knowledge and in vitro–in vivo correlation helps fully characterize PK and generate hypotheses for new formulations or specific populations.
Nesvorný, David; Terrell, Dirk; Kipping, David; Feroz, Farhan
2014-07-20
KOI-227, KOI-319 and KOI-884 are identified here as (at least) two planet systems. For KOI-319 and KOI-884, the observed Transit Timing Variations (TTVs) of the inner transiting planet are used to detect an outer non-transiting planet. The outer planet in KOI-884 is ≅2.6 Jupiter masses and has the orbital period just narrow of the 3:1 resonance with the inner planet (orbital period ratio 2.93). The distribution of parameters inferred from KOI-319.01's TTVs is bimodal with either a ≅1.6 Neptune-mass (M{sub N}) planet wide of the 5:3 resonance (period 80.1 days) or a ≅1 Saturn-mass planet wide of the 7:3 resonance (period 109.2 days). The radial velocity measurements can be used in this case to determine which of these parameter modes is correct. KOI-227.01's TTVs with large ≅10 hr amplitude can be obtained for planetary-mass companions in various major resonances. Based on the Bayesian evidence, the current TTV data favor the outer 2:1 resonance with a companion mass ≅1.5 M{sub N}, but this solution implies a very large density of KOI-227.01. The inner and outer 3:2 resonance solutions with sub-Neptune-mass companions are physically more plausible, but will need to be verified.
NASA Technical Reports Server (NTRS)
Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.
2013-01-01
We present measurements of the thermal conductance, G, and effective time constants, tau, of three transition-edge sensors (TESs) populated in arrays operated from 80-87mK with T(sub C) approximately 120mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power (NEP), the lowest tau and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: 1) a TES with straight support beams of 1mm length, 2) a TES with meander support beams of total length 2mm and with 2 phononfilter blocks per beam, and 3) a TES with meander support beams of total length 2mm and with 6 phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R(sub N) and increase the sharpness of the transition alpha=dlogR/dlogT at the transition temperature T(sub C). We find an upper limit of given by (25+/-10), and G values of 200fW/K for 1), 15fW/K for 2), and 10fW/K for 3). The value of alpha can be improved by slightly increasing the length of our thermistors.
NASA Astrophysics Data System (ADS)
Nesvorný, David; Kipping, David; Terrell, Dirk; Feroz, Farhan
2014-07-01
KOI-227, KOI-319 and KOI-884 are identified here as (at least) two planet systems. For KOI-319 and KOI-884, the observed Transit Timing Variations (TTVs) of the inner transiting planet are used to detect an outer non-transiting planet. The outer planet in KOI-884 is sime2.6 Jupiter masses and has the orbital period just narrow of the 3:1 resonance with the inner planet (orbital period ratio 2.93). The distribution of parameters inferred from KOI-319.01's TTVs is bimodal with either a sime1.6 Neptune-mass (M N) planet wide of the 5:3 resonance (period 80.1 days) or a sime1 Saturn-mass planet wide of the 7:3 resonance (period 109.2 days). The radial velocity measurements can be used in this case to determine which of these parameter modes is correct. KOI-227.01's TTVs with large sime10 hr amplitude can be obtained for planetary-mass companions in various major resonances. Based on the Bayesian evidence, the current TTV data favor the outer 2:1 resonance with a companion mass sime1.5 M N, but this solution implies a very large density of KOI-227.01. The inner and outer 3:2 resonance solutions with sub-Neptune-mass companions are physically more plausible, but will need to be verified.
Campos, Daniel; Méndez, Vicenç
2015-12-01
Recent works have explored the properties of Lévy flights with resetting in one-dimensional domains and have reported the existence of phase transitions in the phase space of parameters which minimizes the mean first passage time (MFPT) through the origin [L. Kusmierz et al., Phys. Rev. Lett. 113, 220602 (2014)]. Here, we show how actually an interesting dynamics, including also phase transitions for the minimization of the MFPT, can also be obtained without invoking the use of Lévy statistics but for the simpler case of random walks with exponentially distributed flights of constant speed. We explore this dynamics both in the case of finite and infinite domains, and for different implementations of the resetting mechanism to show that different ways to introduce resetting consistently lead to a quite similar dynamics. The use of exponential flights has the strong advantage that exact solutions can be obtained easily for the MFPT through the origin, so a complete analytical characterization of the system dynamics can be provided. Furthermore, we discuss in detail how the phase transitions observed in random walks with resetting are closely related to several ideas recurrently used in the field of random search theory, in particular, to other mechanisms proposed to understand random search in space as mortal random walks or multiscale random walks. As a whole, we corroborate that one of the essential ingredients behind MFPT minimization lies in the combination of multiple movement scales (regardless of their specific origin).
Mean Transit Time as a Predictor of Groundwater Discharge Response in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Solder, J. E.; Heilweil, V. M.; Stolp, B. J.; Susong, D.
2015-12-01
The Colorado River and its tributaries support 40 million municipal water users and 5.5 million acres of agriculture in the south western United States (U.S. Bureau of Reclamation, 2012). Recent estimates by Rumsey et al. (2015) suggest that a significant portion (about 50 percent) of surface water flow in the Upper Colorado River Basin (UCRB) is sustained by groundwater discharge to streams. Predicted climate variation (Cook et al., 2015) and increased water demand (U.S. Bureau of Reclamation, 2012) within the UCRB suggest future decreases in groundwater discharge, however transient groundwater responses are not well understood. In this study we calculate groundwater mean transit time (MTT) and transit time distribution (TTD) as predictors of the pattern and timing of groundwater response to hydraulic stress. Samples from nineteen large springs within the UCRB were analyzed for environmental tracers to determine MTT and TTD. The predictive value of the MTT is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the 19 springs range from 10 to 15,000 years with a flow-weighted average of 1,650 years. The composite TTD of the 19 springs suggest that flowpaths representing 45 percent of their combined discharge have transit times greater than 100 years. However, spring discharge records indicate that flow responds to drought on much shorter (0.5 - 6 year) time scales, indicative of a hydraulic pressure response. Springs with shorter MTTs (< 100) generally correlated with larger discharge variations and faster responses to drought indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Previous study (e.g., Manga, 1999) has shown groundwater responds on shorter time scales than the MTT, but of interest the results presented here indicate that relatively stable and old springs with long MTTs (> 100) also show a hydraulic pressure response. While
Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.
