Science.gov

Sample records for alfven wave propagation

  1. Alfven Wave Propagation in Inhomogeneous Plasmas

    NASA Astrophysics Data System (ADS)

    Sears, Stephanie

    Damping of Alfven waves is one of the most likely mechanisms for ion heating in the solar corona. Density gradients have significant but poorly-understood effects on energy transfer and Alfven wave propagation in partially ionized plasmas, such as those found in the solar chromosphere. Reflection of Alfven waves at density and magnetic field gradients can give rise to turbulence which sustains particle heating. The density profile in the Hot hELIcon eXperiment (HELIX) varies strongly with radius, giving access to a wide range of Alfven dynamics across the plasma column and providing an ideal environment to observe Alfven wave-driven particle heating. A new internal wave-launching antenna, situated at the edge of the high-density core and the density-gradient region of HELIX has been used to excite low-frequency waves in argon plasma. The propagation behavior of the launched waves was measured with a small-scale (smaller than the ion gyroradius) magnetic sense coil at multiple radial locations across the plasma column (from the high-density core through the density gradient region). Time-resolved laser induced fluorescence (LIF) and Langmuir probe measurements also yield insight into the plasma response to the perturbation. This dissertation presents cross-spectral and wavelet analysis of low-frequency waves in a helicon plasma with a strong density gradient. Building on the work of Houshmandyar, shear Alfven waves were launched in a helicon plasma source with a strong density gradient. Alfven wave turbulence is suggested from phase angle and wavelet analysis of magnetic sense coil probe measurements. The perturbation wavelength derived from phase angle measurements is consistent with predictions from the full Alfven wave dispersion relation (taking electron Landua damping, electron-ion collisions, and finite frequency effects into account). Time-resolved LIF measurements across the plasma column suggest ion heating where the turbulence is strongest. Time

  2. The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves

    NASA Astrophysics Data System (ADS)

    Namikawa, T.; Hamabata, H.

    1983-04-01

    The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.

  3. Alfven Wave Propagation in Young Stellar Systems

    NASA Astrophysics Data System (ADS)

    Humienny, Ray; Fatuzzo, Marco

    Young stellar systems have disks that are threaded by magnetic field lines with an hourglass geometry. These fields funnel ionizing cosmic rays (CRs) into the system. However, the effect is offset by magnetic mirroring. An previous analysis considered how the presence of magnetic turbulence moving outward from the disk would effect the propagation of cosmic-rays, and in turn, change the cosmic-ray ionization fraction occurring within the disk. This work indicated that turbulence reduces the overall flux of cosmic-rays at the disk, which has important consequences for both chemical processes and planet formation that occur within these environments. However, the analysis assumed ideal MHD condition in which the gas is perfectly coupled to the magnetic field. We explore here the validity of this assumption by solving the full equations governing the motion of both ions and neutral within the system.

  4. Experiment to Study Alfven Wave Propagation in Plasma Loops

    NASA Astrophysics Data System (ADS)

    Kendall, Mark; Bellan, Paul

    2010-11-01

    Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.

  5. Observation of Counter Propagating Alfven Waves with Perpendicular Polarizations and the Associated Proton Kinetics

    NASA Astrophysics Data System (ADS)

    He, J.; Pei, Z. T.; Wang, L.; Tu, C. Y.; Marsch, E.; Yao, S.

    2014-12-01

    It is believed that MHD turbulence cascading is mainly caused by the collisions between Alfven waves, which propagate oppositely and are polarized perpendicularly to each other. Nonlinear interaction will vanish if the counter-propagating Alfven waves have their polarization aligned with each other. However, the Alfven waves satisfying these collision criteria have not yet been found in the solar wind observations. Here we report the existence of Alfven waves with opposite propagation and non-aligned polarization in the solar wind. In one case of anti-sunward magnetic sector, with RTN as the coordinates, the magnetic fluctuations in T-component (BT) are anti-correlated with the velocity fluctuations in T-component (VT), while BR and BN fluctuations are in positive correlation with VR and VN fluctuations, respectively. These features suggest a possible nonlinear interaction between outward propagating Alfven wave with polarization in T-direction and inward propagating Alfven wave with polarization in R&N-directions. Moreover, the associated proton kinetics shows the existence of field-aligned sunward beam rather than anti-sunward beam, which may indicate a parallel Landau heating by sunward kinetic Alfven waves. A statistical study including more cases is also conducted.

  6. Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma

    SciTech Connect

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2007-12-15

    Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves.

  7. The effect of random Alfven waves on the propagation of hydromagnetic waves in a finite-beta plasma

    NASA Technical Reports Server (NTRS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu

    1990-01-01

    Using first-order smoothing theory, Fourier analysis and perturbation methods, the evolution equation of the wave spectrum as well as the nonlinear forces generated by random Alfven waves in a finite-beta plasma with phenomenological Landau-damping effects are obtained. The effect of microscale random Alfven waves on the propagation of large-scale hydromagnetic waves is also investigated by solving the mean-field equations. It is shown that parallel-propagating random Alfven waves are modulationally stable and that obliquely propagating random Alfven waves can be modulationally unstable when the energy of random waves is converted to slow magnetoacoustic waves that can be Landau-damped, providing a dissipation mechanism for the Alfven waves.

  8. Some wave-particle effects on large-scale Alfven wave propagation and damping

    NASA Technical Reports Server (NTRS)

    Siregar, E.; Goldstein, M. L.

    1995-01-01

    Phase mixing can reduce greatly the torsional Alfven wave's dissipation length for propagation in complex magnetic field-line geometries. This phase mixing causes significant energy transfers from large to small scales where a conversion from ordered wave energy into a particle kinetic form occurs. This conversion during its initial stages is an entropy conserving process well described by Vlasov theory, Nonlinear stages of wave-particle resonance, particle trapping, and collisional resistivity are often invoked as processes eventually responsible for converting ordered wave motions into random thermal motion. Strictly speaking, this entropy producing phase cannot be described within Vlasov theory, and the large-scale effects of these microscopic events resides at the difficult frontier between generalized fluid and kinetic theories. We attempt to describe certain aspects of such resonances within the framework of fluid theory focusing on torsional Alfven wave energy transport and deposition within flux tubes.

  9. ION HEATING BY A SPECTRUM OF OBLIQUELY PROPAGATING LOW-FREQUENCY ALFVEN WAVES

    SciTech Connect

    Lu Quanming; Chen Liu

    2009-10-10

    Ion stochastic heating by a monochromatic Alfven wave, which propagates obliquely to the background magnetic field, has been studied by Chen et al. It is shown that ions can be resonantly heated at frequencies a fraction of the ion cyclotron frequency when the wave amplitude is sufficiently large. In this paper, the monochromatic wave is extended to a spectrum of left-hand polarized Alfven waves. When the amplitude of the waves is small, the components of the ion velocity have several distinct frequencies, and their motions are quasi-periodic. However, when the amplitude of the waves is sufficiently large, the components of the ion velocity have a spectrum of continuous frequencies near the ion cyclotron frequency due to the nonlinear coupling between the Alfven waves and the ion gyromotion, and the ion motions are stochastic. Compared with the case of a monochromatic Alfven wave, the threshold of the ion stochastic heating by a spectrum of Alfven waves is much lower. Even when their frequencies are only several percent of the ion cyclotron frequency, the ions can also be stochastically heated. The relevance of this heating mechanism to solar corona is also discussed.

  10. Parametric instabilities of parallel-propagating Alfven waves: Some analytical results

    NASA Technical Reports Server (NTRS)

    Jayanti, V.; Hollweg, Joseph V.

    1993-01-01

    We consider the stability of a circularly polarized Alfven wave (the pump wave) which propagates parallel to the ambient magnetic field. Only parallel-propagating perturbations are considered, and we ignore dispersive effects due to the ion cyclotron frequency. The dissipationless MHD equations are used throughout; thus possibibly important effects arising from Landau and transit time damping are omitted. We derive a series of analytical approximations to the dispersion relation using A = (Delta B/B(sub O))(exp 2) as a small expansion parameter; Delta B is the pump amplitude, and B(sub O) is the ambient magnetic field strength. We find that the plasma beta (the square of the ratio of the sound speed to the Alfven speed) plays a crucial role in determining the behavior of the parametric instabilities of the pump. If 0 less than beta less than 1 we find the familiar result that the pump decays into a forward propagating sound wave and a backward propagating Alfven wave with maximum growth rate gamma(sub max) varies A(sup 1/2), but beta cannot be too close to 0 or to 1. If beta approx. 1, we find gamma(sub max) varies A(sup 3/4), if beta greater than 1, we find gamma(sub max) varies A(sup 3/2), while if beta approx. 0, we obtain gamma(sub max) varies A(sup 1/3); moreover, if beta approx. 0 there is a nearly purely growing instability. In constrast to the familiar decay instability, for which the backward propagating Alfven wave has lower frequency and wavenumber than the pump, we find that if beta greater than or approx. equal to 1 the instability is really a beat instability which is dominated by a transverse wave which is forward propagating and has frequency and wavenumber which are nearly twice the pump values. Only the decay instability for 0 less than beta less than 1 can be regarded as producing two recognizable normal modes, namely, a sound wave and an Alfven wave. We discuss how the different characteristics of the instabilities may affect the evolution of

  11. Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands

    NASA Technical Reports Server (NTRS)

    Vinas, A. F.; Goldstein, M. L.

    1992-01-01

    This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.

  12. Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.

    2015-12-01

    Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.

  13. Small scales formation via Alfven wave propagation in compressible nonuniform media

    NASA Technical Reports Server (NTRS)

    Malara, F.; Primavera, L.; Veltri, P.

    1995-01-01

    In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.

  14. On the angle between the average interplanetary magnetic field and the propagation direction of plane large amplitude Alfven waves

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Sonett, C. P.

    1979-01-01

    The paper shows that the experimentally observed close alignment of magnetic field minimum variance direction with the average magnetic field for Alfven waves in the solar wind is consistent with theoretically predicted properties of plane large amplitude Alfven waves in the MHD approximation. The theoretical properties of these Alfven waves constrain the time averaged magnetic field to cluster around the direction of minimum variance, which is aligned with the wave normal. Thus, spacecraft magnetometer observations in the solar wind of minimum variance directions strongly peaked about the average magnetic field direction are consistent with plane large amplitude Alfven waves which have wave normals aligned with the directions of minimum variance. This does not imply that geometrical hydromagnetic calculations for Alfven wave propagation direction in the solar wind are incorrect, but there is a discrepancy between geometrical hydromagnetics theory and observations that IMF minimum variance directions tend to be aligned with the ideal Parker spiral instead of the radial direction.

  15. Effect of two ion species on the propagation of shear Alfven waves of small transverse scale

    SciTech Connect

    Vincena, S. T.; Morales, G. J.; Maggs, J. E.

    2010-05-15

    The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.

  16. Is the Alfven-wave propagation effect important for energy decay in homogeneous MHD turbulence?

    SciTech Connect

    Hossain, Murshed; Gray, Perry C.; Pontius, Duane H. Jr.; Matthaeus, William H.; Oughton, Sean

    1996-07-20

    We investigate the role of three-point decorrelation due to Alfven wave propagation in three-dimensional incompressible homogeneous MHD turbulence. By comparing numerical simulations with theoretical expectations, we have studied how this effect influences the decay of turbulent energy caused by both an external mean magnetic field and the fluctuating turbulent field. Decay is initially suppressed by a mean magnetic field, as expected, but the effect soon saturates. The decay rate does not scale with mean magnetic field for higher values. The disagreement with theoretical predictions can be accounted for by anisotropic spectral transfer. Thus, phenomenological models for energy decay that include decorrelation due to Alfvenic propagation are not substantiated. This work complements our detailed study of various models of energy decay in homogeneous MHD [Hossain et al., 1995].

  17. Propagation of large amplitude Alfven waves in the solar wind neutral sheet

    NASA Technical Reports Server (NTRS)

    Malara, F.; Primavera, L.; Veltri, P.

    1995-01-01

    Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.

  18. Electron Signatures and Alfven Waves

    NASA Technical Reports Server (NTRS)

    Andersson, Laila; Ivchenko, N.; Clemmons, J.; Namgaladze, A. A.; Gustavsson, B.; Wahlund, J.-E.; Eliasson, L.; Yurik, R. Y.

    2000-01-01

    The electron signatures which appear together with Alfven waves observed by the Freja satellite in the auroral region are reported. Precipitating electrons are detected both with and just before the wave. The observed Alfven waves must therefore be capable of accelerating electrons to higher energies than the local phase velocity of these waves in order for the electrons to move in advance of the wave. The characteristics of such electrons suggest electrons moving infront of the wave have characteristics of origin from warmer and lower density plasma while the electrons moving with the wave have characteristics of cooler and denser plasma. The pitch angle distribution of the electrons moving with the wave indicates that there is continuous acceleration of new particles by the wave, i.e. a propagating Alfven wave is the source of these electrons . A simple model of a propagating source is made to model the electrons that are moving in advance of the wave. Depending on whether accelerated electrons leave the wave above or below the altitude where the Alfven wave has the highest phase velocity, the detected electron signatures will be different; electron dispersion or potential drop like, respectively. It is shown that the Alfven wave acceleration can create electron signatures similar to inverted-V structures.

  19. NONLINEAR PROPAGATION OF ALFVEN WAVES DRIVEN BY OBSERVED PHOTOSPHERIC MOTIONS: APPLICATION TO THE CORONAL HEATING AND SPICULE FORMATION

    SciTech Connect

    Matsumoto, Takuma; Shibata, Kazunari

    2010-02-20

    We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.

  20. PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES

    SciTech Connect

    Russell, A. J. B.; Fletcher, L.

    2013-03-10

    How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.

  1. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  2. Do interplanetary Alfven waves cause auroral activity?

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron; Goldstein, Melvyn L.

    1990-01-01

    A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.

  3. Stellar winds driven by Alfven waves

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Olbert, S.

    1973-01-01

    Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.

  4. Alfven Wave Tomography for Cold MHD Plasmas

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  5. Decay of magnetic helicity producing polarized Alfven waves

    SciTech Connect

    Yoshida, Z.; Mahajan, S.M.

    1994-02-01

    When a super-Alfvenic electron beam propagates along an ambient magnetic field, the left-hand circularly polarized Alfven wave is Cherenkov-emitted (two stream instability). This instability results in a spontaneous conversion of the background plasma helicity to the wave helicity. The background helicity induces a frequency (energy) shift in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it becomes possible for a sub-Alfvenic electron beam to excite a nonsingular Alfven mode.

  6. Stationary nonlinear Alfven waves and solitons

    NASA Technical Reports Server (NTRS)

    Hada, T.; Kennel, C. F.; Buti, B.

    1989-01-01

    Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.

  7. ALFVEN SIMPLE WAVES: EULER POTENTIALS AND MAGNETIC HELICITY

    SciTech Connect

    Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D. A.

    2010-12-20

    The magnetic helicity characteristics of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulae. Two basic Alfven modes are identified: (1) the plane one-dimensional Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis with wave phase {psi} = k{sub 0}(z - {lambda}t), where k{sub 0} is the wave number and {lambda} is the group velocity of the wave and (2) the generalized Barnes simple Alfven wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (1) is analogous to the slab Alfven mode and the generalized Barnes solution (2) is analogous to the two-dimensional mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.

  8. Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations

    SciTech Connect

    Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui

    2013-09-15

    Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.

  9. Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui

    2013-09-01

    Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.

  10. Electron acceleration by inertial Alfven waves

    SciTech Connect

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when the transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.

  11. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    SciTech Connect

    Shah, H. A.; Ali, Z.; Masood, W.

    2013-03-15

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  12. Ducted kinetic Alfven waves in plasma with steep density gradients

    SciTech Connect

    Houshmandyar, Saeid; Scime, Earl E.

    2011-11-15

    Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.

  13. PULSED ALFVEN WAVES IN THE SOLAR WIND

    SciTech Connect

    Gosling, J. T.; Tian, H.; Phan, T. D.

    2011-08-20

    Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.

  14. NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS

    SciTech Connect

    Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu

    2012-02-10

    We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.

  15. Cusp Dynamics-Particle Acceleration by Alfven Waves

    NASA Technical Reports Server (NTRS)

    Ergun, Robert E.; Parker, Scott A.

    2005-01-01

    Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.

  16. Kinetic Alfven waves on auroral field lines

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1984-01-01

    It is suggested on the basis of several observations of Alfven waves near auroral arcs that kinetic Alfven waves play a significant role in the process of particle acceleration. The characteristic properties of kinetic Alfven waves are summarized according to the theoretical classifications provided by Hasegawa and Mima (1979). The resonant coupling of large-scale surface waves to kinetic Alfven waves is also discussed. It is shown that kinetic Alfven waves can explain observations of what have previously been known as 'electrostatic' shocks.

  17. Excitation of kinetic Alfven waves by resonant mode conversion and longitudinal heating of magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, A.

    1989-01-01

    The excitation of the kinetic Alfven wave by resonant mode conversion and longitudinal heating of the plasma by the kinetic Alfven wave were demonstrated on the basis of a macroscale particle simulation. The longitudinal electron current was shown to be cancelled by the ions. The kinetic Alfven wave produced an ordered motion of the plasma particles in the wave propagation direction. The electrons were pushed forward along the ambient magnetic field by absorbing the kinetic Alfven wave through the Landau resonance.

  18. The transmission of Alfven waves through the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Wright, A. N.; Schwartz, S. J.

    1989-04-01

    The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.

  19. Toroidal Alfven wave stability in ignited tokamaks

    SciTech Connect

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  20. PROPAGATING COUPLED ALFVEN AND KINK OSCILLATIONS IN AN ARBITRARY INHOMOGENEOUS CORONA

    SciTech Connect

    Pascoe, D. J.; Wright, A. N.; De Moortel, I.

    2011-04-10

    Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. We perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low {beta} plasma. We consider the cases of distorted cylindrical flux tubes and a randomly generated inhomogeneous medium. When density structuring is present, mode coupling in inhomogeneous regions leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave is observed as energy is transferred to the local Alfven mode. In all cases considered, modest changes in density were capable of efficiently converting energy from the driving footpoint motion to localized Alfven modes. We have demonstrated that mode coupling efficiently couples propagating kink perturbations to Alfven modes in an arbitrary inhomogeneous medium. This has the consequence that transverse footpoint motions at the base of the corona will deposit energy to Alfven modes in the corona.

  1. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    SciTech Connect

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  2. An Alfven wave maser in the laboratory

    SciTech Connect

    Maggs, J.E.; Morales, G.J.; Carter, T.A.

    2005-01-01

    A frequency selective Alfven wave resonator results from the application of a locally nonuniform magnetic field to a plasma source region between the cathode and anode in a large laboratory device. When a threshold in the plasma discharge current is exceeded, selective amplification produces a highly coherent ({delta}{omega}/{omega}<5x10{sup -3}), large amplitude shear Alfven wave that propagates out of the resonator, through a semitransparent mesh anode, into the adjacent plasma column where the magnetic field is uniform. This phenomenon is similar to that encountered in the operation of masers/lasers at microwave and optical frequencies. The current threshold for maser action is found to depend upon the confinement magnetic field strength B{sub 0}. Its scaling is consistent with the condition for matching the drift speed of the bulk plasma electrons with the phase velocity of the mode in the resonator. The largest spontaneously amplified signals are obtained at low B{sub 0} and large plasma currents. The magnetic fluctuations {delta}B associated with the Alfven maser can be as large as {delta}B/B{sub 0}{approx_equal}1.5% and are observed to affect the plasma current. Steady-state behavior leading to coherent signals lasting until the discharge is terminated can be achieved when the growth conditions are well-above threshold. The maser is observed to evolve in time from an initial m=0 mode to an m=1 mode structure in the transition to the late steady state. The laboratory phenomenon reported is analogous to the Alfven wave maser proposed to exist in naturally occurring, near-earth plasmas.

  3. On reflection of Alfven waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.

    1993-01-01

    We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the

  4. Emission of radiation induced by pervading Alfven waves

    SciTech Connect

    Zhao, G. Q.; Wu, C. S.

    2013-03-15

    It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.

  5. Nonlinear inertial Alfven wave in dusty plasmas

    SciTech Connect

    Mahmood, S.; Saleem, H.

    2011-11-29

    Solitary inertial Alfven wave in the presence of positively and negatively charged dust particles is studied. It is found that electron density dips are formed in the super Alfvenic region and wave amplitude is increased for the case of negatively charged dust particles in comparison with positively charged dust particles in electron-ion plasmas.

  6. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1995-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.

  7. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1994-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.

  8. Nonlinear standing Alfven wave current system at Io: Theory

    SciTech Connect

    Neubauer, F.M.

    1980-03-01

    We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.

  9. Kinetic Alfven Wave Electron Acceleration on Auroral Field Lines

    NASA Technical Reports Server (NTRS)

    Kletzing, Craig A.

    2001-01-01

    Major results of the S3-3 Langmuir sweep study are published. Studies show statistics and average density and temperature variation on auroral field lines up to 8000 km altitude. Alfven wave papers were published. Our model of Alfven wave propagation on auroral field lines was successfully extended to handle varying density and magnetic field for the inertial mode. The study showed that Alfven wave can create time-dispersed electron signatures. A study was undertaken to extend Langmuir sweep I-V curves to handle the case of an kappa electron distribution as well as Maxwellian. The manuscript is in preparation. Participated in International Space Science Institute study of Alfvenic structures which resulted in a group review paper. The proposed work was to develop an extended model of Alfven wave propagation along auroral field lines to study electron acceleration. As part of this work, a major task was to characterize density and temperature along auroral field lines by using spacecraft Langmuir sweep data. The work that was completed under this funding was successful at both tasks. Three papers have been published as part of this work and a fourth manuscript is in preparation.

  10. Alfven wave. DOE Critical Review Series

    SciTech Connect

    Hasegawa, A.; Uberoi, C.

    1982-01-01

    This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)

  11. Nonlinear evolution of astrophysical Alfven waves

    SciTech Connect

    Spangler, S.R.

    1984-11-01

    Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)

  12. Nonlinear evolution of astrophysical Alfven waves

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.

    1984-01-01

    Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.

  13. Solitary kinetic Alfven waves in dusty plasmas

    SciTech Connect

    Li Yangfang; Wu, D. J.; Morfill, G. E.

    2008-08-15

    Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.

  14. Nonlinear dynamics of the 3D FMS and Alfven wave beams propagating in plasma of ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily

    We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omegawaves are excited. Their dynamics under conditions {k_{x}}(2) >>{k_{yz}}(2,) v_{x}$<wave}/B with due account of the high order dispersive correction defined by values of plasma parameters and the angle Theta=(B,k) [2]. In another case the dynamics of the finite-amplitude Alfvén waves propagating in the ionosphere and magnetosphere near-to-parallel to the field B is described by the 3D derivative nonlinear Schrödinger (3-DNLS) equation for the magnetic field of the wave h=(B_{y}+iB_{z})/2B/1-beta/ [3]. To study the stability of multidimensional solitons in both cases we use the method developed in [2] and investigated the Hamiltonian bounding with its deformation conserving momentum by solving the corresponding variation problem. To study evolution of solitons and their collision dynamics the proper equations were being integrated numerically using the codes specially developed and described in detail in [3]. As a result, we have obtained that in both cases for a single solitons on a level with wave spreading and collapse the formation of multidimensional solitons can be observed. These results may be interpreted in terms of self-focusing phenomenon for the FMS and Alfvén waves’ beam as stationary beam formation, scattering and self-focusing of wave beam. The soliton collisions on a level with known elastic interaction can lead to formation of complex structures including the multisoliton bound states. For all cases the problem of multidimensional soliton dynamics in the ionospheric and

  15. Alfvenic waves in solar spicules

    NASA Astrophysics Data System (ADS)

    Ebadi, Hossein

    2016-07-01

    We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.

  16. Kinetic effects on global Alfven waves

    SciTech Connect

    Betti, R.

    1992-01-01

    A theoretical investigation is carried out on the effects of the kinetic particle response on global type shear-Alfven waves in tokamaks. Two kinds of wave-particle interactions have been identified: (1) resonant interaction between energetic circulating particles and high frequency Alfven waves, (2) nonresonant interaction between trapped particles and low frequency modes. The author focuses on gap modes which are discrete modes whose real frequency lies in gas of the Alfven continuum induced by geometrical effects. A new gap mode, the Ellipticity Induced Alfven Eigenmode (EAE), is induced by the ellipticity of the plasma cross section that couples the m and m + 2 poloidal harmonics. This mode is of the general class as the Toroidicity Induced Alfven Eigenmode (TAE). In configurations with finite ellipticity, the EAE (n; m, m + 2) has a global structure centered about the q = (m + 1)/n surface. In the presence of an energetic ion species any Alfven wave can be destabilized via transit resonance with circulating particles. A sufficient stability criterion is derived for energetic particle-Alfven mode. To include the stabilizing effects of the electron and ion Landau damping a general treatment using a newly derived drift kinetic description of each species is carried out. The analysis has been restricted to Alfven gap modes. Low frequency modes have been investigated using the new drift kinetic model. Focusing on the internal kink mode, the main kinetic contributions arises from trapped particles which process in the toroidal direction. The trapped bulk ions can destabilize the high frequency branch of the internal kink. The numerical solution of the dispersion relation shows that a sharp threshold in [beta][sub p] exists for the instability to grow and that stabilizing effects come from the trapped electron response.

  17. Nonlinear Evolution of Alfvenic Wave Packets

    NASA Technical Reports Server (NTRS)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  18. Cascade properties of shear Alfven wave turbulence

    NASA Technical Reports Server (NTRS)

    Bondeson, A.

    1985-01-01

    Nonlinear three-wave interactions of linear normal modes are investigated for two-dimensional incompressible magnetohydrodynamics and the weakly three-dimensional Strauss equations in the case where a strong uniform background field B0 is present. In both systems the only resonant interaction affecting Alfven waves is caused by the shear of the background field plus the zero frequency components of the perturbation. It is shown that the Alfven waves are cascaded in wavenumber space by a mechanism equivalent to the resonant absorption at the Alfven resonance. For large wavenumbers perpendicular to B0, the cascade is described by Hamilton's ray equations, dk/dt = -(first-order) partial derivative of omega with respect to vector r, where omega includes the effects of the zero frequency perturbations.

  19. The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves

    SciTech Connect

    Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.

    2010-07-15

    The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.

  20. Macroscale particle simulation of kinetic Alfven waves

    NASA Technical Reports Server (NTRS)

    Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, Akira

    1987-01-01

    Two types of simulations of the kinetic Alfven wave are presented using a macroscale particle simulation code (Tanaka and Sato, 1986) which enables individual particle dynamics to be followed in the MHD scales. In this code, low frequency electromagnetic fields are solved by eliminating high frequency oscillations such as the light modes, and the scalar potential electric field is solved by eliminating Lagrangian oscillations. The dependences of the frequency and the Landau damping on the perpendicular wavenumber were studied, and good agreement was found between simulation and theoretical predictions. Some fundamental nonlinear interactions of the kinetic Alfven wave with the particles (parallel acceleration of the electrons) were also noted.

  1. Weakening of magnetohydrodynamic interchange instabilities by Alfven waves

    SciTech Connect

    Benilov, E. S.; Hassam, A. B.

    2008-02-15

    Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.

  2. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the

  3. Nonlinear absorption of Alfven wave in dissipative plasma

    SciTech Connect

    Taiurskii, A. A. Gavrikov, M. B.

    2015-10-28

    We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.

  4. The interaction of Io's Alfven waves with the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Wright, A. N.

    1987-09-01

    A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.

  5. Modulational instability of finite-amplitude, circularly polarized Alfven waves

    NASA Technical Reports Server (NTRS)

    Derby, N. F., Jr.

    1978-01-01

    The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.

  6. Laboratory study of magnetic reconnection generated Alfven waves. Final report

    SciTech Connect

    Watts, Christopher

    2002-02-08

    This grant was funded through the Department of Energy, Office of Fusion Energy Junior Faculty Development Program. The grant funded the construction and start-up of the Articulated Large-area Plasma Helicon Array (alpha) experiment, and initial studies of Alfven wave propagation in helicon generated plasmas. The three year grant contract with Auburn University was terminated early (after two years) due to PI'S acceptance of a faculty position at New Mexico Tech. The project continues at New Mexico Tech under a different grant contract. The project met all of the second-year goals outlined in the proposal, and made progress toward meeting some of the third-year goals. The alpha facility was completed and multi-helicon operation was demonstrated. We have made initial measurements of Alfven waves in a helicon plasma source.

  7. Compressibility and cyclotron damping in the oblique Alfven wave

    SciTech Connect

    Harmon, J.K. )

    1989-11-01

    Compressibility, magnetic compressibility, and damping rate are calculated for the obliquely propagating Alfven shear wave in high- and low-beta Vlasov plasmas. There is an overall increase in compressibility as beta is reduced from {beta} = 1 to {beta}{much lt}1. For high obliquity {theta} and low frequency ({omega} {much lt} {Omega}{sub p}) the compressibility C follows a k{sup 2} wave number dependence; for high {theta} and low {beta} the approximation C(k) {approx} k{sub n}{sup 2} {identical to} (kV{sub A}/{Omega}{sub p}){sup 2} holds for wave numbers up to the proton cyclotron resonance, where {Omega}{sub p} is the proton cyclotron frequency and V{sub A} is the Alfven velocity. Strong proton cyclotron damping sets in at k{sub n} of the order of unity; the precise k{sub n} position of the damping cutoff increases with decreasing {beta} and increasing {theta}. Hence compressibility can exceed unity near the damping cutoff for high-{theta} waves in a low-{beta} plasma. The magnetic compressibility of the oblique Alfven wave also has a k{sup 2} dependence and can reach a maximum value of the order of 10% at high wave number. It is shown that Alfven compressibility could be the dominant contributor to the near-Sun solar wind density fluctuation spectrum for k>10{sup {minus}2} km{sup {minus}1} and hence might cause some of the flattening at high wave number seen in radio scintillation measurements. This would also be consistent with the notion that the observed density spectrum inner scale is a signature of cyclotron damping.

  8. Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Lu, Quanming; Li, Xing; Shan, Lican; Wang, Shui

    2013-07-01

    Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.

  9. Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2007-01-01

    Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.

  10. Nonlinear waves in an Alfven waveguide

    SciTech Connect

    Dmitrienko, I.S.

    1992-06-01

    A nonlinear Schroedinger equation is derived for the envelopes of weakly nonlinear quasilongitudinal (k{sub 1}<{radical}{omega}/{omega}{sub i}k{sub {parallel}}) Alfven waves in a waveguide, the existence of which is ensured by the presence of ion inertia (m{sub i}{ne}0) in a plasma with a transverse density gradient. It is shown that the nonlinear properties of such waves are associated with the presence of transverse structure in the waveguide modes. Estimates show that weakly nonlinear processes can have a significant effect on the dynamics of Pc 1 geomagnetic pulsations. 7 refs.

  11. Ulysses Observations of Alfven and Magnetosonic Waves at High Latitude

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1997-01-01

    Ulysses observations provide a unique opportunity to study diverse problems related to Alfven and magnetosonic waves. The large amplitude of the Alfven waves influences the distribution functions of the spiral angle, the azimuthal field component and, possibly, the radial component such that their averages are not equal to their most probable values.

  12. LARGE-AMPLITUDE ALFVEN WAVE IN INTERPLANETARY SPACE: THE WIND SPACECRAFT OBSERVATIONS

    SciTech Connect

    Wang Xin; He Jiansen; Tu Chuanyi; Zhang Lei; Marsch, Eckart; Chao, Jih-Kwin

    2012-02-20

    We present, for the first time, measurements of arc-polarized velocity variations together with magnetic field variations associated with a large-amplitude Alfven wave as observed by the Wind satellite. The module of the magnetic field variance is larger than the magnitude of the average magnetic field, indicating the large amplitude of these fluctuations. When converting to the deHoffman-Teller frame, we find that the magnetic field and velocity vector components, in the plane perpendicular to the minimum-variance direction of the magnetic field, are arc-polarized, and their tips almost lie on the same circle. We also find that the normalized cross helicity and Alfven ratio of the wave are both nearly equal to unity, a result which has not been reported in previous studies at 1 AU. It is worthy to stress here that pure Alfven waves can also exist in the solar wind even near the Earth at 1 AU, but not only near 0.3 AU. Further study could be done to help us know more about the properties of pure Alfven wave at 1 AU that could not be figured out easily before because of the contaminations (e.g., Alfven waves propagating in different directions, magnetic structures, and other compressional waves) on previously reported Alfven wave cases.

  13. Alfven waves and associated energetic ions downstream from Uranus

    SciTech Connect

    Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )

    1991-02-01

    The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.

  14. Emission of Alfven Waves by Planets in Close Orbits

    NASA Astrophysics Data System (ADS)

    MacGregor, Keith B.; Pinsonneault, M. H.

    2011-01-01

    We examine the electrodynamics of a conducting planet orbiting within a magnetized wind that emanates from its parent star. When the orbital motion differs from corotation with the star, an electric field exists in the rest frame of the planet, inducing a charge separation in its ionosphere. Because the planet is immersed in a plasma, this charge can flow away from it along the stellar magnetic field lines it successively contacts in its orbit. For sufficiently rapid orbital motion, a current system can be formed that is closed by Alfvenic disturbances that propagate along field lines away from the planet. Using a simple model for the wind from a Sun-like star, we survey the conditions under which Alfven wave emission can occur, and estimate the power radiated in the form of linear waves for a range of stellar, planetary, and wind properties. For a Jupiter-like planet in a close (a < 0.10 AU) orbit about a solar-type star, the emitted wave power can be as large as 1027 erg/s. While only a small influence on the planet's orbit, a wave power of this magnitude may have consequences for wind dynamics and localized heating of the stellar atmosphere. NCAR is sponsored by the NSF.

  15. Gravitational damping of Alfven waves in stellar atmospheres and winds

    NASA Technical Reports Server (NTRS)

    Khabibrakhmanov, I. K.; Mullan, D. J.

    1994-01-01

    We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.

