Convective cell generation by kinetic Alfven wave turbulence in the auroral ionosphere
Zhao, J. S.; Wu, D. J.; Yu, M. Y.; Lu, J. Y.
2012-06-15
Modulation of convective cells by kinetic Alfven wave (KAW) turbulence is investigated. The interaction is governed by a nonlinear dispersion relation for the convective cells. It is shown that KAW turbulence is disrupted by excitation of the large-scale convective motion through a resonant instability. Application of the results to the auroral ionosphere shows that cross-scale coupling of the KAW turbulence and convective cells plays an important role in the evolution of ionospheric plasma turbulence.
Resonant Alfven Wave Excitation
NASA Astrophysics Data System (ADS)
Hameiri, Eliezer
1999-11-01
Much of the theory of the Alfven wave resonance phenomenon was developed for a tokamak configuration where the magnetic field winds around the torus without entering the boundary. Thus, boundary conditions did not have to be considered.( J. Tataronis and W. Grossmann, Z. Phys. 261), 203 (1973). In most space plasma situations such as the magnetosphere or the Sun, as well as in the scrape-off layer of a divertor tokamak, this is not the case. When boundary conditions are considered, it is generally assumed for simplicity that the boundary is perfectly conducting, which implies that the Alfven wave bounce frequencies are real and the resonance phenomenon can be detected by some singularity in the equations. The nature of the singularity is usually described in terms of a Frobenius series.( A.N. Wright and M.J. Thompson, Phys. Plamsas 1), 691 (1994). In this work we consider resistive boundaries, which imply that the fast wave eigenfrequency is real, but the Alfven frequency is not. Thus, there is no exact resonance and no singularity in the equations. The solution of the problem is carried out asymptotically by finding an exact Laplace integral representation for the solution and then matching various regions. The energy transferred to the Alfven wave appears to be rather small.
Effects of compressional magnetic perturbation on kinetic Alfven waves
NASA Astrophysics Data System (ADS)
Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong
2016-10-01
Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.
Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.
2015-12-01
Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
Podesta, J. J.; Borovsky, J. E.; Gary, S. P.
2010-03-20
Turbulence in the solar wind is believed to generate an energy cascade that is supported primarily by Alfven waves or Alfvenic fluctuations at MHD scales and by kinetic Alfven waves (KAWs) at kinetic scales k{sub perpendicular}rho{sub i} {approx}> 1. Linear Landau damping of KAWs increases with increasing wavenumber and at some point the damping becomes so strong that the energy cascade is completely dissipated. A model of the energy cascade process that includes the effects of linear collisionless damping of KAWs and the associated compounding of this damping throughout the cascade process is used to determine the wavenumber where the energy cascade terminates. It is found that this wavenumber occurs approximately when |gamma/omega| {approx_equal} 0.25, where omega(k) and gamma(k) are, respectively, the real frequency and damping rate of KAWs and the ratio gamma/omega is evaluated in the limit as k{sub perpendicular} >> k{sub ||}. For plasma parameters typical of high-speed solar wind streams at 1 AU, the model suggests that the KAW cascade in the solar wind is almost completely dissipated before reaching the wavenumber k{sub perpendicular}rho{sub i} {approx_equal} 25. Consequently, an energy cascade consisting solely of KAWs cannot reach scales on the order of the electron gyro-radius, k{sub perpendicular}rho{sub e} {approx} 1. This conclusion has important ramifications for the interpretation of solar wind magnetic field measurements. It implies that power-law spectra in the regime of electron scales must be supported by wave modes other than the KAW.
Alfven Wave Generated Electron Time Dispersion
NASA Technical Reports Server (NTRS)
Kletzing, C. A.; Hu, S.
2001-01-01
The results from a model of kinetic Alfven waves which includes varying magnetic field and density show that time-dispersed bursts of auroral electrons can be accelerated by Alfven, wave pulses propagating from the magnetosphere to the ionosphere. The modeled electron signatures have similar energy range and temporal structure to those observed on sounding rockets and satellites suggesting that electron time dispersion is generated by Alfven waves.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Nonlinear Landau damping and Alfven wave dissipation
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves
NASA Astrophysics Data System (ADS)
Namikawa, T.; Hamabata, H.
1983-04-01
The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.
Alfven wave. DOE Critical Review Series
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
NASA Astrophysics Data System (ADS)
Salem, C. S.; Sundkvist, D. J.; Bale, S.; Howes, G. G.; Chaston, C. C.
2011-12-01
We analyze the effect of Doppler shift on Kinetic Alfven Waves (KAW) as well as compressional proton Whistler Waves at frequencies above the local ion cyclotron frequency into the so-called dissipation range of solar wind turbulence (0.1 < f/fci < 10). Prior studies have shown that wave modes in this frequency range become dispersive and are consistent with Kinetic Alfven Waves (KAW) under the assumption that Taylor's hypothesis is still valid at those frequencies. However, the proton whistler is another possible wave mode in the solar wind in this frequency range. The temporal fluctuations of this mode combined with a slight Doppler shift can lead to the same apparent properties in the spacecraft (s/c) frame as strongly Doppler-shifted KAW. First, we present a different approach to resolve this long-standing question regarding the nature of the electromagnetic fluctuations in the dissipation range of solar wind turbulence. Specifically, we determine, both analytically and numerically, the dispersive properties of the KAW and the whistler wave modes and estimate the electric to magnetic field (E/B) ratio in the plasma and the s/c frame to make direct comparisons with s/c data. We discuss the predicted, observable, parameters of both KAW and whistlers in the plasma and s/c frames. We show that the properties of both KAW and whistlers appear to be similar in the s/c frame, yet there are quantifiable differences that one can use to distinguish between both wave modes. Those differences are discussed. Finally, we revisit Cluster electric field and magnetic field data in the solar wind using this technique. We focus our analysis on several low-beta (β < 1) ambient solar wind intervals. We compare the predicted parameters from our technique to the data directly in the s/c frame, without the use of Taylor's hypothesis. We propose this technique as an efficient diagnostics for wave-mode identification in the dissipation (or dispersion) range of solar wind turbulence.
Alfvenic waves in solar spicules
NASA Astrophysics Data System (ADS)
Ebadi, Hossein
2016-07-01
We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.
Nonlinear Landau damping of Alfven waves.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
PULSED ALFVEN WAVES IN THE SOLAR WIND
Gosling, J. T.; Tian, H.; Phan, T. D.
2011-08-20
Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.
Nonresonant Alfven waves driven by cosmic rays
Melrose, Don
2005-08-01
Nonresonant growth of Alfven waves due to streaming cosmic rays is considered, emphasizing the relation between resonant and nonresonant growth and the polarization of the growing waves. The suggested application of this mechanism to the scattering of higher energy cosmic rays in diffusive shock acceleration is discussed critically.
Nonlinear Evolution of Alfvenic Wave Packets
NASA Technical Reports Server (NTRS)
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Alfven wave absorption in dissipative plasma
NASA Astrophysics Data System (ADS)
Gavrikov, M. B.; Taiurskii, A. A.
2017-01-01
We consider nonlinear absorption of Alfven waves due to dissipative effects in plasma and relaxation of temperatures of electrons and ions. This study is based on an exact solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of their amplitudes whose evolution is described by a system of ordinary differential equations (ODEs) obtained in this paper. On finite time intervals, the system of equations on the amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman theorem) is used to examine its large-time behavior.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-15
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
KINETIC ALFVEN WAVE INSTABILITY DRIVEN BY FIELD-ALIGNED CURRENTS IN SOLAR CORONAL LOOPS
Chen, L.; Wu, D. J. E-mail: djwu@pmo.ac.cn
2012-08-01
Magneto-plasma loops, which trace closed solar magnetic field lines, are the primary structural elements of the solar corona. Kinetic Alfven wave (KAW) can play an important role in inhomogeneous heating of these magneto-plasma structures in the corona. By the use of a low-frequency kinetic dispersion equation, which is presented in this paper and is valid in a finite-{beta} plasma with Q < {beta} < 1 plasma (where {beta} is the kinetic to magnetic pressure ratio and Q = m{sub e} /m{sub i} is the mass ratio of electrons to ions), KAW instability driven by a field-aligned current in the current-carrying loops in the solar corona is investigated. The results show that the KAW instability can occur in wave number regimes 0 < k{sub z} < k{sup c}{sub z} and 0 < k < k{sup c} , and that the critical wave numbers k{sup c}{sub z} and k{sup c} and the growth rate both considerably increase as the drift velocity V{sub D} of the current-carrying electrons increases in the loops. In particular, for typical parameters of the current-carrying loops in the solar corona this instability mechanism results in a high growth rate of KAWs, {omega}{sub i} {approx} 0.01-0.1{omega}{sub ci} {approx} 10{sup 3}-10{sup 4} s{sup -1}. The results are of importance in understanding the physics of the electric current dissipation and plasma heating of the current-carrying loops in the solar corona.
NASA Astrophysics Data System (ADS)
Lin, Yu; Zonca, Fulvio; Chen, Liu
2015-11-01
It has been recently demonstrated that, generally, electrostatic (ES) and magnetostatic (MS) convective cells (CCs), or zonal flows, can be excited simultaneously by kinetic Alfven waves (KAWs). In this paper, spontaneous excitations of electrostatic as well as magnetostatic convective cells by KAWs are investigated through hybrid simulations, and the results are compared with the analytical theory based on the nonlinear gyrokinetic equations. In the hybrid simulation, ions are treated as fully kinetic particles, and electrons are treated as a massless fluid. It is found that finite ion-Larmor-radius (FILR) effects play a crucial. Furthermore, ES and MS convective cells are intrinsically coupled and must be treated on an equal footing. Excellent agreement is obtained for mode structure and generation rate of convective cells by KAW, demonstrating that ESCC and MSCC are indeed coupled, and that spontaneous CC excitation is suppressed at long wavelength, showing the crucial destabilizing role of FILR effects in the excitation via modulational instabilities. This work is supported by US DoE, NSF, ITER-CN, and NSFC grants.
Decay of magnetic helicity producing polarized Alfven waves
Yoshida, Z.; Mahajan, S.M.
1994-02-01
When a super-Alfvenic electron beam propagates along an ambient magnetic field, the left-hand circularly polarized Alfven wave is Cherenkov-emitted (two stream instability). This instability results in a spontaneous conversion of the background plasma helicity to the wave helicity. The background helicity induces a frequency (energy) shift in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it becomes possible for a sub-Alfvenic electron beam to excite a nonsingular Alfven mode.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Riemann solvers and Alfven waves in black hole magnetospheres
NASA Astrophysics Data System (ADS)
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
Toroidal Alfven Waves in Advanced Tokamaks
NASA Astrophysics Data System (ADS)
Berk, Herbert L.
2003-10-01
In burning plasma experiments, alpha particles have speeds that readily resonate with shear Alfven waves. It is essential to understand this Alfven wave spectrum for toroidal plasma confinement. Most interest has focused on the Toroidal Alfven Eigenmode (TAE), and a method of analysis has been developed to understand the structure of this mode at a flux surface with a given magnetic shear. However, this model fails when the shear is too low or reversed. In this case a new method of analysis is required, which must incorporate novel fluid-like effects from the energetic particles [1] and also include effects that are second order in the inverse toroidal aspect ratio. With this new method [2] we can obtain spectral features that agree with experimental results. In particular, this theory gives an explanation for the so-called Cascade modes that have been observed in JT-60 [3], JET [4], and TFTR [5]. For these Cascade modes, slow upward frequency sweeping is observed, beginning from frequencies below the TAE range but then often blending into the TAE range of frequencies. The theoretical understanding of the Cascades modes has evolved to the point where these modes can be used as a diagnostic "signature" [6] to experimentally optimize the formation of thermal barriers in reversed-shear operation when the minimum q value is an integer. [1] H. L. Berk et al., Phys. Rev. Lett. 87, 185 (2002). [2] B. N. Breizman et al., submitted to Phys. Plasmas (2003). [3] H. Kimura et al., Nucl. Fusion 38, 1303 (1998). [4] S. Sharapov et al., Phys. Lett. A 289, 127 (2001); S. Sharapov, Phys. Plasmas 9, 2027 (2002). [5] R. Nazikian, H. L. Berk, et al., Bull. Am. Phys. Soc. 47, 327 (2002). [6] E. Joffrin et al., Plasma Phys. Contr. Fusion 44, 1739 (2002); E. Joffrin et al., in Proc. 2002 IAEA Fusion Energy Conference, submitted to Nucl. Fusion.
NASA Astrophysics Data System (ADS)
Mithaiwala, M.; Rudakov, L.; Ganguli, G.; Crabtree, C. E.
2011-12-01
The high beta solar wind plasma turbulence is dominated by the kinetic Alfven waves (KAW) [1]. Though the measured high-energy tail on the electron distribution function can be a signature of the presence of whistler waves (WW) as well [2]. In Maxwellian plasma both KAW and WW are Landau damped at high beta, and only for the specific case of WW with kperp=0 is there no Landau damping. Due to the inhomogeneous solar wind plasma these parallel propagating WW should quickly develop large perpendicular wavenumbers kperp>k|| . However, as we have shown recently using measured KAW spectra, Landau damping establishes a plateau in the parallel electron distribution function and damping is strongly diminished [3]. The theory of WW in high beta inhomogeneous plasma will be presented and the impact of the electron cyclotron resonance with WW on the evolution of the electrons high energy tail will be discussed. [1] O. Alexandrova et. al., PRL (2009) ; F. Sahraoui et. al., PRL (2010). [2] T. Nieves-Chinchilla and A. F. Vinas, JGR (2008). [3] L. Rudakov et. al., Phys. Plasma, 18, 012307 (2011).
Ion Acceleration in Plasmas with Alfven Waves
O.Ya. Kolesnychenko; V.V. Lutsenko; R.B. White
2005-06-15
Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered.
Alfven waves in current-carrying inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Shigueoka, H.; de Azevedo, C. A.; de Assis, A. S.; Sakanaka, P. H.
The Hain and Lust (1958) equation is here used to numerically solve the Alfven modes in inhomogeneous cylindrical current-carrying plasmas. It is shown in this way that the distance of the eigenfrequencies for dc density from the lower edge of the Alfven continuum depends on its profile. The WKB approximation is used to show that a discrete MHD Alfven mode exists. These efforts are relevant to both solar prominence heating and oscillations and the Alfven wave-based heating and oscillations of the chromosphere.
Reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.; Moore, R. L.
1994-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare Wentzel-Kramers-Brillouin (WKB) and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer and that non-WKB Alfven waves are no more effective in accelerating the solar wind than in WKB waves. There are several recently published papers that seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purposse of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinimann and Olbert, namely, calculate the efficieny of Alfven wave reflection by using the reflection coefficient and identfy the region of strongest wave reflection in different wind models. To achieve these goals, we investigate the influence of temperature, electron desity distribution, wind velocity, and magnetic field strength on te waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7)/cu cm. In these models as well as in the models with lower temperatures and higher densities Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective
On reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.
1993-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the
Cusp Dynamics-Particle Acceleration by Alfven Waves
NASA Technical Reports Server (NTRS)
Ergun, Robert E.; Parker, Scott A.
2005-01-01
Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.
Effect of Dust Grains on Solitary Kinetic Alfven Wave
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-09-07
Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.
NASA Astrophysics Data System (ADS)
Salem, C. S.; Sundkvist, D. J.; Bale, S.
2009-12-01
Electromagnetic fluctuations in the inertial range of solar wind MHD turbulence and beyond (up to frequencies of 10Hz) have been studied for the first time using both magnetic field and electric field measurements on Cluster [Bale et al., 2005]. It has been shown that at frequencies above the spectral breakpoint at ~0.4Hz, in the dissipation range, the wave modes become dispersive and are consistent with Kinetic Alfven Waves (KAW). This interpretation, consistent with findings from recent theoretical studies, is based on the simple assumption that the measured frequency spectrum is actually a Doppler shifted wave number spectrum (ω ≈ k Vsw), commonly used in the solar wind and known as Taylor's hypothesis. While Taylor's hypothesis is valid in the inertial range of solar wind turbulence, it may break down in the dissipation range where temporal fluctuations can become important. We recently analyzed the effect of Doppler shift on KAW as well as compressional proton whistler waves [Salem et al., 2009]. The dispersive properties of the KAW and the whistler wave modes, as well as the electric to magnetic field (E/B) ratio, have been determined both analytically and numerically in the plasma and the spacecraft frame, with the goal of directly comparing those analytical/numerical estimates in the spacecraft frame with the data as measured. We revisit here Cluster electric field and magnetic field data in the solar wind using this approach. We focus our analysis on several ambient solar wind intervals with varying plasma parameters, allowing for a statistical study. We show that this technique provides an efficient diagnostics for wave-mode identification in the dissipation/dispersion range of solar wind turbulence.
Nonlinear standing Alfven wave current system at Io: Theory
Neubauer, F.M.
1980-03-01
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1995-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1994-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.
Generation and propagation of Alfvenic waves in spicules
NASA Astrophysics Data System (ADS)
De Pontieu, B.; Okamoto, T. J.; Rouppe van der Voort, L.; Hansteen, V. H.; Carlsson, M.
2011-12-01
Both spicules and Alfven waves have recently been implicated in playing a role in the heating of the outer atmosphere. Yet we do not know how spicules or Alfven waves are generated. Here we focus on the properties of Alfvenic waves in spicules and their role in forming spicules. We use high-resolution observations taken with the Solar Optical Telescope onboard Hinode, and with the CRISP Fabry-Perot Interferometer at the Swedish Solar Telescope (SST) in La Palma to study the generation and propagation of Alfvenic waves in spicules and their disk counterparts. Using automated detection algorithms to identify propagating waves in limb spicules, we find evidence for both up- and downward propagating as well as standing waves. Our data suggests significant reflection of waves in and around spicules and provides constraints for theoretical models of spicules and wave propagation through the chromosphere. We also show observational evidence (using SST data) of the generation of Alfven waves and the role they play in forming spicules.
The transmission of Alfven waves through the Io plasma torus
NASA Astrophysics Data System (ADS)
Wright, A. N.; Schwartz, S. J.
1989-04-01
The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.
On the existence of finite amplitude, transverse Alfven waves in the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Sari, J. W.
1977-01-01
Interplanetary magnetic field data from the Mariner 10 spacecraft were examined for evidence of small and finite amplitude transverse Alfven waves, general finite amplitude Alfven waves, and magnetosonic waves. No evidence for transverse Alfven waves was found. Instead, the field fluctuations were found to be dominated by the general finite amplitude Alfven wave. Such wave modes correspond to non-plane-wave solutions of the nonlinear magnetohydrodynamic equations.
Emission of radiation induced by pervading Alfven waves
Zhao, G. Q.; Wu, C. S.
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
Observation of mode conversion of m = minus 1 fast waves on the Alfven resonance layer
Amagishi, Y. )
1990-03-12
Fast waves or MHD surface waves of {ital m}={minus}1 (poloidal mode number of left-hand rotation) have been observed to be mode converted on the Alfven resonance layer. The converted waves are a quasielectrostatic form of the shear Alfven waves, i.e., kinetic Alfven wave and/or the resistive mode.
MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVEN WAVES IN STRATIFIED SOLAR WAVEGUIDES
Verth, G.; Goossens, M.; Erdelyi, R. E-mail: Marcel.Goossens@wis.kuleuven.b
2010-05-10
There have recently been significant claims of Alfven wave observation in the solar chromosphere and corona. We investigate how the radial and longitudinal plasma structuring affects the observational properties of torsional Alfven waves in magnetic flux tubes for the purposes of solar magnetoseismology. The governing magnetohydrodynamic equations of these waves in axisymmetric flux tubes of arbitrary radial and axial plasma structuring are derived and we study their observable properties for various equilibria in both thin and finite-width magnetic flux tubes. For thin flux tubes, it is demonstrated that observation of the eigenmodes of torsional Alfven waves can provide temperature diagnostics of both the internal and surrounding plasma. In the finite-width flux tube regime, it is shown that these waves are the ideal magnetoseismological tool for probing radial plasma inhomogeneity in solar waveguides.
Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence
Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.
2012-08-15
The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.
On the generation of Alfven waves in the solar photosphere
NASA Astrophysics Data System (ADS)
Tsap, Yuriy; Stepanov, Alexander; Kopylova, Yulia
The influence of collisions between neutrals and ions on the energy flux of Alfven waves in the weakly ionized plasma based on the three-fluid equations is considered. As distinguished from Vranjes et al. (2008) and Soler et al. (2013) it has been shown that amplitudes of Alfven waves that are generated in the solar photosphere do not depend on the ionization ratio and the initial conditions for ions, if the wave frequency is much less that the effective frequency of collisions between ions and neutral atoms. This is explained by the strong coupling due to ion-neutral collisions and the magnetic field freezing-in effect. Alfven waves can be effectively excited in the photosphere of the Sun by the convective motions.
Ion-neutral collision effect on an Alfven wave
Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )
1993-07-19
This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-15
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Ion temperature in plasmas with intrinsic Alfven waves
NASA Astrophysics Data System (ADS)
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Solitary Alfven wave envelopes and the modulational instability
Kennel, C.F.
1987-06-01
The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs.
Observation of Alfven Waves in the Solar Corona (Invited)
NASA Astrophysics Data System (ADS)
Tomczyk, S.
2013-12-01
I will review the extensive progress made in recent years on the observation of Alfven waves in the solar corona, with an emphasis on the measurements made with the Coronal Multi-channel Polarimeter. Application of the wave measurements to coronal seismology will be presented. Future prospects in the field will be discussed.
Dissipative solitary kinetic Alfven wave and energetic electron acceleration
NASA Astrophysics Data System (ADS)
Wu, D. J.
Some recent studies of observations in situ by space satellites show that low frequency electromagnetic fluctuations in the auroral ionosphere and magnetosphere can often be identified as soliatry kinetic Alfven waves (SKAWs), and further analyses of data reveal clearly that electron collisional dissipation can considerably affect the structure and evolution of SKAWs. Here, we report a model of nonlinear kinetic Alfven waves that takes dissipative effect into account, called a dissipative SKAW (DSKAW). The results show that DSKAW can produce a local shock-like structure with a net parallel electric potential drop, in which the associated parallel electric field is primarily caused by nonlinear electron inertia. In particular, it is argued that DSKAW can accelerate electrons efficiently to the order of the local Alfven velocity. We suggest that DSKAW can provide an efficient acceleration mechanism for energetic electrons of tens keV, which can frequently be encountered in solar micro-wave radio and hard X-ray bursts.
Reflection of Alfven waves from boundaries with different conductivities
Leneman, D.
2007-12-15
The reflection of Alfven waves from the ionosphere plays a crucial role because the reflected wave can reduce or enhance the electric field pattern of the incident wave. The ionosphere is typically treated as a conducting surface, which has a height integrated Pederson conductivity. This approximation is appropriate in considering the reflection of Alfven waves because the wavelengths along the magnetic field are large compared to the height of the ionosphere. Shear Alfven wave reflection experiments have been performed in the large plasma device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. of Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. A single frequency wave is launched from an antenna and reflects from a large plate inserted into the plasma column. By alternatively using a conducting and an insulating plate, the two extremes of conductivity relative to the Alfven conductivity, 1/({mu}{sub o}v{sub A}) are tested. The data are compared with the expected theoretical behavior of the interference pattern of incident and reflected waves. Perhaps due to experimental effects, the conducting reflector is found to behave in much the same fashion as the insulator.
Resonant Alfven wave instabilities driven by streaming fast particles
Zachary, A.
1987-05-08
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
NASA Technical Reports Server (NTRS)
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
Quantum effects on compressional Alfven waves in compensated semiconductors
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.
1992-01-01
In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
Theory of Alfven wave heating in general toroidal geometry
Tataronis, J.A.; Salat, A.
1981-09-01
A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.
IDENTIFICATION OF KINETIC ALFVEN WAVE TURBULENCE IN THE SOLAR WIND
Salem, C. S.; Sundkvist, D.; Bale, S. D.; Chaston, C. C.; Chen, C. H. K.; Mozer, F. S.; Howes, G. G.
2012-01-20
The nature of small-scale turbulent fluctuations in the solar wind is investigated using a comparison of Cluster magnetic and electric field measurements to predictions arising from models consisting of either kinetic Alfven waves or whistler waves. The electric and magnetic field properties of these waves from linear theory are used to construct spacecraft-frame frequency spectra of (|{delta}E|/|{delta}B|){sub s/c} and (|{delta}B{sub ||}|/|{delta}B|){sub s/c}, allowing for a direct comparison to spacecraft data. The measured properties of the small-scale turbulent fluctuations, found to be inconsistent with the whistler wave model, agree well with the prediction of a spectrum of kinetic Alfven waves with nearly perpendicular wavevectors.
Propagation of global shear Alfven waves in gyrokinetic tokamak plasmas
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Lin, Z.; Holod, I.; Chen, L.; Decyk, V.; Klasky, S.; Ma, K.; Adams, M.; Ethier, S.; Hahm, T.; Lee, W.; Lewandowski, J.; Rewoldt, G.; Wang, W.
2006-04-01
Employing the electromagnetic gyrokinetic simulation models, Alfven wave dynamics in global tokamak geometry is studied. Based on a small parameter expansion by the square-root of the electron-ion mass ratio, the fluid-kinetic hybrid electron model solves the adiabatic response in the lowest order and solves the kinetic response in the higher orders. We verify the propagation of shear Alfven waves in the absence of drives or damping mechanisms by perturbing the magnetic field lines at t=0 in a global eigenmode structure. The Alfven wave experiences continuum damping. In the presence of energetic particles, excitations of toroidal Alfven eigenmode (TAE) is expected within the frequency gap. With the ηi gradient drive, at a critical β value, the kinetic ballooning mode (KBM) is excited below the ideal MHD limit. W.W.Lee et al., Phys. Plasmas 8, 4435 (2001). Z.Lin and L.Chen, Phys. Plasmas 8, 1447 (2001). J.A.Tataronis and W. Grossman, Z. Phys. 14, 203 (1973). C.Z.Cheng, L.Chen, and M.S.Chance, Ann.Phys. 161, 21 (1984). C.Z.Cheng, Nucl. Fusion 22, 773 (1982).
Observational evidence for Alfven waves in the solar atmosphere (Invited)
NASA Astrophysics Data System (ADS)
De Pontieu, B.
2013-12-01
Alfven waves have long been suspected of playing an important role in both heating the corona and accelerating the solar wind. Recently, more and more observational evidence for the presence of such waves has been reported in both the corona and the lower solar atmosphere. I will review observations of the properties and presence of Alfven waves from CoMP, Hinode, AIA and ground-based telescopes in both coronal lines and the lower solar atmosphere. I will discuss our current understanding of the importance of these waves for the energy balance of the corona. I will also present initial results of the Interface Region Imaging Spectrograph (IRIS) which was launched in June 2013 and obtains images and spectra in both the far and near ultraviolet.
Weakening of magnetohydrodynamic interchange instabilities by Alfven waves
Benilov, E. S.; Hassam, A. B.
2008-02-15
Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.
A Study of Alfven Wave Propagation and Heating the Chromosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2013-12-01
Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of
The interaction of Io's Alfven waves with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Wright, A. N.
1987-09-01
A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.
Simulation of Alfven wave-resonant particle interaction
Berk, H.L.; Breizman, B.N.; Pekker, M.
1995-07-01
New numerical simulations are presented on the self-consistent dynamics of energetic particles and a set of unstable discrete shear Alfven modes in a tokamak. Our code developed for these simulations has been previously tested in the simulations of the bump-on-tail instability model. The code has a Hamiltonian structure for the mode-particle coupling, with the superimposed wave damping, particle source and classical relaxation processes. In the alpha particle-Alfven wave problem, we observe a transition from a single mode saturation to the mode overlap and global quasilinear diffusion, which is qualitatively similar to that observed in the bump-on-tail model. We demonstrate a considerable enhancement in the wave energy due to the resonance overlap. We also demonstrate the effect of global diffusion on the energetic particle losses.
Kinetic Alfven wave instability in a Lorentzian dusty magnetoplasma
Rubab, N.; Biernat, H. K.; Erkaev, N. V.; Langmayr, D.
2010-10-15
This study presents a theoretical approach to analyze the influence of kappa distributed streaming ions and magnetized electrons on the plasma wave propagation in the presence of dust by employing two-potential theory. In particular, analytical expressions under certain conditions are derived for various modes of propagation comprising of kinetic Alfven wave streaming instability, two stream instability, and dust acoustic and whistler waves. A dispersion relation for kinetic Alfven-like streaming instability has been derived. The effects of dust particles and Lorentzian index on the growth rates and the threshold streaming velocity for the excitation of the instability are examined. The streaming velocity is observed to be destabilizing for slow motion and stabilizing for fast streaming motions. It is also observed that the presence of magnetic field and superthermal particles hinders the growth rate of instability. Possible applications to various space and astrophysical situations are discussed.
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets
NASA Astrophysics Data System (ADS)
Jafelice, L. C.; Opher, R.
1990-11-01
evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS
Polarization and Compressibility of Oblique Kinetic Alfven Waves
NASA Technical Reports Server (NTRS)
Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2012-01-01
Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects
Alfven wave dispersion behavior in single- and multicomponent plasmas
Rahbarnia, K.; Grulke, O.; Klinger, T.; Ullrich, S.; Sauer, K.
2010-03-15
Dispersion relations of driven Alfven waves (AWs) are measured in single- and multicomponent plasmas consisting of mixtures of argon, helium, and oxygen in a magnetized linear cylindrical plasma device VINETA [C. Franck, O. Grulke, and T. Klinger, Phys. Plasmas 9, 3254 (2002)]. The decomposition of the measured three-dimensional magnetic field fluctuations and the corresponding parallel current pattern reveals that the wave field is a superposition of L- and R-wave components. The dispersion relation measurements agree well with calculations based on a multifluid Hall-magnetohydrodynamic model if the plasma resistivity is correctly taken into account.
Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2007-01-01
Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.
Nonlinear Interaction of Shear Alfven Waves with Gradient Driven Instabilities
NASA Astrophysics Data System (ADS)
Auerbach, David William
An experimental study of the interactions between gradient-driven instabilities (GDI) and beat waves driven between two Alfven waves is presented. A cylindrical density depletion is imposed on the otherwise uniform plasma in the Large Plasma Device (LAPD) by selectively blocking the electron beam that produces the plasma. Coherent, single mode fluctuations in density, temperature, plasma potential, and magnetic field are observed to be unstable on the gradient. Measurements of the relative cross-phase between the density and potential fluctuations indicate that the fluctuations are not likely to drive significant cross field transport. Comparisons of the properties of the modes to theoretical predictions for Kelvin-Helmholtz (KH) and drift wave modes indicate that the fluctuations are likely to be a hybrid of the two instabilities. Analytic eigenmode solutions to the linearized Braginskii fluid equations using the experimentally measured gradient profiles support the conclusion that both instabilities are active. A beat wave between two driven Alfven waves is broadcast into the gradient region using a pair of loop antennas with independently controlled frequency and power. This beat wave is observed to resonantly drive the unstable mode, as well as a second otherwise stable mode slightly higher in frequency and azimuthal mode number. During the drive of the secondary stable mode, the growth of the primary instability is suppressed. The broadcast of the Alfven waves and the beat wave is also observed to drive other fluctuations in the plasma at frequencies higher than either the spontaneous instability or the second, stable mode. Both the resonant drive of the modes and the control of the mode number are observed to have non-linear threshold and saturation behavior.
Alfven waves in the solar corona.
Tomczyk, S; McIntosh, S W; Keil, S L; Judge, P G; Schad, T; Seeley, D H; Edmondson, J
2007-08-31
Alfvén waves, transverse incompressible magnetic oscillations, have been proposed as a possible mechanism to heat the Sun's corona to millions of degrees by transporting convective energy from the photosphere into the diffuse corona. We report the detection of Alfvén waves in intensity, line-of-sight velocity, and linear polarization images of the solar corona taken using the FeXIII 1074.7-nanometer coronal emission line with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico. Ubiquitous upward propagating waves were seen, with phase speeds of 1 to 4 megameters per second and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. An estimate of the energy carried by the waves that we spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfvén waves may carry sufficient energy.
Investigation of an ion-ion hybrid Alfven wave resonator
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.
2013-01-15
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
Alfven waves and associated energetic ions downstream from Uranus
Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )
1991-02-01
The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.
Chaotic Dynamics of Alfven Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
BorottoChavez, Felix Aldo
2001-01-01
The objective of this work is to study the chaotic dynamics of AIN& waves in the solar wind. This study is carried out in two parts. Firstly, motivated by the simultaneous observation of Langmuir waves and electromagnetic waves of low frequency in magnetic holes in the solar wind, we propose a theory based on the nonlinear interaction process involving three waves. We use the Pomcare' method to characterize the Pomeau-Manneville intermittency and show two examples of interior crises produced by the collision of unstable periodic orbits with a chaotic attractor Secondly, the chaotic dynamics of Alfven waves is modelled in a dissipative system in the presence of an external periodic source, using the Derivative Nonlinear Schrodinger Equation (DNLS). By solving the DNLS numerically in the low-dimension limit, assisted again by the Poincare' method, we identify two types of intermittency: Pomeau-Manneville intermittency and interior crisis-induced intermittency. In addition, we have found a very complex region associated with the coexistence of various attractors. This region presents a number of boundary crises arising from a homoclinic tangency. We discuss the application of AIN& chaos for the interpretation of the observations of Alfvenic turbulence in the solar wind.
Experiment to Study Alfven Wave Propagation in Plasma Loops
NASA Astrophysics Data System (ADS)
Kendall, Mark; Bellan, Paul
2010-11-01
Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.
Gravitational damping of Alfven waves in stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. K.; Mullan, D. J.
1994-01-01
We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.
Heating of ionospheric O(+) ions by shear Alfven waves
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Ashour-Abdalla, M.; Sydora, R. D.
1987-01-01
Ionospheric ions, in particular O(+) ions, which have been transversely heated, are often observed flowing upward along auroral field lines. A new mechanism, heating by current-driven shear (or kinetic) Alfven waves (SAW), is proposed. An electron current drives oblique SAWs unstable near a wave frequency of about the oxygen cyclotron frequency, and these waves are in turn gyroresonantly absorbed by the ions. The mechanism is similar to ion heating by current-driven electrostatic ion cyclotron waves (EICW). However, the SAW differs from the EICW in that as the perpendicular temperature of the ions increases, growth of the SAW can still occur, whereas growth of the EICW becomes suppressed. As a consequence, the SAW is able to provide sustained perpendicular heating of ions with smaller currents being required for the heating than for heating via EICWs.
ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2013-01-20
A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.
Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.
1996-01-01
Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.
Propagation velocity of Alfven wave packets in a dissipative plasma
Amagishi, Y.; Nakagawa, H. ); Tanaka, M. )
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
Shear Alfven waves with Landau and collisional effects
Hedrick, C.L.; Leboeuf, J.; Spong, D.A.
1995-06-01
Shear Alfven waves can be driven unstable by hot particles such as alpha particles in an ignited fusion device or hot ions in existing devices. Motivated by rather collisional Wendelstein 7 Advanced Stellarator (W7-AS) [Phys. Rev. Lett. {bold 72}, 1220 (1994)] beam-driven global Alfven instability experiments, the effect of electron and ion collisions on these modes has been examined. Collisions broaden and suppress the peak associated with Landau effects. This broadening makes ion damping more important, while the electron damping is suppressed. Additional resistive effects provide increased damping for the main part of the spectrum, which can have a rather high phase velocity. Of more general interest is the fact that collisional and collisionless resistivity has a numerically stabilizing effect that is known to be important for nonlinear resistive magnetohydrodynamics (MHD). This can preclude the need for introducing and testing the sensitivity to similar ad hoc effects. Numerical and analytic results for both a particle-conserving Krook collision operator and a Lorentz (pitch angle) collision operator are compared and contrasted.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Dust kinetic Alfven and acoustic waves in a Lorentzian plasma
Rubab, N.; Biernat, H. K.; Erkaev, N. V.
2009-10-15
Dust kinetic Alfven waves (DKAWs) with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external magnetic field. A dispersion relation of low-frequency DKAW on the dust acoustic velocity branch is obtained in a low-{beta} Lorentzian plasma. It is found that the influence of the Lorentzian distribution function is more effective for perpendicular component of group velocity as compared with parallel one. Lorentzian-type charging currents are obtained with the aid of Vlasov theory. Damping/instability due to dust charge fluctuation is found to be insensitive with the form of distribution function for DKAW. The possible applications to dusty space plasmas are pointed out.