2009-05-15
Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
How does landscape structure influence catchment transit time across different geomorphic provinces?
Tetzlaff, D.; Seibert, J.; McGuire, K.J.; Laudon, H.; Burns, Douglas A.; Dunn, S.M.; Soulsby, C.
2009-01-01
Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding across different geographical regions. Uniquely, this paper examines data from 55 catchments in five geomorphic provinces in northern temperate regions (Scotland, United States of America and Sweden). The objective is to understand how the role of catchment topography as a control on the TTs differs in contrasting geographical settings. Catchment inverse transit time proxies (ITTPs) were inferred by a simple metric of isotopic tracer damping, using the ratio of standard deviation of ??18O in streamwater to the standard deviation of ??18O in precipitation. Quantitative landscape analysis was undertaken to characterize the catchments according to hydrologically relevant topographic indices that could be readily determined from a digital terrain model (DTM). The nature of topographic controls on transit times varied markedly in different geomorphic regions. In steeper montane regions, there are stronger gravitational influences on hydraulic gradients and TTs tend to be lower in the steepest catchments. In provinces where terrain is more subdued, direct topographic control weakened; in particular, where flatter areas with less permeable soils give rise to overland flow and lower TTs. The steeper slopes within this flatter terrain appear to have a greater coverage of freely draining soils, which increase sub-surface flow, therefore increasing TTs. Quantitative landscape analysis proved a useful tool for intercatchment comparison. However, the critical influence of sub-surface permeability and connectivity may limit the transferability of predictive tools of hydrological function based on topographic parameters alone. Copyright ?? 2009 John Wiley & Sons, Ltd.
Swallowing transit times and valleculae residue in stable chronic obstructive pulmonary disease
2014-01-01
Background Breathing and swallowing are physiologically linked to ensure effortless gas exchange during oronasal breathing and to prevent aspiration during swallowing. Studies have indicated consistent aspiration in chronic obstructive pulmonary disease, mainly related to delayed swallowing reflex and problems with lingual propulsion and pharyngeal peristalsis as a result of bilateral weakness and incoordination of the related muscles. The purpose of the present study was to evaluate swallowing transit times and valleculae residue characteristics of stable COPD patients who have no swallowing complaints. Methods Our study population included 20 stable patients with COPD and no swallowing complaints and 20 healthy controls. Swallowing was assessed through videofluoroscopic examination and involved the analysis of the following parameters: (1) pharyngeal stages of deglutition; (2) the duration of bolus movement through the oral cavity and pharynx (i.e. transit times); (3) valleculae residue ratio; (4) penetration/aspiration. Results Participants of the study did not present any signs of penetration-aspiration for any of the tested consistencies. Patients with COPD presented longer pharyngeal transit times during the ingestion of the liquid consistency and during the ingestion of the paste consistency. Regarding the duration of tongue base contact with the posterior pharyngeal wall, COPD patients also presented longer durations for the liquid and paste consistencies. No significant difference was observed for the distribution of individuals among the different valleculae residue severity levels. Conclusions Our study suggests that stable COPD patients may present physiological adaptations as a protective swallowing maneuver to avoid aspiration/penetration of pharyngeal contents. Moreover, valleculae residue cannot be seen as an isolated factor when trying to explain swallowing alterations in this population. PMID:24739506
NASA Astrophysics Data System (ADS)
Tetzlaff, D.; Soulsby, C.; Hrachowitz, M.; Speed, M.
2009-04-01
In recent years, transit times (TTs) have been increasingly explored as a process-based tools for conceptualising hydrological processes in an integrated manner at a range of scales. Traditionally the identification of the appropriate transit time distribution (TTD) for a hydrological system (e.g. hillslope or catchment), and the derivation of metrics such as the mean transit time (MTT) have required quantitative assessment of input-output relationships for conservative tracers using lumped parameter models. Such work has allowed the main landscape controls on TTs to be identified and facilitated the prediction of MTT in ungauged basins in particular geomorphic provinces. This has shown TT to be a useful diagnostic index of similarity that can be valuable in process-based catchment classification. In this contribution, we used well-constrained MTT estimates (with uncertainty) from 32 experimental catchments (1 to 250km2 in area) with contrasting geologic, topographic, pedologic and climatic characteristics in Scotland. The MTT was highly variable ranging from 30 days to ca. 1200 days for individual catchments. Moreover, MTT was also found to be closely correlated with key hydrometric design statistics such as the Q95, Q5, Mean Annual Flood (MAF) and the slope of the hydrograph recession curve. Analysis of the TT estimates, in conjunction with GIS-based quantitative assessment of key landscape controls, showed that MTT could be predicted to within 25% for ungauged basins from catchment soil cover, drainage density and topographic wetness index. For ungauged basins it was found that the hydrometric design statistics (Q95, Q5, MAF and the recession slope) could be more simply and accurately forecasted from MTT predictions than a single set of catchment characteristics. We demonstrate that TTs - predicted from mapped landscape characteristics - are useful integrating diagnostic metrics for regional classification, prediction and process assessment in ungauged montane
Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B
2014-04-01
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Kepler’s Low-Mass, Low Density Planets Characterized via Transit Timing
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Ford, Eric B.; Lissauer, Jack; Rowe, Jason; Fabrycky, Daniel
2015-08-01
The Kepler mission has revealed an abundance of planets in a regime of mass and size that is absent from the Solar System. This includes systems of high multiplicity within 1 AU, where low-mass volatile-rich planets have been observed in compact orbital configurations, as have smaller, rocky planets. The existing sample of characterized planets on the mass-radius diagram shows no abrupt transition from rocky planets to those that must be volatile-rich, but characteristic trends are beginning to emerge. More precise characterizations of planets by mass, radius, and incident flux are revealing fundamental properties of a common class of exoplanets.There is a small sample of low mass exoplanets with known masses and radii, whose radii are known from transit depths, and whose masses are determined from radial velocity spectroscopy (RV). In the super-Earth mass range, detectability limits this sample to planets that have short orbital periods, and high incident fluxes.In the absence of mass determinations via RV observations, transit timing variations (TTVs) offer a chance to probe perturbations between planets that pass close to one another or are near resonance, and hence dynamical fits to observed transit times can be used to measure planetary masses and orbital parameters. Such modeling with Kepler data probes planetary masses over orbital periods ranging from ~5-200 days, complementing the sample of RV detections, but also with some overlap.In addition, dynamical fits to observed TTVs can tightly constrain the orbital eccentricity vectors in select cases, which can, alongside the transit light curve, tightly constrain the density and radius of the host star, and hence reduce the uncertainty on planetary radius.TTV studies have revealed a class of low-mass, low-density objects with a substantial mass fraction in the form of a voluminous H-rich atmosphere. We will present new precise planetary mass characterizations from TTVs. We find that super-Earth mass planets
Adamson, P.; et al.