  16. Parametric Instabilities of Alfven Waves in the Solar Wind.

    NASA Astrophysics Data System (ADS)

    Jayanti, Venku Babu

    1995-01-01

    We consider the stability of a circularly-polarized Alfven wave (the pump wave) propagating along a uniform ambient magnetic field B_{rm O}. The system is linearly perturbed to study the stability of the Alfven wave. The perturbations are also assumed to propagate along the ambient field. Four different problems are addressed relating to the stability of the Alfven wave. The first involves using Floquet's theorem to obtain a dispersion relation for studying the stability. The result is a hierarchy of dispersion relations. However, all the dispersion relations are found to be equivalent. This technique showed that some results of other workers are incorrect. This method is very useful to obtain a dispersion relation for obliquely propagating perturbations. The second problem is to obtain analytical approximations to the dispersion relation using A = (Delta B/BO)^2 as a small expansion parameter; DeltaB is the pump amplitude. The analysis shows the crucial role played by plasma beta ( beta) in determining the behavior of the parametric instabilities of the pump. Expressions for the growth rates are presented for four ranges of beta. The polarizations are also computed to give some physical insight into the properties of the daughter waves (the modes generated as a result of the instability are called daughter waves). The third problem is to study the effects of streaming He ^{++}. The growth rates for new instabilities due to streaming He^{++ } are presented as a function of plasma beta, pump wave frequency, and DeltaB. The studies show that these new instabilities could compete with the well known decay instability. The final problem is to develop a methodology to study kinetic effects on the instabilities. This was done by breaking the plasma into beams, and treating each beam as a fluid. The nonlinear fluid equations are solved iteratively to obtain the perturbed densities and velocities. These are then used to derive the kinetic dispersion relation for the decay

  17. HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.

    2011-07-20

    A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.

  18. Modulational and decay instabilities of Alfven waves - Effects of streaming He(2+). [solar wind application

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.; Esser, R.; Jayanti, V.

    1993-01-01

    The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.

  19. Generation of Non-Propagating Electromagnetic-Plasma Structures and Formation of Quasi-Static and Alfvenic Discrete Auroras

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2013-12-01

    The nonlinear interaction of incident and reflected Alfven wave packets in auroral acceleration regions can create non-propagating electromagnetic-plasma structures, such as transverse Alfvenic double layers and charge holes. These dynamical structures are often characterized by localized strong electrostatic electric fields, localized density cavities and enhanced magnetic or mechanical stresses, and are responsible for auroral particle acceleration and the formation of both Alfvenic and quasi-static inverted-V discrete auroras. Similar electromagnetic-plasma structures should also be generated in other cosmic plasmas, and would constitute effective high energy accelerators of charged particles in cosmic plasmas.

  20. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  1. WINDS FROM LUMINOUS LATE-TYPE STARS. II. BROADBAND FREQUENCY DISTRIBUTION OF ALFVEN WAVES

    SciTech Connect

    Airapetian, V.; Ofman, L.; Carpenter, K. G.

    2010-11-10

    We present the numerical simulations of winds from evolved giant stars using a fully nonlinear, time-dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully nonlinear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of the Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband nonlinear Alfven waves can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities, and the observed mass-loss rates. Comparison of the calculated mass-loss rates with the empirically determined mass-loss rate for {alpha} Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  2. ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2013-01-20

    A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.

  3. Klein-Gordon equation and reflection of Alfven waves in nonuniform media

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.

    1992-01-01

    A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.

  4. Possible evidence for coronal Alfven waves

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.; Bird, M. K.; Volland, H.; Edenhofer, P.; Stelzried, C. T.; Seidel, B. L.

    1982-01-01

    A statistical ray analysis is used to analyze observed electron content and Faraday rotation fluctuations in the 2.29 GHz S band carrier signals of the two Helios spacecraft probing the magnetic and density structures of the solar corona inside 0.05 AU. It is found that (1) the observed Faraday rotation fluctuations cannot be due only to electron density fluctuations in the corona, unless the coronal magnetic field is about five times stronger than suggested by current estimates; and (2) the observed Faraday rotation fluctuations are consistent with the hypothesis that the sun radiates Alfven waves whose energies are great enough to heat and accelerate high-speed solar wind streams.

  5. Ground observations of kinetic Alfven waves

    SciTech Connect

    Kloecker, N.; Luehr, H.; Robert, P.; Korth, A.

    1985-01-01

    Ground-based observations with the EISCAT magnetometer of locally confined intense drifting current systems and Geos-2 measurements during four events in November and December 1982 are examined. In the ground-based measurements near the Harang discontinuity, the events are characterized by strong pulsations with amplitudes in the horizontal component up to 1000 nT and periods of about 300 s and longer. They occur in the evening hours adjacent to the poleward side of the discontinuity with the onset of a substorm; at the same time, the inner edge of the plasma sheet passes the Geos-2 position, magnetically conjugate to ground stations. It is shown that the events can be explained in terms of kinetic Alfven waves. 8 references.

  6. Stellar winds with non-WKB Alfven waves 1: Wind models for solar coronal conditions

    NASA Astrophysics Data System (ADS)

    MacGregor, K. B.; Charbonneau, P.

    1994-07-01

    We have constructed numerical models for stationary, wind-type outflows that include treatment of the force produced by propagating Alfven waves. We make no assumptions regarding the relative sizes of the wavelengths of such disturbances and the scale lengths that characterize the variation of the physical properties of the expanding stellar atmosphere. Consequently, our models take account the process of Alfven wave reflection, and provide for dynamical effects arising from the simultaneous presence of outward and inward traveling waves in the wind. For physical conditions like those prevailing in the outer solar corona and wind, we find that even relatively high frequency, short wavelength waves can suffer some reflection from the gradient in Alfven speed at the vase of the flow. Among the consequences of the interaction between outward and inward directed perturbations in the sub-Alfvenic portion of the wind is a reduction in the magnitude of the time-averaged wave force relative to its value in the Wentzel-Kramer-Brillouin (WKB) (i.e., short-wavelenght) limit. As a result, the flow velocities of our models interior to the Alfven radius are smaller than those of corresponding WKB models. For models containing very low frequency, long wavelength waves, a substantial amount of wave reflection can also take place in the super-Alvenic portion of the wind. The resulting modifications to the spatial dependences of the eave magnetic and velocity amplitudes can lead to a wave force whose magnitude at large distances exceeds that of an equivalent WKB solution.

  7. Coupling of axial plasma jets to compressional Alfven waves

    NASA Astrophysics Data System (ADS)

    Vincena, Stephen; Gekelman, Walter

    2009-11-01

    The coupling of mass, energy, and momentum from a localized, dense, and rapidly expanding plasma into a large-scale magnetized background plasma is central to understanding many physical processes; these include galactic jets, coronal mass ejections, tokamak pellet fueling, high-altitude nuclear detonations, chemical releases in the ionosphere, and supernovae. The large-scale magnetized plasmas are capable of supporting Alfv'en waves, which mediate the flow of currents and associated changes of magnetic topology on the largest size scales of the external system. We present initial results from a laboratory experiment wherein a fast-moving, laser-produced plasma (LPP) is allowed to propagate along the magnetic field lines of a pre-existing plasma column (17m long by 60 cm diameter). The LPP is generated using a 1J, 8ns Nd:YAG laser fired at a graphite target. The laser is pulsed along with the background plasma at 1Hz. This work focuses on the coupling of the LPP to compressional Alfv'en waves in the background plasma. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device.

  8. Effect of Dust Grains on Solitary Kinetic Alfven Wave

    SciTech Connect

    Li Yangfang; Wu, D. J.; Morfill, G. E.

    2008-09-07

    Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.

  9. The Source of Alfven Waves That Heat the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.; Berger, M. A.

    1998-01-01

    We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.

  10. Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    This paper presents a numerical study of the time evolution of plane, cosmic-ray modified shocks with magnetic field parallel to the shock normal, based on the diffusive shock acceleration formalism and including the effects from the finite propagation speed and energy of Alfven waves responsible for controlling the transport of the cosmic rays. The simulations discussed are based on a three-fluid model for the dynamics, but a more complete formalism is laid out for future work. The results of the simulations confirm earlier steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and the gas sound speed are comparable, i.e., when the plasma and magnetic pressures are similar. It is also clear, however, that the impact of Alfven transport effects, which tend to slow shock evolution and reduce the time asymptotic cosmic-ray pressure in the shock, is strongly dependent upon uncertain details in the transport models. Both cosmic-ray advection tied to streaming Alfven waves and dissipation of wave energy are important to include in the models. Further, Alfven transport properties on both sides of the shock are also influential.

  11. Transmission of Alfven waves through the earth's bow shock - Theory and observation

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1978-01-01

    From both theoretical and experimental bases, the transmission of Alfven waves through the bow shock is investigated. The theory of Alfven wave transmission through fast MHD shocks is extended to all cases of incident wave vectors. Particular consideration is given to Alfven waves propagating parallel to the ambient magnetic field with field perturbations polarized in the plane formed by the ambient magnetic field and the shock normal. An analysis is also made of magnetic field and plasma data from Explorer-35 in the vicinity of the bow shock. It is suggested that hydromagnetic waves are present in all of the 14 shock crossings studied, and that in upstream regions of at least 6 crossings, predominantly Alfvenic fluctuations exist. Average amplitudes of these fluctuations are measured on either side of the shock and the enhancement is measured by comparing their levels. Theoretical and experimental findings are compared and the apparent discrepancy in amplification factors may be explained by the strong damping of any transmitted magnetoacoustic modes downstream with relatively little damping of any transmitted Alfven waves.

  12. Alfven wave filamentation and dispersive phase mixing

    SciTech Connect

    Sulem, P. L.; Passot, T.; Laveder, D.; Borgogno, D.

    2009-11-10

    The formation of three-dimensional magnetic structures from quasi-monochromatic left-hand polarized dispersive Alfven waves, under the effect of transverse collapse and/or the lensing effect of density channels aligned with the ambient magnetic field is discussed, both in the context of the usual Hall-MHD and using a fluid model retaining linear Landau damping and finite Larmor radius corrections. It is in particular shown that in a small-{beta} plasma (that is stable relatively to the filamentation instability in the absence of inhomogeneities), a moderate density enhancement leads the wave energy to concentrate into a filament whose transverse size is prescribed by the dimension of the channel, while for a strong density perturbation, this structure later on evolves to thin helical ribbons where the strong gradients permit dissipation processes to become efficient and heat the plasma. The outcome of this 'dispersive phase mixing' that leads to small-scale formation on relatively extended regions contrasts with the more localized oblique shocks formed in the absence of dispersion. Preliminary results on the effect of weak collisions that lead to an increase of the transverse ion temperature are also briefly mentioned.

  13. Nonlinear evolution of Alfven waves in a finite beta plasma

    SciTech Connect

    Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )

    1989-12-01

    A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.

  14. Mean-field magnetohydrodynamics associated with random Alfven waves in a plasma with weak magnetic diffusion

    NASA Astrophysics Data System (ADS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu

    1988-02-01

    Using first-order smoothing theory, Fourier analysis and perturbation methods, a new equation is derived governing the evolution of the spectrum tensor (including the energy and helicity spectrum functions) of the random velocity field as well as the ponderomotive and mean electromotive forces generated by random Alfven waves in a plasma with weak magnetic diffusion. The ponderomotive and mean electromotive forces are expressed as series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of the random velocity field. The effect of microscale random Alfven waves, through ponderomotive and mean electromotive forces generated by them, on the propagation of large-scale Alfven waves is also investigated by solving the mean-field equations, including the transport equation of the helicity spectrum function.

  15. Enhanced damping of Alfven waves in the solar corona by a turbulent wave spectrum

    NASA Technical Reports Server (NTRS)

    Kleva, Robert G.; Drake, J. F.

    1992-01-01

    The effect of a background spectrum of Alfven waves on the rate of dissipation of a test shear Alfven wave is numerically calculated. The results demonstrate that as the classical resistivity eta and classical viscosity mu become small, the damping rate of the Alfven wave remains large and depends only on the amplitude for the scalar potential of the wave spectrum and the wavenumber of the Alfven wave. The damping rate is virtually independent of eta and mu. The wave spectrum need not be turbulent or stochastic to affect the damping rate. The dissipation rate is nonlinear enhanced by nonstochastic spectra as well as by stochastic spectra if two conditions are met. First, the perpendicular magnetic field associated with Alfven wave spectrum must exceed a certain collision-frequency threshold and second, for nonstochastic spectra only, the magnetic field must exceed a threshold proportional to the parallel wavenumber of the shear Alfven wave. These conditions can be easily satisfied in the solar corona.

  16. THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING

    SciTech Connect

    Antolin, P.; Shibata, K. E-mail: shibata@kwasan.kyoto-u.ac.j

    2010-03-20

    In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. New observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfven wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s{sup -1}) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several

  17. MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVEN WAVES IN STRATIFIED SOLAR WAVEGUIDES

    SciTech Connect

    Verth, G.; Goossens, M.; Erdelyi, R. E-mail: Marcel.Goossens@wis.kuleuven.b

    2010-05-10

    There have recently been significant claims of Alfven wave observation in the solar chromosphere and corona. We investigate how the radial and longitudinal plasma structuring affects the observational properties of torsional Alfven waves in magnetic flux tubes for the purposes of solar magnetoseismology. The governing magnetohydrodynamic equations of these waves in axisymmetric flux tubes of arbitrary radial and axial plasma structuring are derived and we study their observable properties for various equilibria in both thin and finite-width magnetic flux tubes. For thin flux tubes, it is demonstrated that observation of the eigenmodes of torsional Alfven waves can provide temperature diagnostics of both the internal and surrounding plasma. In the finite-width flux tube regime, it is shown that these waves are the ideal magnetoseismological tool for probing radial plasma inhomogeneity in solar waveguides.

  18. Effects of ion-neutral collisions on Alfven waves: The presence of forbidden zone and heavy damping zone

    SciTech Connect

    Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.

    2013-03-15

    Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.

  19. Surface Alfven Wave Contribution to Coronal Heating in a Wave-Driven Solar Wind Model

    NASA Astrophysics Data System (ADS)

    Evans, Rebekah M.; Opher, M.; Oran, R.; Sokolov, I. V.

    2010-05-01

    We present results from the development of a solar wind model driven by Alfven waves with realistic damping mechanisms. We investigate the contribution of surface Alfven wave damping to the heating of the corona and acceleration of the solar wind. These waves are present and damp in regions of strong gradients in density or magnetic field (e.g., the border between open and closed magnetic fields). Recently Oran et al. (2009) implemented a first principle solar wind model driven by a spectrum of Alfven waves into the Space Weather Modeling Framework. The wave transport equation, including wave advection and dissipation, is coupled to the MHD equations for the wind. The waves contribute to the momentum and energy of the wind through the action of wave pressure. Here we extend this model to include surface Alfven wave damping as a dissipation mechanism, considering waves with frequencies lower than those damped in the chromosphere and on the order of those dominating the heliosphere (0.0001 to 100 Hz.) We demonstrate the influence of the damping by quantifying the differences between a solution that includes surface Alfven wave damping and one driven solely by Alfven wave pressure. We relate to possible observational signatures of heat transfer by surface Alfven wave damping. This work is the first to study surface Alfven waves self-consistently as an energy driven for the solar wind in a 4D (three in space and one in frequency) environment. This work is supported by the NSF CAREER Grant.

  20. Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence

    SciTech Connect

    Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.

    2012-08-15

    The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.

  1. Super-alfvenic propagation of cosmic rays: The role of streaming modes

    NASA Technical Reports Server (NTRS)

    Morrison, P. J.; Scott, J. S.; Holman, G. D.; Ionson, J. A.

    1980-01-01

    Numerous cosmic ray propagation and acceleration problems require knowledge of the propagation speed of relativistic particles through an ambient plasma. Previous calculations indicated that self-generated turbulence scatters relativistic particles and reduces their bulk streaming velocity to the Alfven speed. This result was incorporated into all currently prominent theories of cosmic ray acceleration and propagation. It is demonstrated that super-Alfvenic propagation is indeed possible for a wide range of physical parameters. This fact dramatically affects the predictions of these models.

  2. Ion temperature in plasmas with intrinsic Alfven waves

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-10-01

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.

  3. Ion temperature in plasmas with intrinsic Alfven waves

    SciTech Connect

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-10-15

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.

  4. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  5. High-resolution sounding rocket observations of large-amplitude Alfven waves

    NASA Technical Reports Server (NTRS)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Mozer, F. S.

    1990-01-01

    Shear Alfven waves with amplitudes greater than 100 mV/m were observed on two recent sounding rocket flights. The largest waveforms are best described as a series of step functions, rather than as broadband noise or as single frequency waves. Complete two-dimensional E and B measurements at 4-ms time resolution were made, showing a downward propagation direction and implying insignificant reflection from the ionosphere at frequencies greater than 1 Hz. Intense, field-aligned, low-energy electron fluxes accompany the waves. Acceleration of these electrons by the Alfven waves is shown to be feasible. The waves in at least one case have a sufficently large ponderomotive potential to generate the observed density fluctuations of order one.

  6. Reflection of Alfven waves from boundaries with different conductivities

    SciTech Connect

    Leneman, D.

    2007-12-15

    The reflection of Alfven waves from the ionosphere plays a crucial role because the reflected wave can reduce or enhance the electric field pattern of the incident wave. The ionosphere is typically treated as a conducting surface, which has a height integrated Pederson conductivity. This approximation is appropriate in considering the reflection of Alfven waves because the wavelengths along the magnetic field are large compared to the height of the ionosphere. Shear Alfven wave reflection experiments have been performed in the large plasma device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. of Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. A single frequency wave is launched from an antenna and reflects from a large plate inserted into the plasma column. By alternatively using a conducting and an insulating plate, the two extremes of conductivity relative to the Alfven conductivity, 1/({mu}{sub o}v{sub A}) are tested. The data are compared with the expected theoretical behavior of the interference pattern of incident and reflected waves. Perhaps due to experimental effects, the conducting reflector is found to behave in much the same fashion as the insulator.

  7. First Results of PIC Modeling of Kinetic Alfven Wave Dissipation

    NASA Technical Reports Server (NTRS)

    Chulaki, Anna; Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.

  8. Resonant Alfven wave instabilities driven by streaming fast particles

    SciTech Connect

    Zachary, A.

    1987-05-08

    A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.

  9. Quantum effects on compressional Alfven waves in compensated semiconductors

    SciTech Connect

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.

  10. On the kinetic dispersion for shear Alfven waves

    SciTech Connect

    Lysak, R.L.; Lotko, W.

    1996-03-01

    Kinetic Alfven waves have been invoked is association with auroral currents and particle acceleration since the pioneering work of Hasegawa. However, to date, no work has considered the dispersion relation including the full kinetic effects for both electrons and ions. Results from such a calculation are presented, with emphasis on the role of Landua damping in dissipating Alfven waves which propogate from the warm plasma of the outer magnetosphere to the cold plasma present in the ionosphere. It is found that the Landua damping is not important when the perpendicular wavelength is larger than the ion acoustic gyroradius and the electron inertial length. In addition, ion gyroradius effects lead to a reduction in the Landua damping by raising the parallel phase velocity of the wave above the electron thermal speed in the short perpendicular wavelength regime. These results indicate that low-frequency Alfven waves with perpendicular wavelengths greater than the order of 10 km when mapped to the ionosphere will not be significantly affected by Landau damping. While these results based on the local dispersion relation, are strictly valid only for short parallel wavelength Alfven waves, they do give an indication of the importance of Landua damping for longer parallel wavelength waves such as field line resonances. 26 refs., 5 fig.

  11. A new way to convert Alfven waves into heat in solar coronal holes - Intermittent magnetic levitation

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.

  12. A PARALLEL-PROPAGATING ALFVENIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND

    SciTech Connect

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.; Maruca, Bennett A. E-mail: s.bourouaine@unh.edu E-mail: bmaruca@ssl.berkeley.edu

    2013-08-10

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron waves are driven unstable by an isotropic (T{sub {alpha}} = T{sub Parallel-To {alpha}}) population of alpha particles drifting parallel to the magnetic field at an average speed U{sub {alpha}} with respect to the protons. We derive an approximate analytic condition for the minimum value of U{sub {alpha}} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is {approx_equal} 5% of the proton number density and the two species have similar thermal speeds, the instability requires that {beta}{sub p} {approx}> 1, where {beta}{sub p} is the ratio of the proton pressure to the magnetic pressure. For 1 {approx}< {beta}{sub p} {approx}< 12, the minimum U{sub {alpha}} needed to excite this instability ranges from 0.7v{sub A} to 0.9v{sub A}, where v{sub A} is the Alfven speed. This threshold is smaller than the threshold of {approx_equal} 1.2v{sub A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at {beta}{sub p} {approx}> 0.5. We discuss the role of the parallel Alfvenic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the Wind spacecraft's Faraday cups and show that the U{sub {alpha}} values measured in solar-wind streams with T{sub {alpha}} Almost-Equal-To T{sub Parallel-To {alpha}} are approximately bounded from above by the threshold of the parallel Alfvenic instability.

  13. Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma

    SciTech Connect

    Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas; Rudakov, Leonid

    2012-10-15

    It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

  14. Theory of Alfven wave heating in general toroidal geometry

    SciTech Connect

    Tataronis, J.A.; Salat, A.

    1981-09-01

    A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.

  15. Linear and non-linear numerical simulations of poloidal Alfven waves

    NASA Astrophysics Data System (ADS)

    Ribeiro, A.

    2013-05-01

    Among the many of numerical simulations of MHD turbulence, few studies had been made of Alfven waves interacting with realistic boundaries. Thus, we have developed a novel hybrid spectral/finite element code, which is capable of simulate properly realistic boundaries properties. Our model is based on a Fourier decompositions of all variables in the azimuthal direction and on a finite element projection in the meridian plan. In order to simulate realistic boundary conditions for the magnetic field we solve the induction equation enforcing continuity of the magnetic field H at the interface with the external insulating medium through a Interior Penalty Galerkin method (IPG) [1]. I will present the results of our investigation of Alfven waves propagating in a cylinder filled of liquid metal submitted to an axial magnetic field. Poloidal Alfven waves are excited magnetically by imposing an azimuthal current pulse at the bottom of the cylinder. In the linear axisymmetric model we find a good agreement with previous experiments in liquid metals by Lundquist and by Lenhert and more recently by Alboussiere et al [2]. This axisymmetric study is extended to the non linear regime, where the amplitudes of the perturbations are comparable to the external applied magnetic field,in this conditions a complex response is found due to waves waves interactions. [1] J. L. Guermond, J.L Leorat, F. Luddens, C. Nore, A. Ribeiro. Effects of discontinuous magnetic permeability on magnetodynamic problems, Journal of Computational Physics Volume 230, Issue 16, 10 July 2011, Pages 6299 -- 6319. [2] T. Alboussiere, P. Cardin, F. Debray, H. C. Nataf, F. Plunian, A. Ribeiro, D. Schmitt, Experimental evidence of Alfven wave propagation in a Gallium alloy, Physics of fluids, 2011, vol. 23, nb 9.

  16. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  17. Effects of unequal particle number densities on Alfven waves

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1989-01-01

    Analytic plasma theory and numerical solutions of the dispersion equation are used to show that the assumption that the linear properties of the waves are determined by a charge-neutral plasma in the absence of the nonthermal particles, while the nonthermal particles cause growth or additional damping superposed onto the background, is seriously flawed even for stable plasmas. Even when the nonthermal particles do not contribute significantly to the dispersion equation, unequal thermal electron and ion number densities (due to the presence of the nonthermal particles) may cause fundamental low wave number modifications to the Alfven modes, including the creation of a new resonance and severely modified dispersion. These results are found for both cold and warm plasmas. Previous work on Alfven waves should be reevaluated in view of these results.

  18. Cherenkov radiation of shear Alfven waves in plasmas with two ion species

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2012-09-15

    A calculation is presented of the radiation pattern of shear Alfven waves generated by a burst of charged particles in a charge-neutral plasma with two-ions of differing charge-to-mass ratios. The wake pattern is obtained for the inertial and kinetic regimes of wave propagation. Due to the presence of two ion-species, the Alfven waves propagate within two different frequency bands separated by a gap. One band is restricted to frequencies below the cyclotron frequency of the heavier species and the other to frequencies between the ion-ion hybrid frequency and the cyclotron frequency of the lighter species. The radiation pattern in the lower frequency band is found to exhibit essentially the same properties reported in a previous study [Van Compernolle et al., Phys. Plasmas 15, 082101 (2008)] of a single species plasma. However, the upper frequency band differs from the lower one in that it always allows for the Cherenkov radiation condition to be met. The methodology is extended to examine the Alfvenic wake of point-charges in the inertial and adiabatic regimes. The adiabatic regime is illustrated for conditions applicable to fusion-born alpha particles in ITER.

  19. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  20. Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection

    SciTech Connect

    Ma, Z.W.; Lee, L.C.; Otto, A.

    1995-07-01

    The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a large portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.

  1. Investigation of an ion-ion hybrid Alfven wave resonator

    SciTech Connect

    Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.

    2013-01-15

    A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.

  2. Ion stochastic heating by obliquely propagating magnetosonic waves

    SciTech Connect

    Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui

    2012-06-15

    The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.

  3. Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments

    SciTech Connect

    Boldyrev, Stanislav; Perez, Jean Carlos

    2013-11-29

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the

  4. POSSIBLE EVIDENCE OF ALFVEN-CYCLOTRON WAVES IN THE ANGLE DISTRIBUTION OF MAGNETIC HELICITY OF SOLAR WIND TURBULENCE

    SciTech Connect

    He Jiansen; Tu Chuanyi; Yao Shuo; Tian Hui; Marsch, Eckart

    2011-04-20

    The fluctuating magnetic helicity is considered an important parameter in diagnosing the characteristic modes of solar wind turbulence. Among them is the Alfven-cyclotron wave, which is probably responsible for the solar wind plasma heating, but has not yet been identified from the magnetic helicity of solar wind turbulence. Here, we present the possible signatures of Alfven-cyclotron waves in the distribution of magnetic helicity as a function of {theta}{sub VB}, which is the angle between the solar wind velocity and local mean magnetic field. We use magnetic field data from the STEREO spacecraft to calculate the {theta}{sub VB} distribution of the normalized reduced fluctuating magnetic helicity {sigma}{sub m}. We find a dominant negative {sigma}{sub m} for 1 s < p < 4 s (p is time period) and for {theta}{sub VB} < 30 deg. in the solar wind outward magnetic sector, and a dominant positive {sigma}{sub m} for 0.4 s < p < 4 s and for {theta}{sub VB}>150 deg. in the solar wind inward magnetic sector. These features of {sigma}{sub m} appearing around the Doppler-shifted ion-cyclotron frequencies may be consistent with the existence of Alfven-cyclotron waves among the outward propagating fluctuations. Moreover, right-handed polarized waves at larger propagation angles, which might be kinetic Alfven waves or whistler waves, have also been identified on the basis of the {sigma}{sub m} features in the angular range 40 deg. < {theta}{sub VB} < 140 deg. Our findings suggest that Alfven-cyclotron waves (together with other wave modes) play a prominent role in turbulence cascading and plasma heating of the solar wind.

  5. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: Low beta

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Goldstein, M. L.

    1994-01-01

    The nature of turbulent cascades arising from the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation for the case of low plasma Beta and no wave dispersion. The magnetohydrodynamic code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Anisotropic turbulent cascades, similar to those found in early incompressible two-dimensional simulations, occur after nonlinear saturation of the parallel propagating decay instability. The turbulent spectrum can be divided into three regimes: the lowest wave numbers are dominated by lower sideband remnants of the parametric process, intermediate wave numbers display nearly incompressible dynamics, and the highest wave numbers are dominated by acoustic turbulence.

  6. Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.

    2014-12-01

    Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.

  7. Nonlinear astrophysical Alfven waves - Onset and outcome of the modulational instability

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.

    1985-01-01

    The nonlinear development of Alfven waves is numerically studied, with applications to Alfven waves in astrophysical plasmas. It is found that amplitude-modulated Alfven wave packets undergo a collapse instability in which the wave packets become more intense and of smaller spatial extent. The wave packet steepening is eventually halted in a process most aptly described as soliton formation. A simple analytic model based on the method of characteristics can account for many of the results of the numerical calculations. The instability probably cannot prevent particle pitch angle isotropization due to self-generated Alfven waves. Nonlinear effects of the collapse may modify the process by which energetic electrons are reaccelerated by plasma turbulence. The model calculations can semiquantitatively account for properties of shock-associated Alfven waves in the solar system.

  8. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1974-01-01

    Active research is reported in the following areas: (1) whistler propagation; (2) whistler triggered VLF emissions; (3) Alfven wave excitation; (4) helical electron beams for whistler generation; and (5) ULF excitation by metallic electric or magnetic dipole antennas.

  9. Wave Propagation Program

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  10. Hybrid simulation of wave propagation in the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Stauffer, B. H.; Delamere, P. A.; Damiano, P. A.

    2015-12-01

    The transmission of waves between Jupiter and Io is an excellent case study of magnetosphere/ionosphere (MI) coupling because the power generated by the interaction at Io and the auroral power emitted at Jupiter can be reasonably estimated. Wave formation begins with mass loading as Io passes through the plasma torus. A ring beam distribution of pickup ions and perturbation of the local flow by the conducting satellite generate electromagnetic ion cyclotron waves and Alfven waves. We investigate wave propagation through the torus and to higher latitudes using a hybrid plasma simulation with a physically realistic density gradient, assessing the transmission of Poynting flux and wave dispersion. We also analyze the propagation of kinetic Alfven waves through a density gradient in two dimensions.

  11. Plasma transport induced by kinetic Alfven wave turbulence

    SciTech Connect

    Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.

    2012-10-15

    At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

  12. Motion of ions influenced by enhanced Alfven waves

    SciTech Connect

    Wu, C.S.; Yoon, P.H.; Chao, J.K.

    1997-03-01

    In this paper we discuss the dynamics of an ion interacting with large-amplitude Alfven waves. The objective of the present analysis is to attain an in-depth understanding of the ion-pickup process which has been extensively studied in the literature by means of both quasilinear theory and numerical simulations. In general, results from self-consistent simulations provide a more complete picture of the ion pickup process, but details of the pickup process are not easily comprehended on the basis of these results. For this reason, the present study is carried out in which a test particle approach is used. It is found that for moderately large-amplitude Alfven waves, an approximate analytical solution for the ion equation of motion can be obtained. This solution clarifies a number of basic issues such as (1) whether the cyclotron resonance is a necessary condition for the pickup to occur, (2) what is the role of initial ion phase space position on subsequent pitch angle scattering, and (3) how the wave amplitude affects the maximum velocity that an ion can gain along the direction of the ambient magnetic field during the pickup process. {copyright} {ital 1997 American Institute of Physics.}

  13. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    SciTech Connect

    Galvao, R. A.; Ziebell, L. F.; Gaelzer, R.; Juli, M. C. de

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  14. Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.

    1996-01-01

    Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.

  15. Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons

    SciTech Connect

    Panwar, A. E-mail: ryu201@postech.ac.kr Ryu, C. M. E-mail: ryu201@postech.ac.kr; Bains, A. S. E-mail: ryu201@postech.ac.kr

    2015-09-15

    A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.

  16. Heating of ions by low-frequency Alfven waves in partially ionized plasmas

    SciTech Connect

    Dong Chuanfei; Paty, Carol S.

    2011-03-15

    In the solar atmosphere, the chromospheric and coronal plasmas are much hotter than the visible photosphere. The heating of the solar atmosphere, including the partially ionized chromosphere and corona, remains largely unknown. In this letter, we demonstrate that the ions can be substantially heated by Alfven waves with very low frequencies in partially ionized low-beta plasmas. This differs from other Alfven wave related heating mechanisms such as ion-neutral collisional damping of Alfven waves and heating described by previous work on resonant Alfven wave heating. We find that the nonresonant Alfven wave heating is less efficient in partially ionized plasmas than when there are no ion-neutral collisions, and the heating efficiency depends on the ratio of the ion-neutral collision frequency to the ion gyrofrequency.

  17. Convective and Diffusive Energetic Particle Losses Induced by Shear Alfven Waves in the ASDEX Upgrade Tokamak

    SciTech Connect

    Garcia-Munoz, M.; Hicks, N.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H.-U.; Igochine, V.; Maraschek, M.; Sassenberg, K.; Voornveld, R. van; Classen, I. G. J.; Jaemsae, S.

    2010-05-07

    We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude.

  18. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    SciTech Connect

    Chen, Liu; Cowley, S.C. )

    1989-08-01

    Using the dipole magnetic field model, the authors have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived.

  19. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    SciTech Connect

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs.

  20. Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas

    SciTech Connect

    Tishchenko, V N; Shaikhislamov, I F

    2014-02-28

    We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)

  1. THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.

    2013-08-20

    The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.

  2. The nature of the sunspot phenomenon. II - Internal overstable modes. [convectively driven Alfven wave role

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    It had been pointed out by Parker (1974) that the basic cause of the sunspot phenomenon is the enhanced heat transport in the magnetic field of the sunspot. The enhanced transport occurs through convective overstability which operates as a heat engine generating Alfven waves. The characteristics of the convective forces present are investigated along with questions concerning overstability and convectively driven Alfven waves. Relations regarding instability and convectively driven surface waves are discussed and attention is given to individual overstable Alfven modes. It is found that the form of an Alfven wave in the absence of convective forces is entirely arbitrary, so that waves with any arbitrary profile can be fitted into a vertical column of the field without disturbing the fluid outside. With the introduction of convective forces the situation changes so that the presence of lateral boundaries alters the form of the basic wave modes.

  3. Alfven Waves: These waves, predicted by Alfven, have been studied in laboratory and geophysical plasma experiments.

    PubMed

    Boley, F I; Wilcox, J M

    1962-08-17

    We have described a set of laboratory experiments which establish the primary properties of Alfvén waves and have mentioned natural phenomena in which these waves exert a strong influence. To date, there have been few technological applications of Alfvén waves, although the waves are being considered for use in hydromagnetic amplifiers and in connection with plasma heating techniques associated with controlled thermonuclear fusion devices. As with any new findings, detailed prediction of future applications is impossible. PMID:17749626

  4. Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.

