Resonant Alfven Wave Excitation
NASA Astrophysics Data System (ADS)
Hameiri, Eliezer
1999-11-01
Much of the theory of the Alfven wave resonance phenomenon was developed for a tokamak configuration where the magnetic field winds around the torus without entering the boundary. Thus, boundary conditions did not have to be considered.( J. Tataronis and W. Grossmann, Z. Phys. 261), 203 (1973). In most space plasma situations such as the magnetosphere or the Sun, as well as in the scrape-off layer of a divertor tokamak, this is not the case. When boundary conditions are considered, it is generally assumed for simplicity that the boundary is perfectly conducting, which implies that the Alfven wave bounce frequencies are real and the resonance phenomenon can be detected by some singularity in the equations. The nature of the singularity is usually described in terms of a Frobenius series.( A.N. Wright and M.J. Thompson, Phys. Plamsas 1), 691 (1994). In this work we consider resistive boundaries, which imply that the fast wave eigenfrequency is real, but the Alfven frequency is not. Thus, there is no exact resonance and no singularity in the equations. The solution of the problem is carried out asymptotically by finding an exact Laplace integral representation for the solution and then matching various regions. The energy transferred to the Alfven wave appears to be rather small.
Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence
Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.
2012-08-15
The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.
Resonant Alfven wave instabilities driven by streaming fast particles
Zachary, A.
1987-05-08
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.
Observation of mode conversion of m = minus 1 fast waves on the Alfven resonance layer
Amagishi, Y. )
1990-03-12
Fast waves or MHD surface waves of {ital m}={minus}1 (poloidal mode number of left-hand rotation) have been observed to be mode converted on the Alfven resonance layer. The converted waves are a quasielectrostatic form of the shear Alfven waves, i.e., kinetic Alfven wave and/or the resistive mode.
Simulation of Alfven wave-resonant particle interaction
Berk, H.L.; Breizman, B.N.; Pekker, M.
1995-07-01
New numerical simulations are presented on the self-consistent dynamics of energetic particles and a set of unstable discrete shear Alfven modes in a tokamak. Our code developed for these simulations has been previously tested in the simulations of the bump-on-tail instability model. The code has a Hamiltonian structure for the mode-particle coupling, with the superimposed wave damping, particle source and classical relaxation processes. In the alpha particle-Alfven wave problem, we observe a transition from a single mode saturation to the mode overlap and global quasilinear diffusion, which is qualitatively similar to that observed in the bump-on-tail model. We demonstrate a considerable enhancement in the wave energy due to the resonance overlap. We also demonstrate the effect of global diffusion on the energetic particle losses.
Investigation of an ion-ion hybrid Alfven wave resonator
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.
2013-01-15
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.
2008-10-15
The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
NASA Astrophysics Data System (ADS)
Dai, L.; Takahashi, K.; Wygant, J. R.; Chen, L.; Bonnell, J. W.; Cattell, C. A.; Thaller, S. A.; Kletzing, C.; Smith, C. W.; MacDowall, R. J.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Funsten, H. O.; Reeves, G. D.; Spence, H.
2013-12-01
Charged particles trapped in the magnetosphere undergo a longitudinal drift motion around the Earth induced by the magnetic field curvature and gradient. The resonant wave-particle interaction associated with the drift motion is important for understanding the dynamics of the ring current and radiation belt particles. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (RBSP) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (E φ ) oscillations as large as 10mV/m are observed associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L~5. The observed wave period, Eφ/Br, and the 90 degrees phase lag between Br and Eφ are all consistent with fundamental mode standing poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with ~90 keV ring current ions. The estimated earthward gradient of ion phase space density provides free energy source for wave generation through the drift-resonance instability. To our knowledge, this is the first unambiguous observation of drift-resonance wave-particle interaction driving poloidal wave oscillations in the magnetosphere. Similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One example is the ';fishbone' instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations detected on the ground.
Nonlinear Landau damping and Alfven wave dissipation
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Nonresonant Alfven waves driven by cosmic rays
Melrose, Don
2005-08-01
Nonresonant growth of Alfven waves due to streaming cosmic rays is considered, emphasizing the relation between resonant and nonresonant growth and the polarization of the growing waves. The suggested application of this mechanism to the scattering of higher energy cosmic rays in diffusive shock acceleration is discussed critically.
Kinetic Alfven wave instability in a Lorentzian dusty plasma: Non-resonant particle approach
Rubab, N.; Biernat, H. K.; Erkaev, V.; Langmayr, D.
2011-07-15
Analysis of the electromagnetic streaming instability is carried out which is related to the cross field drift of kappa distributed ions. The linear dispersion relation for electromagnetic wave using Vlasov-fluid equations in a dusty plasma is derived. Modified two stream instability (MTSI) in a dusty plasma has been discussed in the limit {omega}{sub pd}{sup 2}/c{sup 2}k{sub perpendicular}{sup 2}<<1. Numerical calculations of the growth rate of instability have been carried out. Growth rates of kinetic Alfven instability are found to be small as compared to MTSI. Maximum growth rates for both instabilities occur in oblique directions for V{sub 0}{>=}V{sub A}. It is shown that the presence of both the charged dust particles and perpendicular ion beam sensibly modify the dispersion relation of low-frequency electromagnetic wave. The dispersion characteristics are found to be insensible to the superthermal character of the ion distribution function. Applications to different intersteller regions are discussed.
Coronal heating by the resonant absorption of Alfven waves: The effect of viscous stress tensor
NASA Technical Reports Server (NTRS)
Ofman, L.; Davila, J. M.; Steinolfson, R. S.
1994-01-01
The time-dependent linearized magnetohydrodynamics (MHD) equations for a fully compressible, low-beta, viscoresistive plasma are solved numerically using an implicit integration scheme. The full viscosity stress tensor (Braginskii 1965) is included with the five parameters eta(sub i) i = 0 to 4. In agreement with previous studies, the numerical simulations demonstrate that the dissipation on inhomogeneities in the background Alfven speed occurs in a narrow resonant layer. For an active region in the solar corona the values of eta(sub i) are eta(sub o) = 0.65 g/cm/s, eta(sub 1) = 3.7 x 10(exp -12) g/cm/s, eta(sub 2) = 4 eta(sub 1), eta(sub 3) = 1.4 x 10(exp -6) g/cm/s, eta(sub 4) = 2 eta(sub 3), with n = 10(exp 10)/cu cm, T = 2 x 10(exp 6) K, and B = 100 G. When the Lundquist number S = 10(exp 4) and R(sub 1) much greater than S (where R(sub 1) is the dimensionless shear viscous number) the width of the resistive dissipation layer d(sub r) is 0.22a (where a is the density gradient length scale) and d(sub r) approximately S(exp -1/3). When S much greater than R(sub 1) the shear viscous dissipation layer width d(sub r) scales as R(sub 1)(exp -1/3). The shear viscous and the resistive dissipation occurs in an overlapping narrow region, and the total heating rate is independent of the value of the dissipation parameters in agreement with previous studies. Consequently, the maximum values of the perpendicular velocity and perpendicular magnetic field scale as R(sub 1)(exp -1/3). It is evident from the simulations that for solar parameters the heating due to the compressive viscosity (R(sub 0) = 560) is negligible compared to the resistive and the shear viscous (R(sub 1)) dissipation and it occurs in a broad layer of order a in width. In the solar corona with S approximately equals 10(exp 4) and R(sub 1) approximately equals 10(exp 14) (as calculated from the Braginskii expressions), the shear viscous resonant heating is of comparable magnitude to the resistive resonant
Fast damping of poloidal Alfven waves by bounce-resonant ions: observations and modeling
NASA Astrophysics Data System (ADS)
Wang, C.; Rankin, R.; Sydorenko, D.; Zong, Q.
2015-12-01
Interplanetary shocks and solar wind dynamic pressure variations can excite intense ultra-low-frequency (ULF) waves in the inner magnetosphere. An analysis of two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001 shows that the poloidal waves excited in these events are damped away rapidly in tens of minutes. This damping is the result of wave-particle interactions involving H+ and O+ ions with energies in the range of several to a few tens of keV [Wang et al., J. Geophys. Res., 2015]. Damping is found to be more effective in the plasmasphere boundary layer due to the relatively higher proportion of Landau resonant ions that exists in that region. In the November 2004 shock event it has been suggested that energy-dispersed ions observed travelling parallel and anti-parallel direction to the geomagnetic field immediately after the shockare locally accelerated rather than originating from Earth's ionosphere. We use test-particle simulations to show that adiabatic advection of the particle differential flux caused bydrift-bounce-resonance with ULF waves is responsible for the energy-dispersed ions observed in these events. In the simulations,Liouville's theorem is used to reconstruct the iondistribution function and differential flux in a model dipole magnetosphere.It is shown that flux modulations of H and O ions can be reproduced when test-particle ions are advanced in the electric fields of the 3D ULF wave model we have developed.
Alfven Wave Generated Electron Time Dispersion
NASA Technical Reports Server (NTRS)
Kletzing, C. A.; Hu, S.
2001-01-01
The results from a model of kinetic Alfven waves which includes varying magnetic field and density show that time-dispersed bursts of auroral electrons can be accelerated by Alfven, wave pulses propagating from the magnetosphere to the ionosphere. The modeled electron signatures have similar energy range and temporal structure to those observed on sounding rockets and satellites suggesting that electron time dispersion is generated by Alfven waves.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-15
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Ion temperature in plasmas with intrinsic Alfven waves
NASA Astrophysics Data System (ADS)
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Heating of the solar corona by the resonant absorption of Alfven waves
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
1986-01-01
An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. The primary conclusion to be drawn from these calculations is that to the level of the approximation adopted, the observations of the heating rate and nonthermal line broadening in the solar corona are consistent with heating by the resonance absorption mechanism.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves
NASA Astrophysics Data System (ADS)
Namikawa, T.; Hamabata, H.
1983-04-01
The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.
Toroidal Alfven Waves in Advanced Tokamaks
NASA Astrophysics Data System (ADS)
Berk, Herbert L.
2003-10-01
In burning plasma experiments, alpha particles have speeds that readily resonate with shear Alfven waves. It is essential to understand this Alfven wave spectrum for toroidal plasma confinement. Most interest has focused on the Toroidal Alfven Eigenmode (TAE), and a method of analysis has been developed to understand the structure of this mode at a flux surface with a given magnetic shear. However, this model fails when the shear is too low or reversed. In this case a new method of analysis is required, which must incorporate novel fluid-like effects from the energetic particles [1] and also include effects that are second order in the inverse toroidal aspect ratio. With this new method [2] we can obtain spectral features that agree with experimental results. In particular, this theory gives an explanation for the so-called Cascade modes that have been observed in JT-60 [3], JET [4], and TFTR [5]. For these Cascade modes, slow upward frequency sweeping is observed, beginning from frequencies below the TAE range but then often blending into the TAE range of frequencies. The theoretical understanding of the Cascades modes has evolved to the point where these modes can be used as a diagnostic "signature" [6] to experimentally optimize the formation of thermal barriers in reversed-shear operation when the minimum q value is an integer. [1] H. L. Berk et al., Phys. Rev. Lett. 87, 185 (2002). [2] B. N. Breizman et al., submitted to Phys. Plasmas (2003). [3] H. Kimura et al., Nucl. Fusion 38, 1303 (1998). [4] S. Sharapov et al., Phys. Lett. A 289, 127 (2001); S. Sharapov, Phys. Plasmas 9, 2027 (2002). [5] R. Nazikian, H. L. Berk, et al., Bull. Am. Phys. Soc. 47, 327 (2002). [6] E. Joffrin et al., Plasma Phys. Contr. Fusion 44, 1739 (2002); E. Joffrin et al., in Proc. 2002 IAEA Fusion Energy Conference, submitted to Nucl. Fusion.
Alfven wave. DOE Critical Review Series
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
Alfvenic waves in solar spicules
NASA Astrophysics Data System (ADS)
Ebadi, Hossein
2016-07-01
We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.
Nonlinear Landau damping of Alfven waves.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
PULSED ALFVEN WAVES IN THE SOLAR WIND
Gosling, J. T.; Tian, H.; Phan, T. D.
2011-08-20
Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.
Nonlinear Evolution of Alfvenic Wave Packets
NASA Technical Reports Server (NTRS)
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Alfven wave absorption in dissipative plasma
NASA Astrophysics Data System (ADS)
Gavrikov, M. B.; Taiurskii, A. A.
2017-01-01
We consider nonlinear absorption of Alfven waves due to dissipative effects in plasma and relaxation of temperatures of electrons and ions. This study is based on an exact solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of their amplitudes whose evolution is described by a system of ordinary differential equations (ODEs) obtained in this paper. On finite time intervals, the system of equations on the amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman theorem) is used to examine its large-time behavior.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Decay of magnetic helicity producing polarized Alfven waves
Yoshida, Z.; Mahajan, S.M.
1994-02-01
When a super-Alfvenic electron beam propagates along an ambient magnetic field, the left-hand circularly polarized Alfven wave is Cherenkov-emitted (two stream instability). This instability results in a spontaneous conversion of the background plasma helicity to the wave helicity. The background helicity induces a frequency (energy) shift in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it becomes possible for a sub-Alfvenic electron beam to excite a nonsingular Alfven mode.
The interaction of Io's Alfven waves with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Wright, A. N.
1987-09-01
A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.
NASA Technical Reports Server (NTRS)
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
NASA Astrophysics Data System (ADS)
Zonca, Fulvio; Chen, Liu
2007-11-01
We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)
Nonlinear Interaction of Shear Alfven Waves with Gradient Driven Instabilities
NASA Astrophysics Data System (ADS)
Auerbach, David William
An experimental study of the interactions between gradient-driven instabilities (GDI) and beat waves driven between two Alfven waves is presented. A cylindrical density depletion is imposed on the otherwise uniform plasma in the Large Plasma Device (LAPD) by selectively blocking the electron beam that produces the plasma. Coherent, single mode fluctuations in density, temperature, plasma potential, and magnetic field are observed to be unstable on the gradient. Measurements of the relative cross-phase between the density and potential fluctuations indicate that the fluctuations are not likely to drive significant cross field transport. Comparisons of the properties of the modes to theoretical predictions for Kelvin-Helmholtz (KH) and drift wave modes indicate that the fluctuations are likely to be a hybrid of the two instabilities. Analytic eigenmode solutions to the linearized Braginskii fluid equations using the experimentally measured gradient profiles support the conclusion that both instabilities are active. A beat wave between two driven Alfven waves is broadcast into the gradient region using a pair of loop antennas with independently controlled frequency and power. This beat wave is observed to resonantly drive the unstable mode, as well as a second otherwise stable mode slightly higher in frequency and azimuthal mode number. During the drive of the secondary stable mode, the growth of the primary instability is suppressed. The broadcast of the Alfven waves and the beat wave is also observed to drive other fluctuations in the plasma at frequencies higher than either the spontaneous instability or the second, stable mode. Both the resonant drive of the modes and the control of the mode number are observed to have non-linear threshold and saturation behavior.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Riemann solvers and Alfven waves in black hole magnetospheres
NASA Astrophysics Data System (ADS)
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system
Hiraki, Yasutaka; Watanabe, Tomo-Hiko
2012-10-15
Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.
Vukovic, M.; Harper, M.; Breun, R.; Wukitch, S.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode converted kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.
Ion Acceleration in Plasmas with Alfven Waves
O.Ya. Kolesnychenko; V.V. Lutsenko; R.B. White
2005-06-15
Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered.
Alfven waves and associated energetic ions downstream from Uranus
Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )
1991-02-01
The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.
Alfven waves in current-carrying inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Shigueoka, H.; de Azevedo, C. A.; de Assis, A. S.; Sakanaka, P. H.
The Hain and Lust (1958) equation is here used to numerically solve the Alfven modes in inhomogeneous cylindrical current-carrying plasmas. It is shown in this way that the distance of the eigenfrequencies for dc density from the lower edge of the Alfven continuum depends on its profile. The WKB approximation is used to show that a discrete MHD Alfven mode exists. These efforts are relevant to both solar prominence heating and oscillations and the Alfven wave-based heating and oscillations of the chromosphere.
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Esser, R.; Jayanti, V.
1993-01-01
The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.
Reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.; Moore, R. L.
1994-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare Wentzel-Kramers-Brillouin (WKB) and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer and that non-WKB Alfven waves are no more effective in accelerating the solar wind than in WKB waves. There are several recently published papers that seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purposse of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinimann and Olbert, namely, calculate the efficieny of Alfven wave reflection by using the reflection coefficient and identfy the region of strongest wave reflection in different wind models. To achieve these goals, we investigate the influence of temperature, electron desity distribution, wind velocity, and magnetic field strength on te waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7)/cu cm. In these models as well as in the models with lower temperatures and higher densities Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective
On reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.
1993-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the
Cusp Dynamics-Particle Acceleration by Alfven Waves
NASA Technical Reports Server (NTRS)
Ergun, Robert E.; Parker, Scott A.
2005-01-01
Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.
ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2013-01-20
A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.
Effect of Dust Grains on Solitary Kinetic Alfven Wave
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-09-07
Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.
Nonlinear standing Alfven wave current system at Io: Theory
Neubauer, F.M.
1980-03-01
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1995-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1994-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.
Generation and propagation of Alfvenic waves in spicules
NASA Astrophysics Data System (ADS)
De Pontieu, B.; Okamoto, T. J.; Rouppe van der Voort, L.; Hansteen, V. H.; Carlsson, M.
2011-12-01
Both spicules and Alfven waves have recently been implicated in playing a role in the heating of the outer atmosphere. Yet we do not know how spicules or Alfven waves are generated. Here we focus on the properties of Alfvenic waves in spicules and their role in forming spicules. We use high-resolution observations taken with the Solar Optical Telescope onboard Hinode, and with the CRISP Fabry-Perot Interferometer at the Swedish Solar Telescope (SST) in La Palma to study the generation and propagation of Alfvenic waves in spicules and their disk counterparts. Using automated detection algorithms to identify propagating waves in limb spicules, we find evidence for both up- and downward propagating as well as standing waves. Our data suggests significant reflection of waves in and around spicules and provides constraints for theoretical models of spicules and wave propagation through the chromosphere. We also show observational evidence (using SST data) of the generation of Alfven waves and the role they play in forming spicules.
The transmission of Alfven waves through the Io plasma torus
NASA Astrophysics Data System (ADS)
Wright, A. N.; Schwartz, S. J.
1989-04-01
The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.
On the existence of finite amplitude, transverse Alfven waves in the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Sari, J. W.
1977-01-01
Interplanetary magnetic field data from the Mariner 10 spacecraft were examined for evidence of small and finite amplitude transverse Alfven waves, general finite amplitude Alfven waves, and magnetosonic waves. No evidence for transverse Alfven waves was found. Instead, the field fluctuations were found to be dominated by the general finite amplitude Alfven wave. Such wave modes correspond to non-plane-wave solutions of the nonlinear magnetohydrodynamic equations.
Emission of radiation induced by pervading Alfven waves
Zhao, G. Q.; Wu, C. S.
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVEN WAVES IN STRATIFIED SOLAR WAVEGUIDES
Verth, G.; Goossens, M.; Erdelyi, R. E-mail: Marcel.Goossens@wis.kuleuven.b
2010-05-10
There have recently been significant claims of Alfven wave observation in the solar chromosphere and corona. We investigate how the radial and longitudinal plasma structuring affects the observational properties of torsional Alfven waves in magnetic flux tubes for the purposes of solar magnetoseismology. The governing magnetohydrodynamic equations of these waves in axisymmetric flux tubes of arbitrary radial and axial plasma structuring are derived and we study their observable properties for various equilibria in both thin and finite-width magnetic flux tubes. For thin flux tubes, it is demonstrated that observation of the eigenmodes of torsional Alfven waves can provide temperature diagnostics of both the internal and surrounding plasma. In the finite-width flux tube regime, it is shown that these waves are the ideal magnetoseismological tool for probing radial plasma inhomogeneity in solar waveguides.
On the generation of Alfven waves in the solar photosphere
NASA Astrophysics Data System (ADS)
Tsap, Yuriy; Stepanov, Alexander; Kopylova, Yulia
The influence of collisions between neutrals and ions on the energy flux of Alfven waves in the weakly ionized plasma based on the three-fluid equations is considered. As distinguished from Vranjes et al. (2008) and Soler et al. (2013) it has been shown that amplitudes of Alfven waves that are generated in the solar photosphere do not depend on the ionization ratio and the initial conditions for ions, if the wave frequency is much less that the effective frequency of collisions between ions and neutral atoms. This is explained by the strong coupling due to ion-neutral collisions and the magnetic field freezing-in effect. Alfven waves can be effectively excited in the photosphere of the Sun by the convective motions.