2016-05-10
Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$\\times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{\\mu\\mu} $ and $(c_{L})^{TT}_{\\tau\\tau}$ at $-8.4\\times10^{-23} < (c_{L})^{TT}_{\\mu\\mu} < 8.0\\times10^{-23}$ and $-8.0\\times10^{-23} < (c_{L})^{TT}_{\\tau\\tau} < 8.4\\times10^{-23}$, and the world's best limits on the $\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}$ and $\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}$ parameters at $|\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}| < 3.3\\times 10^{-23}$ and $|\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}| < 3.3\\times 10^{-23}$, all limits quoted at $3\\sigma$.
Renal blood flow transit time in the study of renal transplants
Sfakianakis, G.; Ihmeidan, I.; Kyriakides, G.; Martinez, B.; Hourani, M.; Miller, J.; Serafini, A.
1985-05-01
Radio-hippurate scintigraphy has been used to study renal transplant function because of its unique advantages over other noninvasive methods. Despite a great sensitivity in diagnosing the existence of a functional problem the test lacks in specificity. In an effort to differentiate between acute tubular necrosis (ATN) and graft rejection (RJ) the authors preceded hippurate scintigraphy by measurements of renal flow transit time (TT). After an intravenous injection of 8 mCi of Tc-99m-sulfur-colloid flow curves from the kidney and the abdominal aorta in 1 sec intervals for 1 min were obtained. Renal transit time was mathematically calculated and corrected for bolus and circulatory differences by dividing it with the corresponding Aortic TT (corrected Renal TT(cRTT). Radiohippuran (O-I-131-Hippurate), 150 ..mu..Ci was injected subsequently and of the different computer generated parameters the 30 min net cortical residual (% of the peak) activity (Hippuran Residual Activity, HRA) was found more sensitive and reproducible for comparisons. Results of documented cases showed a statistically significant difference. Uncomplicated cases (usually on antirejection therapy) showed a tendency to increasing the cRTTs with time (not significantly) but their HRAs were significantly lower than in ATN and RJ (p< 0.001).
Li, H; Yan, G
2008-01-01
To portably monitor the motility of the total GI tract, a method for assessing GI motility by simultaneously measuring transit time and contraction frequency is put forward. The portable monitoring system is composed of a swallowable telemetric capsule, a portable recorder, magnetizing coils deposited in vitro, and workstation for data processing. The transit time and contraction frequency of the GI tract are deduced by analysing the variation of the position and orientation angles of a telemetric capsule in time domain and frequency domain. AC electromagnetic localization method is used to determine the position and orientation of the telemetric capsule in vivo. In the paper, the localization model based on a quasi-static magnetic field, the method of monitoring GI motility and the set-up of the monitoring system are detailed. Then from static and dynamic experiments, the performances of the system including the accuracy and dynamic response are evaluated. Finally, the electromagnetic safety of the system is verified by simulating electromagnetic radiation to the human body.
A general stochastic model for studying time evolution of transition networks
NASA Astrophysics Data System (ADS)
Zhan, Choujun; Tse, Chi K.; Small, Michael
2016-12-01
We consider a class of complex networks whose nodes assume one of several possible states at any time and may change their states from time to time. Such networks represent practical networks of rumor spreading, disease spreading, language evolution, and so on. Here, we derive a model describing the dynamics of this kind of network and a simulation algorithm for studying the network evolutionary behavior. This model, derived at a microscopic level, can reveal the transition dynamics of every node. A numerical simulation is taken as an "experiment" or "realization" of the model. We use this model to study the disease propagation dynamics in four different prototypical networks, namely, the regular nearest-neighbor (RN) network, the classical Erdös-Renyí (ER) random graph, the Watts-Strogátz small-world (SW) network, and the Barabási-Albert (BA) scalefree network. We find that the disease propagation dynamics in these four networks generally have different properties but they do share some common features. Furthermore, we utilize the transition network model to predict user growth in the Facebook network. Simulation shows that our model agrees with the historical data. The study can provide a useful tool for a more thorough understanding of the dynamics networks.
Changes in sleep duration, timing, and quality as children transition to kindergarten.
Cairns, Alyssa; Harsh, John
2014-01-01
Sleep can be seen as a biologically driven behavior shaped by cultural context. A "poor fit" occurs when contextual demands for the timing and duration sleep periods are incompatible with the underlying biology. Such contextual factors are well-known for adults, yet little is known of the contextual factors that shape young children's sleep health and to what degree such factors impact sleep duration, timing, and quality. This study attempted to identify how the transition to kindergarten was associated with changes in sleep timing, duration, and quality for children enrolled in preschool prior to attending kindergarten vs. those who were not. Wrist actigraphy in 38 5-year-old children was collected at three longitudinal points before and after the start of kindergarten. Our data suggested that the transition to kindergarten was associated with a reduction in weekday sleep (mostly due to lost napping) and an advance in the weekday nocturnal sleep period that was most pronounced for children not enrolled in preschool prior to kindergarten. These sleep changes paralleled objective and caregiver-reported data of increased sleep pressure that lasted well into the first month of kindergarten.