NASA Technical Reports Server (NTRS)
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Ionospheric Ion Upflows Associated with the Alfven Wave Heating
NASA Astrophysics Data System (ADS)
Song, P.; Tu, J.
2014-12-01
In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.
Standing Alfven wave current system at Io: Voyager 1 observations
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Neubauer, F. M.; Ness, N. F.
1980-01-01
The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io is explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the magnetic field experiment on Voyager 1 on 5 March 1979 when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 million amps. A mass density of 7400 to 13600 proton mass units per Cu cm is derived which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050 to 1500 per cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Esser, R.; Jayanti, V.
1993-01-01
The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.
HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE
Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.
2011-07-20
A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma
Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui; Li, Xing
2013-07-15
Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
Two dimensional PIC simulations of plasma heating by the dissipation of Alfven waves
NASA Technical Reports Server (NTRS)
Liewer, P. C.; Kruecken, T. J.; Ferraro, R. D.; Decyk, V. K.; Goldstein, B. E.
1992-01-01
Two dimensional plasma particle simulations of the evolution of large amplitude circularly polarized Alfven waves propagating parallel to the magnetic field show that the waves decay via both one- and two- dimensional parametric decay instabilities. For parameters studied, one-dimensional processes dominate the simulations, but two-dimensional decay processes, including the recently predicted filamentation instability are also observed. The daughter waves generated by the parametric decay are primarily damped by the ions, leading to ion heating. The parametric decay processes efficiently convert the ordered fluid ion motion in the Alfven wave into ion thermal energy. These processes may be important for the dissipation of Alfven waves in the solar wind, the corona and other space plasma environments. The computations were performed on the Intel Touchstone parallel supercomputer.
Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations
Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.
2011-03-15
The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent experiments in the University of California, Los Angeles large plasma device. Comparison of the simulation results with the experimental measurements and the linear shear Alfven wave properties, namely, spatiotemporal wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the wave dependences on the wave frequency, show good agreement. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: {approx}1/2 is the energy of the electromagnetic field, {approx}1/2 is the kinetic energy of the ion fluid, and {approx}2.5% is the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from the experimental data and using a fluid model differ by {approx}1% and is {approx}250 W for the experimental parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics simulations the rotating magnetic field source was found to be very efficient for generating shear Alfven waves.
A TORSIONAL ALFVEN WAVE EMBEDDED WITHIN A SMALL MAGNETIC FLUX ROPE IN THE SOLAR WIND
Gosling, J. T.; Teh, W.-L.; Eriksson, S.
2010-08-10
We describe and use novel techniques to analyze a striking and distinct solar wind event observed by two spacecraft. We show that the event is consistent with an interpretation as a torsional Alfven wave embedded within a small, nearly radially aligned, magnetic flux rope of total width {approx}10{sup 6} km. It seems likely that the torsional wave was generated by distortions produced within a pre-existing flux rope that erupted from the Sun. Our examination of many events previously identified as flux ropes in the solar wind indicates that torsional Alfven waves are extremely rare in such events.
Exploring the Use of Alfven Waves in Magnetometer Calibration at Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Bentley, John; Sheppard, David; RIch, Frederick; Redmon, Robert; Loto'aniu, Paul; Chu, Donald
2016-01-01
An Alfven wave is a type magnetohydrodynamicwave that travels through a conducting fluid under the influence of a magnetic field. Researchers have successfully calculated offset vectors of magnetometers in interplanetary space by optimizing the offset to maximize certain Alfvenic properties of observed waves (Leinweber, Belcher). If suitable Alfven waves can be found in the magnetosphere at geosynchronous altitude then these techniques could be used to augment the overall calibration plan for magnetometers in this region such as on the GOES spacecraft, possibly increasing the time between regular maneuvers. Calibration maneuvers may be undesirable because they disrupt the activities of other instruments. Various algorithms to calculate an offset using Alfven waves were considered. A new variation of the Davis-Smith method was derived because it can be mathematically shown that the Davis-Smith method tolerates filtered data, which expands potential applications. The variant developed was designed to find only the offset in the plane normal to the main field because the overall direction of Earth's magnetic field rarely changes, and theory suggests the Alfvenic disturbances occur transverse to the main field. Other variations of the Davis-Smith method encounter problems with data containing waves that propagate in mostly the same direction. A searching algorithm was then designed to look for periods of time with potential Alfven waves in GOES 15 data based on parameters requiring that disturbances be normal to the main field and not change field magnitude. Final waves for calculation were hand-selected. These waves produced credible two-dimensional offset vectors when input to the Davis-Smith method. Multiple two-dimensional solutions in different planes can be combined to get a measurement of the complete offset. The resulting three dimensional offset did not show sufficient precision over several years to be used as a primary calibration method, but reflected
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
NASA Astrophysics Data System (ADS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1988-02-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, a new equation is derived governing the evolution of the spectrum tensor (including the energy and helicity spectrum functions) of the random velocity field as well as the ponderomotive and mean electromotive forces generated by random Alfven waves in a plasma with weak magnetic diffusion. The ponderomotive and mean electromotive forces are expressed as series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of the random velocity field. The effect of microscale random Alfven waves, through ponderomotive and mean electromotive forces generated by them, on the propagation of large-scale Alfven waves is also investigated by solving the mean-field equations, including the transport equation of the helicity spectrum function.
Generation of Alfven waves by high power pulse at the electron plasma frequency
NASA Astrophysics Data System (ADS)
van Compernolle, Bart Gilbert
The physics of the interaction between plasmas and high power waves with frequencies in the electron plasma frequency range is of importance in many areas of space and plasma physics. A great deal of laboratory research has been done on the interaction of microwaves in a density gradient when o = ope in unmagnetized plasmas. [SWK74, WS78, KSW74]. Extensive studies of HF-ionospheric modifications have been performed [Fej79] as evidenced by experiments at Arecibo [HMD92, BHK86, CDF92, FGI85], at the HAARP facility [RKK98] in Alaska, at the EISCAT observatory in Norway [IHR99], and at SURA in Russia [FKS99]. This dissertation focusses on the interaction with a fully magnetized plasma, capable of supporting Alfven waves. The experiment is performed in the upgraded LArge Plasma Device (LAPD) at UCLA [GPL91] (Helium, n = 1012 cm-3, B = 1 kG - 2.5 kG). A number of experiments have been done at LAPD using antennas, skin depth scale currents and laser produced plasmas to generate Alfven waves [LGM99, GVL97a, GVL97b, VGV01]. In this work a high power pulse 6th, frequency in the electron plasma frequency range is launched into the radial density gradient, perpendicular to the background magnetic field. The microwave pulses last on the order of one ion gyro period and has a maximum power of |E|2/ nT ≃ .5 in the afterglow. The absorption of these waves leads to a pulse of field aligned suprathermal electrons. This electron current pulse then launches with Alfven wave with o ≤ o ci. The experiment was performed bath in ordinary node (O-mode) and extraordinary (X-mode), for different background magnetic fields B0, different temperatures (afterglow vs discharge) and different power levels of the incoming microwaves. It was found that the Alfven wave generation can be explained by Cherenkov radiation of Alfven waves by the suprathermal electron pulse. Theoretical solutions for the perturbed magnetic field due to a pulse of field aligned electrons were obtained, and shown to be
NASA Astrophysics Data System (ADS)
Medina-Tanco, G. A.; Opher, R.
1990-11-01
RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES
Peculiarities of Alfven wave propagation along a nonuniform magnetic flux tube
Erkaev, N.V.; Shaidurov, V.A.; Semenov, V.S.; Langmayr, D.; Biernat, H.K.
2005-01-01
Within the framework of the assumption of large azimuthal wave numbers, the equations for Alfven and slow magnetosonic waves are obtained using frozen-in material coordinates. These equations are specified for the case of a nonuniform magnetic field with axial symmetry. Assuming a meridional polarization of the magnetic field and velocity perturbations, the effects of Alfven wave propagation are analyzed which are related to geometric characteristics of a nonuniform magnetic field: (a) A finite curvature radius of the magnetic field lines and (b) convergence of magnetic field lines. The interaction between the Alfven and magnetosonic waves is found to be strongly dependent on the curvature radius of the magnetic tube and the local plasma {beta} parameter. The electric field amplitude and the length scale of a wave front are found to increase very strongly in the course of the Alfven wave propagation along a converging magnetic flux tube. Also studied is a temporal decrease of the wave perturbations which is caused by dissipation at the conducting boundary.
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2016-11-10
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2016-11-10
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field. It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.
Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL
Jay R. Johnson; C.Z. Cheng
2002-05-31
At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the
Can we explain the Jovian decametric arc pattern with the multiple reflection Alfven wave model?
NASA Astrophysics Data System (ADS)
Leblanc, Y.; Bagenal, F.
The pattern of arcs made by bursts of Io-modulated dkm-band emission in frequency time spectrograms has been examined for the A and B sources and compared with predictions of the Alfven-wave model. Planetary Radio Astronomy data from the Voyager 1 and 2 Jupiter encounters are employed, and the observations of the A and B sources are organized with respect to the Io phase for fixed 30-deg longitude intervals. A clear pattern of regions of strong emission separated by holes (regions with weak or no emission) is found. This preliminary study suggests the bunching of dkm arcs matches the Alfven wave pattern generated by Io. This implies that each Alfven current generates multiple beams of dkm emission.
NASA Astrophysics Data System (ADS)
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
A sunspot model for study of discrete Alfven waves and instabilities
NASA Astrophysics Data System (ADS)
Ochi, Marcia M.; Sakanaka, P. H.; Faria, R. T., Jr.; Deazevedo, C. A.; Deassis, A. S.
1994-01-01
We present a model for sunspots where both the umbral and the penumbral regions are considered. The equilibrium configuration is described by a two-plasma vertical cylindrical model with an axial current. Twisted magnetic fields, with a small B(theta)/B(z) are assumed. Using the ideal magnetohydrodynamics (MHD) model, the analysis of discrete Alfven modes and instabilities is based on the numerical investigation of the Hain-Lust equation. The period of the discrete Alfven mode is found to present the same order of magnitude of those observed for running penumbral waves. Good prediction of the sunspot lifetime can also be obtained.
Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.
2013-03-15
Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.
Small scales formation via Alfven wave propagation in compressible nonuniform media
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
Parametric instabilities of parallel-propagating Alfven waves: Some analytical results
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1993-01-01
We consider the stability of a circularly polarized Alfven wave (the pump wave) which propagates parallel to the ambient magnetic field. Only parallel-propagating perturbations are considered, and we ignore dispersive effects due to the ion cyclotron frequency. The dissipationless MHD equations are used throughout; thus possibibly important effects arising from Landau and transit time damping are omitted. We derive a series of analytical approximations to the dispersion relation using A = (Delta B/B(sub O))(exp 2) as a small expansion parameter; Delta B is the pump amplitude, and B(sub O) is the ambient magnetic field strength. We find that the plasma beta (the square of the ratio of the sound speed to the Alfven speed) plays a crucial role in determining the behavior of the parametric instabilities of the pump. If 0 less than beta less than 1 we find the familiar result that the pump decays into a forward propagating sound wave and a backward propagating Alfven wave with maximum growth rate gamma(sub max) varies A(sup 1/2), but beta cannot be too close to 0 or to 1. If beta approx. 1, we find gamma(sub max) varies A(sup 3/4), if beta greater than 1, we find gamma(sub max) varies A(sup 3/2), while if beta approx. 0, we obtain gamma(sub max) varies A(sup 1/3); moreover, if beta approx. 0 there is a nearly purely growing instability. In constrast to the familiar decay instability, for which the backward propagating Alfven wave has lower frequency and wavenumber than the pump, we find that if beta greater than or approx. equal to 1 the instability is really a beat instability which is dominated by a transverse wave which is forward propagating and has frequency and wavenumber which are nearly twice the pump values. Only the decay instability for 0 less than beta less than 1 can be regarded as producing two recognizable normal modes, namely, a sound wave and an Alfven wave. We discuss how the different characteristics of the instabilities may affect the evolution of
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Gonzalez, Walter D.
1987-01-01
It is shown that high intensity (AE of greater than 1,000 nT), long duration (T of greater than 2d) continuous auroral activity events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably, magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere.
Temperature minimum heating in solar flares by resistive dissipation of Alfven waves
NASA Technical Reports Server (NTRS)
Emslie, A. G.; Sturrock, P. A.
1981-01-01
The possibility that the strong heating produced at temperature-minimum levels during solar flares is due to resistive dissipation of Alfven waves generated by the primary energy release process in the corona is studied. It is shown how, for suitable parameters, these waves can carry their energy essentially undamped into the temperature-minimum layers and can then produce a degree of heating consistent with observations.
Simpson, D.; Ruderman, M.S.
2005-06-15
Ruderman and Simpson [Phys. Plasmas 11, 4178 (2004)] studied the absolute and convective decay instabilities of parallel propagating circularly polarized Alfven waves in plasmas where the sound speed c{sub S} is smaller than the Alfven speed {upsilon}{sub A}. We extend their analysis for the beat instability which occurs in plasmas with c{sub S}>{upsilon}{sub A}. We assume that the dimensionless amplitude of the circularly polarized Alfven wave (pump wave), a, is small. Applying Briggs' method we study the problem analytically using expansions in power series with respect to a. It is shown that the pump wave is absolutely unstable in a reference frame moving with the velocity U with respect to the rest plasma if U{sub l}U{sub r}, the instability is convective. The signaling problem is studied in a reference frame where the pump wave is convectively unstable. It is shown that the spatially amplifying waves exist only when the signaling frequency is in two narrow symmetric frequency bands with the widths of the order of a{sup 3}. These results enable us to extend for the case when c{sub S}>{upsilon}{sub A} the conclusions, previously made for the case when c{sub S}<{upsilon}{sub A}, that circularly polarized Alfven waves propagating in the solar wind are convectively unstable in a reference frame of any spacecraft moving with the velocity not exceeding a few tens of km/s in the solar reference frame. The characteristic scale of spatial amplification for these waves exceeds 1 a.u.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
A global 3-D MHD model of the solar wind with Alfven waves
NASA Technical Reports Server (NTRS)
Usmanov, A. V.
1995-01-01
A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.
Preferential Heating and Acceleration of {alpha} Particles by Alfven-Cyclotron Waves
Araneda, J. A.; Maneva, Y.; Marsch, E.
2009-05-01
Preferential heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics, and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. We show that fast and slow ion-acoustic waves (IAW) and transverse waves, driven by Alfven-cyclotron wave parametric instabilities can selectively destroy the coherent fluid motion of different ion species and, in this way lead to their differential heating and acceleration. Trapping of the more abundant protons by the fast IAW generates a proton beam with drift speed of about the Alfven speed. Because of their larger mass, {alpha} particles do not become significantly trapped and start, by conservation of total ion momentum, drifting relative to the receding bulk protons. Thus the resulting core protons and the {alpha} particles are differentially heated via pitch-angle scattering.
Alfven wave stability in D-III-D
Campbell, R.B. ); Samec, T.K. )
1989-09-01
Within the framework of the global Alfven eigenmode theory in a cylindrical background plasma, I examine the excitation of global Alfven eigenmodes by intense neutral beam injection in the D III-D tokamak operating at General Atomics. I have considered two separate sets of experimental conditions, a low power'' set of cases using 10MW of hydrogen beams, and a high power'' shot of 20MW of deuterium beams. My results are particularly sensitive to the background density profile. For parabolic background density profiles, n{sub 0} {times} (1 {minus} (r/{tilde a}){sup 2}), I have determined that the plasma is stable to all toroidal and poloidal mode numbers for both high and low power cases. For density profiles which are of the form n{sub 0} {times} (1 {minus} (r/{tilde a}){sup 2}){sup {1/2}}, for the same n{sub 0}, my calculation indicates that the m = {minus}1, l = 0 mode is unstable in each case. The high power case has a considerably higher growth rate at the baseline conditions, which motivated me to study this case more extensively. The results are also sensitive to the beam source radial scalelength, L{sub s}, and the electron temperature T{sub e}. By narrowing the source from the baseline 36 cm to 20 cm, the growth rate of the (0,{minus}1) actually decreases, but the (0,{minus}2) mode appears with a substantial growth rate. If the source could be made even narrower, L{sub s} {approx} 10 cm, the (1,{minus}1) mode would appear, also with a large growth rate. 12 refs., 16 figs., 6 tabs.
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-12-17
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.
Alfven Wave - DC Dualism in Description of Stationary Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2009-01-01
In many cases, the field-aligned currents (FACs) in the Earth's magnetosphere and heliosphere may be described in terms of both DC currents and the currents of a propagating Alfven wave. The simplest example is when a propagating Alfven wave transports a potential hop along the magnetic fieid: between the source of the wave and its front, the problem is well stationary and includes the stationary field-aligned currents, transporting the electric charges along the magnetic field, which may be described as a DC problem, and only at the front of the wave there are the polarization (inertial) currents, closing across the magnetic field. In some cases, the Alfven wave approach brings better understanding to many problems. We will consider here the results of the applications of this approach to two long-staying problems: the effect of saturation of the transpolar voltage in the Earth's magnetosphere, and the experimentally-observed existence of the strong field-aligned currents in the subtle Mercury's magnetosphere which is not able tc close the measured field-aligned currents.
Linear and non-linear numerical simulations of poloidal Alfven waves
NASA Astrophysics Data System (ADS)
Ribeiro, A.
2013-05-01
Among the many of numerical simulations of MHD turbulence, few studies had been made of Alfven waves interacting with realistic boundaries. Thus, we have developed a novel hybrid spectral/finite element code, which is capable of simulate properly realistic boundaries properties. Our model is based on a Fourier decompositions of all variables in the azimuthal direction and on a finite element projection in the meridian plan. In order to simulate realistic boundary conditions for the magnetic field we solve the induction equation enforcing continuity of the magnetic field H at the interface with the external insulating medium through a Interior Penalty Galerkin method (IPG) [1]. I will present the results of our investigation of Alfven waves propagating in a cylinder filled of liquid metal submitted to an axial magnetic field. Poloidal Alfven waves are excited magnetically by imposing an azimuthal current pulse at the bottom of the cylinder. In the linear axisymmetric model we find a good agreement with previous experiments in liquid metals by Lundquist and by Lenhert and more recently by Alboussiere et al [2]. This axisymmetric study is extended to the non linear regime, where the amplitudes of the perturbations are comparable to the external applied magnetic field,in this conditions a complex response is found due to waves waves interactions. [1] J. L. Guermond, J.L Leorat, F. Luddens, C. Nore, A. Ribeiro. Effects of discontinuous magnetic permeability on magnetodynamic problems, Journal of Computational Physics Volume 230, Issue 16, 10 July 2011, Pages 6299 -- 6319. [2] T. Alboussiere, P. Cardin, F. Debray, H. C. Nataf, F. Plunian, A. Ribeiro, D. Schmitt, Experimental evidence of Alfven wave propagation in a Gallium alloy, Physics of fluids, 2011, vol. 23, nb 9.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
NASA Technical Reports Server (NTRS)
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
HEAVY ION HEATING DUE TO INTERACTIONS WITH OUTWARD AND INWARD ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2012-06-01
The study of simultaneous cyclotron interactions of heavy ions with outward- and inward-propagating Alfven wave packets in the solar wind was self-consistently conducted with wave-packet dynamics. It was shown that, even when the ratio of intensities of the Alfven waves propagating from the Sun and the inward propagating waves are rather large (a factor of 10 or more), the distribution function of the ions simultaneously interacting with both of the wave packets drastically differs from the distribution function formed by the interaction of ions with waves only propagating from the Sun. In the latter case, the ions acquire a shell-like distribution; in the former case, a new non-shell-type distribution with much larger effective temperatures is formed. The temporal dynamics of the ion-distribution function and the self-consistent modification of the wave-power spectral density for both the outward and inward waves were also investigated. The results refute claims by Isenberg and Hollweg that the outward-propagating waves generate the inward waves through the instability of their resonant particle shell distribution.
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Shrivastava, G. Ahirwar, G.; Shrivastava, J.
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
Proton Core Heating and Beam Formation via Parametrically Unstable Alfven-Cyclotron Waves
Araneda, Jaime A.; Marsch, Eckart F.; Vinas, Adolfo
2008-03-28
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities Alfven-cyclotron waves have on proton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfven speed and is maintained until the end of the simulation. The main part of the distribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that, even in the parameter regime where fluid theory appears to be appropriate, strong kinetic effects still prevail.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES
Russell, A. J. B.; Fletcher, L.
2013-03-10
How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Hirata, M.; Sakamoto, M.; Iwamoto, Y.; Sumida, S.; Jang, S.; Itagaki, J.; Onodera, Y.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.; Nakashima, Y.
2015-11-01
In normal discharges of the GAMMA 10 tandem mirror, confined energy is saturated against heating power and unstable slow Alfven wave named as Alfven-Ion-Cyclotron (AIC) wave is observed in the saturated phase. This saturation may be partly related to (1) the decay of ICRF heating power, which is the main power source in GAMMA 10, due to the coupling with the AIC waves to produce difference-frequency waves and (2) the enhancement of axial transport of high-energy ions owing to nonlinearly excited low-frequency waves. To investigate these phenomena precisely, reflectometry is applied, which can provide assessment of nonlinear process at the location where the nonlinear process are taking place without any disturbance. Bispectral analysis applied to the density fluctuations measured at a wide radial region clearly shows the occurrence of various wave-wave couplings among the heating ICRF wave and the AIC waves. Generation of low-frequency waves via the coupling between coexisting AIC waves is found to be significant only near the core region. Details of measured nonlinear couplings are presented along with the observation showing the clear relation of generated low-frequency waves with the axial transport of high-energy ions. This work is partly supported by JSPS, Japan (25400531, 15K17797) and by NIFS, Japan (NIFS15KUGM101).
Chromospheric alfvenic waves strong enough to power the solar wind.
De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S
2007-12-07
Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona.
Matsumoto, Takuma; Shibata, Kazunari
2010-02-20
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.
2008-10-15
The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
Generation of polarized shear Alfven waves by a rotating magnetic field source
Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.; Karavaev, A.; Shao, X.; Sharma, A. Surjalal; Papadopoulos, D.
2009-09-15
Experiments are performed in the Large Plasma Device at the University of California, Los Angeles to study the propagation of field-aligned, polarized kinetic shear Alfven waves radiated from a rotating magnetic field source created via a novel phased orthogonal loop antenna. Both right and left hand circular polarizations are generated at a wide range of frequencies from 0.21{<=}{omega}/{omega}{sub ci}<0.93. Propagation parallel to the background magnetic field near the Alfven velocity is observed along with a small parallel wave magnetic field component implying a shear mode. The peak-to-peak magnitude of the wave magnetic field, 33 cm away from the antenna, is on the order of 0.8% of the background field and drops off in the far field. The full width at half maximum of the wave energy changes little over a distance of 2.5 parallel wavelengths while the exponential decrease in wave energy as a function of distance can be attributed to collisional damping. Evidence of electron heating and ionization is observed during the pulse.
Effect of two ion species on the propagation of shear Alfven waves of small transverse scale
Vincena, S. T.; Morales, G. J.; Maggs, J. E.
2010-05-15
The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.
Signatures of mode conversion and kinetic Alfven waves at the magnetopause
Jay R. Johnson; C. Z. Cheng
2000-07-21
It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations.
The evolution of nonlinear Alfven waves subject to growth and damping
NASA Astrophysics Data System (ADS)
Spangler, S. R.
1986-08-01
The effects of wave amplification (by streaming particle distributions) and damping (by ion-cyclotron resonance absorption) on the nonlinear evolution of Alfven waves are investigated theoretically. The results of numerical simulations based on the derivative-Schroedinger-equation model of Spangler and Sheerin (1983 and 1985) are presented graphically and characterized in detail, with an emphasis on astrophysical applications. Three phases of wave-packet evolution (linear, nonlinear-saturation, and postsaturation quasi-steady) are identified, and nonlinearity is found to transfer wave energy from growing or amplified wavenumbers to wavenumbers affected by damping. It is pointed out that although there are similarities between the solitonlike pulses predicted by the simulations and short-wavelength shocklet structures observed in the earth bow shock, the model does not explain why low-frequency waves stop growing in the vicinity of the bow shock.
Ion Heating by Alfven Waves and Reconnection in NSTX
NASA Astrophysics Data System (ADS)
Fredrickson, E. D.
2006-04-01
The evolution of laboratory and astrophysical plasmas depends on the flow of energy between the ``equilibrium'' configuration, waves in the plasma and the thermal plasma. We explore two examples of this energy flow. In the first example, data from NSTX is examined for evidence that CAE in the frequency range from ˜ 0.2 fci to ˜ 1.2 fci excited by super-thermal ions might heat the thermal ions. Theory indicates that only a relatively small portion of the beam power would go into exciting the CAE on NSTX, and observations indicate that the amplitude of these waves, deduced from density fluctuations, is below the stochastic threshold for heating. Another example examines how internal magnetic reconnections can lead to heating of the thermal ions. One model postulates the excitation of a high frequency wave, which then damps on the ions. High frequency waves are indeed seen to follow some NSTX reconnection events. The second invokes direct acceleration of the thermal ions by the induced electric field [P. Helander, L.-G. Eriksson, R.J. Akers, et al.,Phys. Rev. Lett. 89 (2002) 235002-1]. In collaboration with S.S. Medley, Princeton Plasma Physics Laboratory.
Investigation of AlfVen Waves in a Helicon Plasma
2003-07-20
equivalent to VA < Vth,e, Alfvdn waves are dicular to the background magnetic field. The kinetic. Here VA = B/(,uomini) 1/2 is the AlfVhn ve - relative...probe is already sufficiently sensitive (note that the magnetized plasmas yields an expression for the dis- induction voltage of the probe scales as...of magnetic fluctuations in axial direction This work was performed under the auspices of is plotted gray- scale -coded position vs. time. The DFG
NASA Astrophysics Data System (ADS)
Duan, S. P.; Liu, Z. X.; Cao, J. B.; Reme, H.; Balogh, A.; Fazakerley, A. N.
According to the observation data by the Cluster spacecraft encountering the mid-altitude cusp region and the theory research work of the formation mechanism of kinetic Alfven waves it can be concluded that kinetic Alfven waves can be come into being in the mid-altitude polar cusp Using the observation data detected by the Cluster CIS FGM and PEACE crossing through the mid-altitude cusp region on 4 July 2001 we find that ion and electron number densities are obviously disturbed and protons are always in the down-going direction We obtain that the values of plasma beta are in the range between 0 002 and 0 01 from 13 24 00 to 13 39 00 They are larger than the mass ratio value of electron and proton That implies the mid-altitude polar cusp is a kinetic region Ion and electron density inhomogeneity and the ion beam with down-going direction are the main factors for the formation of kinetic Alfven waves The observational results are consonant with the results obtained from the theory research that the plasma density inhomogeneity and ions motion play important roles in the formation process of kinetic Alfven waves The observational properties of kinetic Alfven waves will be investigated in our following research work
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A. P.; Banerjee, S.
2011-03-15
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.
Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models
NASA Astrophysics Data System (ADS)
Nariyuki, Y.
2014-12-01
Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.
Relatively stable, large-amplitude Alfvenic waves seen at 2.5 and 5.0 AU
NASA Technical Reports Server (NTRS)
Mavromichalaki, H.; Moussas, X.; Quenby, J. J.; Valdes-Galicia, J. F.; Smith, E. J.
1988-01-01
Pioneer 11 and 10 observations of the wave structure seen in a corotating interaction region at 2.5 AU on day 284 of 1973 and 8 days later at 5 AU reveal large-amplitude Alfvenic structures with many detailed correlations seen between their features at the two radial distances. Hodogram analysis suggests the dominance of near plane polarized, transverse Alfvenic mode fluctuations with periods between 2 min and one hour or more. Some wave evolution close to the Corotating Interaction Region (CIR) shock is noticed, but waves towards the center of the compression seem to propagate with little damping between the spacecraft observation positions.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
NASA Astrophysics Data System (ADS)
Bird, M. K.; Volland, H.; Efimov, A. I.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.
The two Helios spacecraft underwent regular solar occultations during their extended missions from Dec 1974-Feb 1986 (Helios 1) and Jan 1976-Mar 1980 (Helios 2) thereby providing many opportunities for radio propagation experiments in the solar corona. On certain rare occasions over the course of these investigations, Faraday rotation measurements of the linearly polarized Helios signals could be recorded simultaneously at two widely-spaced ground stations. Many of these two-station measurement intervals display clear evidence of wave-like structures with quasi-periods of the order of a few minutes to a few hours. These structures are attributed to coronal Alfven waves. The radial propagation direction and velocity of these waves are estimated from a cross-correlation analysis of the data between the two stations. The majority of the waves appear to propagate away from the Sun, but about 30 percent of the cases indicate a propagation direction toward the Sun.
Acceleration and heating of two-fluid solar wind by Alfven waves
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1994-01-01
Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.
A two-fluid solar wind model with Alfven waves - Parameter study and application to observations
NASA Technical Reports Server (NTRS)
Esser, R.; Habbal, S. R.; Withbroe, G. L.; Leer, E.
1986-01-01
The effects of Alfven waves from the inner corona on the solar wind density profile, flow velocity and on the random motion of protons are studied. Different base densities, temperatures, and wave velocity amplitudes, as well as different flow geometries, are considered. The model calculations are compared to simultaneous observations of the electron density profile and the resonantly scattered Lyman alpha line. Present observations, out to 4 solar radii, can be used to place limits on the coronal base density and temperature, and put an upper limit on the wave amplitude. It is pointed out that future observations of the electron density and the Lyman alpha line, out to larger heliocentric distances, and of lines from heavier elements, should be used to place more stringent constraints on the amplitudes of MHD waves in the corona.
Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Rankin, R.; Blanco, M.
2015-12-01
In this paper we study the interaction of kinetic Alfven waves generated near the equatorial plane of the magnetosphere with electrons having initial energies up to ˜100 eV. Wave-particle interactions are investigated using a theoretical model of trapping into an effective potential generated by the wave parallel electric field and the mirror force acting along geomagnetic field lines. It is demonstrated that waves with an effective potential amplitude on the order of ˜100-400 V and with perpendicular wavelengths on the order of the ion gyroradius can trap and efficiently accelerate electrons up to energies of several keV. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented, and the application of the proposed model is discussed.
Anomalous perturbative transport in tokamaks due to drift-Alfven-wave turbulence
Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )
1994-03-01
The method developed in Thoul, Similon, and Sudan [Phys. Plasmas [bold 1], 579 (1994)] is used to calculate the transport due to drift-Alfven-wave turbulence, in which electromagnetic effects such as the fluttering of the magnetic field lines are important. Explicit expressions are obtained for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma. Although the magnetic terms leave the transport by trapped electrons unaffected, they are important for the transport by circulating electrons.
Parametric instabilities of Alfven waves in a multispecies plasma: Kinetic effects
Kauffmann, K.; Araneda, J. A.
2008-06-15
Parametric instabilities of a circularly polarized Alfven wave in a multispecies magnetized plasma are considered. An analytic kinetic description and hybrid simulations for the linear behavior of the instabilities are given. It is found that, even for low-{beta} regimes, both the kinetic effects and the presence of heavy ions substantially modify the characteristics of parametric instabilities as compared to the fluid model. The decay instability can be severely quenched in a plasma composed of massless electrons, protons, and alpha particles when the alphas are slightly hotter than the protons. These results could be important in describing the heating processes of heavy ions in the solar corona.
Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui
2013-09-15
Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.
NASA Astrophysics Data System (ADS)
Rankin, R.; Artemyev, A.
2015-12-01
It is now common knowledge that dispersive scale Alfvén waves can drive parallel electron acceleration [Lotko et al., JGR, 1998; Samson et al., Ann. Geophys., 2003; Wygant et al., JGR, 2002] and transverse ion energization in the auroral zone and inner magnetosphere [Johnson and Cheng, JGR, 2001; Chaston et al., 2004]. In this paper we show that relatively low energy electrons (plasma sheet electrons with energies ranging up to ˜100 eV) can be accelerated very efficiently as they interact nonlinearly with kinetic Alfvén waves (KAWs) that carry intense field aligned currents from the equatorial plane toward the ionosphere in the inner magnetosphere. We propose a theoretical model describing electron trapping into an effective wave potential generated by parallel wave electric fields (with perpendicular wavelengths on the order of the ion gyro-radius) and the mirror force acting on electrons as they propagate along geomagnetic field lines. We demonstrate that waves with an electric potential amplitude between ~100 - 400 V can trap and accelerate electrons to energies approaching several keVs. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch-angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented. We discuss the application of the proposed model in light of recent observations of electromagnetic fluctuations in the inner magnetosphere that are present during periods of strong geomagnetic activity [Chaston et al., GRL, 2014; Califf et al., JGR, 2015].
Experiment to Study Alfv'en Wave Propagation in Plasma Loops
NASA Astrophysics Data System (ADS)
Kendall, Mark; Bellan, Paul
2009-11-01
Solar coronal loops are simulated in the laboratory using pulsed power techniques [1]. We are now developing a method to excite propagating Alfv'en wave modes by superposing a current pulse of roughly 10kA and width 100ns upon the ˜50kA, 10 microsecond main discharge current that flows along the ˜10cm long, 1cm diameter arched flux tube. To achieve this short 100ns pulsed timescale at such high power, a magnetic pulse compression technique based on saturable reactors will be employed. A low power prototype has been successfully tested, and design and construction of a full-power device is underway. Upon completion, the fast current pulse device will be used to investigate interactions between the Alfv'en waves and the larger-scale loop evolution. Particular attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.[4pt] [1] J. F. Hansen, S. K. P. Tripathi, P. M. Bellan, ``Co- and Counter-helicity Interaction Between Two Adjacent Laboratory Prominences,'' Phys. Plasmas, vol. 11, issue 6, p. 3177 (2004)
THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE
Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.
2013-08-20
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.
Quantification of the Energy Dissipated by Alfven Waves in a Polar Coronal Hole
NASA Astrophysics Data System (ADS)
Hahn, M.; Savin, D. W.
2013-12-01
We present a measurement of the energy carried and dissipated by Alfven waves in a polar coronal hole. Alfven waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity vnt and the ion temperature Ti. We have implemented a means to separate the Ti and vnt contributions using the observation that, at low heights, the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to vnt. We find the initial energy flux density present was 6.7×0.7×10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and accelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find that about 85% of this energy is dissipated below 1.5 R_sun, sufficiently low that thermal conduction can transport the energy throughout the coronal hole, heating it and driving the fast solar wind. The remaining energy is roughly consistent with what models show is needed to provide the extended heating above the sonic point for the fast solar wind. We have also studied Ti, which we found to be in the range of 1 - 2 MK, depending on the ion species.
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.
2014-12-01
Poloidal mode Alfven waves are often generated in Earth's magnetosphere following interplanetary shocks and/or pressure pulses acting on the magnetopause. These disturbances can excite resonant field line oscillations with frequencies in the mHz range by launching fast mode waves that couple energy to field line resonances. This direct action of the solar wind on the magnetosphere can perhaps explain waves with relatively small azimuthal wavenumbers (m), but not the observed range of waves with m~40-50 on L-shells around 5 or 6. These waves are strongly guided along geomagnetic field lines to the ionosphere, and are generally thought to particle driven, e.g., as a result of bounce-resonance wave-particle interactions following activation of the ring current. This is not the only possible source mechanism as there is evidence of wave generation before the ring current has reacted significantly to shock passage. Putting aside the source mechanism, high-m poloidal modes with strong east west directed electric fields are important primarily because they can elevate differential energy flux for electron energies in the range of 100's of keV to several MeV. In this paper we use observations of guided poloidal mode Alfven waves to constrain a ULF wave model that describes not only how waves evolve on geomagnetic field lines, but also their interaction with a dynamic height-resolved ionosphere. The ionosphere and neutral atmosphere are specified in the model using the IRI and MSIS models. These regions react to waves and precipitation through heating and cooling, ionization, recombination, and chemical reactions. We present detailed results of the interaction of a poloidal wave observed by the Eiscat radar, and demonstrate that the model used can reproduce all aspects of the radar observations. We consider mechanisms for pulsed precipitation accompanying this wave, which causes a phase difference of ~90 degrees between observed temperature and density spikes. We also
Propagation of large amplitude Alfven waves in the solar wind neutral sheet
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2006-01-01
Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.
Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons
Panwar, A. E-mail: ryu201@postech.ac.kr Ryu, C. M. E-mail: ryu201@postech.ac.kr; Bains, A. S. E-mail: ryu201@postech.ac.kr
2015-09-15
A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.
Carter, T A
2006-11-16
Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Buti, B.
1990-01-01
Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.
Non-WKB Alfven waves in the solar wind: Propagation and reflection of pulses
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1995-01-01
The non-WKB propagation of Alfven waves has been studied either for harmonic waves, or in terms of the evolution of power spectra. Here we present analytical and numerical solutions for the propagation of pulses, the goal being to understand how waves reflect in a smoothly varying medium. We here limit our discussion to a radial magnetic field. If we launch an outward-propagating delta function, it leaves behind an inward-propagaing signal which is roughly a square wave whose amplitude is proportional to the area under the initial pulse. The inward-propagating signal also reflects, producing an outward propagating pulse which is roughly triangular in shape and which grows with time. These signals also oscillate if v is less than v(A), but they grow if v is greater than v(A). The result reported by us earlier, that the 'ingoing Elsasser variable' can have outgoing phase, is now understood to be a consequence of interference. The inward-propagating signal depends to lowest order on the integral of the outgoing waves which have preceded it. Thus the ingoing signal can be expected to develop as a random walk. This will affect the radial evolution of cross-helicity in the solar wind.
Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity
NASA Technical Reports Server (NTRS)
Fatuzzo, Marco; Melia, Fulvio
1993-01-01
Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.
Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)
Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S
2001-10-11
An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.
Maneva, Y. G.; Marsch, E.; Araneda, J. A.
2009-04-26
We consider the parametric instabilities of large-amplitude Alfven/ion-cyclotron waves and the consequent wave-particle interactions, and discuss their importance for modelling the evolution of ion velocity distribution functions in the tenuous and collisionless plasma of a coronal hole and the fast solar wind. We perform 1D hybrid simulations to study the nonlinear evolution of the parametric instabilities by analyzing the simulation results in terms of microinstabilities and discussing the influence of both Landau and cyclotron resonances on the evolution of the ion distributions. We demonstrate the origin of a relative drift between the protons and alpha particles, show the related anisotropic ion heating and follow the simultaneous proton beam formation. Finally, we focus on the development and evolution of both electromagnetic and acoustic micro-turbulence and present indications for an inverse energy cascade from shorter to longer wavelengths.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Drift-Alfven wave mediated particle transport in an elongated density depression
Vincena, Stephen; Gekelman, Walter
2006-06-15
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.
Explaining Signatures of Auroral Arcs based on the Stationary Inertial Alfven Wave
NASA Astrophysics Data System (ADS)
Nogami, Sh; Koepke, Me; Knudsen, Dj; Gillies, Dm; Donovan, E.; Vincena, S.
2016-10-01
Optical emission data from the THEMIS array of All Sky Imagers are analyzed to determine the lifetime of an auroral arc (i.e., the elapsed time during which an arc is visible). Lifetime is an important temporal signature related to the arc generation mechanism, by which arcs can be distinguished. An arc with a lifetime greater than ten minutes is consistent with arc generation by Stationary Inertial Alfven Wave (StIAW) which supports a steady-state wave electric field component parallel to a background magnetic field. An StIAW is a non-fluctuating, non-travelling, spatially periodic pattern of perturbed ion density that is static in the laboratory frame. StIAWs are the predicted result of the interaction between a magnetic-field-aligned electron current and plasma convection perpendicular to a background magnetic field. Electrostatic probes measure the fixed pattern of perturbed ion density in LAPD-U. Electron acceleration due to StIAWs is being investigated as a mechanism for the formation and support of long-lived auroral arcs. Preliminary evidence of electron acceleration from laboratory experiment is reported. This work was supported by NSF Grant PHY-130-1896, Grants from the Canadian Space Agency, and the THEMIS ASI teams at UCalgary and UC Berkeley. Facility use and experimental assistance from BaPSF is gratefully acknowledged.
Kinetic Alfven wave instability in a Lorentzian dusty plasma: Non-resonant particle approach
Rubab, N.; Biernat, H. K.; Erkaev, V.; Langmayr, D.
2011-07-15
Analysis of the electromagnetic streaming instability is carried out which is related to the cross field drift of kappa distributed ions. The linear dispersion relation for electromagnetic wave using Vlasov-fluid equations in a dusty plasma is derived. Modified two stream instability (MTSI) in a dusty plasma has been discussed in the limit {omega}{sub pd}{sup 2}/c{sup 2}k{sub perpendicular}{sup 2}<<1. Numerical calculations of the growth rate of instability have been carried out. Growth rates of kinetic Alfven instability are found to be small as compared to MTSI. Maximum growth rates for both instabilities occur in oblique directions for V{sub 0}{>=}V{sub A}. It is shown that the presence of both the charged dust particles and perpendicular ion beam sensibly modify the dispersion relation of low-frequency electromagnetic wave. The dispersion characteristics are found to be insensible to the superthermal character of the ion distribution function. Applications to different intersteller regions are discussed.
NASA Astrophysics Data System (ADS)
Nariyuki, Y.; Seough, J.
2015-12-01
It is well known that low-frequency Alfven waves are unstable to parametric instabilities, in which these waves are nonlinearly coupled with density fluctuations [e.g, Nariyuki+Hada, JGR, 2007 and references therein]. In solar wind plasmas, low-frequency fluctuations with non-zero cross-helicity are frequently observed [e.g., Bruno+Carbone, Living Rev. Solar Phys. (2013) and references therein]. When the absolute values of normalized cross helicities are close to the unity, the fluctuations may be composed of uni-directionally (anti-sunward) propagating Alfven waves. The derivative nonlinear Schrodinger equation (DNLS) has been known as the mode of modulational instabilities of unidirectional Alfven waves [Mio et al, JPSJ, 1976; Mjolhus, JPP, 1976]. In the DNLS, the density fluctuations are assumed to be the quasi-static state, which is determined according to the ponderomotive force of envelope-modulated Alfven waves. The DNLS was extended to include the obliquely propagating, compressional component of magnetic field by Mjolhus and Wyller (JPP, 1988). The kinetically modified DNLS (KDNLS) has also been discussed by many authors [Rogister, POF, 1971; Mjolhus and Wyller, Phys. Scr, 1986; JPP, 1988; Spangler, POF B, 1989; 1990; Medvedev+Diamond, POP, 1996; Nariyuki et al, POP, 2013]. On the other hand, ion acoustic modes [Hada, 1993], large scale inhomogeneity of plasmas [Buti et al, APJ, 1999; Nariyuki, POP, 2015] and random density fluctuations [Ruderman, POP, 2002] can also affect nonlinear evolution of Alfven waves. At the present time, combined effects of these effects are not fully understood. In this presentation, we discuss two models: one of them is the model including both ion kinetic effects and ion acoustic mode and another is the model including finite thermal effects and random density fluctuations. In the former case, ion kinetic effects on both longitudinal [Nariyuki+Hada, JPSJ, 2007] and transverse modulational instabilities are discussed, while the
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.
2015-12-01
Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.
Alfven Wave Evolution in an Interaction System of the Fast and Slow Solar Wind
NASA Astrophysics Data System (ADS)
Tsubouchi, K.
2007-12-01
Large-amplitude Alfven waves (AWs) are often embedded in a high-speed stream of the solar wind. As the high- speed streams overtake the low-speed streams ahead, corotating interaction regions (CIRs) are produced in low heliographic latitudes. In this study, the nonlinear evolution of AWs swept into CIRs is numerically investigated by one-dimensional MHD simulations. Ulysses observations suggest that not only AWs amplified through the reverse shock but also magnetic depression structures (MDs) are found in the trailing portions of CIRs (e.g., Tsurutani et al., 1995). Our interest is the generation mechanism of MDs in the context of AWs-CIRs interaction system. While MDs are supposed to be remnants of the mirror instability (e.g., Winterhalter et al., 1994), we give alternative processes from a macroscopic view as follows. A large pressure gradient developed in CIRs results in intensifying the diamagnetic current, which reflects a portion of the incident AW energy in the opposite direction (from a plasma-rest frame) as AWs penetrate into CIRs. Since the reflected AWs also carry the current, the reduction of the background field intensity (i.e. MD formation) is simultaneously taken place in the area sandwiched between the forward-reverse pair of AWs. Further analysis will be given via hybrid simulations to show how these MHD processes are manifested in particle behaviors, such as an acceleration due to a ponderomotive force.
NASA Astrophysics Data System (ADS)
Dai, L.; Takahashi, K.; Wygant, J. R.; Chen, L.; Bonnell, J. W.; Cattell, C. A.; Thaller, S. A.; Kletzing, C.; Smith, C. W.; MacDowall, R. J.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Funsten, H. O.; Reeves, G. D.; Spence, H.
2013-12-01
Charged particles trapped in the magnetosphere undergo a longitudinal drift motion around the Earth induced by the magnetic field curvature and gradient. The resonant wave-particle interaction associated with the drift motion is important for understanding the dynamics of the ring current and radiation belt particles. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (RBSP) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (E φ ) oscillations as large as 10mV/m are observed associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L~5. The observed wave period, Eφ/Br, and the 90 degrees phase lag between Br and Eφ are all consistent with fundamental mode standing poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with ~90 keV ring current ions. The estimated earthward gradient of ion phase space density provides free energy source for wave generation through the drift-resonance instability. To our knowledge, this is the first unambiguous observation of drift-resonance wave-particle interaction driving poloidal wave oscillations in the magnetosphere. Similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One example is the ';fishbone' instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations detected on the ground.
Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.
2013-06-10
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.
SPECTROSCOPIC SIGNATURE OF ALFVEN WAVES DAMPING IN A POLAR CORONAL HOLE UP TO 0.4 SOLAR RADII
Bemporad, A.; Abbo, L.
2012-06-01
Between 2009 February 24 and 25, the EUV Imaging Spectrometer (EIS) spectrometer on board the Hinode spacecraft performed special 'sit and stare' observations above the south polar coronal hole continuously over more than 22 hr. Spectra were acquired with the 1'' slit placed off-limb covering altitudes up to 0.48 R{sub Sun} (3.34 Multiplication-Sign 10{sup 2} Mm) above the Sun surface, in order to study with EIS the non-thermal spectral line broadenings. Spectral lines such as Fe XII {lambda}186.88, Fe XII {lambda}193.51, Fe XII {lambda}195.12, and Fe XIII {lambda}202.04 are observed with good statistics up to high altitudes and they have been analyzed in this study. Results show that the FWHM of the Fe XII {lambda}195.12 line increases up to {approx_equal} 0.14 R{sub Sun }, then decreases higher up. EIS stray light has been estimated and removed. Derived electron density and non-thermal velocity profiles have been used to estimate the total energy flux transported by Alfven waves off-limb in the polar coronal hole up to {approx_equal} 0.4 R{sub Sun }. The computed Alfven wave energy flux density f{sub w} progressively decays with altitude from f{sub w} {approx_equal} 1.2 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1} at 0.03 R{sub Sun} down to f{sub w} {approx_equal} 8.5 Multiplication-Sign 10{sup 3} erg cm{sup -2} s{sup -1} at 0.4 R{sub Sun }, with an average energy decay rate of {Delta}f{sub w} /{Delta}h {approx_equal} -4.5 Multiplication-Sign 10{sup -5} erg cm{sup -1}. Hence, this result suggests energy deposition by Alfven waves in a polar coronal hole, thus providing a significant source for coronal heating.
NASA Technical Reports Server (NTRS)
Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.
1985-01-01
Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2004-01-01
When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.
Gomberoff, L.
2008-02-15
It has been shown that a large amplitude Alfven wave can stabilize linear magnetosonic instabilities triggered by an ion beam. This phenomenon occurs for large amplitude waves above a threshold value. Here the effect of a second ion beam on the threshold amplitude for stabilization of the magnetosonic instability is studied. It is shown that the second beam modifies the threshold amplitude behavior for complete saturation of the magnetosonic instability. The effect of the second beam on the properties of purely electrostatic nonlinear instabilities triggered by the finite amplitude wave is also studied. Apart from the changes induced by the second beam on the threshold amplitude behavior, it is shown that in some cases there are two regimes of the nonlinear ion-acousticlike instability. These results should be of importance in those environments where the interplay of the two beams should not be ignored like, e.g., in the fast solar wind.
A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry
Koenies, Axel; Kleiber, Ralf
2012-12-15
While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.
Tsiklauri, D.
2014-05-15
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed
Effect of the magnetic field curvature on the generation of zonal flows by drift-Alfven waves
Mikhailovskii, A. B.; Kovalishen, E. A.; Shirokov, M. S.; Tsypin, V. S.; Galvao, R. M. O.
2007-05-15
The generation of zonal flows by drift-Alfven waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm's law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.
Optical evidence for Alfven wave breaking in the near-Earth magnetosphere
NASA Astrophysics Data System (ADS)
Semeter, J.; Blixt, M.
2006-12-01
Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.
Coronal heating by the resonant absorption of Alfven waves: The effect of viscous stress tensor
NASA Technical Reports Server (NTRS)
Ofman, L.; Davila, J. M.; Steinolfson, R. S.
1994-01-01
The time-dependent linearized magnetohydrodynamics (MHD) equations for a fully compressible, low-beta, viscoresistive plasma are solved numerically using an implicit integration scheme. The full viscosity stress tensor (Braginskii 1965) is included with the five parameters eta(sub i) i = 0 to 4. In agreement with previous studies, the numerical simulations demonstrate that the dissipation on inhomogeneities in the background Alfven speed occurs in a narrow resonant layer. For an active region in the solar corona the values of eta(sub i) are eta(sub o) = 0.65 g/cm/s, eta(sub 1) = 3.7 x 10(exp -12) g/cm/s, eta(sub 2) = 4 eta(sub 1), eta(sub 3) = 1.4 x 10(exp -6) g/cm/s, eta(sub 4) = 2 eta(sub 3), with n = 10(exp 10)/cu cm, T = 2 x 10(exp 6) K, and B = 100 G. When the Lundquist number S = 10(exp 4) and R(sub 1) much greater than S (where R(sub 1) is the dimensionless shear viscous number) the width of the resistive dissipation layer d(sub r) is 0.22a (where a is the density gradient length scale) and d(sub r) approximately S(exp -1/3). When S much greater than R(sub 1) the shear viscous dissipation layer width d(sub r) scales as R(sub 1)(exp -1/3). The shear viscous and the resistive dissipation occurs in an overlapping narrow region, and the total heating rate is independent of the value of the dissipation parameters in agreement with previous studies. Consequently, the maximum values of the perpendicular velocity and perpendicular magnetic field scale as R(sub 1)(exp -1/3). It is evident from the simulations that for solar parameters the heating due to the compressive viscosity (R(sub 0) = 560) is negligible compared to the resistive and the shear viscous (R(sub 1)) dissipation and it occurs in a broad layer of order a in width. In the solar corona with S approximately equals 10(exp 4) and R(sub 1) approximately equals 10(exp 14) (as calculated from the Braginskii expressions), the shear viscous resonant heating is of comparable magnitude to the resistive resonant
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Goldstein, Melvyn L.
2010-01-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
Tian Hui; McIntosh, Scott W.; Wang, Tongjiang; Ofman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-11-10
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Fast damping of poloidal Alfven waves by bounce-resonant ions: observations and modeling
NASA Astrophysics Data System (ADS)
Wang, C.; Rankin, R.; Sydorenko, D.; Zong, Q.
2015-12-01
Interplanetary shocks and solar wind dynamic pressure variations can excite intense ultra-low-frequency (ULF) waves in the inner magnetosphere. An analysis of two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001 shows that the poloidal waves excited in these events are damped away rapidly in tens of minutes. This damping is the result of wave-particle interactions involving H+ and O+ ions with energies in the range of several to a few tens of keV [Wang et al., J. Geophys. Res., 2015]. Damping is found to be more effective in the plasmasphere boundary layer due to the relatively higher proportion of Landau resonant ions that exists in that region. In the November 2004 shock event it has been suggested that energy-dispersed ions observed travelling parallel and anti-parallel direction to the geomagnetic field immediately after the shockare locally accelerated rather than originating from Earth's ionosphere. We use test-particle simulations to show that adiabatic advection of the particle differential flux caused bydrift-bounce-resonance with ULF waves is responsible for the energy-dispersed ions observed in these events. In the simulations,Liouville's theorem is used to reconstruct the iondistribution function and differential flux in a model dipole magnetosphere.It is shown that flux modulations of H and O ions can be reproduced when test-particle ions are advanced in the electric fields of the 3D ULF wave model we have developed.
A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.
1992-01-01
A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.
Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves
NASA Astrophysics Data System (ADS)
Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.
Excitation of dust kinetic Alfven waves by semi-relativistic ion beams
NASA Astrophysics Data System (ADS)
Rubab, N.; Jaffer, G.
2016-05-01
The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.
Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves
F.W. Perkins; R.B. White; P. Bonoli
2000-06-13
Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-01-20
To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V{sub SW}) and analyze its orientation with respect to the local background magnetic field B{sub 0,local}. As an example, we take only measurements made in an outward magnetic sector. When B{sub 0,local} is quasi-perpendicular to V{sub SW}, we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B{sub 0,local}, a property that is characteristic of an oblique Alfven wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B{sub 0,local}, thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle ({theta}{sub kB}) increases toward 90 Degree-Sign . Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B{sub 0,local} seems to indicate that oblique Alfven/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.
Nonlinear whistler wave scattering in space plasmas
Yukhimuk, V.; Roussel-Dupre, R.
1997-04-01
In this paper the evolution of nonlinear scattering of whistler mode waves by kinetic Alfven waves (KAW) in time and two spatial dimensions is studied analytically. The authors suggest this nonlinear process as a mechanism of kinetic Alfven wave generation in space plasmas. This mechanism can explain the dependence of Alfven wave generation on whistler waves observed in magnetospheric and ionospheric plasmas. The observational data show a dependence for the generation of long periodic pulsations Pc5 on whistler wave excitation in the auroral and subauroral zone of the magnetosphere. This dependence was first observed by Ondoh T.I. For 79 cases of VLF wave excitation registered by Ondoh at College Observatory (L=64.6 N), 52 of them were followed by Pc5 geomagnetic pulsation generation. Similar results were obtained at the Loparskaia Observatory (L=64 N) for auroral and subauroral zone of the magnetosphere. Thus, in 95% of the cases when VLF wave excitation occurred the generation of long periodic geomagnetic pulsations Pc5 were observed. The observations also show that geomagnetic pulsations Pc5 are excited simultaneously or insignificantly later than VLF waves. In fact these two phenomena are associated genetically: the excitation of VLF waves leads to the generation of geomagnetic pulsations Pc5. The observations show intensive generation of geomagnetic pulsations during thunderstorms. Using an electromagnetic noise monitoring system covering the ULF range (0.01-10 Hz) A.S. Fraser-Smith observed intensive ULF electromagnetic wave during a large thunderstorm near the San-Francisco Bay area on September 23, 1990. According to this data the most significant amplification in ULF wave activity was observed for waves with a frequency of 0.01 Hz and it is entirely possible that stronger enhancements would have been measured at lower frequencies.
Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.
2009-05-15
Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
Highly Alfvenic Slow Solar Wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
NASA Astrophysics Data System (ADS)
Zonca, Fulvio; Chen, Liu
2007-11-01
We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)
Ribe, F.L.
1988-01-01
This report represents an update of the work described in Progress report No. 1 UWAERP/17 (2/16/87--10/15/87). During the present reporting period we have continued our work on the non-- axisymmetric Alfven wave heating of a high beta plasma column, and begun installation of the shifted hardcore heliac hardware. The hardware for the Alfven wave heating experiment has been assembled, installed, and tested. The preliminary experiment on the axisymmetric HBQM theta pinch compression coil set is scheduled to begin immediately. Details are given. The hardcore shifting apparatus has been built and is installed on one end of the HBQM, and the design and construction of the other end will proceed concurrently with experiments using a fixed hardcore. A design improvement in the hardcore shifting apparatus (since the last reporting period) has been implemented, motivated by the necessity of reliable operation at higher voltages.
Ribe, F.L.
1987-01-01
This paper discusses experiments on linear high beta helical axis stellarators. Experiments considered are: formation of linear high beta heliac plasma configurations; Alfven wave heating in a straight tube and in a linear high beat stellarator; shifted hardcore heliac studies; a system for measuring the timing of high-current switches in a pulsed high voltage fusion experiment; HBQM general refurbishment; and proposed experiment on excitation of the m = 1 tilt mode in field-reversed configurations. (LSP)
NASA Technical Reports Server (NTRS)
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
NASA Astrophysics Data System (ADS)
Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.
2015-12-01
The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.
Tsiklauri, D.
2012-08-15
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
Alfven ion-cyclotron heating of ionospheric O(+) ions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.
1988-01-01
Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.
NASA Astrophysics Data System (ADS)
Belashov, Vasily
We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega
Brecht, S H; Hewett, D W; Larson, D J
2009-03-12
In this letter the transition of a strong 3-D collisionless shock into sub-Alfvenic waves is examined numerically. The transition occurs because the Alfven speed eventually exceeds the shock speed, not because the shock runs out of energy. At this velocity transition, the shock disassembles into two types of waves: the usual compressional Alfven wave and a left-hand polarized electromagnetic shear Alfven wave. This later wave shows remarkable 3-D coherence, and preliminary analysis suggests that it is coupled to the strong electromagnetic waves that exist within the collisionless shock.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2003-01-01
When multi-ion plasma consisting of heavy and light ions is permeated by a lowfrequency Alfien (LFA) wave, the EXB and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-D particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically we study the situation for LFA wave frequency being lower than the heavyion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams.
Conventional and nonconventional global Alfven eigenmodes in stellarators
Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.
2007-10-15
Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.
Global Alfven eigenmodes in WELDELSTEIN 7-AS
Weller, A.; Goerner, C.; Jaenicke, R.
1995-09-01
In the presence of fast particle populations marginally stable global modes in the shear Alfven branch can be destabilized by wave particle resonances. This is particularly of concern in future large devices, where losses of resonant particles ({alpha}-particles in a reactor) may then limit the available heating power and also may cause damage of the first wall. In tokamaks TAE modes inside toroidicity induced gaps of the shear Alfven continua have been found. In stellarators with very weak shear like W7-AS low-n TAE-gaps do not occur but gaps below the shear Alfven continua with mode numbers m and n, if the resonant values {tau} = n/m do not exist in the plasma volume (k{sub {parallel}} = (m{sm_bullet}{tau} - n )/R {ne} 0 ). Under these conditions GAE modes with frequencies {omega}{sub GAE} < (k{sub {parallel}}{sm_bullet}V{sub A}){sub min} are the favoured modes. The investigation of GAE modes could also be of relevance in the case of advanced tokamak equilibria with flat or inverted q-profiles in the central region.
Alfvenically driven slow shocks in the solar chromosphere and corona
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1992-01-01
The nonlinear evolution of an Alfvenic impulse launched from the photosphere and its dynamical effects on the chromosphere, transition region (TR), and corona are investigated using a simple 1D model. It is found that the leading edge of the torsional pulse can steepen into a fast shock in the chromosphere if the pulse is of sufficiently large amplitude and short duration. A slow shock which develops behind the Alfvenic pulse can reflect downgoing Alfven waves back up to the corona. The upgoing reflected wave can induce a significant upward ejection of the TR. Nonlinear dynamics are found to lead to very impulsive behavior at later times. It is suggested that impulsive events occurring in the TR or corona need not be interpreted in terms of reconnection-driven microflares. It is also found that B(0) in the chromosphere can be amplified when the TR and chromosphere fall.
Properties of short-wavelength oblique Alfvén and slow waves
Zhao, J. S.; Wu, D. J.; Voitenko, Y.; Yu, M. Y.; Lu, J. Y.
2014-10-01
Linear properties of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency ω and plasma-to-magnetic pressure ratio β. The KAW frequency can reach and exceed the ion-cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At β ∼ 1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes also exhibit several opposite properties. At high β, the electric polarization ratios of KAWs and KSWs are opposite at the ion gyroradius scale, where KAWs are polarized in the sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity σ ∼ 1 for KAWs and σ ∼ –1 for KSWs, and the ion Alfvén ratio R{sub Ai} << 1 for KAWs and R{sub Ai} >> 1 for KSWs. We also found transition wavenumbers where KAWs change their polarization from left-handed to right-handed. These new properties can be used to discriminate KAWs and KSWs when interpreting kinetic-scale electromagnetic fluctuations observed in various solar-terrestrial plasmas. This concerns, in particular, identification of modes responsible for kinetic-scale pressure-balanced fluctuations and turbulence in the solar wind.
Drift-Alfven eigenmodes in inhomogeneous plasma
Vranjes, J.; Poedts, S.
2006-03-15
A set of three nonlinear equations describing drift-Alfven waves in a nonuniform magnetized plasma is derived and discussed both in linear and nonlinear limits. In the case of a cylindric radially bounded plasma with a Gaussian density distribution in the radial direction the linearized equations are solved exactly yielding general solutions for modes with quantized frequencies and with radially dependent amplitudes. The full set of nonlinear equations is also solved yielding particular solutions in the form of rotating radially limited structures. The results should be applicable to the description of electromagnetic perturbations in solar magnetic structures and in astrophysical column-like objects including cosmic tornados.
BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA
Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu
2011-09-10
Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.
Super-Alfvenic particle streaming in astrophysical settings
NASA Technical Reports Server (NTRS)
Holman, G. D.; Morrison, P. J.; Scott, J. S.; Ionson, J. A.
1979-01-01
The pitch angle scattering of relativistic particles by self-generated hydromagnetic waves is discussed. It is shown that in a hot background plasma, because of the resonant damping of short wavelength waves by thermal protons, cosmic rays need not slow down to a mean streaming speed which is of order the Alfven speed. The effects of a high cosmic ray energy density upon the destabilized wave model are also discussed. Recent work indicates that when the cosmic ray energy density is on the order of or exceeds the energy density in the ambient magnetic field, the velocity of the amplified waves is significantly greater than the Alfven speed. These effects have important implications for recent cosmic ray acceleration models and are important for studies of particle propagation in many astrophysical plasmas.
Vukovic, M.; Harper, M.; Breun, R.; Wukitch, S.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode converted kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.
NASA Astrophysics Data System (ADS)
Damiano, P. A.; Johnson, J.; Chaston, C. C.; Fox, W. R., II; Delamere, P. A.; Stauffer, B. H.
2015-12-01
Alfvenic current systems are a ubiquitous feature of planetary magnetospheres that can be generated by several mechanisms including the braking of flows (e.g. associated with reconnection at substorm onset) and via moon-planet interactions. The energetic electrons needed to carry the field-aligned currents are generally thought to be accelerated on either electron inertial or ion acoustic gyroradius scale lengths in the limit of inertial and kinetic Alfven waves respectively. Recent 2D dipolar hybrid gyrofluid-kinetic electron simulations of kinetic Alfven waves (Damiano et al., JGR, 2015), associated with the braking of fast flows in the terrestrial magnetotail, have illustrated that hot ion effects can act to limit the extent of the parallel current (all along the field line) from what would be expected in the cold ion limit. This correspondingly affects the characteristics of the electron energization, reducing both the parallel elongation in the electron distribution function associated with electron trapping in the kinetic Alfven wave regime and the extent of high energy tails evident in the inertial Alfven wave region above the ionosphere. In this presentation, we build on these initial simulation results analyzing the characteristics of the parallel current system and electron acceleration (associated with both inertial and kinetic Alfven waves) for a range of wave amplitudes and ratios of the electron to ion temperature. One finding is that for a given ion temperature, increasing wave amplitude recovers some of the features of the electron energization evident in the cold ion limit, but this is modulated by the effect of wave energy dispersion perpendicular to the ambient magnetic field. These results will be summarized and the relevance and extension of this work to consider Alfvenic aurora in the Jupiter magnetosphere (e.g. via either interchange motion or the Io-Jupiter interaction) will also be discussed.
NASA Astrophysics Data System (ADS)
Dombeck, John Paul
The presented studies investigate the characteristics of Alfvén wave events in the geomagnetic tail on the plasma sheet boundary layer (PSBL) and possibly well within the plasma sheet during substorms and major geomagnetic storms (<- 200 Dst). Such storms are rare but dramatically affect the state of the magnetosphere in ways that we have only recently been capable of investigating with sufficient in situ instrumentation. The first comparative study of major storm PSBL Alfvén waves events is presented. Properties of eight substorm and ten major storm events are compared using a new method, providing new insights into the phenomena, their interactions in the auroral acceleration region (AAR), and their generation. Direct comparison between Polar and FAST indicating a decrease (increase) in low-(high-)frequency shear (kinetic) earthward Alfvénic Poynting flux and an increase in earthward electron energy flux strongly suggests transfer of shear Alfvén wave Poynting flux to kinetic Alfvén waves which then accelerate auroral electrons. Polar observations also suggest a broadband source and indicate that small-scale, temporally/spatially variable factors, likely including density cavities and ionospheric conductivity structure, strongly affect the reflectivity/dissipation properties, as the waves in each frequency band contain a mixture of earthward, tailward, reflecting and incoherent wave intervals. Averages of these properties are consistent with theory, but the detailed structure has not been predicted. Tailward intervals also suggest ionospheric field line shear. Most major storm events were found have similar properties to substorm events with a few notable differences, consistent with effects related to the extended duration of storms. Low-latitude broadband auroral electrons and high-frequency Alfvén waves along with properties of a unique Alfvén wave event, related to a major storm tail reconfiguration, with very intense Poynting flux and the first
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1983-01-01
Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops.
Turbulent Alfven boundary layer in the polar ionosphere. 1. Excitation conditions and energetics
Trakhtengerts, V.Y. ); Feldstein, A.Ya. )
1991-11-01
Instability of laminar magnetospheric convection with respect to the strongly anisotropic Alfven waves which are of small scale in the horizontal plane is examined. The waves prove to be trapped in the ionospheric Alfven resonator, bounded from below by the ionospheric E layer and form above by a zone of rapidly increasing Alfven velocity at altitudes of up to {approximately}10{sup 4} km. The finite-amplitude Alfven waves dissipate within a layer of anomalous resistance formed near the upper wall of the resonator. As a result, a high-energy particle source appears in the upper ionosphere. Further evolution results in the transition of laminar convection to turbulent flow conditions and in the formation of a turbulent Alfven boundary layer in the polar ionosphere at altitudes from 10{sup 2} to 10{sup 4} km. The energy status of the turbulent Alfven boundary layer is calculated. It has been shown that the accelerated-electron energy flux density can reach {approximately}100 ergs cm{sup {minus}2} s{sup {minus}1}.
NASA Technical Reports Server (NTRS)
Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-01-01
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Drift-Alfven instabilities of a finite beta plasma shear flow along a magnetic field
NASA Astrophysics Data System (ADS)
Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June
2016-02-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows.
Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system
Hiraki, Yasutaka; Watanabe, Tomo-Hiko
2012-10-15
Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.
Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; White, R. B.; Yakovenko, Yu. V.
2004-09-17
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E.
Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.
2014-01-01
Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2013-12-01
The nonlinear interaction of incident and reflected Alfven wave packets in auroral acceleration regions can create non-propagating electromagnetic-plasma structures, such as transverse Alfvenic double layers and charge holes. These dynamical structures are often characterized by localized strong electrostatic electric fields, localized density cavities and enhanced magnetic or mechanical stresses, and are responsible for auroral particle acceleration and the formation of both Alfvenic and quasi-static inverted-V discrete auroras. Similar electromagnetic-plasma structures should also be generated in other cosmic plasmas, and would constitute effective high energy accelerators of charged particles in cosmic plasmas.
Matsunaga, G.; Kawada, S.; Kotani, J.; Toi, K.; Suzuki, C.; Matsuoka, K.
2005-06-10
A novel method of exciting shear Alfven waves using electrodes inserted in a plasma was developed for basic study of Alfven eigenmodes in a heliotron/torsatron plasma. The electrodes can induce excitation current along the confinement field line, and generate magnetic perturbations perpendicular to the confinement field. By sweeping the frequency of the current in a cold plasma, the toroidicity-induced Alfven eigenmode was resonantly excited at the predicted frequency and radial location. Plasma response to the applied magnetic perturbations indicates a fairly large damping rate caused by continuum damping.0.
NASA Astrophysics Data System (ADS)
Odziomek, K.; Gajewicz, A.; Haranczyk, M.; Puzyn, T.
2013-07-01
Air-water partition coefficient (KAW) is one of the key parameters determining environmental behavior of Persistent Organic Pollutants (POPs). Experimentally measured values of KAW are still unavailable for majority of POPs, thus alternative methods of supplying data, including Quantitative Structure-Property Relationships (QSPR) modeling, are often in use. In this paper, applicability of two QSPR methods of predicting KAW were compared with each other in the context of further application of the predicted data in environmental transport and fate studies. According to the first (indirect) method, KAW is calculated from previously predicted values of octanol-water (KOW) and octanol-air (KOA) partition coefficients. In the second (direct) approach, KAW is calculated, based on the estimated value of Henry's law constant (KH) and then adjusted to ensure its consistency with the other two partition coefficients (KOW and KOA). Although the indirect method carries theoretically twice as much error as the direct method, when the predicted values of KAW are then utilized as an input to the environmental fate model The OECD POV and LRTP Screening Tool, ver. 2.2, the indirect method elicits much higher and therefore much more restrictive values of overall persistence (POV) and transfer efficiency (TE) than its equivalent (direct method). High uncertainties related to the application of the direct method result mainly from the necessary adjustment procedure.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Phenomenon of Alfvenic Vortex Shedding
Gruszecki, M.; Nakariakov, V. M.; Van Doorsselaere, T.; Arber, T. D.
2010-07-30
Generation of Alfvenic (magnetohydrodynamic) vortices by the interaction of compressible plasma flows with magnetic-field-aligned blunt obstacles is modeled in terms of magnetohydrodynamics. It is found that periodic shedding of vortices with opposite vorticity is a robust feature of the interaction in a broad range of plasma parameters: for plasma beta from 0.025 to 0.5, and for the flow speeds from 0.1 to 0.99 of the fast magnetoacoustic speed. The Strouhal number is the dimensionless ratio of the blunt body diameter to the product of the period of vortex shedding and the inflow speed. It is found to be consistently in the range 0.15-0.25 in the whole range of parameters. The induced Alfvenic vortices are compressible and contain spiral-armed perturbations of the magnetic field strength and plasma mass density up to 50%-60% of the background values. The generated electric current also has the spiral-armed structuring.
Ellipticity and triangularity effects in tokamak Alfven spectrum
NASA Astrophysics Data System (ADS)
Puerta, Julio; Martin, Pablo; Castro, Enrique; Valdeblanquez, Eder
2006-10-01
Plasma configurations with ellipticity and triangularity are usual in tokamak experiments. These plasmas can be studied using a new system of coordinates of recent publications. Here this method has been applied to study Alfven spectrum in axisymmetric tokamaks with different values of ellipticity and triangularity [1-3]. Previous authors have developed numerical methods to obtain the Alfven spectrum using the Shafranov-Solove'v equilibrium flux function where the parameter ellipticity is also included [3]. Here more general configurations are treated and compared with the results of these authors, as well as those derived for the geometric optics or WKBJ approximation. The Alfven wave dispersion relation is obtained by the linearization of the MHD equations around a stationary equilibrium and the results are obtained by numerical calculations. [1] P. Martin, M. G. Haines and E. Castro, Phys. Plasma 12, 082506 (2005) [2] L. L. Lao, S. P. Hishman and R. M. Wieland, Phys. Fluids 24, 1431 (1981); H. Weitzner's Appendix. [3] G. O. Ludwig, Plasma Phys. Controlled Fusion 37, 633 (1995) [4] S. Novo, M. N'uñez and J. Rojo, Phys. Fluids B 3, 2967 (1991)
Alfv'en mode structure/stability properties of stellarators and broken-symmetry tokamaks
NASA Astrophysics Data System (ADS)
Spong, Don
2009-05-01
Energetic particle driven shear Alfv'en wave (SAW) instabilities are frequently observed in both stellarator and tokamak experiments. Three-dimensional effects are present in all toroidal devices and can significantly influence both stability properties of energetic particle populations and their loss patterns on the first wall. Three-dimensional equilibrium variations in stellarators and broken symmetry tokamaks provide new couplings that increase the complexity and density of the Alfv'en mode spectrum. An eigenmode solver, the AE3D code, has been developed for calculating Alfv'en mode structures in such configurations and identifying the most likely modes for resonant energetic tail destabilization. Applications of this model to a variety of stellarators (LHD, TJ-II, HSX, QPS, NCSX) and broken symmetry tokamaks (ITER with TF ripple and ferritic materials) have been made and results will be presented. Possible extensions to include sound wave couplings and gyro-Landau closures will be discussed.