Ion-neutral collision effect on an Alfven wave
Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )
1993-07-19
This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Solitary Alfven wave envelopes and the modulational instability
Kennel, C.F.
1987-06-01
The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs.
Observation of Alfven Waves in the Solar Corona (Invited)
NASA Astrophysics Data System (ADS)
Tomczyk, S.
2013-12-01
I will review the extensive progress made in recent years on the observation of Alfven waves in the solar corona, with an emphasis on the measurements made with the Coronal Multi-channel Polarimeter. Application of the wave measurements to coronal seismology will be presented. Future prospects in the field will be discussed.
Dissipative solitary kinetic Alfven wave and energetic electron acceleration
NASA Astrophysics Data System (ADS)
Wu, D. J.
Some recent studies of observations in situ by space satellites show that low frequency electromagnetic fluctuations in the auroral ionosphere and magnetosphere can often be identified as soliatry kinetic Alfven waves (SKAWs), and further analyses of data reveal clearly that electron collisional dissipation can considerably affect the structure and evolution of SKAWs. Here, we report a model of nonlinear kinetic Alfven waves that takes dissipative effect into account, called a dissipative SKAW (DSKAW). The results show that DSKAW can produce a local shock-like structure with a net parallel electric potential drop, in which the associated parallel electric field is primarily caused by nonlinear electron inertia. In particular, it is argued that DSKAW can accelerate electrons efficiently to the order of the local Alfven velocity. We suggest that DSKAW can provide an efficient acceleration mechanism for energetic electrons of tens keV, which can frequently be encountered in solar micro-wave radio and hard X-ray bursts.
Matsumoto, Takuma; Shibata, Kazunari
2010-02-20
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.
Reflection of Alfven waves from boundaries with different conductivities
Leneman, D.
2007-12-15
The reflection of Alfven waves from the ionosphere plays a crucial role because the reflected wave can reduce or enhance the electric field pattern of the incident wave. The ionosphere is typically treated as a conducting surface, which has a height integrated Pederson conductivity. This approximation is appropriate in considering the reflection of Alfven waves because the wavelengths along the magnetic field are large compared to the height of the ionosphere. Shear Alfven wave reflection experiments have been performed in the large plasma device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. of Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. A single frequency wave is launched from an antenna and reflects from a large plate inserted into the plasma column. By alternatively using a conducting and an insulating plate, the two extremes of conductivity relative to the Alfven conductivity, 1/({mu}{sub o}v{sub A}) are tested. The data are compared with the expected theoretical behavior of the interference pattern of incident and reflected waves. Perhaps due to experimental effects, the conducting reflector is found to behave in much the same fashion as the insulator.
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
NASA Technical Reports Server (NTRS)
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
Quantum effects on compressional Alfven waves in compensated semiconductors
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.
1992-01-01
In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Shrivastava, G. Ahirwar, G.; Shrivastava, J.
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
Theory of Alfven wave heating in general toroidal geometry
Tataronis, J.A.; Salat, A.
1981-09-01
A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.
IDENTIFICATION OF KINETIC ALFVEN WAVE TURBULENCE IN THE SOLAR WIND
Salem, C. S.; Sundkvist, D.; Bale, S. D.; Chaston, C. C.; Chen, C. H. K.; Mozer, F. S.; Howes, G. G.
2012-01-20
The nature of small-scale turbulent fluctuations in the solar wind is investigated using a comparison of Cluster magnetic and electric field measurements to predictions arising from models consisting of either kinetic Alfven waves or whistler waves. The electric and magnetic field properties of these waves from linear theory are used to construct spacecraft-frame frequency spectra of (|{delta}E|/|{delta}B|){sub s/c} and (|{delta}B{sub ||}|/|{delta}B|){sub s/c}, allowing for a direct comparison to spacecraft data. The measured properties of the small-scale turbulent fluctuations, found to be inconsistent with the whistler wave model, agree well with the prediction of a spectrum of kinetic Alfven waves with nearly perpendicular wavevectors.
Propagation of global shear Alfven waves in gyrokinetic tokamak plasmas
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Lin, Z.; Holod, I.; Chen, L.; Decyk, V.; Klasky, S.; Ma, K.; Adams, M.; Ethier, S.; Hahm, T.; Lee, W.; Lewandowski, J.; Rewoldt, G.; Wang, W.
2006-04-01
Employing the electromagnetic gyrokinetic simulation models, Alfven wave dynamics in global tokamak geometry is studied. Based on a small parameter expansion by the square-root of the electron-ion mass ratio, the fluid-kinetic hybrid electron model solves the adiabatic response in the lowest order and solves the kinetic response in the higher orders. We verify the propagation of shear Alfven waves in the absence of drives or damping mechanisms by perturbing the magnetic field lines at t=0 in a global eigenmode structure. The Alfven wave experiences continuum damping. In the presence of energetic particles, excitations of toroidal Alfven eigenmode (TAE) is expected within the frequency gap. With the ηi gradient drive, at a critical β value, the kinetic ballooning mode (KBM) is excited below the ideal MHD limit. W.W.Lee et al., Phys. Plasmas 8, 4435 (2001). Z.Lin and L.Chen, Phys. Plasmas 8, 1447 (2001). J.A.Tataronis and W. Grossman, Z. Phys. 14, 203 (1973). C.Z.Cheng, L.Chen, and M.S.Chance, Ann.Phys. 161, 21 (1984). C.Z.Cheng, Nucl. Fusion 22, 773 (1982).
Observational evidence for Alfven waves in the solar atmosphere (Invited)
NASA Astrophysics Data System (ADS)
De Pontieu, B.
2013-12-01
Alfven waves have long been suspected of playing an important role in both heating the corona and accelerating the solar wind. Recently, more and more observational evidence for the presence of such waves has been reported in both the corona and the lower solar atmosphere. I will review observations of the properties and presence of Alfven waves from CoMP, Hinode, AIA and ground-based telescopes in both coronal lines and the lower solar atmosphere. I will discuss our current understanding of the importance of these waves for the energy balance of the corona. I will also present initial results of the Interface Region Imaging Spectrograph (IRIS) which was launched in June 2013 and obtains images and spectra in both the far and near ultraviolet.
Weakening of magnetohydrodynamic interchange instabilities by Alfven waves
Benilov, E. S.; Hassam, A. B.
2008-02-15
Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-12-17
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.
Convective cell generation by kinetic Alfven wave turbulence in the auroral ionosphere
Zhao, J. S.; Wu, D. J.; Yu, M. Y.; Lu, J. Y.
2012-06-15
Modulation of convective cells by kinetic Alfven wave (KAW) turbulence is investigated. The interaction is governed by a nonlinear dispersion relation for the convective cells. It is shown that KAW turbulence is disrupted by excitation of the large-scale convective motion through a resonant instability. Application of the results to the auroral ionosphere shows that cross-scale coupling of the KAW turbulence and convective cells plays an important role in the evolution of ionospheric plasma turbulence.
A Study of Alfven Wave Propagation and Heating the Chromosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2013-12-01
Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of
Kinetic Alfven wave instability in a Lorentzian dusty magnetoplasma
Rubab, N.; Biernat, H. K.; Erkaev, N. V.; Langmayr, D.
2010-10-15
This study presents a theoretical approach to analyze the influence of kappa distributed streaming ions and magnetized electrons on the plasma wave propagation in the presence of dust by employing two-potential theory. In particular, analytical expressions under certain conditions are derived for various modes of propagation comprising of kinetic Alfven wave streaming instability, two stream instability, and dust acoustic and whistler waves. A dispersion relation for kinetic Alfven-like streaming instability has been derived. The effects of dust particles and Lorentzian index on the growth rates and the threshold streaming velocity for the excitation of the instability are examined. The streaming velocity is observed to be destabilizing for slow motion and stabilizing for fast streaming motions. It is also observed that the presence of magnetic field and superthermal particles hinders the growth rate of instability. Possible applications to various space and astrophysical situations are discussed.
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
Kelvin-Helmholtz instability in an Alfven resonant layer of a solar coronal loop
NASA Technical Reports Server (NTRS)
Uchimoto, E.; Strauss, H. R.; Lawson, W. S.
1991-01-01
A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfven resonant layer in an axially bounded, straight cylindrical coronal loop. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfven driving amplitude and inversely proportional to the width of the Alfven resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfven resonant layer width, and decreases at higher azimuthal mode number.
Alfven wave dispersion behavior in single- and multicomponent plasmas
Rahbarnia, K.; Grulke, O.; Klinger, T.; Ullrich, S.; Sauer, K.
2010-03-15
Dispersion relations of driven Alfven waves (AWs) are measured in single- and multicomponent plasmas consisting of mixtures of argon, helium, and oxygen in a magnetized linear cylindrical plasma device VINETA [C. Franck, O. Grulke, and T. Klinger, Phys. Plasmas 9, 3254 (2002)]. The decomposition of the measured three-dimensional magnetic field fluctuations and the corresponding parallel current pattern reveals that the wave field is a superposition of L- and R-wave components. The dispersion relation measurements agree well with calculations based on a multifluid Hall-magnetohydrodynamic model if the plasma resistivity is correctly taken into account.
Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2007-01-01
Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.
Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui
2013-09-15
Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.
HEAVY ION HEATING DUE TO INTERACTIONS WITH OUTWARD AND INWARD ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2012-06-01
The study of simultaneous cyclotron interactions of heavy ions with outward- and inward-propagating Alfven wave packets in the solar wind was self-consistently conducted with wave-packet dynamics. It was shown that, even when the ratio of intensities of the Alfven waves propagating from the Sun and the inward propagating waves are rather large (a factor of 10 or more), the distribution function of the ions simultaneously interacting with both of the wave packets drastically differs from the distribution function formed by the interaction of ions with waves only propagating from the Sun. In the latter case, the ions acquire a shell-like distribution; in the former case, a new non-shell-type distribution with much larger effective temperatures is formed. The temporal dynamics of the ion-distribution function and the self-consistent modification of the wave-power spectral density for both the outward and inward waves were also investigated. The results refute claims by Isenberg and Hollweg that the outward-propagating waves generate the inward waves through the instability of their resonant particle shell distribution.
Alfven waves in the solar corona.
Tomczyk, S; McIntosh, S W; Keil, S L; Judge, P G; Schad, T; Seeley, D H; Edmondson, J
2007-08-31
Alfvén waves, transverse incompressible magnetic oscillations, have been proposed as a possible mechanism to heat the Sun's corona to millions of degrees by transporting convective energy from the photosphere into the diffuse corona. We report the detection of Alfvén waves in intensity, line-of-sight velocity, and linear polarization images of the solar corona taken using the FeXIII 1074.7-nanometer coronal emission line with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico. Ubiquitous upward propagating waves were seen, with phase speeds of 1 to 4 megameters per second and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. An estimate of the energy carried by the waves that we spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfvén waves may carry sufficient energy.
Signatures of mode conversion and kinetic Alfven waves at the magnetopause
Jay R. Johnson; C. Z. Cheng
2000-07-21
It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations.
Chaotic Dynamics of Alfven Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
BorottoChavez, Felix Aldo
2001-01-01
The objective of this work is to study the chaotic dynamics of AIN& waves in the solar wind. This study is carried out in two parts. Firstly, motivated by the simultaneous observation of Langmuir waves and electromagnetic waves of low frequency in magnetic holes in the solar wind, we propose a theory based on the nonlinear interaction process involving three waves. We use the Pomcare' method to characterize the Pomeau-Manneville intermittency and show two examples of interior crises produced by the collision of unstable periodic orbits with a chaotic attractor Secondly, the chaotic dynamics of Alfven waves is modelled in a dissipative system in the presence of an external periodic source, using the Derivative Nonlinear Schrodinger Equation (DNLS). By solving the DNLS numerically in the low-dimension limit, assisted again by the Poincare' method, we identify two types of intermittency: Pomeau-Manneville intermittency and interior crisis-induced intermittency. In addition, we have found a very complex region associated with the coexistence of various attractors. This region presents a number of boundary crises arising from a homoclinic tangency. We discuss the application of AIN& chaos for the interpretation of the observations of Alfvenic turbulence in the solar wind.
Experiment to Study Alfven Wave Propagation in Plasma Loops
NASA Astrophysics Data System (ADS)
Kendall, Mark; Bellan, Paul
2010-11-01
Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.
Gravitational damping of Alfven waves in stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. K.; Mullan, D. J.
1994-01-01
We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.
Heating of ionospheric O(+) ions by shear Alfven waves
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Ashour-Abdalla, M.; Sydora, R. D.
1987-01-01
Ionospheric ions, in particular O(+) ions, which have been transversely heated, are often observed flowing upward along auroral field lines. A new mechanism, heating by current-driven shear (or kinetic) Alfven waves (SAW), is proposed. An electron current drives oblique SAWs unstable near a wave frequency of about the oxygen cyclotron frequency, and these waves are in turn gyroresonantly absorbed by the ions. The mechanism is similar to ion heating by current-driven electrostatic ion cyclotron waves (EICW). However, the SAW differs from the EICW in that as the perpendicular temperature of the ions increases, growth of the SAW can still occur, whereas growth of the EICW becomes suppressed. As a consequence, the SAW is able to provide sustained perpendicular heating of ions with smaller currents being required for the heating than for heating via EICWs.
Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.
1996-01-01
Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.
The evolution of nonlinear Alfven waves subject to growth and damping
NASA Astrophysics Data System (ADS)
Spangler, S. R.
1986-08-01
The effects of wave amplification (by streaming particle distributions) and damping (by ion-cyclotron resonance absorption) on the nonlinear evolution of Alfven waves are investigated theoretically. The results of numerical simulations based on the derivative-Schroedinger-equation model of Spangler and Sheerin (1983 and 1985) are presented graphically and characterized in detail, with an emphasis on astrophysical applications. Three phases of wave-packet evolution (linear, nonlinear-saturation, and postsaturation quasi-steady) are identified, and nonlinearity is found to transfer wave energy from growing or amplified wavenumbers to wavenumbers affected by damping. It is pointed out that although there are similarities between the solitonlike pulses predicted by the simulations and short-wavelength shocklet structures observed in the earth bow shock, the model does not explain why low-frequency waves stop growing in the vicinity of the bow shock.
Propagation velocity of Alfven wave packets in a dissipative plasma
Amagishi, Y.; Nakagawa, H. ); Tanaka, M. )
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Effects of compressional magnetic perturbation on kinetic Alfven waves
NASA Astrophysics Data System (ADS)
Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong
2016-10-01
Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.
A two-fluid solar wind model with Alfven waves - Parameter study and application to observations
NASA Technical Reports Server (NTRS)
Esser, R.; Habbal, S. R.; Withbroe, G. L.; Leer, E.
1986-01-01
The effects of Alfven waves from the inner corona on the solar wind density profile, flow velocity and on the random motion of protons are studied. Different base densities, temperatures, and wave velocity amplitudes, as well as different flow geometries, are considered. The model calculations are compared to simultaneous observations of the electron density profile and the resonantly scattered Lyman alpha line. Present observations, out to 4 solar radii, can be used to place limits on the coronal base density and temperature, and put an upper limit on the wave amplitude. It is pointed out that future observations of the electron density and the Lyman alpha line, out to larger heliocentric distances, and of lines from heavier elements, should be used to place more stringent constraints on the amplitudes of MHD waves in the corona.
Shear Alfven waves with Landau and collisional effects
Hedrick, C.L.; Leboeuf, J.; Spong, D.A.
1995-06-01
Shear Alfven waves can be driven unstable by hot particles such as alpha particles in an ignited fusion device or hot ions in existing devices. Motivated by rather collisional Wendelstein 7 Advanced Stellarator (W7-AS) [Phys. Rev. Lett. {bold 72}, 1220 (1994)] beam-driven global Alfven instability experiments, the effect of electron and ion collisions on these modes has been examined. Collisions broaden and suppress the peak associated with Landau effects. This broadening makes ion damping more important, while the electron damping is suppressed. Additional resistive effects provide increased damping for the main part of the spectrum, which can have a rather high phase velocity. Of more general interest is the fact that collisional and collisionless resistivity has a numerically stabilizing effect that is known to be important for nonlinear resistive magnetohydrodynamics (MHD). This can preclude the need for introducing and testing the sensitivity to similar ad hoc effects. Numerical and analytic results for both a particle-conserving Krook collision operator and a Lorentz (pitch angle) collision operator are compared and contrasted.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Dust kinetic Alfven and acoustic waves in a Lorentzian plasma
Rubab, N.; Biernat, H. K.; Erkaev, N. V.
2009-10-15
Dust kinetic Alfven waves (DKAWs) with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external magnetic field. A dispersion relation of low-frequency DKAW on the dust acoustic velocity branch is obtained in a low-{beta} Lorentzian plasma. It is found that the influence of the Lorentzian distribution function is more effective for perpendicular component of group velocity as compared with parallel one. Lorentzian-type charging currents are obtained with the aid of Vlasov theory. Damping/instability due to dust charge fluctuation is found to be insensitive with the form of distribution function for DKAW. The possible applications to dusty space plasmas are pointed out.
Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.
2014-12-01
Poloidal mode Alfven waves are often generated in Earth's magnetosphere following interplanetary shocks and/or pressure pulses acting on the magnetopause. These disturbances can excite resonant field line oscillations with frequencies in the mHz range by launching fast mode waves that couple energy to field line resonances. This direct action of the solar wind on the magnetosphere can perhaps explain waves with relatively small azimuthal wavenumbers (m), but not the observed range of waves with m~40-50 on L-shells around 5 or 6. These waves are strongly guided along geomagnetic field lines to the ionosphere, and are generally thought to particle driven, e.g., as a result of bounce-resonance wave-particle interactions following activation of the ring current. This is not the only possible source mechanism as there is evidence of wave generation before the ring current has reacted significantly to shock passage. Putting aside the source mechanism, high-m poloidal modes with strong east west directed electric fields are important primarily because they can elevate differential energy flux for electron energies in the range of 100's of keV to several MeV. In this paper we use observations of guided poloidal mode Alfven waves to constrain a ULF wave model that describes not only how waves evolve on geomagnetic field lines, but also their interaction with a dynamic height-resolved ionosphere. The ionosphere and neutral atmosphere are specified in the model using the IRI and MSIS models. These regions react to waves and precipitation through heating and cooling, ionization, recombination, and chemical reactions. We present detailed results of the interaction of a poloidal wave observed by the Eiscat radar, and demonstrate that the model used can reproduce all aspects of the radar observations. We consider mechanisms for pulsed precipitation accompanying this wave, which causes a phase difference of ~90 degrees between observed temperature and density spikes. We also
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Ionospheric Ion Upflows Associated with the Alfven Wave Heating
NASA Astrophysics Data System (ADS)
Song, P.; Tu, J.
2014-12-01
In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.
Standing Alfven wave current system at Io: Voyager 1 observations
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Neubauer, F. M.; Ness, N. F.
1980-01-01
The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io is explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the magnetic field experiment on Voyager 1 on 5 March 1979 when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 million amps. A mass density of 7400 to 13600 proton mass units per Cu cm is derived which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050 to 1500 per cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.
HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE
Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.
2011-07-20
A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma
Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui; Li, Xing
2013-07-15
Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
Two dimensional PIC simulations of plasma heating by the dissipation of Alfven waves
NASA Technical Reports Server (NTRS)
Liewer, P. C.; Kruecken, T. J.; Ferraro, R. D.; Decyk, V. K.; Goldstein, B. E.
1992-01-01
Two dimensional plasma particle simulations of the evolution of large amplitude circularly polarized Alfven waves propagating parallel to the magnetic field show that the waves decay via both one- and two- dimensional parametric decay instabilities. For parameters studied, one-dimensional processes dominate the simulations, but two-dimensional decay processes, including the recently predicted filamentation instability are also observed. The daughter waves generated by the parametric decay are primarily damped by the ions, leading to ion heating. The parametric decay processes efficiently convert the ordered fluid ion motion in the Alfven wave into ion thermal energy. These processes may be important for the dissipation of Alfven waves in the solar wind, the corona and other space plasma environments. The computations were performed on the Intel Touchstone parallel supercomputer.
Maneva, Y. G.; Marsch, E.; Araneda, J. A.
2009-04-26
We consider the parametric instabilities of large-amplitude Alfven/ion-cyclotron waves and the consequent wave-particle interactions, and discuss their importance for modelling the evolution of ion velocity distribution functions in the tenuous and collisionless plasma of a coronal hole and the fast solar wind. We perform 1D hybrid simulations to study the nonlinear evolution of the parametric instabilities by analyzing the simulation results in terms of microinstabilities and discussing the influence of both Landau and cyclotron resonances on the evolution of the ion distributions. We demonstrate the origin of a relative drift between the protons and alpha particles, show the related anisotropic ion heating and follow the simultaneous proton beam formation. Finally, we focus on the development and evolution of both electromagnetic and acoustic micro-turbulence and present indications for an inverse energy cascade from shorter to longer wavelengths.
Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations
Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.
2011-03-15
The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent experiments in the University of California, Los Angeles large plasma device. Comparison of the simulation results with the experimental measurements and the linear shear Alfven wave properties, namely, spatiotemporal wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the wave dependences on the wave frequency, show good agreement. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: {approx}1/2 is the energy of the electromagnetic field, {approx}1/2 is the kinetic energy of the ion fluid, and {approx}2.5% is the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from the experimental data and using a fluid model differ by {approx}1% and is {approx}250 W for the experimental parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics simulations the rotating magnetic field source was found to be very efficient for generating shear Alfven waves.
A TORSIONAL ALFVEN WAVE EMBEDDED WITHIN A SMALL MAGNETIC FLUX ROPE IN THE SOLAR WIND
Gosling, J. T.; Teh, W.-L.; Eriksson, S.
2010-08-10
We describe and use novel techniques to analyze a striking and distinct solar wind event observed by two spacecraft. We show that the event is consistent with an interpretation as a torsional Alfven wave embedded within a small, nearly radially aligned, magnetic flux rope of total width {approx}10{sup 6} km. It seems likely that the torsional wave was generated by distortions produced within a pre-existing flux rope that erupted from the Sun. Our examination of many events previously identified as flux ropes in the solar wind indicates that torsional Alfven waves are extremely rare in such events.
Exploring the Use of Alfven Waves in Magnetometer Calibration at Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Bentley, John; Sheppard, David; RIch, Frederick; Redmon, Robert; Loto'aniu, Paul; Chu, Donald
2016-01-01
An Alfven wave is a type magnetohydrodynamicwave that travels through a conducting fluid under the influence of a magnetic field. Researchers have successfully calculated offset vectors of magnetometers in interplanetary space by optimizing the offset to maximize certain Alfvenic properties of observed waves (Leinweber, Belcher). If suitable Alfven waves can be found in the magnetosphere at geosynchronous altitude then these techniques could be used to augment the overall calibration plan for magnetometers in this region such as on the GOES spacecraft, possibly increasing the time between regular maneuvers. Calibration maneuvers may be undesirable because they disrupt the activities of other instruments. Various algorithms to calculate an offset using Alfven waves were considered. A new variation of the Davis-Smith method was derived because it can be mathematically shown that the Davis-Smith method tolerates filtered data, which expands potential applications. The variant developed was designed to find only the offset in the plane normal to the main field because the overall direction of Earth's magnetic field rarely changes, and theory suggests the Alfvenic disturbances occur transverse to the main field. Other variations of the Davis-Smith method encounter problems with data containing waves that propagate in mostly the same direction. A searching algorithm was then designed to look for periods of time with potential Alfven waves in GOES 15 data based on parameters requiring that disturbances be normal to the main field and not change field magnitude. Final waves for calculation were hand-selected. These waves produced credible two-dimensional offset vectors when input to the Davis-Smith method. Multiple two-dimensional solutions in different planes can be combined to get a measurement of the complete offset. The resulting three dimensional offset did not show sufficient precision over several years to be used as a primary calibration method, but reflected
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
NASA Astrophysics Data System (ADS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1988-02-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, a new equation is derived governing the evolution of the spectrum tensor (including the energy and helicity spectrum functions) of the random velocity field as well as the ponderomotive and mean electromotive forces generated by random Alfven waves in a plasma with weak magnetic diffusion. The ponderomotive and mean electromotive forces are expressed as series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of the random velocity field. The effect of microscale random Alfven waves, through ponderomotive and mean electromotive forces generated by them, on the propagation of large-scale Alfven waves is also investigated by solving the mean-field equations, including the transport equation of the helicity spectrum function.
Generation of Alfven waves by high power pulse at the electron plasma frequency
NASA Astrophysics Data System (ADS)
van Compernolle, Bart Gilbert
The physics of the interaction between plasmas and high power waves with frequencies in the electron plasma frequency range is of importance in many areas of space and plasma physics. A great deal of laboratory research has been done on the interaction of microwaves in a density gradient when o = ope in unmagnetized plasmas. [SWK74, WS78, KSW74]. Extensive studies of HF-ionospheric modifications have been performed [Fej79] as evidenced by experiments at Arecibo [HMD92, BHK86, CDF92, FGI85], at the HAARP facility [RKK98] in Alaska, at the EISCAT observatory in Norway [IHR99], and at SURA in Russia [FKS99]. This dissertation focusses on the interaction with a fully magnetized plasma, capable of supporting Alfven waves. The experiment is performed in the upgraded LArge Plasma Device (LAPD) at UCLA [GPL91] (Helium, n = 1012 cm-3, B = 1 kG - 2.5 kG). A number of experiments have been done at LAPD using antennas, skin depth scale currents and laser produced plasmas to generate Alfven waves [LGM99, GVL97a, GVL97b, VGV01]. In this work a high power pulse 6th, frequency in the electron plasma frequency range is launched into the radial density gradient, perpendicular to the background magnetic field. The microwave pulses last on the order of one ion gyro period and has a maximum power of |E|2/ nT ≃ .5 in the afterglow. The absorption of these waves leads to a pulse of field aligned suprathermal electrons. This electron current pulse then launches with Alfven wave with o ≤ o ci. The experiment was performed bath in ordinary node (O-mode) and extraordinary (X-mode), for different background magnetic fields B0, different temperatures (afterglow vs discharge) and different power levels of the incoming microwaves. It was found that the Alfven wave generation can be explained by Cherenkov radiation of Alfven waves by the suprathermal electron pulse. Theoretical solutions for the perturbed magnetic field due to a pulse of field aligned electrons were obtained, and shown to be
NASA Astrophysics Data System (ADS)
Medina-Tanco, G. A.; Opher, R.
1990-11-01
RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES
Peculiarities of Alfven wave propagation along a nonuniform magnetic flux tube
Erkaev, N.V.; Shaidurov, V.A.; Semenov, V.S.; Langmayr, D.; Biernat, H.K.
2005-01-01
Within the framework of the assumption of large azimuthal wave numbers, the equations for Alfven and slow magnetosonic waves are obtained using frozen-in material coordinates. These equations are specified for the case of a nonuniform magnetic field with axial symmetry. Assuming a meridional polarization of the magnetic field and velocity perturbations, the effects of Alfven wave propagation are analyzed which are related to geometric characteristics of a nonuniform magnetic field: (a) A finite curvature radius of the magnetic field lines and (b) convergence of magnetic field lines. The interaction between the Alfven and magnetosonic waves is found to be strongly dependent on the curvature radius of the magnetic tube and the local plasma {beta} parameter. The electric field amplitude and the length scale of a wave front are found to increase very strongly in the course of the Alfven wave propagation along a converging magnetic flux tube. Also studied is a temporal decrease of the wave perturbations which is caused by dissipation at the conducting boundary.
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2016-11-10
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2016-11-10
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field. It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.
Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL
Jay R. Johnson; C.Z. Cheng
2002-05-31
At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the
Can we explain the Jovian decametric arc pattern with the multiple reflection Alfven wave model?
NASA Astrophysics Data System (ADS)
Leblanc, Y.; Bagenal, F.
The pattern of arcs made by bursts of Io-modulated dkm-band emission in frequency time spectrograms has been examined for the A and B sources and compared with predictions of the Alfven-wave model. Planetary Radio Astronomy data from the Voyager 1 and 2 Jupiter encounters are employed, and the observations of the A and B sources are organized with respect to the Io phase for fixed 30-deg longitude intervals. A clear pattern of regions of strong emission separated by holes (regions with weak or no emission) is found. This preliminary study suggests the bunching of dkm arcs matches the Alfven wave pattern generated by Io. This implies that each Alfven current generates multiple beams of dkm emission.
NASA Astrophysics Data System (ADS)
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
A sunspot model for study of discrete Alfven waves and instabilities
NASA Astrophysics Data System (ADS)
Ochi, Marcia M.; Sakanaka, P. H.; Faria, R. T., Jr.; Deazevedo, C. A.; Deassis, A. S.
1994-01-01
We present a model for sunspots where both the umbral and the penumbral regions are considered. The equilibrium configuration is described by a two-plasma vertical cylindrical model with an axial current. Twisted magnetic fields, with a small B(theta)/B(z) are assumed. Using the ideal magnetohydrodynamics (MHD) model, the analysis of discrete Alfven modes and instabilities is based on the numerical investigation of the Hain-Lust equation. The period of the discrete Alfven mode is found to present the same order of magnitude of those observed for running penumbral waves. Good prediction of the sunspot lifetime can also be obtained.
Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.
2013-03-15
Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.
Mazur, V. A. Chuiko, D. A.
2013-06-15
Oscillations of the 'magnetosphere-solar wind' system are studied analytically in the framework of a plane-stratified model of the medium. The properties of oscillations are determined by three phenomena: Kelvin-Helmholtz instability on the tangential discontinuity (magnetopause) separating the magnetosphere and the solar wind, the presence of a waveguide for fast magnetosonic waves in the magnetosphere, and the Alfven resonance-a sharp increase in the amplitude of oscillations having the properties of Alfven waves-in the inner magnetosphere. The oscillations of the system form a discrete spectrum of eigenmodes. Analytical expressions are obtained for the frequency and growth rate of instability of each mode, as well as for the functions describing the spatial structure of these modes. All these characteristics of the eigenmodes are shown to depend on the velocity of the solar wind as a parameter. The dependences of the main mode characteristics (such as the instability thresholds, the points of the maximum and minimum growth rate, and the spatial distributions of the oscillation energy) on this parameter are determined for each eigenmode.
Small scales formation via Alfven wave propagation in compressible nonuniform media
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
Parametric instabilities of parallel-propagating Alfven waves: Some analytical results
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1993-01-01
We consider the stability of a circularly polarized Alfven wave (the pump wave) which propagates parallel to the ambient magnetic field. Only parallel-propagating perturbations are considered, and we ignore dispersive effects due to the ion cyclotron frequency. The dissipationless MHD equations are used throughout; thus possibibly important effects arising from Landau and transit time damping are omitted. We derive a series of analytical approximations to the dispersion relation using A = (Delta B/B(sub O))(exp 2) as a small expansion parameter; Delta B is the pump amplitude, and B(sub O) is the ambient magnetic field strength. We find that the plasma beta (the square of the ratio of the sound speed to the Alfven speed) plays a crucial role in determining the behavior of the parametric instabilities of the pump. If 0 less than beta less than 1 we find the familiar result that the pump decays into a forward propagating sound wave and a backward propagating Alfven wave with maximum growth rate gamma(sub max) varies A(sup 1/2), but beta cannot be too close to 0 or to 1. If beta approx. 1, we find gamma(sub max) varies A(sup 3/4), if beta greater than 1, we find gamma(sub max) varies A(sup 3/2), while if beta approx. 0, we obtain gamma(sub max) varies A(sup 1/3); moreover, if beta approx. 0 there is a nearly purely growing instability. In constrast to the familiar decay instability, for which the backward propagating Alfven wave has lower frequency and wavenumber than the pump, we find that if beta greater than or approx. equal to 1 the instability is really a beat instability which is dominated by a transverse wave which is forward propagating and has frequency and wavenumber which are nearly twice the pump values. Only the decay instability for 0 less than beta less than 1 can be regarded as producing two recognizable normal modes, namely, a sound wave and an Alfven wave. We discuss how the different characteristics of the instabilities may affect the evolution of
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Gonzalez, Walter D.
1987-01-01
It is shown that high intensity (AE of greater than 1,000 nT), long duration (T of greater than 2d) continuous auroral activity events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably, magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere.
Temperature minimum heating in solar flares by resistive dissipation of Alfven waves
NASA Technical Reports Server (NTRS)
Emslie, A. G.; Sturrock, P. A.
1981-01-01
The possibility that the strong heating produced at temperature-minimum levels during solar flares is due to resistive dissipation of Alfven waves generated by the primary energy release process in the corona is studied. It is shown how, for suitable parameters, these waves can carry their energy essentially undamped into the temperature-minimum layers and can then produce a degree of heating consistent with observations.
Simpson, D.; Ruderman, M.S.
2005-06-15
Ruderman and Simpson [Phys. Plasmas 11, 4178 (2004)] studied the absolute and convective decay instabilities of parallel propagating circularly polarized Alfven waves in plasmas where the sound speed c{sub S} is smaller than the Alfven speed {upsilon}{sub A}. We extend their analysis for the beat instability which occurs in plasmas with c{sub S}>{upsilon}{sub A}. We assume that the dimensionless amplitude of the circularly polarized Alfven wave (pump wave), a, is small. Applying Briggs' method we study the problem analytically using expansions in power series with respect to a. It is shown that the pump wave is absolutely unstable in a reference frame moving with the velocity U with respect to the rest plasma if U{sub l}U{sub r}, the instability is convective. The signaling problem is studied in a reference frame where the pump wave is convectively unstable. It is shown that the spatially amplifying waves exist only when the signaling frequency is in two narrow symmetric frequency bands with the widths of the order of a{sup 3}. These results enable us to extend for the case when c{sub S}>{upsilon}{sub A} the conclusions, previously made for the case when c{sub S}<{upsilon}{sub A}, that circularly polarized Alfven waves propagating in the solar wind are convectively unstable in a reference frame of any spacecraft moving with the velocity not exceeding a few tens of km/s in the solar reference frame. The characteristic scale of spatial amplification for these waves exceeds 1 a.u.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
A global 3-D MHD model of the solar wind with Alfven waves
NASA Technical Reports Server (NTRS)
Usmanov, A. V.
1995-01-01
A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.
Preferential Heating and Acceleration of {alpha} Particles by Alfven-Cyclotron Waves
Araneda, J. A.; Maneva, Y.; Marsch, E.
2009-05-01
Preferential heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics, and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. We show that fast and slow ion-acoustic waves (IAW) and transverse waves, driven by Alfven-cyclotron wave parametric instabilities can selectively destroy the coherent fluid motion of different ion species and, in this way lead to their differential heating and acceleration. Trapping of the more abundant protons by the fast IAW generates a proton beam with drift speed of about the Alfven speed. Because of their larger mass, {alpha} particles do not become significantly trapped and start, by conservation of total ion momentum, drifting relative to the receding bulk protons. Thus the resulting core protons and the {alpha} particles are differentially heated via pitch-angle scattering.
Alfven wave stability in D-III-D
Campbell, R.B. ); Samec, T.K. )
1989-09-01
Within the framework of the global Alfven eigenmode theory in a cylindrical background plasma, I examine the excitation of global Alfven eigenmodes by intense neutral beam injection in the D III-D tokamak operating at General Atomics. I have considered two separate sets of experimental conditions, a low power'' set of cases using 10MW of hydrogen beams, and a high power'' shot of 20MW of deuterium beams. My results are particularly sensitive to the background density profile. For parabolic background density profiles, n{sub 0} {times} (1 {minus} (r/{tilde a}){sup 2}), I have determined that the plasma is stable to all toroidal and poloidal mode numbers for both high and low power cases. For density profiles which are of the form n{sub 0} {times} (1 {minus} (r/{tilde a}){sup 2}){sup {1/2}}, for the same n{sub 0}, my calculation indicates that the m = {minus}1, l = 0 mode is unstable in each case. The high power case has a considerably higher growth rate at the baseline conditions, which motivated me to study this case more extensively. The results are also sensitive to the beam source radial scalelength, L{sub s}, and the electron temperature T{sub e}. By narrowing the source from the baseline 36 cm to 20 cm, the growth rate of the (0,{minus}1) actually decreases, but the (0,{minus}2) mode appears with a substantial growth rate. If the source could be made even narrower, L{sub s} {approx} 10 cm, the (1,{minus}1) mode would appear, also with a large growth rate. 12 refs., 16 figs., 6 tabs.
Alfven Wave - DC Dualism in Description of Stationary Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2009-01-01
In many cases, the field-aligned currents (FACs) in the Earth's magnetosphere and heliosphere may be described in terms of both DC currents and the currents of a propagating Alfven wave. The simplest example is when a propagating Alfven wave transports a potential hop along the magnetic fieid: between the source of the wave and its front, the problem is well stationary and includes the stationary field-aligned currents, transporting the electric charges along the magnetic field, which may be described as a DC problem, and only at the front of the wave there are the polarization (inertial) currents, closing across the magnetic field. In some cases, the Alfven wave approach brings better understanding to many problems. We will consider here the results of the applications of this approach to two long-staying problems: the effect of saturation of the transpolar voltage in the Earth's magnetosphere, and the experimentally-observed existence of the strong field-aligned currents in the subtle Mercury's magnetosphere which is not able tc close the measured field-aligned currents.
Linear and non-linear numerical simulations of poloidal Alfven waves
NASA Astrophysics Data System (ADS)
Ribeiro, A.
2013-05-01
Among the many of numerical simulations of MHD turbulence, few studies had been made of Alfven waves interacting with realistic boundaries. Thus, we have developed a novel hybrid spectral/finite element code, which is capable of simulate properly realistic boundaries properties. Our model is based on a Fourier decompositions of all variables in the azimuthal direction and on a finite element projection in the meridian plan. In order to simulate realistic boundary conditions for the magnetic field we solve the induction equation enforcing continuity of the magnetic field H at the interface with the external insulating medium through a Interior Penalty Galerkin method (IPG) [1]. I will present the results of our investigation of Alfven waves propagating in a cylinder filled of liquid metal submitted to an axial magnetic field. Poloidal Alfven waves are excited magnetically by imposing an azimuthal current pulse at the bottom of the cylinder. In the linear axisymmetric model we find a good agreement with previous experiments in liquid metals by Lundquist and by Lenhert and more recently by Alboussiere et al [2]. This axisymmetric study is extended to the non linear regime, where the amplitudes of the perturbations are comparable to the external applied magnetic field,in this conditions a complex response is found due to waves waves interactions. [1] J. L. Guermond, J.L Leorat, F. Luddens, C. Nore, A. Ribeiro. Effects of discontinuous magnetic permeability on magnetodynamic problems, Journal of Computational Physics Volume 230, Issue 16, 10 July 2011, Pages 6299 -- 6319. [2] T. Alboussiere, P. Cardin, F. Debray, H. C. Nataf, F. Plunian, A. Ribeiro, D. Schmitt, Experimental evidence of Alfven wave propagation in a Gallium alloy, Physics of fluids, 2011, vol. 23, nb 9.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
NASA Technical Reports Server (NTRS)
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.
2013-06-10
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
Proton Core Heating and Beam Formation via Parametrically Unstable Alfven-Cyclotron Waves
Araneda, Jaime A.; Marsch, Eckart F.; Vinas, Adolfo
2008-03-28
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities Alfven-cyclotron waves have on proton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfven speed and is maintained until the end of the simulation. The main part of the distribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that, even in the parameter regime where fluid theory appears to be appropriate, strong kinetic effects still prevail.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES
Russell, A. J. B.; Fletcher, L.
2013-03-10
How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Hirata, M.; Sakamoto, M.; Iwamoto, Y.; Sumida, S.; Jang, S.; Itagaki, J.; Onodera, Y.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.; Nakashima, Y.
2015-11-01
In normal discharges of the GAMMA 10 tandem mirror, confined energy is saturated against heating power and unstable slow Alfven wave named as Alfven-Ion-Cyclotron (AIC) wave is observed in the saturated phase. This saturation may be partly related to (1) the decay of ICRF heating power, which is the main power source in GAMMA 10, due to the coupling with the AIC waves to produce difference-frequency waves and (2) the enhancement of axial transport of high-energy ions owing to nonlinearly excited low-frequency waves. To investigate these phenomena precisely, reflectometry is applied, which can provide assessment of nonlinear process at the location where the nonlinear process are taking place without any disturbance. Bispectral analysis applied to the density fluctuations measured at a wide radial region clearly shows the occurrence of various wave-wave couplings among the heating ICRF wave and the AIC waves. Generation of low-frequency waves via the coupling between coexisting AIC waves is found to be significant only near the core region. Details of measured nonlinear couplings are presented along with the observation showing the clear relation of generated low-frequency waves with the axial transport of high-energy ions. This work is partly supported by JSPS, Japan (25400531, 15K17797) and by NIFS, Japan (NIFS15KUGM101).
Chromospheric alfvenic waves strong enough to power the solar wind.
De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S
2007-12-07
Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona.
Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.
2015-12-01
Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.