NASA Astrophysics Data System (ADS)
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
Correcting for non-compliance when determining colonic transit time with radio-opaque markers
Ibarra, Alvin; Olli, Kaisa; Ouwehand, Arthur C
2017-01-01
The use of radio-opaque markers and abdominal X-ray is the standard method for determining colonic transit time (CTT). However, when there are deviations in the intake of these markers by participants in clinical trials it is desirable to improve observations by introducing corrections, where possible. To date, there is no standard procedure to adjust for such deviations. This report proposes a series of alternatives based on possible scenarios for deviations from the intended intake of radio-opaque markers. The proposed method to correct for missed or delayed consumption of radio-opaque markers can help to increase the accuracy of the CTT measurements in clinical trials. PMID:28216983
Transition from time-dependent to stationary flow patterns in the Taylor-Dean system
NASA Astrophysics Data System (ADS)
Mutabazi, Innocent; Andereck, C. David
1991-11-01
The flow between two horizontal coaxial cylinders with a partially filled gap, the Taylor-Dean system, is investigated for the case in which the outer cylinder rotates while the inner cylinder remains at rest. The initial instability is to a mixed state of both traveling inclined rolls and laminar base flow. At a larger rotation rate, the entire flow becomes time dependent. At a still larger rotation rate, the flow undergoes a subcritical transition to a stationary roll pattern, a process previously observed only in binary fluid mixtures.
Using Isotopes to Assess Transit Times and Pollution Risk in Mesoscale Catchments
NASA Astrophysics Data System (ADS)
McGrane, S. J.; Tetzlaff, D.; Essery, R.; Soulsby, C.
2011-12-01
The use of environmental tracers to discern dominant runoff sources has become an increasingly popular approach in the field of hydrology. Developing an understanding of both geographical water sources and the timing of water passage through a catchment provides an avenue to characterise both the spatial and temporal dynamics of water fluxes in rainfall-runoff transformation. Understanding these dynamics can provide invaluable insight into the the nature of pollution risk and longevity of natural clean-up times in different catchment landscapes. Here, we present results from a study investigating catchment behaviour across eight heterogeneous mesoscale (104-488 km2) catchments in the north east of Scotland. Weekly samples were taken of both streamwater and precipitation for stable isotopes (2H and 18O) to facilitate Mean Transit Time (MTT) estimates at the catchment scale. Streamwater samples were also analysed for alkalinity which was used as a hydrochemical tracer to determine runoff sources. Estimates of MTT were conducted using a gamma distribution convolution integral model and controlling catchment characteristics were identified using multiple regression using a GIS of landscape properties. A range of MTTs were estimated for the study catchments. In more upland catchments these were in the order of 2 years as waters were mainly derived from near surface soil horizons, but in more lowland catchments the transit times increased to over 4 years as groundwater became a more significant contributor to flow. In such lowland catchments, a legacy of fertilizer applications has contaminated groundwater sources which impacts on macronutrient levels in stream waters. Clean up times are likely to be decadal, and meantime short residence time, clean upland waters provide a critical ecosystem service in diluting downstream sources and maintaining stream water quality.
Wagner, M.; Michalek, S.; Timmer, J.
1999-01-01
A typical task in the application of aggregated Markov models to ion channel data is the estimation of the transition rates between the states. Realistic models for ion channel data often have one or more loops. We show that the transition rates of a model with loops are not identifiable if the model has either equal open or closed dwell times. This non-identifiability of the transition rates also has an effect on the estimation of the transition rates for models which are not subject to the constraint of either equal open or closed dwell times. If a model with loops has nearly equal dwell times, the Hessian matrix of its likelihood function will be ill-conditioned and the standard deviations of the estimated transition rates become extraordinarily large for a number of data points which are typically recorded in experiments.
Direct simulation of groundwater transit-time distributions using the reservoir theory
NASA Astrophysics Data System (ADS)
Etcheverry, David; Perrochet, Pierre
Groundwater transit times are of interest for the management of water resources, assessment of pollution from non-point sources, and quantitative dating of groundwaters by the use of environmental isotopes. The age of water is the time water has spent in an aquifer since it has entered the system, whereas the transit time is the age of water as it exits the system. Water at the outlet of an aquifer is a mixture of water elements with different transit times, as a consequence of the different flow-line lengths. In this paper, transit-time distributions are calculated by coupling two existing methods, the reservoir theory and a recent age-simulation method. Based on the derivation of the cumulative age distribution over the whole domain, the approach accounts for the whole hydrogeological framework. The method is tested using an analytical example and its applicability illustrated for a regional layered aquifer. Results show the asymmetry and multimodality of the transit-time distribution even in advection-only conditions, due to the aquifer geometry and to the velocity-field heterogeneity. Résumé Les temps de transit des eaux souterraines sont intéressants à connaître pour gérer l'évaluation des ressources en eau dans le cas de pollution à partir de sources non ponctuelles, et aussi pour dater quantitativement les eaux souterraines au moyen des isotopes du milieu. L'âge de l'eau est le temps qu'elle a passé dans un aquifère depuis qu'elle est entrée dans le système, alors que le temps de transit est l'âge de l'eau au moment où elle quitte le système. L'eau à la sortie d'un aquifère est un mélange d'eaux possédant différents temps de transit, du fait des longueurs différentes des lignes de courant suivies. Dans ce papier, les distributions des temps de transit sont calculées en couplant deux méthodes, la théorie du réservoir et une méthode récente de simulation des âges. Basée sur la dérivation de la distribution cumulées des âges sur
Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Ghantous, Katy
The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which
NASA Astrophysics Data System (ADS)
Patanarapeelert, K.; Frank, T. D.; Friedrich, R.; Tang, I. M.
2005-12-01
We show the conditions under which nonlinear time-delayed dynamical systems with multiplicative noise sources can be transformed into linear time-delayed systems with additive noise sources. We show that, for such reducible systems, analytical expressions for stationary distributions can be obtained. We demonstrate that fluctuation-dissipation relations of reducible systems become trivial and we show that reducible systems may exhibit delay- and noise-induced transitions to bistability and secondary transitions to non-stationarity. Our general findings are exemplified for three models: a Gompertz model, a Hongler model and a model involving a 1 - x2 noise amplitude.