Global particle-in-cell simulations of plasma pressure effects on Alfvenic modes
Mishchenko, Alexey; Koenies, Axel; Hatzky, Roman
2011-01-15
Global linear gyrokinetic particle-in-cell simulations of electromagnetic modes in realistic tokamak geometry are reported. The effect of plasma pressure on Alfvenic modes is studied. It is shown that the fast-particle pressure can considerably affect the shear Alfven wave continuum structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely stabilize them in a certain parameter range). Ballooning modes are found to be the dominant instabilities if the bulk-plasma pressure gradient is large enough.
A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence
Biglari, H. . Plasma Physics Lab.); Diamond, P.H. . Dept. of Physics)
1992-01-01
The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.
Verwichte, E.; Foullon, C.; White, R. S.; Van Doorsselaere, T.
2013-04-10
Two transversely oscillating coronal loops are investigated in detail during a flare on the 2011 September 6 using data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We compare two independent methods to determine the Alfven speed inside these loops. Through the period of oscillation and loop length, information about the Alfven speed inside each loop is deduced seismologically. This is compared with the Alfven speed profiles deduced from magnetic extrapolation and spectral methods using AIA bandpass. We find that for both loops the two methods are consistent. Also, we find that the average Alfven speed based on loop travel time is not necessarily a good measure to compare with the seismological result, which explains earlier reported discrepancies. Instead, the effect of density and magnetic stratification on the wave mode has to be taken into account. We discuss the implications of combining seismological, extrapolation, and spectral methods in deducing the physical properties of coronal loops.
The making of an Alfvenic fluctuation: The resolution of a second-order analysis
NASA Technical Reports Server (NTRS)
Vasquez, Bernard J.; Hollweg, Joseph V.
1995-01-01
Ulysses observations of the high speed polar streams show that they are largely occupied by very large amplitude Alfvenic fluctuations accompanied by many rotational discontinuities. These fluctuations have a nearly constant magnetic intensity or amplitude, and the magnetic field direction per wave cycle sweeps only through a limited arc, much as a car wiperblade would do. Barnes and Hollweg (JGR, 79, 2302, 1974) suggested that this unusual waveform could arise from an obliquely propagating and linearly polarized Alfven wave of finite amplitude. From a second-order analysis, they showed that the existence of a particular solution with a constant amplitude but could not resolve the outcome of the homogeneous solution which consisted of fast waves. They suggested that Landau damping of these fast waves may be needed to get the observed waveform. We present a 1 1/2 D hybrid simulation which is fully nonlinear and correctly describes the ion kinetics for an initially monochromatic and linearly polarized Alfven wave propagating obliquely to the background magnetic field. The wave has a large amplitude and a wavelength so long that it can be considered dispersionless for simulation times. At early times, the second harmonic in density and in magnetic field transverse to the initial wave magnetic field are generated and have more power than other harmonics. Steepening is observed with a weak fast shock emerging, but no rotational discontinuity is left behind, and instead a constant amplitude and an arc-shaped waveform is made. The compressional component which develops after the shocks have dissipated is to zeroth order better described as a pure acoustic wave than as a fast wave. This might be explained by the relaxing of the Alfven wave to a state where its ponderomotive force vanishes so that the compressional component can travel almost independently of it.
Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes
Cheng, C.Z.
1990-10-01
The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped {alpha}-particles through the wave-particle resonances. Satisfying the resonance condition requires that the {alpha}-particle birth speed v{sub {alpha}} {ge} v{sub A}/2{vert bar}m-nq{vert bar}, where v{sub A} is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the {alpha}-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the {alpha}-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the {alpha}-particle beta {beta}{sub {alpha}}, {alpha}-particle pressure gradient parameter ({omega}{sub {asterisk}}/{omega}{sub A}) ({omega}{sub {asterisk}} is the {alpha}-particle diamagnetic drift frequency), and (v{sub {alpha}}/v{sub A}) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged {alpha}-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged {alpha}-particle beta threshold is in the order of 10{sup {minus}4}. Typical growth rates of the n=1 TAE mode can be in the order of 10{sup {minus}2}{omega}{sub A}, where {omega}{sub A}=v{sub A}/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects.
Phenomenology of Compressional Alfven Eigenmodes
E.D. Fredrickson; N.N. Gorelenkov; J. Menard
2004-05-13
Coherent oscillations with frequency 0.3 {le} {omega}/{omega}{sub ci} {le} 1, are seen in the National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y-K.M. Peng, et al., Nucl. Fusion 40, 557 (2000)]. This paper presents new data and analysis comparing characteristics of the observed modes to the model of compressional Alfven eigenmodes (CAE). The toroidal mode number has been measured and is typically between 7 < n < 9. The polarization of the modes, measured using an array of four Mirnov coils, is found to be compressional. The frequency scaling of the modes agrees with the predictions of a numerical 2-D code, but the detailed structure of the spectrum is not captured with the simple model. The fast ion distribution function, as calculated with the beam deposition code in TRANSP [R.V. Budny, Nucl. Fusion 34, 1247 (1994)], is shown to be qualitatively consistent with the constraints of the Doppler-shifted cyclotron resonance drive model. This model also predicts the observed scaling of the low frequency limit for CAE.
Nonlinear Frequency Chirping of β-induced Alfven Eigenmode
NASA Astrophysics Data System (ADS)
Zhang, Huasen
2012-03-01
The β-induced Alfven eigenmode (BAE) have been observed in many tokamaks. The BAE oscillates with the GAM frequency φ0, and therefore, has strong interactions with both thermal and energetic particles. In this work, linear gyrokinetic particle simulations show that nonperturbative contributions by energetic particles and kinetic effects of thermal particles modify BAE mode structure and frequency relative to the MHD theory. Gyrokinetic simulations have been verified by theory-simulation comparison and by benchmark with MHD-gyrokinetic hybrid simulation. Nonlinear simulations show that the unstable BAE saturates due to nonlinear wave-particle interactions with thermal and energetic particles. Wavelet analysis shows that the mode frequency chirping occurs in the absence of sources and sinks, thus it complements the standard ``bump-on-tail'' paradigm for the frequency chirping of Alfven eigenmodes. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of coherent structures in the energetic particle phase space of (ζ,φd) with toroidal angle ζ and precessional frequency φd. The dynamics of the coherent structures is controlled by the formation and destruction of phase space islands of energetic particles in the canonical variables of (ζ,Pζ) with canonical angular momentum Pζ. Our studies use the gyrokinetic toroidal code (GTC) recently upgraded with a comprehensive formulation for simulating kinetic-MHD processes. In collaborations with GTC team and SciDAC GSEP Center.
Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas
Heidbrink, W. W.
2008-05-15
Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P{sub {zeta}} is most important. Once a mode is driven unstable, a wide variety
NASA Astrophysics Data System (ADS)
Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar
2016-03-01
The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.
Nonlinear dynamics of beta-induced Alfven eigenmode in tokamak
Zhang, H. S.; Lin, Z.; Deng, W.; Holod, I.; Wang, Z. X.; Xiao, Y.; Zhang, W. L.
2013-01-15
The beta-induced Alfven eigenmode (BAE) excited by energetic particles in toroidal plasmas is studied in the global gyrokinetic simulations. It is found that the nonlinear BAE dynamics depends on the deviation from the marginality. In the strongly driven case, the mode exhibits a bursting state with fast and repetitive chirping. The nonlinear saturation is determined by the thermal ion nonlinearity and has no clear dependence on the linear growth rate. In the weakly driven case, the mode reaches a nearly steady state with small frequency chirping. The nonlinear dynamics is dominated by the energetic particle nonlinearity. In both cases, the nonlinear intensity oscillation and frequency chirping are correlated with the evolution of the coherent structures in the energetic particle phase space. Due to the radial variation of the mode amplitude and the radially asymmetric guiding center dynamics, the wave-particle interaction in the toroidal geometry is much more complex than the conventional one-dimensional wave-particle interaction paradigm.
Sawtooth Stabilization and Onset of Alfvenic Instabilities
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Cheng, C. Z.
2011-10-01
Tokamak sawtooth instabilities can be stabilized by high energy particles as a consequence of conservation of the third adiabatic invariant.On the other hand, termination of the stabilized period is reported due to the onset of Alfvenic instabilities (and thus the absence of the stabilizing mechanism). In this work, employing a kinetic-fluid model, the interaction of m=1 resistive kink mode and high energy particles is investigated. The onset of Alfvenic instabilities is examined as a function of the inversion radius location. D.J. Campbell et al., Phys. Rev. Lett. 60, 2148 (1988); F. Porcelli, Plasma Phys. Controlled Fusion 33, 1601 (1991).
Effect of magnetic islands on the localization of kinetic Alfvén wave
Rai, Rajesh Kumar Sharma, Swati Yadav, Nitin; Sharma, R. P.; Goldstein, M. L.
2015-12-15
Recent studies have revealed an intimate link between magnetic reconnection and turbulence. Observations show that kinetic Alfvén waves (KAWs) play a very crucial role in magnetic reconnection and have been a topic of interest from decades in the context of turbulence and particle heating. In the present paper, we study the role that KAW plays in the formation of coherent structures/current sheets when KAW is propagating in the pre-existing fully developed chain of magnetic islands. We derived the dynamical equation of KAW in the presence of chain of magnetic islands and solved it using numerical simulations well as analytic tools. Due to pre-existing chain of magnetic islands, KAW splits into coherent structures and the scale size of these structures along transverse directions (with respect to background magnetic field) comes out to be either less than or greater than ion gyro radius. Therefore, the present work may be the first step towards understanding how magnetic reconnection generated islands may affect the KAW localization and eventually contribute to magnetic turbulence. In this way the present approach may be helpful to understand the interplay between magnetic reconnection and turbulence in ion diffusion region.
Zhao, J. S.; Wu, D. J.; Voitenko, Y.; De Keyser, J.
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
High amplitude waves in the expanding solar wind plasma
Schmidt, J. M.; Velli, M.; Grappin, R.
1996-07-20
We simulated the 1 D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. It is the generation of sound due to ponderomotive forces of the Alfven wave which we can detect in the latter case. For slow magnetoacustic waves we find a kind of oscillation of the character of the wave between a sound wave and an Alfven wave. This is the more, the slow magnetoacustic wave is close to a sound wave in the beginning. On the other hand, fast magnetoacustic waves are much more dissipated than the other wave-types and their general behaviour is close to the Alfven. The normalized cross-helicity {sigma}{sub c} is close to one for Alfven-waves and this quantity is decreasing slightly when density-fluctuations are generated. {sigma}{sub c} decreases significantly when the waves are close to perpendicular propagation. Then, the waves are close to quasi-static structures.
Study of Toroidicity-Induced Alfv'en Eigenmodes on the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Koliner, J. J.; Forest, C. B.; Oliva, S.; Anderson, J. K.; Sarff, J. S.; Almagri, A. R.; Spong, D.
2009-11-01
Alfv'en waves are likely of fundamental importance in the reversed-field pinch (RFP). The large magnetic fluctuations are expected to inject energy into Alfv'en modes, and their subsequent cascade to shorter wavelengths may drive ion heating. A new effort is in progress to understand toroidicity-induced Alfv'en eigenmodes (TAE's) through their structure, driving terms and damping mechanisms on the MST. Coupling of multiple eigenmodes can introduce undamped TAE's with frequencies from hundreds of kHz up to the cyclotron frequency at over 2 MHz. These modes can also become unstable by inverse Landau damping due to fast ions, a condition pertinent to neutral beam injection heating on MST and fusion alpha particles in future RFP devices. Frequencies of weakly damped modes have been calculated by solving a 3D partial differential equation that describes shear Alfv'en dynamics numerically based on MST equilibrium conditions. To excite the calculated modes, a single strap poloidal antenna connected to a 1 kW broadband amplifier will be employed. An array of 64 toroidally distributed magnetic pickup coils will be utilized synchronously to resolve power spectra and mode numbers in the relevant range of frequencies.
Zonca, F.; Chen, L.
2008-11-01
We briefly discuss the unified theoretical framework that allows explaining a variety of experimental observations with one single 'fishbone-like' dispersion relation. We also point out the relationship of MHD and shear Alfven waves in the kinetic thermal ion frequency gap with microturbulence, Zonal Flows and Geodesic Acoustic Modes, emphasizing its importance in determining long time scale dynamic behaviors in burning plasmas.
Characteristics of Short Wavelength Compressional Alfven Eigenmodes
Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-12-19
Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Alfven continuum and Alfven eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O.P.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; White, R.B.; Yakovenko, Yu.V.
2004-12-01
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) [G. H. Neilson et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94/IC-1] is investigated with the AC code COBRA [Ya. I. Kolesnichenko et al., Phys. Plasmas 8, 491 (2001)]. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gap of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E [V. V. Lutsenko et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94-TH/P3-16].
Nonlinear effects associated with oblique whistler waves in space plasmas
NASA Astrophysics Data System (ADS)
Sharma, R. P.; Nandal, P.; Yadav, N.; Uma, R.
2016-10-01
In the present work, we have examined the nonlinear interaction of pump whistler wave and low frequency kinetic Alfvén wave (KAW) in three regions viz., solar wind, earth's radiation belt, and magnetopause. The modification in the background density leads to the introduction of nonlinearity. The nonlinear ponderomotive force is responsible for this change in density. Low frequency kinetic Alfvén wave is excited by the nonlinear ponderomotive force of pump whistler wave. A set of dimensionless equations characterizing the dynamics of whistler wave and low frequency KAW perturbed by whistler wave were developed. The coupled equations were then simulated numerically. The nonlinear effects related with the whistler wave were studied. The resulting localized structures and the magnetic turbulent spectra in various regions have been investigated.
Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.
1986-01-01
The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.
Free-boundary toroidal Alfven eigenmodes
Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.
2011-05-15
A numerical study is presented for the n = 1 free-boundary toroidal Alfven eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.
Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp
NASA Technical Reports Server (NTRS)
Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.
2009-01-01
The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.
Alfv'enic Modes in HSX Stellarator
NASA Astrophysics Data System (ADS)
Deng, C.; Brower, D. L.; Spong, D. A.; Breizman, B. N.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Guttenfelder, W.; Likin, K.; Lore, J.; Lu, J.; Oh, S.; Radder, J. W.; Schmitt, J.; Zhai, K.
2007-11-01
Coherent, global fluctuations in the range of 20-120 kHz are observed for quasi-helically-symmetric, 2^nd Harmonic X-mode ECRH produced plasmas in HSX (BT=0.5T). Measurements and theory indicate that the mode with helicity m/n=1/1 is likely a global Alfv'en eigenmode (GAE) driven by nonthermal electrons. Under certain conditions, a satellite mode of same helicity is observed with frequency ˜20 kHz higher than the primary mode. Radial structure of both the primary and satellite modes are obtained by inversion of interferometry data showing peaks at different spatial locations. Finite pressure effects, even at low plasma beta, distort the Alfven continuum and mode frequency for these low m,n modes. For HSX operation at BT=1T with first Harmonic O-mode ECRH, the fast electron population is reduced and the mode is no longer observed. *Supported by USDOE contracts DE-FG03-01ER54615 and DE-FG02-93EE54222.
Investigation of global Alfven instabilities in TFTR
Wong, K.L.; Paul, S.F.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Cohen, S.; Hammett, G.W.; Jobes, F.C.; Johnson, L.; Meade, D.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Synakowski, E.J.; Durst, R.; Fonck, R.J.; Roberts, D.R.; Sabbagh, S.
1992-01-01
Toroidal Alfven Eigenmodes (TAE) were excited by the energetic neutral beam ions tangentially injected into TFTR plasmas at low magnetic field such that the injection velocities were comparable to the Alfven speed. The modes were identified by measurements from Mirnov coils and beam emission spectroscopy (BES). TAE modes appear in bursts whose repetition rate increases with beam power. The neutron emission rate exhibits sawtooth-like behavior and the crashes always coincide with TAE bursts. This indicates ejection of fast ions from the plasma until these modes are stabilized. The dynamics of growth and stabilization was investigated at various plasma current and magnetic field. The results indicate that the instability can effectively clamp the number of energetic ions in the plasma. The observed instability threshold is discussed in the light of recent theories. In addition to these TAE modes, intermittent oscillations at three times the fundamental TAE frequency were observed by Mirnov coils, but no corresponding signal was found in BES. It appears that these high frequency oscillations do not have direct effect on the plasma neutron source strength.
Nonlinear Dynamics of Kinetic Alfvén and Whistler Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
Rai, Rajesh Kumar; Sharma, Swati; Sharma, R. P.
2017-03-01
In this article we investigate the nonlinear dynamics of 3D kinetic Alfvén waves (KAWs) and quasi-transverse weak whistler waves in a magnetized plasma. We have studied the problem numerically to examine the transient evolution of localized structures of 3D KAWs and whistler waves. The nonlinearity arises as a result of ponderomotive effects associated with 3D KAWs; consequently, the background density modifies. The weak whistler waves propagating in this modified density are localized and amplified. To improve our insight into the basic physics behind the formation of these localized structures, we have also solved the system semi-analytically. The power spectra show a Kolmogorov scaling (with a power of -5/3) in the inertial range that lies above the ion gyroradius. Below this scale, dispersive effects start to appear, and the power spectrum follows a steeper scaling (-2 to -4). Our results show the important role that KAWs and whistler waves play in the energy cascading from larger to smaller scales. The results are consistent with the solar wind observations by the Cluster spacecraft.
Alfvenic fluctuations in the solar wind observed by Ulysses
NASA Technical Reports Server (NTRS)
Smith, E. J.; Neugebauer, M; Tsurutani, B. T.; Balogh, A.; McComas, D. J.
1995-01-01
One of the striking results of the Sun's south polar pass by Ulysses was the discovery of large amplitude, long period Alfvenic fluctuations that were continuously present in the solar wind flow from the polar coronal hole. The fluctuations dominate the variances and power spectra at periods greater than or equal to 1 hour and are evident as correlated fluctuations in the magnetic field and solar wind velocity components. Various properties of the fluctuations in the magnetic field, in the velocity, and in the electric field have been established. The waves appear to have important implications for galactic cosmic rays and for the solar wind, topics which have continued to be investigated. Their origin is also under study, specifically whether or not they represent motions of the ends of the field lines at the Sun. The resolution of these issues has benefited from the more recent observations as the spacecraft traveled northward toward the ecliptic and passed into the northern solar hemisphere. All these observations will be presented and their implications will be discussed.
Propagation and mode conversion for waves in nonuniform plasmas
Stix, T.H.; Swanson, D.G.
1982-06-01
The following topics are described: (1) the hybrid resonance, (2) Alfven resonance, (3) the intermediate-frequency electromagnetic wave equation, (4) the standard equation, (5) the tunneling equation, (6) asymptotic solutions of the tunneling equation, (7) localized absorption, and (8) matched asymptotic expansions; the low-frequency Alfven resonance. (MOW)
Kinetic Alfvén Wave Generation by Large-scale Phase Mixing
NASA Astrophysics Data System (ADS)
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.
2015-12-01
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.
KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F.; Matthaeus, W. H.
2015-12-10
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.
Relationship Between Alfvenic Fluctuations and Heavy Ion Heating in the Cusp at 1 Re
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
We look at the effect of heavy ion heating from their coupling with observed broadband (BB-ELF) emissions. These wave fluctuations are common to many regions of the ionosphere and magnetosphere and have been described as spatial turbulence of dispersive Alfven waves (DAW) with short perpendicular wavelengths. With Polar passing through the cusp at 1 Re in the Spring of 1996, we show the correlation of their wave power with mass-resolved O+ derived heating rates. This relationship lead to the study of the coupling of the thermal O+ ions and these bursty electric fields. We demonstrate the role of these measurements in the suggestion of DAW and stochastic ion heating and the observed density cavity characteristics.
NASA Astrophysics Data System (ADS)
Goyal, R.; Sharma, R. P.; Kumar, S.
2017-01-01
A model is proposed to study the dynamics of high-amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with low-frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The wave dynamics clearly indicates the whistlers having quasi-electrostatic character when propagating close to resonance cone angle. A high-amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES (STEREO/WAVES) instrument onboard STEREO (Solar Terrestrial Relations Observatory). A numerical simulation technique has been employed to study the localization of quasi-electrostatic whistler waves in radiation belts. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite low-frequency waves (KAWs). The turbulent spectrum obtained using the analysis suggests the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.
Comparison of two-fluid and gyrokinetic models for kinetic Alfvén waves in solar and space plasmas
Yang, L.; Wu, D. J.; Wang, S. J.; Lee, L. C.
2014-09-01
An analytical comparative study of a two-fluid and a gyrokinetic model of kinetic Alfvén waves (KAWs) is presented for various solar and space plasma environments. Based on the linear KAW dispersion relation for gyrokinetics (Howes et al. 2006), the wave group velocity and electromagnetic polarizations are obtained analytically. Then the gyrokinetic wave properties are compared with those of the two-fluid model. The results show that both models agree well with each other not only in the long wavelength regime (>> the ion gyroradius ρ {sub i}) for all cases considered, but also in wavelengths ∼ρ {sub i} and <<ρ {sub i} (still much larger than the electron gyroscale) for a moderate or low (≲ 1) and a high (>>1) ion/electron temperature ratio T {sub 0i}/T {sub 0e}, respectively. However, the fluid model calculations deviate strongly from the gyrokinetic model at scales <ρ {sub i} for a relatively low T {sub 0i}/T {sub 0e} due to the electron gyroradius effect. Meanwhile, the plasma β {sub i} can make the gyrokinetic dispersion relation of KAWs become complex and sometimes have an oscillation-like structure. With the inherent simplicity of the fluid theory, these results may improve our understanding of the applicability of the two-fluid model, and may have important implications for computer simulation studies of KAWs in the solar and space plasma surroundings.
Experimental Evaluation of Energy Transfer between Fast Ions and Alfven Eigenmodes
NASA Astrophysics Data System (ADS)
Nagaoka, Kenichi; Osakabe, Masaki; Isobe, Mitsutaka; Ogawa, Kunihiro; Suzuki, Yasuhiro; Kobayashi, Shinji; Yamamoto, Satoshi; Miyoshi, Yoshizumi; Katoh, Yuto; Fontdecaba, Josep Maria; Ascasibar, Enrique; LHD Team
2016-10-01
Recently, a new wave-particle analyzer was proposed to identify interaction between fast ions and Alfven eigenmodes [K. Nagaoka, 67th annual meeting of APS-DPP, savanna, 2015]. A data acquisition system for the wave-particle interaction analysis was developed for particle counting mode operation of neutral particle detectors. We recently applied the system to the Si-FNA detector signals in LHD and Heliotron J, and NPA signals in TJ-II. The first experimental results obtained in three devices are presented and the importance of the optimization of line of sight will be discussed. This research was supported by NIFS/NINS under the project of 'Promotion of International Network for Scientific Collaboration', NIFS Collaboration Research program (NIFS16KUHL068) and JSPS KAKENHI Grani-in-Aid for Young Scientists (A) 26709071.
NASA Astrophysics Data System (ADS)
Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.
2016-01-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.
Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D. G.
2015-12-01
The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.
Short-Wavelength Solar Wind Turbulence: Kinetic Alfven vs. Whistler Fluctuations
NASA Astrophysics Data System (ADS)
Gary, S. Peter
2009-11-01
The inertial range of solar wind turbulence corresponds to magnetic power spectra which scale as f^-α with α˜ 5/3. Many observations show, however, that at observed frequencies f ˜ 0.2 Hz, there is a ``breakpoint'' such that power spectra at higher frequencies follow a steeper power-law dependence with α> 5/3. The constituent modes of this high-frequency, short-wavelength regime are often attributed to kinetic Alfv'en modes which propagate at strongly oblique directions relative to the background magnetic field. However, whistler fluctuations represent an alternative hypothesis to describe short-wavelength turbulence in the solar wind and, indeed, in any collisionless, magnetized, homogeneous plasma. Particle-in-cell simulations have shown that the whistler cascade yields steep power-law power spectra consistent with observations [1]. This poster will describe a comparison of linear theory properties of kinetic Alfv'en waves and whistler fluctuations, and will apply these results to recent simulations and observations of short-wavelength turbulence in the solar wind.[4pt] [1] Saito, S., S. P. Gary, H. Li, and Y. Narita (2008), Whistler turbulence: Particle-in-cell simulations, Phys. Plasmas, 15, 102305.
Studies of Alfv'enic instabilities by a kinetic-fluid model
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Cheng, C. Z.
2009-11-01
Employing a kinetic-fluid simulation modelfootnotetextC.Z.Cheng and J.R.Johnson, J. Geophys. Res. 104, 413 (1999)., Alfv'enic instabilities driven by energetic particles are studied in tokamak plasmas. The kinetic-fluid model incorporates all the particle dynamics through the pressure tensor by taking the second order moment of the particle simulation while the electromagnetic field quantities are evolved in the fluid equations. The kinetic-fluid model retains the ion and electron wave-particle interaction for both the bulk and the energetic plarticle components. Global Alfven oscillation, continuum damping, and the generation of the TAE gapfootnotetextC.Z.Cheng and M.S.Chance, Phys. Fluids 29, 3695 (1986). in the toroidal geometry are demonstrated in the MHD limit.footnotetextY.Nishimura, J.D.Callen, C.C.Hegna, Phys. Plasmas 6, 4685 (1999). Kinetic particlesfootnotetextY.Nishimura and M.Azumi, Phys. Plasmas 4, 2365 (1997). footnotetextY.Nishimura, Contrib. Plasma Phys. 48, 224 (2008). are then incorporated into the fluid set of equations to excite the instabilities (bulk ions/electrons replace the pressure evolution equation). This work is supported by National Cheng Kung University Top University Project.
NASA Astrophysics Data System (ADS)
Edlund, E. M.; Porkolab, M.; Lin, Y.; Tsujii, N.; Wukitch, S. J.; Lin, L.; Kramer, G. J.
2009-11-01
Reversed shear Alfv'en eigenmodes (RSAEs) have been excited in Alcator C-Mod during the current ramp phase at ITER relevant densities of ne0<=1.5 : x: 10^20 : m-3 with (2-5) MW of ICRH power absorbed by H minority heating [1]. We have studied the scaling of the minimum frequency of the RSAEs by varying the temperature of the electrons and majority ions and compare the results to theoretical scalings from the code NOVA [2] and an analytic dispersion relation [3]. Taking the adiabatic index (γ) as a free parameter, a best fit to the data indicates γ= 1.40 ±0.15, excluding the ideal gas limit of γ= 5/3. A limiting value of γ= 3/2 is predicted from consideration of the energy and pressure of shear Alfven waves [4]. Kinetic electron response is considered as a possible correction to the theoretical treatment. Work supported by DOE under DE-FG02-94-ER54235 and DE-FC02-99- ER54512.[4pt] [1] M. Porkolab et al., IEEE Trans. Plasma Sci. 34, 229 (2006).[0pt] [2] C.Z. Cheng and M.S. Chance, J. Comput. Phys. 71, 124 (1987).[0pt] [3] B.N. Breizman et al., Phys. Plasmas 12, 112506 (2005).[0pt] [4] C.F. McKee and E.G. Zweibel, Astro. J. 440, 686 (1995).
Bass, E. M.; Waltz, R. E.
2013-01-15
The unstable spectrum of Alfven eigenmodes (AEs) driven by neutral beam-sourced energetic particles (EPs) in a benchmark DIII-D discharge (142111) is calculated in a fully gyrokinetic model using the GYRO code's massively parallel linear eigenvalue solver. One cycle of the slow (equilibrium scale) frequency sweep of the reverse shear Alfven eigenmode (RSAE) at toroidal mode number n=3 is mapped. The RSAE second harmonic and an unstable beta-induced Alfven eigenmode (BAE) are simultaneously tracked alongside the primary RSAE. An observed twist in the eigenmode pattern, caused mostly by shear in the driving EP profile, is shown through artificially varying the E Multiplication-Sign B rotational velocity shear to depend generally on shear in the local wave phase velocity. Coupling to the BAE and to the toroidal Alfven eigenmode limit the RSAE frequency sweeps at the lower and upper end, respectively. While the present fully gyrokinetic model (including thermal ions and electrons) constitutes the best treatment of compressibility physics available, the BAE frequency is overpredicted by about 20% against experiment here and is found to be sensitive to energetic beam ion pressure. The RSAE frequency is more accurately matched except when it is limited by the BAE. Simulations suggest that the experiment is very close to marginal AE stability at points of RSAE-BAE coupling. A recipe for comparing the radial profile of quasilinear transport flux from local modes to that from global modes paves the way for the development of a stiff (critical gradient) local AE transport model based on local mode stability thresholds.
Kinetic Alfvén wave explanation of the Hall fields in magnetic reconnection
NASA Astrophysics Data System (ADS)
Dai, Lei; Wang, Chi; Zhang, Yongcun; Lavraud, Benoit; Burch, James; Pollock, Craig; Torbert, Roy B.
2017-01-01
Magnetic reconnection is initiated in a small diffusion region but can drive global-scale dynamics in Earth's magnetosphere, solar flares, and astrophysical systems. Understanding the processes at work in the diffusion region remains a main challenge in space plasma physics. Recent in situ observations from Magnetospheric Multiscale and Time History of Events and Macroscale Interactions during Substorms reveal that the electric field normal to the reconnection current layer, often called the Hall electric field (En), is mainly balanced by the ion pressure gradient. Here we present theoretical explanations indicating that this observation fact is a manifestation of kinetic Alfvén waves (KAWs) physics. The ion pressure gradient represents the finite gyroradius effect of KAW, leading to ion intrusion across the magnetic field lines. Electrons stream along the magnetic field lines to track ions, resulting in field-aligned currents and the associated pattern of the out-of-plane Hall magnetic field (Bm). The ratio ΔEn/ΔBm is on the order of the Alfvén speed, as predicted by the KAW theory. The KAW physics further provides new perspectives on how ion intrusion may trigger electric fields suitable for reconnection to occur.
Effect of Background Fluctuations on Kinetic Alfvén Wave Turbulence
NASA Astrophysics Data System (ADS)
Kumari, Anju; Sharma, R. P.
2016-07-01
The localization of Kinetic Alfvén wave (KAW) caused by finite amplitude background density fluctuations has been studied in intermediate beta plasma. The dynamical equations are derived taking into account the ponderomotive nonlinearity of the KAW as well as background density fluctuations and then studied numerically. Numerical simulation has been performed to analyze the effect of background density fluctuations on localized structures and resulting turbulent spectrum of KAW applicable to the magnetopause. Simulation results reveal that the power spectrum deviates from Kolmogorov scaling at the transverse size of KAW, equal to ion gyroradius. Steepening of the power spectrum at shorter wavelengths may be accountable for heating and acceleration of the plasma particles. Thus the presented coupling suggests a mechanism of energy transfer from larger length-scales to smaller length-scales. The relevance of present investigation with observations collected from the THEMIS spacecraft in magnetopause is also discussed [Chaston et al., 2008]. Reference Chaston, C., J. Bonnell, J. P. McFadden, C. W. Carlson, C. Cully, O. Le Contel A. Roux, H. U. Auster, K. H. Glassmeier, V. Angelopoulos, C. T. Russell (2008), Turbulent heating and cross-field transport near the magnetopause from THEMIS, Geophys. Res. Lett., 35, L17S08.
High amplitude waves in the expanding solar wind plasma
NASA Technical Reports Server (NTRS)
Schmidt, J. M.; Velli, M.; Grappin, R.
1995-01-01
We simulated the 1-D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacoustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. In our simulations, fast and slow magnetoacoustic waves seem to have a level in the density-fluctuations which is too high when we compare with the observations. Furthermore, the evolution of energies for slow magnetoacoustic waves differs strongly from the evolution of fluctuation energies in situ.
Wave motions and wave heating in the upper solar atmosphere
NASA Astrophysics Data System (ADS)
Poletto, G.
The experimental and theoretical evidence favoring the wave heating mechanism in the low chromosphere is briefly reviewed, and the possibility of maintaining this mechanism, with proper modifications, in the higher layer is studied. Wave mode candidates for heating at high levels are analyzed, including gravity waves and Alfven waves. Waves in the upper chromosphere and the transition region are considered, showing power spectra of oscillations in lines forming at increasing heights in the solar atmosphere, fluctuations in UV line intensity, the predicted relationship between velocity and intensity modulation for acoustic waves, and sample results from UV spectrometer and polarimeter observations. It is concluded that in the upper chromosphere and transition regions, observations fail to reveal an acoustic flux adequate to compensate for the energy losses in these layers. Alfven waves, observed in the solar wind, could supply the required energy flux, but their presence cannot either be confirmed or ruled out.
Measurement of Phase Space Structure of Fast Ions Interacting with Alfven Eigenmodes
NASA Astrophysics Data System (ADS)
Nagaoka, Kenichi; Osakabe, Masaki; Isobe, Mitsutaka; Ogawa, Kunihiro; Suzuki, Yasuhiro; Kobayashi, Shinji; Yamamoto, Satoshi; Miyoshi, Yoshizumi; Katoh, Yuto; Fontdecaba, Jose M.
2015-11-01
Experimentally observed Alfven eigenmodes (AEs) shows nonlinear behaviors such as intermittency, fast sweep in frequency and so on. In order to understand such nonlinear behaviors of AEs, it is widely recognized that the phase space structure have to be taken into account. However, there are few direct measurements of phase space structure in experiments so far. Here, we propose to apply the wave-particle interaction analyzer (WPIA) technique being developed for magnetosphere plasma physics (ERG project) to magnetically confinement fusion experiments. In the meeting, we present a high speed pulse analyzer system for WPIA using the field programmable gate array (FPGA) module and discuss the phase space structures observed in the LHD experiment. This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (A) 26709071.
Gamayunov, Konstantin V.; Zhang Ming; Rassoul, Hamid K.; Pogorelov, Nikolai V.; Heerikhuisen, Jacob
2012-09-20
A self-consistent model of the interstellar pickup protons, the slab component of the Alfvenic turbulence, and core solar wind (SW) protons is presented for r {>=} 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvenic power spectral density, and a third equation governs SW temperature including source due to the Alfven wave energy dissipation. A fraction of the pickup proton free energy, f{sub D} , which is actually released in the waveform during isotropization, is taken from the quasi-linear consideration without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C{sub sh}, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C{sub sh} Almost-Equal-To 1-1.5 and f{sub D} Almost-Equal-To 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from {approx}8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r {approx}> 20 AU if f{sub D} Almost-Equal-To 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r {approx}< 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r {approx}< 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfven wave damping by the core SW protons is small at heliocentric distances r {approx}< 10 AU for both the slab and the two-dimensional turbulent components
Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.
1985-07-01
Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P. K.; Ali, S.; Stenflo, L.; Marklund, M.
2006-11-15
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Evolution of the alpha particle driven toroidicity induced Alfven mode
Wu, Y.; White, R.B.; Cheng, C.Z.
1994-04-01
The interaction of alpha particles with a toroidicity induced Alfven eigenmode is investigated self-consistently by using a kinetic dispersion relation. All important poloidal harmonics and their radial mode profiles are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. There is no significant alpha particle loss.
Existence and damping of toroidicity-induced Alfven eigenmodes
Mahajan, S.M.; Mett, R.R.