  5. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    NASA Technical Reports Server (NTRS)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  6. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    NASA Technical Reports Server (NTRS)

    Rawford, F. W.

    1975-01-01

    The testing and refinement of various ideas for space plasma experimentation on the spacelab are dealt with. Special attention was given to whistlers and Alfven wave excitation by electron and proton beams. Data also consider nonlinear wave propagation, long delayed echoes, pulse propagation, and ionospheric heating and back scatter.

  7. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.

    1989-01-01

    A two-dimensional quasi-linear numerical code was developed for studying ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves. The model assumes that the central plasma sheet is the particle source, and that the last magnetic field lines on which kinetic Alfven waves exist and diffusion occurs can be either open or closed. As the possible source for the excitement of the kinetic Alfven waves responsible for ion diffusion, the resonant mode conversion of the surface waves to kinetic Alfven waves is considered. It is shown that, depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., on whether field lines are open or closed, the ion distribution function may or may not reach a steady state.

  8. Plasma turbulence driven by transversely large-scale standing shear Alfven waves

    SciTech Connect

    Singh, Nagendra; Rao, Sathyanarayan

    2012-12-15

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  9. James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves

    NASA Astrophysics Data System (ADS)

    Chen, Liu

    2012-10-01

    Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

  10. Measurements of Inertial Limit Alfven Wave Dispersion for Finite Perpendicular Wave Number

    SciTech Connect

    Kletzing, C. A.; Thuecks, D. J.; Skiff, F.; Bounds, S. R.; Vincena, S.

    2010-03-05

    Measurements of the dispersion relation for shear Alfven waves as a function of perpendicular wave number are reported for the inertial regime for which V{sub A}>V{sub Te}. The parallel phase velocity and damping are determined as k{sub perpendicular} varies and the measurements are compared to theoretical predictions. The comparison shows that the best agreement between theory and experiment is achieved for a fully complex plasma dispersion relation which includes the effects of electron collisions.

  11. Generation of Alfven waves by deceleration of magnetospheric convection and broadband Pi pulsations

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Longenecker, D. U.; Chiu, Y. T.

    1982-01-01

    The generation of Alfven waves by the deceleration of magnetospheric convection caused by ionospheric loading effects in the magnetospheric dynamo is considered. A one-dimensional model of that region of the plasma sheet where convection is decelerated due to the dynamo process in the magnetosphere-ionosphere coupling is formulated, and the stability of the region is analyzed in order to derive the growth rate of unstable Alfven waves. The effects of ionospheric damping on unstable Alfven wave packets bounding between hemispheres are estimated. It is found that the overall growth rate is proportional to the height-integrated Pedersen conductivity and the convection speed in the dynamic region, but changes into a damping rate when the Pedersen conductivity is reduced below a specific threshold. The unstable Alfven waves thus generated are also found to contribute to both burstlike and relatively continuous Pi pulsations observed during substorms.

  12. Generation of magnetoacoustic zonal flows by Alfven waves in a rotating plasma

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Tsypin, V. S.; Smolyakov, A. I.; Galvao, R. M. O.

    2007-08-15

    Analytical theory of nonlinear generation of magnetoacoustic zonal flows in a rotating plasma is developed. As the primary modes causing such a generation, a totality of the Alfven waves are considered, along with the kinetic, inertial, and rotational. It is shown that in all these cases of the Alfven waves the generation is possible if the double plasma rotation frequency exceeds the zonal flow frequency.

  13. Nonlinear standing Alfven wave current system at Io - Theory

    NASA Astrophysics Data System (ADS)

    Neubauer, F. M.

    1980-03-01

    A nonlinear analytical model is presented of the Alfven current tubes continuing the currents through Io generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. It was shown that: (1) the portion of the currents needing Io is aligned with the Alfven characteristics at a specific angle to the magnetic field for the special case of perpendicular flow; (2) the Alfven tubes act like an external conductance; (3) the Alfven tubes may be reflected from the torus boundary or the Jovian atmosphere; and (4) from the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites because of its ionosphere arising from ionized volcanic gases and a high external Alfvenic conductance.

  14. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    NASA Astrophysics Data System (ADS)

    Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming

    2015-02-01

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.

  15. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    SciTech Connect

    Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming

    2015-02-15

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.

  16. Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2014-12-01

    The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.

  17. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  18. Ionospheric Ion Upflows Associated with the Alfven Wave Heating

    NASA Astrophysics Data System (ADS)

    Song, P.; Tu, J.

    2014-12-01

    In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.

  19. POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVEN WAVES

    SciTech Connect

    Hunana, P.; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.

    2013-04-01

    It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly larger than the proton gyroscale r{sub L} , magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the polarization and magnetic compressibility of oblique kinetic Alfven waves and show that, compared with linear kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be ignored even for kr{sub L} << 1.

  20. Standing Alfven wave current system at Io - Voyager 1 observations

    NASA Astrophysics Data System (ADS)

    Acuna, M. H.; Neubauer, F. M.; Ness, N. F.

    1981-09-01

    The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io has been explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field-aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the Goddard Space Flight Center magnetic field experiment on Voyager 1 on March 5, 1979, when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 x 10 to the 6th A. A mass density of 7400-13,600 proton mass units/cu cm is derived, which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050-1500/cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.

  1. Alfven wave-driving mechanism of late-type stellar wind

    NASA Astrophysics Data System (ADS)

    Yong, Zheng; Li, Xiao-Qing

    1990-05-01

    Because late-type stellar wind has low temperature, massive outflow, and high terminal velocity, theoretical models of thermal pressure or radiation pressure cannot explain the acceleration of late-type stellar wind. Energy damping of Alfven wave in stellar winds is small, and Alfven wave is perhaps the driving force of late-type stellar wind if the wave energy-flux is large enough. After theoretical analysis and numerical calculation, various velocity distributions are obtained by taking various wave energy-fluxes in reliable range, the terminal velocities accord with observations. If late-type stellar winds are driven by thermal pressure, the temperature is higher that acceptable. The results of Alfven wave driving winds also indicate that massive stellar winds need large energy flux and acceleration is closely related with gravity. In discussion, it is thought that Alfven wave accelerating late-type stellar winds is feasible and the initial energy-flux, damping of Alfven wave in stellar winds need further study.

  2. Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Pekker, M.

    1994-01-01

    An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection.

  3. Energy Budget of Alfven Wave Interactions with the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Fedorov, E.; Engebretson, M. J.

    2003-12-01

    Recent Polar satellite observations of intense Alfven ULF bursts over auroral arcs prompted researchers to suggest that ULF wave activity does provide energy to the auroral arc intensification. However, to provide physical grounds for this suggestion, it is important to know possible bounds on the rate of the ULF wave energy transfer into electron acceleration. To estimate the power dissipated in the ionosphere and that transferred into electron acceleration, we consider the interaction of magnetospheric Alfven waves with the auroral ionosphere, comprising the auroral acceleration region (AAR). The AAR is characterized by a mirror resistance to the field-aligned upward current that can provide the potential drop and the acceleration of electrons. Analytical treatment of the interaction of Alfven waves with the combined magnetosphere-AAR-topside ionosphere-E-layer system has been made within the "thin" AAR approximation, which is valid for small-scale disturbances. The input of Alfven waves into the energy balance of the AAR depends critically on their transverse scale. Only waves with scales comparable to the Alfven transit scale, that is kperpendicular to λ A ˜= 1, will provide energy into electron acceleration. This process is expected to be more effective above a conductive ionosphere. These theoretical predictions could be verified with the multi-satellite measurements in the Cluster-2 mission.

  4. Ray Tracing Study of Magnetospheric ULF Wave Propagation.

    NASA Astrophysics Data System (ADS)

    Zhang, Xinbo

    1993-01-01

    A semi-empirical plasma density model and Mead -Fairfield magnetic field model are incorporated into a 3-D ray tracing code to study magnetospheric ULF wave propagation from the subsolar magnetopause. The ray-tracing of Pc3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He^+ and O ^+ gyroresonances. As a result of the frequency -dependent location of this cutoff, the magnetosphere behaves like a filter for Pc3 compressional waves, and only the low frequency components can penetrate to the inner magnetosphere. These results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He^+ and O^+ and is, therefore, sensitive to solar and magnetic activity. The study of the propagation characteristics of Pc3 transverse Alfven waves shows that these waves cannot penetrate to low Earth altitudes for wave frequencies above about approximately 0.03 hz. The configuration of the refractive index reveals an O^+-He^+ associated cutoff located between the assumed wave source in the equatorial magnetopause and the Earth. When the O^+ concentration is removed from the plasma composition, the barrier no longer exists, and waves with much higher frequencies than 0.03 Hz can penetrate to low altitudes. The result that the 0.03 Hz or lower frequency Alfven waves can be guided to the low altitudes agrees with ground-based power spectrum observations at high latitudes. The ray tracing study of Pc 1-2 waves reproduces earlier results (Rauch and Roux, 1982) for an H ^+-He^+ two-ion-species plasma, i.e. Pc 1-2 left hand polarized Alfven mode waves originating at equatorial geostationary orbit, below He ^+ gyrofrequency, are guided to the ground. However, our ray tracing study shows that previous Pc 1-2 ray tracing results are only valid in the absence of O

  5. The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone

    NASA Technical Reports Server (NTRS)

    Schriver, David

    2003-01-01

    The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.

  6. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  7. Generation of Alfven waves by high power pulse at the electron plasma frequency

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart Gilbert

    The physics of the interaction between plasmas and high power waves with frequencies in the electron plasma frequency range is of importance in many areas of space and plasma physics. A great deal of laboratory research has been done on the interaction of microwaves in a density gradient when o = ope in unmagnetized plasmas. [SWK74, WS78, KSW74]. Extensive studies of HF-ionospheric modifications have been performed [Fej79] as evidenced by experiments at Arecibo [HMD92, BHK86, CDF92, FGI85], at the HAARP facility [RKK98] in Alaska, at the EISCAT observatory in Norway [IHR99], and at SURA in Russia [FKS99]. This dissertation focusses on the interaction with a fully magnetized plasma, capable of supporting Alfven waves. The experiment is performed in the upgraded LArge Plasma Device (LAPD) at UCLA [GPL91] (Helium, n = 1012 cm-3, B = 1 kG - 2.5 kG). A number of experiments have been done at LAPD using antennas, skin depth scale currents and laser produced plasmas to generate Alfven waves [LGM99, GVL97a, GVL97b, VGV01]. In this work a high power pulse 6th, frequency in the electron plasma frequency range is launched into the radial density gradient, perpendicular to the background magnetic field. The microwave pulses last on the order of one ion gyro period and has a maximum power of |E|2/ nT ≃ .5 in the afterglow. The absorption of these waves leads to a pulse of field aligned suprathermal electrons. This electron current pulse then launches with Alfven wave with o ≤ o ci. The experiment was performed bath in ordinary node (O-mode) and extraordinary (X-mode), for different background magnetic fields B0, different temperatures (afterglow vs discharge) and different power levels of the incoming microwaves. It was found that the Alfven wave generation can be explained by Cherenkov radiation of Alfven waves by the suprathermal electron pulse. Theoretical solutions for the perturbed magnetic field due to a pulse of field aligned electrons were obtained, and shown to be

  8. Mechanisms for the Dissipation of Alfven Waves in Near-Earth Space Plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Krivorutsky, E. N.; Davis, John M. (Technical Monitor)

    2002-01-01

    Alfven waves are a major mechanism for the transport of electromagnetic energy from the distant part of the magnetosphere to the near-Earth space. This is especially true for the auroral and polar regions of the Earth. However, the mechanisms for their dissipation have remained illusive. One of the mechanisms is the formation of double layers when the current associated with Alfven waves in the inertial regime interact with density cavities, which either are generated nonlinearly by the waves themselves or are a part of the ambient plasma turbulence. Depending on the strength of the cavities, weak and strong double layers could form. Such double layers are transient; their lifetimes depend on that of the cavities. Thus they impulsively accelerate ions and electrons. Another mechanism is the resonant absorption of broadband Alfven- wave noise by the ions at the ion cyclotron frequencies. But this resonant absorption may not be possible for the very low frequency waves, and it may be more suited for electromagnetic ion cyclotron waves. A third mechanism is the excitation of secondary waves by the drifts of electrons and ions in the Alfven wave fields. It is found that under suitable conditions, the relative drifts between different ion species and/or between electrons and ions are large enough to drive lower hybrid waves, which could cause transverse accelerations of ions and parallel accelerations of electrons. This mechanism is being further studied by means of kinetic simulations using 2.5- and 3-D particle-in-cell codes. The ongoing modeling efforts on space weather require quantitative estimates of energy inputs of various kinds, including the electromagnetic energy. Our studies described here contribute to the methods of determining the estimates of the input from ubiquitous Alfven waves.

  9. The soliton transform and a possible application to nonlinear Alfven waves in space

    NASA Technical Reports Server (NTRS)

    Hada, T.; Hamilton, R. L.; Kennel, C. F.

    1993-01-01

    The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.

  10. Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks

    SciTech Connect

    Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.

    1994-12-31

    An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE`s in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles.

  11. Wave propagation in isogrid structures

    NASA Astrophysics Data System (ADS)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2011-04-01

    This work focuses on an analysis of wave propagation in isogrid structures as it relates to Structural Health Monitoring (SHM) methods. Assembly, integration, and testing (AI&T) of satellite structures in preparation for launch includes significant time for testing and reworking any issues that may arise. SHM methods are being investigated as a means to validate the structure during assembly and truncate the number of tests needed to qualify the structure for the launch environment. The most promising of these SHM methods uses an active wave-based method in which an actuator propagates a Lamb wave through the structure; the Lamb wave is then received by a sensor and evaluated over time to detect structural changes. To date this method has proven effective in locating structural defects in a complex satellite panel; however, the attributes associated with the first wave arrival change significantly as the wave travels through ribs and joining features. Previous studies have been conducted in simplified ribbed structures, giving initial insight into the complex wave propagation phenomena. In this work, the study has been extended numerically to the isogrid plate case. Wave propagation was modeled using commercial finite element analysis software. The results of the analyses offer further insight into the complexities of wave propagation in isogrid structures.

  12. Experimental Verification of the Stationary Inertial Alfven Wave and its Relevance to Auroral Plasma Physics

    NASA Astrophysics Data System (ADS)

    Koepke, Mark

    2008-11-01

    A small, off-axis mesh anode electrode at one plasma-column end is used to create a paraxial channel of both electron current and depleted density in the Large Plasma Device Upgrade (LAPD-U) at UCLA. It is shown that the on-axis, larger, surrounding-plasma column rotates about its cylindrical axis because a radial electric field is imposed by a multiple-segmented-disk termination electrode on the same end as the mesh-anode electrode. The radial profile of azimuthal velocity is shown to be consistent with rigid-body rotation. Launched inertial Alfven waves are shown to concentrate in the off-axis channel of electron current and depleted plasma density. In the absence of launched waves, time varying boundary conditions, or spatially structured boundary conditions, we demonstrate that a non-fluctuating, non-traveling pattern in the plasma density arises spontaneously in the channel, but only in the combined presence of electron current, density depletion, and cross-field convection (i.e., rotation). The experimental verification of stationary inertial Alfven waves is based on these results and the predictions from a model of finite-collisionality, finite-pressure stationary Alfven waves that links laboratory and auroral plasma regimes. Ground-based optical observations will be shown that indicate the need for a quasi- static theory of structured electron acceleration within auroral arcs. The properties of the stationary inertial Alfven wave suggest it as promising candidate.

  13. Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas

    SciTech Connect

    Gogoi, Runmoni; Devi, Nirupama

    2008-07-15

    Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.

  14. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: High beta

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Vinas, A. F.; Goldstein, M. L.

    1994-01-01

    The nonlinear dynamics following saturation of the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation in the case of high plasma beta and no wave dispersion. The magnetohydrodynamic (MHD) code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Turbulent cascades develop after saturation of two coupled oblique three-wave parametric instabilities; one of which is an oblique filamentationlike instability reported earlier. Remnants of the parametric processes, as well as of the original Alfven pump wave, persist during late nonlinear times. Nearly incompressible MHD features such as spectral anisotropies appear as well.

  15. Kinetic Alfven waves in a homogeneous dusty magnetoplasma with dust charge fluctuation effects

    SciTech Connect

    Zubia, K.; Rubab, N.; Shah, H. A.; Salimullah, M.; Murtaza, G.

    2007-03-15

    Kinetic Alfven waves with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external/ambient magnetic field. Two-potential theory has been applied for these electromagnetic waves and the dispersion relation is derived which shows a cutoff frequency at the dust-lower-hybrid frequency due to the hybrid motion of magnetized ions and cold and unmagnetized dust dynamics. The dust charge fluctuation effect was analyzed for finding the damping of the electromagnetic kinetic Alfven waves, which arises on account of the electrostatic parallel component of the waves. The dust charge fluctuation damping is seen to be contributed dominantly by the perpendicular motion of electrons and ions in the dusty magnetoplasma.

  16. Generation of strong MHD Alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Akimoto, K.; Winske, D.

    1990-01-01

    Strong Alfvenic turbulence containing a number of solitonlike structures propagating at super-Alfvenic speeds is generated self-consistently and studied by means of computer simulation. A one-dimensional hybrid (kinetic ions, fluid electrons) code is used to investigate the nonlinear evolution of an electromagnetic ion-beam instability that generates low-frequency Alfven-like waves. As the instability develops, the field-aligned hydromagnetic waves steepen, forming a soliton that bifurcates several times, leading to a fully turbulent state.

  17. Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion

    NASA Astrophysics Data System (ADS)

    Christiansen, P. J.; Dum, C. T.

    1989-06-01

    The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.

  18. An Overview of Alfven Wave Generation, Reflection, and Damping from the Solar Photosphere to the Distant Heliosphere

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; van Ballegooijen, A. A.

    2004-05-01

    The continually evolving convection below the solar photosphere gives rise to a wide spectrum of magnetohydrodynamic (MHD) fluctuations in the magnetic atmosphere and solar wind. The propagation of waves through the solar atmosphere has been studied for more than a half century, and the mainly incompressible Alfven mode has been believed to be dominant in regions that are open to the heliosphere. As a part of an ongoing study of various aspects of solar MHD waves and turbulence, we present a comprehensive model of the radially evolving properties of Alfvenic fluctuations in a representative open magnetic region. This work differs from previous models in the following ways. (1) The background plasma density, magnetic field, and flow velocity are constrained empirically from below the photosphere to distances past 1 AU. The successive merging of flux tubes on granular and supergranular scales is described using a two-dimensional magnetostatic model of a magnetic network element. (2) The frequency power spectrum of horizontal motions is specified only at the photosphere, based on prior analyses of G-band bright points. Everywhere else in the model the amplitudes of outward and inward propagating waves are computed with no free parameters. We compare the resulting wave properties with observed nonthermal motions in the chromosphere and corona, radio scintillation measurements, and in-situ fluctuation spectra. This work is supported by NASA under grants NAG5-11913, NAG5-12865, and NAG5-10996 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to the ESA PRODEX program.

  19. Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika

    2016-07-01

    Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.

  20. Reconstruction of nonlinear wave propagation

    DOEpatents

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  1. Modification and damping of Alfven waves in a magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlations. It is found that in addition to the unusual Landau damping, which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field.

  2. Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas

    SciTech Connect

    Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.

    1996-12-17

    A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.

  3. Supergranulation-driven Alfven waves in the solar chromosphere and related phenomena.

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1972-01-01

    It has recently been recognized that Alfven waves frequently dominate the microstructure of the solar wind at the orbit of the earth. We seek a solar source for these waves, and consider here their excitation by the supergranular motions. The wave equation is solved in a horizontally stratified, bi-exponential solar atmosphere. The interaction of Alfven wave motions associated with adjacent supergranules is discussed qualitatively. The Alfven wave effectively conveys the supergranular motions to great heights in the chromosphere. These motions are oppositely directed above intersupergranule boundaries, and compress the magnetic field there. A naive calculation of the compression, based on balancing dynamic and magnetic pressures, leads to adequate agreement with observations of the chromospheric network. We find that the magnetic field is appreciably compressed only below about 1500 km, and on this basis we reject theories of spicule formation which require large vertical magnetic fields at the heights reached by spicules. We advance a theory for spicule formation, in which spicules form as a result of matter being squeezed upward, out of the compression region between adjacent supergranules.

  4. Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves

    SciTech Connect

    Biglari, H.; Ono, M. . Plasma Physics Lab.); Diamond, P.H. . Dept. of Physics); Craddock, G.G. )

    1991-01-01

    The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E {times} B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power ({approximately} few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs.

  5. Magnetohydrodynamic wave propagation in one-dimensional nonhomogeneous, self-gravitating clouds

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Adams, Fred C.

    1993-01-01

    We study the propagation of magnetohydrodynamic (MHD) waves through nonhomogeneous, selfgravitating, magnetic media representative of molecular cloud environments and focus on the issues of cloud support and line profiles. Since the general treatment of this topic is burdened by a complex mathematical formalism, we consider simplifying geometries which yield analytical solutions in the linear wave limit. In particular, we study both magnetoacoustic and Alfven wave propagation along the density gradient in a one-imensional slab. Of specific relevance to molecular clouds, we find that the back reaction of the Alfven waves can provide a pressure along the direction of the magnetic field lines; this pressure can help support a density enhancement against gravitational collapse. Furthermore, we find that the velocity amplitudes of these waves increase as the density decreases, in rough agreement with observational estimates of line width versus density relations.

  6. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  7. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    SciTech Connect

    Shrivastava, G. Ahirwar, G.; Shrivastava, J.

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  8. Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Burchsted, R.

    1974-01-01

    Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.

  9. Seismic wave propagation modeling

    SciTech Connect

    Jones, E.M.; Olsen, K.B.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.

  10. Wave propagation in solids and fluids

    SciTech Connect

    Davis, J. L.

    1988-01-01

    The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.

  11. Polarization and Compressibility of Oblique Kinetic Alfven Waves

    NASA Technical Reports Server (NTRS)

    Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.

    2012-01-01

    Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects

  12. BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MHD PLASMA. II. HOW TO GET ALFVEN WAVES THROUGH THE SOLAR TRANSITION REGION

    SciTech Connect

    Hansen, Shelley C.; Cally, Paul S. E-mail: paul.cally@monash.edu

    2012-05-20

    Alfven waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvenic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.

  13. Simulation of amplitude-modulated circularly polarized Alfven waves for beta less than one

    NASA Technical Reports Server (NTRS)

    Machida, S.; Spangler, S. R.; Goertz, C. K.

    1987-01-01

    The nonlinear properties of the amplitude-modulated circularly polarized Alfven wave are studied for beta less than one. The temporal behavior of the wave packet of the electromagnetic hybrid simulation is compared with a numerical solution of the derivative nonlinear Schroedinger (DNLS) equation. It is shown that the left-hand-polarized mode evolves into a shocklike structure due to the modulational instability. However, both cyclotron damping and a snowplow effect near the steepened wave packet suppress its further steepening, contrary to the predictions of the DNLS equation. For the right-hand mode, formation of the shock does not take place, and the initial time development is well described by the DNLS equation. The daughter Alfven wave and ion acoustic waves are excited due to the decay instability at a later time. Heating or acceleration of the particles takes place for both left- and right-hand waves. Energy transfer from the wave to the particles occurs effectively when substantial modulation in the wave amplitude is present.

  14. Theory of magnetospheric standing hydromagnetic waves with large azimuthal wave number. 1. Coupled magnetosonic and Alfven waves

    SciTech Connect

    Walker, A.D.M. )

    1987-09-01

    A new hydromagnetic theory is developed for describing compressional pulsations with azimuthal wave number. It is assumed that there are two plasma, one hot, in which pressure effects are important, and the other cold. The equations are derived in a general set of magnetic coordinates which allow realistic calculations including geometrical effects in the magnetosphere. The equations describe the three hydromagnetic modes which are coupled by the geometry. When the azimuthal wave number is large, the fast mode is strongly evanescent. This allows an expansion in 1/m in order to decouple the fast wave. The remaining equations describe the coupled transverse Alfven and magnetosonic modes. Some of the puzzling features of the observations of polarization are discussed.

  15. Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1986-01-01

    A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.

  16. Chromospheric alfvenic waves strong enough to power the solar wind.

    PubMed

    De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S

    2007-12-01

    Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784

  17. High-n ideal and resistive shear Alfven waves in tokamaks

    SciTech Connect

    Cheng, C.Z.; Chen, L.; Chance, M.S.

    1984-05-01

    Ideal and resistive MHD equations for the shear Alfven waves are studied in a low-..beta.. toroidal model by employing the high-n ballooning formalism. The ion sound effects are neglected. For an infinite shear slab, the ideal MHD model gives rise to a continuous spectrum of real frequencies and discrete eigenmodes (Alfven-Landau modes) with complex frequencies. With toroidal coupling effects due to nonuniform toroidal magnetic field, the continuum is broken up into small continuum bands and new discrete toroidal eigenmodes can exist inside the continuum gaps. Unstable ballooning eigenmodes are also introduced by the bad curvature when ..beta.. > ..beta../sub c/. The resistivity (n) can be considered perturbatively for the ideal modes. In addition, four branches of resistive modes are induced by the resistivity: (1) Resistive entropy modes which are stable (..delta..' < 0) with frequencies approaching zero as n/sup 3/5/, (3) Resistive periodic shear Alfven waves which approach the finite frequency end points of the continuum bands and n/sup 1/2, and (4) Resistive ballooning modes which are purely growing with growth rate proportional to eta/sup 1/3/..beta../sup 2/3/ as eta ..-->.. O and ..beta.. ..-->.. O.

  18. Propagation characteristics of waves upstream and downstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.

    1993-01-01

    The propagation characteristics of waves upstream and downstream of quasi-parallel shocks are investigated by using 2D hybrid simulations. At low Alfven Mach numbers, M(A) below about 2, the shock is initially associated with upstream phase-standing whistlers. At later times, backstreaming ions excite longer-wavelength whistlers via the right-hand resonant ion/ion instability. These waves propagate along the magnetic field at a group velocity no smaller than the upstream flow speed, so that the waves remain in the upstream region. At higher MA (above about 3), these waves are convected back into the shock, causing its reformation and downstream perturbations. Shock transmitted waves mode-convert into Alfven/ion-cyclotron waves which have a wave vector along the shock normal (pointing upstream) and convect downstream. The 2D simulation results confirm our earlier suggestion that the upstream waves should be field aligned, and that their convection into the downstream is associated with linear mode conversion into the Alfven/ion-cyclotron branch.

  19. Theory of field line resonances of standing shear Alfven waves in three-dimensional inhomogeneous plasmas

    SciTech Connect

    Schulze-Berge, S.; Crowley, S.; Chen, Liu.

    1991-05-01

    We have analyzed field line resonances of Alfven waves in a rectangular box model with a straight uniform magnetic field but three dimensionally varying density. Field line resonances are shown to exist even with this three-dimensional nonuniformity. For a given wave frequency, we can construct the surface on which the resonance occurs and derive the local form of the singular solution. Magnetic perturbations are found to lie predominantly in the resonant surface. In the presence of azimuthal inhomogeneities, the present theory could explain why some satellite measurements show geomagnetic pulsations of comparable magnitude in radial and azimuthal components. 5 refs.

  20. Theory of field line resonances of standing shear Alfven waves in three-dimensional inhomogeneous plasmas

    SciTech Connect

    Schulze-Berge, S.; Cowley, S.; Liu Chen )

    1992-03-01

    The authors have analyzed field line resonances of Alfven waves in a rectangular box model with a straight uniform magnetic field but three-dimensionally varying density. Field line resonances are shown to exist even with this three-dimensional uniformity. For a given wave frequency they can construct the surface on which the resonance occurs and derive the local form of the singular solution. Magnetic perturbations are found to lie predominantly in the resonant surface. In the presence of azimuthal inhomogeneous the present theory could explain why some satellite measurements show geomagnetic pulsations of comparable magnitude in radial and azimuthal components.

  1. Hybrid simulations of rotational discontinuities. [Alfven wave propagation in astrophysics

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Cargill, P. J.

    1991-01-01

    1D hybrid simulations of rotational discontinuities (RDs) are presented. When the angle between the discontinuity normal and the magnetic field (theta-BN) is 30 deg, the RD broadens into a quasi-steady state of width 60-80 c/omega-i. The hodogram has a characteristic S-shape. When theta-BN = 60 deg, the RD is much narrower (10 c/omega-i). For right handed rotations, the results are similar to theta-BN = 30 deg. For left handed rotations, the RD does not evolve much from its initial conditions and the S-shape in the hodogram is much less visible. The results can be understood in terms of matching a fast mode wavelike structure upstream of the RD with an intermediate mode one downstream.

  2. Propagation and mode conversion for waves in nonuniform plasmas

    SciTech Connect

    Stix, T.H.; Swanson, D.G.

    1982-06-01

    The following topics are described: (1) the hybrid resonance, (2) Alfven resonance, (3) the intermediate-frequency electromagnetic wave equation, (4) the standard equation, (5) the tunneling equation, (6) asymptotic solutions of the tunneling equation, (7) localized absorption, and (8) matched asymptotic expansions; the low-frequency Alfven resonance. (MOW)

  3. Wave Propagation in Bimodular Geomaterials

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim

    2016-04-01

    Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.

  4. Wave propagation in modified gravity

    NASA Astrophysics Data System (ADS)

    Lindroos, Jan Ø.; Llinares, Claudio; Mota, David F.

    2016-02-01

    We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the nonlinear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within general relativity this approximation is valid and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and nonlinearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated with the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that the group velocity is smaller than the speed of light. It is therefore important, within such a framework, to take into account the fact that different parts of a galaxy will see changes in the environment at different times. A full nonstatic analysis may be necessary under those conditions.

  5. Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas

    SciTech Connect

    Misra, A. P.; Banerjee, S.

    2011-03-15

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.

  6. Magnetic fluctuations due to thermally excited Alfven waves

    SciTech Connect

    Agim, Y.Z.; Prager, S.C.

    1990-01-01

    Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-{beta} regimes. 21 refs., 6 figs.

  7. Magnetic fluctuations due to thermally excited Alfven waves

    SciTech Connect

    Agim, Y.Z.; Prager, S.C. )

    1990-06-01

    Magnetic fluctuations resulting from the thermally excited magnetohydrodynamic waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities that are roughly Lorentzian and exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber as a result of dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion resulting from the finite ion gyro-frequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-beta regimes.

  8. A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVEN WAVES

    SciTech Connect

    Van der Holst, B.; Manchester, W. B.; Frazin, R. A.; Toth, G.; Gombosi, T. I.; Vasquez, A. M.

    2010-12-10

    We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF) that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfven waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers but do address the heating of the protons by the Kolmogorov dissipation of the Alfven waves in open field-line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfven wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme-ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (2008 November 20 through December 17). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated corotating interaction regions (CIRs) with in situ ACE/WIND data. Although we do not capture all MHD variables perfectly, we do find that the time of occurrence and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.

  9. Anomalous perturbative transport in tokamaks due to drift-Alfven-wave turbulence

    SciTech Connect

    Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )

    1994-03-01

    The method developed in Thoul, Similon, and Sudan [Phys. Plasmas [bold 1], 579 (1994)] is used to calculate the transport due to drift-Alfven-wave turbulence, in which electromagnetic effects such as the fluttering of the magnetic field lines are important. Explicit expressions are obtained for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma. Although the magnetic terms leave the transport by trapped electrons unaffected, they are important for the transport by circulating electrons.

  10. Winds From Luminous Late-Type Stars. 1; The Effects of Nonlinear Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.

    2000-01-01

    We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.

  11. Parametric instabilities of circularly polarized Alfven waves in high-beta plasmas

    NASA Technical Reports Server (NTRS)

    Hamabata, Hiromitsu

    1993-01-01

    CGL relations including the effect of finite ion Larmor radius are used to consider a class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in high-beta plasmas. The disperison relation governing the instabilities is a sixth-order polynomial which is solved numerically. There are two types of instabilities: a modulational instability at k is less than k(0) and a relatively weak and narrow bandwidth instability at k is less than approximately k(0), where k and k(0) are the wavenumbers of the unstable density fluctuation and the 'pump' wave, respectively. It is shown that these instabilities can occur for left-handed pump waves and that the modulational instability is unstable over a very broad band in k with a maximum growth rate at finite k is not equal to 0.

  12. Stability of the kinetic Alfven wave in a current-less plasma

    NASA Astrophysics Data System (ADS)

    Sreekala, G.; Sebastian, Sijo; Michael, Manesh; Abraham, Noble P.; Renuka, G.; Venugopal, Chandu

    2015-06-01

    The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities VdH and Vde. For the most general case, the dispersion relation is a polynomial equation of order five; it reduces to a relation which supports only one mode when VdH = 0. For typical parameters at comet Halley, we find that both VdH and Vde can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al. (2009).

  13. Stability of the kinetic Alfven wave in a current-less plasma

    NASA Astrophysics Data System (ADS)

    Abraham, Noble P.; C, Venugopal; Sebastian, Sijo; Renuka, G.; Balan, Nanan; Sreekala, G.

    The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities V_{dH} and V_{de}. For the most general case, the dispersion equation is a polynomial equation of order five; it reduces to a relation which supports only one mode when V_{dH}=0. For typical parameters at comet Halley, we find that both V_{dH} and V_{de} can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al.