Insights into the water mean transit time in a high-elevation tropical ecosystem
NASA Astrophysics Data System (ADS)
Mosquera, Giovanny M.; Segura, Catalina; Vaché, Kellie B.; Windhorst, David; Breuer, Lutz; Crespo, Patricio
2016-07-01
This study focuses on the investigation of the mean transit time (MTT) of water and its spatial variability in a tropical high-elevation ecosystem (wet Andean páramo). The study site is the Zhurucay River Ecohydrological Observatory (7.53 km2) located in southern Ecuador. A lumped parameter model considering five transit time distribution (TTD) functions was used to estimate MTTs under steady-state conditions (i.e., baseflow MTT). We used a unique data set of the δ18O isotopic composition of rainfall and streamflow water samples collected for 3 years (May 2011 to May 2014) in a nested monitoring system of streams. Linear regression between MTT and landscape (soil and vegetation cover, geology, and topography) and hydrometric (runoff coefficient and specific discharge rates) variables was used to explore controls on MTT variability, as well as mean electrical conductivity (MEC) as a possible proxy for MTT. Results revealed that the exponential TTD function best describes the hydrology of the site, indicating a relatively simple transition from rainfall water to the streams through the organic horizon of the wet páramo soils. MTT of the streams is relatively short (0.15-0.73 years, 53-264 days). Regression analysis revealed a negative correlation between the catchment's average slope and MTT (R2 = 0.78, p < 0.05). MTT showed no significant correlation with hydrometric variables, whereas MEC increases with MTT (R2 = 0.89, p < 0.001). Overall, we conclude that (1) baseflow MTT confirms that the hydrology of the ecosystem is dominated by shallow subsurface flow; (2) the interplay between the high storage capacity of the wet páramo soils and the slope of the catchments provides the ecosystem with high regulation capacity; and (3) MEC is an efficient predictor of MTT variability in this system of catchments with relatively homogeneous geology.
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Van Laerhoven, Christa L.; Ford, Eric B.
2016-05-01
Hundreds of multi-transiting systems discovered by the Kepler mission show Transit Timing Variations (TTV). In cases where the TTVs are uniquely attributable to transiting planets, the TTVs enable precise measurements of planetary masses and orbital parameters. Of particular interest are the constraints on eccentricity vectors that can be inferred in systems of low-mass exoplanets.The TTVs in these systems are dominated by a signal caused by near-resonant mean motions. This causes the well-known near-degeneracy between planetary masses and orbital eccentricities. In addition, it causes a degeneracy between the eccentricities of interacting planet pairs.For many systems, the magnitude of individual eccentricities are weakly constrained, yet the data typically provide a tight constraint on the posterior joint distribution for the eccentricity vector components. This permits tight constraints on the relative eccentricity and degree of alignment of interacting planets.For a sample of two and three-planet systems with TTVs, we highlight the effects of these correlations. While the most eccentric orbital solutions for these systems show apsidal alignment, this is often due to the degeneracy that causes correlated constraints on the eccentricity vector components. We compare the likelihood of apsidal alignment for two choices of eccentricity prior: a wide prior using a Rayleigh distribution of scale length 0.1 and a narrower prior with scale length 0.02. In all cases the narrower prior decreased the fraction of samples that exhibited apsidal alignment. However, apsidal alignment persisted in the majority of cases with a narrower eccentricity prior. For a sample of our TTV solutions, we ran simulations of these systems over secular timescales, and decomposed their eccentricity eigenmodes over time, confirming that in most cases, the eccentricities were dominated by parallel eigenmodes which favor apsidal alignment.
Real-time observation of fluctuations at the driven-dissipative Dicke phase transition
Brennecke, Ferdinand; Mottl, Rafael; Baumann, Kristian; Landig, Renate; Donner, Tobias; Esslinger, Tilman
2013-01-01
We experimentally study the influence of dissipation on the driven Dicke quantum phase transition, realized by coupling external degrees of freedom of a Bose–Einstein condensate to the light field of a high-finesse optical cavity. The cavity provides a natural dissipation channel, which gives rise to vacuum-induced fluctuations and allows us to observe density fluctuations of the gas in real-time. We monitor the divergence of these fluctuations over two orders of magnitude while approaching the phase transition, and observe a behavior that deviates significantly from that expected for a closed system. A correlation analysis of the fluctuations reveals the diverging time scale of the atomic dynamics and allows us to extract a damping rate for the external degree of freedom of the atoms. We find good agreement with our theoretical model including dissipation via both the cavity field and the atomic field. Using a dissipation channel to nondestructively gain information about a quantum many-body system provides a unique path to study the physics of driven-dissipative systems. PMID:23818599
On the dispersion relation of the transit time instability in inverted fireballs
Gruenwald, J.
2014-08-15
Recently discovered inverted fireballs are non-linear plasma phenomena, which are formed in hollow grid anodes with high transparency in an existing background plasma. If a sufficiently large potential is applied, accelerated electrons from the bulk start to oscillate through the grid. Experimental investigations have shown that they produce different types of plasma instabilities. One of those oscillations is a transit time instability which originates from strong electron beams that travel through the inverted fireball. This type of instability is similar to vircator reflex oscillations and produces radio frequency waves. Hence, it is suitable to convert DC signals into signals oscillating in the MHz range. This paper analyses the dispersion relation of the transit time instability for three different plasma regimes. The regimes can be divided into a collision less regime, a regime with high collisionality and one in between those former two. It is demonstrated that the plasma properties of the surrounding background plasma have a strong influence on the behavior of the instability itself.
Transit time instabilities in an inverted fireball. II. Mode jumping and nonlinearities
Stenzel, R. L.; Gruenwald, J.; Fonda, B.; Ionita, C.; Schrittwieser, R.