1991-12-01
A new method of analyzing the toroidicity-induced Alfven eigenmode (TAE) from kinetic theory is presented. The analysis includes electron parallel dynamics non-perturbatively, an effect which is found to strongly influence the character and damping of the TAE -- contrary to previous theoretical predictions. The normal electron Landau damping of the TAE is found to be higher than previously expected, and may explain recent experimental measurements of the TAE damping coefficient. 11 refs., 1 fig., 1 tab.
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.; Crocker, N. A.; Levinton, F. M.; Yuh, H.
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Kinetic Alfvén solitary and rogue waves in superthermal plasmas
Bains, A. S.; Li, Bo Xia, Li-Dong
2014-03-15
We investigate the small but finite amplitude solitary Kinetic Alfvén waves (KAWs) in low β plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter κ, plasma β, and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfvénic, compressive solitons are supported. We then extend the study to examine kinetic Alfvén rogue waves by deriving a nonlinear Schrödinger equation from the KdV equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermality whereas the opposite is true when the plasma β increases. The findings of this study may find applications to low β plasmas in astrophysical environments where particles are superthermally distributed.
Kelvin-Helmholtz instability in an Alfven resonant layer of a solar coronal loop
NASA Technical Reports Server (NTRS)
Uchimoto, E.; Strauss, H. R.; Lawson, W. S.
1991-01-01
A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfven resonant layer in an axially bounded, straight cylindrical coronal loop. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfven driving amplitude and inversely proportional to the width of the Alfven resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfven resonant layer width, and decreases at higher azimuthal mode number.
Theory and Observations of High Frequency Alfven Eigenmodes in Low Aspect Ratio Plasma
N.N. Gorelenkov; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; S. Kaye; R. White
2003-06-27
New observations of sub-cyclotron frequency instability in low aspect ratio plasma in National Spherical Torus Experiments (NSTX) are reported. The frequencies of observed instabilities correlate with the characteristic Alfven velocity of the plasma. A theory of localized Compressional Alfven Eigenmodes (CAE) and Global shear Alfven Eigenmodes (GAE) in low aspect ratio plasma is presented to explain the observed high frequency instabilities. CAE's/GAE's are driven by the velocity space gradient of energetic super-Alfvenic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAE's, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instabilities ions are presented.
Mazur, V. A. Chuiko, D. A.
2013-06-15
Oscillations of the 'magnetosphere-solar wind' system are studied analytically in the framework of a plane-stratified model of the medium. The properties of oscillations are determined by three phenomena: Kelvin-Helmholtz instability on the tangential discontinuity (magnetopause) separating the magnetosphere and the solar wind, the presence of a waveguide for fast magnetosonic waves in the magnetosphere, and the Alfven resonance-a sharp increase in the amplitude of oscillations having the properties of Alfven waves-in the inner magnetosphere. The oscillations of the system form a discrete spectrum of eigenmodes. Analytical expressions are obtained for the frequency and growth rate of instability of each mode, as well as for the functions describing the spatial structure of these modes. All these characteristics of the eigenmodes are shown to depend on the velocity of the solar wind as a parameter. The dependences of the main mode characteristics (such as the instability thresholds, the points of the maximum and minimum growth rate, and the spatial distributions of the oscillation energy) on this parameter are determined for each eigenmode.
Ballooning instability and structure of diamagnetic hydromagnetic waves in a model magnetosphere
Miura, A.; Ohtani, S.; Tamao, T. )
1989-11-01
A linear eigenmode analysis of ballooning instability of an Alfven wave and a drift-Alfven wave is performed for a curved magnetic field line configuration in finite-{beta} plasma to examine stability of the tail plasma sheet and to find a generation mechanism of diamagnetic storm time Pc 5 pulsations, which are characterized by a large azimuthal mode number (m>50). Only fundamental mode is unstable to the ballooning instability, which is driven by the pressure gradient combined with the unfavorable magnetic field line curvature, while higher harmonic modes are stable. The eigenfunction of the unstable wave (fundamental mode) is evanescent or decaying exponential toward the ionosphere along the field line and strongly confined near the equator with its plasma pressure and magnetic pressure being out of phase. The stable higher harmonic modes, on the other hand, have standing Alfven mode structures along the field line and have frequencies determined by oscillation periods of the standing Alfven modes. In the absence of the coupling to the drift wave, the unstable fundamental wave is aperiodic with zero real frequency. When the unstable fundamental wave is coupled to the drift wave; however, the unstable wave (drift-Alfven wave) has a real frequency determined by an ion diamagnetic drift speed. The obtained oscillation period of a few hundred seconds for the unstable drift-Alfven wave with an azimuthal number m = 50, its westward propagation, diamagnetic relationship between the perturbed magnetic and plasma pressures, and strong spatial confinement of the unstable wave near the equator suggest of the authors that the unstable drift-Alfven wave destabilized by the ballooning instability is a strong candidate mechanism for explaining the observed storm time Pc 5 pulsations.
Theoretical Studies of Drift-Alfven and Energetic Particle Physics
CHEN, L.
2014-05-14
The research program supported by this DOE grant has been rather successful and productive in terms of both scientific investigations as well as human resources development; as demonstrated by the large number (60) of journal articles, 6 doctoral degrees, and 3 postdocs. This PI is particularly grateful to the generous support and flexible management of the DOE–SC-OFES Program. He has received three award/prize (APS Excellence in Plasma Physics Research Award, 2004; EPS Alfven Prize, 2008; APS Maxwell Prize, 2012) as the results of research accomplishments supported by this grant.
The Jupiter-Io connection - An Alfven engine in space
NASA Technical Reports Server (NTRS)
Belcher, John W.
1987-01-01
Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfven wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.
Effect of alpha particles on Toroidal Alfven Eigenmodes
Berk, H.L.
1992-11-01
An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods.
The Jupiter-Io connection - an Alfven engine in space
NASA Astrophysics Data System (ADS)
Belcher, J. W.
1987-10-01
Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfven wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.
Effects of Electron Drifts on the Collisionless Damping of Kinetic Alfvén Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
Tong, Yuguang; Bale, Stuart D.; Chen, Christopher H. K.; Salem, Chadi S.; Verscharen, Daniel
2015-05-01
The collisionless dissipation of anisotropic Alfvénic turbulence is a promising candidate to solve the solar wind heating problem. Extensive studies examined the kinetic properties of Alfvén waves in simple Maxwellian or bi-Maxwellian plasmas. However, the observed electron velocity distribution functions in the solar wind are more complex. In this study, we analyze the properties of kinetic Alfvén waves (KAWs) in a plasma with two drifting electron populations. We numerically solve the linearized Maxwell-Vlasov equations and find that the damping rate and the proton-electron energy partition for KAWs are significantly modified in such plasmas, compared to plasmas without electron drifts. We suggest that electron drift is an important factor to take into account when considering the dissipation of Alfvénic turbulence in the solar wind or other β ˜ 1 astrophysical plasmas.
Gyrokinetic Particle Simulation of Fast Electron Driven Beta-induced Alfven Eigenmodes
NASA Astrophysics Data System (ADS)
Zhang, Wenlu; Cheng, Junyi; Lin, Zhihong
2016-10-01
The fast electron driven beta induced Alfven eigenmode (e-BAE) has been routinely observed in HL-2A tokamak. We study e-BAE for the first time using global gyrokinetic GTC simulation, where the fast electrons are described by the drift kinetic model. Frequency chirping is observed in nonlinear simulations in the absence of sources and sinks, which provide a new nonlinear paradigm beyond the standard ``bump-on-tail'' model. For weakly driven case, nonlinear frequency is observed to be in phase with particle flux, and nonlinear mode structure is almost the same as linear stage. In the strongly driven case, BAAE is also unstable and co-exists with BAE after the BAE saturation. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of the coherent structures in the fast electron phase space, where the dynamics of the coherent structure is controlled by the formation and destruction of phrase space islands in the canonical variables. Zonal fields are found to affect wave-particle resonance in the nonlinear e-BAE simulations.
Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma
NASA Technical Reports Server (NTRS)
Vasquez, Bernard J.
1993-01-01
The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p < 1, while fast (fight heIicity) wave packets hardly steepen for any beta. Substantial regions of opposite helicity form on the leading side of steepened Alfven wave packets. This behavior differs qualitatively from that exhibited by the solutions to the derivative nonlinear Schrodinger (DNLS) equation.
Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.
Gyrokinetic particle simulation of beta-induced Alfven eigenmode
Zhang, H. S.; Lin, Z.; Holod, I.; Xiao, Y.; Wang, X.; Zhang, W. L.
2010-11-15
The beta-induced Alfven eigenmode (BAE) in toroidal plasmas is studied using global gyrokinetic particle simulations. The BAE real frequency and damping rate measured in the initial perturbation simulation and in the antenna excitation simulation agree well with each other. The real frequency is slightly higher than the ideal magnetohydrodynamic (MHD) accumulation point frequency due to the kinetic effects of thermal ions. Simulations with energetic particle density gradient show exponential growth of BAE with a growth rate sensitive to the energetic particle temperature and density. The nonperturbative contributions by energetic particles modify the mode structure and reduce the frequency relative to the MHD theory. The finite Larmor radius effects of energetic particles reduce the BAE growth rate. Benchmarks between gyrokinetic particle simulation and hybrid MHD-gyrokinetic simulation show good agreement in BAE real frequency and mode structure.
Evolution of toroidal Alfven eigenmode instability in TFTR
Wong, K.L.; Majeski, R.; Petrov, M.
1996-07-01
The nonlinear behavior of the Toroidal Alfven Eigenmode (TAE) driven unstable by energetic ions in TFTR is studied. The evolution of instabilities can take on several scenarios: a single mode or several modes can be driven unstable at the same time, the spectrum can be steady or pulsating and there can be negligible or anomalous loss associated with the instability. This paper presents a comparison between experimental results and recently developed nonlinear theory. The authors find many features observed in experiment are compatible with the consequences of the nonlinear theory. Examples include the structure of the saturated pulse that emerges from the onset of instability of a single mode and the decrease but persistence of TAE signals when the applied rf power is reduced or shut off.
On Properties of Compressional Alfven Eigenmode Instability Driven by Superalfvinic Ions
N.N. Gorelenkov; C.Z. Cheng
2002-02-06
Properties of the instability of Compressional Alfven Eigenmodes (CAE) in tokamak plasmas are studied in the cold plasma approximation with an emphasis on the instability driven by the energetic minority Ion Cyclotron Resonance Heating (ICRH) ions. We apply earlier developed theory [N.N. Gorelenkov and C.Z. Cheng, Nuclear Fusion 35 (1995) 1743] to compare two cases: Ion Cyclotron Emission (ICE) driven by charged fusion products and ICRH Minority driven ICE (MICE) [J. Cottrell, Phys. Rev. Lett. (2000)] recently observed on JET [Joint European Torus]. Particularly in MICE spectrum, only instabilities with even harmonics of deuterium-cyclotron frequency at the low-field-side plasma edge were reported. Odd deuterium-cyclotron frequency harmonics of ICE spectrum between the cyclotron harmonics of protons can be driven only via the Doppler-shifted cyclotron wave-particle resonance of CAEs with fusion products, but are shown to be damped due to the electron Landau damping in experiments on MI CE. Excitation of odd harmonics of MICE with high-field-side heating is predicted. Dependencies of the instability on the electron temperature is studied and is shown to be strong. Low electron temperature is required to excite odd harmonics in MICE.
Theory of continuum damping of toroidal Alfven Eigenmodes in finite-[beta] tokamaks
Zonca, F.; Chen, Liu.
1993-05-01
We have formulated a general theoretical approach for analyzing two-dimensional structures of high-n Toroidal Alfven Eigenmodes (TAE) in large aspect-ratio, finite-[beta] tokamaks. Here, n is the toroidal wave number and [beta] is the ratio between plasma and magnetic pressures. The present approach generalizes the standard ballooning-mode formalism and is capable of treating eigenmodes with extended global radial structures as well as finite coupling between discrete and continuous spectra. Employing the well-known (s,[alpha]) model equilibrium and assuming a linear equilibrium profile, we have applied the present approach and calculated the corresponding resonant continuum damping rate of TAE modes. Here, s and [alpha] denote, respectively, the strengths of magnetic shear and pressure gradients. In particular, it is found that there exists a critical [alpha][sub c](s), such that, as [alpha] [yields] [alpha][sub c], the continuum damping rate is significantly enhanced and, thus, could suppress the potential TAE instability.
Theory of continuum damping of toroidal Alfven Eigenmodes in finite-{beta} tokamaks
Zonca, F.; Chen, Liu
1993-05-01
We have formulated a general theoretical approach for analyzing two-dimensional structures of high-n Toroidal Alfven Eigenmodes (TAE) in large aspect-ratio, finite-{beta} tokamaks. Here, n is the toroidal wave number and {beta} is the ratio between plasma and magnetic pressures. The present approach generalizes the standard ballooning-mode formalism and is capable of treating eigenmodes with extended global radial structures as well as finite coupling between discrete and continuous spectra. Employing the well-known (s,{alpha}) model equilibrium and assuming a linear equilibrium profile, we have applied the present approach and calculated the corresponding resonant continuum damping rate of TAE modes. Here, s and {alpha} denote, respectively, the strengths of magnetic shear and pressure gradients. In particular, it is found that there exists a critical {alpha}{sub c}(s), such that, as {alpha} {yields} {alpha}{sub c}, the continuum damping rate is significantly enhanced and, thus, could suppress the potential TAE instability.
Shear Alfv'en spectrum and mode structures for 3D configurations
NASA Astrophysics Data System (ADS)
Spong, D. A.; Todo, Y.
2007-11-01
Energetic particle destabilized Alfv'en modes are observed in a wide range of stellarator experiments. We have developed a code (AE3D) to calculate the full shear Alfv'en frequency spectrum and associated mode structures for arbitrary stellarator equilibria. This is based on a Galerkin approach using a combined Fourier mode (poloidal/toroidal angle) finite element (radial) representation. It has been applied to an LHD case where Alfv'en activity and enhanced ion losses were seen. Applications also are underway to other experiments, such as HSX, where ECH-driven Alfv'en modes were observed. This model can form the basis for stellarator optimization targets, synthetic diagnostics, and reduced linear/nonlinear stability models. It is also applicable to tokamaks with symmetry-breaking effects. By matching observed frequencies with calculated mode structures, improved understanding of the physics mechanisms of AE modes, such as sideband coupling, damping, and enhanced fast particle losses can be developed.
Super-alfvenic propagation of cosmic rays: The role of streaming modes
NASA Technical Reports Server (NTRS)
Morrison, P. J.; Scott, J. S.; Holman, G. D.; Ionson, J. A.
1980-01-01
Numerous cosmic ray propagation and acceleration problems require knowledge of the propagation speed of relativistic particles through an ambient plasma. Previous calculations indicated that self-generated turbulence scatters relativistic particles and reduces their bulk streaming velocity to the Alfven speed. This result was incorporated into all currently prominent theories of cosmic ray acceleration and propagation. It is demonstrated that super-Alfvenic propagation is indeed possible for a wide range of physical parameters. This fact dramatically affects the predictions of these models.
Modifications to the shear Alfv'en continua due to the presence of a magnetic island
NASA Astrophysics Data System (ADS)
Cook, C. R.; Hirshman, S. P.; Spong, D. A.; Hegna, C. C.; Anderson, D. T.; Sanchez, R.
2012-10-01
Most studies of the shear Alfv'en spectrum of toroidal confinement devices assume the existence of topologically toroidal magnetic surfaces. In this work, we will address how the presence of a magnetic island alters these calculations. In particular, the analytic theory of gaps induced by an island in the Alfv'en continua of a cylindrical plasma will be presented. This calculation will be compared to the well-known results for the toroidicity-induced Alfv'en eigenmode gap. This theory utilizes island straight field-line coordinates, which will be detailed. Early and planned work will be discussed regarding the use of SIESTA along with STELLGAP to analyze the effects of islands and quasi-single-helicity states on the Alfv'en continua in RFPs. SIESTA is a 3D MHD equilibrium code capable of resolving islands. The Hessian matrix computed in SIESTA can be used to solve the MHD eigenmode equations, allowing the Alfv'en continua to be determined in the presence of islands. STELLGAP is a code that computes the Alfv'en spectrum from a toroidal VMEC equilibrium converted to Boozer coordinates through the BoozXform code. Comparing the continua from the STELLGAP case without islands to the SIESTA case with islands will allow us to verify the presented theory in the future.
Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance
NASA Technical Reports Server (NTRS)
Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.
1978-01-01
The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.
2013-05-10
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Models for Alfv'en instabilities in stellarators
NASA Astrophysics Data System (ADS)
Spong, Donald
2012-03-01
Stellarators, helical RFPs and 3D tokamaks introduce symmetry-breaking effects that alter the structure of Alfv'en instabilities and their impact on energetic particle confinement. Loss of symmetry precludes an ignorable coordinate and requires taking into account both poloidal and toroidal couplings. New techniques for near term progress in 3D EP modeling have been developed, such as scalable algorithms (e.g., perturbative particle methods and windowed frequency solvers) and reduced-dimensionality models (e.g., gyro-Landau fluid). These methods have been developed for a range of 3D (tokamak/stellarator/RFP) configurations and have been compared with experimental measurements on LHD, TJ-II, HSX and RFX. Both modes with weak 3D couplings (TAE's in LHD) and strong 3D couplings (HAE's in TJ-II) will be discussed. Also, code-benchmarking activities have been started and will be described. In addition to their impact on fast ion confinement, the coherent frequencies of these AE modes (directly related to iota) can be useful markers for 3D equilibrium reconstruction.
Combined ideal and kinetic effects on reversed shear Alfven eigenmodes
Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.
2011-10-15
A reversed shear Alfven eigenmodes (RSAEs) theory has been developed for reversed magnetic field shear plasmas when the safety factor minimum, q{sub min}, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that, strictly speaking, the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with q{sub min} above integer values. Corrected by a special analytic finite Larmor radius (FLR) condition, MHD dispersion of these modes nevertheless can be developed. Numerically, MHD structure can serve as a good approximation for the RSAEs.The large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Large-Scale Alfvenic Impulses on the Sun: How They Are Generated and What We Learn From Them
NASA Technical Reports Server (NTRS)
Thompson, Barbara
2004-01-01
NASA GSFC The Sun's atmosphere hosts a wide variety of magnetosonic disturbances. These wave modes are detected, almost exclusively, by examining images of the Sun's magnetic atmosphere and looking for propagating distortions. Although none of the Sun's plasma parameters are measured directly, we derive a great deal of information from these observations. In fact, by modeling these propagating disturbances, we may be able to derive the most accurate estimates plasma parameters. From observations absorption, refraction, reflection, and coupling of numerous wave modes, we advance our knowledge of the Sun's magnetic field, temperature, density, and current. The Sun's continuous oscillation, coronal mass ejections, flares, and other dynamic phenomena can produce wave disturbances which are observable from near-Earth space. Several of these disturbances have been traced from the inner corona out into the heliosphere. From the generation of these disturbances, we are able to learn about the phenomena which create them as well as the media through which they re-propagating. The presentation will include a discussion of the generation of Alfvenic disturbances on the Sun, ways we observe these disturbances, and how recent advances in modeling and analysis have brought us closer to determining solar in situ parameters.
Van Zeeland, Michael; Heidbrink, W.; Nazikian, Raffi; Austin, M. E.; Cheng, C Z; Chu, M. S.; Gorelenkov, Nikolai; Holcomb, C T; Hyatt, A. W.; Kramer, G.; Lohr, J.T.; Mckee, G. R.; Petty, C C.; Prater, R.; Solomon, W. M.; Spong, Donald A
2009-01-01
Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including toroidicity and ellipticity induced Alfven eigenmodes (TAE/EAE, respectively) and reversed shear Alfven eigenmodes (RSAE) as well as their spatial coupling. These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. It is found that ideal MHD modelling of eigenmode spectral evolution, coupling and structure are in excellent agreement with experimental measurements. It is also found that higher radial envelope harmonic RSAEs are clearly observed and agree with modelling. Some discrepancies with modelling such as that due to up/down eigenmode asymmetries are also pointed out. Concomitant with the Alfvenic activity, fast ion (FIDA) spectroscopy shows large reductions in the central fast ion profile, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. The sensitivity of this effect to deposition power and current drive phasing as well as ECH modulation are presented.
Goodman, Michael L.
2011-07-01
A magnetohydrodynamic model that includes a complete electrical conductivity tensor is used to estimate conditions for photospherically driven, linear, non-plane Alfvenic oscillations extending from the photosphere to the lower corona to drive a chromospheric heating rate due to Pedersen current dissipation that is comparable to the observed net chromospheric radiative loss of {approx}10{sup 7} erg cm{sup -2} s{sup -1}. The heating rates due to electron current dissipation in the photosphere and corona are also computed. The wave amplitudes are computed self-consistently as functions of an inhomogeneous background (BG) atmosphere. The effects of the conductivity tensor are resolved numerically using a resolution of 3.33 m. The oscillations drive a chromospheric heating flux F{sub Ch} {approx} 10{sup 7}-10{sup 8} erg cm{sup -2} s{sup -1} at frequencies {nu} {approx} 10{sup 2}-10{sup 3} mHz for BG magnetic field strengths B {approx}> 700 G and magnetic field perturbation amplitudes {approx}0.01-0.1 B. The total resistive heating flux increases with {nu}. Most heating occurs in the photosphere. Thermalization of Poynting flux in the photosphere due to electron current dissipation regulates the Poynting flux into the chromosphere, limiting F{sub Ch}. F{sub Ch} initially increases with {nu}, reaches a maximum, and then decreases with increasing {nu} due to increasing electron current dissipation in the photosphere. The resolution needed to resolve the oscillations increases from {approx}10 m in the photosphere to {approx}10 km in the upper chromosphere and is {proportional_to}{nu}{sup -1/2}. Estimates suggest that these oscillations are normal modes of photospheric flux tubes with diameters {approx}10-20 km, excited by magnetic reconnection in current sheets with thicknesses {approx}0.1 km.
NASA Astrophysics Data System (ADS)
Podesta, J. J.; Bhattacharjee, A.
2008-12-01
A longstanding problem is to discover the nature of the three-dimensional (3D) wavevector spectrum of Alfvenic fluctuations in the solar wind. Although some progress has been made using structure function analysis and also the wave telescope technique, we currently have very little knowledge of the scale dependent anisotropy of the fluctuations in wavevector space, a quantity that is central to existing phenomenological theories of MHD turbulence. To make progress in this area, a simple method has been developed that allows the frequency spectrum in the spacecraft frame to be computed for any 3D wavevector spectrum in Fourier space. The technique is based on the well known formula for the doppler shift in a moving medium together with the random phase approximation of turbulence theory. Because the method does not rely on Taylor's hypothesis, it also applies when the Alfven speed is large compared to the solar wind speed, a circumstance that occurs close to the sun at heliocentric distances less than 20 solar radii or so (0.1 AU). Different model wavevector spectra are used to investigate the effects of wavevector anisotropy on single spacecraft measurements. It is shown, for example, that for typical solar wind and Alfven speeds at 1 AU, wavevector spectra that are anisotropic power laws with Goldreich-Sridhar-like scaling can produce spectral exponents in the spacecraft frame that appear unrelated to the power law behaviors in k-space. In particular, a wavevector spectrum with an Iroshnikov-Kraichnan-like spectral index in the perpendicular direction could be seen by a spacecraft observer as a 5/3 spectrum.
NASA Technical Reports Server (NTRS)
Lee, Jeongwoo W.
1993-01-01
In this paper we analyze the generation of waves in a sunspot by extending Stein's hydrodynamic approach to the turbulent medium permeated by a strong uniform magnetic field oriented parallel to the gravity. For wave sources appropriate to the sunspot, we consider magnetic perturbations and entropy changes as well as turbulent convection. To describe the anisotropy imposed by the sunspot, we use a one-dimensional correlation function relating the turbulent eddies separated along the symmetry axis of the spot. This treatment yields several interesting possibilities for wave generation in a sunspot. First, it is demonstrated that the entropy change and magnetic perturbation can lead to a relative enhancement of acoustic wave emission. Second, the energy flux of Alfven waves may be comparable to that of acoustic waves in sunspots. Third, the anisotropy of the sunspot dynamics can lead to wave energy spectrum in a form which may explain the origin of umbral atmospheric oscillations.
Ion acceleration by Alfvén waves on auroral field lines
NASA Astrophysics Data System (ADS)
Bingham, Robert; Eliasson, Bengt; Tito Mendonça, José; Stenflo, Lennart
2013-05-01
Observations of ion acceleration along auroral field lines at the boundary of the plasma sheet and tail lobe of the Earth show that the energy of the ions increases with decreasing density. The observations can be explained by ion acceleration through Landau resonance with kinetic Alfvén waves (KAWs) such that kA·vi = ωA, where kA is the wave vector, vi is the ion resonance velocity and ωA is the Alfvén wave frequency. The ion resonance velocities are proportional to the Alfvén velocity which increases with decreasing density. This is in agreement with the data if the process is occurring at the plasma sheet tail lobe boundary. A quasi-linear theory of ion acceleration by KAWs is presented. These ions propagate both down towards and away from the Earth. The paths of the Freja and Polar satellites indicate that the acceleration takes place between the two satellites, between 1Re and 5Re. The downward propagating ions develop a horseshoe-type of distribution which has a positive slope in the perpendicular direction. This type of distribution can produce intense lower hybrid wave activity, which is also observed. Finally, the filamentation of shear Alfvén waves is considered. It may be responsible for large-scale density striations. In memory of Padma Kant Shukla, a great scientist and a good friend.
{beta}-Induced Alfven Eigenmodes Destabilized by Energetic Electrons in a Tokamak Plasma
Chen, W.; Ding, X. T.; Yang, Q. W.; Liu, Yi; Ji, X. Q.; Zhang, Y. P.; Zhou, J.; Yuan, G. L.; Sun, H. J.; Li, W.; Zhou, Y.; Huang, Y.; Dong, J. Q.; Feng, B. B.; Song, X. M.; Shi, Z. B.; Liu, Z. T.; Song, X. Y.; Li, L. C.; Duan, X. R.
2010-10-29
The {beta}-induced Alfven eigenmode (BAE) excited by energetic electrons has been identified for the first time both in the Ohmic and electron cyclotron resonance heating plasma in HL-2A. The features of the instability, including its frequency, mode number, and propagation direction, can be observed by magnetic pickup probes. The mode frequency is comparable to that of the continuum accumulation point of the lowest frequency gap induced by the shear Alfven continuous spectrum due to finite {beta} effect, and it is proportional to Alfven velocity at thermal ion {beta} held constant. The experimental results show that the BAE is related not only with the population of the energetic electrons, but also their energy and pitch angles. The results indicate that the barely circulating and deeply trapped electrons play an important role in the mode excitation.
Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Gorelenkov, N.; Fredrickson, E.; Kaye, S.; Mazzucato, E.
2009-03-20
We report the observation of a correlation between shear Alfven eigenmode activity and electron transport in plasma regimes where the electron temperature gradient is flat, and thus the drive for temperature gradient microinstabilities is absent. Plasmas having rapid central electron transport show intense, broadband global Alfven eigenmode (GAE) activity in the 0.5-1.1 MHz range, while plasmas with low transport are essentially GAE-free. The first theoretical assessment of a GAE-electron transport connection indicates that overlapping modes can resonantly couple to the bulk thermal electrons and induce their stochastic diffusion.
Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Ghantous, Katy
The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which
NASA Astrophysics Data System (ADS)
Wu, D. J.; Feng, H. Q.; Li, B.; He, J. S.
2016-08-01
The nature of turbulence, dissipation, and heating in plasma media has been an attractive and challenge problem in space physics as well as in basic plasma physics. A wide continuous spectrum of Alfvénic turbulence from large MHD-scale Alfvén waves (AWs) in the inertial turbulence regime to small kinetic-scale kinetic AWs (KAWs) in the dissipation turbulence regime is a typical paradigm of plasma turbulence. The incorporation of current remote observations of AWs in the solar atmosphere, in situ satellite measurements of Alfvénic turbulence in the solar wind, and experimental investigations of KAWs on large plasma devices in laboratory provides a chance synthetically to study the physics nature of plasma turbulence, dissipation, and heating. A session entitled "Nature of Turbulence, Dissipation, and Heating in Space Plasmas: From Alfvén Waves to Kinetic Alfvén Waves" was held as a part of the twelfth Asia Oceania Geosciences Society Annual Meeting, which took place in Singapore between 2 and 7 August 2015. This special section is organized based on the session.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; Heidbrink, W. W.
2016-07-05
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge was found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...
2016-07-05
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less
Analysis of Alfven Eigenmodes destabilization by fast particles in Large Helical Device
NASA Astrophysics Data System (ADS)
Varela, Jacobo; Spong, Donald; Garcia, Luis
2016-10-01
Fast particle populations in nuclear fusion experiments can destabilize Alfven Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects by a closure relation. We apply this model to study the Alfven modes stability in Large Helical Device (LHD) equilibria for inward configurations, performing a parametric analysis along a range of realistic values of fast particle β (βfp), ratios of thermal/Alfven velocities (Vth/Vao), magnetic Lundquist numbers (S) and dominant toroidal (n) modes families. The n = 1 and n =2 toroidal families show the largest growth rates for parameters closer to a real LHD scenario (S = 5E6, βfp = 0.02 and Vth/Vao = 0.5), particularly the modes n/m = 1/2 and 2/4 located the inner and middle plasma (ρ = 0.25 - 0.5 with ρ the normalized minor radius). The n = 3 and n = 4 toroidal families are weakly perturbed by fast particles.
Stability of the toroidicity-induced Alfven eigenmodes in JT-60U ICRF experiments
Fu, G.Y.; Cheng, C.Z.; Kimura, H.; Ozeki, T.; Saigusa, M.
1996-04-01
It is shown that the stability of toroidicity-induced Alfven eigenmodes (TIE) in JT-60U ICRF experiments is strongly dependent on mode location. This dependence results in sequential excitation of high-n TIE modes as the central safety factor, q, drops in time.
NASA Technical Reports Server (NTRS)
Singh, Nagendra
2000-01-01
Under this grant we have done research on the following topics. 1) Development of Parallel PIC Codes (PPIC); 2) Evolution of Lower-Hybrid Pump Waves; 3) Electron-beam Driven Plasma Electrodynamics; and 4) Studies on Inertial and Kinetic Alfven Waves. A brief summary of our findings and resulting publications are given.
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2012-12-01
High time resolution magnetic field measurements in the range from 1 Hz to 100 Hz enable improved studies of solar wind fluctuations between ion and electron kinetic scales. Theory predicts that a turbulent energy cascade supported by Alfvenic fluctuations or Alfven waves at inertial range scales is supported predominantly by obliquely propagating kinetic Alfven waves (KAWs) or kinetic Alfven fluctuations at scales ranging from approximately the thermal proton gyro-radius to the electron gyro-radius. The phase speed of KAWs with highly oblique, nearly perpendicular wave-vectors is roughly on the order of the Alfven speed and, since it is much less than the solar wind speed, Taylor's frozen-in flow hypothesis implies that the frequency spectrum observed in the spacecraft frame can be interpreted as the wavenumber spectrum in the plasma frame. Studies by Sahraoui and coworkers have shown that the magnetic field fluctuations typically exhibit a power-law spectrum with a spectral index near 2.7; and recent studies by Chen and coworkers have shown that the spectrum of electron density fluctuations typically follows the behavior of the magnetic field spectrum with a spectral index near 2.7. These observations are consistent with theories and simulations of KAW turbulence which predict that electron density fluctuations and magnetic field fluctuations should both follow the same scaling law. Here, I present new measurements of solar wind magnetic field spectra obtained using the search coil magnetometers on board the Artemis (previously Themis) spacecraft and compare these results with previously published measurements.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
Guided MHD waves as a coronal diagnostic tool
NASA Technical Reports Server (NTRS)
Roberts, B.
1986-01-01
A description is provided of how fast magnetoacoustic waves are ducted along regions of low Alfven velocity (high density) in the corona, exhibiting a distinctive wave signature which may be used as a diagnostic probe of in situ coronal conditions (magnetic field strength, density inhomogeneity, etc.). Some observational knowledge of the start time of the impulsive wave source, possibly a flare, the start and end times of the generated wave event, and the frequency of the pulsations in that event permits a seismological deduction of the physical properties of the coronal medium in which the wave propagated. With good observations the theory offers a new means of probing the coronal atmosphere.
On Wave Processes in the Solar Atmosphere
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1998-01-01
This grant was awarded by NASA/MSFC to The University of Alabama in Huntsville (UAH) to investigate the physical processes responsible for heating and wind acceleration in the solar atmosphere, and to construct theoretical, self-consistent and time-dependent solar wind models based on the momentum deposition by finite amplitude and nonlinear Alfven waves. In summary, there are three main goals of the proposed research: (1) Calculate the wave energy spectra and wave energy fluxes carried by magnetic non- magnetic waves. (2) Find out which mechanism dominates in supplying the wave energy to different parts of the solar atmosphere. (3) Use the results obtained in (1) and (2) to construct theoretical, self-consistent and time- dependent models of the solar wind. We have completed the first goal by calculating the amount of non-radiative energy generated in the solar convection zone as acoustic waves and as magnetic tube waves. To calculate the amount of wave energy carried by acoustic waves, we have used the Lighthill-Stein theory for sound generation modified by Musielak, Rosner, Stein & Ulmschneider (1994). The acoustic wave energy fluxes for stars located in different regions of the Hertzsprung-Russell (H-R) diagram have also been computed. The wave energy fluxes carried by longitudinal and transverse waves along magnetic flux tubes have been calculated by using both analytical and numerical methods. Our analytical approach is based a theory developed by Musielak, Rosner & Ulmschnelder and Musielak, Rosner, Gall & Ulmschneider, which allows computing the wave energy fluxes for linear tube waves. A numerical approach has been developed by Huang, Musielak & Ulmschneider and Ulmschneider & Musielak to compute the energy fluxes for nonlinear tube waves. Both methods have been used to calculate the wave energy fluxes for stars located in different regions of the HR diagram (Musielak, Rosner & Ulmschneider 1998; Ulmschneider, Musielak & Fawzy 1998). Having obtained the
Fu, G.Y.; Cheng, C.Z.
1992-07-01
The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much_gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.
Fu, G.Y.; Cheng, C.Z.
1992-07-01
The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.
Phenomenology of non-Alfvenic turbulence in a uniformly expanding medium
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Zank, G. P.
1995-01-01
Transport and decay of magnetohydrodynamic (MHD) turbulence in a weakly inhomogeneous uniformly expanding medium involves a fairly complex formalism, even for the case where no spectral information is required. Here we argue that the phenomenology for decay simplifies greatly if: (1) the cross helicity (Alfvenicity) is small, (2) the dynamical influence of the large scale magnetic field is negligible either because of spectral anisotropy or because the expansion speed is much greater than the corresponding Alfven speed, and (3) the ratio of kinetic energy to magnetic energy for the fluctuations is either unity or some other constant. These conditions are acceptable as an approximation to solar wind turbulence in the outer heliosphere. In these circumstances a reasonable MHD energy-containing phenomenology is essentially that of locally homogeneous Kolmogoroff turbulence in a uniformly expanding medium. Analytical solutions for this model are presented for both undriven and driven cases.
Heating of the solar corona by the resonant absorption of Alfven waves
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
1986-01-01
An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. The primary conclusion to be drawn from these calculations is that to the level of the approximation adopted, the observations of the heating rate and nonthermal line broadening in the solar corona are consistent with heating by the resonance absorption mechanism.
Alfvenic drift Kelvin-Helmholtz instability in the presence of an equilibrium electric field
NASA Technical Reports Server (NTRS)
Sharma, Avadhesh C.; Srivastava, Krishna M.
1992-01-01
The Alfvenic drift Kelvin-Helmholtz instability of a high-beta plasma in the presence of equilibrium magnetic and electric fields perpendicular to each other are studied. The plasma components are assumed to have 2D sheared velocity in y and z directions. The dispersion relation is derived, and the instability criterion is determined. It is shown that the equilibrium electric field has either stabilizing or destabilizing effect depending on certain conditions discussed in the paper.
Expansion of parameter space for Toroidal Alfven Eigenmode experiments in TFTR
Wong, K.L.; Wilson, J.R.; Chang, Z.Y.; Fredrickson, E.; Hammett, G.W.; Bush, C.; Nazikian, R.; Phillips, C.K.; Snipes, J.; Taylor, G.