  14. Experimental Investigation of Driven Alfven Wave Resonances on the Pretext Tokamak.

    NASA Astrophysics Data System (ADS)

    Booth, William David

    The results of the recent Alfven wave experiments conducted on the PRETEXT tokamak are presented. Two quarter -turn toroidal antennas were used to drive 2.1 MHz Alfven waves in the PRETEXT plasma. Three different Global Alfven Eigenmodes were identified. The resonance frequency for each of the three observed modes was compared to the value predicted by calculation.^{dagger } The value of the antenna loading associated with each global resonance was measured and also compared to values predicted by a kinetic model.^ {ddagger} Additionally, the radial profile of the RF magnetic field was measured to a depth of five centimeters past the limiter in the plasma and these magnetic fields were compared to predicted values. Generally good agreement was found between measured and predicted values. The resonance frequencies of the global modes agreed quite well and the value of the antenna loading agreed to within about 20%. The width of the measured resonances was much wider than the width of the calculated resonances. This difference is attributed principally to losses in the antenna impedance matching system but may be due partially to loss mechanisms in the plasma which are not included in the code model. The magnetic fields displayed good agreement at the edge of the plasma, but showed some divergence from predicted values at the deeper radial positions. The general shape of the magnetic fields is consistent with the prediction of broad distribution of the fields across the plasma for a global mode. ftn ^daggerS. M. Mahajan, Phys. Fluids 27, 2238 (1984). ^ddaggerD. W. Ross, G. L. Chen, and S. M. Mahajan, Phys. Fluids 25, 652 (1982).

  15. High-Frequency Electrostatic Wave Generation and Transverse Ion Acceleration by Low Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2006-01-01

    Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.

  16. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  17. Theory of magnetospheric standing hydromagnetic waves with large azimuthal wave number 2. Eigenmodes of the magnetosonic and Alfven oscillations

    SciTech Connect

    Taylor, J.P.H.; Walker, A.D.M. )

    1987-09-01

    When the azimuthal wave number is large, the equations describing standing hydromagnetic waves in the magnetosphere can be written as a set of coupled equations describing the couples magnetosonic and Alfven waves. These equations are decoupled when the filed lines are straight. The eigenfrequencies of the decoupled oscillations are computed. For typical conditions in the outer magnetosphere these give periods in the Pc 4-5 band or above. The longitudinal magnetosonic wave consists of oscillations in the plasma pressure, the longitudinal plasma drift velocity and the compressional magnetic field. Higher harmonics of the standing waves have nodes quite near the equator. These higher harmonics have larger fractional pressure perturbations at high latitudes. The compressional magnetic field for all modes, however, is substantially attenuated at higher latitudes, and the theory predicts that compressional oscillations of B are only likely to be seen near the equator. Conditions can be favorable for resonance to occur between the magnetosonic mode and the transverse Alfven mode. The computed results show periods of the right order of magnitude to explain observations of compressional pulsations. The theory has the potential to explain the polarization when coupling is fully taken into account.

  18. Linear and non-linear studies of Alfven waves in space. Stationary and dynamic processes in magnetospheric plasmas

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, A.; Hasegawa, A.

    1990-01-01

    The Final Technical Report on linear and non-linear studies of Alfven waves in space is presented. Areas of research included relaxation of magnetotail plasmas with field-aligned currents; the equilibrium dayside magnetosphere; macroscale particle simulation of kinetic Alfven wave physics; ballooning stability of plasmas with sheared equilibrium flows; theory of the drift-mirror instability; collisionless tearing instability in magnetotail plasmas; and nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field and the development of stochastic webs.

  19. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    SciTech Connect

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A. )

    1989-08-01

    The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma {beta} (the ratio of plasma pressure to the magnetic pressure) varies from {beta} = 1 to {beta} << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet.

  20. Effects of Density Fluctuations on Weakly Nonlinear Alfven Waves: An IST Perspective

    NASA Astrophysics Data System (ADS)

    Hamilton, R.; Hadley, N.

    2012-12-01

    The effects of random density fluctuations on oblique, 1D, weakly nonlinear Alfven waves is examined through a numerical study of an analytical model developed by Ruderman [M.S. Ruderman, Phys. Plasmas, 9 (7), pp. 2940-2945, (2002).]. Consistent with Ruderman's application to the one-parameter dark soliton, the effects on both one-parameter bright and dark solitons, the two-parameter soliton as well as pairs of one-parameter solitons were similar to that of Ohmic dissipation found by Hamilton et al. [R. Hamilton, D. Peterson, and S. Libby, J. Geophys. Res 114, A03104,doi:10.1029/2008JA013582 (2009).] It was found in all cases where bright or two-parameter solitons are present initially, that the effects of density fluctuations results in the eventual damping of such compressive wave forms and the formation of a train of dark solitons, or magnetic depressions.

  1. Active Wave Propagation and Sensing in Plates

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Martin, William N.; Sundaresan, Mannur J.; Schulz, Mark J.; Ferguson, Frederick

    2001-01-01

    Health monitoring of aerospace structures can be done using an active interrogation approach with diagnostic Lamb waves. Piezoelectric patches are often used to generate the waves, and it is helpful to understand how these waves propagate through a structure. To give a basic understanding of the actual physical process of wave propagation, a model is developed to simulate asymmetric wave propagation in a panel and to produce a movie of the wave motion. The waves can be generated using piezoceramic patches of any size or shape. The propagation, reflection, and interference of the waves are represented in the model. Measuring the wave propagation is the second important aspect of damage detection. Continuous sensors are useful for measuring waves because of the distributed nature of the sensor and the wave. Two sensor designs are modeled, and their effectiveness in measuring acoustic waves is studied. The simulation model developed is useful to understand wave propagation and to optimize the type of sensors that might be used for health monitoring of plate-like structures.

  2. Final report for DOE-FG02-02ER54688: Study of nonlinear interactions between counterpropagating shear Alfven waves

    SciTech Connect

    Carter, T A

    2006-11-16

    Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.

  3. Propagation of a fluidization - combustion wave

    SciTech Connect

    Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

    1994-05-01

    A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

  4. A search for evidence of the evolution of rotational discontinuities in the solar wind from nonlinear Alfven waves

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Buti, B.

    1990-01-01

    Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.

  5. Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)

    SciTech Connect

    Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S

    2001-10-11

    An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.

  6. Fast particles-wave interaction in the Alfven frequency range on the Joint European Torus tokamak

    SciTech Connect

    Fasoli, A.; Borba, D.; Association EURATOM Breizman, B.; Gormezano, C.; Heeter, R. F.; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 ; Juan, A.; Mantsinen, M.; Sharapov, S.; Testa, D.

    2000-05-01

    Wave-particle interaction phenomena in the Alfven Eigenmode (AE) frequency range are investigated at the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] using active and passive diagnostic methods. Fast particles are generated by neutral beam injection, ion cyclotron resonance heating, and fusion reactions. External antennas are used to excite stable AEs and measure fast particle drive and damping separately. Comparisons with numerical calculations lead to an identification of the different damping mechanisms. The use of the active AE diagnostic system to generate control signals based on the proximity to marginal stability limits for AE and low-frequency magnetohydrodynamic (MHD) modes is explored. Signatures of the different nonlinear regimes of fast particle driven AE instabilities predicted by theory are found in the measured spectra. The diagnostic use of AE measurements to get information both on the plasma bulk and the fast particle distribution is assessed. (c) 2000 American Institute of Physics.

  7. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    SciTech Connect

    Evans, R. M.; Opher, M.; Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I.; Vasquez, A.

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  8. DO OBLIQUE ALFVEN/ION-CYCLOTRON OR FAST-MODE/WHISTLER WAVES DOMINATE THE DISSIPATION OF SOLAR WIND TURBULENCE NEAR THE PROTON INERTIAL LENGTH?

    SciTech Connect

    He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo

    2012-01-20

    To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V{sub SW}) and analyze its orientation with respect to the local background magnetic field B{sub 0,local}. As an example, we take only measurements made in an outward magnetic sector. When B{sub 0,local} is quasi-perpendicular to V{sub SW}, we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B{sub 0,local}, a property that is characteristic of an oblique Alfven wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B{sub 0,local}, thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle ({theta}{sub kB}) increases toward 90 Degree-Sign . Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B{sub 0,local} seems to indicate that oblique Alfven/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.

  9. On apparent temperature in low-frequency Alfvenic turbulence

    SciTech Connect

    Nariyuki, Yasuhiro

    2012-08-15

    Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.

  10. Pulse Wave Propagation in the Arterial Tree

    NASA Astrophysics Data System (ADS)

    van de Vosse, Frans N.; Stergiopulos, Nikos

    2011-01-01

    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  11. Drift-Alfven wave mediated particle transport in an elongated density depression

    SciTech Connect

    Vincena, Stephen; Gekelman, Walter

    2006-06-15

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.

  12. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    NASA Technical Reports Server (NTRS)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  13. Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP

    SciTech Connect

    McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C

    2006-05-09

    We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.

  14. Propagation of shock waves through petroleum suspensions

    NASA Astrophysics Data System (ADS)

    Mukuk, K. V.; Makhkamov, S. M.; Azizov, K. K.

    1986-01-01

    Anomalous shock wave propagation through petroleum with a high paraffin content was studied in an attempt to confirm the theoretically predicted breakdown of a forward shock wave into oscillating waves and wave packets as well as individual solitons. Tests were performed in a shock tube at 10, 20, and 50 to 60 C, with pure kerosene as reference and with kerosene + 5, 10, 15, and 20% paraffin. The addition of paraffin was found to radically alter the rheodynamic characteristics of the medium and, along with it, the pattern of shock wave propagation. The integro-differential equation describing a one dimensional hydraulic shock process in viscoelastic fluids is reduced to the Burgers-Korteweg-deVries equation, which is solved numerically for given values of the system parameters. The results indicate that the theory of shock wave propagation through such an anomalous suspension must be modified.

  15. THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF FAST-TO-ALFVEN CONVERSION IN SUNSPOTS

    SciTech Connect

    Felipe, T.

    2012-10-20

    The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-{beta} region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 Degree-Sign and low azimuths, while the Alfven wave conversions peak at high inclinations and azimuths between 50 Degree-Sign and 120 Degree-Sign . Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which is reflected due to the gradients of the Alfven speed. The simulations show that the Alfven energy at the chromosphere is comparable to the acoustic energy of the slow mode, being even higher at high inclined magnetic fields.

  16. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  17. Controls on flood and sediment wave propagation

    NASA Astrophysics Data System (ADS)

    Bakker, Maarten; Lane, Stuart N.; Costa, Anna; Molnar, Peter

    2015-04-01

    The understanding of flood wave propagation - celerity and transformation - through a fluvial system is of generic importance for flood forecasting/mitigation. In association with flood wave propagation, sediment wave propagation may induce local erosion and sedimentation, which will affect infrastructure and riparian natural habitats. Through analysing flood and sediment wave propagation, we gain insight in temporal changes in transport capacity (the flood wave) and sediment availability and transport (the sediment wave) along the river channel. Heidel (1956) was amongst the first to discuss the progressive lag of sediment concentration behind the corresponding flood wave based on field measurements. Since then this type of hysteresis has been characterized in a number of studies, but these were often based on limited amount of floods and measurement sites, giving insufficient insight into associated forcing mechanisms. Here, as part of a project concerned with the hydrological and geomorphic forcing of sediment transfer processes in alpine environments, we model the downstream propagation of short duration, high frequency releases of water and sediment (purges) from a flow intake in the Borgne d'Arolla River in south-west Switzerland. A total of >50 events were measured at 1 minute time intervals using pressure transducers and turbidity probes at a number of sites along the river. We show that flood and sediment wave propagation can be well represented through simple convection diffusion models. The models are calibrated/validated to describe the set of measured waves and used to explain the observed variation in wave celerity and diffusion. In addition we explore the effects of controlling factors including initial flow depth, flood height, flood duration, bed roughness, bed slope and initial sediment concentration, on the wave propagation processes. We show that the effects of forcing mechanisms on flood and sediment wave propagation will lead to different

  18. Overview of near millimeter wave propagation

    NASA Astrophysics Data System (ADS)

    Flood, W. A.

    1981-02-01

    Near millimeter wave (NMMW) propagation problems are divided into three classes: propagation through homogeneous, turbid, and turbulent atmospheres. These classical forms include anomalous water vapor absorption in a homogeneous atmosphere as well as scintillation phenomena associated with propagation through severe weather and 'dirty battlefield' environments. Examples of the existing, inadequate, scintillation data base are given and the lack of supporting meteorological data noted. Carefully designed NMMW scintillation experiments with equally carefully designed micro-meteorological support are needed.

  19. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  20. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  1. Dispersion characteristics of kinetic Alfven waves in a multi-ion cometary plasma

    NASA Astrophysics Data System (ADS)

    Jayapal, R.; Abraham, Noble P.; Blesson, Jose; Antony, S.; Anilkumar, C. P.; Venugopal, Chandu

    We have studied the stability of the kinetic Alfven wave in a plasma composed of hydrogen and positively and negatively charged oxygen ions and electrons which approximates very well the plasma environment around comet Halley. In the direction parallel to the magnetic field, the electrons have been modelled by a drifting Maxwellian distribution. In the perpendicular direction, another ring simulated by a loss cone type distribution, obtained by subtracting two Maxwellians with different temperatures, model all the constituents of the plasma. The dispersion relation derived for KAWs is a generalisation of the pioneering dispersion relation of Hasegawa on two counts: it has been extended to a plasma described by a generalised distribution function and to a multi - ion plasma containing positively and negatively charged ions. We find that the dispersion characteristics of the KAW can be made independent of the heavy ion parameters by an appropriate choice of densities and temperatures. The source of free energy for the instability is the drift velocity of the electrons; the growth rate increases with increasing drift velocity of the electrons. The positively charged heavier ions enhance the instability while the negatively charged heavier ions tend to damp the wave.

  2. Dispersion characteristics of kinetic Alfven waves in a multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Venugopal, Chandu; Jayapal, R.; Sreekala, G.; Jose, Blesson; Savithri Devi, E.; Antony, S.

    2014-06-01

    The stability of the kinetic Alfven wave (KAW) has been studied in a plasma composed of electrons, hydrogen and positively and negatively charged oxygen ions. Using the two potential theory of Hasegawa, we have derived an expression for the frequency and growth/damping rate of the KAW. The dispersion relation derived in this paper is a generalization of the dispersion relation of Hasegawa on two counts: (i) we use a more generalized distribution function and show that our relation reduces to the dispersion relation of Hasegawa in the limiting case, and (ii) it is applicable to a multi-ion plasma containing lighter ions and positively and negatively charged heavier ions. We find the growth rate of the wave increases with increasing drift velocities of the electrons. Negatively charged oxygen ions (O-) decrease the growth rate; however, the growth rate is very sensitively dependent on O- ion density, especially when its density is greater than that of the positively charged oxygen ions (O+). Interestingly, the dispersion characteristics of KAWs can be made insensitive to the presence of the heavier ions by an appropriate choice of their densities and temperatures.

  3. Time dependent simulation of cosmic-ray shocks including Alfven transport

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    Time evolution of plane, cosmic-ray modified shocks was simulated numerically for the case with parallel magnetic fields. Computations were done in a 'three-fluid' dynamical model incorporating cosmic-ray and Alfven wave energy transport equations. Nonlinear feedback from the cosmic-rays and Alfven waves is included in the equation of motion for the underlying plasma, as is the finite propagation speed and energy dissipation of the Alfven waves. Exploratory results confirm earlier, steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and gas sound speeds are comparable. As noted earlier Alfven transport effects tend to reduce the transfer of energy through a shock from gas to energetic particles. These studies show as well that the time scale for modification of the shock is altered in nonlinear ways. It is clear, however, that the consequences of Alfven transport are strongly model dependent and that both advection of cosmic-rays by the waves and dissipation of wave energy in the plasma will be important to model correctly when quantitative results are needed. Comparison is made between simulations based on a constant diffusion coefficient and more realistic diffusion models allowing the diffusion coefficient to vary in response to changes in Alfven wave intensity. No really substantive differences were found between them.

  4. Non-WKB Alfven Wave Reflection from the Solar Photosphere to the Distant Heliosphere

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; van Ballegooijen, A.

    2003-12-01

    Magnetohydrodynamic (MHD) turbulence has been considered for several decades as a possibly substantial heat source for the solar chromosphere, corona, and heliosphere. However, it is still not well understood how the turbulent fluctuations are generated and how they evolve in frequency and wavenumber. Although the dominant population of Alfvén waves near the Sun must be propagating outwards, one also needs waves propagating inwards in order to ``seed'' a turbulent cascade. As a part of an ongoing study of various aspects of solar MHD turbulence, we present a model of linear, non-WKB reflection of Alfvén waves that propagate in both directions along an open magnetic flux tube. Our work differs from previous models in the following ways. (1) The background plasma density, magnetic field, and flow velocity are constrained empirically from below the photosphere to distances past 1 AU. The successive merging of flux tubes on granular and supergranular scales is described using a two-dimensional magnetostatic model of a magnetic network element in the stratified solar atmosphere. (2) The amplitudes of horizontal wave motions are specified only at the photosphere, based on previous analyses of G-band bright point motions. Everywhere else in the model the amplitudes of outward and inward propagating waves are computed self-consistently. We compare the resulting wave properties with observed nonthermal motions in the chromosphere and corona, radio scintillation measurements, and in-situ fluctuation spectra. Quantities such as the MHD turbulent heating rate and the non-WKB wave pressure are computed, and the need for other sources of inward waves (e.g., nonlinear reflection or scattering off density inhomogeneities) will also be discussed. This work is supported by the National Aeronautics and Space Administration under grants NAG5-11913 and NAG5-12865 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to the ESA

  5. Electromagnetic wave propagation characteristics in unimolecular reactions

    NASA Astrophysics Data System (ADS)

    Liu, Xingpeng; Huang, Kama

    2016-01-01

    Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.

  6. COUPLED ALFVEN AND KINK OSCILLATIONS IN CORONAL LOOPS

    SciTech Connect

    Pascoe, D. J.; Wright, A. N.; De Moortel, I.

    2010-03-10

    Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. However, there is ongoing discussion regarding their interpretation as kink or Alfven waves. To investigate the nature of transverse waves propagating in the solar corona and their potential for use as a coronal diagnostic in MHD seismology, we perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low beta plasma. We consider the cases of both a uniform medium and one with loop-like density structure and perform a parametric study for our structuring parameters. When density structuring is present, resonant absorption in inhomogeneous layers leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave as energy is transferred to the local Alfven mode is in good agreement with a modified interpretation of the analysis of Ruderman and Roberts for standing kink modes. Numerical simulations support the most general interpretation of the observed loop oscillations as a coupling of the kink and Alfven modes. This coupling may account for the observed predominance of outward wave power in longer coronal loops since the observed damping length is comparable to our estimate based on an assumption of resonant absorption as the damping mechanism.

  7. REPRODUCTION OF THE OBSERVED TWO-COMPONENT MAGNETIC HELICITY IN SOLAR WIND TURBULENCE BY A SUPERPOSITION OF PARALLEL AND OBLIQUE ALFVEN WAVES

    SciTech Connect

    He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo

    2012-04-10

    The angular distribution of the normalized reduced magnetic helicity density ({sigma} r{sub m}) in solar wind turbulence reveals two components of distinct polarity in different angle ranges. This kind of two-component {sigma}{sup r}{sub m} may indicate the possible wave modes and power spectral densities (PSDs) of the turbulent fluctuations. Here we model the measured angular distribution of {sigma}{sup r}{sub m} by assuming a PSD distribution for Alfven fluctuations in wavevector space, and then fit the model results to the observations by adjusting the pattern of the PSD distribution. It is found that the two-component form of the PSD, which has a major and minor component close to k and k{sub ||}, respectively, seems to be responsible for the observed two-component {sigma}{sup r}{sub m}. On the other hand, both an isotropic PSD and a PSD with only a single component bending toward k fail to reproduce the observations. Moreover, it is shown that the effect of gradual balance between outward and inward wave-energy fluxes with decreasing spatial scale needs to be considered in order to reproduce the observed diminishing of |{sigma}{sup r}{sub m}| at shorter scales. Therefore, we suggest that the observed two-component {sigma}{sup r}{sub m} in the solar wind turbulence may be due to a superposition of Alfven waves with quasi-perpendicular (major part) and quasi-parallel (minor part) propagation. The waves seem to become gradually balanced toward shorter scales.

  8. Wave propagation into the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Hirota, I.

    1989-01-01

    Recent observations of various types of waves propagating into the middle atmosphere are reviewed. Emphasis is made on the excitation processes in the lower atmosphere and their vertical propagation through the background flow as a function of the latitude, height and season. The following subjects are discussed: (1) Vertical propagation of quasi-stationary forced Rossby waves into the winter stratosphere in connection with the sudden warming; (2) Spectral distribution and seasonal characteristics of normal mode (free) Rossby waves and the asymmetry of the Northern and Southern Hemispheres; and (3) Seasonal variation of internal gravity waves in the middle atmosphere. Further discussions are presented for future studies based on accumulated observational data during the MAP period.

  9. Faraday Pilot-Waves: Generation and Propagation

    NASA Astrophysics Data System (ADS)

    Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John

    2015-11-01

    We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.

  10. The Propagation of Radio Waves

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    1988-08-01

    Preface; 1. The ionosphere and magnetosphere; 2. The basic equations; 3. The constitutive relations; 4. Magnetoionic theory I. Polarisation and refractive index; 5. Magnetoionic theory II. Rays and group velocity; 6. Stratified media. The booker quartic; 7. Slowly varying medium. The W.K.B. solution; 8. The Airy integral function and the Stokes phenomenon; 9. Integration by steepest descents; 10. Ray tracing in a loss-free stratified medium; 11. Reflection and transmission coefficients; 12. Ray theory results for isotropic ionosphere; 13. Ray theory results for anisotropic plasmas; 14. General ray tracing; 15. Full wave solutions for isotropic ionosphere; 16. Coupled wave eqations; 17. Coalescence of couling points; 18. Full wave methods for anisotropic stratified media; 19. Applications of full wave methods; Answers to problems; Bibliography; Index of definitions of the more important symbols; Subject and name index.

  11. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  12. Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.

    2010-12-01

    Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.

  13. An analytical solution of finite-amplitude solitary kinetic Alfven waves

    SciTech Connect

    Wu, D.; Wang, D.; Faelthammar, C.

    1995-12-01

    An analytical solution of finite-amplitude solitary kinetic Alfven waves (SKAWs) in a low-{beta} ({beta}{much_lt}{ital m}{sub {ital e}}/{ital m}{sub {ital i}}{much_lt}1) plasma is presented. This solution has been compared with the solution of the Korteweg--de Vries (KdV) equation in the small-amplitude limit. It is found that the KdV soliton solution is valid only for the maximum relative density perturbation {ital N}{sub {ital m}}{lt}0.1. For the larger {ital N}{sub {ital m}}, the exact analytical solution shows that the SKAWs have a much wider structure and much stronger perturbed fields than the KdV solitons with the same {ital N}{sub {ital m}}. Moreover, the relations between the width and the amplitude of SKAWs are also considerably different from that of the KdV solitons. In addition, the possibility for applying these results to some events observed from the Freja scientific satellite is discussed. (The Freja is a Swedish--German scientific project for the investigation of ionospheric and magnetospheric plasmas, and the Freja satellite was launched on a Long-March II rocket of China on October 6, 1992.) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Optical evidence for Alfven wave breaking in the near-Earth magnetosphere

    NASA Astrophysics Data System (ADS)

    Semeter, J.; Blixt, M.

    2006-12-01

    Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.

  15. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    SciTech Connect

    Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips

    2012-03-13

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  16. Propagation of polarized waves in inhomogeneous media.

    PubMed

    Charnotskii, Mikhail

    2016-07-01

    A parabolic equation for electromagnetic wave propagation in a random medium is extended to include the depolarization effects in the narrow-angle, forward-scattering setting. Closed-form parabolic equations for propagation of the coherence tensor are derived under a Markov approximation model. For a general partially coherent and partially polarized beam wave, this equation can be reduced to a system of ordinary differential equations, allowing a simple numeric solution. An analytical solution exists for statistically homogeneous waves. Estimates based on the perturbation solution support the common knowledge that the depolarization at the optical frequencies is negligible for atmospheric turbulence propagation. These results indicate that the recently published theory [Opt. Lett.40, 3077 (2015)10.1364/OL.40.003077] is not valid for atmospheric turbulence. PMID:27409697

  17. Propagating precipitation waves: experiments and modeling.

    PubMed

    Tinsley, Mark R; Collison, Darrell; Showalter, Kenneth

    2013-12-01

    Traveling precipitation waves, including counterrotating spiral waves, are observed in the precipitation reaction of AlCl3 with NaOH [Volford, A.; et al. Langmuir 2007, 23, 961 - 964]. Experimental and computational studies are carried out to characterize the wave behavior in cross-section configurations. A modified sol-coagulation model is developed that is based on models of Liesegang band and redissolution systems. The dynamics of the propagating waves is characterized in terms of growth and redissolution of a precipitation feature that travels through a migrating band of colloidal precipitate. PMID:24191642

  18. SH wave propagation in piezoelectric coupled plates.

    PubMed

    Wang, Quan

    2002-05-01

    The propagation of shear horizontal (SH) wave in a piezoelectric coupled plate is investigated in this paper. Full account is taken of the piezoelectric coupling effect to the isotropic metal core in the mathematical model. One of the applications of this research is in the damage detection of the host metal structure from the wave propagation signal excited by the piezoelectric layer which is surface bonded on the surface of a metal core. This research is distinct from the previous works on SH propagation in piezoelectric structures because the piezoelectric materials were used as the core structure in the previous studies, and the potential of the studies was mainly on time-delay devices. The dispersive characteristics and the mode shapes of the transverse displacement and the electric potential of the piezoelectric layer are theoretically derived. The results from numerical simulations show that the phase velocity of the plate structure tends to the bulk shear wave velocity of the host metal core at high wavenumber when the shear wave velocity of host plate is larger than that of PZT bonded on it. Furthermore, there are three asymptotic solutions of wave propagation when the shear wave velocity of the host plate is smaller than that of PZT. The mode shape of the electric potential of the piezoelectric layer changes from the quadratic shape at lower wavenumber and with thinner piezoelectric layer to the shape with more zero nodes at higher wavenumber and with thicker piezoelectric layer. These findings are significant in the application of wave propagation in piezoelectric coupled structures. PMID:12046935

  19. Propagating waves can explain irregular neural dynamics.

    PubMed

    Keane, Adam; Gong, Pulin

    2015-01-28

    Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level. PMID:25632135

  20. Beat, modulational, and decay instabilities of a circularly polarized Alfven wave

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1994-01-01

    A circulary polarized low-frequency electomagnetic pump wave propoagating along an ambient magnetic field is known to be unstable to the growth of several parallel-propagating parametric instabilties. If ion-cyclotron effects are retained in a two-fluid description, the dispersion relation is a sixth-order polynomial. We present a series of new analytical approximations to this dispersion relation. We emphasize new results for the beat instability that occurs as an interaction of the forward prpagating upper sideband with the backward propagating lower sideband. The nature of the beat instabitlity depends on beta = (v(sub sound)/v(sub A)(exp 2) and on the sense of polarization of the pump wave. The beat and decay instabilities can occur together if the pump is left-handed (i.e., ion resonant) and if beta is less than or approximately 1, but they cannot occur together if the pump is right-handed. For a left-handed pump the beat mode is the only instability if beta is greater than or approximately 1. If the pump is right-handed and beta is greater than or approximately 1, then the beat instability exists only when the pump amplitude exceeds a threshold value, and the beat will be the only instability if the pump amplitude is large enough to stabilize the modulational instability. If the pump is left-handed and beta is less than or approximately 1, then the beat mode is stabilized when the pump amplitude becomes sufficiently large. The beat instability primarily produces a forward propagating transverse wave in the upper sideband. Thus if beta is greater than or approximately 1, the instabilities considered here do not produce the backward propagating waves which are thought to affect turbulence and the evolution of cross helicity in the solar wind. New analytical results are presented also for the decay and modulational instabilites when beta is approximately equal to 1.

  1. Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma

    SciTech Connect

    Shukla, P. K.; Eliasson, B.; Stenflo, L.

    2012-07-15

    We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.

  2. Wave propagation in metamaterial lattice sandwich plates

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  3. Globally propagating waves in the solar corona

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2011-12-01

    High-cadence space-based observations, available for over a decade now, have revealed globally propagating wave-like disturbances in the solar corona. These coronal waves have now been imaged in a wide range of spectral channels, yielding a wealth of information. Still, no consensus on their physical nature has been reached yet. While many findings are consistent with fast-mode MHD waves and/or shocks, other characteristics have given rise to alternative models which involve magnetic reconfiguration in the framework of an erupting coronal mass ejection. In this paper, the observational signatures of coronal waves will be reviewed, and the different physical interpretations of coronal waves and how they are motivated by observations will be discussed. Finally, the potential of using coronal waves as a diagnostic tool for the corona will be shown.

  4. High amplitude waves in the expanding solar wind plasma

    SciTech Connect

    Schmidt, J. M.; Velli, M.; Grappin, R.

    1996-07-20

    We simulated the 1 D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. It is the generation of sound due to ponderomotive forces of the Alfven wave which we can detect in the latter case. For slow magnetoacustic waves we find a kind of oscillation of the character of the wave between a sound wave and an Alfven wave. This is the more, the slow magnetoacustic wave is close to a sound wave in the beginning. On the other hand, fast magnetoacustic waves are much more dissipated than the other wave-types and their general behaviour is close to the Alfven. The normalized cross-helicity {sigma}{sub c} is close to one for Alfven-waves and this quantity is decreasing slightly when density-fluctuations are generated. {sigma}{sub c} decreases significantly when the waves are close to perpendicular propagation. Then, the waves are close to quasi-static structures.

  5. Wave propagation in complex coordinates

    NASA Astrophysics Data System (ADS)

    Horsley, S. A. R.; King, C. G.; Philbin, T. G.

    2016-04-01

    We give an interpretation for the use of complex spatial coordinates in electromagnetism, in terms of a family of closely related inhomogeneous media. Using this understanding we find that the phenomenon of reflection can be related to branch cuts in the wave that originate from poles of ε (z) at complex positions. Demanding that these branch cuts disappear, we derive a new large family of inhomogeneous media that are reflectionless for a single angle of incidence. Extending this property to all angles of incidence leads us to a generalized form of the Pöschl Teller potentials that in general include regions of loss and gain. We conclude by analyzing our findings within the phase integral (WKB) method, and find another very large family of isotropic planar media that from one side have a transmission of unity and reflection of zero, for all angles of incidence.

  6. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  7. Wave propagation analysis using the variance matrix.

    PubMed

    Sharma, Richa; Ivan, J Solomon; Narayanamurthy, C S

    2014-10-01

    The propagation of a coherent laser wave-field through a pseudo-random phase plate is studied using the variance matrix estimated from Shack-Hartmann wavefront sensor data. The uncertainty principle is used as a tool in discriminating the data obtained from the Shack-Hartmann wavefront sensor. Quantities of physical interest such as the twist parameter, and the symplectic eigenvalues, are estimated from the wavefront sensor measurements. A distance measure between two variance matrices is introduced and used to estimate the spatial asymmetry of a wave-field in the experiment. The estimated quantities are then used to compare a distorted wave-field with its undistorted counterpart. PMID:25401243

  8. On the nature of propagating MHD waves in polar coronal hole

    NASA Astrophysics Data System (ADS)

    Gupta, Girjesh R.; Banerjee, Dipankar

    Waves play an important role in the heating of the solar corona and in the acceleration of the fast solar wind from polar Coronal Holes (pCHs). Recently using EIS/Hinode and SUMER/SOHO, we have reported the presence of accelerating waves in polar region (Gupta et al. 2010, ApJ, 718, 11). These waves appeared to be originating from a bright location on-disk, presumably the footprint of the coronal funnels. These waves were interpreted in terms of either propagating Alfven waves or fast magneto-acoustic waves. The new sets of observations are obtained from the EIS/Hinode 2'' slit and imaging data from AIA/SDO in various filters over plume and inter-plume regions as HOP175 programme. The combination of spectroscopic and imaging data will provide further details on mode identification and properties of these waves and will help in the energy calculations. In this presentation, preliminary results obtained from these observations in terms of different nature of propagating waves in plume and inter-plume regions and energy carried by these waves will be presented.

  9. Large-scale Globally Propagating Coronal Waves

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2015-09-01

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  10. Propagation of seismic waves in tall buildings

    USGS Publications Warehouse

    Safak, E.

    1998-01-01

    A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.

  11. Solitary wave propagation influenced by submerged breakwater

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zuo, Qi-hua; Wang, Deng-ting; Shukrieva, Shirin

    2013-10-01

    The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation. "Water column collapsing" method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.

  12. Propagation characteristics of magnetostatic waves: A review

    NASA Astrophysics Data System (ADS)

    Parekh, J. P.

    1983-01-01

    This paper reviews the propagation characteristics of guided magnetostatic waves (MSW's) in a YIG film magnetized beyond saturation. There exist three guided magnetostatic wave-types, viz., magnetostatic surface waves (MSSW's) and magnetostatic forward and backward volume waves (MSFVW's and MSBVW's). The orientation of the internal bias field determines the particular wave-type that can be supported by the YIG film. The frequency spectrum of the volume waves coincides with that over which magnetostatic plane waves are of the homogeneous variety. The frequency spectrum of the MSSW's is located immediately above the MSVW spectrum. MSW's are dispersive, with the dispersion properties alterable through modification in boundary conditions. The most explored dispersion control technique employs the placement of a ground plane somewhat above the YIG film surface. This dispersion control technique, which provides one method of realizing nondispersive MSW propagation, raises the upper bound of the MSSW spectrum but does not affect the bounds of the MSVW spectrum. Numerical computations illustrating the dispersion and polarization characteristics of MSW's are presented.

  13. Alfven solitons in the solar wind

    NASA Technical Reports Server (NTRS)

    Ovenden, C.; Schwartz, S. J.

    1983-01-01

    A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.