Generation of polarized shear Alfven waves by a rotating magnetic field source
Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.; Karavaev, A.; Shao, X.; Sharma, A. Surjalal; Papadopoulos, D.
2009-09-15
Experiments are performed in the Large Plasma Device at the University of California, Los Angeles to study the propagation of field-aligned, polarized kinetic shear Alfven waves radiated from a rotating magnetic field source created via a novel phased orthogonal loop antenna. Both right and left hand circular polarizations are generated at a wide range of frequencies from 0.21{<=}{omega}/{omega}{sub ci}<0.93. Propagation parallel to the background magnetic field near the Alfven velocity is observed along with a small parallel wave magnetic field component implying a shear mode. The peak-to-peak magnitude of the wave magnetic field, 33 cm away from the antenna, is on the order of 0.8% of the background field and drops off in the far field. The full width at half maximum of the wave energy changes little over a distance of 2.5 parallel wavelengths while the exponential decrease in wave energy as a function of distance can be attributed to collisional damping. Evidence of electron heating and ionization is observed during the pulse.
Effect of two ion species on the propagation of shear Alfven waves of small transverse scale
Vincena, S. T.; Morales, G. J.; Maggs, J. E.
2010-05-15
The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.
Ion Heating by Alfven Waves and Reconnection in NSTX
NASA Astrophysics Data System (ADS)
Fredrickson, E. D.
2006-04-01
The evolution of laboratory and astrophysical plasmas depends on the flow of energy between the ``equilibrium'' configuration, waves in the plasma and the thermal plasma. We explore two examples of this energy flow. In the first example, data from NSTX is examined for evidence that CAE in the frequency range from ˜ 0.2 fci to ˜ 1.2 fci excited by super-thermal ions might heat the thermal ions. Theory indicates that only a relatively small portion of the beam power would go into exciting the CAE on NSTX, and observations indicate that the amplitude of these waves, deduced from density fluctuations, is below the stochastic threshold for heating. Another example examines how internal magnetic reconnections can lead to heating of the thermal ions. One model postulates the excitation of a high frequency wave, which then damps on the ions. High frequency waves are indeed seen to follow some NSTX reconnection events. The second invokes direct acceleration of the thermal ions by the induced electric field [P. Helander, L.-G. Eriksson, R.J. Akers, et al.,Phys. Rev. Lett. 89 (2002) 235002-1]. In collaboration with S.S. Medley, Princeton Plasma Physics Laboratory.
Investigation of AlfVen Waves in a Helicon Plasma
2003-07-20
equivalent to VA < Vth,e, Alfvdn waves are dicular to the background magnetic field. The kinetic. Here VA = B/(,uomini) 1/2 is the AlfVhn ve - relative...probe is already sufficiently sensitive (note that the magnetized plasmas yields an expression for the dis- induction voltage of the probe scales as...of magnetic fluctuations in axial direction This work was performed under the auspices of is plotted gray- scale -coded position vs. time. The DFG
NASA Astrophysics Data System (ADS)
Duan, S. P.; Liu, Z. X.; Cao, J. B.; Reme, H.; Balogh, A.; Fazakerley, A. N.
According to the observation data by the Cluster spacecraft encountering the mid-altitude cusp region and the theory research work of the formation mechanism of kinetic Alfven waves it can be concluded that kinetic Alfven waves can be come into being in the mid-altitude polar cusp Using the observation data detected by the Cluster CIS FGM and PEACE crossing through the mid-altitude cusp region on 4 July 2001 we find that ion and electron number densities are obviously disturbed and protons are always in the down-going direction We obtain that the values of plasma beta are in the range between 0 002 and 0 01 from 13 24 00 to 13 39 00 They are larger than the mass ratio value of electron and proton That implies the mid-altitude polar cusp is a kinetic region Ion and electron density inhomogeneity and the ion beam with down-going direction are the main factors for the formation of kinetic Alfven waves The observational results are consonant with the results obtained from the theory research that the plasma density inhomogeneity and ions motion play important roles in the formation process of kinetic Alfven waves The observational properties of kinetic Alfven waves will be investigated in our following research work
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A. P.; Banerjee, S.
2011-03-15
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.
Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models
NASA Astrophysics Data System (ADS)
Nariyuki, Y.
2014-12-01
Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.
Relatively stable, large-amplitude Alfvenic waves seen at 2.5 and 5.0 AU
NASA Technical Reports Server (NTRS)
Mavromichalaki, H.; Moussas, X.; Quenby, J. J.; Valdes-Galicia, J. F.; Smith, E. J.
1988-01-01
Pioneer 11 and 10 observations of the wave structure seen in a corotating interaction region at 2.5 AU on day 284 of 1973 and 8 days later at 5 AU reveal large-amplitude Alfvenic structures with many detailed correlations seen between their features at the two radial distances. Hodogram analysis suggests the dominance of near plane polarized, transverse Alfvenic mode fluctuations with periods between 2 min and one hour or more. Some wave evolution close to the Corotating Interaction Region (CIR) shock is noticed, but waves towards the center of the compression seem to propagate with little damping between the spacecraft observation positions.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
NASA Astrophysics Data System (ADS)
Bird, M. K.; Volland, H.; Efimov, A. I.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.
The two Helios spacecraft underwent regular solar occultations during their extended missions from Dec 1974-Feb 1986 (Helios 1) and Jan 1976-Mar 1980 (Helios 2) thereby providing many opportunities for radio propagation experiments in the solar corona. On certain rare occasions over the course of these investigations, Faraday rotation measurements of the linearly polarized Helios signals could be recorded simultaneously at two widely-spaced ground stations. Many of these two-station measurement intervals display clear evidence of wave-like structures with quasi-periods of the order of a few minutes to a few hours. These structures are attributed to coronal Alfven waves. The radial propagation direction and velocity of these waves are estimated from a cross-correlation analysis of the data between the two stations. The majority of the waves appear to propagate away from the Sun, but about 30 percent of the cases indicate a propagation direction toward the Sun.
Acceleration and heating of two-fluid solar wind by Alfven waves
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1994-01-01
Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.
Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Rankin, R.; Blanco, M.
2015-12-01
In this paper we study the interaction of kinetic Alfven waves generated near the equatorial plane of the magnetosphere with electrons having initial energies up to ˜100 eV. Wave-particle interactions are investigated using a theoretical model of trapping into an effective potential generated by the wave parallel electric field and the mirror force acting along geomagnetic field lines. It is demonstrated that waves with an effective potential amplitude on the order of ˜100-400 V and with perpendicular wavelengths on the order of the ion gyroradius can trap and efficiently accelerate electrons up to energies of several keV. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented, and the application of the proposed model is discussed.
Anomalous perturbative transport in tokamaks due to drift-Alfven-wave turbulence
Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )
1994-03-01
The method developed in Thoul, Similon, and Sudan [Phys. Plasmas [bold 1], 579 (1994)] is used to calculate the transport due to drift-Alfven-wave turbulence, in which electromagnetic effects such as the fluttering of the magnetic field lines are important. Explicit expressions are obtained for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma. Although the magnetic terms leave the transport by trapped electrons unaffected, they are important for the transport by circulating electrons.
Parametric instabilities of Alfven waves in a multispecies plasma: Kinetic effects
Kauffmann, K.; Araneda, J. A.
2008-06-15
Parametric instabilities of a circularly polarized Alfven wave in a multispecies magnetized plasma are considered. An analytic kinetic description and hybrid simulations for the linear behavior of the instabilities are given. It is found that, even for low-{beta} regimes, both the kinetic effects and the presence of heavy ions substantially modify the characteristics of parametric instabilities as compared to the fluid model. The decay instability can be severely quenched in a plasma composed of massless electrons, protons, and alpha particles when the alphas are slightly hotter than the protons. These results could be important in describing the heating processes of heavy ions in the solar corona.
Experiment to Study Alfv'en Wave Propagation in Plasma Loops
NASA Astrophysics Data System (ADS)
Kendall, Mark; Bellan, Paul
2009-11-01
Solar coronal loops are simulated in the laboratory using pulsed power techniques [1]. We are now developing a method to excite propagating Alfv'en wave modes by superposing a current pulse of roughly 10kA and width 100ns upon the ˜50kA, 10 microsecond main discharge current that flows along the ˜10cm long, 1cm diameter arched flux tube. To achieve this short 100ns pulsed timescale at such high power, a magnetic pulse compression technique based on saturable reactors will be employed. A low power prototype has been successfully tested, and design and construction of a full-power device is underway. Upon completion, the fast current pulse device will be used to investigate interactions between the Alfv'en waves and the larger-scale loop evolution. Particular attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.[4pt] [1] J. F. Hansen, S. K. P. Tripathi, P. M. Bellan, ``Co- and Counter-helicity Interaction Between Two Adjacent Laboratory Prominences,'' Phys. Plasmas, vol. 11, issue 6, p. 3177 (2004)
THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE
Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.
2013-08-20
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.
Polarization and Compressibility of Oblique Kinetic Alfven Waves
NASA Technical Reports Server (NTRS)
Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2012-01-01
Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects
Quantification of the Energy Dissipated by Alfven Waves in a Polar Coronal Hole
NASA Astrophysics Data System (ADS)
Hahn, M.; Savin, D. W.
2013-12-01
We present a measurement of the energy carried and dissipated by Alfven waves in a polar coronal hole. Alfven waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity vnt and the ion temperature Ti. We have implemented a means to separate the Ti and vnt contributions using the observation that, at low heights, the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to vnt. We find the initial energy flux density present was 6.7×0.7×10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and accelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find that about 85% of this energy is dissipated below 1.5 R_sun, sufficiently low that thermal conduction can transport the energy throughout the coronal hole, heating it and driving the fast solar wind. The remaining energy is roughly consistent with what models show is needed to provide the extended heating above the sonic point for the fast solar wind. We have also studied Ti, which we found to be in the range of 1 - 2 MK, depending on the ion species.
Propagation of large amplitude Alfven waves in the solar wind neutral sheet
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2006-01-01
Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.
Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons
Panwar, A. E-mail: ryu201@postech.ac.kr Ryu, C. M. E-mail: ryu201@postech.ac.kr; Bains, A. S. E-mail: ryu201@postech.ac.kr
2015-09-15
A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.
Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance
NASA Technical Reports Server (NTRS)
Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.
1978-01-01
The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.
Carter, T A
2006-11-16
Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.
NASA Astrophysics Data System (ADS)
Mithaiwala, M.; Rudakov, L.; Ganguli, G.; Crabtree, C. E.
2011-12-01
The high beta solar wind plasma turbulence is dominated by the kinetic Alfven waves (KAW) [1]. Though the measured high-energy tail on the electron distribution function can be a signature of the presence of whistler waves (WW) as well [2]. In Maxwellian plasma both KAW and WW are Landau damped at high beta, and only for the specific case of WW with kperp=0 is there no Landau damping. Due to the inhomogeneous solar wind plasma these parallel propagating WW should quickly develop large perpendicular wavenumbers kperp>k|| . However, as we have shown recently using measured KAW spectra, Landau damping establishes a plateau in the parallel electron distribution function and damping is strongly diminished [3]. The theory of WW in high beta inhomogeneous plasma will be presented and the impact of the electron cyclotron resonance with WW on the evolution of the electrons high energy tail will be discussed. [1] O. Alexandrova et. al., PRL (2009) ; F. Sahraoui et. al., PRL (2010). [2] T. Nieves-Chinchilla and A. F. Vinas, JGR (2008). [3] L. Rudakov et. al., Phys. Plasma, 18, 012307 (2011).
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Buti, B.
1990-01-01
Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.
Non-WKB Alfven waves in the solar wind: Propagation and reflection of pulses
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1995-01-01
The non-WKB propagation of Alfven waves has been studied either for harmonic waves, or in terms of the evolution of power spectra. Here we present analytical and numerical solutions for the propagation of pulses, the goal being to understand how waves reflect in a smoothly varying medium. We here limit our discussion to a radial magnetic field. If we launch an outward-propagating delta function, it leaves behind an inward-propagaing signal which is roughly a square wave whose amplitude is proportional to the area under the initial pulse. The inward-propagating signal also reflects, producing an outward propagating pulse which is roughly triangular in shape and which grows with time. These signals also oscillate if v is less than v(A), but they grow if v is greater than v(A). The result reported by us earlier, that the 'ingoing Elsasser variable' can have outgoing phase, is now understood to be a consequence of interference. The inward-propagating signal depends to lowest order on the integral of the outgoing waves which have preceded it. Thus the ingoing signal can be expected to develop as a random walk. This will affect the radial evolution of cross-helicity in the solar wind.
Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity
NASA Technical Reports Server (NTRS)
Fatuzzo, Marco; Melia, Fulvio
1993-01-01
Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.
Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)
Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S
2001-10-11
An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.
Alfven ion-cyclotron heating of ionospheric O(+) ions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.
1988-01-01
Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Drift-Alfven wave mediated particle transport in an elongated density depression
Vincena, Stephen; Gekelman, Walter
2006-06-15
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.
Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-15
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
NASA Astrophysics Data System (ADS)
Salem, C. S.; Sundkvist, D. J.; Bale, S.; Howes, G. G.; Chaston, C. C.
2011-12-01
We analyze the effect of Doppler shift on Kinetic Alfven Waves (KAW) as well as compressional proton Whistler Waves at frequencies above the local ion cyclotron frequency into the so-called dissipation range of solar wind turbulence (0.1 < f/fci < 10). Prior studies have shown that wave modes in this frequency range become dispersive and are consistent with Kinetic Alfven Waves (KAW) under the assumption that Taylor's hypothesis is still valid at those frequencies. However, the proton whistler is another possible wave mode in the solar wind in this frequency range. The temporal fluctuations of this mode combined with a slight Doppler shift can lead to the same apparent properties in the spacecraft (s/c) frame as strongly Doppler-shifted KAW. First, we present a different approach to resolve this long-standing question regarding the nature of the electromagnetic fluctuations in the dissipation range of solar wind turbulence. Specifically, we determine, both analytically and numerically, the dispersive properties of the KAW and the whistler wave modes and estimate the electric to magnetic field (E/B) ratio in the plasma and the s/c frame to make direct comparisons with s/c data. We discuss the predicted, observable, parameters of both KAW and whistlers in the plasma and s/c frames. We show that the properties of both KAW and whistlers appear to be similar in the s/c frame, yet there are quantifiable differences that one can use to distinguish between both wave modes. Those differences are discussed. Finally, we revisit Cluster electric field and magnetic field data in the solar wind using this technique. We focus our analysis on several low-beta (β < 1) ambient solar wind intervals. We compare the predicted parameters from our technique to the data directly in the s/c frame, without the use of Taylor's hypothesis. We propose this technique as an efficient diagnostics for wave-mode identification in the dissipation (or dispersion) range of solar wind turbulence.
Explaining Signatures of Auroral Arcs based on the Stationary Inertial Alfven Wave
NASA Astrophysics Data System (ADS)
Nogami, Sh; Koepke, Me; Knudsen, Dj; Gillies, Dm; Donovan, E.; Vincena, S.
2016-10-01
Optical emission data from the THEMIS array of All Sky Imagers are analyzed to determine the lifetime of an auroral arc (i.e., the elapsed time during which an arc is visible). Lifetime is an important temporal signature related to the arc generation mechanism, by which arcs can be distinguished. An arc with a lifetime greater than ten minutes is consistent with arc generation by Stationary Inertial Alfven Wave (StIAW) which supports a steady-state wave electric field component parallel to a background magnetic field. An StIAW is a non-fluctuating, non-travelling, spatially periodic pattern of perturbed ion density that is static in the laboratory frame. StIAWs are the predicted result of the interaction between a magnetic-field-aligned electron current and plasma convection perpendicular to a background magnetic field. Electrostatic probes measure the fixed pattern of perturbed ion density in LAPD-U. Electron acceleration due to StIAWs is being investigated as a mechanism for the formation and support of long-lived auroral arcs. Preliminary evidence of electron acceleration from laboratory experiment is reported. This work was supported by NSF Grant PHY-130-1896, Grants from the Canadian Space Agency, and the THEMIS ASI teams at UCalgary and UC Berkeley. Facility use and experimental assistance from BaPSF is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1983-01-01
Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops.
NASA Astrophysics Data System (ADS)
Nariyuki, Y.; Seough, J.
2015-12-01
It is well known that low-frequency Alfven waves are unstable to parametric instabilities, in which these waves are nonlinearly coupled with density fluctuations [e.g, Nariyuki+Hada, JGR, 2007 and references therein]. In solar wind plasmas, low-frequency fluctuations with non-zero cross-helicity are frequently observed [e.g., Bruno+Carbone, Living Rev. Solar Phys. (2013) and references therein]. When the absolute values of normalized cross helicities are close to the unity, the fluctuations may be composed of uni-directionally (anti-sunward) propagating Alfven waves. The derivative nonlinear Schrodinger equation (DNLS) has been known as the mode of modulational instabilities of unidirectional Alfven waves [Mio et al, JPSJ, 1976; Mjolhus, JPP, 1976]. In the DNLS, the density fluctuations are assumed to be the quasi-static state, which is determined according to the ponderomotive force of envelope-modulated Alfven waves. The DNLS was extended to include the obliquely propagating, compressional component of magnetic field by Mjolhus and Wyller (JPP, 1988). The kinetically modified DNLS (KDNLS) has also been discussed by many authors [Rogister, POF, 1971; Mjolhus and Wyller, Phys. Scr, 1986; JPP, 1988; Spangler, POF B, 1989; 1990; Medvedev+Diamond, POP, 1996; Nariyuki et al, POP, 2013]. On the other hand, ion acoustic modes [Hada, 1993], large scale inhomogeneity of plasmas [Buti et al, APJ, 1999; Nariyuki, POP, 2015] and random density fluctuations [Ruderman, POP, 2002] can also affect nonlinear evolution of Alfven waves. At the present time, combined effects of these effects are not fully understood. In this presentation, we discuss two models: one of them is the model including both ion kinetic effects and ion acoustic mode and another is the model including finite thermal effects and random density fluctuations. In the former case, ion kinetic effects on both longitudinal [Nariyuki+Hada, JPSJ, 2007] and transverse modulational instabilities are discussed, while the
KINETIC ALFVEN WAVE INSTABILITY DRIVEN BY FIELD-ALIGNED CURRENTS IN SOLAR CORONAL LOOPS
Chen, L.; Wu, D. J. E-mail: djwu@pmo.ac.cn
2012-08-01
Magneto-plasma loops, which trace closed solar magnetic field lines, are the primary structural elements of the solar corona. Kinetic Alfven wave (KAW) can play an important role in inhomogeneous heating of these magneto-plasma structures in the corona. By the use of a low-frequency kinetic dispersion equation, which is presented in this paper and is valid in a finite-{beta} plasma with Q < {beta} < 1 plasma (where {beta} is the kinetic to magnetic pressure ratio and Q = m{sub e} /m{sub i} is the mass ratio of electrons to ions), KAW instability driven by a field-aligned current in the current-carrying loops in the solar corona is investigated. The results show that the KAW instability can occur in wave number regimes 0 < k{sub z} < k{sup c}{sub z} and 0 < k < k{sup c} , and that the critical wave numbers k{sup c}{sub z} and k{sup c} and the growth rate both considerably increase as the drift velocity V{sub D} of the current-carrying electrons increases in the loops. In particular, for typical parameters of the current-carrying loops in the solar corona this instability mechanism results in a high growth rate of KAWs, {omega}{sub i} {approx} 0.01-0.1{omega}{sub ci} {approx} 10{sup 3}-10{sup 4} s{sup -1}. The results are of importance in understanding the physics of the electric current dissipation and plasma heating of the current-carrying loops in the solar corona.
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.
2015-12-01
Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.
Alfven Wave Evolution in an Interaction System of the Fast and Slow Solar Wind
NASA Astrophysics Data System (ADS)
Tsubouchi, K.
2007-12-01
Large-amplitude Alfven waves (AWs) are often embedded in a high-speed stream of the solar wind. As the high- speed streams overtake the low-speed streams ahead, corotating interaction regions (CIRs) are produced in low heliographic latitudes. In this study, the nonlinear evolution of AWs swept into CIRs is numerically investigated by one-dimensional MHD simulations. Ulysses observations suggest that not only AWs amplified through the reverse shock but also magnetic depression structures (MDs) are found in the trailing portions of CIRs (e.g., Tsurutani et al., 1995). Our interest is the generation mechanism of MDs in the context of AWs-CIRs interaction system. While MDs are supposed to be remnants of the mirror instability (e.g., Winterhalter et al., 1994), we give alternative processes from a macroscopic view as follows. A large pressure gradient developed in CIRs results in intensifying the diamagnetic current, which reflects a portion of the incident AW energy in the opposite direction (from a plasma-rest frame) as AWs penetrate into CIRs. Since the reflected AWs also carry the current, the reduction of the background field intensity (i.e. MD formation) is simultaneously taken place in the area sandwiched between the forward-reverse pair of AWs. Further analysis will be given via hybrid simulations to show how these MHD processes are manifested in particle behaviors, such as an acceleration due to a ponderomotive force.