1993-05-01
Several techniques were used to excite toroidal Alfven Eigenmodes in the Tokamak Fusion Test Reactor (TFTR) at magnetic fields above 10 kG. These involve pellet injection to raise the plasma density, variation of plasma current to change the energetic ion orbit and the q-profile, and ICRF heating to produce energetic hydrogen ions at velocities comparable to 3.5 MeV alpha particles. These experimental results are presented and relevance to fusion reactors are discussed.
The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves
NASA Astrophysics Data System (ADS)
Airapetian, Vladimir; Leake, James; Carpenter, Kenneth
2015-08-01
Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.
Alfv'en instabilities and energetic particle physics in toroidal plasmas
NASA Astrophysics Data System (ADS)
Spong, Donald
2012-03-01
Modeling capabilities and experimental diagnostics for energetic particle-driven Alfv'en instabilities have advanced significantly in recent years. Simulation tools now range from rapidly applied reduced-dimensionality models and hybrid fluid particle models to more comprehensive gyrokinetic approaches. Alfv'en mode theory has been applied not only to tokamaks, but also to stellarators and reversed field pinches. Current diagnostic techniques allow direct imaging of the mode structure, fast ion density and loss patterns at the plasma edge, allowing theory/experiment comparisons in greater depth than previously possible. Examples from a variety of tokamak, stellarator and reversed field pinch experiments and the associated theory will be described. These activities are preparing the way for future ignited devices, such as ITER, where energetic alpha particles will provide the dominant plasma heating mechanism. High fidelity models of alpha behavior will be required for predicting their effects on the alpha heating profile, non-diffusive transport, nonlinear feedback loops and localized wall heat loads; in addition, understanding Alfv'en spectral emissions can provide diagnostic opportunities. Projections of the current models to ITER and future physics needs will be discussed.
Beta-induced Alfven-acoustic eigenmodes in stellarator plasmas with low shear
Eremin, D. Yu.; Koenies, A.
2010-01-15
The coupling of low-frequency Alfvenic modes with acoustic oscillations due to curvature of the background magnetic field is considered for stellarator plasmas with low shear. Magnetohydrodynamic (MHD) analysis demonstrates that the interaction between these branches can generate gaps in the continua with a width proportional to beta as well as the magnitude of the Fourier harmonics of the magnetic field strength which cause the coupling. The gaps can provide a habitat for beta-induced Alfven-acoustic eigenmodes (BAAEs). Using the causality principle, a technique is developed to resolve the singular behavior of the MHD BAAE eigenmode equation at the points of resonance with the acoustic continuum. Alternatively, the singularities arising in the reduced MHD description can be resolved by accounting for the finite parallel electrical field. Both approaches yield consistent continuum damping rate, which proves to be small. Numerical calculations for analytically fitted experimental profiles of electron-dominated plasma in Helically Symmetric eXperiment (HSX) facility yield two weakly damped BAAE modes with different frequencies: one is close to the maximum of the lower-frequency Alfven-acoustic continuum, and the other is located well within the BAAE gap. The numerically found BAAEs have frequencies in the same range as the experimentally observed electromagnetic modes in HSX, even when the finite diamagnetic frequency effects are considered.
NASA Astrophysics Data System (ADS)
Sahraoui, F.; Goldstein, M. L.
2009-12-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, k-5/3, down the local proton gyrofrequency (fci ˜ 0.1~Hz). Turbulence at frequencies above fci has not been thoroughly investigated and remains far less well understood. Above fci the spectrum steepens to ˜ f-2.5 and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfvén waves (KAW) or by whistler waves, before it is dissipated at small scales. In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to 102~Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale f{ρ i} a new inertial range with a scaling ˜ f-2.3 has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KAW turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KAW (or the whistler) turbulence may be observed to carry out the cascade at small scales. These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere
1988-05-01
gives rise to the modulation instability [ Lashmore -Davies, 1976; lonson and Ong, 1976; Goldstein, 1978, Derby, 1978; Longtin and Sonnerup, 1986...plasmas, Phys. Flaids, 26, 2529, 1983. Lashmore -Davies, C.N., Modulation instability of a finite amplitude Alfven wave, Phys. Fluids, 19, 587, 1976. Longtin
Wave-Driven Rotation In Centrifugal Mirrors
Abraham J. Fetterman and Nathaniel J. Fisch
2011-03-28
Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.
The Potential for Ambient Plasma Wave Propulsion
NASA Technical Reports Server (NTRS)
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at
NASA Technical Reports Server (NTRS)
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Resonant excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves
Mazur, V. A.
2011-05-15
The effect of the magnetospheric MHD cavity on the excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves incident from the solar wind is investigated theoretically by using a one-dimensional nonuniform model of the medium. It is shown that most of the energy of stochastic waves is reflected from the magnetopause and that the only waves that penetrate into the magnetosphere are those with frequencies in narrow spectral ranges near the eigenfrequencies of the cavity. These waves lead to steadystate excitation of the eigenmodes of the cavity, the energy of which is determined by the spectral density of the energy flux of the incident waves at the corresponding eigenfrequencies. The energy of the eigenmodes penetrates through the opacity barrier in the vicinity of the Alfven resonance points (each corresponding to a particular mode), where the perturbation amplitude is sharply amplified, so the total energy localized close to the Alfven resonance point is much higher than the total energy of the corresponding eigenmode. In the vicinities, the perturbation energy is dissipated by the finite conductivity of the ionosphere, the dissipation power being equal to the energy flux of the incident waves that penetrates into the magnetosphere. The case of unsteady waves is analyzed by considering a wave pulse as an example. It is shown that most of the energy of the wave pulse is reflected from the magnetopause. The portion of the incident perturbation that penetrates into the magnetosphere leads to unsteady excitation of the eigenmodes of the magnetospheric cavity, which are then slowly damped because part of the energy of the cavity is emitted through the magnetopause back to the solar wind while the other part penetrates into the vicinities of the Alfven resonance points. In the vicinities, the perturbation is an Alfven wave standing between magnetically conjugate ionospheres and its energy is dissipated by the finite conductivity of the ionosphere at
Alfvén wave in higher dimensional space time
Panigrahi, D.; Das, Ajanta; Chatterjee, S. E-mail: ajanta.das@heritageit.edu
2009-09-01
Following the wellknown spacetime decomposition technique as applied to (d+1) dimensions we write down the equations of magnetohydrodynamics (MHD) in a spatially flat generalised FRW universe. Assuming an equation of state for the background cosmic fluid we find solutions in turn for acoustic waves and also for Alfven waves in a warm (cold) magnetised plasma. Interestingly the different plasma modes closely resemble the flat space counterparts except that here the field variables all redshift with their time due to the expansion of the background. It is observed that in the ultrarelativistic limit the field parameters all scale as the free photon. The situation changes in the prerelativistic limit where the frequencies change in a bizarre fashion depending on initial conditions. It is observed that for a fixed magnetic field in a particular medium the Alfven wave velocity decreases with the number of dimensions, being the maximum in the usual 4D. Further for a fixed dimension the velocity attenuation is more significant in dust compared to the radiation era. We also find that in an expanding background the Alfven wave propagation is possible only in the high frequency range, determined by the strength of the external magnetic field, the mass density of the medium and also the dimensions of the spacetime. Further it is found that with expansion the cosmic magnetic field decays more sharply in higher dimensional cosmology, which is in line with observational demand.
Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode
Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.
2010-07-13
We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.
Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR
Darrow, D.S.; Zweben, S.J.; Chang, Z.
1996-04-01
Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B{sub T}, and by H-minority ICRF tail ions at higher B{sub T}. The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case.
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
Frieman, E.A.; Chen, L.
1981-10-01
A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency.
NASA Astrophysics Data System (ADS)
Schreiner, Anne; Saur, Joachim
2017-02-01
In hydrodynamic turbulence, it is well established that the length of the dissipation scale depends on the energy cascade rate, i.e., the larger the energy input rate per unit mass, the more the turbulent fluctuations need to be driven to increasingly smaller scales to dissipate the larger energy flux. Observations of magnetic spectral energy densities indicate that this intuitive picture is not valid in solar wind turbulence. Dissipation seems to set in at the same length scale for different solar wind conditions independently of the energy flux. To investigate this difference in more detail, we present an analytic dissipation model for solar wind turbulence at electron scales, which we compare with observed spectral densities. Our model combines the energy transport from large to small scales and collisionless damping, which removes energy from the magnetic fluctuations in the kinetic regime. We assume wave–particle interactions of kinetic Alfvén waves (KAWs) to be the main damping process. Wave frequencies and damping rates of KAWs are obtained from the hot plasma dispersion relation. Our model assumes a critically balanced turbulence, where larger energy cascade rates excite larger parallel wavenumbers for a certain perpendicular wavenumber. If the dissipation is additionally wave driven such that the dissipation rate is proportional to the parallel wavenumber—as with KAWs—then an increase of the energy cascade rate is counterbalanced by an increased dissipation rate for the same perpendicular wavenumber, leading to a dissipation length independent of the energy cascade rate.
Wave-particle interactions in the radiation belts: effect of wave spectra
NASA Astrophysics Data System (ADS)
Vassiliadis, Dimitris; Tornquist, Mattias; Koepke, Mark
2014-10-01
Particle acceleration in Earth's radiation belts is often explain in terms of radial diffusion theory. Some of the most important contributions to diffusive transport are stochastic as well as resonant interactions with low-frequency (Alfven/magnetosonic) waves. While spectra of such waves are traditionally assumed to be broadband and spectrally white, a number of recent studies [Rae et al., 2012; Ozeke et al., 2012] indicate that the spectra of ground geomagnetic pulsations are significantly more complex. We examine power-law spectra in particle simulations in a realistic magnetospheric field configuration and report on their effect on the transport and energization of the pre-storm electron population.
The Development of Drift Wave Turbulence in Magnetic Reconnection
NASA Astrophysics Data System (ADS)
McMurtrie, L.; Drake, J. F.; Swisdak, M. M.
2013-12-01
An important feature in collisionless magnetic reconnection is the development of sharp discontinuities along the separatrices bounding the Alfvenic outflow. The typical scale length of these features is ρs (the Larmor radius based on the sound speed) for guide field reconnection. Temperature gradients in the inflowing plasma (as might be found in the magnetopause) can lead to instabilities at these separatrices, specifically drift wave turbulence. We present standalone 2D and 3D PIC simulations of drift wave turbulence to investigate scaling properties and growth rates. Further investigations of the relative importance of drift wave turbulence in the development of reconnection will also be considered.
Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER
N.N. Gorelenkov and R.B. White
2012-10-29
The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.
Stability of the toroidicity-induced Alfven eigenmode in axisymmetric toroidal equilibria
Fu, G.Y.; Cheng, C.Z.; Wong, K.L.
1993-09-01
The stability of toroidicity-induced Alfven eigenmodes (TAE) is investigated in general tokamak equilibria with finite aspect ratio and finite plasma beta. The finite orbit width of the hot particles and the collisional damping of the trapped electrons are included. For the trapped hot particles, the finite orbit width is found to be stabilizing. For the circulating hot particles, the finite orbit width effect is stabilizing for larger values of v{sub h}/v{sub A} (> 1) and destabilizing for smaller values of v{sub h}/v{sub A} (< 1), where v{sub h} is the hot particle speed and v{sub A} is the Alfven speed. The collisional damping of the trapped electrons is found to have a much weaker dependence on the collision frequency than the previous analytic results. The contribution of the curvature term to the trapped electron collisional damping is negligible compared to that of the parallel electric field term for typical parameters. The calculated critical hot particle beta values for the TAE instability are consistent with the experimental measurements.
NASA Astrophysics Data System (ADS)
Smith, David R.; Fonck, R. J.; McKee, G. R.; Diallo, A.; Kaye, S. M.; Leblanc, B. P.; Sabbagh, S. A.
2016-10-01
Edge localized mode (ELM) saturation mechanisms, filament dynamics, and multi-mode interactions require nonlinear models, and validation of nonlinear ELM models requires fast, localized measurements on Alfven timescales. Recently, we investigated characteristic ELM evolution patterns with Alfven-scale measurements from the NSTX/NSTX-U beam emission spectroscopy (BES) system. We applied clustering algorithms from the machine learning domain to ELM time-series data. The algorithms identified two or three groups of ELM events with distinct evolution patterns. In addition, we found that the identified ELM groups correspond to distinct parameter regimes for plasma current, shape, magnetic balance, and density pedestal profile. The observed characteristic evolution patterns and corresponding parameter regimes suggest genuine variation in the underlying physical mechanisms that influence the evolution of ELM events and motivate nonlinear MHD simulations. Here, we review the previous results for characteristic ELM evolution patterns and parameter regimes, and we report on a new effort to explore the identified ELM groups with 2D BES measurements and nonlinear MHD simulations. Supported by U.S. Department of Energy Award Numbers DE-SC0001288 and DE-AC02-09CH11466.
Linear global gyrokinetic simulations of toroidal Alfven eigenmodes in KSTAR plasmas
NASA Astrophysics Data System (ADS)
Shahzad, M.; Rizvi, H.; Ryu, C. M.
2016-12-01
Excitation of toroidal Alfven eigenmodes (TAEs) in KSTAR tokamak plasmas has been studied by using the GENE code. Verification and benchmark analysis are performed for Alfven eigenmodes (AEs) excited by the energetic particles (EPs) in comparison with the AEs from the GYGLES code, and excellent agreements are found. In addition, the threshold value of the EP density gradient to destabilize the TAE has been investigated. For the plasma equilibrium of KSTAR discharge (10574), TAEs of n = 2 are found to be excited by coupling of adjoining poloidal harmonics (5, 6), (6, 7), and (7, 8). The dependence of the growth rate and frequency of the TAE on the EP density gradient is examined. It is found that the threshold value of EP density gradient increases with the higher poloidal mode coupling, of which location moves outward in the radial direction. The growth rates of TAEs with higher poloidal mode numbers are smaller than those with lower poloidal mode numbers, indicating that perpendicular wavenumbers play an important role. The efficiency of the EP drive for the TAE decreases for a higher poloidal mode coupling. At a higher EP density gradient, TAEs with higher poloidal harmonics are less unstable due to the decrease in the radial extents of the modes.
Generation and injection of e.m. waves in space plasma by means of a long orbiting tether
NASA Technical Reports Server (NTRS)
1980-01-01
The generation and injection of electromagnetic waves in space plasma by means of a long orbiting tether are considered. The objectives include an estimation of the portions of the primary electrodynamic power developed by the tether that goes to excite each of various wave generation and injection mechanisms expected to be present during a tether's orbital flight, an evaluation of the signal levels associated with each one of the mechanisms above, and verification of their detectability with state-of-the-art instrumentation on the Earth surface or elsewhere. The generation and injection of Alfven waves and electron whistler waves were identified as the most relevant mechanisms activited by the electrodynamic tether. The physical mechanisms that govern these two families of phenomena were investigated and the ratio between the power that goes in Alfven waves and in whistlers was derived. The analysis of the possible production of accelerated electrons by the electrodynamic tether was initiated.
NASA Technical Reports Server (NTRS)
Kouznetsov, Igor; Lotko, William
1995-01-01
The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the
A weakened cascade model for turbulence in astrophysical plasmas
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments
N.N. Gorelenkov; H.L. Berk; R. Budny; C.Z. Cheng; G.-Y. Fu; W.W. Heidbrink; G. Kramer; D. Meade; and R. Nazikian
2002-07-02
A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV plasma temperature regime. In this assessment the hot particle drive is balanced against ion-Landau damping of the background deuterons and electron collision effects and stability boundaries are determined. Then two numerical studies of AE instability are presented. In one the High-n stability code HINST is used . This code is capable of predicting instabilities of low and moderately high frequency Alfven modes. HINST computes the non-perturbative solution of the Alfven eigenmodes including effects of ion finite Larmor radius, orbit width, trapped electrons etc. The stability calculations are repeated using the global code NOVAK. We show that for these tokamaks the spectrum of the least stable AE modes are TAE that appear at medium-/high-n numbers. In HINST TAEs are locally unstable due to the alphas pressure gradient in all the devices under the consideration except IGNITOR. However, NOVAK calculations show that the global mode structure enhances the damping mechanisms and produces stability in all configurations considered here. A serious question remains whether the perturbation theory used in NOVAK overestimates the stability predictions, so that it is premature to conclude that the nominal operation of all three proposals are stable to AEs. In addition NBI ions produce a strong
Cross-Frequency Coupling of Plasma Waves in the Magnetosphere
NASA Astrophysics Data System (ADS)
Khazanov, G. V.
2014-12-01
Wave-particle and wave-wave interactions are crucial elements of magnetosphere and ionosphere plasma dynamics. Such interactions provide a channel of energy redistribution between different plasma populations, and lead to connections between physical processes developing on different spatial and temporal scales. The lower hybrid waves (LHWs) are particularly interesting for plasma dynamics, because they couple well with both electrons and ions. The excitation of LHWs is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven and/or EMIC waves, in particular those associated with lower frequency (LF) turbulence, may generate LHWs in the auroral zone and ring current region and in some cases this serves as the Alfven and/or EMIC waves saturation mechanism. We believe that this described scenario, as well as some other cross-frequency coupling of plasma waves processes that will be discussed in this presentation, can play a vital role in various parts of the magnetospheric plasma, especially in the places under investigation by the NASA THEMIS and Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)) missions.
Gyrokinetic particle simulation of the beta-induced Alfven eigen mode
NASA Astrophysics Data System (ADS)
Zhang, Huasen; Lin, Zhihong; Holod, Ihor; Wang, Xin; Xiao, Yong; Zhang, Wenlu
2010-11-01
The beta-induced Alfven eigen mode (BAE) is studied using the global gyrokinetic particle code GTC. In our simulation, BAE is successfully excited by antenna and energetic particle density gradient. Through the antenna frequency scan, we can measure the BAE frequency and damping rate by numerical fitting the saturation amplitude. BAE excitation by energetic particles shows that the BAE propagates in the ion diamagnetic direction and the frequency has a little downshift, which is due to modification of the energetic particles. The frequency and growth rate in gyrokinetic simulation is a little different from drift kinetic simulation, which is expected due to the finite larmor radius effect. We also find that the BAE frequency is related to the wavelength and the plasma beta while the growth rate is sensitive to the energetic particle properties. Benchmarks between GTC and HMGC are also done through initial perturbation, antenna excitation and energetic particle excitation. The simulation results agree with each other very well.
Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star
Bastrukov, S.; Xu, R.-X.; Molodtsova, I.; Takata, J.; Chang, H.-K.
2010-11-15
Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulas for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasiperiodic oscillations of the x-ray outburst flux from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.
Fast Particle Effects on the Internal Kink, Fishbone and Alfven Modes
N.N. Gorelenkov; S. Bernabei; C.Z. Cheng; G.Y. Fu; K. Hill; S. Kaye; G.J. Kramer; Y. Kusama; K. Shinohara; R. Nazikian; T. Ozeki; W. Park
2000-11-15
The issues of linear stability of low frequency perturbative and nonperturbative modes in advanced tokamak regimes are addressed based on recent developments in theory, computational methods, and progress in experiments. Perturbative codes NOVA and ORBIT are used to calculate the effects of TAEs on fast particle population in spherical tokamak NSTX. Nonperturbative analysis of chirping frequency modes in experiments on TFTR and JT-60U is presented using the kinetic code HINST, which identified such modes as a separate branch of Alfven modes - resonance TAE (R-TAE). Internal kink mode stability in the presence of fast particles is studied using the NOVA code and hybrid kinetic-MHD nonlinear code M3D.
NASA Astrophysics Data System (ADS)
Bierwage, Andreas; Spong, Donald A.
2009-05-01
Hybrid-MHD-Gyrokinetic Code (HMGC) [1] and the gyrofluid code TAEFL [2,3] are used for nonlinear simulation of Alfven Eigenmodes in Tokamak plasma. We compare results obtained in two cases: (I) a case designed for cross-code benchmark of TAE excitation; (II) a case based on a dedicated DIII-D shot #132707 where RSAE and TAE activity is observed. Differences between the numerical simulation results are discussed and future directions are outlined. [1] S. Briguglio, G. Vlad, F. Zonca and C. Kar, Phys. Plasmas 2 (1995) 3711. [2] D.A. Spong, B.A. Carreras and C.L. Hedrick, Phys. Fluids B4 (1992) 3316. [3] D.A. Spong, B.A. Carreras and C.L. Hedrick, Phys. Plasmas 1 (1994) 1503.
Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches
Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L
2012-07-11
Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.
Correlation between excitation of Alfven modes and degradation of ICRF heating efficiency in TFTR
Bernabei, S.; Chang, Z.; Darrow, D.
1997-05-01
Alfven modes are excited by energetic ions in TFTR during intense minority ICRF heating. There is a clear threshold in rf power above which the modes are destabilized. The net effect of these modes is the increase of the fast ion losses, with an associated saturation of the ion tail energy and of the efficiency of the heating. Typically, several modes are excited with progressive n-numbers, with frequencies in the neighborhood of 200 kHz. Results suggest that Energetic Particle Modes (EPM), mostly unseen by the Mirnov coils, are generated near the center and are responsible for the ion losses. Stronger global TAE modes, which are destabilized by the stream of displaced fast ions, appear responsible only for minor losses.
Low-frequency global Alfven eigenmodes in low-shear tokamaks with trapped energetic ions
Marchenko, V. S.; Kolesnichenko, Ya. I.; Reznik, S. N.
2009-09-15
It is shown that, in the tokamak plasmas with broad low-shear central core and safety factor q{sub 0} > or approx. 1, there exists a low-frequency global Alfven eigenmode capable of resonating with precession of the trapped energetic ions. This mode has the dominant numbers m=n=1, but the coupling with the upper toroidal sideband is crucial both for the eigenmode formation and its excitation by energetic ions. The properties of this mode are consistent with observations of the low-frequency n=1 mode driven by energetic ions in the ''hybrid'' discharges with perpendicular injection on the JT-60U tokamak [N. Oyama, A. Isayama, G. Matsunaga et al., Nucl. Fusion 49, 065026 (2009)].
Experimental study of toroidicity-induced Alfven eigenmode (TAE) stability at high q(0)
Batha, S.H.; Levinton, F.M.; Spong, D.A.
1995-07-01
Experiments to destabilize the Toroidicity-induced Alfven Eigenmode (TAE) by energetic alpha particles were performed on the Tokamak Fusion Test Reactor using deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold, discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and into alignment with the region of maximum alpha pressure gradient, thereby (in theory) lowering the value of {beta}{sub {alpha}}(0) required for instability. No TAE activity was observed when the central alpha particle {beta}{sub {alpha}} reached 0.08% in a discharge with fusion power of 2.4 MW. Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability threshold.
NASA Technical Reports Server (NTRS)
Hoppe, M. M.; Russell, C. T.
1983-01-01
The plasma rest frame frequencies and polarizations of the large amplitude low frequency (0.03 Hz) upstream waves are investigated using magnetic field data from the dual ISEE 1 and 2 spacecraft. The monochromatic sinusoidal waves associated with intermediate ion fluxes are propagating in both the Alfven and magnetosonic modes, in both cases with typical frequencies approximately 0.1 times the local proton gyrofrequency and wavelengths of approximately 1 R(E). It is shown that the generation of the magnetosonic mode can be explained by the cyclotron resonance mechanism driven by narrow reflected ion beams, but the concurrent observation of Alfven mode waves appears to require wave generation by the more isotropic diffuse ion distributions as well.
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves
Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi
2010-01-15
We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.
Field-Aligned Structure of the Storm Time Pc 5 Wave of November 14-15, 1979,
1988-02-01
Corporation El Segundo, CA 90245 and E. AMATA Instituto di Fisica dello Spazio Interplanetario Rome, Italy I February 1988 Prepared for SPACE DIVISION AIR...UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE 12. PERSONAL AUTHOR(S) (Continued) The Aerospace Corporation; and Amata, E., Instituto di Fisica dello...between a drift-mirror wave and a shear Alfven wave, as discussed by Walker and coworkers. ’ .,1 :.x UNCLASSIFIED I 18CURIITY CLAS SIFICATION OF TIS
NASA Technical Reports Server (NTRS)
Eichler, D.
1985-01-01
The nonlinear theory of shock acceleration developed in earlier papers, which treated the waves as being completely frozen into the fluid, is generalized to include wave dynamics. In the limit where damping keeps the wave amplitude small, it is found that a finite phase velocity (V sub ph) of the scattering waves through the background fluid, tempers the acceleration generated by high Mach number shocks. Asymptotic spectra proportional to 1/E sq are possible only when the ratio of wave velocity to shock velocity is less than 0.13. For a given asymptotic spectrum, the efficiency of relativistic particle production is found to be practically independent of the value of V sub ph, so that earlier results concerning its value remain valid for finite V sub ph. In the limit where there is no wave damping, it is shown that for modest Alfven Mach numbers, approximately greater than 4 and less than 6, the magnetic field is amplified by the energetic particles to the point of being in rough equipartition with them, as models of synchrotron emission frequently take the field to be. In this case, the disordering and amplification of field energy may play a major role in the shock transition.
NON-WKB MODELS OF THE FIRST IONIZATION POTENTIAL EFFECT: THE ROLE OF SLOW MODE WAVES
Laming, J. Martin
2012-01-10
A model for element abundance fractionation between the solar chromosphere and corona is further developed. The ponderomotive force due to Alfven waves propagating through or reflecting from the chromosphere in solar conditions generally accelerates chromospheric ions, but not neutrals, into the corona. This gives rise to what has become known as the first ionization potential effect. We incorporate new physical processes into the model. The chromospheric ionization balance is improved and the effect of different approximations is discussed. We also treat the parametric generation of slow mode waves by the parallel propagating Alfven waves. This is also an effect of the ponderomotive force, arising from the periodic variation of the magnetic pressure driving an acoustic mode, which adds to the background longitudinal pressure. This can have subtle effects on the fractionation, rendering it quasi-mass independent in the lower regions of the chromosphere. We also briefly discuss the change in the fractionation with Alfven wave frequency, relative to the frequency of the overlying coronal loop resonance.
On the physics of waves in the solar atmosphere: Wave heating and wind acceleration
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1994-01-01
This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.
What are the Causes of the Formation of the Sub-Alfvenic Flows at the High Latitude Magnetopause
NASA Technical Reports Server (NTRS)
Avanov, L. A.; Chandler, M. O.; Simov, V. N.; Vaisberg, O. L.
2003-01-01
We study magnetopause crossings made by the Interball Tail spacecraft at high latitudes under various interplanetary conditions. When the IMF mostly northward the Interball Tail observes quasi steady state reconnection signatures at the high latitude magnetopause, which include a well-defined de Hoffman-Teller frame, satisfaction of stress balance (Walen relations) and D-shaped ion velocity distributions. Under variable or southward IMF the high latitude magnetopause is a tangentional discontinuity. However, in certain conditions, just after the magnetopause crossing, irrespective of the IMF orientation, decelerate magnetosheath flows are observed in the magnetosheath region adjacent to the high latitude magnetopause. This leads to formation of the region where the sub-Alfvenic flow at high latitudes exists. We suggest that in some cases the dipole tilt plays an important role in the formation of the sub-Alfvenic flows, although in some cases formation the depletion layer is responsible for observation of the sub-Alfvenic flows at the high latitude magnetopause.
Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots
NASA Technical Reports Server (NTRS)
Scheuer, M. A.; Thomas, J. H.
1981-01-01
Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Stochastic acceleration of ions driven by Pc1 wave packets
Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-07-15
The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
On the physics of waves in the solar atmosphere: Wave heating and wind acceleration
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1993-01-01
This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.
Gyrokinetic Simulation of Reverse Shear Alfven Eigenmodes in DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Chen, Yang; Parker, Scott; Fu, Guo-Yong
2012-03-01
We present simulation results of the beam driven Reverse Shear Alfven Eigenmodes (RSAE) observed in DIII-D discharge 142111 using the Particle-in-Cell gyrokinetic code GEM [1]. Bulk ions and energetic particles are gyrokinetic, but electrons are described by a mass-less fluid model. Two schemes for obtaining the electric potential are implemented, one by solving the gyrokinetic Poisson equation for φ directly, the other by solving the gyrokinetic moment (GKM) equation for φ/t and then integrating in time. The GKM approach is found to be more robust for linear simulations (allowing larger time steps) but less robust for nonlinear simulations. Previous simulations reproduced the chirping in frequency as seen in the experiment. Recently it has been reported by other simulation codes (GTC, GYRO and TAEFL) that the shearing direction of the mode structure in the poloidal plane disagrees with observation. We found that the mode structure, including the shearing in the poloidal plane, is in general sensitive to the beam distribution. By changing the radial profile of the beam density while keeping the velocity dependence fixed, both shearing directions can be produced in the simulation. [4pt] [1] Y. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007)
Suppressing Alfven eigenmodes by q-profile engineering to improve fast-ion confinement
NASA Astrophysics Data System (ADS)
Kramer, G. J.; Tobias, B. J.; Nazikian, R.; Holcomb, C.; Collins, C.; van Zeeland, M. A.; Heidbrink, W. W.; Zhu, Y.
2016-10-01
High levels of Alfven eigenmode (AE) activity often limit the plasma performance of steady-state target plasmas. Experiments were performed on DIII-D to suppress harmful AEs by q profile engineering. Current ramp rates of 0.6 MA/s are typically used in L-mode discharges to create qmin near r/a = 0.3 where the fast-ion pressure gradient is strong, leading to strong AEs and enhanced fast-ion transport. In a new experiment a current ramp-rate of 7 MA/s was used together with ECCD at mid-radius. This resulted in a qmin radius larger than 0.5 which is outside the fast-ion pressure gradient region. This resulted in a complete suppression of TAEs in the core and a highly reduced RSAE activity near qmin giving rise to classical fast-ion transport as deduced from neutron measurements. Although qmin was not sustained at large radii, these experiments show that AEs can be suppressed by q profile engineering. For sustaining qmin at large radii a stronger off-axis current drive source is planned with neutral beam upgrades in 2017. DOE Grants DE-AC02-09CH11466 and DE-FC02-04ER54698.
Deformation of the Earth's magnetosphere under low Alfven-Mach-number solar wind
NASA Astrophysics Data System (ADS)
Nishino, Masaki N.; Saito, Yoshifumi; Mukai, Toshifumi; Kuznetsova, Masha M.; Rastaetter, Lutz; Phan, Tai; Fujimoto, Masaki
2012-07-01
The density of the solar wind (SW) around the Earth's magnetosphere sometimes decreases to only several percent of the usual value, and such density extrema results in a significant reduction of dynamic pressure and Alfven Mach number (Ma) of the SW flow. Such density reduction plays an important role in magnetospheric phenomena; for instance, a magnetospheric expansion by a low density region of a coronal mass ejection causes an extreme enhancement of killer electrons in the radiation belt (Kataoka and Miyoshi, Geophys. Res. Lett., 2007). While simple expansion of the Earth's magnetosphere by the low dynamic pressure was assumed in previous studies, a recent simulation study predicted a remarkable dawn-dusk asymmetry of the magnetotail in shape under low Ma SW and Parker-spiral IMF configuration (Nishino et al., Phys. Rev. Lett., 2008). We further show evidence of strong deformation of the magnetotail under low Ma SW and Parker-spiral IMF conditions, based on Geotail observations on both the dawn and dusk sides. In addition to the magnetospheric expansion, the deformation during low Ma SW might also affect physical process there, changing drift passes of charged particles in the magnetosphere.
Simulation study of Alfven eigenmode induced energetic-ion transport in LHD
NASA Astrophysics Data System (ADS)
Nishimura, Seiya; Todo, Yasushi; Nakajima, Noriyoshi; Osakabe, Masaki; Yamamoto, Satoshi; Spong, Donald A.; Suzuki, Yasuhiro
2012-10-01
For the achievement of magnetic confinement fusion, the interaction between Alfven eigenmodes (AEs) and energetic ions is an important issue to be resolved. In the Large Helical Device(LHD), the AE bursts and the energetic-ion transport and losses have been observed during the neutral beam injection. However, it has not been clarified yet how the 3-dimensional magnetic field affects the AE induced energetic-ion transport. It is worth investigating this problem since the particle dynamics in the 3-dimensional configuration such as the helical trapping might enhance the transport. In this study, we perform the reduced simulation, where the AE spatial profile calculated with AE3D code is assumed to be constant in time and the evolution of the amplitude and the frequency is computed in a way consistent with the interaction between the energetic ions and AE. The energetic-ion dynamics is followed in the electromagnetic field that is the sum of the equilibrium field by HINT code and the AE perturbation. It is found that the AE amplitude continues to increase gradually after the exponential growth for the isotropic energetic-ion velocity distribution, whereas the saturation takes place for the beam-type distribution. We will report on the detailed analysis of the energetic-ion dynamics.
Collins, David C.; Norman, Michael L.; Padoan, Paolo; Xu Hao
2011-04-10
In this work, we present the mass and magnetic distributions found in a recent adaptive mesh refinement magnetohydrodynamic simulation of supersonic, super-Alfvenic, self-gravitating turbulence. Power-law tails are found in both mass density and magnetic field probability density functions, with P({rho}) {proportional_to} {rho}{sup -1.6} and P(B) {proportional_to} B{sup -2.7}. A power-law relationship is also found between magnetic field strength and density, with B {proportional_to} {rho}{sup 0.5}, throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass-to-flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements. We also compare the relationship between velocity dispersion and density to the same cores, and find an increasing relationship between the two, with {sigma} {proportional_to} n{sup 0.25}, also in agreement with the observations. We then estimate the potential effects of ambipolar diffusion in our cores and find that due to the weakness of the magnetic field in our simulation, the inclusion of ambipolar diffusion in our simulation will not cause significant alterations of the flow dynamics.
NASA Astrophysics Data System (ADS)
Chen, Yang; Fu, Guo-Yong; Parker, Scott
2016-10-01
We report simulation of simultaneous excitation of multiple Reverse Shear Alfven eigenmodes in DIII-D plasmas (discharge #142111), using the gyrokinetic ion/fluid electron hybrid model of GEM. Thermal ions and beam ions are gyrokinetic, electrons are fluid with finite-mass correction in the Ohm's law. The vorticity equation is solved instead of the quasi-neutrality condition. This improves numerical stability. We extend previous single-n nonlinear simulation to simultaneous excitation of toroidal modes with n = 0 and 2 < n < 15 . Both the zonal n = 0 mode and the n = 8 mode are observed to be force driven by the linearly dominant n = 4 mode coupled to itself, with a growth rate twice that of the n = 4 mode. The zonal mode (including the surface averaged ϕ and A∥) significantly reduces the initial saturation level of the n = 4 mode. Evolution of all the other modes are also dominated by nonlinear coupling to the n = 4 mode. The mechanism of zonal structure generation will be examined by comparing various terms in the vorticity equation, including the Reynolds stress, the magnetic stress and the beam ion nonlinear effect.
Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P
2011-04-26
The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
Fredrickson, E. D.; Bell, R. E.; Darrow, D. S.; Gorelenkov, N. N.; Kramer, G. J.; Medley, S. S.; White, R. B.; Crocker, N. A.; Kubota, S.; Levinton, F. M.; Yuh, H.; Liu, D.; Podesta, M.; Tritz, K.
2009-12-15
Experiments on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] found strong bursts of toroidal Alfven eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA[C. Z. Cheng, Phys. Rep. 211, 1 (1992)] and ORBIT[R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE was modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE was then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate, however, further refinements in both the simulation of the TAE structure and in the modeling of the fast-ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.
Stabilizing effect of ionized background of trans-Alfvenic expansion of exploding plasmas
Zakharov, Yu.P.; Ponomarenko, A.G.; Dudnikova, G.I.; Vshivkov, V.A.
1995-12-31
Recently a lot of theoretical and numerical calculations have been performed devoted to the study of Large-Larmor-Flute Instability (LLFI). Such instability was discovered initially in laboratory and later in active experiments (AMPTE, CRRES) on expansion of a quasispherical plasma cloud in a ``vacuum`` magnetic field {rvec B}{sub 0}. In the laser-produced plasma experiments at KI-1 facility it was established for the first time, that such non-MHD instability and LHD-instability of skin-layer may effectively be suppressed by ionized background at high-Alfven Mach numbers M{sub A} {much_gt} 1 as well as in a transient regime M{sub A} {approximately} 1. In the present paper on the basis of laboratory and computer simulation the value of M{sub A} was defined more exactly and other similarity parameters characterizing the development of LLFI was founded. The laser experiments were realized in hydrogen and argon background plasmas. The computer simulations were carried out with 2D electromagnetic hybrid code. It was exposed the transition from flute increase to decrease one when M{sub A} changed from M{sub A} = 1 to M{sub A} = 3.