  14. Ionic wave propagation along actin filaments.

    PubMed

    Tuszyński, J A; Portet, S; Dixon, J M; Luxford, C; Cantiello, H F

    2004-04-01

    We investigate the conditions enabling actin filaments to act as electrical transmission lines for ion flows along their lengths. We propose a model in which each actin monomer is an electric element with a capacitive, inductive, and resistive property due to the molecular structure of the actin filament and viscosity of the solution. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived for the propagation of ionic waves. We solve this equation in two different regimes. In the first, the maximum propagation velocity wave is found in terms of Jacobi elliptic functions. In the general case, we analyze the equation in terms of Fisher-Kolmogoroff modes with both localized and extended wave characteristics. We propose a new signaling mechanism in the cell, especially in neurons. PMID:15041636

  15. Speeding up tsunami wave propagation modeling

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Mikhail; Romanenko, Alexey

    2014-05-01

    Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.

  16. Mechanical surface waves accompany action potential propagation.

    PubMed

    El Hady, Ahmed; Machta, Benjamin B

    2015-01-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404

  17. Mechanical surface waves accompany action potential propagation

    NASA Astrophysics Data System (ADS)

    El Hady, Ahmed; Machta, Benjamin B.

    2015-03-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.

  18. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Jafelice, L. C.; Opher, R.

    1990-11-01

    evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS

  19. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  20. The dispersive Alfven wave in the time-stationary limit with a focus on collisional and warm-plasma effects

    SciTech Connect

    Finnegan, S. M.; Koepke, M. E.; Knudsen, D. J.

    2008-05-15

    A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.

  1. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  2. Nonlinear guided wave propagation in prestressed plates.

    PubMed

    Pau, Annamaria; Lanza di Scalea, Francesco

    2015-03-01

    The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress. PMID:25786963

  3. Wave propagation in spatially modulated tubes.

    PubMed

    Ziepke, A; Martens, S; Engel, H

    2016-09-01

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train. PMID:27608990

  4. Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2014-10-01

    Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f wave driving mechanism may have important application in terrestrial radio communications by low frequency waves, which are difficult to launch directly due to their enormous wavelengths. Various heating methods involving X-mode, O-mode, and electron Bernstein mode are investigated in plasmas with controllable parameters (ne =108 ~1012 cm-3 ,Te = 0 . 1 ~ 6 eV ,Ti <waves and the subsequent structural changes of the plasma near the conversion region are also under investigation. This work is supported by an AFOSR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF.

  5. A note on runaway electrons in the presence of kinetic Alfven waves

    NASA Astrophysics Data System (ADS)

    de Assis, A. S.; de Azevedo, C. A.

    1993-04-01

    It is shown by the quasilinear Fokker-Planck approach that the shear kinetic Alfvén wave (KAW) cannot by itself produce runaway electrons, though it carries an electric field aligned with the ambient magnetic field. However, it can enhance the runaway production rate in case it propagates in presence of a background DC ambient electric field. Therefore, this note answers the question raised by Hollweg (1981) concerning the runaway electrons and nonthermal emission supposedly produced by KWA, without explanation until today. The main result presented here concerning the runaway production rate is valid for space or laboratory plasmas where the KWA and an ambient DC electric field coexist.

  6. Surface waves propagating on a turbulent flow

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Pablo; Aumaître, Sébastien

    2016-02-01

    We study the propagation of monochromatic surface waves on a turbulent flow of liquid metal, when the waves are much less energetic than the background flow. Electromagnetic forcing drives quasi-two-dimensional turbulence with strong vertical vorticity. To isolate the surface-wave field, we remove the surface deformation induced by the background turbulent flow using coherent-phase averaging at the wave frequency. We observe a significant increase in wavelength, when the latter is smaller than the forcing length scale. This phenomenon has not been reported before and can be explained by multiple random wave deflections induced by the turbulent velocity gradients. The shift in wavelength thus provides an estimate of the fluctuations in deflection angle. Local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is visible. Finally, we quantify the damping enhancement induced by the turbulent flow and compare it to the existing theoretical predictions. Most of them suggest that the damping increases as the square of the Froude number, whereas our experimental data show a linear increase with the Froude number. We interpret this linear relationship as a balance between the time for a wave to cross a turbulent structure and the turbulent mixing time. The larger the ratio of these two times, the more energy is extracted from the wave. We conclude with possible mechanisms for energy exchange.

  7. Lattice Boltzmann model for wave propagation.

    PubMed

    Zhang, Jianying; Yan, Guangwu; Shi, Xiubo

    2009-08-01

    A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation. PMID:19792280

  8. Mechanical Surface Waves Accompany Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; El Hady, Ahmed

    2015-03-01

    The action potential (AP) is the basic mechanism by which information is transmitted along neuronal axons. Although the excitable nature of axons is understood to be primarily electrical, many experimental studies have shown that a mechanical displacement of the axonal membrane co-propagates with the electrical signal. While the experimental evidence for co-propagating mechanical waves is diverse and compelling, there is no consensus for their physical underpinnings. We present a model in which these mechanical displacements arise from the driving of mechanical surface waves, in which potential energy is stored in elastic deformations of the neuronal membrane and cytoskeleton while kinetic energy is stored in the movement of the axoplasmic fluid. In our model these surface waves are driven by the traveling wave of electrical depolarization that characterizes the AP, altering the electrostatic forces across the membrane as it passes. Our model allows us to predict the shape of the displacement that should accompany any traveling wave of voltage, including the well-characterized AP. We expect our model to serve as a framework for understanding the physical origins and possible functional roles of these AWs in neurobiology. See Arxiv/1407.7600

  9. Seismic Wave Propagation Along Fracture Intersections

    NASA Astrophysics Data System (ADS)

    Abell, B.; Pyrak-Nolte, L. J.; Knobloch, J.

    2012-12-01

    Past research has shown that fractures support guided-modes such as coupled Rayleigh waves as well as confined modes such as Love waves and leaky-mode compressional waves. We demonstrated experimentally that fracture intersections support a mode that is similar to interface waves but propagates at speeds below the Rayleigh wave for low applied load. In this experimental study, we demonstrated that at low stress, fracture intersections support highly-localized wedge waves whose existence depends on stress and source-receiver polarization. Wedge waves (W.W.) were propagated along the orthogonal edge of aluminum samples. The sample measured 100 x 150 x 150 mm and was machined with two orthogonal fractures, intersecting at the center, such that four independent pieces of aluminum could be measured independently or pieced together. Seismic measurements were performed for two cases: (1) two right angle blocks in contact to examine the stress dependence of two corners in contact and (2) four right angle blocks in contact to study the behavior of four intersecting corners in contact. Seismic transducers with a central frequency of 1MHz were used to propagate shear (S) waves along the corners of the blocks that form an intersection, along the fractures and through the bulk. Measurements were made with the shear transducers polarized at 0, 45, 90 and 135 deg. to the direction of loading for a range (0 to 66 kN) of applied normal loads. When only two blocks were in contact, a W.W. was observed traveling at speeds between 2650 m/s and 3000 m/s. This is below the Rayleigh speed (2830 m/s) for low stress. As the applied load was increased, the wave speed increased, indicating a change in the local stiffness. Although an increase in speed was observed for both polarizations, the measured speed was lower for 135 deg. polarization indicating that the local stiffness of the top wedge was dramatically different than the bottom aluminum block. All four blocks were also examined under

  10. Obliquely propagating dust-density waves

    NASA Astrophysics Data System (ADS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-02-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.

  11. Solitons in wave propagation and spin systems

    NASA Astrophysics Data System (ADS)

    Loutsenko, Igor

    1999-10-01

    This thesis consists of three parts: In the first part, a solution of the restricted Hadamard problem is presented. The classical Hadamard problem consists in determining (up to equivalence) all the second order differential operators which satisfy Huygens' Principle in the narrow sense. Physically, such operators describe systems where the diffusion of waves is absent and where signals propagate with maximal velocity. Unlike the original principle of superposition of secondary waves, which holds for all wave propagation phenomena, Huygens' principle in the narrow sense of Hadamard applies only to a very restricted range of wave processes, with sharp signals. We present a new class of Huygens' operators on Minkowski space-time and establish a new link between Huygens' principle and the solitons of the Korteveg-de Vries equation. In the second part, a new class of exactly solvable models in statistical mechanics is presented. We study the connections between the soliton solutions of certain integrable nonlinear equations (hierarchies of equations) and the thermodynamic quantities of one-dimensional Ising models with different types of interactions between spins. The exact solvability of these models can be traced back to this connection. We consider a model linked to soliton solutions of the Korteveg de Vries and of the B-type Kadomtsev-Petiashvili hierarchies. A connection between these Ising chains and random matrix models is considered as well. In the third part, we study solitonic mechanisms of exciton superfluidity. We provide a theoretical explanation of recent experiments on the propagation of excitons in semiconductors. In these experiments, the excitonic transport under the action of a laser pulse has been studied. It turned out that under certain conditions this transport becomes anomalous and the excitons propagate through the crystal in a wave packet without diffusion. We propose a model for this phenomenon which relies on the presence of an exciton

  12. Kinetic Alfven eigenmodes in JET and DIII-D

    SciTech Connect

    Jaun, A.; Hellsten, T.; Heidbrink, W.W.; Carolipio, E.

    1996-12-31

    Kinetic effects are studied for global Alfven eigenmodes in realistic tokamak equilibria with finite aspect ratio and plasmas, comparing calculations from the full wave code PENN with experimental measurements. The kinetic plasma model is based on a Larmor radius expansion in toroidal geometry and takes into account the gradients in the equilibrium density and temperatures. It allows for a consistent description of the mode conversion to the kinetic Alfven wave (KAW) and the effect of diamagnetic drifts on electromagnetic waves. Comparisons axe first carried out for a JET discharge, showing that multiple peeks measured in the low frequency Alfven spectrum are the signature of kinetic Alfven eigenmodes (KAE) induced through coupling between a global ellipticity Alfven eigenmode (EAE) and the KAW. In general, series of modes appear in the proximity of global fluid modes, some with a regular spacing in frequency and a very weak Landau damping of {vert_bar}{gamma}/{omega}{vert_bar} {approx_equal} 0.0007. A kinetic analysis of a DIII-D discharge shows that TAE mode wavefields reach the plasma core through electromagnetic drift waves which propagate because of finite temperature gradients in the regions of small k{sub {parallel}}. They can lead to particle diffusion and may explain the large losses of beam ions observed during the TAE instabilities. Comparisons of frequency and eigenmode structure axe carried out for resistive and kinetic models, between the theoretical calculations using the PENN code and the experimental measurements from magnetic probes.

  13. Wave Propagation in Jointed Geologic Media

    SciTech Connect

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  14. Wave-particle interaction and peculiarities of propagation and emission of accelerated particles in solar flares

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.; Tsap, Yu. T.

    2006-08-01

    Consequences of wave-particle interaction in the propagation and emission of accelerated particles in solar flares are considered. i. Strong diffusion energetic particles on small-scale waves (Trakhtengerts 1984) gives time delays of gamma ray line emission vs hard X-ray emission when electron and protons are accelerated simultaneously. ii. Anomalous propagation of relativistic electrons along the flare loop with velocity of 30 times less compared with light velocity (Yokoyama et al 2002) is explained in terms of the collective effects of interaction of electrons with plasma turbulence. A cloud of high-energetic electrons responsible for microwave emission generates whistler waves and a turbulent "wall" in the loop is formed. The electrons undergo strong resonant scattering and the emission front propagates with the wave phase velocity, which is much lower than particle velocity. iii. Absence of linear polarization (≤ 0.07%) in Hα emission of some flares (Bianda et al 2005) is interpreted in terms of pitch-angle scattering of proton beams on small-scale Alfven waves. References Bianda M., Benz F.O., Stenflo J.O. et al 2005, A&A, 434, 1183 Trakhtengerts V.Yu. 1984, Relaxation of Plasma with Anisotropic Velocity Distribution, in A.A.Galeev and R.N.Sudan (eds.) Basic Plasma Physics II, North-Holland Physics Publishing Yokoyama T., Nakajima H., Shibasaki K, et al. 2002, ApJ, 576, L87

  15. Seismic Wave Propagation on the Tablet Computer

    NASA Astrophysics Data System (ADS)

    Emoto, K.

    2015-12-01

    Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the

  16. Radiation from accelerated Alfven solitons in inhomogeneous plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, G. S.; Buti, B.; Tsintsadze, N. L.

    1990-01-01

    In a weakly inhomogeneous plasma, the large-amplitude Alfven waves propagating parallel to the ambient magnetic field are shown to evolve into accelerated Alfven solitons. Nonlinear interaction of the accelerated Alfven solitons with the Langmuir waves results in the emission of coherent radiations. Analytical expression for the power radiated per unit solid angle from a soliton is derived for two inhomogeneity profiles, namely the linear profile and the parabolic profile. For the case of uniform plasmas, the emission occurs via a decay-type process or resonant modes. In the presence of inhomogeneity, nonresonant modes provide a new channel for the emission of radiation. The power radiated per unit solid angle is computed for the parameters relevant to Comet Halley's plasma environment. For the nonresonant modes it is found to be several orders of magnitude higher than that for the case of resonant modes.

  17. Shock wave propagation in glow discharges

    NASA Astrophysics Data System (ADS)

    Ganguly, B. N.

    1998-10-01

    The modification of acoustic shock wave propagation characteristics in a 25 cm long positive column low pressure (10 to 50 Torr), low current density (2 to 10 mA/cm^2) argon and N2 dc discharges have been measured by laser beam deflection technique. The simultaneous multi point shock velocity, dispersion and damping have been measured both inside and outside the glow discharge region. The local shock velocity is found to increase with the increased propagation path length through the discharge; for Mach number greater than 1.7 the upstream velocity exceeded the downstream velocity in contrast to the opposite behavior in neutral gas. The damping and dispersion are also dependent on the propagation distance. The recovery of the shock dispersion and damping in the post discharge region, for a given discharge condition, are functions of the initial Mach number. The optical measurement of the wall and the gas (rotational) temperatures suggest the observed shock features can not be solely explained by the gas heating in a self sustained discharge. The results are similar for both Ar and N2 discharges showing that vibrational excitation and relaxation are not essential^1. The explanation of the observed weak shock propagation properties in a glow discharge appears to require long range cooperative interactions that enhance heavy particle collisional energy transfer rates for the measured discharge conditions. Unlike collisional shock wave propagation in highly ionized plasmas^2,3, the exact energy coupling mechanism between the nonequilibrium weakly ionized plasma and shock is not understood. 1. A.I. Osipov and A.V. Uvarov, Sov. Phys. Usp. 35, 903 (1992) and other references there in. 2. M. Casanova, O. Larroche and J-P Matte, Phys. Rev. Lett. 67, 2143 (1991). 3. M.C.M. van de Sanden, R. van den Bercken and D.C. Schram, Plasma Sources Sci.Technol. 3, 511 (1994).

  18. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  19. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    SciTech Connect

    Maneva, Y. G.; Ofman, L.; Vinas, A. F.

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  20. Modeling Propagation of Shock Waves in Metals

    SciTech Connect

    Howard, W M; Molitoris, J D

    2005-08-19

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.

  1. The propagation of ULF waves from the Earth's foreshock region to ground: the case study of 15 February 2009

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; De Lauretis, Marcello; Francia, Patrizia; Villante, Umberto

    2014-12-01

    A long-duration upstream ultralow frequency (ULF) wave event was detected on 15 February 2009 by Cluster satellites, close to the bow shock nose. A clear wave activity was identified when the interplanetary magnetic field orientation was favorable to the local generation. We examined the wave properties in both the solar wind and the spacecraft frame during a selected time interval and found that foreshock waves were essentially Alfven waves propagating at a small angle with respect to the interplanetary magnetic field. A comparison of Cluster observations with those on the ground, in the polar cap and at low-latitude stations, confirms the results of previous studies, indicating that upstream waves can reach different ground regions along different paths.

  2. Ultrasonic wave propagation in cortical bone mimics

    NASA Astrophysics Data System (ADS)

    Dodd, Simon P.; Cunningham, James L.; Miles, Anthony W.; Humphrey, Victor F.; Gheduzzi, Sabina

    2004-10-01

    Understanding the velocity and attenuation of ultrasonic waves in cortical bone is important for studies of osteoporosis and fractures. In particular, propagation in free- and water-loaded acrylic plates, with a thickness range of around 1-6 mm, has been widely used to mimic cortical bone behavior. A theoretical investigation of Lamb mode propagation at 200 kHz in free- and water-loaded acrylic plates revealed a marked difference in the form of their velocity and attenuation dispersion curves as a function of frequency thickness product. In experimental studies, this difference between free and loaded plates is not seen. Over short measurement distances, the results for both free and loaded plates are consistent with previous modeling and experimental studies: for thicker plates (above 3-4 mm), the velocity calculated using the first arrival signal is a lateral wave comparable with the longitudinal velocity. As the plate thickness decreases, the velocity approaches the S0 Lamb mode value. WAVE2000 modeling of the experimental setup agrees with experimental data. The data are also used to test a hypothesis that for thin plates the velocity approaches the corresponding S0 Lamb mode velocity at large measurement distances or when different arrival time criteria are used. [Work supported by Action Medical Research.

  3. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  4. Radio wave propagation in pulsar magnetospheres

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.; Lyubarskii, Yu. E.

    Pulsar magnetospheres are known to contain an ultrarelativistic highly magnetized plasma which streams along the open magnetic lines. The radio emission observed from pulsars is believed to originate sufficiently deep in the open field line tube, so that the characteristics of outgoing waves can be influenced by propagation in the magnetospheric plasma. Refraction of radio waves in pulsar magnetospheres appears to be efficient. The effect not only influences the observed pulse width and its frequency dependency. It can alter the apparent spatial structure of pulsar emission region which can be derived from the observations of pulsar interstellar scintillations. Transverse ray separation versus pulse longitude calculated allowing for magnetospheric refraction appears to be in qualitative agreement with that observed. In particular, the nonmonotonic character of the curve can be attributed to nonmonotonic distribution of the plasma number density across the open field line tube which makes the rays emitted at different spatial locations deviate in the opposite directions. Proceeding from the frequency dependence of refraction some predictions are made about the frequency evolution of the apparent spatial structure of pulsar emission region. Magnetospheric refraction can also determine the profile shape giving rise to ray grouping into separate components. It will be demonstrated that the salient features of profile morphology can be explained within the frame of a primordial hollow-cone emission model taking into account refraction of rays in pulsar plasma. Then the frequency evolution of profile structure is naturally interpreted as a consequence of frequency dependence of refraction. As the waves propagate in the magnetospheric plasma their polarization also evolves essentially. In the vicinity of the emission region normal waves are linearly polarized and propagate independently, with the polarization plane following the orientation of the local magnetic field. As

  5. Surface wave propagation across the USArray

    NASA Astrophysics Data System (ADS)

    Foster, A. E.; Ekstrom, G.; Hjorleifsdottir, V.

    2010-12-01

    We present Love and Rayleigh wave phase-velocity models at discrete periods between 25 and 100 s from the inversion of phase measurements. Phase measurements are made on an updated set of USArray TA data using a two-station method that has been corrected for the estimated wavefront arrival angle. Arrival angles are estimated using a “mini-array” method, which additionally calculates the local phase velocity for each event recorded in a mini array. By minimizing the misfit between observed and predicted phase within the mini array, we find the best-fit local phase velocity, which is then used to predict the phase in a grid search for apparent source locations. The trial sources have fixed epicentral distance but varied arrival angles with respect to the mini array, and the optimal apparent source corresponds to the arrival angle. Correcting the two-station method for the arrival angle produces small (around 1%) changes in phase velocity. In the inversion results, these changes are most significant along the Pacific coast at shorter periods, as a result of refraction at the ocean-continent transition. The local phase-velocity estimates are combined to make independent phase-velocity models for comparison with the inversion results. For Rayleigh waves at all periods, the two models have similar size, location, and strength of anomalies. Higher noise levels in Love wave data are apparent in both models; they show similar velocities and large anomalies, but smaller anomalies are below the noise levels at short periods. Still, the overall quality and quantity of data available allow us to investigate the errors associated with the two-station method, and the effect the duration and complexity of wave propagation has on these errors. We examine the consistency of wave propagation using the estimated arrival angles for multiple events recorded at the same stations. This is repeated with synthetic events, calculated using the spectral element method of Komatitsch and

  6. BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA

    SciTech Connect

    Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu

    2011-09-10

    Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.

  7. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  8. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  9. Elastic Wave Propagation and Generation in Seismology

    NASA Astrophysics Data System (ADS)

    Lees, Jonathan M.

    The majority of mature seismologists of my generation were introduced to theoretical seismology via classic textbooks written in the early 1980s. Since this generation has matured and taken the mantle of teaching seismology to a new generation, several new books have been put forward as replacements, or alternatives, to the original classical texts. The target readers of the new texts range from beginner through intermediate to more advanced, although all have been attempts to improve upon what is now considered standard convention in quantitative seismology. To this plethora of choices we now have a new addition by Jose Pujol, titledElastic Wave Propagation and Generation in Seismology.

  10. Investigation into stress wave propagation in metal foams

    NASA Astrophysics Data System (ADS)

    Li, Lang; Xue, Pu; Chen, Yue

    2015-09-01

    The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  11. Propagation of gravity waves across the tropopause

    NASA Astrophysics Data System (ADS)

    Bense, Vera; Spichtinger, Peter

    2015-04-01

    The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause

  12. Calibration of seismic wave propagation in Kuwait

    SciTech Connect

    Al-Awadhi, J; Endo, E; Fryall, F; Harris, D; Mayeda, K; Rodgers, A; Ruppert, S; Sweeney, J

    1999-07-23

    The Kuwait Institute of Scientific Research (KISR), the USGS and LLNL are collaborating to calibrate seismic wave propagation in Kuwait and surrounding regions of the northwest Arabian Gulf using data from the Kuwait National Seismic Network (KNSN). Our goals are to develop local and regional propagation models for locating and characterizing seismic events in Kuwait and portions of the Zagros mountains close to Kuwait. The KNSN consists of 7 short-period stations and one broadband (STS-2) station. Constraints on the local velocity structure may be derived from joint inversions for hypocenters of local events and the local velocity model, receiver functions from three-component observations of teleseisms, and surface wave phase velocity estimated from differential dispersion measurements made across the network aperture. Data are being collected to calibrate travel-time curves for the principal regional phases for events in the Zagros mountains. The available event observations span the distance range from approximately 2.5 degrees to almost 9 degrees. Additional constraints on structure across the deep sediments of the Arabian Gulf will be obtained from long-period waveform modeling.

  13. Wave propagation in random granular chains.

    PubMed

    Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H

    2012-03-01

    The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation. PMID:22587093

  14. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    PubMed

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments. PMID:26357093

  15. Calibration of seismic wave propagation in Jordan

    SciTech Connect

    Al-Husien, A; Amrat, A; Harris, D; Mayeda, K; Nakanishi, K; Rodgers, A; Ruppert, S; Ryall, F; Skinnell, K; Yazjeen, T

    1999-07-23

    The Natural Resources Authority of Jordan (NRA), the USGS and LLNL have a collaborative project to improve the calibration of seismic propagation in Jordan and surrounding regions. This project serves common goals of CTBT calibration and earthquake hazard assessment in the region. These objectives include accurate location of local and regional earthquakes, calibration of magnitude scales, and the development of local and regional propagation models. In the CTBT context, better propagation models and more accurately located events in the Dead Sea rift region can serve as (potentially GT5) calibration events for generating IMS location corrections. The detection and collection of mining explosions underpins discrimination research. The principal activity of this project is the deployment of two broadband stations at Hittiyah (south Jordan) and Ruweishid (east Jordan). These stations provide additional paths in the region to constrain structure with surface wave and body wave tomography. The Ruweishid station is favorably placed to provide constraints on Arabian platform structure. Waveform modeling with long-period observations of larger earthquakes will provide constraints on 1-D velocity models of the crust and upper mantle. Data from these stations combined with phase observations from the 26 short-period stations of the Jordan National Seismic Network (JNSN) may allow the construction of a more detailed velocity model of Jordan. The Hittiyah station is an excellent source of ground truth information for the six phosphate mines of southern Jordan and Israel. Observations of mining explosions collected by this station have numerous uses: for definition of templates for screening mining explosions, as ground truth events for calibrating travel-time models, and as explosion populations in development and testing discriminants. Following previously established procedures for identifying explosions, we have identified more than 200 explosions from the first 85 days of

  16. Numerical Simulation of Waves Driven by Plasma Currents Generated by Low-Frequency Alfven Waves in a Multi-Ion Plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2004-01-01

    When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.

  17. Kink Wave Propagation in Thin Isothermal Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Lopin, I. P.; Nagorny, I. G.; Nippolainen, E.

    2014-08-01

    We investigated the propagation of kink waves in thin and isothermal expanding flux tubes in cylindrical geometry. By using the method of radial expansion for fluctuating variables we obtained a new kink wave equation. We show that including the radial component of the tube magnetic field leads to cutoff-free propagation of kink waves along thin flux tubes.

  18. Propagation of Buoyancy Waves Through the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Wolf, R.; Schutza, A. M.; Toffoletto, F. R.

    2015-12-01

    THEMIS observations analyzed by E. V. Panov and collaborators have shown that, when an earthward-moving plasma-sheet flow burst encounters the quasi-dipolar region of the magnetosphere, the plasma that formed the burst often oscillates a few times before coming to rest. The observed oscillation periods seem in good agreement with the frequency calculated theoretically for a thin filament oscillating in the same region. However, since a thin filament is an extreme idealization of a real flow burst, we have investigated the relationship between thin-filament oscillations and the normal modes of a 2D plasma system that is analogous to the magnetosphere. We have developed an analytic model of the normal modes of an idealized plasma configuration that consists of a wedge with circular field lines. For that system, the low-frequency wave obeys a one-dimensional differential equation that is essentially the same as the equation describing buoyancy oscillations in the neutral atmosphere. An important term in the neutral-atmosphere equation is proportional to the square of ωb, which is called the "buoyancy frequency" or "Brunt-Väisälä frequency", and the corresponding quantity in the plasma equation is exactly the square of the fundamental oscillation frequency of a thin filament. In both cases, a buoyancy wave of frequency ω propagates in the region where ωb>ω, but is evanescent in the region where ωb<ω. A thin-filament code has been used to calculate the buoyancy frequency in different regions of the magnetosphere, as represented by a force-balanced configuration based on a Tsyganenko model. The results suggest that, if the braking of a bursty bulk flow produces an oscillation at the buoyancy frequency at about 10 RE, it may generate a buoyancy wave that can propagate earthward to the plasmapause.

  19. Wave propagation in predator-prey systems

    NASA Astrophysics Data System (ADS)

    Fu, Sheng-Chen; Tsai, Je-Chiang

    2015-12-01

    In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).

  20. Interactions between two propagating waves in rat visual cortex.

    PubMed

    Gao, X; Xu, W; Wang, Z; Takagaki, K; Li, B; Wu, J-Y

    2012-08-01

    Sensory-evoked propagating waves are frequently observed in sensory cortex. However, it is largely unknown how an evoked propagating wave affects the activity evoked by subsequent sensory inputs, or how two propagating waves interact when evoked by simultaneous sensory inputs. Using voltage-sensitive dye imaging, we investigated the interactions between two evoked waves in rat visual cortex, and the spatiotemporal patterns of depolarization in the neuronal population due to wave-to-wave interactions. We have found that visually-evoked propagating waves have a refractory period of about 300 ms, within which the response to a subsequent visual stimulus is suppressed. Simultaneous presentation of two visual stimuli at different locations can evoke two waves propagating toward each other, and these two waves fuse. Fusion significantly shortens the latency and half-width of the response, leading to changes in the spatial profile of evoked population activity. The visually-evoked propagating wave may also be suppressed by a preceding spontaneous wave. The refractory period following a propagating wave and the fusion between two waves may contribute to visual sensory processing by modifying the spatiotemporal profile of population neuronal activity evoked by sensory events. PMID:22561730

  1. Propagation of sound waves in drill strings

    NASA Astrophysics Data System (ADS)

    Drumheller, D. S.; Knudsen, S. D.

    1995-04-01

    Deep wells are commonly drilled while steering the drill bit. The steering process is completely controlled by the drilling-rig operator. A key element of this procedure is the measurement and communication of navigation information from the bottom of the well to the operator. Pressure pulses modulated onto the flow of the drill fluid are now employed in some cases to communicate this information. However, data rates are only a few binary bits per second with this method. This drastically limits the quantity of data available to the operator. As an alternative method, elastic waves generated within the steel drill string can be used as a carrier signal to transmit data. The drill string is commonly assembled from 10-m segments of threaded pipe and forms a periodic structure. The elastic wavelengths of interest are shorter than this periodic length. Consequently, these waves undergo significant dispersion. This paper presents new data for the propagation of elastic waves in a 2-km drill string. The influence of aperiodicity in the drill string, rotation of the drill string, and noise levels are studied in detail. The data verify a method for reducing the attenuation of a carrier signal by a factor of 2.

  2. An investigation into Voigt wave propagation for optical sensing

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2013-09-01

    In the nonsingular case of optical propagation in a linear, homogeneous, anisotropic, dielectric material, two independent plane waves, with orthogonal polarizations and different phase speeds, can propagate in a given direction. However, in certain dissipative biaxial materials there are particular directions along which these two waves coalesce to form a single plane wave. This coalescent Voigt wave represents the singular case. Most conspicuously, the amplitude of Voigt waves are linearly dependent upon propagation direction. A porous nanostructured thin film which supports Voigt wave propagation was investigated, with a view to possible optical sensing applications. The directions along which Voigt waves propagate can be highly sensitive to the refractive index of a fluid which infiltrates this porous material. Indeed, in our theoretical studies sensitivities which compare favourably to those of surface-plasmon-polariton-based optical sensors were found.

  3. Regional Wave Propagation in Southeastern United States

    NASA Astrophysics Data System (ADS)

    Jemberie, A. L.; Langston, C. A.

    2003-12-01

    Broad band seismograms from the April 29, 2003, M4.6 Fort Payne, Alabama earthquake are analyzed to infer mechanisms of crustal wave propagation, crust and upper mantle velocity structure in southeastern United States, and source parameters of the event. In particular, we are interested in producing deterministic models of the distance attenuation of earthquake ground motions through computation of synthetic seismograms. The method first requires constraining the source parameters of an earthquake and then modeling the amplitude and times of broadband arrivals within the waveforms to infer appropriate layered earth models. A first look at seismograms recorded by stations outside the Mississippi Embayment (ME) show clear body phases such P, sP, Pnl, Sn and Lg. The ME signals are qualitatively different from others because they have longer durations and large surface waves. A straightforward interpretation of P wave arrival times shows a typical upper mantle velocity of 8.18 km/s. However, there is evidence of significantly higher P phase velocities at epicentral distances between 400 and 600km, that may be caused by a high velocity upper mantle anomaly; triplication of P-waves is seen in these seismograms. The arrival time differences between regional P and the depth phase sP at different stations are used to constrain the depth of the earthquake. The source depth lies between 9.5 km and 13km which is somewhat more shallow than the network location that was constrained to 15km depth. The Fort Payne earthquake is the largest earthquake to have occurred within the Eastern Tennessee Seismic Zone.

  4. Wave propagation in a random medium

    NASA Technical Reports Server (NTRS)

    Lee, R. W.; Harp, J. C.

    1969-01-01

    A simple technique is used to derive statistical characterizations of the perturbations imposed upon a wave (plane, spherical or beamed) propagating through a random medium. The method is essentially physical rather than mathematical, and is probably equivalent to the Rytov method. The limitations of the method are discussed in some detail; in general they are restrictive only for optical paths longer than a few hundred meters, and for paths at the lower microwave frequencies. Situations treated include arbitrary path geometries, finite transmitting and receiving apertures, and anisotropic media. Results include, in addition to the usual statistical quantities, time-lagged functions, mixed functions involving amplitude and phase fluctuations, angle-of-arrival covariances, frequency covariances, and other higher-order quantities.

  5. Wave Propagation in Expanding Cell Layers

    NASA Astrophysics Data System (ADS)

    Utuje, Kazage J. Christophe; Banerjee, Shiladitya; Marchetti, M. Cristina

    2014-03-01

    The coordinated migration of groups of cells drives important biological processes, such as wound healing and morphogenesis. In this talk we present a minimal continuum model of an expanding cell monolayer coupling elastic deformations to myosin-based activity in the cells. The myosin-driven contractile activity is quantified by the chemical potential difference for the process of ATP hydrolysis by myosin motors. A new ingredient of the model is a feedback of the local strain rate of the monolayer on contractility that naturally yields a mechanism for viscoelasticity of the cellular medium. By combining analytics and numerics we show that this simple model reproduces qualitatively many experimental findings, including the build-up of contractile stresses at the center of the cell monolayer, and the existence of traveling mechanical waves that control spreading dynamics and stress propagation in the cell monolayer. KJCU and MCM were supported by the NSF through grants DMR-1004789 and DGE-1068780.

  6. A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry

    SciTech Connect

    Koenies, Axel; Kleiber, Ralf

    2012-12-15

    While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.

  7. Spin-wave propagation and transformation in a thermal gradient

    NASA Astrophysics Data System (ADS)

    Obry, Björn; Vasyuchka, Vitaliy I.; Chumak, Andrii V.; Serga, Alexander A.; Hillebrands, Burkard

    2012-11-01

    The influence of a thermal gradient on the propagation properties of externally excited dipolar spin waves in a magnetic insulator waveguide is investigated. It is shown that spin waves propagating towards a colder region along the magnetization direction continuously reduce their wavelength. The wavelength increase of a wave propagating into a hotter region was utilized to realize its decomposition in the partial waveguide modes which are reflected at different locations. This influence of temperature on spin-wave properties is mainly caused by a change in the saturation magnetization and yields promising opportunities for the manipulation of spin waves in spin-caloritronic applications.

  8. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  9. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    SciTech Connect

    Tsiklauri, D.

    2014-05-15

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is

  10. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2015-04-01

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed

  11. Surface wave propagation characteristics in atmospheric pressure plasma column

    NASA Astrophysics Data System (ADS)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2007-04-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  12. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  13. Effect of the magnetic field curvature on the generation of zonal flows by drift-Alfven waves

    SciTech Connect

    Mikhailovskii, A. B.; Kovalishen, E. A.; Shirokov, M. S.; Tsypin, V. S.; Galvao, R. M. O.