2011-01-15
A fireball is formed inside a highly transparent spherical grid immersed in a dc discharge plasma. The ambient plasma acts as a cathode and the positively biased grid as an anode. A strong nearly current-free double layer separates the two plasmas. Electrons are accelerated into the fireball, ionize, and establish a discharge plasma with plasma potential near the grid potential. Ions are ejected from the fireball. Since electrons are lost at the same rate as ions, most electrons accelerated into the fireball just pass through it. Thus, the electron distribution contains radially counterstreaming electrons. High-frequency oscillations are excited with rf period given by the electron transit time through the fireball. Since the frequency is well below the electron plasma frequency, no eigenmodes other than a beam space-charge wave exists. The instability is an inertial transit-time instability similar to the sheath-plasma instability or the reflex vircator instability. In contrast to vircators, there is no electron reflection from a space-charge layer but counterstreaming arises from spherical convergence and divergence of electrons. While the basic instability properties have been presented in a companion paper [R. L. Stenzel et al., Phys. Plasmas 18, 012104 (2011)], the present paper focuses on observed mode jumping and nonlinear effects. The former produce frequency jumps and different potential profiles, the latter produce harmonics associated with electron bunching at large amplitudes. In situ probe measurements are presented and interpreted.
Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique
Cordova-Fraga, Teodoro; Sosa, Modesto; Wiechers, Carlos; la Roca-Chiapas, Jose Maria De; Moreles, Alejandro Maldonado; Bernal-Alvarado, Jesus; Huerta-Franco, Raquel
2008-01-01
AIM: To study the esophageal transit time (ETT) and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI). METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright, fowler, and supine positions; 90º, 45º and 0º, respectively). RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions. The ETT means were 5.2 ± 1.1 s, 6.1 ± 1.5 s, and 23.6 ± 9.2 s for 90º, 45º and 0º, respectively. Pearson correlation results were r = -0.716 and P < 0.001 by subjects’ anatomical position, and r = -0.024 and P > 0.05 according the subject’s BMI. CONCLUSION: We demonstrated that using this biomagnetic technique, it is possible to measure the ETT and the effects of the anatomical position on the ETT. PMID:18837088
Transit timing of TrES-2: a combined analysis of ground- and space-based photometry
NASA Astrophysics Data System (ADS)
Raetz, St.; Maciejewski, G.; Ginski, Ch.; Mugrauer, M.; Berndt, A.; Eisenbeiss, T.; Adam, Ch.; Raetz, M.; Roell, T.; Seeliger, M.; Marka, C.; Vaňko, M.; Bukowiecki, Ł.; Errmann, R.; Kitze, M.; Ohlert, J.; Pribulla, T.; Schmidt, J. G.; Sebastian, D.; Puchalski, D.; Tetzlaff, N.; Hohle, M. M.; Schmidt, T. O. B.; Neuhäuser, R.
2014-10-01
Homogeneous observations and careful analysis of transit light curves can lead to the identification of transit timing variations (TTVs). TrES-2 is one of few exoplanets, which offer the matchless possibility to combine long-term ground-based observations with continuous satellite data. Our research aimed at the search for TTVs that would be indicative of perturbations from additional bodies in the system. We also wanted to refine the system parameters and the orbital elements. We obtained 44 ground-based light curves of 31 individual transit events of TrES-2. Eight 0.2-2.2-m telescopes located at six observatories in Germany, Poland and Spain were used. In addition, we analysed 18 quarters (Q0-Q17) of observational data from NASA's space telescope Kepler including 435 individual transit events and 11 publicly available ground-based light curves. Assuming different limb darkening (LD) laws we performed an analysis for all light curves and redetermined the parameters of the system. We also carried out a joint analysis of the ground- and space-based data. The long observation period of seven years (2007-2013) allowed a very precise redetermination of the transit ephemeris. For a total of 490 transit light curves of TrES-2, the time of transit mid-point was determined. The transit times support neither variations on long time-scale nor on short time-scales. The nearly continuous observations of Kepler show no statistically significant increase or decrease in the orbital inclination i and the transit duration D. Only the transit depth shows a slight increase which could be an indication of an increasing stellar activity. In general, system parameters obtained by us were found to be in agreement with previous studies but are the most precise values to date.
A TRANSIT TIMING ANALYSIS OF NINE RISE LIGHT CURVES OF THE EXOPLANET SYSTEM TrES-3
Gibson, N. P.; Pollacco, D.; Simpson, E. K.; Barros, S.; Joshi, Y. C.; Todd, I.; Keenan, F. P.; Skillen, I.; Benn, C.; Christian, D.; Hrudkova, M.; Steele, I. A.
2009-08-01
We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be R{sub p} /R {sub *} = 0.1664{sup +0.0011} {sub -0.0018} and i = 81.73{sup +0.13} {sub -0.04}, respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving {chi}{sup 2} = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T{sub c} (0) = 2454632.62610 {+-} 0.00006 HJD and P = 1.3061864 {+-} 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.
Sport Transition of JPSS VIIRS Imagery for Night-time Applications
NASA Technical Reports Server (NTRS)
Fuell, Kevin; LeRoy, Anita; Smith, Matt; Miller, Steve; Kann, Diedre; Bernhardt, David; Reydell, Nezette; Cox, Robert
2014-01-01
The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program and NOAA/Cooperative Institute for Research in the Atmosphere (CIRA) work within the NOAA/Joint Polar Satellite System (JPSS) Proving Ground to demonstrate the unique capabilities of the VIIRS instrument. Very similar to MODIS, the VIIRS instrument provides many high-resolution visible and infrared channels in a broad spectrum. In addition, VIIRS is equipped with a low-light sensor that is able to detect light emissions from the land and atmosphere as well as reflected sunlight by the lunar surface. This band is referred to as the Day-Night Band due to the sunlight being used at night to see cloud and topographic features just as one would typically see in day-time visible imagery. NWS forecast offices that collaborate with SPoRT and CIRA have utilized MODIS imagery in operations, but have longed for more frequent passes of polar-orbiting data. The VIIRS instrument enhances SPoRT collaborations with WFOs by providing another day and night-time pass, and at times two additional passes due to its large swath width. This means that multi-spectral, RGB imagery composites are more readily available to prepare users for their use in GOES-R era and high-resolution imagery for use in high-latitudes is more frequently able to supplement standard GOES imagery within the SPoRT Hybrid GEO-LEO product. The transition of VIIRS also introduces the new Day-Night Band capability to forecast operations. An Intensive Evaluation Period (IEP) was conducted in Summer 2013 with a group of "Front Range" NWS offices related to VIIRS night-time imagery. VIIRS single-channel imagery is able to better analyze the specific location of fire hotspots and other land features, as well as provide a more true measurement of various cloud and aerosol properties than geostationary measurements, especially at night. Viewed within the SPoRT Hybrid imagery, the VIIRS data allows forecasters to better interpret the more frequent, but
NASA Astrophysics Data System (ADS)
Donner, R. V.; Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.