Spong, D. A.; Bass, E. M.; Deng, W.; Heidbrink, W. W.; Lin, Z.; Tobias, B.; Van Zeeland, M. A.; Austin, M. E.; Domier, C. W.; Luhmann, N. C. Jr.
2012-08-15
A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (no. 142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.
Momentum and energy transport by waves in the solar atmosphere and solar wind
NASA Technical Reports Server (NTRS)
Jacques, S. A.
1977-01-01
The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1994-01-01
The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
On the nonlinear couplings among ICRF waves observed in GAMMA 10
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Hirata, M.; Yokoyama, T.; Iwamoto, Y.; Sumida, S.; Takeyama, K.; Jang, S.; Oi, T.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; GAMMA 10 Team
2014-10-01
Effective ICRF heating creates high ion-temperature plasma of several kiloelectronvolts and the ion-temperature anisotropy exceeds 10 near the midplane of the GAMMA 10 tandem mirror. In such environment, left-hand polarized Alfven wave becomes unstable overcoming ion-cyclotron damping and so-called Alfven-ion-cyclotron (AIC) wave is spontaneously excited. Density fluctuations associated with AIC waves and ICRF waves for heating have been recently measured by using reflectometers on GAMMA 10. The measured fluctuations show fruitful wave-wave couplings more clearly than magnetic fluctuations measured by pick-up coils at the plasma periphery. The signals showing the axially transported energetic-ion flux and the diamagnetism display apparent effects of such nonlinear couplings on the global energy confinement of GAMMA 10. Bispectral analysis is applied to the density fluctuations and the detailed characteristics of the nonlinear couplings occurring among the AIC waves and ICRF waves for heating in GAMMA 10 are presented. This work is partly supported by a Grant-in-Aid for Scientific Research from JSPS, Japan (No. 25400531) and by the bidirectional collaborative research programme of the National Institute for Fusion Science, Japan (NIFS14KUGM097).
Shear-Alfv'en Waves in Gyrokinetic Particle Simulation
NASA Astrophysics Data System (ADS)
Dickerson, Thomas D.; Startsev, Edward A.; Lee, W. W.
2012-10-01
Numerical properties of shear-Alfv'en waves in slab geometry have been studied using a Particle-in-Cell code implementing the recently developed double split-weight scheme [1]. This scheme separates the non-adiabatic response of the particles from both their adiabatic responses and the field-line bending effects arising from the background density and temperature gradients of both the electrons and the ions. This scheme is an improvement over the original split-weight scheme [2] in the presence of the zeroth-order inhomogeneities. The present studies consist of testing numerical restrictions on temporal resolution in the simulation of these waves in one and two dimensions, and on spatial resolutions on the formation of shear Alfv'en eigenmodes in two dimensional sheared slab simulations. For example, it is found that the correct behavior of ion temperature gradient modes in terms of frequencies and growth rates can be maintained with time steps larger than the limit imposed by the shear-Alfven waves. Details will be reported.[4pt] [1] E. A. Startsev and W. W. Lee, ``Finite-Beta Simulation of Microinstabilities,'' manuscript in preparation (2012). [0pt] [2] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm and Z. Lin, ``Shear-Alf'en Waves in Gyrokinetic Plasmas,'' Phys. Plasmas 10, 4435 (2001).
Arunasalam, V.
1995-08-01
The velocity distribution functions of the newly born (t = 0) charged fusion products of tokamak discharges can be approximated by a monoenergetic ring distribution with a finite v{sub {parallel}} such that v{sub {perpendicular}} {approx} v{sub {parallel}} {approx} v{sub j} where (M{sub j}V{sub j}{sup 2}/2) = E{sub j}, the directed birth energy of the charged fusion product species j of mass M{sub j}. As the time t progresses these distribution functions will evolve into a Gaussian in velocity with thermal spreadings given by the perpendicular and parallel temperatures T{sub {perpendicular}j}(t) = T{sub {parallel}j}(t) with T{sub j}(t) increasing as t increases and finally reaches an isotropic saturation value of T{sub {perpendicular}j}(t {approx} {tau}{sub j}) = T{sub {parallel}j}(t {approx} {tau}{sub j}) = T{sub j}(t {approx} {tau}{sub j}) {approx} [M{sub j}T{sub d}E{sub j}/(M{sub j} + M)]{sup 1/2}, where T{sub d} is the temperature of the background deuterium plasma ions, M is the mass of a triton or a neutron for j = protons and alpha particles, respectively, and {tau}{sub j} {approx} {tau}{sub sj}/4 is the thermalization time of the fusion product species j in the background deuterium plasma and {tau}{sub sj} is the slowing-down time. For times t of the order of {tau}{sub j} their distributions can be approximated by a Gaussian in their total energy. Then for times t {ge} {tau}{sub sj} the velocity distributions of these fusion products will relax towards their appropriate slowing-down distributions. Here the authors will examine the radiative stability of all these distributions. The ion cyclotron emission from energetic ion produced by fusion reactions or neutral beam injection promises to be a useful diagnostic tool.
Ribe, F.L.; Nelson, B.A.
1989-01-01
This paper discusses induced axial current studies in a hardcore Theta-Pinch; nonaxisymmetric RF heating of a high-Beta plasma column; formation of Axisymmetric hardcore theta pinches with notched hardcore current; and externally driven till made experiments on the high-beta Q machine field reversed configuration. (LSP)
Ribe, F.L.; Nelson, B.A.
1989-01-01
This report discusses the following topics: Nonaxisymmetric radio- frequency heating in an l = 1 stellarator and in a linear plasma column; measurement of induced current in a hardcore theta pinch; externally driven tilt mode study on an FRC; elimination of induced plasma current in a hardcore theta pinch; and simulated toroidicity studies.
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
NASA Technical Reports Server (NTRS)
Barnes, A.
1983-01-01
An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.
The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas
Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.
2011-06-15
The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B{sub 0}. It is noted that the growth rate is proportional to the unperturbed electron number density n{sub oe} and is independent of inhomogeneity beyond L{sub e}=2 cm. An extraordinary growth rate is observed with the quantum effect.
Numerical simulation of propagation of the MHD waves in sunspots
NASA Astrophysics Data System (ADS)
Parchevsky, K.; Kosovichev, A.; Khomenko, E.; Olshevsky, V.; Collados, M.
2010-11-01
We present results of numerical 3D simulation of propagation of MHD waves in sunspots. We used two self consistent magnetohydrostatic background models of sunspots. There are two main differences between these models: (i) the topology of the magnetic field and (ii) dependence of the horizontal profile of the sound speed on depth. The model with convex shape of the magnetic field lines near the photosphere has non-zero horizorntal perturbations of the sound speed up to the depth of 7.5 Mm (deep model). In the model with concave shape of the magnetic field lines near the photosphere Δ c/c is close to zero everywhere below 2 Mm (shallow model). Strong Alfven wave is generated at the wave source location in the deep model. This wave is almost unnoticeable in the shallow model. Using filtering technique we separated magnetoacoustic and magnetogravity waves. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. The sunspot causes anisotropy of the amplitude distribution along the wavefront and changes the shape of the wavefront. The amplitude of the waves is reduced inside the sunspot. This effect is stronger for the magnetogravity waves than for magnetoacoustic waves. The shape of the wavefront of the magnetogravity waves is distorted stronger as well. The deep model causes bigger anisotropy for both mgnetoacoustic and magneto gravity waves than the shallow model.
MHD waves on solar magnetic flux tubes - Tutorial review
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1990-01-01
Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.
MHD waves on solar magnetic flux tubes - Tutorial review
NASA Astrophysics Data System (ADS)
Hollweg, Joseph V.
Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.
Alfvenic, feedback-unstable magnetosphere-ionosphere interactions at high and middle latitudes
NASA Astrophysics Data System (ADS)
Streltsov, Anatoly
We present results from a study of small-scale, intense electromagnetic fields and currents (Alfvén waves) registered in the magnetosphere on auroral and subauroral magnetic field lines. e Observations from satellites show that these waves carry significant energy fluxes and are frequently associated with electron precipitation, ion outflow, and density cavities, which features suggest that they play an important role in the redistribution and energization of the magnetosphere-ionosphere plasma in the auroral and subauroral zone. This study focusses on the ionospheric feedback mechanism (IFM) as the primary mechanism responsible for the generation and intensification of small-scale Alfvén waves. The basic idea of IFM is that the e magnetic field-aligned current, carried by the wave, interacts with the ionosphere and changes the ionospheric conductivity, and variations in the conductivity feed back on the structure and amplitude of the current. In this paper we present examples of how the ionospheric feedback mechanism generate small-scale waves in the presence of the magnetospheric resonance cavities on closed and open magnetic field lines. We also demonstrate how the ionospheric feedback mechanism can generate Alfvén waves when no resonance cavity is presented. In this case the e waves can propagate from the ionosphere to the high altitude magnetosphere, where they can explain observations of small-scale, localized electromagnetic waves with frequencies of 20-50 mHz recorded by Polar and Cluster satellites.
MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD
Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.es
2009-07-10
Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10{sup 4} K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.
Beta-induced Alfven-acousti Eigenmodes in NSTX and DIII-D Driven by Beam Ions
Gorelenkov, N. N.; Van Zeeland, M. A.; Berk, H. L.; Crocker, N. A.; Darrow, D.; Fredrickson, E.; Fu, G. Y.; Heidbrink, W. W.; Menard, J.; Nazikian, R.
2009-03-06
Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy.
NASA Technical Reports Server (NTRS)
Najita, Joan R.; Shu, Frank H.
1994-01-01
We construct steady, axisymmetric, numerical models of the sub-Alfvenic regions of cool winds driven by the X-celerator mechanism. We find that smooth acceleration to speeds of the order of the escape speed accompanied by substantial collimation of the flow can be achieved within the Alfven surface, located characteristically at several stellar radii. We apply the nondimensional results to winds which emerge from the equator of magnetized YSOs rotating at breakup and from circumstellar disks interacting with the magnetospheres of slowly rotating T Tauri stars. Stellar magnetic fields of kilogauss strength can drive wind mass-loss rates of 10(exp -6) solar mass/year from rapidly accreting YSOs and 10(exp -8) solar mass/year from slowly accreting T Tauri stars. The X-celerator mechanism can accelerate winds from these systems to velocities of hundreds of km/sec within a few stellar radii in the case of embedded YSOs and approximately 10 stellar radii in the case of T Tauri stars.
New Insight into Short-Wavelength Solar Wind Fluctuations from Vlasov Theory
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Belmont, G.; Goldstein, M. L.
2012-01-01
The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega < omega(sub ci), other studies suggest that the KAW mode cannot carry the turbulence cascade down to electron scales and that the whistler mode (i.e., omega > omega (sub ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, Typically Beta(sub i) approx. > Beta (sub e) 1 and for high oblique angles of propagation 80 deg <= Theta (sub kB) < 90 deg as observed from the Cluster spacecraft data. The linear properties of the plasma modes under these conditions are poorly known, which contrasts with the well-documented cold plasma limit and/or moderate oblique angles of propagation (Theta (sub kB) < 80 deg). Based on linear solutions of the Vlasov kinetic theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales kappa rho (sub i) approx. > 1 to frequencies either larger or smaller than omega (sub ci), depending on the anisotropy kappa (parallel )/ kappa(perpendicular). This extension into small scales is more readily called whistler (omega > omega (sub ci)) or KAW (omega < omega (sub ci)) although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution
NASA Technical Reports Server (NTRS)
Che, H.; Goldstein, M. L.; Vinas, A. F.
2014-01-01
The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)
2003-01-01
Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.
Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips
2012-03-13
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
Ubiquity of Kelvin-Helmholtz waves at Earth's magnetopause.
Kavosi, Shiva; Raeder, Joachim
2015-05-11
Magnetic reconnection is believed to be the dominant process by which solar wind plasma enters the magnetosphere. However, for periods of northward interplanetary magnetic field (IMF) reconnection is less likely at the dayside magnetopause, and Kelvin-Helmholtz waves (KHWs) may be important agents for plasma entry and for the excitation of ultra-low-frequency (ULF) waves. The relative importance of KHWs is controversial because no statistical data on their occurrence frequency exist. Here we survey 7 years of in situ data from the NASA THEMIS (Time History of Events and Macro scale Interactions during Substorms) mission and find that KHWs occur at the magnetopause ∼19% of the time. The rate increases with solar wind speed, Alfven Mach number and number density, but is mostly independent of IMF magnitude. KHWs may thus be more important for plasma transport across the magnetopause than previously thought, and frequently drive magnetospheric ULF waves.
Energetic Particle Transport in Strong Compressive Wave Turbulence Near Shocks
Le Roux, J.A.; Zank, G.P.; Li, G.; Webb, G.M.
2005-08-01
Strong interplanetary coronal mass ejection driven shocks are often accompanied by high levels of low frequency compressive wave turbulence. This might require a non-linear kinetic theory approach to properly describe energetic particle transport in their vicinity. We present a non-linear diffusive kinetic theory for suprathermal particle transport and stochastic acceleration along the background magnetic field in strong compressive dynamic wave turbulence to which small-scale Alfven waves are coupled. Our theory shows that the standard cosmic-ray transport equation must be revised for low suprathermal particle energies to accommodate fundamental changes in spatial diffusion (standard diffusion becomes turbulent diffusion) as well as modifications to particle convection, and adiabatic energy changes. In addition, a momentum diffusion term, which generates accelerated suprathermal particle spectra with a hard power law, must be added. Such effective first stage acceleration possibly leads to efficient injection of particles into second stage diffusive shock acceleration as described by standard theory.
Hydromagnetic waves and cosmic-ray diffusion theory
NASA Technical Reports Server (NTRS)
Lee, M. A.; Voelk, H. J.
1975-01-01
Pitch-angle (and energy) diffusion of cosmic rays in hydromagnetic wave fields is considered. The treatment remains strictly within the quasi-linear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch-angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since the Landau resonance in this approximation also does not lead to particle reflections, a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well-known difficulties of quasi-linear scattering theory for cosmic rays near 90 deg pitch angle.
Ubiquity of Kelvin–Helmholtz waves at Earth's magnetopause
Kavosi, Shiva; Raeder, Joachim
2015-01-01
Magnetic reconnection is believed to be the dominant process by which solar wind plasma enters the magnetosphere. However, for periods of northward interplanetary magnetic field (IMF) reconnection is less likely at the dayside magnetopause, and Kelvin–Helmholtz waves (KHWs) may be important agents for plasma entry and for the excitation of ultra-low-frequency (ULF) waves. The relative importance of KHWs is controversial because no statistical data on their occurrence frequency exist. Here we survey 7 years of in situ data from the NASA THEMIS (Time History of Events and Macro scale Interactions during Substorms) mission and find that KHWs occur at the magnetopause ∼19% of the time. The rate increases with solar wind speed, Alfven Mach number and number density, but is mostly independent of IMF magnitude. KHWs may thus be more important for plasma transport across the magnetopause than previously thought, and frequently drive magnetospheric ULF waves. PMID:25960122
Fuchs, F. G.; McMurry, A. D.; Mishra, S.; Waagan, K. E-mail: a.d.mcmurry@ifi.uio.no E-mail: kwaagan@cscamm.umd.edu
2011-05-10
We consider the propagation of waves in a stratified non-isothermal magnetic atmosphere. The situation of interest corresponds to waves in the outer solar (chromosphere and corona) and other stellar atmospheres. The waves are simulated by using a high-resolution, well-balanced finite-volume-based massively parallel code named SURYA. Numerical experiments in both two and three space dimensions involving realistic temperature distributions, driving forces, and magnetic field configurations are described. Diverse phenomena such as mode conversion, wave acceleration at the transition layer, and driving-dependent wave dynamics are observed. We obtain evidence for the presence of coronal Alfven waves in some three-dimensional configurations. Although some of the incident wave energy is transmitted into the corona, a large proportion of it is accumulated in the chromosphere, providing a possible mechanism for chromospheric heating.
Slow Wave Excitation in the ICRF and HHFW Regimes
Phillips, C. K.; Valeo, E. J.; Hosea, J. C.; LeBlanc, B. P.; Wilson, J. R.; Jaeger, E. F.; Berry, L. A.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.; Smithe, D. N.
2011-12-23
Theoretical considerations and high spatial resolution numerical simulations of radio frequency (rf) wave heating in tokamaks and in spherical toruses (ST) indicate that fast waves launched into tokamaks in the ion cyclotron range of frequencies (ICRF) or into spherical toruses in the high harmonic fast wave (HHFW) regime may excite a short wavelength slow mode inside of the plasma discharge due to the presence of hot electrons that satisfy the condition {omega}
Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma
Shukla, P. K.; Eliasson, B.; Stenflo, L.
2012-07-15
We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.
Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S. J.
2010-08-27
Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of qmin, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0:15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7~4.
Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S
2010-08-19
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
Podesta, M.; Bell, R. E.; Fredrickson, E. D.; Gorelenkov, N. N.; LeBlanc, B. P.; Heidbrink, W. W.; Crocker, N. A.; Kubota, S.; Yuh, H.
2010-12-15
The effects of a sheared toroidal rotation on the dynamics of bursting toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of decorrelation of the modes by the sheared rotation is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes on NSTX.
Ito, T.; Toi, K.; Isobe, M.; Nagaoka, K.; Takeuchi, M.; Akiyama, T.; Matsuoka, K.; Minami, T.; Nishimura, S.; Okamura, S.; Shimizu, A.; Suzuki, C.; Yoshimura, Y.; Takahashi, C.; Matsunaga, G.
2009-09-15
Stable toroidicity-induced Alfven eigenmodes (TAEs) with low toroidal mode number (n=1 and n=2) were excited by application of alternating magnetic field perturbations generated with a set of electrodes inserted into the edge region of neutral beam injection heated plasmas on the Compact Helical System [K. Nishimura, K. Matsuoka, M. Fujiwara et al., Fusion Technol. 17, 86 (1990)]. The gap locations of TAEs excited by the electrodes are in the plasma peripheral region of {rho}>0.7 ({rho} is the normalized minor radius) where energetic ion drive is negligibly small, while some AEs are excited by energetic ions in the plasma core region of {rho}<0.4. The damping rate of these stable TAEs derived from plasma responses to applied perturbations is fairly large, that is, {approx}9% to {approx}12% of the angular eigenfrequency. This large damping rate is thought to be dominantly caused by continuum damping and radiative damping.
Lower Hybrid Oscillations in Multicomponent Space Plasmas Subjected to Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Moore, T. E.; Liemohn, M. W.; Horwitz, J. L.
1997-01-01
It is found that in multicomponent plasmas subjected to Alfven or fast magnetosonic waves, such as are observed in regions of the outer plasmasphere and ring current-plasmapause overlap, lower hybrid oscillations are generated. The addition of a minor heavy ion component to a proton-electron plasma significantly lowers the low-frequency electric wave amplitude needed for lower hybrid wave excitation. It is found that the lower hybrid wave energy density level is determined by the nonlinear process of induced scattering by ions and electrons; hydrogen ions in the region of resonant velocities are accelerated; and nonresonant particles are weakly heated due to the induced scattering. For a given example, the light resonant ions have an energy gain factor of 20, leading to the development of a high-energy tail in the H(+) distribution function due to low-frequency waves.
Interaction of solitary waves in longitudinal magnetic field in two-fluid MHD
NASA Astrophysics Data System (ADS)
Gavrikov, M. B.; Savelyev, V. V.
2017-01-01
The interaction of solitary waves in a model of two-fluid MHD is studied analytically and numerically in the most general case of waves in cold plasma in longitudinal magnetic field. The distinctive feature of this work is the use of “exact” equations rather than an approximate approach (a model equation). Numerical analysis of the solutions of this system of eight partial differential equations shows that the the interaction of solitary waves found in this case is the same (with great accuracy) as that of solitons, i.e., solitary waves that are solutions of various model equations. The solitary waves considered here transport plasmoids with velocities of the order of the Alfven velocity. The main finite-difference method used here for solving the said equations is a natural generalization of the classical two-step Lax-Wendorff scheme.
Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind
Mazur, V. A.
2010-11-15
The eigenfrequencies and eigenmodes of an MHD cavity in the front part of the magnetosphere and its excitation by monochromatic hydromagnetic waves incident onto the magnetosphere from solar wind are studied theoretically in the model of a plane-stratified plasma. The eigenmodes are damped due to both their absorption at the Alfven resonance points and their emission into solar wind through the magnetopause, which is partially transparent for the excited waves. It is shown that, due to the influence of the magnetospheric cavity, the pumping of the magnetosphere by the incident waves is resonance in character. The waves penetrate into the magnetosphere only if their frequencies lie in narrow spectral ranges near the eigenfrequencies of the cavity, the width of these ranges being on the order of the damping rate of the eigenmodes. Waves with other frequencies are almost completely reflected from the magnetopause.
NASA Astrophysics Data System (ADS)
Waltz, R. E.
2016-10-01
Local nonlinear gyrokinetic code GYRO simulations of energetic particle driven low-n Alfven eigenmodes embedded in high-n microturbulence motivate a local critical gradient model (CGM) for stiff energetic particle (EP) transport from Alfven eigenmodes (AEs). The simulations show unbounded EP transport when the local linear low-n AE growth rate exceeds the ion temperature gradient and trapped electron mode (ITG/TEM) rate at the same low-n. This linear rate condition for the critical EP density gradient is again verified by new nonlinear GYRO simulations of a well-studied neutral beam injected (NBI) DIII-D discharge (146102) where about half the fast ions are lost from the inner half to the outer half radius by AE induced transport. The CGM is revised to accounted for the small effect of ExB shear stabilization. This CGM incorporated in the ALPHA EP density transport code, used in a previous ITER projection of AE fusion alpha loses, is validated by the EP pressure profile in good agreement with the DIII-D experimental fast ion pressure profile. A beam-like slowing down EP distribution in GYRO was used to find the AE linear rates. Non-local EP drift orbit broadening of the local critical gradient profile was found to be important in the DIII-D validation (but not in ITER projections). A two-EP-species CGM to include simultaneous AE drive from (and transport of) fusion alphas and 1 Mev NBI EPs is used for a revised projection of ITER EP losses. Work supported by US DOE under DE-FG02-95ER54309, DE-FC02-08ER-54977.
Review of tokamak experiments on direct electron heating and current drive with fast waves
Pinsker, R.I.
1993-12-01
Results from tokamak experiments on direct electron interaction with the compressional Alfven wave ({open_quote}fast wave{close_quote}) are reviewed. Experiments aimed at electron heating as well as those in which fast wave electron current drive was investigated are discussed. A distinction is drawn between experiments employing the lower hybrid range of frequencies, where both the lower hybrid wave ({open_quote}slow wave{close_quote}) and the fast wave can propagate in much of the plasma, and those experiments using the fast wave in the range of moderate to high ion cyclotron harmonics, where only the fast wave can penetrate to the plasma core. Most of the early tokamak experiments were in the lower hybrid frequency regime, and the observed electron interaction appeared to be very similar to that obtained with the slow wave at the same frequency. In particular, electron interaction with the fast wave was observed only below a density limit nearly the same as the well known slow wave density limit. In the more recent lower frequency fast wave experiments, electron interaction (heating and current drive) is observed at the center of the discharge, where slow waves are not present.
Hamiltonian Approach to Nonlinear Travelling Whistler Waves
Webb, G.M.; McKenzie, J.F.; Dubinin, E.; Sauer, K.
2005-08-01
A Hamiltonian formulation of nonlinear, parallel propagating, travelling whistler waves is discussed. The model is based on the equations of two-fluid electron-proton plasmas. In the cold gas limit, the complete system of equations reduces to two coupled differential equations for the transverse electron speed u and a phase variable {phi} = {phi}p - {phi}e representing the difference in the phases of the transverse complex velocities of the protons and the electrons. Two integrals of the equations are obtained. The Hamiltonian integral H, is used to classify the trajectories in the ({phi}, w) phase plane, where {phi} and w = u2 are the canonical coordinates. Periodic, oscillation solitary wave and compacton solutions are obtained, depending on the value of the Hamiltonian integral H and the Alfven Mach number M of the travelling wave. The individual electron and proton phase variables {phi}e and {phi}p are determined in terms of {phi} and w. An alternative Hamiltonian formulation in which {phi}-tilde = {phi}p + {phi}e is the new independent variable replacing x is used to write the travelling wave solutions parametrically in terms of {phi}-tilde.
NASA Technical Reports Server (NTRS)
Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.
1991-01-01
The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.
Slow Mode Waves in the Heliospheric Plasma Sheet
NASA Technical Reports Server (NTRS)
Smith, Edward. J.; Zhou, Xiaoyan
2007-01-01
We report the results of a search for waves/turbulence in the Heliospheric Plasma Sheet (HPS) surrounding the Heliospheric Current Sheet (HCS). The HPS is treated as a distinctive heliospheric structure distinguished by relatively high Beta, slow speed plasma. The data used in the investigation are from a previously published study of the thicknesses of the HPS and HCS that were obtained in January to May 2004 when Ulysses was near aphelion at 5 AU. The advantage of using these data is that the HPS is thicker at large radial distances and the spacecraft spends longer intervals inside the plasma sheet. From the study of the magnetic field and solar wind velocity components, we conclude that, if Alfven waves are present, they are weak and are dominated by variations in the field magnitude, B, and solar wind density, NP, that are anti-correlated.
NASA Astrophysics Data System (ADS)
Pilipenko, Vyacheslav; Kozyreva, Olga; Fedorov, Evgeniy; Uspenskiy, Mihail; Kauristi, Kirsti
2016-09-01
We have developed a numerical model that yields a steady-state distribution of field components of MHD wave in an inhomogeneous plasma box simulating the realistic magnetosphere. The problem of adequate boundary condition at the ionosphere-magnetosphere interface for coupled MHD mode is considered. To justify the model's assumptions, we have derived the explicit inequality showing when the ionospheric inductive Hall effect can be neglected upon the consideration of Alfven wave reflection from the ionospheric boundaries. The model predicts a feature of the ULF spatial amplitude/phase distribution that has not been noticed by the field line resonance theory: the existence of a region with opposite phase delays on the source side of the resonance. This theoretical prediction is supported by the amplitude-phase latitudinal structures of Pc5 waves observed by STARE radar and IMAGE magnetometers. A gradual decrease in azimuthal wave number m at smaller L-shells was observed at longitudinally separated radar beams.
Effects of electron drifts on collisionless damping of kinetic Alfvén waves
NASA Astrophysics Data System (ADS)
Tong, Yuguang; Bale, Stuart; Chen, Christopher; Salem, Chadi; Verscharen, Daniel
2015-04-01
Collisionless dissipation of obliquely propogating Alfvén waves has been a promising candidate to solve the solar wind heating problem. Extensive studies have examined kinetic properties of Alfvén waves in simple Maxwellian or Bi-Maxwellian plasmas. However, the solar wind electron velocity distribution function is more complex. A study of Alfvén waves in a plasma, whose electrons consist of two drifting populations in the proton bulk frame, is reported here. We numerically solve the linearized Maxwell-Vlasov equations and find that the damping rate and the proton-electron energy partition for Alfven waves have been significantly modified in such plasmas, comparing to their counterparts without electron drifts. We suggest that electron drift is an important factor to take into account when considering the dissipation of Alfvénic turbulence in the solar wind.
Effects of electron drifts on collisionless damping of Alfvén waves
NASA Astrophysics Data System (ADS)
Tong, Y.; Bale, S. D.; Chen, C. H. K.
2014-12-01
Collisionless dissipation of obliquely propogating Alfvén waves has been a promising candidate to solve the coronal and the solar wind heating problem. Extensive studies have examined kinetic properties of Alfvén waves in simple Maxwellian or Bi-Maxwellian plasmas. However, the solar wind electron velocity distribution function is more complex. A study of Alfvén waves in a plasma, whose electrons consist of two drifting populations in the proton bulk frame, is reported here. By numerically solving the linearized Maxwell-Vlasov equations, we find that the damping rate and the proton-electron energy partition for Alfven waves have been significantly modified in such plasmas, comparing to their counterparts without electron drifts. We suggest that electron drift is an important factor to take into account when considering the dissipation of Alfvénic turbulence in the solar wind.
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir A.
1998-11-01
A perturbation method is developed to find the structure of Alfven wave modes in a cylindrical waveguide filled with a cold, collisional, uniform plasma with a vacuum layer between the plasma and a conducting wall when the magnetic field in the waveguide is a superposition of a uniform and an inhomogeneous /ell=2 (quadrupole) field created by helical windings. The influence of the helical field on the wave mode structure is treated as a perturbation. This innovative technique is applied in order to investigate the possibility of direct heating of plasma ions at the fundamental ion cyclotron resonance in stellarator magnetic field configuration. However, the theoretical development itself is unique and complete, and it can be useful for the analysis of other similar plasma models. We investigated the mode structure of an m=[+]1 (azimuthal wave number) fast wave which is modified by the magnetic field inhomogeneity. We found that the m=[- ]1 azimuthal component of the modified m=[+]1 fast Alfven wave is left-hand polarized in the central part of the plasma. This implies a coupling between the m=[+]1 fast (right-hand polarized) wave and m=[-]1 slow (left- hand polarized) waves due to the inhomogeneity of the /ell=2 fields. The coupling efficiency is examined for different plasma parameters. Results demonstrate that efficient coupling between the modes occurs for appropriate plasma parameters in this model, indicating that efficient plasma heating at the fundamental ion cyclotron frequency is possible in stellarators. The results of the analysis also point the way to a general theory of linear wave coupling in any inhomogeneous, anisotropic medium, since conventional mode conversion theory may be seen as just another example of this general theory.
Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi
1992-01-01
The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.
NASA Astrophysics Data System (ADS)
Myllys, M. E.; Kilpua, E.; Lavraud, B.
2015-12-01
We have investigated the effect of key solar wind driving parameters on the solar wind-magnetosphere coupling efficiency and saturation of the cross polar cap potential (CPCP) during sheath and magnetic cloud driven storms. The particular focus of the study was on the coupling efficiency dependence with Alfven Mach number (MA).Since we are studying the instantaneous coupling efficiency instead of the average efficiency over the whole solar wind structure, we needed to take into account the communication time between the solar wind and the magnetosphere. We present the results of the time delay analysis between geomagnetic indices (PCN, AE and SYM-H) and the interplanetary electric field y-component (EY, GSM coordinate system) and Newell and Borovsky functions. The study shows that the MA has a clear effect to the saturation of the PCN index, which can be used as a proxy of the polar cap potential. The higher the MA the higher the limit EY value after which the saturation starts to occur. Thus, the coupling efficiency increases as a function of MA. Also, the AE index saturates during high solar wind driving but the saturation is not MA depended. However, the results also suggest that the MA it is not the primary cause for the PCN saturation.
Ogawa, K.; Isobe, M.; Watanabe, F.; Spong, Donald A; Shimizu, A.; Osakabe, M.; Ohdachi, S.; Sakakibara, S.
2012-01-01
Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.
Li, Pak Shing; Klein, Richard I.; McKee, Christopher F. E-mail: cmckee@astro.berkeley.edu
2012-01-01
Ambipolar diffusion (AD) is believed to be a crucial process for redistributing magnetic flux in the dense molecular gas that occurs in regions of star formation. We carry out numerical simulations of this process in regions of low ionization using the heavy-ion approximation. The simulations are for regions of strong field (plasma {beta} = 0.1) and mildly supersonic turbulence (M=3, corresponding to an Alfven Mach number of 0.67). The velocity power spectrum of the neutral gas changes from an Iroshnikov-Kraichnan spectrum in the case of ideal MHD to a Burgers spectrum in the case of a shock-dominated hydrodynamic system. The magnetic power spectrum shows a similar behavior. We use a one-dimensional radiative transfer code to post-process our simulation results; the simulated emission from the CS J = 2-1 and H{sup 13}CO{sup +} J = 1-0 lines shows that the effects of AD are observable in principle. Linewidths of ions are observed to be less than those of neutrals, and we confirm previous suggestions that this is due to AD. We show that AD is unlikely to affect the Chandrasekhar-Fermi method for inferring field strengths unless the AD is stronger than generally observed. Finally, we present a study of the enhancement of AD by turbulence, finding that AD is accelerated by factor 2-4.5 for non-self-gravitating systems with the level of turbulence we consider.
The Observational Consequences of Proton-Generated Waves at Shocks
NASA Technical Reports Server (NTRS)
Reames, Donald V.
2000-01-01
In the largest solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast coronal mass ejections. Protons streaming away from strong shocks generate Alfven waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Early in the events, with the shock still near the Sun, intensities at 1 AU are bounded and spectra are flattened at low energies. Elements with different charge-to-mass ratios, Q/A, differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. An initial rise in He/H, while Fe/O declines, is a typical symptom of the non-Kolmogorov wave spectra in the largest events. Strong wave generation can cause cross-field scattering near the shock and unusually rapid reduction in anisotropies even far from the shock. At the highest energies, shock spectra steepen to form a "knee." For protons, this spectral knee can vary from approx. 10 MeV to approx. 1 GeV depending on shock conditions for wave growth. In one case, the location of the knee scales approximately as Q/A in the energy/nucleon spectra of other species.
Flare-induced MHD disturbances in the corona - Moreton waves and type 2 shocks
NASA Technical Reports Server (NTRS)
Uchida, Y.
1973-01-01
The propagation in the corona of the magnetohydrodynamic (MHD) disturbance possibly emitted at the explosive stage in the initial phase of a flare is considered. The behavior of the MHD fast-mode wavefront, whose source is located at the flare, is calculated by using eiconal-characteristic method in the High Altitude Observatory (HAO) realistic models of coronal magnetic field and density for the days of some particular flare events. It is shown as the result that the peculiar behavior of Moreton's surface wave and the peculiar appearance in the shape and position of the type 2 burst sources can be consistently understood by considering the refraction, focussing, and formation of shocks of MHD fast-mode disturbance in the actual distribution of Alfven velocity in the corona. Moreton waves seem to appear only when the flare explosion happens to occur at the edge of an active region and faces a low-Alfven-velocity region lying on the surface. The wave, which is initially emitted isotropically is refracted into a direction in which the condition for down-refraction holds to allow chromospheric reentrance of disturbance.
NASA Astrophysics Data System (ADS)
Woolsey, L. N.; Cranmer, S. R.
2013-12-01
The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.
West, M. J.; Zhukov, A. N.; Dolla, L.; Rodriguez, L.
2011-04-01
Coronal EIT waves have been observed for many years. The nature of EIT waves is still contentious, however, there is strong evidence that some of them might be fast magnetosonic waves, or at least have a fast magnetosonic wave component. The fast magnetosonic wave speed is formed from two components; the Alfven speed (magnetic) and the sound speed (thermal). By making measurements of the wave speed, coronal density and temperature it is possible to calculate the quiet-Sun coronal magnetic field strength through coronal seismology. In this paper, we investigate an EIT wave observed on 2009 February 13 by the SECCHI/EUVI instruments on board the STEREO satellites. The wave epicenter was observed at disk center in the STEREO B (Behind) satellite. At this time, the STEREO satellites were separated by approximately 90 deg., and as a consequence the STEREO A (Ahead) satellite observed the wave on the solar limb. These observations allowed us to make accurate speed measurements of the wave. The background coronal density was derived through Hinode/Extreme-ultraviolet Imaging Spectrometer observations of the quiet Sun and the temperature was estimated through the narrow temperature response in the EUVI bandpasses. The density, temperature, and speed measurements allowed us to estimate the quiet-Sun coronal magnetic field strength to be approximately 0.7 {+-} 0.7 G.
A model for generation of bow-shock-associated upstream waves. [in solar wind
NASA Technical Reports Server (NTRS)
Fredricks, R. W.