    2007-05-15

    The generation of zonal flows by drift-Alfven waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm's law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.

  14. Methods in wave propagation and scattering

    NASA Astrophysics Data System (ADS)

    Braunisch, Henning

    2001-11-01

    Aspects of wave propagation and scattering with an emphasis on specific applications in engineering and physics are examined. Frequency-domain methods prevail. Both forward and inverse problems are considered. Typical applications of the method of moments to rough surface three-dimensional (3-D) electromagnetic scattering require a truncation of the surface considered and call for a tapered incident wave. A proposed special choice of polarization vectors removes an irregularity at the origin of the wavenumber space and leads to a wave that is optimal in a least squared error sense. An analytical solution is presented for the electromagnetic induction problem of magnetic diffusion into and scattering from a permeable, highly but not perfectly conducting prolate spheroid under axial excitation, expressed in terms of an infinite matrix equation. The solution is based on separation of variables and matching boundary conditions where the prolate spheroidal wavefunctions with complex wavenumber parameter are expanded in terms of spherical harmonics. A general broadband rational function approximation technique is developed and demonstrated. We treat special cases and provide numerical reference data for the induced magnetic dipole moment or, equivalently, the magnetic polarizability factor. The magnetoquasistatic response of a distribution of an arbitrary number of interacting small conducting and permeable objects is also investigated. Useful formulations are provided for expressing the magnetic dipole moment of conducting and permeable objects of general shape. An alternative to Tikhonov regularization for deblurring and inverse diffraction, based on a local extrapolation scheme, is described, analyzed, and illustrated numerically for the cases of continuation of fields obeying Laplace and Helmholtz equations. The problem of inferring unknown geometry and material parameters of a wave-guide model from noisy samples of the associated modal dispersion curves is

  15. Wave propagation in damage assessment of ground anchors

    NASA Astrophysics Data System (ADS)

    Zima, B.; Rucka, M.

    2015-07-01

    The inspection possibilities of ground anchors are limited to destructive test such as pull-out test. Guided wave propagation gives an opportunity to develop an inspection system dedicated to determine the condition of inspected element without violation of their integrity. In this paper the experimental study on wave propagation in laboratory models of ground anchors are presented. Experiments were conducted for different bonding lengths and different frequencies of excitation. Waves were generated by a piezoelectric actuator and the laser vibrometry technique was used to register velocity signals. For all tested anchors it was possible to identify the boundary between steel and concrete based on the registered reflections in wave propagation signals.

  16. Nonlinear, dispersive, elliptically polarized Alfven wavaes

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.

    1988-01-01

    The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.

  17. On the propagation of acceleration waves in incompressible hyperelastic solids

    NASA Astrophysics Data System (ADS)

    Gültop, T.

    2003-07-01

    The conditions for the propagation of acceleration waves (sound waves) in incompressible elastic media undergoing finite deformation are investigated. The incompressible hyperelastic solid media is considered in accordance with the general constitutive theory of materials subject to internal mechanical constraints. The equation of motion of acceleration waves is obtained using the theory of singular surfaces. A general comparison is made between the magnitudes of the propagation speeds of waves in incompressible and unconstrained solid media by the use of Mandel's inequalities. The magnitudes of the speeds of propagation of acceleration waves in the incompressible hyperelastic material classes of neo-Hookean, Mooney-Rivlin, and St. Venant-Kirchhoff solids are determined. Comparisons are made of the specific results concerning the magnitudes of wave propagation speeds making use of the corresponding material parameters.

  18. Wave-propagation formulation of seismic response of multistory buildings

    USGS Publications Warehouse

    Safak, E.

    1999-01-01

    This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.

  19. Voltage modulation of propagating spin waves in Fe

    SciTech Connect

    Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti; Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya; Suzuki, Yoshishige

    2015-05-07

    The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.

  20. Superluminal propagation of solitary kinklike waves in amplifying media.

    PubMed

    Janowicz, Maciej; Mostowski, Jan

    2006-04-01

    It is shown that solitary-wave, kinklike structures can propagate superluminally in two- and four-level amplifying media with strongly damped oscillations of coherences. This is done by solving analytically the Maxwell-Bloch equations in the kinetic limit. It is also shown that the true wave fronts--unlike the pseudo wave fronts of the kinks--must propagate with velocity c, so that no violation of special relativity is possible. The conditions of experimental verification are discussed. PMID:16711948

  1. On the possibility for laboratory simulation of generation of Alfven disturbances in magnetic tubes in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar

    2016-03-01

    The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.

  2. Manipulating Water Wave Propagation via Gradient Index Media

    PubMed Central

    Wang, Zhenyu; Zhang, Pei; Nie, Xiaofei; Zhang, Yongqiang

    2015-01-01

    It is challenging to realise the perfect manipulation of water waves within a broad range of frequencies. By extending conformal transformation principles to water waves, their propagation can be controlled via gradually varying water depths, permitting the realisation of a desired refractive index profile for linear water surface waves. Wave bending, directional wave emission and wave focusing are analysed experimentally with accompanying simulations. The results demonstrate desired wave manipulations within a broad range of frequencies, confirming the accuracy and effectiveness of conformal transformation for water waves. PMID:26603312

  3. OBSERVATIONAL EVIDENCE OF RESONANTLY DAMPED PROPAGATING KINK WAVES IN THE SOLAR CORONA

    SciTech Connect

    Verth, G.; Goossens, M.; Terradas, J. E-mail: marcel.goossens@wis.kuleuven.b

    2010-08-01

    In this Letter, we establish clear evidence for the resonant absorption damping mechanism by analyzing observational data from the novel Coronal Multi-Channel Polarimeter. This instrument has established that in the solar corona there are ubiquitous propagating low-amplitude ({approx}1 km s{sup -1}) Alfvenic waves with a wide range of frequencies. Realistically interpreting these waves as the kink mode from magnetohydrodynamic wave theory, they should exhibit a frequency-dependent damping length due to resonant absorption, governed by the Terradas-Goossens-Verth relation showing that transverse plasma inhomogeneity in coronal magnetic flux tubes causes them to act as natural low-pass filters. It is found that the observed frequency dependence on damping length (up to about 8 mHz) can be explained by the kink wave interpretation; and furthermore, the spatially averaged equilibrium parameter describing the length scale of transverse plasma density inhomogeneity over a system of coronal loops is consistent with the range of values estimated from Transition Region and Coronal Explorer observations of standing kink modes.

  4. Millimeter wave propagation measurements from an orbiting earth satellite.

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1973-01-01

    Major results of the millimeter wave propagation measurements conducted with the ATS-5 satellite are reviewed. The impact of these results on millimeter wave communications systems design is outlined. Advanced millimeter wave flight experiments currently under development for the ATS-F satellite are also discussed, and their main characteristics are summarized.

  5. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  6. Wave propagation in a medium with cavities

    NASA Astrophysics Data System (ADS)

    Adler, Pierre; Pazdniakou, Aliaksei

    2016-04-01

    The detection and imaging of cavities is still difficult, but it generates a lot of interest because of its potential applications. We have developed a code based on Lattice Springs and Lattice Boltzmann which can calculate wave propagation through a three dimensional composite medium. The theoretical background of these techniques will only be briefly addressed during the talk. The solid phase may have properties which are variable in space; the solid matrix may contain voids of arbitrary shapes which are filled or not with a mixture of air and water. In addition some of the voids may be empty. The surface of the ground is also arbitrary and it may be hilly. The source may be either a disturbance applied to a region of the solid phase or an overpressure applied to a particular cavity. In both cases, the disturbance and the overpressure can be arbitrary in time. Several sources can be simultaneously employed. Any region can be recorded, but a particular attention is paid to surface signals since they are the ones which are usually measured. The code is parallelized. Systematic applications of this tool have been done in order to analyse the response of a medium containing cavities to various signals. This complete parametric study has analyzed the most important parameters. The shape and the nature of the source have been addressed first; step functions of a limited or of an infinite duration have been studied and they are shown to result in simpler outputs than Ricker functions. The position of the source with respect to the ground surface has been varied. If it is deep, the reflection of the initial signal with the surface complicates the analysis of the surface measurements. The distance between the source and the cavity does not appear to be a critical parameter as long as the signal remains sufficiently large when it interacts with the cavity. Moreover, when this distance is large, the signal is transformed into a plane wave. The influence of the shape of the

  7. Study of nonlinear MHD equations governing the wave propagation in twisted coronal loops

    NASA Technical Reports Server (NTRS)

    Parhi, S.; DeBruyne, P.; Goossens, M.; Zhelyazkov, I.

    1995-01-01

    The solar corona, modelled by a low beta, resistive plasma slab, sustains MHD wave propagations due to shearing footpoint motions in the photosphere. By using a numerical algorithm the excitation and nonlinear development of MHD waves in twisted coronal loops are studied. The plasma responds to the footpoint motion by sausage waves if there is no twist. The twist in the magnetic field of the loop destroys initially developed sausage-like wave modes and they become kinks. The transition from sausage to kink modes is analyzed. The twist brings about mode degradation producing high harmonics and this generates more complex fine structures. This can be attributed to several local extrema in the perturbed velocity profiles. The Alfven wave produces remnants of the ideal 1/x singularity both for zero and non-zero twist and this pseudo-singularity becomes less pronounced for larger twist. The effect of nonlinearity is clearly observed by changing the amplitude of the driver by one order of magnitude. The magnetosonic waves also exhibit smoothed remnants of ideal logarithmic singularities when the frequency of the driver is correctly chosen. This pseudo-singularity for fast waves is absent when the coronal loop does not undergo any twist but becomes pronounced when twist is included. On the contrary, it is observed for slow waves even if there is no twist. Increasing the twist leads to a higher heating rate of the loop. The larger twist shifts somewhat uniformly distributed heating to layers inside the slab corresponding to peaks in the magnetic field strength.

  8. Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Ye, Huanchun.

    1992-03-01

    Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.

  9. Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Ye, Huanchun

    1992-03-01

    Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ``explosion`` occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.

  10. Application of a finite difference technique to thermal wave propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Next, computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.

  11. Application of a finite difference technique to thermal wave propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.

  12. Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.

    2014-01-01

    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.

  13. Analysis of guided wave propagation in a tapered composite panel

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw

    2015-03-01

    Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.

  14. Propagation Dynamics of Airy Water-Wave Pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-07-17

    We observe the propagation dynamics of surface gravity water waves, having an Airy function envelope, in both the linear and the nonlinear regimes. In the linear regime, the shape of the envelope is preserved while propagating in an 18-m water tank, despite the inherent dispersion of the wave packet. The Airy wave function can propagate at a velocity that is slower (or faster if the Airy envelope is inverted) than the group velocity. Furthermore, the introduction of the Airy wave packet as surface water waves enables the observation of its position-dependent chirp and cubic-phase offset, predicted more than 35 years ago, for the first time. When increasing the envelope of the input Airy pulse, nonlinear effects become dominant, and are manifested by the generation of water-wave solitons. PMID:26230797

  15. Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers or Kinetic Alfv\\'en Waves?

    NASA Technical Reports Server (NTRS)

    Sahraoui, Fouad; Goldstein, Melvyn L.

    2010-01-01

    Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.

  16. Simulation of guided wave propagation near numerical Brillouin zones

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Staszewski, Wieslaw J.; Packo, Pawel

    2016-04-01

    Attractive properties of guided waves provides very unique potential for characterization of incipient damage, particularly in plate-like structures. Among other properties, guided waves can propagate over long distances and can be used to monitor hidden structural features and components. On the other hand, guided propagation brings substantial challenges for data analysis. Signal processing techniques are frequently supported by numerical simulations in order to facilitate problem solution. When employing numerical models additional sources of errors are introduced. These can play significant role for design and development of a wave-based monitoring strategy. Hence, the paper presents an investigation of numerical models for guided waves generation, propagation and sensing. Numerical dispersion analysis, for guided waves in plates, based on the LISA approach is presented and discussed in the paper. Both dispersion and modal amplitudes characteristics are analysed. It is shown that wave propagation in a numerical model resembles propagation in a periodic medium. Consequently, Lamb wave propagation close to numerical Brillouin zone is investigated and characterized.

  17. Small-scale Solar Wind Turbulence Due to Nonlinear Alfven Waves

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Sharma, R. P.; Moon, Y.-J.

    2015-10-01

    We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k‑1.67) to the dispersion range (k‑3.0). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.

  18. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  19. PERSISTENT DOPPLER SHIFT OSCILLATIONS OBSERVED WITH HINODE/EIS IN THE SOLAR CORONA: SPECTROSCOPIC SIGNATURES OF ALFVENIC WAVES AND RECURRING UPFLOWS

    SciTech Connect

    Tian Hui; McIntosh, Scott W.; Wang, Tongjiang; Ofman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi

    2012-11-10

    Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.

  20. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    SciTech Connect

    Rehman, M. A.; Qureshi, M. N. S.; Shah, H. A.; Masood, W.

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  1. Lamb wave propagation in negative Poisson's ratio composites

    NASA Astrophysics Data System (ADS)

    Remillat, Chrystel; Wilcox, Paul; Scarpa, Fabrizio

    2008-03-01

    Lamb wave propagation is evaluated for cross-ply laminate composites exhibiting through-the-thickness negative Poisson's ratio. The laminates are mechanically modeled using the Classical Laminate Theory, while the propagation of Lamb waves is investigated using a combination of semi analytical models and Finite Element time-stepping techniques. The auxetic laminates exhibit well spaced bending, shear and symmetric fundamental modes, while featuring normal stresses for A 0 mode 3 times lower than composite laminates with positive Poisson's ratio.

  2. Spectral solution of acoustic wave-propagation problems

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.

    1990-01-01

    The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.

  3. Teaching Wave Propagation and the Emergence of Viete's Formula

    ERIC Educational Resources Information Center

    Cullerne, J. P.; Goekjian, M. C. Dunn

    2012-01-01

    The well-known result for the frequency of a simple spring-mass system may be combined with elementary concepts like speed = wavelength x frequency to obtain wave propagation speeds for an infinite chain of springs and masses (masses "m" held apart at equilibrium distance "a" by springs of stiffness "gamma"). These propagation speeds are dependent…

  4. Ions Gyroresonant Surfing Acceleration by Alfven Waves in the Vicinity of SLAMS Boundary

    NASA Astrophysics Data System (ADS)

    Agapitov, Oleksiy; Kis, Arpad; Krasnoselskikh, Vladimir

    2012-07-01

    A well known feature of collisionless shocks which are formed in space plasmas is their capability to accelerate particles to high energies. On the other hand, the exact mechanism how this acceleration takes place is still unknown. This is especially true in the case of the so-called seed particle population, i.e. those particles which are being injected into the process of acceleration. In our study we present a case study of gyroresonant surfing acceleration observed on the quasi-parallel side of the Earth's bow shock. For our analysis we use simultaneous multi-spacecraft measurement data provided by the Cluster spacecraft ion (CIS), magnetic (FGM) and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. Our results show evidence that the gyroresonance surfing acceleration takes place as a consequence of interaction between monochromatic (or quasi-monochromatic) electromagnetic plasma waves and short large amplitude magnetic structures (SLAMS). The magnetic field inhomogeneity mirror force allows to keep the resonant conditions for the ions trapped by wave and thus to increase effectively the particle velocity. Since monochromatic wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in the front of the Earth's quasi-parallel bow shock, thus the gyroresonant surfing acceleration can be an effective particle injection mechanism resulting in the formation of the seed particle population.

  5. Wave propagation in sandwich panels with a poroelastic core.

    PubMed

    Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez

    2014-05-01

    Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials. PMID:24815252

  6. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  7. All electrical propagating spin wave spectroscopy with broadband wavevector capability

    NASA Astrophysics Data System (ADS)

    Ciubotaru, F.; Devolder, T.; Manfrini, M.; Adelmann, C.; Radu, I. P.

    2016-07-01

    We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for the all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.

  8. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    NASA Astrophysics Data System (ADS)

    Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Liu, Donglin; Zhou, Hui

    2016-02-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (No. 61301173)

  9. Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves

    NASA Astrophysics Data System (ADS)

    Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  10. Millimetre-wave propagation in the evaporation duct

    NASA Astrophysics Data System (ADS)

    Levy, M. F.; Craig, K. H.

    1990-03-01

    Recent developments in propagation modeling based on the Parabolic Equation Method allow the forecasting of two-dimensional antenna coverage diagrams at millimeter wavelengths, in a dispersive atmosphere with arbitrary two-dimensional variation of the refractive index. The model was applied successfully to mm-wave propagation in the evaporation duct. The evaporation duct height is not sufficient to characterize mm-wave propagation, and information on the water vapor content is essential for the correct modeling of atmospheric absorption. Turbulence simulations were carried out, showing marked scintillation, effects in the evaporation duct. The method can be applied to arbitrary refractivity spectra, and gives a complete numerical description of the field statistics.

  11. The propagation of spark-produced N waves through turbulence

    NASA Technical Reports Server (NTRS)

    Lipkens, Bart

    1994-01-01

    A model experiment was designed and built to simulate the propagation of sonic booms through atmospheric turbulence. The setup of the model experiment is described briefly. Measurements of the N waves after they propagated across the turbulent velocity field reveal the same waveform distortion and change in rise time as for sonic booms. The data from the model experiment is used to test sonic boom models. Some models yield predictions for the waveform distortion, while others give estimates of the rise time of the sonic booms. A new theoretical model for the propagation of plane N waves through a turbulent medium is described.

  12. Low Frequency Guided Plate Waves Propagation in Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Lih, S-S.; Bar-Cohen, Y.

    1995-01-01

    Conventional destructive techniques for the determination of the elastic stiffness constants of composite materials can be costly and often inaccurate. Reliable nondestructive evaluation methods for monitoring the integrity of composite materials and structures are needed. Guided wave propagation in isotropic plate have been studied. Studies on the low frequency symmetric guide waves are presented.

  13. WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE

    SciTech Connect

    Heggland, L.; Hansteen, V. H.; Carlsson, M.; De Pontieu, B.

    2011-12-20

    We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.

  14. Impact induced solitary wave propagation through a woodpile structure

    NASA Astrophysics Data System (ADS)

    Kore, R.; Waychal, A.; Agarwal, S.; Yadav, P.; Uddin, Ahsan; Sahoo, N.; Shelke, A.

    2016-02-01

    In this paper, we investigate solitary wave propagation through a one-dimensional woodpile structure excited by low and high velocity impact. Woodpile structures are a sub-class of granular metamaterial, which supports propagation of nonlinear waves. Hertz contact law governs the behavior of the solitary wave propagation through the granular media. Towards an experimental study, a woodpile structure was fabricated by orthogonally stacking cylindrical rods. A shock tube facility has been developed to launch an impactor on the woodpile structure at a velocity of 30 m s-1. Embedded granular chain sensors were fabricated to study the behavior of the solitary wave. The impact induced stress wave is studied to investigate solitary wave parameters, i.e. contact force, contact time, and solitary wave velocity. With the aid of the experimental setup, numerical simulations, and a theoretical solution based on the long wavelength approximation, formation of the solitary wave in the woodpile structure is validated to a reasonable degree of accuracy. The nondispersive and compact supported solitary waves traveling at sonic wave velocity offer unique properties that could be leveraged for application in nondestructive testing and structural health monitoring.

  15. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  16. Excitation of dust kinetic Alfven waves by semi-relativistic ion beams

    NASA Astrophysics Data System (ADS)

    Rubab, N.; Jaffer, G.

    2016-05-01

    The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.

  17. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  18. Simulation of the elastic wave propagation in anisotropic microstructures

    NASA Astrophysics Data System (ADS)

    Bryner, Juerg; Vollmann, Jacqueline; Profunser, Dieter M.; Dual, Jurg

    2007-06-01

    For the interpretation of optical Pump-Probe Measurements on microstructures the wave propagation in anisotropic 3-D structures with arbitrary geometries is numerically calculated. The laser acoustic Pump-Probe technique generates bulk waves in structures in a thermo-elastic way. This method is well established for non-destructive measurements of thin films with an indepth resolution in the order of 10 nm. The Pump-Probe technique can also be used for measurements, e.g. for quality inspection of three-dimensional structures with arbitrary geometries, like MEMS components. For the interpretation of the measurements it is necessary that the wave propagation in the specimen to be inspected can be calculated. Here, the wave propagation for various geometries and materials is investigated. In the first part, the wave propagation in isotropic axisymmetric structures is simulated with a 2-D finite difference formulation. The numerical results are verified with measurements of macroscopic specimens. In a second step, the simulations are extended to 3-D structures with orthotopic material properties. The implemented code allows the calculation of the wave propagation for different orientations of the material axes (orientation of the orthotropic axes relative to the geometry of the structure). Limits of the presented algorithm are discussed and future directions of the on-going research project are presented.

  19. Wave propagation in bianisotropic metamaterials: angular selective transmission.

    PubMed

    Chang, Po-Han; Kuo, Chih-Yu; Chern, Ruey-Lin

    2014-10-20

    We investigate the basic features of wave propagation in bianisotropic metamaterials characterized by asymmetric magnetoelectric tensors with zero diagonal elements. The wave propagation is described by a biquadratic dispersion relation with two elliptically polarized eigenwaves. In particular, the bianisotropic media may possess a hybrid character of the elliptic and hyperbolic dispersions. For a wave incident from vacuum onto a bianisotropic medium, there exist an ordinary and an inversion critical angle, leading to angular selective transmission. A standard and a complementary type of angular selective transmissions are illustrated with the incidence of Gaussian beams based on Fourier integral formulation. PMID:25401604

  20. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"

  1. Finite Element Modeling of Guided Wave Propagation in Plates

    NASA Astrophysics Data System (ADS)

    Kumar KM, Manoj; Ramaswamy, Sivaramanivas; Kommareddy, Vamshi; Baskaran, Ganesan; Zongqi, Sun; Kirkire, Gautam

    2006-03-01

    This paper aims at developing a numerical model for guided wave propagation in plates and the interaction of modes with defects using Finite Element Modeling (FEM). Guided waves propagate as extensional, flexural and torsional waves. Theoretically, these modes are infinite in number, but only some of these propagate and the others are attenuated. The dispersion curves for a structure reveal the plausibility of these modes. In this paper, FEM is used to examine interaction of first few symmetric and anti-symmetric modes independently with the cracks of various sizes in a plate. A time-frequency representation of the acquired guided wave mode signals will be discussed to show the mode sensitivity with crack size.

  2. Synaptically Generated Wave Propagation in Excitable Neural Media

    NASA Astrophysics Data System (ADS)

    Bressloff, P. C.

    1999-04-01

    We study the propagation of solitary waves in a one-dimensional network of excitable integrate-and-fire neurons with axo-dendritic synaptic coupling. We show that for small axonal delays there exists a stable solitary wave, and derive a power scaling law for the velocity as a function of the coupling. In the case of large axonal delays and fast synapses we establish that the solitary wave can destabilize via a Hopf bifurcation in the firing times.

  3. Wave propagation on a random lattice

    SciTech Connect

    Sahlmann, Hanno

    2010-09-15

    Motivated by phenomenological questions in quantum gravity, we consider the propagation of a scalar field on a random lattice. We describe a procedure to calculate the dispersion relation for the field by taking a limit of a periodic lattice. We use this to calculate the lowest order coefficients of the dispersion relation for a specific one-dimensional model.

  4. Mantle compression affects seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-02-01

    To try to understand the direction of motion of the Earth's mantle, which lies hidden beneath tens of kilometers of crust, researchers have relied on the property of seismic anisotropy. When seismic shear waves pass through some types of materials, known as anisotropic materials, the speed of the wave can vary depending on the direction in which it is moving. Traditionally, scientists have assumed that the direction in which waves move more quickly aligns with the direction of mantle motion. For subduction zones, however, this general rule seemed to break down—a discrepancy exists between numerical model simulations and observed seismic data.

  5. Modelling propagation of deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2015-06-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives come about by a two-step process known as ignition and growth. In the first step a shock sweeping an explosive cell (control volume) creates hot spots that become ignition sites. In the second step deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in a cell depends on the speed of those deflagration waves and on the average distance between neighbouring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration wave depends on both pressure and temperature, where pressure dependence is dominant at low shock level, and temperature dependence is dominant at a higher shock level. From the simulation we obtain deflagration (or burn) fronts emanating out of the hot spots. For intermediate shock levels the deflagration waves consume the explosive between hot spots. For higher shock levels the deflagration waves strengthen to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds and show how they depend on reaction rate and on other material parameters.

  6. Nonlinear electron magnetohydrodynamics physics. II. Wave propagation and wave-wave interactions

    SciTech Connect

    Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.

    2008-04-15

    The propagation of low-frequency whistler modes with wave magnetic field exceeding the ambient field is investigated experimentally. Such nonlinear waves are excited with magnetic loop antennas whose axial field is aligned with the background magnetic field and greatly exceeds its strength. The oscillatory antenna field excites propagating wave packets with field topologies alternating between whistler spheromaks and mirrors. The propagation speed of spheromaks is observed to decrease with amplitude while that of mirrors increases with amplitude. The field distribution varies with amplitude: Spheromaks contract axially while mirrors spread out compared to linear whistlers. Consequently, the peak magnetic field and current densities in spheromaks exceed that of mirrors. Wave-wave interactions of nonlinear whistler modes is also studied. Counterpropagating spheromaks collide inelastically and form a stationary field-reversed configuration. The radius of the toroidal current ring depends on current and can be larger than that of the loop antenna. A tilted field-reversed configuration precesses in the direction of the electron drift. The free magnetic energy is dissipated in the plasma volume and converted into electron heat.

  7. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  8. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    SciTech Connect

    F.W. Perkins; R.B. White; P. Bonoli

    2000-06-13

    Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.

  9. Impact of gravity waves on long-range infrasound propagation

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Lott, François; De La Camara, Alvaro

    2016-04-01

    In this work we study infrasound propagation in acoustic waveguides that support a finite number of propagating modes. We analyze the effects of gravity waves on these acoustic waveguides. Testing sound propagation in such perturbed fields can potentially be used to improve the gravity wave models. A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the forward-scattering approximation. The wave mode structure is determined by the effective sound speed profile which is strongly affected by gravity wave breaking. The random perturbations are described by a stochastic field predicted by a multiwave stochastic parameterization of gravity waves, which is operational in the LMDz climate model. The justification for this approach is two fold. On the one hand, the use of a few monochromatic waves mimics the observations of rather narrow-banded gravity wave packets in the lower stratosphere. On the other hand, the stochastic sampling of the gravity wave field and the random choice of wave properties deals with the inherent unpredictability of mesoscale dynamics from large scale conditions provided by the meteorological reanalysis. The transmitted acoustic signals contain a stable front and a small-amplitude incoherent coda. A general expression for the stable front is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. This approach extract the dominant effects in the acoustic - gravity wave interaction. We present results that show how statistics of the transmitted signal are related to a few saddle-points and how the GW field can trigger large deviations in the acoustic signals. While some of the characteristics of the stable front can be directly related to that of a few individual gravity waves, it is shown that the amount of the launched gravity waves included in climate models can be estimated using

  10. Detection of Electromechanical Wave Propagation Using Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Prakash; Dambhare, Sanjay; Pramanik, Ashutosh

    2014-01-01

    Considering electrical network as a continuum has become popular for electromechanical wave analysis. This paper reviews the concept of electromechanical wave propagation. Analysis of large number of generator ring system will be an easy way to illustrate wave propagation. The property of traveling waves is that the maximum and minimum values do not occur at the same time instants and hence the difference between these time delays can be easily calculated. The homogeneous, isotropic 10 generator ring system is modeled using electromagnetic transient simulation programs. The purpose of this study is to investigate the time delays and wave velocities using Power System Computer Aided Design (PSCAD)/Electromagnetic Transient Program (EMTP). The disturbances considered here are generator disconnections and line trips.

  11. Spatial damping of propagating sausage waves in coronal cylinders

    NASA Astrophysics Data System (ADS)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-09-01

    Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.

  12. Experiments and Numerical Investigations of Wave Propagation In Thermal Plumes.

    NASA Astrophysics Data System (ADS)

    Laudenbach, N.; Christensen, U. R.

    In laboratory experiments thermal plumes are created by injecting hot corn syrup into a column of cold syrup. The viscosity contrast is up to a factor of 1000. Solitary waves, that propagate upwards in the plume conduit, are generated by enhancing the injection rate for a few seconds. For the measurement of the thermal structure of the plume we have implemented a method based on the deflection of a laser beam passing through the plume. Continuous scanning provides a new radial temperature profile each second, which allows detailed studies of the thermal structure of solitary waves. A PIV - (particle image volecimetry) method provides the velocity structure of the thermal plume. Measurements were taken for plume heads, conduits and propagating waves. Comparison between experimental results and numerical 2-D axisymmetric simulations shows a good agreement of the temperature profiles and velocity fields in the plume conduit and waves. Because of thermal diffusion, the conduit widens with height, while its central temperature decreases. The solitary waves start with the same temperature as the unperturbed conduit, however, we find that the temperature in the waves decreases less rapide with rising height. This can be explained by the faster upward propagation and the trapping of fluid within the soliton. If solitary waves exists in mantle plumes, this would imply that they arrive at the bottom of the lithosphere with a larger excess temperature than what the plumes normally exhibits. Especially for weak hotspots solitary waves could have strong influence on the variation of melt generation with time.

  13. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    NASA Astrophysics Data System (ADS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Wu, Jian; Li, Hui; Pu, Shaozhi

    2015-11-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments.

  14. Geometric effects on stress wave propagation.

    PubMed

    Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R

    2014-02-01

    The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials

  15. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  16. Classical and relativistic treatments of the wave particle interaction for obliquely propagating waves in ideal and non-ideal Magnetic Field Topologies.

    NASA Astrophysics Data System (ADS)

    Osmane, Adnane; Hamza, A. M.; Meziane, Karim

    .1029/2005JA011410 [2] Osmane, A., A. M. Hamza, and K. Meziane, (2010), On the Generation of Proton Beams in Fast Solar Wind in the Presence of obliquely propagating Alfven waves., J. Geophys. Res., doi:10.1029/2009JA014655, in press.

  17. Amplitude-Preserving Propagator and its Applications in Computational Wave Propagation and Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Eslaminia, Mehran

    A novel method is developed to approximately solve acoustic wave equation in the frequency domain. The key idea of the method is to partition the domain into smaller subdomains and solve for the wavefield in each subdomain sequentially, which is facilitated by special interface (continuity) conditions. The sequential solution is performed in two steps: First the downward propagating wavefield is computed considering only downward propagation and transmission at the interfaces. The wavefield is then corrected by adding the upward propagating wavefield resulting from reflections and body forces. It is shown that the proposed method results in accurate amplitudes for downward propagation and primary reflections and is hence called the Amplitude-Preserving Propagator. This novel wave propagator leads to three disparate contributions in large scale computational wave modeling and seismic imaging: forward modeling, migration imaging and full waveform inversion. Forward Modeling: The amplitude-preserving propagator is implemented as a preconditioner to iteratively solve the Helmholtz equation. The effectiveness of the proposed preconditioner is studied using various numerical experiments. We show three significant properties of the proposed preconditioner. First, number of iterations grows very slowly with increasing frequency which is a significant advantage compared to other methods, e.g. sweeping preconditioner. Second, the mesh size (i.e. number of elements per wavelength) does not change number of iterations. Third, and the most important one, the computational time is much less than many other preconditioners. Migration Imaging: In the context of migration imaging, the amplitude-preserving propagator is implemented as an efficient forward solver to perform wave propagation simulation in the frequency domain. We show that the propagator results in a new migration algorithm that is almost as accurate as full-wave migration, while being significantly more efficient

  18. Impact of mountain gravity waves on infrasound propagation

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe

    2016-04-01

    Linear theory of acoustic propagation is used to analyze how mountain waves can change the characteristics of infrasound signals. The mountain wave model is based on the integration of the linear inviscid Taylor-Goldstein equation forced by a nonlinear surface boundary condition. For the acoustic propagation we solve the wave equation using the normal mode method together with the effective sound speed approximation. For large-amplitude mountain waves we use direct numerical simulations to compute the interactions between the mountain waves and the infrasound component. It is shown that the mountain waves perturb the low level waveguide, which leads to significant acoustic dispersion. The mountain waves also impact the arrival time and spread of the signals substantially and can produce a strong absorption of the wave signal. To interpret our results we follow each acoustic mode separately and show which mode is impacted and how. We also show that the phase shift between the acoustic modes over the horizontal length of the mountain wave field may yield to destructive interferences in the lee side of the mountain, resulting in a new form of infrasound absorption. The statistical relevance of those results is tested using a stochastic version of the mountain wave model and large enough sample sizes.

  19. Electromagnetic waves in dusty magnetoplasmas using two-potential theory

    SciTech Connect

    Zubia, K.; Jamil, M.; Salimullah, M.

    2009-09-15

    The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.

  20. Electromagnetic Wave Propagation over Oil-Covered Sea Surface

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Jin, Wei; Guo, Li-Xin

    2012-07-01

    An exhaustive analysis of electromagnetic wave propagation over an oil-covered sea surface in an evaporation duct environment is studied in comparison with those of the oil-free sea surface. Instead of using the traditional rms height formula, which only considers the oil-free sea surface, we reduce the rms height of a one-dimensional oil-covered sea surface based on the Pierson-Moskowitz sea spectrum. Then, the electromagnetic wave propagation over the oil-covered sea surface in an evaporation duct environment with different wind speeds and frequencies is discussed by the parabolic equation for a fully oil-covered sea surface. In addition, the influence of the fractional filling factor on the electromagnetic wave propagation over non-fully oil-covered sea surface is also investigated. The results show that the oil film can reduce the sea surface roughness and strengthen the trapping effect in an evaporation duct environment.

  1. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    SciTech Connect

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters.

  2. Variational principle for nonlinear wave propagation in dissipative systems.

    PubMed

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time. PMID:26986334

  3. Global propagation of body waves revealed by seismic interferometry (Invited)

    NASA Astrophysics Data System (ADS)

    Nishida, K.