NASA Astrophysics Data System (ADS)
Lin, Yu; Zonca, Fulvio; Chen, Liu
2015-11-01
It has been recently demonstrated that, generally, electrostatic (ES) and magnetostatic (MS) convective cells (CCs), or zonal flows, can be excited simultaneously by kinetic Alfven waves (KAWs). In this paper, spontaneous excitations of electrostatic as well as magnetostatic convective cells by KAWs are investigated through hybrid simulations, and the results are compared with the analytical theory based on the nonlinear gyrokinetic equations. In the hybrid simulation, ions are treated as fully kinetic particles, and electrons are treated as a massless fluid. It is found that finite ion-Larmor-radius (FILR) effects play a crucial. Furthermore, ES and MS convective cells are intrinsically coupled and must be treated on an equal footing. Excellent agreement is obtained for mode structure and generation rate of convective cells by KAW, demonstrating that ESCC and MSCC are indeed coupled, and that spontaneous CC excitation is suppressed at long wavelength, showing the crucial destabilizing role of FILR effects in the excitation via modulational instabilities. This work is supported by US DoE, NSF, ITER-CN, and NSFC grants.
Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots
NASA Technical Reports Server (NTRS)
Scheuer, M. A.; Thomas, J. H.
1981-01-01
Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.
Resonant excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves
Mazur, V. A.
2011-05-15
The effect of the magnetospheric MHD cavity on the excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves incident from the solar wind is investigated theoretically by using a one-dimensional nonuniform model of the medium. It is shown that most of the energy of stochastic waves is reflected from the magnetopause and that the only waves that penetrate into the magnetosphere are those with frequencies in narrow spectral ranges near the eigenfrequencies of the cavity. These waves lead to steadystate excitation of the eigenmodes of the cavity, the energy of which is determined by the spectral density of the energy flux of the incident waves at the corresponding eigenfrequencies. The energy of the eigenmodes penetrates through the opacity barrier in the vicinity of the Alfven resonance points (each corresponding to a particular mode), where the perturbation amplitude is sharply amplified, so the total energy localized close to the Alfven resonance point is much higher than the total energy of the corresponding eigenmode. In the vicinities, the perturbation energy is dissipated by the finite conductivity of the ionosphere, the dissipation power being equal to the energy flux of the incident waves that penetrates into the magnetosphere. The case of unsteady waves is analyzed by considering a wave pulse as an example. It is shown that most of the energy of the wave pulse is reflected from the magnetopause. The portion of the incident perturbation that penetrates into the magnetosphere leads to unsteady excitation of the eigenmodes of the magnetospheric cavity, which are then slowly damped because part of the energy of the cavity is emitted through the magnetopause back to the solar wind while the other part penetrates into the vicinities of the Alfven resonance points. In the vicinities, the perturbation is an Alfven wave standing between magnetically conjugate ionospheres and its energy is dissipated by the finite conductivity of the ionosphere at
NASA Technical Reports Server (NTRS)
Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.
1991-01-01
The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.
Podesta, J. J.; Borovsky, J. E.; Gary, S. P.
2010-03-20
Turbulence in the solar wind is believed to generate an energy cascade that is supported primarily by Alfven waves or Alfvenic fluctuations at MHD scales and by kinetic Alfven waves (KAWs) at kinetic scales k{sub perpendicular}rho{sub i} {approx}> 1. Linear Landau damping of KAWs increases with increasing wavenumber and at some point the damping becomes so strong that the energy cascade is completely dissipated. A model of the energy cascade process that includes the effects of linear collisionless damping of KAWs and the associated compounding of this damping throughout the cascade process is used to determine the wavenumber where the energy cascade terminates. It is found that this wavenumber occurs approximately when |gamma/omega| {approx_equal} 0.25, where omega(k) and gamma(k) are, respectively, the real frequency and damping rate of KAWs and the ratio gamma/omega is evaluated in the limit as k{sub perpendicular} >> k{sub ||}. For plasma parameters typical of high-speed solar wind streams at 1 AU, the model suggests that the KAW cascade in the solar wind is almost completely dissipated before reaching the wavenumber k{sub perpendicular}rho{sub i} {approx_equal} 25. Consequently, an energy cascade consisting solely of KAWs cannot reach scales on the order of the electron gyro-radius, k{sub perpendicular}rho{sub e} {approx} 1. This conclusion has important ramifications for the interpretation of solar wind magnetic field measurements. It implies that power-law spectra in the regime of electron scales must be supported by wave modes other than the KAW.
Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets
NASA Astrophysics Data System (ADS)
Jafelice, L. C.; Opher, R.
1990-11-01
evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS
SPECTROSCOPIC SIGNATURE OF ALFVEN WAVES DAMPING IN A POLAR CORONAL HOLE UP TO 0.4 SOLAR RADII
Bemporad, A.; Abbo, L.
2012-06-01
Between 2009 February 24 and 25, the EUV Imaging Spectrometer (EIS) spectrometer on board the Hinode spacecraft performed special 'sit and stare' observations above the south polar coronal hole continuously over more than 22 hr. Spectra were acquired with the 1'' slit placed off-limb covering altitudes up to 0.48 R{sub Sun} (3.34 Multiplication-Sign 10{sup 2} Mm) above the Sun surface, in order to study with EIS the non-thermal spectral line broadenings. Spectral lines such as Fe XII {lambda}186.88, Fe XII {lambda}193.51, Fe XII {lambda}195.12, and Fe XIII {lambda}202.04 are observed with good statistics up to high altitudes and they have been analyzed in this study. Results show that the FWHM of the Fe XII {lambda}195.12 line increases up to {approx_equal} 0.14 R{sub Sun }, then decreases higher up. EIS stray light has been estimated and removed. Derived electron density and non-thermal velocity profiles have been used to estimate the total energy flux transported by Alfven waves off-limb in the polar coronal hole up to {approx_equal} 0.4 R{sub Sun }. The computed Alfven wave energy flux density f{sub w} progressively decays with altitude from f{sub w} {approx_equal} 1.2 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1} at 0.03 R{sub Sun} down to f{sub w} {approx_equal} 8.5 Multiplication-Sign 10{sup 3} erg cm{sup -2} s{sup -1} at 0.4 R{sub Sun }, with an average energy decay rate of {Delta}f{sub w} /{Delta}h {approx_equal} -4.5 Multiplication-Sign 10{sup -5} erg cm{sup -1}. Hence, this result suggests energy deposition by Alfven waves in a polar coronal hole, thus providing a significant source for coronal heating.
Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; White, R. B.; Yakovenko, Yu. V.
2004-09-17
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E.
Propagation and mode conversion for waves in nonuniform plasmas
Stix, T.H.; Swanson, D.G.
1982-06-01
The following topics are described: (1) the hybrid resonance, (2) Alfven resonance, (3) the intermediate-frequency electromagnetic wave equation, (4) the standard equation, (5) the tunneling equation, (6) asymptotic solutions of the tunneling equation, (7) localized absorption, and (8) matched asymptotic expansions; the low-frequency Alfven resonance. (MOW)
Resonance wave pumping with surface waves
NASA Astrophysics Data System (ADS)
Carmigniani, Remi; Gharib, Morteza; Violeau, Damien; Caltech-ENPC Collaboration
2015-11-01
The valveless impedance pump enables the production or amplification of a flow without the use of integrated mobile parts, thus delaying possible failures. It is usually composed of fluid-filled flexible tubing, closed by solid tubes. The flexible tube is pinched at an off-centered position relative to the tube ends. This generates a complex wave dynamic that results in a pumping phenomenon. It has been previously reported that pinching at intrinsic resonance frequencies of the system results in a strong pulsating flow. A case of a free surface wave pump is investigated. The resonance wave pump is composed of a rectangular tank with a submerged plate separating the water into a free surface and a recirculation rectangular section connected through two openings at each end of the tank. A paddle placed at an off-center position above the submerged plate is controlled in a heaving motion with different frequencies and amplitudes. Similar to the case of valveless impedance pump, we observed that near resonance frequencies strong pulsating flow is generated with almost no oscillations. A linear theory is developed to pseudo-analytically evaluate these frequencies. In addition, larger scale applications were simulated using Smoothed Particle Hydrodynamic codes.
Global Alfven eigenmodes in WELDELSTEIN 7-AS
Weller, A.; Goerner, C.; Jaenicke, R.
1995-09-01
In the presence of fast particle populations marginally stable global modes in the shear Alfven branch can be destabilized by wave particle resonances. This is particularly of concern in future large devices, where losses of resonant particles ({alpha}-particles in a reactor) may then limit the available heating power and also may cause damage of the first wall. In tokamaks TAE modes inside toroidicity induced gaps of the shear Alfven continua have been found. In stellarators with very weak shear like W7-AS low-n TAE-gaps do not occur but gaps below the shear Alfven continua with mode numbers m and n, if the resonant values {tau} = n/m do not exist in the plasma volume (k{sub {parallel}} = (m{sm_bullet}{tau} - n )/R {ne} 0 ). Under these conditions GAE modes with frequencies {omega}{sub GAE} < (k{sub {parallel}}{sm_bullet}V{sub A}){sub min} are the favoured modes. The investigation of GAE modes could also be of relevance in the case of advanced tokamak equilibria with flat or inverted q-profiles in the central region.
NASA Technical Reports Server (NTRS)
Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.
1985-01-01
Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2004-01-01
When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.
Turbulent Alfven boundary layer in the polar ionosphere. 1. Excitation conditions and energetics
Trakhtengerts, V.Y. ); Feldstein, A.Ya. )
1991-11-01
Instability of laminar magnetospheric convection with respect to the strongly anisotropic Alfven waves which are of small scale in the horizontal plane is examined. The waves prove to be trapped in the ionospheric Alfven resonator, bounded from below by the ionospheric E layer and form above by a zone of rapidly increasing Alfven velocity at altitudes of up to {approximately}10{sup 4} km. The finite-amplitude Alfven waves dissipate within a layer of anomalous resistance formed near the upper wall of the resonator. As a result, a high-energy particle source appears in the upper ionosphere. Further evolution results in the transition of laminar convection to turbulent flow conditions and in the formation of a turbulent Alfven boundary layer in the polar ionosphere at altitudes from 10{sup 2} to 10{sup 4} km. The energy status of the turbulent Alfven boundary layer is calculated. It has been shown that the accelerated-electron energy flux density can reach {approximately}100 ergs cm{sup {minus}2} s{sup {minus}1}.
Gomberoff, L.
2008-02-15
It has been shown that a large amplitude Alfven wave can stabilize linear magnetosonic instabilities triggered by an ion beam. This phenomenon occurs for large amplitude waves above a threshold value. Here the effect of a second ion beam on the threshold amplitude for stabilization of the magnetosonic instability is studied. It is shown that the second beam modifies the threshold amplitude behavior for complete saturation of the magnetosonic instability. The effect of the second beam on the properties of purely electrostatic nonlinear instabilities triggered by the finite amplitude wave is also studied. Apart from the changes induced by the second beam on the threshold amplitude behavior, it is shown that in some cases there are two regimes of the nonlinear ion-acousticlike instability. These results should be of importance in those environments where the interplay of the two beams should not be ignored like, e.g., in the fast solar wind.
A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry
Koenies, Axel; Kleiber, Ralf
2012-12-15
While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.
NASA Astrophysics Data System (ADS)
Salem, C. S.; Sundkvist, D. J.; Bale, S.
2009-12-01
Electromagnetic fluctuations in the inertial range of solar wind MHD turbulence and beyond (up to frequencies of 10Hz) have been studied for the first time using both magnetic field and electric field measurements on Cluster [Bale et al., 2005]. It has been shown that at frequencies above the spectral breakpoint at ~0.4Hz, in the dissipation range, the wave modes become dispersive and are consistent with Kinetic Alfven Waves (KAW). This interpretation, consistent with findings from recent theoretical studies, is based on the simple assumption that the measured frequency spectrum is actually a Doppler shifted wave number spectrum (ω ≈ k Vsw), commonly used in the solar wind and known as Taylor's hypothesis. While Taylor's hypothesis is valid in the inertial range of solar wind turbulence, it may break down in the dissipation range where temporal fluctuations can become important. We recently analyzed the effect of Doppler shift on KAW as well as compressional proton whistler waves [Salem et al., 2009]. The dispersive properties of the KAW and the whistler wave modes, as well as the electric to magnetic field (E/B) ratio, have been determined both analytically and numerically in the plasma and the spacecraft frame, with the goal of directly comparing those analytical/numerical estimates in the spacecraft frame with the data as measured. We revisit here Cluster electric field and magnetic field data in the solar wind using this approach. We focus our analysis on several ambient solar wind intervals with varying plasma parameters, allowing for a statistical study. We show that this technique provides an efficient diagnostics for wave-mode identification in the dissipation/dispersion range of solar wind turbulence.
Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind
Mazur, V. A.
2010-11-15
The eigenfrequencies and eigenmodes of an MHD cavity in the front part of the magnetosphere and its excitation by monochromatic hydromagnetic waves incident onto the magnetosphere from solar wind are studied theoretically in the model of a plane-stratified plasma. The eigenmodes are damped due to both their absorption at the Alfven resonance points and their emission into solar wind through the magnetopause, which is partially transparent for the excited waves. It is shown that, due to the influence of the magnetospheric cavity, the pumping of the magnetosphere by the incident waves is resonance in character. The waves penetrate into the magnetosphere only if their frequencies lie in narrow spectral ranges near the eigenfrequencies of the cavity, the width of these ranges being on the order of the damping rate of the eigenmodes. Waves with other frequencies are almost completely reflected from the magnetopause.
Tsiklauri, D.
2014-05-15
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed
Super-Alfvenic particle streaming in astrophysical settings
NASA Technical Reports Server (NTRS)
Holman, G. D.; Morrison, P. J.; Scott, J. S.; Ionson, J. A.
1979-01-01
The pitch angle scattering of relativistic particles by self-generated hydromagnetic waves is discussed. It is shown that in a hot background plasma, because of the resonant damping of short wavelength waves by thermal protons, cosmic rays need not slow down to a mean streaming speed which is of order the Alfven speed. The effects of a high cosmic ray energy density upon the destabilized wave model are also discussed. Recent work indicates that when the cosmic ray energy density is on the order of or exceeds the energy density in the ambient magnetic field, the velocity of the amplified waves is significantly greater than the Alfven speed. These effects have important implications for recent cosmic ray acceleration models and are important for studies of particle propagation in many astrophysical plasmas.
Effect of the magnetic field curvature on the generation of zonal flows by drift-Alfven waves
Mikhailovskii, A. B.; Kovalishen, E. A.; Shirokov, M. S.; Tsypin, V. S.; Galvao, R. M. O.
2007-05-15
The generation of zonal flows by drift-Alfven waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm's law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.
Matsunaga, G.; Kawada, S.; Kotani, J.; Toi, K.; Suzuki, C.; Matsuoka, K.
2005-06-10
A novel method of exciting shear Alfven waves using electrodes inserted in a plasma was developed for basic study of Alfven eigenmodes in a heliotron/torsatron plasma. The electrodes can induce excitation current along the confinement field line, and generate magnetic perturbations perpendicular to the confinement field. By sweeping the frequency of the current in a cold plasma, the toroidicity-induced Alfven eigenmode was resonantly excited at the predicted frequency and radial location. Plasma response to the applied magnetic perturbations indicates a fairly large damping rate caused by continuum damping.0.
NASA Technical Reports Server (NTRS)
Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Doug; Jones, Sarah; Anderson, Brian Jay; Heinselman, Craig J.; Gjerloev, Jesper W.; Dudok de Wit, Thierry
2011-01-01
In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.
Tsiklauri, D.
2012-08-15
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
Resonance wave pumping: wave mass transport pumping
NASA Astrophysics Data System (ADS)
Carmigniani, Remi; Violeau, Damien; Gharib, Morteza
2016-11-01
It has been previously reported that pinching at intrinsic resonance frequencies a valveless pump (or Liebau pump) results in a strong pulsating flow. A free-surface version of the Liebau pump is presented. The experiment consists of a closed tank with a submerged plate separating the water into a free-surface and a recirculation section connected through two openings at each end of the tank. A paddle is placed at an off-centre position at the free-surface and controlled in a heaving motion with different frequencies and amplitudes. Near certain frequencies identified as resonance frequencies through a linear potential theory analysis, the system behaves like a pump. Particle Image Velocimetry (PIV) is performed in the near free surface region and compared with simulations using Volume of Fluid (VOF) method. The mean eulerian mass flux field (ρ) is extracted. It is observed that the flow is located in the vicinity of the surface layer suggesting Stokes Drift (or Wave Mass Transport) is the source of the pumping. A model is developped to extend the linear potential theory to the second order to take into account these observations. The authors would like to acknowledge the Gordon and Betty Moore Foundation for their generous support.
Optical evidence for Alfven wave breaking in the near-Earth magnetosphere
NASA Astrophysics Data System (ADS)
Semeter, J.; Blixt, M.
2006-12-01
Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Goldstein, Melvyn L.
2010-01-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
Tian Hui; McIntosh, Scott W.; Wang, Tongjiang; Ofman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-11-10
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi
1992-01-01
The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.
NASA Astrophysics Data System (ADS)
Rankin, R.; Artemyev, A.
2015-12-01
It is now common knowledge that dispersive scale Alfvén waves can drive parallel electron acceleration [Lotko et al., JGR, 1998; Samson et al., Ann. Geophys., 2003; Wygant et al., JGR, 2002] and transverse ion energization in the auroral zone and inner magnetosphere [Johnson and Cheng, JGR, 2001; Chaston et al., 2004]. In this paper we show that relatively low energy electrons (plasma sheet electrons with energies ranging up to ˜100 eV) can be accelerated very efficiently as they interact nonlinearly with kinetic Alfvén waves (KAWs) that carry intense field aligned currents from the equatorial plane toward the ionosphere in the inner magnetosphere. We propose a theoretical model describing electron trapping into an effective wave potential generated by parallel wave electric fields (with perpendicular wavelengths on the order of the ion gyro-radius) and the mirror force acting on electrons as they propagate along geomagnetic field lines. We demonstrate that waves with an electric potential amplitude between ~100 - 400 V can trap and accelerate electrons to energies approaching several keVs. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch-angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented. We discuss the application of the proposed model in light of recent observations of electromagnetic fluctuations in the inner magnetosphere that are present during periods of strong geomagnetic activity [Chaston et al., GRL, 2014; Califf et al., JGR, 2015].
Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves
NASA Astrophysics Data System (ADS)
Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.
Excitation of dust kinetic Alfven waves by semi-relativistic ion beams
NASA Astrophysics Data System (ADS)
Rubab, N.; Jaffer, G.
2016-05-01
The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.
Alfv'en mode structure/stability properties of stellarators and broken-symmetry tokamaks
NASA Astrophysics Data System (ADS)
Spong, Don
2009-05-01
Energetic particle driven shear Alfv'en wave (SAW) instabilities are frequently observed in both stellarator and tokamak experiments. Three-dimensional effects are present in all toroidal devices and can significantly influence both stability properties of energetic particle populations and their loss patterns on the first wall. Three-dimensional equilibrium variations in stellarators and broken symmetry tokamaks provide new couplings that increase the complexity and density of the Alfv'en mode spectrum. An eigenmode solver, the AE3D code, has been developed for calculating Alfv'en mode structures in such configurations and identifying the most likely modes for resonant energetic tail destabilization. Applications of this model to a variety of stellarators (LHD, TJ-II, HSX, QPS, NCSX) and broken symmetry tokamaks (ITER with TF ripple and ferritic materials) have been made and results will be presented. Possible extensions to include sound wave couplings and gyro-Landau closures will be discussed.
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
NASA Technical Reports Server (NTRS)
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
SPATIAL DAMPING OF PROPAGATING KINK WAVES DUE TO RESONANT ABSORPTION: EFFECT OF BACKGROUND FLOW
Soler, R.; Goossens, M.; Terradas, J.
2011-06-20
Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the direction perpendicular to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and are damped on length scales that are inversely proportional to the frequency as in the static case. However, the factor of proportionality depends on the characteristics of the flow, so that the damping length differs from its static analog. For slow, sub-Alfvenic flows the backward propagating wave gets damped on a shorter length scale than in the absence of flow, while for the forward propagating wave the damping length is longer. The different properties of the waves depending on their direction of propagation with respect to the background flow may be detected by the observations and may be relevant for seismological applications.
Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves
F.W. Perkins; R.B. White; P. Bonoli
2000-06-13
Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-01-20
To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V{sub SW}) and analyze its orientation with respect to the local background magnetic field B{sub 0,local}. As an example, we take only measurements made in an outward magnetic sector. When B{sub 0,local} is quasi-perpendicular to V{sub SW}, we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B{sub 0,local}, a property that is characteristic of an oblique Alfven wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B{sub 0,local}, thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle ({theta}{sub kB}) increases toward 90 Degree-Sign . Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B{sub 0,local} seems to indicate that oblique Alfven/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.
A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence
Biglari, H. . Plasma Physics Lab.); Diamond, P.H. . Dept. of Physics)
1992-01-01
The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir A.
1998-11-01
A perturbation method is developed to find the structure of Alfven wave modes in a cylindrical waveguide filled with a cold, collisional, uniform plasma with a vacuum layer between the plasma and a conducting wall when the magnetic field in the waveguide is a superposition of a uniform and an inhomogeneous /ell=2 (quadrupole) field created by helical windings. The influence of the helical field on the wave mode structure is treated as a perturbation. This innovative technique is applied in order to investigate the possibility of direct heating of plasma ions at the fundamental ion cyclotron resonance in stellarator magnetic field configuration. However, the theoretical development itself is unique and complete, and it can be useful for the analysis of other similar plasma models. We investigated the mode structure of an m=[+]1 (azimuthal wave number) fast wave which is modified by the magnetic field inhomogeneity. We found that the m=[- ]1 azimuthal component of the modified m=[+]1 fast Alfven wave is left-hand polarized in the central part of the plasma. This implies a coupling between the m=[+]1 fast (right-hand polarized) wave and m=[-]1 slow (left- hand polarized) waves due to the inhomogeneity of the /ell=2 fields. The coupling efficiency is examined for different plasma parameters. Results demonstrate that efficient coupling between the modes occurs for appropriate plasma parameters in this model, indicating that efficient plasma heating at the fundamental ion cyclotron frequency is possible in stellarators. The results of the analysis also point the way to a general theory of linear wave coupling in any inhomogeneous, anisotropic medium, since conventional mode conversion theory may be seen as just another example of this general theory.
Resonance Van Hove singularities in wave kinetics
NASA Astrophysics Data System (ADS)
Shi, Yi-Kang; Eyink, Gregory L.
2016-10-01
Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space D =(N - 2) d (d physical space dimension, N the number of waves in resonance) and the degree of degeneracy δ of the critical points. Following Van Hove, we show that non-degenerate singularities lead to finite phase measures for D > 2 but produce divergences when D ≤ 2 and possible breakdown of wave kinetics if the collision integral itself becomes too large (or even infinite). Similar divergences and possible breakdown can occur for degenerate singularities, when D - δ ≤ 2, as we find for several physical examples, including electron-hole kinetics in graphene. When the standard kinetic equation breaks down, then one must develop a new singular wave kinetics. We discuss approaches from pioneering 1971 work of Newell & Aucoin on multi-scale perturbation theory for acoustic waves and field-theoretic methods based on exact Schwinger-Dyson integral equations for the wave dynamics.
Rogue waves emerging from the resonant interaction of three waves.
Baronio, Fabio; Conforti, Matteo; Degasperis, Antonio; Lombardo, Sara
2013-09-13
We introduce a novel family of analytic solutions of the three-wave resonant interaction equations for the purpose of modeling unique events, i.e., "amplitude peaks" which are isolated in space and time. The description of these solutions is likely to be a crucial step in the understanding and forecasting of rogue waves in a variety of multicomponent wave dynamics, from oceanography to optics and from plasma physics to acoustics.
Fabry-Perot resonance of water waves
NASA Astrophysics Data System (ADS)
Couston, Louis-Alexandre; Guo, Qiuchen; Chamanzar, Maysamreza; Alam, Mohammad-Reza
2015-10-01
We show that significant water wave amplification is obtained in a water resonator consisting of two spatially separated patches of small-amplitude sinusoidal corrugations on an otherwise flat seabed. The corrugations reflect the incident waves according to the so-called Bragg reflection mechanism, and the distance between the two sets controls whether the trapped reflected waves experience constructive or destructive interference within the resonator. The resulting amplification or suppression is enhanced with increasing number of ripples and is most effective for specific resonator lengths and at the Bragg frequency, which is determined by the corrugation period. Our analysis draws on the analogous mechanism that occurs between two partially reflecting mirrors in optics, a phenomenon named after its discoverers Charles Fabry and Alfred Perot.
Wave energy driven resonant sea water pump
Czitrom, S.P.R.
1996-12-31
A wave driven sea-water pump which operates by resonance is described. Oscillations in the resonant and exhaust ducts perform similar to two mass-spring systems coupled by a third spring acting for the compression chamber. Performance of the pump is optimized by means of a variable volume air compression chamber (patents pending) which tunes the system to the incoming wave frequency. Wave tank experiments with an instrumented, 1:20 scale model of the pump are described. Performance was studied under various wave and tuning conditions and compared to a numerical model which was found to describe the system accurately. Successful sea trials at an energetic coastline provide evidence of the system`s viability under demanding conditions.
Programming of inhomogeneous resonant guided wave networks.
Feigenbaum, Eyal; Burgos, Stanley P; Atwater, Harry A
2010-12-06
Photonic functions are programmed by designing the interference of local waves in inhomogeneous resonant guided wave networks composed of power-splitting elements arranged at the nodes of a nonuniform waveguide network. Using a compact, yet comprehensive, scattering matrix representation of the network, the desired photonic function is designed by fitting structural parameters according to an optimization procedure. This design scheme is demonstrated for plasmonic dichroic and trichroic routers in the infrared frequency range.
The resonance wave function - is it relevant?
Elander, Nils; Shilyeava, Ksenia; Volkov, Mikhail; Yarevsky, Evgeny; Rakityansky, Sergei
2008-04-03
The physical relevance of the resonance wave function is discussed in view of the complex scaling theory. It is argued that although it is unphysical in the sense that it corresponds to a complex energy it is useful when we want to understand and compute several physical observables. We first review our work on the influence of resonances on a scattering cross sections. We then discuss the partial widths concept as presented by Peshkin, Moiseyev and Lefebvre [J. Chem. Phys. 92 2902 (1990)]. Finally we use this formalism to suggest a way to define a root mean square radius of a resonant state.
Wave energy extraction by coupled resonant absorbers.
Evans, D V; Porter, R
2012-01-28
In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.
Wave Phenomena in an Acoustic Resonant Chamber
ERIC Educational Resources Information Center
Smith, Mary E.; And Others
1974-01-01
Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…
Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.
2009-05-15
Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
RESONANTLY DAMPED KINK MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD
Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.e
2009-12-10
Transverse oscillations of solar filament and prominence threads have been frequently reported. These oscillations have the common features of being of short period (2-10 minutes) and being damped after a few periods. The observations are interpreted as kink magnetohydrodynamic (MHD) wave modes, whereas resonant absorption in the Alfven continuum and ion-neutral collisions are candidates to be the damping mechanisms. Here, we study both analytically and numerically the time damping of kink MHD waves in a cylindrical, partially ionized filament thread embedded in a coronal environment. The thread model is composed of a straight and thin, homogeneous filament plasma, with a transverse inhomogeneous transitional layer where the plasma physical properties vary continuously from filament to coronal conditions. The magnetic field is homogeneous and parallel to the thread axis. We find that the kink mode is efficiently damped by resonant absorption for typical wavelengths of filament oscillations, the damping times being compatible with the observations. Partial ionization does not affect the process of resonant absorption, and the filament plasma ionization degree is only important for the damping for wavelengths much shorter than those observed. To our knowledge, this is the first time that the phenomenon of resonant absorption is studied in a partially ionized plasma.
Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas
Heidbrink, W. W.
2008-05-15
Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P{sub {zeta}} is most important. Once a mode is driven unstable, a wide variety
Unstable resonators with excited converging wave
Hodgson, N. ); Weber, H. )
1990-04-01
This paper reports the properties of unstable resonators with an additional mirror inside or outside the resonator investigated, both experimentally and theoretically. The additional mirror excites the converging wave, and by this, output coupling is decreased without affecting beam quality. Experiments were performed with a pulsed Nd:YAG system. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically. Agreement between theory and experiments indicates that this kind of resonator provides high focusability and maximum extraction efficiency simultaneously, even with low-gain media. This enables one to apply unstable resonators to solid-state lasers with low small-signal gain, like alexandrite or CW-pumped Nd:YAG.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1983-10-25
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1985-05-20
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Method of making a piezoelectric shear wave resonator
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1987-02-03
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Piezoelectric shear wave resonator and method of making same
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1988-01-01
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Discrete control of resonant wave energy devices.
Clément, A H; Babarit, A
2012-01-28
Aiming at amplifying the energy productive motion of wave energy converters (WECs) in response to irregular sea waves, the strategies of discrete control presented here feature some major advantages over continuous control, which is known to require, for optimal operation, a bidirectional power take-off able to re-inject energy into the WEC system during parts of the oscillation cycles. Three different discrete control strategies are described: latching control, declutching control and the combination of both, which we term latched-operating-declutched control. It is shown that any of these methods can be applied with great benefit, not only to mono-resonant WEC oscillators, but also to bi-resonant and multi-resonant systems. For some of these applications, it is shown how these three discrete control strategies can be optimally defined, either by analytical solution for regular waves, or numerically, by applying the optimal command theory in irregular waves. Applied to a model of a seven degree-of-freedom system (the SEAREV WEC) to estimate its annual production on several production sites, the most efficient of these discrete control strategies was shown to double the energy production, regardless of the resource level of the site, which may be considered as a real breakthrough, rather than a marginal improvement.
Highly Alfvenic Slow Solar Wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
Ring waveguide resonator on surface acoustic waves
NASA Astrophysics Data System (ADS)
Biryukov, S. V.; Martin, G.; Weihnacht, M.
2007-04-01
A simple regular electrode structure for surface acoustic wave (SAW) devices is proposed. The structure consists of an interdigital transducer in the form of a ring placed on the Z cut of a hexagonal piezoelectric crystal. Finite thickness electrodes produce the known slowing effect for a SAW in comparison with this SAW on a free surface. The closed "slow" electrode region with the "fast" surrounding region forms an open waveguide resonator structure with the acoustic field concentrated in the electrode region. If the radius of the structure is large enough for a given wavelength, an acceptable level of radiation losses can be reached. The electrical admittance of such resonator does not have sidelobes.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Reverse wave suppression in unstable ring resonator
NASA Astrophysics Data System (ADS)
Mirels, H.; Chodzko, R. A.; Bernard, J. M.; Giedt, R. R.; Coffer, J. G.
1984-12-01
Criteria for effective reverse-wave suppression (RWS) in CW and pulsed unstable ring lasers with inhomogeneously broadened media are determined theoretically, and the performance of a CW HF linear ring resonator (Chodzko et al., 1976) and of two configurations of a pulsed CO2 annular beam-rotation/internal-axicon (BRIA) resonator (Bullock et al., 1979) without and with an RWS mirror is evaluated experimentally. In the CW laser, the average forward-wave (FW) and RW power values are shown to be 61 and 39 W without RWS and 110 and 2.7 W with RWS, corresponding to a FW/RW power ratio of 41; in the pulsed BRIA lasers, power ratios of about 20 are achieved, but the RWS effectiveness is found to be highly sensitive to RWS-mirror and cavity misalignment. Graphs, drawings, tables, and photographs of typical waveforms are included.
Ribe, F.L.
1988-01-01
This report represents an update of the work described in Progress report No. 1 UWAERP/17 (2/16/87--10/15/87). During the present reporting period we have continued our work on the non-- axisymmetric Alfven wave heating of a high beta plasma column, and begun installation of the shifted hardcore heliac hardware. The hardware for the Alfven wave heating experiment has been assembled, installed, and tested. The preliminary experiment on the axisymmetric HBQM theta pinch compression coil set is scheduled to begin immediately. Details are given. The hardcore shifting apparatus has been built and is installed on one end of the HBQM, and the design and construction of the other end will proceed concurrently with experiments using a fixed hardcore. A design improvement in the hardcore shifting apparatus (since the last reporting period) has been implemented, motivated by the necessity of reliable operation at higher voltages.
Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes
Cheng, C.Z.
1990-10-01
The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped {alpha}-particles through the wave-particle resonances. Satisfying the resonance condition requires that the {alpha}-particle birth speed v{sub {alpha}} {ge} v{sub A}/2{vert bar}m-nq{vert bar}, where v{sub A} is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the {alpha}-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the {alpha}-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the {alpha}-particle beta {beta}{sub {alpha}}, {alpha}-particle pressure gradient parameter ({omega}{sub {asterisk}}/{omega}{sub A}) ({omega}{sub {asterisk}} is the {alpha}-particle diamagnetic drift frequency), and (v{sub {alpha}}/v{sub A}) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged {alpha}-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged {alpha}-particle beta threshold is in the order of 10{sup {minus}4}. Typical growth rates of the n=1 TAE mode can be in the order of 10{sup {minus}2}{omega}{sub A}, where {omega}{sub A}=v{sub A}/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects.
Ribe, F.L.
1987-01-01
This paper discusses experiments on linear high beta helical axis stellarators. Experiments considered are: formation of linear high beta heliac plasma configurations; Alfven wave heating in a straight tube and in a linear high beat stellarator; shifted hardcore heliac studies; a system for measuring the timing of high-current switches in a pulsed high voltage fusion experiment; HBQM general refurbishment; and proposed experiment on excitation of the m = 1 tilt mode in field-reversed configurations. (LSP)
NASA Technical Reports Server (NTRS)
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
NASA Astrophysics Data System (ADS)
Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.
2015-12-01
The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.
Nodal resonance in a strong standing wave
NASA Astrophysics Data System (ADS)
Fernández C., David J.; Mielnik, Bogdan
1990-06-01
The motion of charged particles in a standing electromagnetic wave is considered. For amplitudes that are not too high, the wave causes an effect of attraction of particles to the nodal points, resembling the channeling effect reported by Salomon, Dalibard, Aspect, Metcalf, and Cohen-Tannoudji [Phys. Rev. Lett. 59, 1659 (1987)] consistent with the ``high-frequency potential'' of Kapitza [Zh. Eksp. Teor. Fiz. 21, 588 (1951)]. For high-field intensities, however, the nodal points undergo a qualitative metamorphosis, converting themselves from particle attractors into resonant centers. Some chaotic phenomena arise and the description of the oscillating field in terms of an ``effective potential'' becomes inappropriate. The question of a correct Floquet Hamiltonian that could describe the standing wave within this amplitude and frequency regime is open.
Resonant excitation of whistler waves by a helical electron beam
NASA Astrophysics Data System (ADS)
An, X.; Van Compernolle, B.; Bortnik, J.; Thorne, R. M.; Chen, L.; Li, W.
2016-03-01
Chorus-like whistler mode waves that are known to play a fundamental role in driving radiation belt dynamics are excited on the Large Plasma Device by the injection of a helical electron beam into a cold plasma. The mode structure of the excited whistler wave is identified using a phase correlation technique showing that the waves are excited through a combination of Landau resonance, cyclotron resonance, and anomalous cyclotron resonance. The dominant wave mode excited through cyclotron resonance is quasi-parallel propagating, whereas wave modes excited through Landau resonance and anomalous cyclotron resonance propagate at oblique angles that are close to the resonance cone. An analysis of the linear wave growth rates captures the major observations in the experiment. The results have important implications for the generation process of whistler waves in the Earth's inner magnetosphere.
A mechanistic interpretation of the resonant wave-particle interaction
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2016-05-01
This paper provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Langmuir wave in a Vlasov plasma, the non-resonant electrons satisfy an oscillator equation that is driven resonantly by the bare electric field from the resonant electrons, and in the case of wave damping, this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in waves governed by 2D E × B drift dynamics, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes E × B drift motion back in the core plasma, reducing the amplitude of the wave.
Resonant-cavity antenna for plasma heating
Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.
1987-01-01
Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.
Resonantly enhanced four-wave mixing
Begley, Richard F.; Kurnit, Norman A.
1978-01-01
A method and apparatus for achieving large susceptibilities and long interaction lengths in the generation of new wavelengths in the infrared spectral region. A process of resonantly enhanced four-wave mixing is employed, utilizing existing laser sources, such as the CO.sub.2 laser, to irradiate a gaseous media. The gaseous media, comprising NH.sub.3, CH.sub.3 F, D.sub.2, HCl, HF, CO, and H.sub.2 or some combination thereof, are of particular interest since they are capable of providing high repetition rate operation at high flux densities where crystal damage problems become a limitation.
Dispersive radiation induced by shock waves in passive resonators.
Malaguti, Stefania; Conforti, Matteo; Trillo, Stefano
2014-10-01
We show that passive Kerr resonators pumped close to zero dispersion wavelengths on the normal dispersion side can develop the resonant generation of linear waves driven by cavity (mixed dispersive-dissipative) shock waves. The resonance mechanism can be successfully described in the framework of the generalized Lugiato-Lefever equation with higher-order dispersive terms. Substantial differences with radiation from cavity solitons and purely dispersive shock waves dispersion are highlighted.
NASA Astrophysics Data System (ADS)
Belashov, Vasily
We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega
Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.
Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe
2014-09-01
The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.
Brecht, S H; Hewett, D W; Larson, D J
2009-03-12
In this letter the transition of a strong 3-D collisionless shock into sub-Alfvenic waves is examined numerically. The transition occurs because the Alfven speed eventually exceeds the shock speed, not because the shock runs out of energy. At this velocity transition, the shock disassembles into two types of waves: the usual compressional Alfven wave and a left-hand polarized electromagnetic shear Alfven wave. This later wave shows remarkable 3-D coherence, and preliminary analysis suggests that it is coupled to the strong electromagnetic waves that exist within the collisionless shock.
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
Suppression of resonance of offshore platform in irregular waves
Ishida, H.; Komura, T.
1994-12-31
A theoretical solution of the vibration of offshore platforms due to irregular waves has been presented by using the equivalent linearized method. This solution has been verified by comparison with the experimental data from the viewpoint of time variation and the spectrum analysis. In the case of irregular waves as well as periodic waves, the resonance can be suppressed by bringing the resonance point close to the cancellation point.
Resonant-cavity ICRF coupler for large tokamaks
Perkins, F.W.; Kluge, R.F.
1983-04-01
A new resonant-cavity ICRF coupler is proposed for large tokamaks. The design features a novel resonant cavity, an rf magnetic-field orientation that effectively radiates fast Alfven waves, matching to 40 ..cap omega.. transmission lines, and an electric-field orientation so that the strongest rf electric fields are orthogonal to the main toroidal magnetic field thereby benefitting from magnetic insulation. As a result, the power handling capability is excellent. For the case of the Big-Dee Doublet III tokamak, a single 35 cm x 50 cm coupler can launch 20 MW of fast Alfven waves. Extrapolation to fusion reactor parameters is straightforward.
Resonant-test-field model of fluctuating nonlinear waves
NASA Astrophysics Data System (ADS)
West, Bruce J.
1982-03-01
A Hamiltonian system of nonlinear dispersive waves is used as a basis for generalizing the test-wave model to a set of resonantly interacting waves. The resonant test field (RTF) is shown to obey a nonlinear generalized Langevin equation in general. In the Markov limit a Fokker-Planck equation is obtained and the exact steady-state solution is determined. An algebraic expression for the power spectral density is obtained in terms of the number of resonantly interacting waves (n) in the RTF, the interaction strength (Vk), and the dimensionality of the wave field (d). For gravity waves on the ocean surface a k-4 spectrum is obtained, and for capillary waves a k-8 spectrum, both of which are in essential agreement with data.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2003-01-01
When multi-ion plasma consisting of heavy and light ions is permeated by a lowfrequency Alfien (LFA) wave, the EXB and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-D particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically we study the situation for LFA wave frequency being lower than the heavyion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams.
Alfven continuum and Alfven eigenmodes in the National Compact Stellarator Experiment
Fesenyuk, O.P.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; White, R.B.; Yakovenko, Yu.V.
2004-12-01
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) [G. H. Neilson et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94/IC-1] is investigated with the AC code COBRA [Ya. I. Kolesnichenko et al., Phys. Plasmas 8, 491 (2001)]. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gap of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E [V. V. Lutsenko et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94-TH/P3-16].
NDI using mm-wave resonant techniques
Martens, J.S.; Sachtjen, S.; Sorensen, N.R.