1975-01-01
A model is proposed for the generation of upstream hydromagnetic waves by proton beams reflected at the earth's bow shock. It is assumed that the reflection process can produce some gyrophase bunching of the protons, thus creating a gyrophase disturbance that propagates with the beam as it streams back along interplanetary field lines. This leads to the production of driven hydromagnetic waves in the left-hand mode. The resulting theory predicts a wave amplitude, frequency, and polarization in the solar wind rest frame. The amplitude depends on the fraction of protons assumed to be phase coherent in their gyromotion and on the plasma beta, beam velocity, temperatures, and the Alfven Mach number. The theory also predicts the Doppler-shifted frequencies and the apparent sense of polarization that would be observed in satellite measurement frames.
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
NASA Astrophysics Data System (ADS)
Prajapati, Ramprasad
2016-07-01
The Rayleigh-Taylor (R-T) instability is recently investigated is strongly coupled plasma looking to its importance in dense stellar systems and Inertial Confinement Fusion [1-3]. In the present work, the effect of quantum corrections are studied on Rayleigh-Taylor (R-T) instability and internal wave propagation in a strongly coupled, magnetized, viscoelastic fluid. The modified generalized hydrodynamic model is used to derive the analytical dispersion relation. The internal wave mode and dispersion relation are modified due to the presence of quantum corrections and viscoelastic effects. We observe that strong coupling effects and quantum corrections significantly modifies the dispersion characteristics. The dispersion relation is also discussed in weakly coupled (hydrodynamic) and strongly coupled (kinetic) limits. The explicit expression of R-T instability criterion is derived which is influenced by shear velocity and quantum corrections. Numerical calculations are performed in astrophysical and experimental relevance and it is examined that both the shear and quantum effects suppresses the growth rate of R-T instability. The possible application of the work is discussed in Inertial Confinement Fusion (ICF) to discuss the suppression of R-T instability under considered situation. References: [1] R. P. Prajapati, Phys. Plasmas 23, 022106 (2016). [2] K. Avinash and A. Sen, Phys. Plasmas 22, 083707 (2015). [3] A. Das and P. Kaw, Phys. Plasmas 21 (2014) 062102.
Striae and MHD Waves in Molecular Clouds
NASA Astrophysics Data System (ADS)
Goldsmith, Paul; Heyer, Mark H.; Yildiz, Umut; Snell, Ronald L.; Falgarone, Edith; Pineda, Jorge L.
2017-01-01
The origin of molecular striae aligned along the local magnetic field in the envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsibe for the striae features. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striae locations. A medium comprised of small, unresolved cells of CO emission with a filling factor less than 1 is required to explain the average line ratios and brightness temperatures. We propose that the striae features result from the modulation of the velocities and the beam filling factor of the cells, as a result of magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Such waves are likely a common feature of molecular clouds that are sub-Alfvenic and may explain low column density, cirrus-like features that are observed to be aligned along the magnetic field direction.
NASA Technical Reports Server (NTRS)
Estes, Robert D.
1988-01-01
The goal is to extend the previous analysis of electromagnetic wave generation by an electrodynamic tethered satellite system to a more realistic model that includes the effects on wave propagation and reflection to the boundaries between ionosphere, atmosphere, and earth. One of the major activities was searching the scientific literature for publications that might be relevant to the problem. The software developed as SAO to follow the path of waves along field lines through the ionosphere to the atmosphere starting from an arbitary position in the atmosphere is described. Some preliminary results are presented from applying the code to the location of wave reception hot spots on the earth's surface for satellites operating at 300 and 600 km altitudes. A generalization of the Alfven wing analysis is presented to allow for arbitrary angles between the velocity vector, geomagnetic field, and the veritcal. This will be utilized in the modeling of the problem with boundaries included.
ULF wave interaction with the ionosphere: radar and magnetometer observations
NASA Astrophysics Data System (ADS)
Pilipenko, Viacheslav; Fedorov, Evgeniy; Kozlovsky, Alexander; Belakhovsky, Vladimir; Teramoto, Mariko
Combined usage of SuperDARN/EISCAT radars and magnetometers, supported by an adequate theory of ULF wave interaction with the multi-layer system magnetosphere - ionosphere - atmosphere - ground, is an effective way to reveal a physical mechanism of ULF disturbances. Many notions derived only from satellite or ground observations may be challenged by additional information from radars (e.g., association of ULF phenomena with magnetospheric domains, ULF wave spatial structure, etc.). To identify the physical nature of global Pc5 pulsations at the recovery phase of strong magnetic storms and to determine relative contributions of different MHD modes into their structure, the method of apparent impedance can be applied. These Pc5 pulsations are considered using the IMAGE magnetometer data and EISCAT radar data from Tromso-Kiruna-Sodankyla system. An approximate analytical relationship derived from the theory of ULF wave transmission through the thin ionosphere has been compared with the measured ratio between the simultaneous ionospheric electric and ground magnetic fields. The impedances of Alfven and compressional modes are to be essentially distinct. From these observations we conclude that the global Pc5 pulsations above the ionosphere are predominantly composed from Alfven waves with a small contribution of fast compressional mode. Combined SuperDARN Hokkaido radar and magnetometer observations of mid-latitude Pi2 pulsations showed that the concept of a pure cavity mode is not sufficient to explain these observations, and that the contribution of an Alfvén waves must be taken in account. ULF waves are not just sounding signals, but an active factor of the near-Earth environment. The comparison of magnetometer data with the ionospheric parameters shows a significant modulation of the electron density, ionospheric height-integrated conductance, and ion temperature by Pc5 pulsations, even in the absence of quasi-periodic electron precipitation. The mechanisms
SPATIAL DAMPING OF PROPAGATING KINK WAVES DUE TO RESONANT ABSORPTION: EFFECT OF BACKGROUND FLOW
Soler, R.; Goossens, M.; Terradas, J.
2011-06-20
Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the direction perpendicular to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and are damped on length scales that are inversely proportional to the frequency as in the static case. However, the factor of proportionality depends on the characteristics of the flow, so that the damping length differs from its static analog. For slow, sub-Alfvenic flows the backward propagating wave gets damped on a shorter length scale than in the absence of flow, while for the forward propagating wave the damping length is longer. The different properties of the waves depending on their direction of propagation with respect to the background flow may be detected by the observations and may be relevant for seismological applications.
NASA Astrophysics Data System (ADS)
Cai, D. S.; Lembege, B.; Esmaeili, A.; Nishikawa, K.
2013-12-01
Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA)~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the spatial extension of this layer on the magnetosphere flanks for a fixed Northward IMF configuration; (ii) a parametric study in order to analyze the impact of the IMF rotation from north to south on the persistence and the main features of this transition layer. The locations of this transition layer slightly radially expand and shrink during the IMF rotation and the thickness of the layer increases during the rotation. We show how these transition layers render the flow from super to sub Alfvenic and allow the particles enter into the magnetic cusp region. Alfven
Ion streaming instabilities with application to collisionless shock wave structure
NASA Technical Reports Server (NTRS)
Golden, K. I.; Linson, L. M.; Mani, S. A.
1973-01-01
The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.
Ion streaming instabilities with application to collisionless shock wave structure
NASA Technical Reports Server (NTRS)
Golden, K. I.; Linson, L. M.; Mani, S. A.
1973-01-01
The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. Magnetic effects on the ion beams are included, but the electrons are treated as a magnetized fluid. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. These results are extensions of Kovner's analysis for weak beams. The parameters are then chosen to be applicable for parallel shocks. It is found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5.
NASA Astrophysics Data System (ADS)
Sydorenko, D.; Rankin, R.
2013-12-01
We have developed a comprehensive two-dimensional (meridional) model of coupling between the magnetosphere and ionosphere that covers an altitude range from ~100 km to few thousand km at high latitudes [Sydorenko and Rankin, 2013]. The model describes propagation of inertial scale Alfven waves, including ponderomotive forces, and has a parametric model of energetic electron precipitation; it includes vertical ion flows and chemical reactions between ions and neutrals. Model results are presented that reproduce EISCAT radar observations of electron and ion temperatures, height integrated conductivity, ion densities, and ion flows during a period of ULF activity described in [Lester, Davies, and Yeoman, 2000]. We performed simulations where the precipitation and the Alfven wave perturb the ionosphere simultaneously. By adjusting parameters of the wave and the precipitation we have achieved qualitative, and sometimes even reasonable quantitative agreement between the observations and the simulation. The model results are discussed in the context of new results anticipated from the Canadian small satellite mission ePOP "Enhanced Polar Outflow Probe", scheduled for launch on September 9, 2013. Sydorenko D. and R. Rankin, 'Simulation of O+ upflows created by electron precipitation and Alfvén waves in the ionosphere' submitted to Journal of Geophysical Research, 2013. Lester M., J. A. Davies, and T. K. Yeoman, 'The ionospheric response during an interval of PC5 ULF wave activity', Ann. Geophysicae, v.18, p.257-261 (2000).
Atmospheric Science Data Center
2013-04-19
article title: Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...
Magnetoacoustic Waves in Stratified Atmospheres with a Magnetic Null Point
NASA Astrophysics Data System (ADS)
Tarr, Lucas A.; Linton, Mark; Leake, James E.
2016-05-01
Magnetic fields strongly modify the propagation of MHD waves from the photosphere to the low corona, as can be shown exactly for the most simple case of a uniform magnetic field and isothermally stratrified atmosphere. For slightly more realistic scenarios, where both the atmospheric parameters and the magnetic field vary spatially, the linear MHD equations typically cannot be solved analytically. We use the Lagrangian Remap code--a nonlinear, shock-capturing MHD code--to study the propagation of initially acoustic wavepackets through a model 2D atmosphere that includes a gravitationally stratified chromosphere, transition region, and low corona. The magnetic field is formed by three photospheric concentrations and includes a single magnetic null point, resulting in an inhomogeneous system with a magnetic dome topology. A portion of an introduced wavepacket will refract toward the null due to the varying Alfven speed. Waves incident on the equipartition contour surrounding the null, where the sound and Alfven speeds coincide, partially transmit, reflect, and mode convert between branches of the local dispersion relation. Outward propagating slow modes generated during conversion become strongly concentrated along the set of field lines passing near the null. Acoustic energy is beamed back downwards towards each photospheric foot point, and upwards along one separatrix that exits the top of the numerical domain. Changes in the dominant restoring force for the wavepacket, between the Lorentz and pressure gradient forces, lead to a buildup of current density along topologically important features of the system (the null point and its four separatrices) and can drive reconnection at the null point itself. Ohmic dissipation of the currents locally heats the plasma. We find that the amount of current accumulation depends on where the centroid of a wavepacket initial crosses the photosphere, but does not simply coincide with regions of open versus closed magnetic field or
ULF Wave Electromagnetic Energy Flux into the Ionosphere: Joule Heating Implications
NASA Astrophysics Data System (ADS)
Hartinger, M.; Moldwin, M.; Zou, S.; Bonnell, J. W.; Angelopoulos, V.
2014-12-01
Ultra Low Frequency (ULF) waves - such as standing Alfven waves - are one mechanism for coupling the inner magnetosphere to the Earth's ionosphere. For example, they transfer energy from the solar wind or ring current into the Earth's ionosphere via Joule heating. In this study, we use NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates. We compare these rates to empirical models of Joule heating associated with large scale, static (on ULF wave timescales) current systems, finding that ULF waves usually contribute little to the global, integrated Joule heating rate. However, there are extreme cases when ULF waves make significant contributions to global Joule heating. Finally, we find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.
On The Role of MHD Waves in Heating Localised Magnetic Structures
NASA Astrophysics Data System (ADS)
Erdélyi, R.; Nelson, C. J.
2016-04-01
Satellite and ground-based observations from e.g. SOHO, TRACE, STEREO, Hinode, SDO and IRIS to DST/ROSA, IBIS, CoMP, STT/CRISP have provided a wealth of evidence of waves and oscillations present in a wide range of spatial scales of the magnetised solar atmosphere. Our understanding about localised solar structures has been considerably changed in light of these high spatial and time resolution observations. However, MHD waves not only enable us to perform sub-resolution magneto-seismology of magnetic waveguides but are also potential candidates to carry and damp the necessary non-thermal energy in these localised waveguides. First, we will briefly outline the basic recent developments in MHD wave theory focussing on linear waves. Next, we discuss the role of the most frequently studied wave classes, including the Alfven, and magneto-acoustic kink and sausage waves. The current theoretical (and often difficult) interpretations of the detected solar atmospheric wave and oscillatory phenomena within the framework of MHD will be shown. Last, the latest reported observational findings of potential MHD wave flux, in terms of localised plasma heating, in the solar atmosphere is discussed, bringing us closer to solve the coronal heating problem.
Quasi-linear wave-particle interactions in the earth's radiation belts
NASA Astrophysics Data System (ADS)
Villalon, Elena; Silevitch, Michel B.; Rothwell, Paul L.; Burke, William J.
1989-11-01
A self-consistent theory on the interaction of magnetospheric particles with ducted electromagnetic cyclotron waves is presented. The main contribution is to calculate the coupling coefficients for the ray equations describing the temporal evolution of the cyclotron instability. These are obtained within the framework of quasi-linear interaction of waves and particles. A set of equations is derived based on the Fokker-Planck theory of pitch angle diffusion, describing the evolution time of the number of particles in the flux tube and the energy density of waves for the interaction of Alfven waves with protons and of whistler waves with electrons. The coupling coefficients are obtained, based on a quasi-linear analysis after averaging over the particle bounce motion. It is found that the equilibrium solutions for particle fluxes and wave amplitudes are stable under small local perturbations. The reflection of the waves in the ionosphere is discussed. A stability analysis around the equilibrium solutions for precipitating particle fluxes and wave intensity indicates that an actively excited ionosphere can cause the development of explosive instabilities.
Nonlinear particle-wave kinetics in weakly unstable plasmas
Breizman, B.N.; Berk, H.L.; Pekker, M.S.
1996-12-31
With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time.
High-frequency wave normals in the solar wind
Herbert, F.; Smith, L.D.; Sonett, C.P.
1984-05-01
High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.
Shock waves in cosmic space and planetary materials
NASA Astrophysics Data System (ADS)
Miura, Y.; Kato, T.
1993-08-01
Shock waves can be produced in the Earth's atmosphere and near vacuum of cosmic space as ``collision (as shock metamorphism)'' and ``collisionless (as plasma)'' shock events, respectively. Collisionless shock forms when the ``solar wind'' hits the ``magnetic fields'' of all the planets and comets which were found by many spacecrafts and Voyager missions as intense Alfven plasma waves. Main causes to generate the collision shock waves are bombardments of the meteorites (or asteroids) against the meteorite itself (including interplanetary dust particles), the Earth, the Moon, and Mars. Material evidence of the collision shock has been studied by shock metamorphism. Because of randomly distributed fragments of meteorites and lunar regolith, shock metamorphic study to the planetary materials should require the standard impact materials from artificial and terrestrial impact craters. Collision and collisionless shocks onto the airless lunar surface produce the regolith soils with agglutinates and solar wind components. Shock waves (including space debris) are considered to play a significant role in space environments of the Space Station and the Lunar and Martian Base projects for human (or robot) activities.
Weak Turbulence Effects in Space Plasmas
NASA Astrophysics Data System (ADS)
Crabtree, Chris
2012-10-01
With the advent of multi-satellite missions such as Cluster and the Radiation Belt Storm Probes (RBSP) space plasmas have become a rich laboratory for the detailed and fundamental study of plasma turbulence. Space offers a diversity of plasma environments to directly test theory and simulation, from high-β plasmas in the solar-wind and the Earth's magnetotail, to low-β multi-species plasmas in the radiation belts and ionosphere. Recent theoretical work has demonstrated that by considering the effects of induced non-linear scattering (non-linear Landau damping, to be referred to as NL scattering) of electromagnetic waves leads to testable predictions in both storm-time radiation belt plasmas and the solar wind turbulent spectrum at scales below the ion gyroradius. In the radiation belts, VLF waves (with frequencies between the ion and electron gyrofrequencies) of sufficient amplitude may be nonlinearly scattered near the lower-hybrid surface inside the plasmasphere. Upon scattering a portion of these waves can return to the ionosphere where they may be reflected. This process can lead to the formation of a VLF wave cavity [1] that can efficiently resonate with the energetic (MeV) trapped electron population and quickly precipitate these particles into the ionosphere [2]. In the solar wind, the large-scale Alfvenic fluctuations can be shown to lead to a plateau in the electron distribution function that reduces the Landau damping of kinetic Alfven waves (KaWs). With the reduction of the linear damping the NL scattering of KAWs becomes important and leads to a non-local redistribution of energy in k-space and results in a steeper turbulent spectrum [3]. The edges of the plateaus are also unstable to electromagnetic left hand polarized ion cyclotron-Alfven waves as well as right hand polarized magnetosonic-whistler waves. These waves can pitch angle scatter the ion super-thermal velocity component to provide perpendicular ion heating [4]. [4pt] [1] C. Crabtree, L
Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code
Becoulet, A.; Moreau, D.
1992-04-01
Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, {kappa}{perpendicular}, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the {kappa}{perpendicular} upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 {times} 10{sup 19} A m{sup {minus}2}W{sup {minus}1} if one considers only the effective power going to the electrons.
Ultrafast millimeter-wave frequency-modulated continuous-wave reflectometry for NSTX
Kubota, S.; Peebles, W. A.; Nguyen, X. V.; Crocker, N. A.; Roquemore, A. L.
2006-10-15
The millimeter-wave frequency-modulated continuous-wave (FM-CW) reflectometer on NSTX is a multichannel system providing electron density profile measurements with a frequency coverage of 13-53 GHz [corresponding O-mode density range of (0.21-3.5)x10{sup 13} cm{sup -3}]. Recently, this system has been modified to allow ultrafast full-band sweeps for repetition intervals down to 10 {mu}s. For this system to function as a fluctuation diagnostic it is crucial to eliminate artifacts in the phase derivative caused by nonlinearities in the frequency sweep; we introduce a simple hardware technique for reducing these artifacts to {approx_equal}0.3%. For NSTX, the additional bandwidth ({<=}100 kHz) greatly enhances the capability of the FM-CW reflectometer as a diagnostic for low frequency magnetohydrodynamics instabilities (e.g., internal kinks, resistive wall modes, neoclassical tearing modes, as well as fast-particle driven fishbones and low frequency toroidal Alfven eigenmodes)
THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE
Howes, G. G.; Klein, K. G.; TenBarge, J. M.; Bale, S. D.; Chen, C. H. K.; Salem, C. S.
2012-07-01
We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross-correlation C({delta}n, {delta}B{sub ||}) between proton density fluctuations {delta}n and the field-aligned (compressible) component of the magnetic field {delta}B{sub ||} is negative and close to -1. The typical dependence of C({delta}n, {delta}B{sub ||}) on the ion plasma beta {beta}{sub i} is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
NASA Technical Reports Server (NTRS)
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
NASA Astrophysics Data System (ADS)
Kruse, Karsten
2017-01-01
Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.
NASA Astrophysics Data System (ADS)
Goree, John Arlin
1985-12-01
The first observations of several radio frequency wave phenomena in a magnetized plasma are presented. The backward branch of the electrostatic ion-cyclotron wave, which was previously described in reports of theoretical but not experimental work, was observed. This hot magnetized plasma mode propagates for frequencies above each harmonic of the ion-cyclotron frequency. A phased antenna structure, inserted into a neon plasma, excited the wave. An experimental dispersion relation produced from probe measurements of the mode agrees with the dispersion relation predicted using linear theory. Fast wave current drive in a toroidal plasma was observed for the first time. A loop antenna launched the fast Alfven wave in the range of high ion-cyclotron harmonics, (omega)/(OMEGA) = O(10). Signals from magnetic loop probes, Langmuir probes, and FIR laser scattering revealed the identity of the mode. Using a single antenna to launch the wave into a plasma containing a unidirectional electron beam, the circulating current increased according to the rf power applied. This increase in current occurs when the plasma is sufficiently dense to support fast wave propagation. Fast wave current drive may be a desirable method of sustaining the toroidal current in a fusion reactor. A fast wave antenna also excites slow wave resonance cones, i.e., lower-hybrid waves, as shown here for the first time. This process occurs in the same frequency range of high ion-cyclotron harmonics as fast wave current drive, and may represent an undesirable loss mechanism. A far-infrared laser scattering diagnostic was developed for detecting coherent radio frequency waves. In this system, an unusual detection method employing two lock-in amplifiers reduced noise from rf pickup and broadband noise. A criterion is presented for its use. A new type of cathode for producing plasmas, used in the fast wave experiment, consists of a lanthanum-hexaboride emissive element heated by a graphite resistor. Inserted
Plasma convection and ion beam generation in the plasma sheet boundary layer
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.
1991-01-01
Because of the dawn-dusk electric field E(dd), plasma in the magnetotail convects from the lobe toward the central plasma sheet (CPS). In the absence of space or velocity diffusion due to plasma turbulence, convection would yield a steady state distribution function f = V exp (-2/3) g(v exp 2 V exp 2/3), where V is the flux tube volume. Starting with such a distribution function and a plasma beta which varies from beta greater than 1 in the CPS to beta much smaller than 1 in the lobe, the evolution of the ion distribution function was studied considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E(dd) x B drift in the plasma sheet boundary layer (PSBL) and outer central plasma sheet (OCPS). The results show that, during the early stages after launching the KAWs, a beamlike ion distribution forms in the PSBL and at the same time the plasma density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the plasma temperature in the OCPS.
1989-06-15
following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and
Utz, Marcel; Begley, Matthew R.; Haj-Hariri, Hossein
2012-01-01
The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s−1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667
NASA Technical Reports Server (NTRS)
Heppner, J. P.; Liebrecht, M. C.; Maynard, N. C.; Pfaff, R. F.
1993-01-01
The high-latitude spatial distributions of average signal intensities in 12 frequency channels between 4 Hz and 512 kHz as measured by the ac electric field spectrometers on the DE-2 spacecraft are analyzed for 18 mo of measurements. In MLT-INL (magnetic local time-invariant latitude) there are three distinct distributions that can be identified with 4-512 Hz signals from spatial irregularities and Alfven waves, 256-Hz to 4.1-kHz signals from ELF hiss, and 4.1-64 kHz signals from VLF auroral hiss, respectively. Overlap between ELF hiss and spatial irregularity signals occurs in the 256-512 Hz band. VLF hiss signals extend downward in frequency into the 1.0-4.1 kHz band and upward into the frequency range 128-512 kHz. The distinctly different spatial distribution patterns for the three bands, 4-256 Hz, 512-1204 Hz, and 4.1-64 kHz, indicate a lack of any causal relationships between VLF hiss, ELF hiss, and lower-frequency signals from spatial irregularities and Alfven waves.
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
NASA Technical Reports Server (NTRS)
Thompson, B. J.
1999-01-01
"Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.
NASA Technical Reports Server (NTRS)
2007-01-01
With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.
A Three-Dimensional Model for Feedback Unstable ULF Waves at High Latitudes
NASA Astrophysics Data System (ADS)
Jia, Nan
Currently, the hypothesis that discrete auroral arcs are produced by fluxes of magnetospheric electrons accelerated along the ambient magnetic field into the ionosphere by linear/non-linear mechanisms associated with magnetic field-aligned currents (FACs) carried by Ultra-Low-Frequency (ULF) Alfven waves is confirmed by a large number of experimental and theoretical works. This hypothesis arises from the fact that dispersive Alfven waves have a component of the electric field parallel to the ambient magnetic field. This field can accelerate electrons into the ionosphere and produce some types of the discrete aurora. Two main questions that studies of ULF waves and the discrete aurora seek to answer are that: (1)What physical mechanisms generate the ULF waves? (2)What parameters of the coupled magnetosphere-ionosphere system define frequency, dynamics, and spatial structure of these waves? Ionospheric Feedback Instability (IFI) is one of the most self consistent physics models that aims to answer these two questions. There are several studies that use two-dimensional numerical models based on IFI to successfully explain many observations of discrete auroral arcs. However, due to the two-dimensionality of these models, many important nonlinear phenomena cannot be investigated, for example, the effect of the Hall conductivity and convective nonlinearity. In this study, a linearized, two-dimensional numerical model is first used to explain several spectral features of ULF waves detected on the ground in close vicinity to intense discrete auroral arcs. The simulation results demonstrate that the IFI inside an ionospheric density cavity provides a good, quantitative explanation of these features of ULF waves observed at high latitudes during substorm onsets. Additionally, a three-dimensional (3D) model based on IFI theory is developed. This model has been used to investigate the multiple physical effects of the FACs (aka. discrete auroral arc) carried by ULF waves in the
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2001-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2000-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.
MODE IDENTIFICATION OF MHD WAVES IN AN ACTIVE REGION OBSERVED WITH HINODE/EIS
Kitagawa, N.; Yokoyama, T.; Imada, S.; Hara, H.
2010-09-20
In order to better understand the possibility of coronal heating by MHD waves, we analyze Fe XII 195.12A data observed with the EUV Imaging Spectrometer on board Hinode. We performed a Fourier analysis of EUV intensity and Doppler velocity time series data in the active region corona. Notable intensity and Doppler velocity oscillations were found for two moss regions out of the five studied, while only small oscillations were found for five apexes of loops. The amplitudes of the oscillations were 0.4%-5.7% for intensity and 0.2-1.2 km s{sup -1} for Doppler velocity. In addition, oscillations of only the Doppler velocity were seen relatively less often in the data. We compared the amplitudes of intensity and those of Doppler velocity in order to identify MHD wave modes and calculated the phase delays between Fourier components of intensity and those of Doppler velocity. The results are interpreted in terms of MHD waves as follows: (1) few kink modes or torsional Alfven mode waves were seen in both moss regions and the apexes of loops, (2) upwardly propagating and standing slow mode waves were found in moss regions, and (3) consistent with previous studies, estimated values of energy flux of the waves were several orders of magnitude lower than that required for heating active regions.
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
Modulation of short waves by long waves. [ocean wave interactions
NASA Technical Reports Server (NTRS)
Reece, A. M., Jr.
1978-01-01
Wave-tank experiments were performed to investigate the cyclic short-wave energy changes, related in phase to an underlying long wave, which occur during active generation of the short-wave field by wind. Measurements of time series of the short-wave slope were made by a laser-optical system, where the basic long-wave parameters were controlled and wind speeds were accurately reproducible. The short-wave slope variances were found to exhibit cyclic variations that are related to the phase of the long wave. The variations result from two combined effects: (1) the short wave frequency is varied by the long-wave orbital velocity; (2) the energy of the short waves is modulated by the actions of aerodynamic and hydrodynamic couplings that operate on the short waves in a manner related to the long-wave phase.
Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave
NASA Technical Reports Server (NTRS)
Dryer, M.; Wu, S. T.; Han, S. M.
1986-01-01
A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.
NASA Astrophysics Data System (ADS)
Nath, G.; Sinha, A. K.
2017-01-01
The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.
Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Correspondence between the ULF wave power spatial distribution and auroral oval boundaries
NASA Astrophysics Data System (ADS)
Kozyreva, Olga; Pilipenko, Vyacheslav; Engebretson, Mark; Klimushkin, Dmitriy; Mager, Pavel
2016-06-01
The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries are estimated using either the British Antarctic Survey database containing IMAGE satellite UV observations of the aurora or the OVATION model based on the DMSP particle data. The "epicenter" of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. This observational result confirms previously reported effects: the spatial/temporal variations of the Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 waves, but it could be significant for the development of more adequate models.
Fast-mode magnetohydrodynamic waves in coronal holes and the solar wind
NASA Technical Reports Server (NTRS)
Fla, T.; Habbal, S. R.; Holzer, T. E.; Leer, E.
1984-01-01
Fast-mode MHD waves in the solar corona can propagate in any direction relative to the background magnetic field. In coronal holes, they refract into regions of low Alfven speed and are relatively difficult to damp. These characteristics lead to the possibility that fast-mode waves transport energy from magnetically closed coronal regions into coronal holes, that they are refracted into the central regions of coronal holes, and that they deposit most of their energy in the region of supersonic flow of high-speed solar wind streams emanating from coronal holes. To investigate whether this possibility might be realized and fast-mode waves might play a significant role in driving high-speed streams, a parameter study is carried out to examine the propagation and damping of fast-mode waves in various coronal hole models. This study indicates a broad range of coronal hole parameters for which fast-mode waves can play such a role and emphasizes the need for an improved knowledge of large-scale coronal magnetic structure, which is required before any firm conclusions can be drawn.
Is the magnetosphere a lens for MHD waves?
NASA Technical Reports Server (NTRS)
Papadopoulos, K.; Sharma, A. S.; Valdivia, J. A.
1993-01-01
A viewpoint of the magnetosphere as a lens for MHD waves is presented. Using a simple model of the variation of the Alfven speed as proportional to the local magnetic value given by the Earth's dipole field and that due to the magnetopause currents represented by a current loop, it is found that the near-Earth magnetotail, in the range 8-16 R(sub E), is the focus of the magnetospheric lens. This location is found to be quite insensitive to a wide variation of parameters. By using simple diffraction theory analysis it is found that the focal region extends about 1 R(sub E) about the neutral sheet in the north-south plane and 0.2 - 0.5 R(sub E) along the Sun-Earth line. Compressive MHD waves carried by the solar wind or created by the interaction of the wind with the magnetopause can be amplified by a factor of about 100 in the focal region and this has potentially important implications to substorm activity.
NASA Technical Reports Server (NTRS)
Estes, Robert D.; Grossi, Mario D.
1989-01-01
The problem of electromagnetic wave generation by an electrodynamic tethered satellite system is important both for the ordinary operation of such systems and for their possible application as orbiting transmitters. The tether's ionospheric circuit closure problem is closely linked with the propagation of charge-carrying electromagnetic wave packets away from the tethered system. Work is reported which represents a step towards a solution to the problem that takes into account the effects of boundaries and of vertical variations in plasma density, collision frequencies, and ion species. The theory of Alfen wave packet generation by an electrodynamic tethered system in an infinite plasma medium is reviewed, and brief summary of previous work on the problem is given. The consequences of the presence of the boundaries and the vertical nonuniformity are then examined. One of the most significant new features to emerge when ion-neutral collisions are taken into account is the coupling of the Alfven waves to the fast magnetosonic wave. This latter wave is important, as it may be confined by vertical variations in the Alfven speed to a sort of leaky ionospheric wave guide, the resonances of which could be of great importance to the signal received on the Earth's surface. The infinite medium solution for this case where the (uniform) geomagnetic field makes an arbitrary angle with the vertical is taken as the incident wave-packet. Even without a full solution, a number of conclusions can be drawn, the most important of which may be that the electromagnetic field associated with the operation of a steady-current tethered system will probably be too weak to detect on the Earth's surface, even for large tethered currents. This is due to the total reflection of the incident wave at the atmospheric boundary and the inability of a steady-current tethered system to excite the ionospheric wave-guide. An outline of the approach to the numerical problem is given. The use of
Damping of Magnetohydrodynamic Waves in Solar Prominence Fine Structures
NASA Astrophysics Data System (ADS)
Soler, Roberto
2010-05-01
analytical treatments along with numerical computations to obtain the frequency and the perturbations of the linear MHD modes. Among the studied mechanisms, we find that the most efficient one for the damping of transverse thread oscillations, interpreted as kink MHD modes, is the process of resonant absorption in the Alfven continuum. The efficiency of resonant absorption is independent of the plasma ionization degree and is consistent with the reported values of tD/P. Thermal effects, as well as magnetic diffusion, are irrelevant for the damping of transverse oscillations. Regarding longitudinal oscillations, i.e., slow MHD modes, radiative losses from the prominence plasma and ion-neutral collisions are the processes that provide the smallest damping times. Their combined effect causes an efficient attenuation of slow modes in filament threads, with tD/P compatible with the observed values. Finally, Alfven waves are also investigated, and we obtain that they are damped by ion-neutral collisions. However, the damping of Alfven waves is not very efficient because the theoretical damping times are between one and two orders of magnitude larger than the corresponding periods. All these conclusions apply for both individual and collective oscillations of threads.
ERIC Educational Resources Information Center
Hindes, Victoria A.; Hom, Keri; Brookshaw, Keith
About 46% of high school graduates enrolled in California State Universities need remedial courses in both math and English to prepare them for college level. These students typically earned B averages in their high school math and English classes. In order to address this issue, Shasta College launched Operation WAVES (Win by Achieving Valuable…
Magnetogasdynamic shock waves in a nonideal gas with heat conduction and radiation heat flux
NASA Astrophysics Data System (ADS)
Singh, K. K.; Nath, B.
2012-09-01
The purpose of this study is to obtain a self-similar solution of the problem of propagation of a magnetogasdynamic shock wave in a nonideal gas with heat conduction and radiation heat flux in the presence of a spatially decreasing azimuthal magnetic field strength. The initial density of the medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law, and the radiation is considered to be of a diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficients are assumed to vary with temperature and density. The shock is assumed to be driven by a piston moving with a variable velocity. Similarity solutions are obtained, and the effects of variation of the gas nonidealness parameter and Alfven-Mach number on the flow field behind the shock are investigated.
Contributions to the theory of magnetorotational instability and waves in a rotating plasma
Mikhailovskii, A. B. Lominadze, J. G. Churikov, A. P.; Tsypin, V. S.; Erokhin, N. N.; Erokhin, N. S.; Konovalov, S. V.; Pashitskii, E. A.; Stepanov, A. V.; Vladimirov, S. V.; Galvao, R. M. O.
2008-01-15
The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary {beta}, where {beta} is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary {beta}. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.
Nature of Kinetic Scale Fluctuations in Solar Wind Turbulence
NASA Astrophysics Data System (ADS)
Salem, C. S.; Chen, C. H.; Sundkvist, D. J.; Chaston, C. C.; Bale, S. D.; Mozer, F.
2012-12-01
We present an investigation of the nature of small-scale turbulent fluctuations in the solar wind. The nature of the dissipation range fluctuations of solar wind turbulence remains a major open question in heliospheric physics. The steepening of the observed (magnetic field) spectra at ion scales was originally attributed to ion cyclotron damping, but it was later suggested that it could well be due to the dispersive nature of fluctuations at these scales. The nature of the dispersive cascade at and below the ion scales is still debated, two leading hypothesis being that these fluctuations have characteristics of Kinetic Alfven Waves (KAW) or whistler waves. Other possible contributions from current sheets and/or kinetic instabilities have been suggested. There is mounting evidence that the fluctuations at these scales are KAW-like. In this study, we analyze several carefully selected unperturbed solar wind intervals, using magnetic field, electric field as well as density measurements from the Cluster spacecraft in order to identify the nature of the wave modes present, how frequent they are and try to determine whether one or more wave modes at different times. We examine the electric to magnetic field fluctuation ratio (δ E/δd B), the magnetic compressibility (δ B∥ /δ B) as well as density fluctuations using newly developed diagnostic techniques by Salem et al (2012) and Chen et al (2012). We look for variations of the nature and properties of these kinetic scale fluctuations with solar wind conditions, such as the plasma beta and the angle between the magnetic field and the flow velocity which controls the measured (spacecraft frame) frequency of the fluctuations. We discuss how these results would impact how the solar wind plasma is heated.
Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.
1982-08-01
A systematic study of the He isotopes, O, and Fe in six /sup 3/He-rich solar flares during the 1977--1979 period using the dE/dx versus E Ultralow Energy Wide Angle Telescope (ULEWAT) of the Max-Planck-Institut/University of Maryland experiment on ISEE 1 and ISEE 3 revealed that the /sup 3/He spectrum is generally harder than that of /sup 4/He, and the O spectrum is harder than that of Fe in the energy range 0.4--4. MeV per nucleon. At higher energies the flux of the anomalous cosmic ray component exceeds the flux of /sup 4/He and O solar particles for 1977. The spectra as measured for /sup 3/He and /sup 4/He are basically in agreement with a stationary model based on stochastic Fermi acceleration in Alfven turbulence including the corresponding rigidity-dependent diffusive particle loss. The oxygen and iron spectra, however, differ from the ones predicted by the model: the variation of the Fe/O ratio is larger than predicted. It is suggested that the occasional observation of a maximum of the /sup 3/He spectrum is due to a short time injection of /sup 3/He and a long time injection of normal composition material. Subject headings: cosmic rays: general: particle acceleration: Sun: abundances: Sun:flares
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.
2015-11-01
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.
Ignatovich, V. K.
2009-01-15
It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.