    2013-12-01

    Seismic interferometry has now been applied to the exploration of the Earth's interior at scales ranging from local to global. Most studies have used surface-wave propagation. Recently, some studies have focused on body wave propagation on local and regional scales but not on a global scale. In this study, we succeed in extracting global body wave propagation(of P, PP, PKP, S, SS, ScS, P‧P‧, etc. waves) using seismic hum with frequency-wave number filtering in the range of 5 to 40 mHz. Although the observed body wave propagation is similar to that of the corresponding components of Green's functions, there are two differences between them: the lack of reflection phases in the observation and the dominance of shear-coupled PL waves in the observation. These differences originate from the dominance of shear-traction sources on the Earth's surface, which causes the breakdown of equipartition among modes with different radial orders. To discuss the differences quantitatively, we developed a new method to synthesize cross-spectra between a pair of stations with an assumption of spatially homogeneous distribution of random sources, which are characterized by effective horizontal traction and effective pressure. At first, we estimated power spectra of the effective pressure and the effective shear traction by fitting the synthetic spectra to the observed ones. The results show dominance of random shear traction from 5 to 20 mHz, which is consistent with past studies. Next, we synthesized cross-correlation functions with the source model. The synthetic spectra can reconstruct the two observed features: the lack of reflection phases and the dominance of shear-coupled PL waves. The source characteristics are crucial for the body wave exploration in further studies.

  4. Globally propagating waves in the solar corona -an introduction

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    Globally propagating wave-like disturbances have been observed in the solar chromosphere since the 1960s. These "Moreton waves" were interpreted as the ground tracks of dome-shaped waves that expand through the corona and sweep over the chromosphere. However, only the recent decade has seen detailed analysis of these phenomena, prompted by the availability of coronal imaging data from numerous spaced-based instruments, most famously SOHO/EIT. Globally propagating coronal waves have now been observed in a wide range of spectral channels, yielding a wealth of information. Still, no consensus on their physical nature has been reached. While many findings have supported the "classical" interpretation of the disturbances -fast-mode MHD waves which are propagating in the solar corona and which may be shocked -other characteristics have given rise to alternative models which involve magnetic reconfiguration in the framework of a CME eruption. I will review the different observational signatures of coronal waves, as well as associated phenomena such as metric type II radio bursts. Furthermore, I will discuss the different physical interpretations of coronal waves and how they are supported by observations. Finally, I will consider how some of the lingering controversies might be resolved by observations.

  5. Experiments and numerical investigations of wave propagation in thermal plumes

    NASA Astrophysics Data System (ADS)

    Laudenbach, N.

    2001-12-01

    In laboratory experiments thermal plumes are created by injecting hot corn syrup into a column of cold syrup. The viscosity contrast is up to a factor of 1000. Solitary waves, that propagate upwards in the plume conduit, are generated by enhancing the injection rate for a few seconds. For the measurement of the thermal structure of the plume we have implemented a method based on the deflection of a laser beam passing through the plume. Continuous scanning provides a new radial temperature profile each second, which allows detailed studies of the thermal structure of solitary waves. A PIV - (particle image volecimetry) method provides the velocity structure of the thermal plume. Measurements were taken for plume heads, conduits and propagating waves. Comparison between experimental results and numerical 2-D axisymmetric simulations shows a good agreement of the temperature profiles and velocity fields in the plume conduit and waves. Because of thermal diffusion, the conduit widens with height, while its central temperature decreases. The solitary waves start with the same temperature as the unperturbed conduit, however, we find that the temperature in the waves decreases less rapide with rising height. This can be explained by the faster upward propagation and the trapping of fluid within the soliton. If solitary waves exists in mantle plumes, this would imply that they arrive at the bottom of the lithosphere with a larger excess temperature than what the plumes normally exhibits, which could explain strong variations of melt generation with time.

  6. High Frequency Elastic Wave Propagation in Media with a Microstructure

    NASA Astrophysics Data System (ADS)

    Tie, B.; Aubry, D.; Mouronval, A.-S.; Solas, D.; Thébault, J.; Tian, B.-Y.

    2010-05-01

    This contribution deals with the theoretical analysis and numerical modeling of elastic wave propagation in media with a microstructure. Two kinds of media are considered: polycrystalline material and honeycomb core sandwich shells, in which elastic waves are triggered by transient signals that result in large frequency ranges including high frequencies. Our theoretical and numerical investigations aim at understanding and simulating the interactions between the microstructure of those media and the wave propagation phenomena, when the characteristic lengths of the microstructure and the involved shortest wavelengths have roughly the same scale. In this paper, some key mechanisms of interaction between the considered microstructures and the elastic waves are highlighted. In polycrystalline superalloys, the misorientation distribution and the average grain size are considered, as they can alter pressure/shear wave propagation and also the permeability to ultrasonic waves monitored to perform non-destructive testing. For the flexure behavior of honeycomb core sandwich shells, the fundamental role played by the honeycomb cells, especially in high frequency domain, is analyzed. Relevant numerical modeling that provides a promising way to quantify micro-structure/wave interactions is presented. The important issue of how to take into account these micro-scale interactions in a homogenized macro-scale modeling is also discussed.

  7. Propagation of plate acoustic waves in contact with fluid medium

    NASA Astrophysics Data System (ADS)

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  8. Propagation of polarized millimeter waves through falling snow.

    PubMed

    Brien, S G; Goedecke, G H

    1988-06-15

    Propagation of coherent linearly polarized waves through falling snow is calculated for two monodisperse and one polydisperse model snowstorms for fixed orientation and for random orientation of the snow crystals, at a 10-mm wavelength, utilizing a theoretical model based on the Foldy-Lax model. Results for linearly polarized waves incident on oriented monodispersions and polydispersions exhibit a marked damped oscillatory behavior as a function of propagation distance for the copolarized and cross-polarized intensities. For the polydispersion, a simple approximation for the dependence of the forward scattering matrix elements on snow crystal size is also obtained. PMID:20531776

  9. The influence of polarization on millimeter wave propagation through rain

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.

    1972-01-01

    A program for the measurement and analysis of the depolarization and differential attenuation that occur when millimeter wave signals propagate through rain is described. Initial data are taken along a 1.43 km path at 17.65 GHz and a supporting theoretical model is developed to relate the propagation effects to rainfall rate and wind velocity. A block diagram of the overall experiment is included. It consists of: (1) an RF system (millimeter wave transmitter and receiver), (2) transmitting and receiving antennas, (3) a weather system with rain gauges, wind sensors, and drop counters, and (4) a digital control, processing, and data storage system.

  10. Wave propagation in polar elastic superlattices

    NASA Astrophysics Data System (ADS)

    Green, W. A.; Green, E. Rhian

    1994-08-01

    This paper examines the passband and stop band regions for time-periodic waves travelling normal to the layering through an infinite medium composed of alternating layers of two different elastic materials. The materials are such that the elastic energy density is a function of the strains and the strain gradients and, in consequence, a deformation gives rise to both the usual Cauchy stress and to a hyperstress or couple-stress. Such materials can exhibit a non-uniform wrinkling deformation at a free surface and similar non-uniform deformations can arise at interfaces between two different media. The presence of the strain derivatives in the elastic energy function introduces a natural length scale l into the material and the depth of the non-uniform deformation is of the order of this length scale. This model can give rise to enhanced elastic response when the layer depths are comparable with l and it is of interest as a possible mathematical model of nanolayered structures. The model also includes a non-standard set of continuity conditions at material interfaces. These arise from the elastic interaction energy of the two materials at the boundary and their effect is localized in a boundary layer whose depth is of order l. The periodic layering gives rise to displacements which are periodic with a frequency-dependent wave number, the Floquet wave number. Dispersion curves, relating circular frequency to the Floquet wave number, are obtained for different ratios of the layer depth to the natural length l and for different values of the elastic interface coupling parameters.

  11. Propagating spectroscopy of backward volume spin waves in a metallic FeNi film

    SciTech Connect

    Sato, N.; Ishida, N.; Kawakami, T.; Sekiguchi, K.

    2014-01-20

    We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.

  12. Local interaction modeling for acousto-ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Lee, B. C.; Staszewski, Wieslaw J.

    2002-07-01

    Damage detection in metallic structures has been the subject of many investigations. Recent developments have shown applications of acousto-ultrasonic and Lamb wave testing. Lamb wave inspection is based on theory of longitudinal waves propagating in plates. In general, the principles of acousto-ultrasonic and Lamb wave inspection techniques are similar. Damage in a structure is identified by a change in the output signal. Previous studies show that even simple input signals can lead to complex output waves, which are difficult to interpret. It is clear that knowledge and understanding of wave propagation in analyzed structures can ease the interpretation of damage detection results. The paper reports an application of local interaction modeling of acousto-ultrasonic waves in metallic structures. The focus of the analysis is on one-dimensional interactions between different material boundaries. This includes modeling of acousto-ultrasonic waves in piezoceramic, adhesive glue and copper in an actuator/sensor configuration. The study also involves experimental validation of the simulation results. The method shows the potential for modeling of acousto-ultrasonic waves in complex media for damage detection applications.

  13. Holographic measurement of wave propagation in axi-symmetric shells

    NASA Technical Reports Server (NTRS)

    Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.

    1972-01-01

    The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.

  14. Propagation of sound waves in tubes of noncircular cross section

    NASA Technical Reports Server (NTRS)

    Richards, W. B.

    1986-01-01

    Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.

  15. Propagation of elastic waves through textured polycrystals: application to ice

    PubMed Central

    Maurel, Agnès; Lund, Fernando; Montagnat, Maurine

    2015-01-01

    The propagation of elastic waves in polycrystals is revisited, with an emphasis on configurations relevant to the study of ice. Randomly oriented hexagonal single crystals are considered with specific, non-uniform, probability distributions for their major axis. Three typical textures or fabrics (i.e. preferred grain orientations) are studied in detail: one cluster fabric and two girdle fabrics, as found in ice recovered from deep ice cores. After computing the averaged elasticity tensor for the considered textures, wave propagation is studied using a wave equation with elastic constants c=〈c〉+δc that are equal to an average plus deviations, presumed small, from that average. This allows for the use of the Voigt average in the wave equation, and velocities are obtained solving the appropriate Christoffel equation. The velocity for vertical propagation, as appropriate to interpret sonic logging measurements, is analysed in more details. Our formulae are shown to be accurate at the 0.5% level and they provide a rationale for previous empirical fits to wave propagation velocities with a quantitative agreement at the 0.07–0.7% level. We conclude that, within the formalism presented here, it is appropriate to use, with confidence, velocity measurements to characterize ice fabrics. PMID:27547099

  16. The making of an Alfvenic fluctuation: The resolution of a second-order analysis

    NASA Technical Reports Server (NTRS)

    Vasquez, Bernard J.; Hollweg, Joseph V.

    1995-01-01

    Ulysses observations of the high speed polar streams show that they are largely occupied by very large amplitude Alfvenic fluctuations accompanied by many rotational discontinuities. These fluctuations have a nearly constant magnetic intensity or amplitude, and the magnetic field direction per wave cycle sweeps only through a limited arc, much as a car wiperblade would do. Barnes and Hollweg (JGR, 79, 2302, 1974) suggested that this unusual waveform could arise from an obliquely propagating and linearly polarized Alfven wave of finite amplitude. From a second-order analysis, they showed that the existence of a particular solution with a constant amplitude but could not resolve the outcome of the homogeneous solution which consisted of fast waves. They suggested that Landau damping of these fast waves may be needed to get the observed waveform. We present a 1 1/2 D hybrid simulation which is fully nonlinear and correctly describes the ion kinetics for an initially monochromatic and linearly polarized Alfven wave propagating obliquely to the background magnetic field. The wave has a large amplitude and a wavelength so long that it can be considered dispersionless for simulation times. At early times, the second harmonic in density and in magnetic field transverse to the initial wave magnetic field are generated and have more power than other harmonics. Steepening is observed with a weak fast shock emerging, but no rotational discontinuity is left behind, and instead a constant amplitude and an arc-shaped waveform is made. The compressional component which develops after the shocks have dissipated is to zeroth order better described as a pure acoustic wave than as a fast wave. This might be explained by the relaxing of the Alfven wave to a state where its ponderomotive force vanishes so that the compressional component can travel almost independently of it.

  17. Skewon field and cosmic wave propagation

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    2014-03-01

    We study the propagation of the Hehl-Obukhov-Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplification condition implies that the additional skewon field must be of Type II. For Type I skewon field, the dissipation/amplification is proportional to the frequency and the CMB spectrum would deviate from Planck spectrum. From the high precision agreement of the CMB spectrum with 2.755 K Planck spectrum, we constrain the Type I cosmic skewon field |χijkl(SkI)| to ⩽ a few ×10-35. The skewon part of constitutive tensor constructed from asymmetric metric is of Type II, hence it is allowed. This study may also be applied to macroscopic electrodynamics in the case of laser pumped medium or dissipative medium.

  18. Propagation of guided waves through weak penetrable scatterers.

    PubMed

    Maurel, Agnès; Mercier, Jean-François

    2012-03-01

    The scattering of a scalar wave propagating in a waveguide containing weak penetrable scatterers is inspected in the Born approximation. The scatterers are of arbitrary shape and present a contrast both in density and in wavespeed (or bulk modulus), a situation that can be translated in the context of SH waves, water waves, or transverse electric/transverse magnetic polarized electromagnetic waves. For small size inclusions compared to the waveguide height, analytical expressions of the transmission and reflection coefficients are derived, and compared to results of direct numerical simulations. The cases of periodically and randomly distributed inclusions are considered in more detail, and compared with unbounded propagation through inclusions. Comparisons with previous results valid in the low frequency regime are proposed. PMID:22423685

  19. A space-time discretization procedure for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1989-01-01

    Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.

  20. Three-wave coupling coefficients for perpendicular wave propagation in a magnetized plasma

    SciTech Connect

    Brodin, G.; Stenflo, L.

    2015-10-15

    The resonant interaction between three waves in a uniform magnetized plasma is reconsidered. Starting from previous kinetic expressions, we limit our investigation to waves propagating perpendicularly to the external magnetic field. It is shown that reliable results can only be obtained in the two-dimensional case, i.e., when the wave vectors have both x and y components.

  1. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  2. Propagating Stress Waves During Epithelial Expansion

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Utuje, Kazage J. C.; Marchetti, M. Cristina

    2015-06-01

    Coordinated motion of cell monolayers during epithelial wound healing and tissue morphogenesis involves mechanical stress generation. Here we propose a model for the dynamics of epithelial expansion that couples mechanical deformations in the tissue to contractile activity and polarization in the cells. A new ingredient of our model is a feedback between local strain, polarization, and contractility that naturally yields a mechanism for viscoelasticity and effective inertia in the cell monolayer. Using a combination of analytical and numerical techniques, we demonstrate that our model quantitatively reproduces many experimental findings [Nat. Phys. 8, 628 (2012)], including the buildup of intercellular stresses, and the existence of traveling mechanical waves guiding the oscillatory monolayer expansion.

  3. Formation of quasiparallel Alfven solitons

    NASA Technical Reports Server (NTRS)

    Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.

    1992-01-01

    The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.

  4. Propagation of acoustic pulses in random gravity wave fields

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; de La Camara, Alvaro; Lott, François

    2015-11-01

    A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the normal mode method. The wave mode structure is determined by a sound speed profile that is confining. The environmental uncertainty is described by a stochastic field obtained with a multiwave stochastic parameterization of gravity waves (GW). Using the propagating modes of the unperturbed atmosphere, the wave propagation problem is reduced to solving a system of ordinary differential equations. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime. In this regime, the coupling between the acoustic pulse and the randomly perturbed waveguides is weak and the propagation distance must be large enough for the wave to experience significant scattering. A general expression for the pressure far-field is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. We present preliminary results that show how statistics of the transmitted signal are related to some eigenvalues and how an ``optimal'' GW field can trigger large deviations in the acoustic signals. The present model is used to explain the variability of infrasound signals.

  5. Propagation characteristics of electromagnetic waves in concrete

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Maser, Kenneth; Kausel, Eduardo

    1989-03-01

    This research develops models which can predict the velocity and attenuation of electromagnetic waves in concrete as a function of frequency, temperature, moisture content, chloride content and concrete mix constituents. These models were proposed to predict the electromagnetic properties of concrete by aggregating the electromagnetic properties of its constituents. Water and the dissolved salt are the constituents having the most prominent effect on the dielectric behavior of concrete. A comparative study of three existing three-phase mixture models was carried out. Numerical results were generated using the most representative Discrete model. These results have shown that the real part of complex concrete permittivity (and therefore the velocity of electromagnetic waves) is independent of salinity or frequency in the 0.6 to 3.0 GHz frequency range. On the other hand, these results show that the attenuation coefficient and dielectric conductivity vary almost linearly with frequency in this same frequency range. The real part of concrete permittivity and the attenuation coefficient also show a linear dependence with respect to the degree of saturation of water in the concrete mixture. This suggests that future research should focus on approximating the complex models presented in this research by simple equations.

  6. An experimental investigation of wave propagation in fractured brittle material

    NASA Astrophysics Data System (ADS)

    Patel, Bibhuti Bhusan

    An experimental method for visualizing and analyzing the propagation of plate stress waves in a brittle plate is developed. A procedure has been developed to cast Break-Away glass (a low molecular weight polystyrene material) plate specimens in an open mold. The specimens are loaded with short duration (200 [...]s) stress pulses on one edge by an electromagnetic stress wave generator. The propagating stress waves generate out-of-plane deformations on the specimen surface, which are observed using Twyman-Green interferometry. The fringe patterns created by the propagating stress waves are captured using a high speed camera - pulsing laser combination at 4[...]s intervals.A generalized "Fringe Analysis Procedure" is developed to subtract the reference interferogram from the subsequent interferograms. The "Fringe Analysis Procedure" employs a fringe edge detection algorithm to obtain the sharp edge lines of the fringes in an interferogram. A digitizer is used to extract points on these edge lines and assign them fringe numbers. The "griddata" option in the commercial software "Matlab" is utilized to interpolate the deformation field on to the nodes of a uniform grid. The field values at these nodes in the reference image are then subtracted from corresponding values in the subsequent images to obtain the actual deformation patterns generated by the propagating stress waves. The "Fringe Analysis Procedure" has eliminated the subjective element introduced by human judgment in manual fringe tracing procedures.The developed experimental method and the image analysis technique is used to investigate the propagation of stress waves in Break-Away glass plate specimens.

  7. Multidimensional detonation propagation modeled via nonlinear shock wave superposition

    NASA Astrophysics Data System (ADS)

    Higgins, Andrew; Mehrjoo, Navid

    2010-11-01

    Detonation waves in gases are inherently multidimensional due to their cellular structure, and detonations in liquids and heterogeneous solids are often associated with instabilities and stochastic, localized reaction centers (i.e., hot spots). To explore the statistical nature of detonation dynamics in such systems, a simple model that idealizes detonation propagation as an ensemble of interacting blast waves originating from spatially random point sources has been proposed. Prior results using this model exhibited features that have been observed in real detonating systems, such as anomalous scaling between axisymmetric and two-dimensional geometries. However, those efforts used simple linear superposition of the blast waves. The present work uses a model of blast wave superposition developed for multiple-source explosions (the LAMB approximation) that incorporates the nonlinear interaction of shock waves analytically, permitting the effect of a more physical model of blast wave interaction to be explored. The results are suggestive of a universal behavior in systems of spatially randomized energy sources.

  8. Modification of Spin Wave Propagation by Current Injection

    NASA Astrophysics Data System (ADS)

    Ono, Teruo

    2010-03-01

    We studied the effect of an electric current on the spin wave propagation in magnetic wires, and found the following two effects. (i) Current injection changes the velocity of spin wave; the velocity is increased or decreased depending on the current polarity. (ii) Current injection modifies the attenuation length of spin wave; the attenuation length of spin wave can increase when the spin waves and electrons move in the same direction. The first finding can be interpreted as the time-domain observation of the spin-wave Doppler shift by current injection [1]. The second effect is thought to be affected by the nonadiabaticity of the spin transfer torque and thus can be used to estimate the nonadiabaticity [2]. [4pt] [1] V. Vlaminck and M. Bailleul, Science 322, (2008) 410. [0pt] [2] S. M. Seo, K. J. Lee, H. Yang, and T. Ono, Phys. Rev. Lett. 102, (2009) 147202.

  9. Nonlinear wave propagation in constrained solids subjected to thermal loads

    NASA Astrophysics Data System (ADS)

    Nucera, Claudio; Lanza di Scalea, Francesco

    2014-01-01

    The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.

  10. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  11. Propagation and generation of waves in solar atmosphere

    NASA Astrophysics Data System (ADS)

    Routh, Swati

    The fact that the temperature increases with height in the solar atmosphere has been known for many years. To maintain this temperature increase, sources of heating must be present in the atmosphere. One of the most important, and still unsolved, problems in solar physics is to identify the basic physical processes that are responsible for this heating, and explain solar activities caused by the heating. It is also observationally well-established that the solar atmosphere shows a broad range of oscillations that are different in magnetic and non-magnetic regions of the atmosphere. The oscillations are driven by propagating waves, which cause the atmosphere to oscillate at its natural (cutoff) frequency. Since different waves have different cutoff frequencies, it is important to have a method that would allow determining such cutoffs for the solar atmosphere. In this PhD dissertation, the concept of cutoff frequency is extended to inhomogeneous atmospheres, and a general method to determine the cutoff frequency is presented. The method leads to new forms of wave equations obtained for all wave variables, and allows deriving the cutoff frequency without formally solving the wave equations. The main result is that the derived cutoff frequency is a local quantity and that its value at a given atmospheric height determines the frequency that waves must have in order to be propagating at this height. The developed method is general enough, so that it can be used to establish theoretical bases for studying the propagation and generation of different waves in the solar atmosphere. Acoustic waves play an important role in the heating of magnetic-free regions of the solar atmosphere. To determine the propagation conditions for these waves in the non-isothermal solar atmosphere, the method is used to obtain the resulting acoustic cutoff frequency. This new cutoff frequency is a local quantity and it generalizes Lamb's acoustic cutoff frequency that was obtained for an

  12. Electromagnetic wave propagation in rain and polarization effects

    PubMed Central

    OKAMURA, Sogo; OGUCHI, Tomohiro

    2010-01-01

    This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593

  13. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGESBeta

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  14. A k-Space Method for Moderately Nonlinear Wave Propagation

    PubMed Central

    Jing, Yun; Wang, Tianren; Clement, Greg T.

    2013-01-01

    A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114

  15. A compendium of millimeter wave propagation studies performed by NASA

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Rogers, D.; Bremer, J.

    1977-01-01

    Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.

  16. The Propagation of Slow Wave Potentials in Pea Epicotyls.

    PubMed Central

    Stahlberg, R.; Cosgrove, D. J.

    1997-01-01

    Slow wave potentials are considered to be electric long-distance signals specific for plants, although there are conflicting ideas about a chemical, electrical, or hydraulic mode of propagation. These ideas were tested by comparing the propagation of hydraulic and electric signals in epicotyls of pea (Pisum sativum L). A hydraulic signal in the form of a defined step increase in xylem pressure (Px) was applied to the root of intact seedlings and propagated nearly instantly through the epicotyl axis while its amplitude decreased with distance from the pressure chamber. This decremental propagation was caused by a leaky xylem and created an axial Px gradient in the epicotyl. Simultaneously along the epicotyl surface, depolarizations appeared with lag times that increased acropetally with distance from the pressure chamber from 5 s to 3 min. When measured at a constant distance, the lag times increased as the size of the applied pressure steps decreased. We conclude that the Px gradient in the epicotyl caused local depolarizations with acropetally increasing lag times, which have the appearance of an electric signal propagating with a rate of 20 to 30 mm min-1. This static description of the slow wave potentials challenges its traditional classification as a propagating electric signal. PMID:12223601

  17. Wave Propagation of Myocardial Stretch: Correlation with Myocardial Stiffness

    PubMed Central

    Pislaru, Cristina; Pellikka, Patricia A.; Pislaru, Sorin V.

    2015-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart wall s. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Methods Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in sixteen pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (EVP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end -diastolic stress-strain relation (ESS). Myocardial distensibility and α-and β-coefficients of stress-strain relations were calculated. Results Vp was higher at reperfusion compared to baseline (2.6±1.3 m/s vs. 1.3±0.4 m/s; p=0.005) and best correlated with ESS (r 2=0.80, p<0.0001), β-coefficient (r2=0.78, p<0.0001), distensibility (r2=0.47, p=0.005), and wall thickness/diameter ratio (r2=0.42, p=0.009). Elastic moduli (EVP and ESS) were strongly correlated (r2=0.83, p<0.0001). Increasing preload increased Vp and EVP and decreased distensibility. At multivariate analysis, ESS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2model=0.83, p<0.0001). Conclusions The main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography. PMID:25193091

  18. Anisotropic electromagnetic wave propagation modeling using parabolic approximations

    NASA Astrophysics Data System (ADS)

    Brent, R. I.; Siegmann, W. L.; Jacobson, M. J.; Jacyna, G. M.

    1990-12-01

    A new method for the investigation of anisotropic electromagnetic wave propagation in the atmosphere is developed using parabolic approximations. Model equations for the electric field components are formulated which include the effects of both the inhomogeneous atmosphere and the static magnetic field of the earth. Application of parabolic-type approximations produces different systems of coupled parabolic equations. Each is valid for different relative magnitudes of components of the electric field. All admissible cases are then synthesized into one system which can be numerically examined, yielding solutions without a priori knowledge of electric field ratios. A specific example is presented and examined to understand static magnetic field effects on electromagnetic wave propagation. The influences of the earth's magnetic field are discussed and displayed in terms of electric components and the Poynting vector. Results demonstrate that the geomagnetic field can significantly influence HF atmospheric propagation.

  19. Oblique propagation, wave particle interaction and particle distribution function

    NASA Astrophysics Data System (ADS)

    Osmane, Adnane; Hamza, A. M.; Meziane, Karim

    Recent results from the Cluster mission have stimulated theoretical investigations and simulations to explain ion distribution functions observed in the quasi-perp bow shock. High-time resolution observations have revealed distributions of gyrating ions that are gyrophase-bunched. When not produced at the shock, such distributions are believed to be resulting from interactions between field-aligned beams and low frequency beamdriven waves . The Conventional models used to account for such distributions assume that the waves are purely transverse, and that they propagate parallel to the ambient magnetic eld. However observations indicate that these waves are propagating obliquely with respect to the ambient magnetic eld [Meziane et al., 2001]. A theoretical investigation of the non-relativistic wave-particle interaction in a background magnetic eld with the electromagnetic wave propagating obliquely has been addressed previously, resulting in a dynamical system describing the wave interaction with a single ion in the absence of dissipation mechanisms. [Hamza et al., 2005] This dynamical system has been numerically integrated to construct the ion distribution functions by seeding the particles with di erent initial conditions. We compute the particle orbits and simulate the time evolution of the distribution functions based on Liouville's theorem of phase space density conservation. It will be shown that the trapping which is due to the oblique propagation of the wave, gives an explanation for gyrophase-bunching and unstable distributions in velocity space which could trigger instabilities such as firehose and mirror. Therefore this exercise provide insights on the particle dynamics and onset of waves away from the shock. Meziane, K., C. Mazelle, R.P. Lin, D. LeQueau, D.E. Larson, G.K. Parks, R.P. Lepping (2001), Three dimensional observations of gyrating ions distributions far upstream from the Earth's bow shock and their association with low-frequency waves, J

  20. Excitation of propagating spin waves with global uniform microwave fields

    NASA Astrophysics Data System (ADS)

    Au, Y.; Davison, T.; Ahmad, E.; Keatley, P. S.; Hicken, R. J.; Kruglyak, V. V.

    2011-03-01

    We demonstrate a magnonic architecture that converts global free-space uniform microwaves into spin waves propagating in a stripe magnonic waveguide. The architecture is based upon dispersion mismatch between the narrow magnonic waveguide and a wide "antenna" patch, both patterned from the same magnetic film. The spin waves injected into the waveguide travel to distances as large as several tens of micrometers. The antennas can be placed at multiple positions on a magnonic chip and used to excite mutually coherent multiple spin waves for magnonic logic operations. This demonstration paves way for "magnonics" to become a pervasive technology for information processing.

  1. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  2. Wave propagation within some non-homogeneous continua

    NASA Astrophysics Data System (ADS)

    Antonio Tamarasselvame, Nirmal; Buisson, Manuel; Rakotomanana, Lalaonirina R.

    We investigate the elastic wave propagation within a non-homogeneous continuum according to W. Noll. After some preliminaries in geometry approach suggested by E. Cartan, the linear momentum equation of so-called weakly continuous medium is written. A first example illustrates the modal analysis of an axisymmetric non-homogeneous thick tube. The overall solution is the product of an attenuating exponential response with Kummer's functions. The second example deals with a Timoshenko beam involving transversal displacement and angular rotation of section. We observe the presence of various waves with spatial attenuation, either for the displacement or the section rotation, together with the occurring waves at different scale levels.

  3. Wave Propagation in the Vicinities of Rock Fractures Under Obliquely Incident Wave

    NASA Astrophysics Data System (ADS)

    Zou, Yang; Li, Jianchun; He, Lei; laloui, Lyesse; Zhao, Jian

    2016-05-01

    Though obliquely incident plane wave across rock fractures has been extensively investigated by theoretical analysis, the quantitative identification of each wave emerged from fractures has not been achieved either in numerical simulation or laboratory experiment. On the other hand, there are no theoretical results describing the stress/velocity state of the rocks beside a fracture. The superposition of the multiple waves propagating in the media results in the variation of the stress/velocity state. To understand the superposition of the wave components in the adjacent rocks of a facture, based on the geometrical analysis of the wave paths, the lag times among passing waves at an arbitrary point are determined. The normalised critical distances from the fracture to the measuring locations where the corresponding harmonic waves depart from other waves for a certain duration are then derived. Discussion on the correction for an arbitrary incident wave is then carried out considering the changes of the duration of the reflected and transmitted waves. Under the guidance of the analysis, wave superposition is performed for theoretical results and separated waves are obtained from numerical model. They are demonstrated to be consistent with each other. The measurement and the data processing provide an approach for wave separation in a relatively unbounded media. In addition, based on the mechanical analysis on the wave front, an indirect wave separation method is proposed which provides a possibility for laboratory experiments of wave propagation with an arbitrary incident angle.

  4. Lightning location with variable radio wave propagation velocity

    NASA Astrophysics Data System (ADS)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  5. Alfven soliton and multisoliton dynamics perturbed by nonlinear Landau damping

    SciTech Connect

    Sanchez-Arriaga, G.

    2010-08-15

    The evolution of weakly dispersive nonlinear Alfven waves propagating either parallel or oblique to the ambient magnetic field is investigated through the derivative nonlinear Schroedinger equation (DNLS) perturbed by nonlinear Landau damping. The dynamics is analyzed with the aid of a numeric algorithm based on the inverse scattering transform (IST) and an adiabatic model that takes advantages of the perturbed DNLS invariants. Both techniques are applied to five types of DNLS soliton and multisoliton solutions: (i) the parallel Alfven soliton, (ii) the bright and dark one-parameter oblique, (iii) the breather two-parameter oblique, (iv) two parallel Alfven solitons, and (v) the combination of a dark and a bright oblique solitons. For the parallel solitons, the adiabatic model describes correctly the dynamics and it also recovers the well-known result given by the perturbed IST. Due to the radiation emission and the formation of dark solitons, the behavior of oblique solitons is more complicated and multisoliton solutions are required in the adiabatic model. The analysis shows that parallel solitons develop into the normal regime, whereas the oblique waves leads to the formation of dark solitons and breathers with a wavepacket form.

  6. Surface wave propagation in non-ideal plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.; Dwivedi, C. B.

    2015-03-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the non-ideal magnetohydrodynamic (MHD) effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few per cent) due to the compressibility of the medium in both ideal as well as Hall-diffusion-dominated regimes. However, unlike ideal regime, only waves below certain cut-off frequency can propagate in the medium in Hall dominated regime. This cut-off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut-off is introduced by the Hall diffusion, the fractional ionization of the medium is more important than the plasma compressibility in determining such a cut-off. Therefore, for both compressible as well incompressible medium, the surface modes of shorter wavelength are permitted with increasing ionization in the medium. We discuss the relevance of these results in the context of solar photosphere-chromosphere.

  7. Smoothed Particle Hydrodynamics for water wave propagation in a channel

    NASA Astrophysics Data System (ADS)

    Omidvar, Pourya; Norouzi, Hossein; Zarghami, Ahad

    2015-01-01

    In this paper, Smoothed Particle Hydrodynamics (SPH) is used to simulate the propagation of waves in an intermediate depth water channel. The major advantage of using SPH is that no special treatment of the free surface is required, which is advantageous for simulating highly nonlinear flows with possible wave breaking. The SPH method has an option of different formulations with their own advantages and drawbacks to be implemented. Here, we apply the classical and Arbitrary Lagrange-Euler (ALE) formulation for wave propagation in a water channel. The classical SPH should come with an artificial viscosity which stabilizes the numerical algorithm and increases the accuracy. Here, we will show that the use of classical SPH with an artificial viscosity may cause the waves in the channel to decay. On the other hand, we will show that using the ALE-SPH algorithm with a Riemann solver is more stable, and in addition to producing the pressure fields with much less numerical noise, the waves propagate in the channel without dissipation.

  8. Seismic Wave Propagation Simulation using Circular Hough Transform

    NASA Astrophysics Data System (ADS)

    Miah, K.; Potter, D. K.