1995-08-01
Millimeter wave resonant measurements are commonly used for surface and near-surface materials characterization including the detection of cracks and defects, analysis of semiconducting and dielectric materials, and analysis of metallic electrical properties beneath coatings. Recent work has also shown the approach to be useful in evaluating corrosion products and the detection of incipient corrosion and corrosion cracking. In the analysis area, complex permittivity data of the corrosion products can be extracted, usually with accuracy of a few percent or better, to aid in identification of the product and possibly of mechanisms. In the detection area, corrosion-related cracks of order 100{mu}m or less near the surface have been detected and corrosion products have been detected beneath a variety of paints. Surface preparation requirements are minimal, particularly compared to some optical techniques, giving increased hope of field applicability. A number of examples of NDI on aircraft related materials and structures will be presented along with an assessment of detection and accuracy limits.
Resonant metalenses for flexural waves in plates.
Colombi, Andrea
2016-11-01
The dispersion curves of a cluster of closely spaced rods supported by a thin plate are characterised by subwavelength bandgaps and slow group velocities induced by local resonance effects. A recent analytical study [Williams, Roux, Rupin, and Kuperman (2015). Phys. Rev. B 91, 104307], has shown how the slow velocity branch depends, amongst other parameters, on the height of the rods that make up the cluster. Such metamaterial, offering easy-to-tune spatial velocity gradients, is a perfect candidate for building gradient index lenses such as Luneburg, Maxwell, and 90° rotating. Here theoretical results are combined with numerical simulations to design and test metalenses for flexural waves. The lenses are obtained by tuning the height of the cluster of rods such that they provide the required refractive index profile. Snapshots and videos from three-dimensional numerical simulations in a narrow band centered at ∼4 kHz are used to analyse the performances of three types of gradient index metalens (Luneburg, Maxwell, and 90° rotating).
Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals
NASA Astrophysics Data System (ADS)
Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu
2017-03-01
Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.
Helium cyclotron resonance within the earth's magnetosphere
Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.
1981-01-01
A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.
Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material
Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,
2013-09-03
A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.
Synthesis and characterization of plasmonic resonant guided wave networks.
Burgos, Stanley P; Lee, Ho W; Feigenbaum, Eyal; Briggs, Ryan M; Atwater, Harry A
2014-06-11
Composed of optical waveguides and power-splitting waveguide junctions in a network layout, resonant guided wave networks (RGWNs) split an incident wave into partial waves that resonantly interact within the network. Resonant guided wave networks have been proposed as nanoscale distributed optical networks (Feigenbaum and Atwater, Phys. Rev. Lett. 2010, 104, 147402) that can function as resonators and color routers (Feigenbaum et al. Opt. Express 2010, 18, 25584-25595). Here we experimentally characterize a plasmonic resonant guided wave network by demonstrating that a 90° waveguide junction of two v-groove channel plasmon polariton (CPP) waveguides operates as a compact power-splitting element. Combining these plasmonic power splitters with CPP waveguides in a network layout, we characterize a prototype plasmonic nanocircuit composed of four v-groove waveguides in an evenly spaced 2 × 2 configuration, which functions as a simple, compact optical logic device at telecommunication wavelengths, routing different wavelengths to separate transmission ports due to the resulting network resonances. The resonant guided wave network exhibits the full permutation of Boolean on/off values at two output ports and can be extended to an eight-port configuration, unlike other photonic crystal and plasmonic add/drop filters, in which only two on/off states are accessible.
Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction
NASA Astrophysics Data System (ADS)
Colquitt, D. J.; Colombi, A.; Craster, R. V.; Roux, P.; Guenneau, S. R. L.
2017-02-01
We consider the canonical problem of an array of rods, which act as resonators, placed on an elastic substrate; the substrate being either a thin elastic plate or an elastic half-space. In both cases the flexural plate, or Rayleigh surface, waves in the substrate interact with the resonators to create interesting effects such as effective band-gaps for surface waves or filters that transform surface waves into bulk waves; these effects have parallels in the field of optics where such sub-wavelength resonators create metamaterials in the bulk and metasurfaces at the free surfaces. Here we carefully analyse this canonical problem by extracting the dispersion relations analytically thereby examining the influence of both the flexural and compressional resonances on the propagating wave. For an array of resonators atop an elastic half-space we augment the analysis with numerical simulations. Amongst other effects, we demonstrate the striking effect of a dispersion curve which corresponds to a mode that transitions from Rayleigh wave-like to shear wave-like behaviour and the resultant change in the fields from surface to bulk waves.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.
Inherently unstable internal gravity waves due to resonant harmonic generation
NASA Astrophysics Data System (ADS)
Liang, Yong; Zareei, Ahmad; Alam, Mohammad-Reza
2017-01-01
Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain for a linearly-stratified fluid if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance presented here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing.
Porous silicon bulk acoustic wave resonator with integrated transducer
2012-01-01
We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697
Theory and Observations of High Frequency Alfven Eigenmodes in Low Aspect Ratio Plasma
N.N. Gorelenkov; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; S. Kaye; R. White
2003-06-27
New observations of sub-cyclotron frequency instability in low aspect ratio plasma in National Spherical Torus Experiments (NSTX) are reported. The frequencies of observed instabilities correlate with the characteristic Alfven velocity of the plasma. A theory of localized Compressional Alfven Eigenmodes (CAE) and Global shear Alfven Eigenmodes (GAE) in low aspect ratio plasma is presented to explain the observed high frequency instabilities. CAE's/GAE's are driven by the velocity space gradient of energetic super-Alfvenic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAE's, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instabilities ions are presented.
Resonant generation of internal waves on a model continental slope.
Zhang, H P; King, B; Swinney, Harry L
2008-06-20
We study internal wave generation in a laboratory model of oscillating tidal flow on a continental margin. Waves are found to be generated only in a near-critical region where the slope of the bottom topography matches that of internal waves. Fluid motion with a velocity an order of magnitude larger than that of the forcing occurs within a thin boundary layer above the bottom surface. The resonant wave is unstable because of strong shear; Kelvin-Helmholtz billows precede wave breaking. This work provides a new explanation for the intense boundary flows on continental slopes.
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Enhancement of particle-wave energy exchange by resonance sweeping
Berk, H.L.; Breizman, B.N.
1996-01-01
When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism can cause increased saturation levels of instabilities and even allow the free energy associated with instability to be tapped in a system in which background dissipation suppresses linear instability.
Enhancement of particle-wave energy exchange by resonance sweeping
Berk, H.L.; Breizman, B.N.
1995-10-01
It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.
D-wave Resonances in Positronium Hydride
NASA Technical Reports Server (NTRS)
DiRienzi, Joseph; Drackman, Richard J.; Rabin, Douglas (Technical Monitor)
2002-01-01
In a previous paper [Phys. Rev. A 65, 032721 (2002)] we re-examined a model describing the structure of the low-energy Ps-H resonances as being due to quasi-bound states of the positron in the perturbed Coulomb potential of the H-ion appearing in the closed, rearranged channel. In particular, we wished to understand why the lowest p-state resonance was so far away from the lowest quasi-bound (2p) state. We found that the lowest resonance actually corresponds to the first excited [3p] state, while the lowest state is not recognizable as a resonance. In the present work we repeat our analysis, but this time for the lowest d state. We find that the lowest [3d] state does correspond to a resonance shifted moderately.
Electron acceleration by Landau resonance with whistler mode wave packets
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Reinleitner, L. A.
1983-01-01
Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.
Resonant mode for gravitational wave detectors based on atom interferometry
NASA Astrophysics Data System (ADS)
Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet
2016-11-01
We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wave packets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to ΩGW˜10-14 for a two-satellite space-based detector.
Rational solitons of wave resonant-interaction models
NASA Astrophysics Data System (ADS)
Degasperis, Antonio; Lombardo, Sara
2013-11-01
Integrable models of resonant interaction of two or more waves in 1+1 dimensions are known to be of applicative interest in several areas. Here we consider a system of three coupled wave equations which includes as special cases the vector nonlinear Schrödinger equations and the equations describing the resonant interaction of three waves. The Darboux-Dressing construction of soliton solutions is applied under the condition that the solutions have rational, or mixed rational-exponential, dependence on coordinates. Our algebraic construction relies on the use of nilpotent matrices and their Jordan form. We systematically search for all bounded rational (mixed rational-exponential) solutions and find a broad family of such solutions of the three wave resonant interaction equations.
Conventional and nonconventional global Alfven eigenmodes in stellarators
Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.
2007-10-15
Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.
Surface Waves and Landau Resonant Heating in Unmagnetized Bounded Plasmas
NASA Astrophysics Data System (ADS)
Bowers, Kevin
2001-10-01
Owing to the large areas and high plasma densities found in some recently developed devices [1], electrostatic theories of plasma resonances and surface wave [2-3] propagation in such devices are suspect as the size of the device is much larger than the free space wavelength associated with the peak plasma frequency. Accordingly, an electromagnetic model of surface wave propagation has been developed appropriate for large area plasmas. The predicted wave dispersion of the two models differs for extremely long wavelengths but is degenerate in devices small compared with wavelength. First principles particle-in-cell simulations using new techniques developed for the demanding simulation regime have been conducted which support these results. Given the slow wave character and boundary localized fields of surface waves, a periodic electrode may be used to resonantly excite a strong wave-particle interaction between surface waves and electrons. At saturation, the electron velocity distribution is enhanced above the phase velocity of the applied wave and suppressed below. The use of this technique (``Landau resonant heating'') to selectively heat the electron high energy tail to enhance electron-impact ionization is demonstrated using particle-in-cell simulation. [1] Matsumoto (Sumitomo Metal Industries). Private Communication. July 1999. [2] Nickel, Parker, Gould. Phys. Fluids. 7:1489. 1964. [3] Cooperberg. Phys. Plasmas. Vol. 5, No. 4, April 1998.
Resonant triad interactions of acoustc-gravity waves
NASA Astrophysics Data System (ADS)
Kadri, Usama; Akylas, T. R.
2015-11-01
Surface-acoustic wave disturbances in water of constant depth over a rigid bottom, due to the combined action of gravity and compressibility, are studied. In the linear theory, apart from free-surface (gravity) waves, there is also a countable infinity of acoustic (compression) modes. As the sound speed in water, typically, far exceeds the maximum gravity wave phase speed, these two types of modes feature vastly different spatial and/or temporal scales, and their linear coupling is weak. It is possible, however, to realize significant energy exchange between gravity and acoustic waves via nonlinear interactions. This scenario is analyzed for resonant wave triads that comprise two counter-propagating gravity waves and a long-crested acoustic mode. Owing to this disparity in length scales, the interaction time scale as well as the form of the amplitude evolution equations differ from those of a standard resonant triad. In the case of a perfectly tuned triad of uniform monochromatic wave trains, nearly all the energy initially in the gravity waves can be transferred to the acoustic wave. This mechanism, however, is less efficient when the interacting waves are modulated wavepackets.
Numerical simulation of the resonantly excited capillary-gravity waves
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya
2015-11-01
Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.
Resonant Interactions of Capillary-Gravity Water Waves
NASA Astrophysics Data System (ADS)
Martin, Calin Iulian
2016-11-01
We show here that capillary-gravity wave trains can propagate at the free surface of a rotational water flow of constant non-zero vorticity over a flat bed only if the flow is two-dimensional. Moreover, we also show that the vorticity must have only one non zero component which points in the horizontal direction orthogonal to the direction of wave propagation. This result is of relevance in the study of nonlinear resonances of wave trains. We perform such a study for three- and four wave interactions.
Calculation of Diffusion Coefficients from Bounce Resonance with Magnetosonic Waves
NASA Astrophysics Data System (ADS)
Tao, X.; Li, X.; Lu, Q.; Dai, L.
2015-12-01
Theoretical bounce resonance diffusion coefficients for interactions between electrons and magnetosonic waves are calculated and validated using guiding-center test particle simulations. First, we compare the theoretical diffusion coefficients of Roberts and Schulz with test particle simulations and find perfect agreement. However, the theoretical diffusion coefficients of Roberts and Schulz assume waves to be present on the whole trajectories of particles; therefore, they are not directly applicable to magnetosonic waves, which are found to be confined to equatorial regions from observations. Second, we derive a new set of bounce-resonance diffusion coefficients, taking into consideration the equatorial confinement of magnetosonic waves. These new diffusion coefficients are also validated by test particle simulations. Using a previously published magnetosonic wave model, our results demonstrate that bounce-resonance diffusion mainly results in strong pitch angle scattering of energetic electrons even with a moderate wave amplitude of 50 pT. We conclude that bounce-resonance diffusion plays an important role in relativistic electron dynamics and should be incorporated into global radiation belt modeling.
Characteristics of Short Wavelength Compressional Alfven Eigenmodes
Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-12-19
Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Alfvenically driven slow shocks in the solar chromosphere and corona
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1992-01-01
The nonlinear evolution of an Alfvenic impulse launched from the photosphere and its dynamical effects on the chromosphere, transition region (TR), and corona are investigated using a simple 1D model. It is found that the leading edge of the torsional pulse can steepen into a fast shock in the chromosphere if the pulse is of sufficiently large amplitude and short duration. A slow shock which develops behind the Alfvenic pulse can reflect downgoing Alfven waves back up to the corona. The upgoing reflected wave can induce a significant upward ejection of the TR. Nonlinear dynamics are found to lead to very impulsive behavior at later times. It is suggested that impulsive events occurring in the TR or corona need not be interpreted in terms of reconnection-driven microflares. It is also found that B(0) in the chromosphere can be amplified when the TR and chromosphere fall.
Optical rogue waves in whispering-gallery-mode resonators
NASA Astrophysics Data System (ADS)
Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.
2014-01-01
We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.
RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES
Zankovich, A. M.; Kovalenko, I. G.
2015-02-10
We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.
Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers
2014-10-06
Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers Kevin O’Brien,1 Chris Macklin,2 Irfan Siddiqi,2 and Xiang Zhang1,3...overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using “resonant...achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of −98 dBm. Such an amplifier is well suited to cryogenic
Spurious-free Lamb wave resonators with protrusion structures
NASA Astrophysics Data System (ADS)
Zhang, Hongxiang; Liang, Ji; Zhang, Hao; Zhang, Daihua; Pang, Wei
2015-12-01
In this letter, we demonstrate a technique to eliminate the spurious modes in aluminum nitride Lamb wave resonators (LWRs). The transverse acoustic wave characteristics are examined, and a resonance modulation theory on the regulation of mechanical boundary conditions is deducted. As examples of embodiments, vertical and lateral protrusion structures are proposed for the suppression. Finite element analysis verifies that the employment of these structures effectively restrains the transverse modes, and the measured electrical performance of the LWR with protrusions demonstrates an 11 dB reduction in the spurious response.
Resonant X-ray emission with a standing wave excitation
Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo
2016-01-01
The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531
P-wave autodissociating resonant states of positronium hydride
NASA Astrophysics Data System (ADS)
Yan, Zong-Chao; Ho, Y. K.
1998-05-01
P-wave autodissociating resonances in positronium-hydrogen scattering are calculated using the method of complex-coordinate rotation. The two lowest P-wave resonance energies and widths are determined by employing extensive Hylleraas-type wave functions, with the sizes of basis sets up to N=2513 terms. The calculated energy and width for the lowest P-state are E_r=-0.59253± 0.00005 a.u. and Γ=0.00160± 0.00010 a.u. We will show the details of our calculations, as well as a comparison with the published values. Results for S- and D-waves will also be presented.
Graphene-based waveguide resonators for submillimeter-wave applications
NASA Astrophysics Data System (ADS)
Ilić, Andjelija Ž.; Bukvić, Branko; Ilić, Milan M.; Budimir, Djuradj
2016-08-01
Utilization of graphene covered waveguide inserts to form tunable waveguide resonators is theoretically explained and rigorously investigated by means of full-wave numerical electromagnetic simulations. Instead of using graphene-based switching elements, the concept we propose incorporates graphene sheets as parts of a resonator. Electrostatic tuning of the graphene surface conductivity leads to changes in the electromagnetic field boundary conditions at the resonator edges and surfaces, thus producing an effect similar to varying the electrical length of a resonator. The presented outline of the theoretical background serves to give phenomenological insight into the resonator behavior, but it can also be used to develop customized software tools for design and optimization of graphene-based resonators and filters. Due to the linear dependence of the imaginary part of the graphene surface impedance on frequency, the proposed concept was expected to become effective for frequencies above 100 GHz, which is confirmed by the numerical simulations. A frequency range from 100 GHz up to 1100 GHz, where the rectangular waveguides are used, is considered. Simple, all-graphene-based resonators are analyzed first, to assess the achievable tunability and to check the performance throughout the considered frequency range. Graphene-metal combined waveguide resonators are proposed in order to preserve the excellent quality factors typical for the type of waveguide discontinuities used. Dependence of resonator properties on key design parameters is studied in detail. Dependence of resonator properties throughout the frequency range of interest is studied using eight different waveguide sections appropriate for different frequency intervals. Proposed resonators are aimed at applications in the submillimeter-wave spectral region, serving as the compact tunable components for the design of bandpass filters and other devices.
Surface acoustic wave vapor sensors based on resonator devices
NASA Astrophysics Data System (ADS)
Grate, Jay W.; Klusty, Mark
1991-05-01
Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.
Phenomenology of Compressional Alfven Eigenmodes
E.D. Fredrickson; N.N. Gorelenkov; J. Menard
2004-05-13
Coherent oscillations with frequency 0.3 {le} {omega}/{omega}{sub ci} {le} 1, are seen in the National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y-K.M. Peng, et al., Nucl. Fusion 40, 557 (2000)]. This paper presents new data and analysis comparing characteristics of the observed modes to the model of compressional Alfven eigenmodes (CAE). The toroidal mode number has been measured and is typically between 7 < n < 9. The polarization of the modes, measured using an array of four Mirnov coils, is found to be compressional. The frequency scaling of the modes agrees with the predictions of a numerical 2-D code, but the detailed structure of the spectrum is not captured with the simple model. The fast ion distribution function, as calculated with the beam deposition code in TRANSP [R.V. Budny, Nucl. Fusion 34, 1247 (1994)], is shown to be qualitatively consistent with the constraints of the Doppler-shifted cyclotron resonance drive model. This model also predicts the observed scaling of the low frequency limit for CAE.
Travelling wave magnetic resonance imaging at 3 T
NASA Astrophysics Data System (ADS)
Vazquez, F.; Martin, R.; Marrufo, O.; Rodriguez, A. O.
2013-08-01
Waveguides have been successfully used to generate magnetic resonance images at 7 T with whole-body systems. The bore diameter limits the magnetic resonance signal transmitted because its specific cut-off frequency is greater than the majority of resonant frequencies in magnetic resonance imaging and spectroscopy. This restriction can be overcome by using a parallel-plate waveguide whose cut-off frequency is zero for the transverse electromagnetic modes and it can propagate any frequency. To study the potential benefits of travelling-wave excitation for whole-body imaging at 3 T, we compare numerical simulations of the principal mode propagation for a parallel-plate waveguide filled with a cylindrical phantom and two surface coils for all simulations at 1.5 T, 3 T, 4.7, 7 T, and 9.4 T. The principal mode shows very little variation of the field magnitude along the propagation direction at 3 T when compared to other higher resonant frequencies. Unlike the standard method for travelling-wave magnetic resonance imaging, a parallel-plate waveguide prototype was built and used together with a whole-body birdcage coil for signal transmission and a pair of circular coils for reception. Experimental B1 mapping was computed to investigate the feasibility of this approach and, the point spread function method was used to measure the imager performance. Human leg images were acquired to experimentally validate this approach. The numerical magnetic field and specific absorption rate of a simulated leg were computed and results are within the safety limits. The B1 mapping and point spread function results showed that it is possible to conduct travelling-wave imaging experiments with good imager performance. Human leg images were also obtained with the whole-body birdcage coil for comparison purposes. The simulated and in vivo travelling-wave results of the human leg correspond very well for the signal received. A similar image signal-to-noise ratio was observed for the
Magnetostatic Wave Transducers, Resonators and Dispersion Control
1990-05-01
propagating at microwave frequencies in magnetically biased, liquid phase epitaxial films of Yttrium Iron Garnet (YIG) grown on Gadolinium Gallium Garnet... microwave energy for MSSW propagation along the YIG film. A 25 um-thick 3mm- wide YIG film and 15 um-thick Gadolinium Gallium Garnet (GGG) substrate was...stretching. Methods for providing these time delays include an assortment of fixed cables. ferrite loaded cables. surface acoustic wave iSA W) devices
Shear waves in a resonator with cubic nonlinearity
NASA Astrophysics Data System (ADS)
Andreev, V. G.; Krit, T. B.; Sapozhnikov, O. A.