2009-12-01
We present a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. Based on different model systems, we demonstrate that there are fundamental interrelationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis. Finally, we illustrate the potential of our approach for detecting hidden dynamical transitions from geoscientific time series by applying it to different paleoclimate records. In particular, we are able to resolve previously unknown climatic regime shifts in East Africa during the last about 4 million years, which might have had a considerable influence on the evolution of hominids in the area.
Spectral analysis of finite-time correlation matrices near equilibrium phase transitions
NASA Astrophysics Data System (ADS)
Vinayak; Prosen, T.; Buča, B.; Seligman, T. H.
2014-10-01
We study spectral densities for systems on lattices, which, at a phase transition display, power-law spatial correlations. Constructing the spatial correlation matrix we prove that its eigenvalue density shows a power law that can be derived from the spatial correlations. In practice time series are short in the sense that they are either not stationary over long time intervals or not available over long time intervals. Also we usually do not have time series for all variables available. We shall make numerical simulations on a two-dimensional Ising model with the usual Metropolis algorithm as time evolution. Using all spins on a grid with periodic boundary conditions we find a power law, that is, for large grids, compatible with the analytic result. We still find a power law even if we choose a fairly small subset of grid points at random. The exponents of the power laws will be smaller under such circumstances. For very short time series leading to singular correlation matrices we use a recently developed technique to lift the degeneracy at zero in the spectrum and find a significant signature of critical behavior even in this case as compared to high temperature results which tend to those of random matrix models.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; Heidbrink, W. W.
2016-07-05
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge was found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...
2016-07-05
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less
Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma
Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui; Li, Xing
2013-07-15
Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.
Analysis of Alfven Eigenmodes destabilization by fast particles in Large Helical Device
NASA Astrophysics Data System (ADS)
Varela, Jacobo; Spong, Donald; Garcia, Luis
2016-10-01
Fast particle populations in nuclear fusion experiments can destabilize Alfven Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects by a closure relation. We apply this model to study the Alfven modes stability in Large Helical Device (LHD) equilibria for inward configurations, performing a parametric analysis along a range of realistic values of fast particle β (βfp), ratios of thermal/Alfven velocities (Vth/Vao), magnetic Lundquist numbers (S) and dominant toroidal (n) modes families. The n = 1 and n =2 toroidal families show the largest growth rates for parameters closer to a real LHD scenario (S = 5E6, βfp = 0.02 and Vth/Vao = 0.5), particularly the modes n/m = 1/2 and 2/4 located the inner and middle plasma (ρ = 0.25 - 0.5 with ρ the normalized minor radius). The n = 3 and n = 4 toroidal families are weakly perturbed by fast particles.
Study of Toroidicity-Induced Alfv'en Eigenmodes on the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Koliner, J. J.; Forest, C. B.; Oliva, S.; Anderson, J. K.; Sarff, J. S.; Almagri, A. R.; Spong, D.
2009-11-01
Alfv'en waves are likely of fundamental importance in the reversed-field pinch (RFP). The large magnetic fluctuations are expected to inject energy into Alfv'en modes, and their subsequent cascade to shorter wavelengths may drive ion heating. A new effort is in progress to understand toroidicity-induced Alfv'en eigenmodes (TAE's) through their structure, driving terms and damping mechanisms on the MST. Coupling of multiple eigenmodes can introduce undamped TAE's with frequencies from hundreds of kHz up to the cyclotron frequency at over 2 MHz. These modes can also become unstable by inverse Landau damping due to fast ions, a condition pertinent to neutral beam injection heating on MST and fusion alpha particles in future RFP devices. Frequencies of weakly damped modes have been calculated by solving a 3D partial differential equation that describes shear Alfv'en dynamics numerically based on MST equilibrium conditions. To excite the calculated modes, a single strap poloidal antenna connected to a 1 kW broadband amplifier will be employed. An array of 64 toroidally distributed magnetic pickup coils will be utilized synchronously to resolve power spectra and mode numbers in the relevant range of frequencies.
Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations
Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.
2011-03-15
The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent experiments in the University of California, Los Angeles large plasma device. Comparison of the simulation results with the experimental measurements and the linear shear Alfven wave properties, namely, spatiotemporal wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the wave dependences on the wave frequency, show good agreement. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: {approx}1/2 is the energy of the electromagnetic field, {approx}1/2 is the kinetic energy of the ion fluid, and {approx}2.5% is the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from the experimental data and using a fluid model differ by {approx}1% and is {approx}250 W for the experimental parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics simulations the rotating magnetic field source was found to be very efficient for generating shear Alfven waves.
Peculiarities of Alfven wave propagation along a nonuniform magnetic flux tube
Erkaev, N.V.; Shaidurov, V.A.; Semenov, V.S.; Langmayr, D.; Biernat, H.K.