    2012-12-01

    Synthetic data generation by numerically solving a two-way wave equation is an essential part of seismic tomography, especially in full-waveform inversion. Finite-difference and finite-element are the two common methods of seismic wave propagation modeling in heterogeneous media. Either time or frequency domain representation of wave equation is used for these simulations. Hanahara and Hiyane [1] proposed and implemented a circle-detection algorithm based on the Circular Hough transform (CHT) to numerically solve a two-dimensional wave equation. The Hough transform is generally used in image processing applications to identify objects of various shapes in an image [2]. In this abstract, we use the Circular Hough transform to numerically solve an acoustic wave equation, with the purpose to identify and locate primaries and multiples in the transform domain. Relationships between different seismic events and the CHT parameter are also investigated. [1] Hanahara, K. and Hiyane, M., A Circle-Detection Algorithm Simulating Wave Propagation, Machine Vision and Applications, vol. 3, pp. 97-111, 1990. [2 ] Petcher, P. A. and Dixon, S., A modified Hough transform for removal of direct and reflected surface waves from B-scans, NDT & E International, vol. 44, no. 2, pp. 139-144, 2011.

  9. Experimental and theoretical study of Rayleigh-Lamb wave propagation

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.

    1990-01-01

    Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.

  10. Simulating tsunami propagation in fjords with long-wave models

    NASA Astrophysics Data System (ADS)

    Løvholt, F.; Glimsdal, S.; Lynett, P.; Pedersen, G.

    2015-03-01

    Tsunamis induced by rock slides constitute a severe hazard towards coastal fjord communities. Fjords are narrow and rugged with steep slopes, and modeling the short-frequency and high-amplitude tsunamis in this environment is demanding. In the present paper, our ability (and the lack thereof) to simulate tsunami propagation and run-up in fjords for typical wave characteristics of rock-slide-induced waves is demonstrated. The starting point is a 1 : 500 scale model of the topography and bathymetry of the southern part of Storfjorden fjord system in western Norway. Using measured wave data from the scale model as input to numerical simulations, we find that the leading wave is moderately influenced by nonlinearity and dispersion. For the trailing waves, dispersion and dissipation from the alongshore inundation on the traveling wave become more important. The tsunami inundation was simulated at the two locations of Hellesylt and Geiranger, providing a good match with the measurements in the former location. In Geiranger, the most demanding case of the two, discrepancies are larger. The discrepancies may be explained by a combinations of factors, such as the accumulated errors in the wave propagation along large stretches of the fjord, the coarse grid resolution needed to ensure model stability, and scale effects in the laboratory experiments.

  11. Excitation of coherent propagating spin waves by pure spin currents

    NASA Astrophysics Data System (ADS)

    Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.

    2016-01-01

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  12. Excitation of coherent propagating spin waves by pure spin currents.

    PubMed

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-01

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232

  13. Nonlinear wave propagation in strongly coupled dusty plasmas.

    PubMed

    Veeresha, B M; Tiwari, S K; Sen, A; Kaw, P K; Das, A

    2010-03-01

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain. PMID:20365882

  14. Nonlinear wave propagation in strongly coupled dusty plasmas

    SciTech Connect

    Veeresha, B. M.; Tiwari, S. K.; Sen, A.; Kaw, P. K.; Das, A.

    2010-03-15

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain.

  15. Propagation of electromagnetic waves in P T -symmetric hyperbolic structures

    NASA Astrophysics Data System (ADS)

    Shramkova, O. V.; Tsironis, G. P.

    2016-07-01

    We investigate theoretically and numerically the propagation of electromagnetic waves in P T -symmetric periodic stacks composed of hyperbolic metamaterial layers separated by dielectric media with balanced loss and gain. We derive the characteristic frequencies governing the dispersion properties of the eigenwaves of P T -symmetric semiconductor-dielectric stacks. By tuning the loss/gain level and thicknesses of the layers, we study the evolution of the dispersion dependencies. We show that the effective-medium approach does not adequately describe the propagating waves in the P T -symmetric hypercrystals, even for wavelengths that are about 100 times larger than the period of the stack. We demonstrate the existence of anisotropic transmission resonances and above-unity reflection in P T -symmetric hyperbolic systems. The P T -symmetry-breaking transition of the scattering matrix is strongly influenced by the constitutive and geometrical parameters of the layers and the angles of wave incidence.

  16. Attenuation characteristics of nonlinear pressure waves propagating in pipes

    NASA Technical Reports Server (NTRS)

    Shih, C. C.

    1974-01-01

    A series of experiments was conducted to investigate temporal and spatial velocity distributions of fluid flow in 3-in. open-end pipes of various lengths up to 210 ft, produced by the propagation of nonlinear pressure waves of various intensities. Velocity profiles across each of five sections along the pipes were measured as a function of time with the use of hot-film and hot-wire anemometers for two pressure waves produced by a piston. Peculiar configurations of the velocity profiles across the pipe section were noted, which are uncommon for steady pipe flow. Theoretical consideration was given to this phenomenon of higher velocity near the pipe wall for qualitative confirmation. Experimentally time-dependent velocity distributions along the pipe axis were compared with one-dimensional theoretical results obtained by the method of characteristics with or without diffusion term for the purpose of determining the attenuation characteristics of the nonlinear wave propagation in the pipes.

  17. Simulation of wave propagation in three-dimensional random media

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1993-01-01

    Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

  18. S-Wave Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  19. Wave propagation in square granular crystals with spherical interstitial intruders

    NASA Astrophysics Data System (ADS)

    Szelengowicz, I.; Kevrekidis, P. G.; Daraio, C.

    2012-12-01

    We investigate the propagation and scattering of highly nonlinear waves in granular systems composed of spheres in contact arranged in a square packing, and study how the presence of small and light spherical interstitial defects, also referred to as intruders, affects the wave propagation. The effects of a single defect are investigated experimentally and compared to numerical simulations, showing very good quantitative agreement. Transmitted and scattered waves are formed, whose characteristics depend on the material properties of the defect in relation to the properties of the particles in the lattice. Experiments and numerical simulations reveal that stiffer defects are more efficient at redistributing energy outside the impacted chain and soft defects induce a localization of the energy at the defect. Finally, the effects of the presence of two defects, placed diagonally or aligned in the square packing are also investigated, as well as how their interaction depends on their relative positions.

  20. Excitation of coherent propagating spin waves by pure spin currents

    PubMed Central

    Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.

    2016-01-01

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232

  1. Quasinormal modes and classical wave propagation in analogue black holes

    SciTech Connect

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-12-15

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  2. Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.

    2015-12-01

    The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334

  3. Wave packet propagation across barriers by semiclassical initial value methods

    NASA Astrophysics Data System (ADS)

    Petersen, Jakob; Kay, Kenneth G.

    2015-07-01

    Semiclassical initial value representation (IVR) formulas for the propagator have difficulty describing tunneling through barriers. A key reason is that these formulas do not automatically reduce, in the classical limit, to the version of the Van Vleck-Gutzwiller (VVG) propagator required to treat barrier tunneling, which involves trajectories that have complex initial conditions and that follow paths in complex time. In this work, a simple IVR expression, that has the correct tunneling form in the classical limit, is derived for the propagator in the case of one-dimensional barrier transmission. Similarly, an IVR formula, that reduces to the Generalized Gaussian Wave Packet Dynamics (GGWPD) expression [D. Huber, E. J. Heller, and R. Littlejohn, J. Chem. Phys. 89, 2003 (1988)] in the classical limit, is derived for the transmitted wave packet. Uniform semiclassical versions of the IVR formulas are presented and simplified expressions in terms of real trajectories and WKB penetration factors are described. Numerical tests show that the uniform IVR treatment gives good results for wave packet transmission through the Eckart and Gaussian barriers in all cases examined. In contrast, even when applied with the proper complex trajectories, the VVG and GGWPD treatments are inaccurate when the mean energy of the wave packet is near the classical transmission threshold. The IVR expressions for the propagator and wave packet are cast as contour integrals in the complex space of initial conditions and these are generalized to potentially allow treatment of a larger variety of systems. A steepest descent analysis of the contour integral formula for the wave packet in the present cases confirms its relationship to the GGWPD method, verifies its semiclassical validity, and explains results of numerical calculations.

  4. Generation and propagation of nonlinear internal waves in Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.C.; Butman, B.

    2007-01-01

    During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.

  5. Existence and uniqueness of stabilized propagating wave segments in wave front interaction model

    NASA Astrophysics Data System (ADS)

    Guo, Jong-Shenq; Ninomiya, Hirokazu; Tsai, Je-Chiang

    2010-02-01

    Recent experimental studies of photosensitive Belousov-Zhabotinskii reaction have revealed the existence of propagating wave segments. The propagating wave segments are unstable, but can be stabilized by using a feedback control to continually adjust the excitability of the medium. Experimental studies also indicate that the locus of the size of a stabilized wave segment as a function of the excitability of the medium gives the excitability boundary for the existence of 2D wave patterns with free ends in excitable media. To study the properties of this boundary curve, we use the wave front interaction model proposed by Zykov and Showalter. This is equivalent to study a first order system of three ordinary differential equations which includes a singular nonlinearity. Using two different reduced first order systems of two ordinary differential equations, we first show the existence of wave segments for any given propagating velocity. Then the wave profiles can be classified into two types, namely, convex and non-convex types. More precisely, when the normalized propagating velocity is small, we show that the wave profile is of convex type, while the wave profile is of non-convex type when the normalized velocity is close to 1.

  6. Numerical investigation of seismic wave propagation in fracture systems

    NASA Astrophysics Data System (ADS)

    Yi, Weidong

    The geometric features and physical characteristics of fractures in rock masses are often considered major factors controlling the production of oil and gas. Therefore, it is important to detect fractures in oil and gas reservoirs. Of the various geophysical methods, seismic methods are particularly attractive for fracture detection and imaging because of the sensitivity of elastic waves to the mechanical compliance associated with fractures. Based on the effects of fracture on the velocities and amplitudes of seismic waves, several studies have shown the potential for using seismic tomography and vertical seismic profiling (VSP) techniques to characterize fracture systems in reservoirs. In this thesis, seismic wave propagation through a fracture system is numerically investigated by the finite-difference method. When seismic waves propagate in a medium with single fractures of infinite and finite length, the head wave and the dispersive interface waves (symmetric and antisymmetric modes) along the fracture are strongly excited by the explosion source if the seismic source is moved close to the fracture with low stiffness. In a fracture waveguide, fracture channel waves are supported by the waveguide, even in the absence of a velocity contrast between the fracture waveguide and surrounding host rock. The particular modes generated strongly depend on the polarization of the seismic source. When the seismic source is vertically (horizontally) polarized, antisymmetric (symmetric) modes are excited. In addition, if the thickness of the fracture waveguide increases, a complex particle motion of the fracture channel waves develops because the fracture channel waves partly couple with the interface waves along the fractures. For seismic wave propagation through a multi-fracture system consisting of equally spaced fractures, both an explicit fracture model and an equivalent transversely isotropic (TI) medium model were used to model the fracture system. In comparison to

  7. Voronoi based microstructure modelling for elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Shivaprasad, S.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2016-02-01

    Ultrasonic assessment of materials and defects are affected by microstructural parameters like grain size and texture. When a beam of ultrasound propagates in a polycrystalline medium, it undergoes extensive scattering by grains, grain boundaries and other microstructural features such as dislocations, voids, micro cracks etc. To understand the role of anisotropy and grain size distribution on an ultrasonic beam, a model system is proposed for carrying out ultrasonic wave propagation in a model characterized by grain size distribution and grain orientation distribution. A 2D polycrystalline medium constructed using Voronoi tessellations with a specific grain size distribution is considered and orientational averaging studies are carried out.

  8. Dynamics and Predictability of Deep Propagating Atmospheric Gravity Waves

    NASA Astrophysics Data System (ADS)

    Doyle, J.; Fritts, D. C.; Smith, R.; Eckermann, S. D.

    2012-12-01

    An overview will be provided of the first field campaign that attempts to follow deeply propagating gravity waves (GWs) from their tropospheric sources to their mesospheric breakdown. The DEEP propagating gravity WAVE experiment over New Zealand (DEEPWAVE-NZ) is a comprehensive, airborne and ground-based measurement and modeling program focused on providing a new understanding of GW dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program will employ the new NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. The NGV will be equipped with new lidar and airglow instruments for the DEEPWAVE measurement program, providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand is chosen since all the relevant GW sources occur strongly here, and upper-level winds in austral winter permit GWs to propagate to very high altitudes. Given large-amplitude GWs that propagate routinely into the MLT, the New Zealand region offers an ideal natural laboratory for studying these important GW dynamics and effects impacting weather and climate over a much deeper atmospheric layer than previous campaigns have attempted (0-100 km altitude). The logistics of making measurements in the vicinity of New Zealand are potentially easier than from the Andes and Drake Passage region. A suite of GW-focused modeling and predictability tools will be used to guide NGV flight planning to GW events of greatest scientific significance. These models will also drive scientific interpretation of the GW measurements, together providing answers to the key science questions posed by DEEPWAVE about GW dynamics, morphology, predictability and impacts from 0-100 km. Preliminary results will be presented from high-resolution and adjoint models applied over areas featuring deep wave propagation. The high

  9. Constitutive modeling for blast-induced wave propagation

    NASA Astrophysics Data System (ADS)

    Drumm, E. C.

    1985-03-01

    The description of stress-time history acting on a buried structure is a major source of error in the analysis of underground structures to weapons loadings. The stress wave propagating spherically from the weapon is attenuated as it travels from the source. This attenuation is a function of the inelastic response of the soil, and results in an increase in the loading rise time or decrease in the loading rate. Since the inelastic soil response is a function of the loading rate, a wave propagation analysis should be conducted to determine the stresses on the structure. At the interface between the soil and structure, the stress is modified further by soil-structure interaction effects. Thus, the stress on the structure is a function of both the structural and soil properties as well as the distance traveled by the stress wave. These related phenomena can be included in a numerical analysis, but the accuracy depends on the constitutive representation of the materials. One-dimensional wave propagation experiments and impact tests with various soils are reviewed, and the attenuation as a function of the soil stress-strain response is discussed.

  10. Propagating wave pattern on a falling liquid curtain.

    PubMed

    Le Grand-Piteira, N; Brunet, P; Lebon, L; Limat, L

    2006-08-01

    A regular pattern of surface waves is observed on a liquid curtain falling from a horizontal, wetted tube, maintained between two vertical wires. Since the upper boundary is not constrained in the transverse direction, the top of the curtain enters a pendulum-like motion, when the flow rate is progressively reduced, coupled to the propagation of curtain undulations, structured as a checkerboard. This structure is formed by two patterns of propagating waves. In some sense, these propagating patterns replace the stationary pattern of liquid columns observed at a lower flow rate. Measurements of phase velocity, frequency, and wavelength are reported. The data are in agreement with a simple dimensional argument suggesting that the wave velocity is proportional to the surface tension divided by the mass flux of liquid per unit length. This scaling is also that followed by the fluid velocity at the so-called transonic point, i.e., the point where the fluid velocity equals that of sinuous waves. We finally discuss the implications of these results for the global stability of liquid curtains. PMID:17025537

  11. An experimental study on the ultrasonic wave propagation in cancellous bone: waveform changes during propagation.

    PubMed

    Fujita, Fuminori; Mizuno, Katsunori; Matsukawa, Mami

    2013-12-01

    Wave propagation in a trabecular bone was experimentally investigated using an acoustic tube. For the purposes of this study, a cubic sample was gradually filed so the waveform change due to the sample thickness could be observed. The initial sample showed clear two-wave separation. As the sample became thinner, the fast and slow waves gradually overlapped. The apparent frequencies and amplitudes of the fast waves obtained from the time domain data decreased significantly for the smaller thicknesses. This indicates an increase in the apparent attenuation at the initial stage of the propagation. Next the authors investigated the distribution of the ultrasonic field after the transmission through the cancellous bone sample. In addition to a large aperture receiver, a needle-type ultrasonic transducer was used to observe the ultrasonic field. Within an area of the same size of the large transducer, the waveforms retrieved with the needle sensor exhibited high spatial variations; however, the averaged waveform in the plane was similar to the waveform obtained with the large aperture receiver. This indicates that the phase cancellation effect on the surface of the large aperture receiver can be one of the reasons for the strong apparent attenuation observed at the initial stages of the propagation. PMID:25669289

  12. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  13. Matter wave propagation using the Fourier optics approach

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, M.; Hematizadeh, A.

    2016-09-01

    In this paper propagation of matter wave of particles is modeled using the Fourier optics approach. In first step the Schrödinger equation of quantum mechanics is used to find the wave function of the particle. In the second step Fourier optics is employed to model the diffraction of the wave function of the particle through single and double slits. The results of the calculations are presented as graphs of diffraction patterns. The results of the presented method are compared to the existing results in the literature (with different methods) to check the validity of the introduced model. It is shown that the Fourier optics approach is applicable to matter wave of particles in diffraction through slits.

  14. Experimental study of wave propagation dynamics of binary distillation columns

    SciTech Connect

    Hwang, Y.L.; Graham, G.K.; Keller, G.E. II; Ting, J.; Helfferich, F.G.

    1996-10-01

    High-purity distillation columns are typically difficult to control because of their severely nonlinear behavior reflected by their sharp composition and temperature profiles. The dynamic behavior of such a column, as characterized by the movement of its sharp profile, was elucidated by a nonlinear wave theory established previously. With binary alcohol mixtures, this study provides an experimental observation of such wave-propagation dynamics of a 40-tray stripping column and a 50-tray fractionation column in response to step disturbances of feed composition, feed flow rate, and reboiler heat supply. These experimental results have verified that the sharp profile in a high-purity column moves as a constant-pattern wave and that the nonlinear wave theory predicts its velocity satisfactorily with very simple mathematics. Results also demonstrate the asymmetric dynamics of the transitions between two steady states.

  15. Propagating spin waves in YIG micro-channel on Silicon

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Che, Ping; Tu, Sa; Zhang, Yan; Qin, Jun; Bi, Lei; Liu, Chuanpu; Liao, Zhimin; Yu, Dapeng; Yu, Haiming; Fert Beijing Research Institute Team; University Of Electronic Science; Technology Of China Team; Peking University Collaboration

    Recently the utilization of spin waves in the field of information processing has been widely developed because it is free of Joule heat dissipation and beneficial to miniaturization of the magnon based devices. Here we study spin waves in yttrium iron garnet (YIG) with a low damping property. The YIG film is fabricated on silicon substrate using pulsed laser deposition and the measured FMR linewidth is only a few Gauss. Using ebeam lithography, we are able to pattern the YIG film into a micro-channel and integrate sub-meter waveguides to generate and detect spin waves of wavelength down to 1 μm or below. We show results of propagating spin waves in the YIG micro-channel measured by the S12 parameter of the vector network analyzer.

  16. Obliquely propagating electromagnetic waves in magnetized kappa plasmas

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.; Ziebell, L. F.

    2016-02-01

    Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, the formalism is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions such as the bi-kappa or product-bi-kappa.

  17. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    SciTech Connect

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.

    1998-01-09

    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  18. Seismic wave propagation in fully anisotropic axisymmetric media

    NASA Astrophysics Data System (ADS)

    van Driel, Martin; Nissen-Meyer, Tarje

    2014-11-01

    We present a numerical method to compute 3-D elastic waves in fully anisotropic axisymmetric media. This method is based on a decomposition of the wave equation into a series of uncoupled 2-D equations for which the dependence of the wavefield on the azimuth can be solved analytically. Four independent equations up to quadrupole order appear as solutions for moment-tensor sources located on the symmetry axis while single forces can be accommodated by two separate solutions up to dipole order. This decomposition gives rise to an efficient solution of the 3-D wave equation in a 2-D axisymmetric medium. First, we prove the validity of the decomposition of the wavefield in the presence of general anisotropy. Then we use it to derive the reduced 2-D equations of motions and discretize them using the spectral element method. Finally, we benchmark the numerical implementation for global wave propagation at 1 Hz and consider inner core anisotropy as an application for high-frequency wave propagation in anisotropic media at frequencies up to 2 Hz.

  19. High Harmonic Fast Wave Propagation and Heating on NSTX

    NASA Astrophysics Data System (ADS)

    Parker, J. B.; Phillips, C. K.; Hosea, J. C.; Valeo, E. J.; Wilson, J. R.; Harvey, R. W.

    2007-11-01

    Recent experiments on the National Spherical Torus Experiment (NSTX) show that the high harmonic fast wave (HHFW) core heating efficiency depends on the antenna phasing and plasma conditions. [1]. Power losses in the edge due to rf sheath formation or other parasitic absorption processes could occur if the waves propagate nearly parallel to the wall in the edge regions and intersect nearby vessel structures. To investigate this possibility, the 3D HHFW propagation in NSTX has been studied both analytically and numerically with the ray tracing code GENRAY. Initial calculations show that for certain values of the launched parallel wave number and magnetic field, the waves in NSTX are launched at a shallow angle to the vessel wall. In contrast, for ICRF heating in C-Mod or ITER, the initial ray trajectories tend to be more radially oriented. Comparisons of the GENRAY results with 2D TORIC full wave simulations for the power deposition will also be discussed. [1] See invited talk by J. C. Hosea this meeting.

  20. Propagation and attenuation of Rayleigh waves in generalized thermoelastic media

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2014-01-01

    This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.

  1. Wave propagation in a quasi-chemical equilibrium plasma

    NASA Technical Reports Server (NTRS)

    Fang, T.-M.; Baum, H. R.

    1975-01-01

    Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.

  2. Propagation of waves in a medium with high radiation pressure

    NASA Technical Reports Server (NTRS)

    Bisnovatyy-Kogan, G. S.; Blinnikov, S. I.

    1979-01-01

    The propagation and mutual transformation of acoustic and thermal waves are investigated in media with a high radiative pressure. The equations of hydrodynamics for matter and the radiative transfer equations in a moving medium in the Eddington approximation are used in the investigation. Model problems of waves in a homogeneous medium with an abrupt jump in opacity and in a medium of variable opacity are presented. The characteristic and the times of variability are discussed. Amplitude for the brightness fluctuations for very massive stars are discussed.

  3. Backward propagating acoustic waves in single gold nanobeams

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Becerra, Loïc; Perrin, Bernard

    2015-11-01

    Femtosecond pump-probe spectroscopy has been carried out on suspended gold nanostructures with a rectangular cross section lithographed on a silicon substrate. With a thickness fixed to 110 nm and a width ranging from 200 nm to 800 nm , size dependent measurements are used to distinguish which confined acoustic modes are detected. Furthermore, in order to avoid any ambiguity due to the measurement uncertainties on both the frequency and size, pump and probe beams are also spatially shifted to detect guided acoustic phonons. This leads us to the observation of backward propagating acoustic phonons in the gigahertz range ( ˜3 GHz ) in such nanostructures. While backward wave propagation in elastic waveguides has been predicted and already observed at the macroscale, very few studies have been done at the nanoscale. Here, we show that these backward waves can be used as the unique signature of the width dilatational acoustic mode.

  4. Numerical modelling of nonlinear full-wave acoustic propagation

    NASA Astrophysics Data System (ADS)

    Velasco-Segura, Roberto; Rendón, Pablo L.

    2015-10-01

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe's linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  5. Electrostatic wave propagation and trapping near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1985-01-01

    Results of a two-dimensional ray tracing computer code, based on Snell's law, for electrostatic wave propagation in a dipole magnetic field are discussed. A survey of possible ray paths varying a wide range of parameters is conducted for low-harmonic Bernstein modes in a high-density plasma. It is shown that the ray paths exhibit similarity with radial distance and that there exists the possibility of two classes of wave statistics of the equator: a broad emission region extending to about + or - 4 deg and a class of events restricted to the smaller region of 1-2 deg about the magnetic equator. The regulating parameter between these two types of events is the transition energy from the isotropic background electrons to the unstable distribution of superthermals. Ray paths for propagation in the magnetic equatorial plane are considered and an explanation is given for ray focusing in the equatorial plane based on electron gyroradius considerations.

  6. Resonance absorption of propagating fast waves in a cold plasma

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Absorption of propagating waves impinging on a surface in which the plasma and magnetic field may change is investigated by examining in depth the problem of a combination of cold plasma, uniform magnetic field and a surface density which varies linearly from zero at the left end to some finite value at the right end, beyond which the density is constant. Two cases are considered: one in which the plasma is a vacuum everywhere to the left of the surface (which may correspond to coronal conditions) and one in which the plasma density jumps to a very large value to the left of the surface (which may mimic the magnetosphere with the dense region at the left corresponding to the plasmasphere). A complete discussion of the resonance absorption of propagating fast waves for the case considered by Kiveloson and Southwood (1986) is presented, emphasizing approximate analytical results whenever possible; these results are then compared with exact numerical solutions.

  7. Numerical modelling of nonlinear full-wave acoustic propagation

    SciTech Connect

    Velasco-Segura, Roberto Rendón, Pablo L.

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  8. Wave propagation modeling with non-Markov phase screens.

    PubMed

    Charnotskii, Mikhail

    2016-04-01

    A recently introduced [J. Opt. Soc. Am. A30, 479 (2013)10.1364/JOSAA.30.000479JOAOD61084-7529] sparse spectrum (SS) model of statistically homogeneous random fields makes it possible to generate 3D samples of refractive-index fluctuations with prescribed spectral density at a very reasonable computational cost. The SS technique can be used in the framework of the split-step Fourier method for numerical simulation of wave propagation in turbulence. It allows generation of the phase screen samples that are free from the limitations of the Markov approximation, which is commonly used for theoretical description and numerical modeling of optical waves propagation through turbulence. We investigate statistics of these phase screens and present a numerical algorithm for their generation. PMID:27140765

  9. Studies of the propagation of Low Frequency (LF) radio waves

    NASA Astrophysics Data System (ADS)

    Warrington, E. M.; Jones, T. B.

    1993-05-01

    Low frequency (30-300 kHz) radio waves can propagate to great distances with little attenuation in the cavity formed by the earth and the ionosphere. Because of the relatively high frequency at LF, many active propagation modes can occur between the transmitter and receiver. Changes in the ionospheric conductivity or reflection height can influence the phase and amplitude of these modes and, hence, produce mutual interference. Because of these interference effects, the propagation is less stable than at VLF and the received field strength becomes more difficult to predict. In the present investigation, the WAVEHOP program was employed in conjunction with a range of ionospheric models to estimate the receiver field strength over a number of experimental paths. The predicted values were compared with those measured in an attempt to validate the ionospheric models and the method of calculation.

  10. Effect of propagation on pulsed four-wave mixing

    NASA Astrophysics Data System (ADS)

    Weisman, P.; Wilson-Gordon, A. D.; Friedmann, H.

    2000-05-01

    We examine the effect of propagation on the resonance Rabi sideband of the four-wave mixing (FWM) spectrum, obtained when short temporally displaced pump and probe pulses interact with an optically thick medium of two-level atoms. We find that the dependence of the time-integrated FWM signal on the pump-probe delay is considerably altered by propagation. In particular, the logarithm of the FWM signal, for the case where the probe precedes the pump, deviates from linearity and may even increase over a range of values. An explanation is given in terms of the overlap of the pump envelope with the coherent response of the atomic system to the probe, both of which are modified on propagation.

  11. Numerical simulation of shock wave propagation in flows

    NASA Astrophysics Data System (ADS)

    Rénier, Mathieu; Marchiano, Régis; Gaudard, Eric; Gallin, Louis-Jonardan; Coulouvrat, François

    2012-09-01

    Acoustical shock waves propagate through flows in many situations. The sonic boom produced by a supersonic aircraft influenced by winds, or the so-called Buzz-Saw-Noise produced by turbo-engine fan blades when rotating at supersonic speeds, are two examples of such a phenomenon. In this work, an original method called FLHOWARD, acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction, is presented. It relies on a scalar nonlinear wave equation, which takes into account propagation in a privileged direction (one-way approach), with diffraction, flow, heterogeneous and nonlinear effects. Theoretical comparison of the dispersion relations between that equation and parabolic equations (standard or wide angle) shows that this approach is more precise than the parabolic approach because there are no restrictions about the angle of propagation. A numerical procedure based on the standard split-step technique is used. It consists in splitting the nonlinear wave equation into simpler equations. Each of these equations is solved thanks to an analytical solution when it is possible, and a finite differences scheme in other cases. The advancement along the propagation direction is done with an implicit scheme. The validity of that numerical procedure is assessed by comparisons with analytical solutions of the Lilley's equation in waveguides for uniform or shear flows in linear regime. Attention is paid to the advantages and drawbacks of that method. Finally, the numerical code is used to simulate the propagation of sonic boom through a piece of atmosphere with flows and heterogeneities. The effects of the various parameters are analysed.

  12. Simplified theory of large-amplitude wave propagation

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1976-01-01

    An orbit perturbation procedure was applied to the description of monochromatic, large-amplitude, electrostatic plasma wave propagation. In the lowest order approximation, untrapped electrons were assumed to follow constant-velocity orbits and trapped electrons were assumed to execute simple harmonic motion. The deviations of these orbits from the actual orbits were regarded as perturbations. The nonlinear damping rate and frequency shift were then obtained in terms of simple functions. The results are in good agreement with previous less approximate analyses.

  13. Monograph on propagation of sound waves in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, Wojciech

    1991-01-01

    After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.

  14. Wave propagation in the chromosphere and transition region

    NASA Technical Reports Server (NTRS)

    Steffens, S.; Deubner, F.-L.; Fleck, B.; Wilhelm, K.; Harrison, R.; Gurman, J.

    1997-01-01

    The results from a joint observing program involving the solar ultraviolet measurement of emitted radiation (SUMER), the coronal diagnostic spectrometer (CDS) and the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) are presented. These operations were coordinated with ground-based observations at the vacuum tower telescope at Izana (Tenerife). The purpose was to characterize the wave propagation properties in the solar atmosphere, from the photosphere through the chromosphere into the transition region.

  15. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  16. Computational study of nonlinear plasma waves: 1: Simulation model and monochromatic wave propagation

    NASA Technical Reports Server (NTRS)

    Matda, Y.; Crawford, F. W.

    1974-01-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.

  17. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    SciTech Connect

    Vorobiev, O; Antoun, T

    2009-12-11

    This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.

  18. Instability and Wave Propagation in Structured 3D Composites

    NASA Astrophysics Data System (ADS)

    Kaynia, Narges; Fang, Nicholas X.; Boyce, Mary C.

    2014-03-01

    Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the complex instability and wrinkling pattern arising in 3D structured composites and the effect of the buckling pattern on the overall structural response. The 3D structured composites consisted of stiffer plates supported by soft matrix on both sides. Compression beyond the critical strain led to complex buckling patterns in the initially straight plates. The motivation of our work is to elaborate the formation of a system of prescribed periodic scatterers (metamaterials) due to buckling, and their effect to interfere wave propagation through the metamaterial structures. Such metamaterials made from elastomers enable large reversible deformation and, as a result, significant changes of the wave propagation properties. We developed analytical and finite element models to capture various aspects of the instability mechanism. Mechanical experiments were designed to further explore the modeling results. The ability to actively alter the 3D composite structure can enable on-demand tunability of many different functions, such as active control of wave propagation to create band-gaps and waveguides.

  19. The effect of source's shape for seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Mikada, H.; Goto, T.; Takekawa, J.; Onishi, K.; Kasahara, J.; Kuroda, T.

    2009-12-01

    In conventional simulation of seismic wave propagation, the source which generates signals is usually given by a point force or by a particle velocity at a point. In practice, seismic wave is generated by signal generators with finite volume and width. Since seismic lines span a distance up to hundreds meter to several kilometers, many people conducted seismic survey and data processing with the assumption that the size of signal generator is negligible compared with survey scale. However, there are no studies that tells how the size of baseplate influences generated seismic waves. Such estimations, therefore, are meaningful to consider the scale of generator. In this sense, current seismic processing might require a theoretical background about the seismic source for further detailed analysis. The main purpose of this study is to investigate the impact of seismic source’s shape to resultant wave properties, and then estimate how effective the consideration about the scale of signal generator is for analyzing the seismic data. To evaluate source’s scale effect, we performed finite element analysis with the 3D model including the baseplate of source and the heterogeneous ground medium. We adopted a finite element method (FEM) and chose the code named “MD Nastran” (MSC Software Ver.2008) to calculate seismic wave propagation. To verify the reliability of calculation, we compared the result of FEM and that of finite-difference method (FDM) with wave propagating simulation of isotropic and homogeneous model with a point source. The amplitude and phase of those two were nearly equal each other. We considered the calculation of FEM is accurate enough and can be performed in the following calculations. As the first step, we developed a simple point source model and a baseplate model. The point source model contains only the ground represented by an elastic medium. The force generating the signal is given at the nodal point of the surface in this case. On the other

  20. Estimation of the propagation characteristics of elastic waves propagating through a partially saturated sand soil

    NASA Astrophysics Data System (ADS)

    Nakayama, M.; Kawakata, H.; Doi, I.; Takahashi, N.

    2015-12-01

    Recently, landslides due to heavy rain and/or earthquakes have been increasing and severe damage occurred in Japan in some cases (e.g., Chigira et al., 2013, Geomorph.). One of the principle factors activating landslides is groundwater. Continuous measurements of moisture in soil and/or pore pressure are performed to investigate the groundwater behavior. However, such measurements give information on only local behavior of the groundwater. To monitor the state of target slope, it is better to measure signals affected by the behavior of groundwater in a widely surrounding region. The elastic waves propagating through the medium under the target slope are one of candidates of such signals. In this study, we measure propagating waves through a sand soil made in laboratory, injecting water into it from the bottom. We investigate the characteristics of the propagating waves. We drop sand particles in a container (750 mm long, 300 mm wide and 400 mm high) freely and made a sand soil. The sand soil consists of two layers. One is made of larger sand particles (0.2-0.4 mm in diameter) and the other is made of smaller sand particles (0.05-0.2 mm in diameter). The dry density of these sand layers is about 1.45 g/cm3. We install a shaker for generating elastic waves, accelerometers and pore pressure gauges in the sand soil. We apply small voltage steps repeatedly, and we continuously measure elastic waves propagating through the sand soil at a sampling rate of 51.2 ksps for a period including the water injection period. We estimate the spatio-temporal variation in the maximum cross-correlation coefficients and the corresponding time lags, using template waveforms recorded in the initial period as references. The coefficient for the waveforms recorded at the accelerometer attached to the tip of the shaker is almost stable in high values with a slight decrease down to 0.94 in the period when the sand particles around the shaker are considered to become wet. On the other hand