2005-01-01
Within the framework of the assumption of large azimuthal wave numbers, the equations for Alfven and slow magnetosonic waves are obtained using frozen-in material coordinates. These equations are specified for the case of a nonuniform magnetic field with axial symmetry. Assuming a meridional polarization of the magnetic field and velocity perturbations, the effects of Alfven wave propagation are analyzed which are related to geometric characteristics of a nonuniform magnetic field: (a) A finite curvature radius of the magnetic field lines and (b) convergence of magnetic field lines. The interaction between the Alfven and magnetosonic waves is found to be strongly dependent on the curvature radius of the magnetic tube and the local plasma {beta} parameter. The electric field amplitude and the length scale of a wave front are found to increase very strongly in the course of the Alfven wave propagation along a converging magnetic flux tube. Also studied is a temporal decrease of the wave perturbations which is caused by dissipation at the conducting boundary.
NASA Astrophysics Data System (ADS)
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium
NASA Astrophysics Data System (ADS)
Kleine Büning, G.; Will, J.; Ertmer, W.; Rasel, E.; Arlt, J.; Klempt, C.; Ramirez-Martinez, F.; Piéchon, F.; Rosenbusch, P.
2011-06-01
Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of Rb87 by applying the recently discovered spin self-rephasing [C. Deutsch , Phys. Rev. Lett. 105, 020401 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.020401]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4×10-11τ-1/2, where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.
Li, Junjie; Wang, Xuan; Zhou, Haidong; ...
2016-07-29
Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La0.84Sr0.16MnO3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion following the photo-excitation. Wemore » attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.« less
NASA Astrophysics Data System (ADS)
Li, Junjie; Wang, Xuan; Zhou, Haidong; Zhou, Jun; Cheng, J. G.; Cao, Jianming
2016-07-01
We report a direct and real time measurement of photoinduced structure phase transition in single crystal La0.84Sr0.16MnO3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. The fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion following the photo-excitation. The slow process is attributed to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.
Thermoluminescence and nuclear particle tracks in ALHA-81005 Evidence for a brief transit time
NASA Astrophysics Data System (ADS)
Sutton, S. R.; Crozaz, G.
1983-09-01
Thermoluminescence and nuclear particle track measurements were made on the Antarctic meteorite ALHA-81005. No nuclear particle tracks were found in lithic fragments indicating that the clast material never resided at the very surface of the parent body. The unusually low natural thermoluminescence of this material is interpreted as being due to a combination of anomalous fading and thermal decay. The thermal decay could be due to very long terrestrial age or heating either during atmospheric entry, in a near sun orbit or during a parent body impact event. Impact heating is considered the more likely of these possibilities for this meteorite. If the impact heating interpretation is correct the thermoluminescence data constrains the space exposure time of the object to be less than 2,500 years. Such a brief earth transit time is consistent with a lunar origin for this meteorite.
Li, Junjie; Wang, Xuan; Zhou, Haidong; Zhou, Jun; Cheng, J. G.; Cao, Jianming
2016-07-29
Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La_{0.84}Sr_{0.16}MnO_{3} using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion following the photo-excitation. We attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.
Extended coherence time on the clock transition of optically trapped rubidium.
Büning, G Kleine; Will, J; Ertmer, W; Rasel, E; Arlt, J; Klempt, C; Ramirez-Martinez, F; Piéchon, F; Rosenbusch, P
2011-06-17
Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of (87)Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4×10(-11)τ(-1/2), where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.
The [Formula: see text] transition form factor from space- and time-like experimental data.
Escribano, R; Masjuan, P; Sanchez-Puertas, P
The [Formula: see text] transition form factor is analyzed for the first time in both space- and time-like regions at low and intermediate energies in a model-independent approach through the use of rational approximants. The [Formula: see text] experimental data provided by the A2 Collaboration in the very low-energy region of the dielectron invariant mass distribution allows for the extraction of the most precise up-to-date slope and curvature parameters of the form factors as well as their values at zero and infinity. The impact of these new results on the mixing parameters of the [Formula: see text]-[Formula: see text] system, together with the role played by renormalization dependent effects, and on the determination of the [Formula: see text] couplings from [Formula: see text] and [Formula: see text] radiative decays is also discussed.
Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium
Kleine Buening, G.; Will, J.; Ertmer, W.; Rasel, E.; Klempt, C.; Arlt, J.; Ramirez-Martinez, F.; Rosenbusch, P.; Piechon, F.
2011-06-17
Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.
Pulse wave transit time measured by imaging photoplethysmography in upper extremities
NASA Astrophysics Data System (ADS)
Volynsky, M. A.; Mamontov, O. V.; Sidorov, I. S.; Kamshilin, A. A.
2016-08-01
We describe highly reliable measurement method of the pulse wave transit time (PWTT) to human limbs by using simultaneous recordings of imaging photoplethysmography and electrocardiography. High accuracy of measurements was achieved by access to a larger number of statistically independent data obtained simultaneously in different points. The method is characterized by higher diagnostic reliability because of automatic selection of the regions less affected by environmental noise. The technique was tested in the group of 12 young healthy subjects aged from 21 to 33 years. Even though PWTT in right and left hands was comparable after averaging over the whole group of subjects, significant difference in the time delay of pulse wave between the hands was found in several individuals. The technique can be used for early-stage diagnostics of various vascular diseases.
Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Vastano, John A.; Moser, Robert D.
1991-01-01
The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.
NASA Astrophysics Data System (ADS)
Freeman, Walter J.; Livi, Roberto; Obinata, Masashi; Vitiello, Giuseppe
The formation of amplitude modulated and phase modulated assemblies of neurons is observed in the brain functional activity. The study of the formation of such structures requires that the analysis has to be organized in hierarchical levels, microscopic, mesoscopic, macroscopic, each with its characteristic space-time scales and the various forms of energy, electric, chemical, thermal produced and used by the brain. In this paper, we discuss the microscopic dynamics underlying the mesoscopic and the macroscopic levels and focus our attention on the thermodynamics of the nonequilibrium phase transitions. We obtain the time-dependent Ginzburg-Landau equation for the nonstationary regime and consider the formation of topologically nontrivial structures such as the vortex solution. The power laws observed in functional activities of the brain is also discussed and related to coherent states characterizing the many-body dissipative model of brain.
Vukovic, M.; Harper, M.; Breun, R.; Wukitch, S.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode converted kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.
NASA Astrophysics Data System (ADS)
Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna
2016-12-01
Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of ‑0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of ‑0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.