2011-11-01
Shear waves with finite amplitude in a one-dimensional resonator in the form of a layer of a rubber-like medium with a rigid plate of finite mass at the upper surface of the layer are investigated. The lower boundary of the layer oscillates according to a harmonic law with a preset acceleration. The equation of motion for particles in a resonator is determined using a model of a medium with a single relaxation time and cubical dependence of the shear modulus on deformation. The amplitude and form of shear waves in a resonator are calculated numerically by the finite difference method at shifted grids. Resonance curves are obtained at different acceleration amplitudes at the lower boundary of a layer. It is demonstrated that, as the oscillation amplitude in the resonator grows, the value of the resonance frequency increases and the shape of the resonance curve becomes asymmetrical. At sufficiently large amplitudes, a bistability region is observed. Measurements were conducted with a resonator, where a layer with the thickness of 15 mm was manufactured of a rubber-like polymer called plastisol. The shear modulus of the polymer at small deformations and the nonlinearity coefficient were determined according to the experimental dependence of mechanical stress on shear deformation. Oscillation amplitudes in the resonator attained values when the maximum shear deformations in the layer were 0.4-0.6, which provided an opportunity to observe nonlinear effects. Measured dependences of the resonance frequency on the oscillation amplitude corresponded to the calculated ones that were obtained at a smaller value of the nonlinear coefficient.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Resonance-assisted decay of nondispersive wave packets.
Wimberger, Sandro; Schlagheck, Peter; Eltschka, Christopher; Buchleitner, Andreas
2006-07-28
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
Softening of stressed granular packings with resonant sound waves.
Reichhardt, C J Olson; Lopatina, L M; Jia, X; Johnson, P A
2015-08-01
We perform numerical simulations of a two-dimensional bidisperse granular packing subjected to both a static confining pressure and a sinusoidal dynamic forcing applied by a wall on one edge of the packing. We measure the response experienced by a wall on the opposite edge of the packing and obtain the resonant frequency of the packing as the static or dynamic pressures are varied. Under increasing static pressure, the resonant frequency increases, indicating a velocity increase of elastic waves propagating through the packing. In contrast, when the dynamic amplitude is increased for fixed static pressure, the resonant frequency decreases, indicating a decrease in the wave velocity. This occurs both for compressional and for shear dynamic forcing and is in agreement with experimental results. We find that the average contact number Zc at the resonant frequency decreases with increasing dynamic amplitude, indicating that the elastic softening of the packing is associated with a reduced number of grain-grain contacts through which the elastic waves can travel. We image the excitations created in the packing and show that there are localized disturbances or soft spots that become more prevalent with increasing dynamic amplitude. Our results are in agreement with experiments on glass bead packings and earth materials such as sandstone and granite and may be relevant to the decrease in elastic wave velocities that has been observed to occur near fault zones after strong earthquakes, in surficial sediments during strong ground motion, and in structures during earthquake excitation.
Identification of resonance waves in open water channels
Technology Transfer Automated Retrieval System (TEKTRAN)
This article presents a procedure to determine the characteristics of open water channels required for controller and filter design, with special focus on the resonance waves. Also, a new simplified model structure for open water channels is proposed. The procedure applies System Identification tool...
Drift-Alfven eigenmodes in inhomogeneous plasma
Vranjes, J.; Poedts, S.
2006-03-15
A set of three nonlinear equations describing drift-Alfven waves in a nonuniform magnetized plasma is derived and discussed both in linear and nonlinear limits. In the case of a cylindric radially bounded plasma with a Gaussian density distribution in the radial direction the linearized equations are solved exactly yielding general solutions for modes with quantized frequencies and with radially dependent amplitudes. The full set of nonlinear equations is also solved yielding particular solutions in the form of rotating radially limited structures. The results should be applicable to the description of electromagnetic perturbations in solar magnetic structures and in astrophysical column-like objects including cosmic tornados.
Artificial excitation of ELF waves with frequency of Schumann resonance
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Earth-orbiting resonant-mass gravitational wave detectors
NASA Technical Reports Server (NTRS)
Paik, Ho Jung
1989-01-01
Earth-based gravitational wave detectors suffer from the need to support the large antenna masses against the earth's gravity without transmitting a significant amount of seismic noise. Passive vibration isolation is difficult to achieve below 1 Hz on the earth. Vibration-free space environment thus gives an opportunity to extend the frequency window of gravitational wave detection to ultralow frequencies. The weightless condition of a space laboratory also enables construction of a highly symmetric multimode antenna which is capable of resolving the direction of the source and the polarization of the incoming wave without resorting to multiantenna coincidence. Two types of earth-orbiting resonant-mass gravitational wave detectors are considered. One is a skyhook gravitational wave detector, proposed by Braginsky and Thorne (1985). The other is a spherical detector, proposed by Forward (1971) and analyzed by Wagoner and Paik (1976).
Wave-particle resonance condition test for ion-kinetic waves in the solar wind
NASA Astrophysics Data System (ADS)
Narita, Y.; Marsch, E.; Perschke, C.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.
2016-04-01
Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ion-kinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1 AU (astronomical unit).
Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction
NASA Astrophysics Data System (ADS)
Dai, Lei; Takahashi, Kazue; Wygant, John R.; Chen, Liu; Bonnell, John; Cattell, Cynthia A.; Thaller, Scott; Kletzing, Craig; Smith, Charles W.; MacDowall, Robert J.; Baker, Daniel N.; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Funsten, Herbert O.; Reeves, Geoffrey D.; Spence, Harlan E.
2013-08-01
Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L˜5. The observed wave period, Eφ/Br ratio and the 90° phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with ˜90 keV ring current ions. The estimated earthward gradient of ion phase space density provides a free energy source for wave generation through the drift-resonance instability. A similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One specific example is the "fishbone" instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations.
Resonant wavepackets and shock waves in an atomtronic SQUID
NASA Astrophysics Data System (ADS)
Wang, Yi-Hsieh; Kumar, A.; Jendrzejewski, F.; Wilson, Ryan M.; Edwards, Mark; Eckel, S.; Campbell, G. K.; Clark, Charles W.
2015-12-01
The fundamental dynamics of ultracold atomtronic devices are reflected in their phonon modes of excitation. We probe such a spectrum by applying a harmonically driven potential barrier to a 23Na Bose-Einstein condensate in a ring-shaped trap. This perturbation excites phonon wavepackets. When excited resonantly, these wavepackets display a regular periodic structure. The resonant frequencies depend upon the particular configuration of the barrier, but are commensurate with the orbital frequency of a Bogoliubov sound wave traveling around the ring. Energy transfer to the condensate over many cycles of the periodic wavepacket motion causes enhanced atom loss from the trap at resonant frequencies. Solutions of the time-dependent Gross-Pitaevskii equation exhibit quantitative agreement with the experimental data. We also observe the generation of supersonic shock waves under conditions of strong excitation, and collisions of two shock wavepackets.
Resonant wavepackets and shock waves in an atomtronic SQUID
NASA Astrophysics Data System (ADS)
Wang, Yi-Hsieh; Kumar, A.; Jendrzejewski, F.; Wilson, Ryan M.; Edwards, Mark; Eckel, S.; Campbell, G. K.; Clark, Charles W.
The fundamental dynamics of ultracold atomtronic devices are reflected in their phonon modes of excitation. We probe such a spectrum by applying a harmonically driven potential barrier to a 23Na Bose-Einstein condensate in a ring-shaped trap. This perturbation excites phonon wavepackets. When excited resonantly, these wavepackets display a regular periodic structure. The resonant frequencies depend upon the particular configuration of the barrier, but are commensurate with the orbital frequency of a Bogoliubov sound wave traveling around the ring. Energy transfer to the condensate over many cycles of the periodic wavepacket motion causes enhanced atom loss from the trap at resonant frequencies. Solutions of the time-dependent Gross-Pitaevskii equation exhibit quantitative agreement with the experimental data. We also observe the generation of supersonic shock waves under conditions of strong excitation, and collisions of two shock wavepackets. Work supported by the U. S. Army Research Office Atomtronics MURI program.
Probabilistic approach to nonlinear wave-particle resonant interaction
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Ferroelectric film bulk acoustic wave resonators for liquid viscosity sensing
NASA Astrophysics Data System (ADS)
Vorobiev, A.; Gevorgian, S.
2013-08-01
A concept of accurate liquid viscosity sensing, using bulk acoustic wave (BAW) resonators, is proposed. The proposed BAW resonators use thin ferroelectric films with the dc field induced piezoelectric effect allowing for generation of pure longitudinal acoustic waves in the thickness excitation mode. This makes it possible to utilize exclusively shear liquid particle displacement at the resonator side walls and, therefore, accurate viscosity evaluation. The BAW resonators with the dc field induced piezoelectric effect in 0.67BiFeO3-0.33BaTiO3 ferroelectric films are fabricated and their liquid viscosity sensing properties are characterized. The resonator response is analyzed using simple model of a harmonic oscillator damped by a viscous force. It is shown that the resonator Q-factor is inversely proportional to the square root of the viscosity-density product. The viscosity measurement resolution is estimated to be as high as 0.005 mPa.s, which is 0.5% of the water viscosity.
Shear waves in a cubic nonlinear inhomogeneous resonator
NASA Astrophysics Data System (ADS)
Krit, Timofey B.; Andreev, Valery G.; Sapozhnikov, Oleg A.
2012-09-01
We study finite-amplitude shear waves in one-dimensional resonator represented by a layer of rubber-like medium with inhomogeneities in the form of through holes made on the side face. The holes are parallel to the bases and perpendicular to the direction of vibrations. Two different configurations of the resonator: with holes at the bottom and at the top are studied. A rigid plate of finite mass is fixed on the upper surface. The lower boundary of the layer oscillates harmonically with a given acceleration. The equation of motion of particles in the resonator was found using the model of medium with one relaxation time, and a cubic dependence of the shear modulus of deformation. The measurements were performed in a resonator in the form of a rectangular parallelepiped of 15 mm thickness made of a rubber-like polymer plastisol. The linear shear modulus and shear viscosity of the polymer at the first resonant frequency were determined using the finite element method. The amplitudes of the oscillations in the resonator reached a point where the maximum shear strain in the resonator is 0.4 - 0.6, making it possible to observe nonlinear effects. The evolution of the resonance curves at different amplitudes of acceleration was investigated. A harmonic analysis of the acceleration profiles of the upper boundary was performed. The dependence of nonlinear effects on the holes position was studied.
Magnetic resonance segmentation with the bubble wave algorithm
NASA Astrophysics Data System (ADS)
Cline, Harvey E.; Ludke, Siegwalt
2003-05-01
A new bubble wave algorithm provides automatic segmentation of three-dimensional magnetic resonance images of both the peripheral vasculature and the brain. Simple connectivity algorithms are not reliable in these medical applications because there are unwanted connections through background noise. The bubble wave algorithm restricts connectivity using curvature by testing spherical regions on a propagating active contour to eliminate noise bridges. After the user places seeds in both the selected regions and in the regions that are not desired, the method provides the critical threshold for segmentation using binary search. Today, peripheral vascular disease is diagnosed using magnetic resonance imaging with a timed contrast bolus. A new blood pool contrast agent MS-325 (Epix Medical) binds to albumen in the blood and provides high-resolution three-dimensional images of both arteries and veins. The bubble wave algorithm provides a means to automatically suppress the veins that obscure the arteries in magnetic resonance angiography. Monitoring brain atrophy is needed for trials of drugs that retard the progression of dementia. The brain volume is measured by placing seeds in both the brain and scalp to find the critical threshold that prevents connections between the brain volume and the scalp. Examples from both three-dimensional magnetic resonance brain and contrast enhanced vascular images were segmented with minimal user intervention.
Resonant excitation of intense acoustic waves in crystals
Alshits, V. I. Bessonov, D. A.; Lyubimov, V. N.
2013-06-15
The resonant excitation of an intense elastic wave through nonspecular reflection of a special pump wave in a crystal is described. The choice of the plane and angle of incidence is dictated by the requirement that the excited reflected wave be close to the bulk eigenmode with its energy flow along a free boundary. The resonance parameters have been found for a medium with an arbitrary anisotropy. General relations are concretized for monoclinic, rhombic, and hexagonal systems. A criterion is formulated for an optimal selection of crystals in which the resonant reflection is close to the conversion one, when almost all of the energy from the incident beam of the pump wave falls into the near-surface narrow high-intensity reflected beam. Estimates and illustrations are given for such crystals as an example. The intensity of the reflected beam increases with its narrowing, but its diffraction divergence also increases with this narrowing. Nevertheless, the intensity of the beam can be increased by a factor of 5-10 at sufficiently high frequencies while keeping its divergence at an acceptable level. Amplification by two orders of magnitude can be achieved by compressing the beam in two dimensions through its double reflection.
Traveling waves and their tails in locally resonant granular systems
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
2015-04-22
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely the avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.
Traveling waves and their tails in locally resonant granular systems
Xu, H.; Kevrekidis, P. G.; Stefanov, A.
2015-04-22
In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less
Instability of subharmonic resonances in magnetogravity shear waves.
Salhi, A; Nasraoui, S
2013-12-01
We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.
BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA
Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu
2011-09-10
Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.
Switchable and Tunable Ferroelectric Bulk Acoustic Wave Resonators and Filters
NASA Astrophysics Data System (ADS)
Saddik, George Nabih
Ferroelectric materials such as barium titanate (BaTiO 3 or BTO), strontium titanate (SrTiO3 or STO), and their solid solution barium strontium titanate (BaxSr1-xTiO 3 or BST) have been under investigation for over 50 years. BTO, STO, and BST are high-k dielectric materials, with a field dependent permittivity and a perovskite crystal structure. At room temperature BTO is a ferroelectric with a ferroelectric to paraelectric transition temperature of about 116°C (Curie temperature), while STO has no ferroelectric phase. The formation of a solid solution between BTO and STO allows for the engineering of the Curie temperature; the Curie temperature decreses as the mole ratio of barium decreases. Extensive research went into understanding the properties of BST and developing RF circuits such as tunable capacitors, tunable matching networks, tunable filters, phase shifters and harmonic generators. BST tunable capacitors have always had anomalous resonances in the one port scattering parameter measurements, although they are very small they degrade the quality factor of the device, and research went into reducing these resonances as much as possible. The goal of this thesis is to investigate these anomalous resonances and exploit them into RF devices and circuits. Careful investigation showed that these resonances were field induced piezoelectric resonance. Piezoelectric materials such as AlN, ZnO, and PZT are used in many applications, such as resonators, and filters. Thin film bulk acoustic wave resonators (FBAR) have been in use by research and industry since the early 1980s, and in high volume production for cell phone duplexers since early 2000s. FBAR filters and duplexers have several advantages over surface acoustic wave (SAW) and ceramic devices such as high quality factors necessary for sharp filter skirts, small size, high performance, and ease of integration. There are two approaches to designing bulk acoustic wave resonators. The first is an FBAR where a
Scattering resonance of elastic wave and low-frequency equivalent slow wave
NASA Astrophysics Data System (ADS)
Meng, X.; Liu, H.; Hu, T.; Yang, L.
2015-12-01
Transmitted wave occurs as fast p-wave and slow p-wave in certain conditions when seismic waves travel through inhomogeneous layers. Energy of slow p-waves is strongest at some frequency band, but rather weak at both high frequency band and low frequency band, called scattering resonance. For practical seismic exploration, the frequency of slow p-wave occurs is below 10Hz, which cannot be explained by Biot's theory which predicts existence of the slow p-wave at ultrasonic band in the porous media. The slow p-wave equation have been derived, but which only adapted to explaining slow p-wave in the ultrasonic band. Experimental observations exhibit that slow p-wave also exists in nonporous media but with enormous low-velocity interbeds. When vertical incidence, elastic wave is simplified as compressing wave, the generation of slow waves is independent on shear wave. In the case of flat interbed and gas bubble, Liu (2006) has studied the transmission of acoustic waves, and found that the slow waves below the 10Hz frequency band can be explained. In the case of general elastic anisotropy medium, the tiheoretical research on the generation of slow waves is insufficient. Aiming at this problem, this paper presents an exponential mapping method based on transmitted wave (Magnus 1954), which can successfully explain the generation of the slow wave transmission in that case. Using the prediction operator (Claerbout 1985) to represent the transmission wave, this can be derived as first order partial differential equation. Using expansions in the frequency domain and the wave number domain, we find that the solutions have different expressions in the case of weak scattering and strong scattering. Besides, the method of combining the prediction operator and the exponential map is needed to extend to the elastic wave equation. Using the equation (Frazer and Fryer 1984, 1987), we derive the exponential mapping solution for the prediction operator of the general elastic medium
Guided Bloch surface wave resonance for biosensor designs.
Kang, Xiu-Bao; Liu, Lan-Jun; Lu, Hai; Li, Hai-Dong; Wang, Zhi-Guo
2016-05-01
A guided Bloch surface wave resonance (GBR) configuration is introduced for label-free biosensing. The GBR is realized by coupling the first-order diffraction of a subwavelength grating with the Bloch surface wave at the interface between a 1D photonic crystal slab and bio-solution. In addition to sustaining the Bloch surface mode, the photonic crystal provides the design freedom of simultaneously increasing the quality and decreasing the sideband transmissions of the resonance spectrum. The low sideband and high-quality features along with the large sensitivity rising from the strong overlap between the Bloch surface mode and the bio-solution make the GBR suitable for the design of biosensors. Biosensors with a high figure of merit are realized by the compact configurations.
Precession resonance mechanism in deep-water gravity surface waves
NASA Astrophysics Data System (ADS)
Bustamante, Miguel; Lucas, Dan
2016-11-01
Discovered by Bustamante et al. in 2014 and published in Phys. Rev. Lett. in the same year, precession resonance is a mechanism whereby strong nonlinear energy transfers occur between modes of oscillations whose frequencies are detuned: the amplitude-dependent precession frequencies of the phases help restore the resonance, hence the name "precession resonance". After explaining how this mechanism works and how robust it is, we will discuss new applications of this effect in systems of technological interest, focusing on deep-water gravity surface waves. We report transfer efficiencies of up to 40%, depending on the numerical-experimental setup. All evidence gathered so far points to the conclusion that, to leading order, this effect is dominated by triad interactions at small (but finite) amplitudes. Joint work with Dan Lucas (DAMTP, Cambridge). Financially supported by Science Foundation Ireland (SFI) under research Grant No. 12/IP/1491.
Nonlinear standing waves in 2-D acoustic resonators.
Cervenka, Milan; Bednarik, Michal
2006-12-22
This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.
Kinetic equation for nonlinear resonant wave-particle interaction
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Impact of interface stiffness in surface-wave resonances on nanostrip-attached substrates
NASA Astrophysics Data System (ADS)
Ogi, Hirotsugu; Masuda, Shoichi; Nagakubo, Akira; Nakamura, Nobutomo; Hirao, Masahiko; Kondou, Kouta; Ono, Teruo
2016-01-01
Surface waves are often excited by interdigitated transducers consisting of many nanostrips attached on a substrate, and it has been recognized that the mass and stiffness of the attached nanostrips affect surface-wave resonances to some extent. Here, we reveal the more noticeable influence of the interfacial stiffness between strips and substrate at high frequencies. This influence is confirmed by exciting and detecting surface-wave resonances up to ˜6 GHz by picosecond ultrasound spectroscopy. The resonance frequency significantly decreases and attenuation increases as the interfacial stiffness decreases for silicon substrate. However, low-attenuation branches appear along the Rayleigh-wave-resonance dispersion curve for silica substrate, and the resonance frequencies remain nearly identical to those of the Rayleigh waves. Previous models fail to reproduce these surface-wave resonance behaviors. The proposed theoretical model, involving the interfacial stiffness, consistently explained them, indicating the importance of the interface bond strength in designing surface-wave resonators.
NASA Astrophysics Data System (ADS)
Damiano, P. A.; Johnson, J.; Chaston, C. C.; Fox, W. R., II; Delamere, P. A.; Stauffer, B. H.
2015-12-01
Alfvenic current systems are a ubiquitous feature of planetary magnetospheres that can be generated by several mechanisms including the braking of flows (e.g. associated with reconnection at substorm onset) and via moon-planet interactions. The energetic electrons needed to carry the field-aligned currents are generally thought to be accelerated on either electron inertial or ion acoustic gyroradius scale lengths in the limit of inertial and kinetic Alfven waves respectively. Recent 2D dipolar hybrid gyrofluid-kinetic electron simulations of kinetic Alfven waves (Damiano et al., JGR, 2015), associated with the braking of fast flows in the terrestrial magnetotail, have illustrated that hot ion effects can act to limit the extent of the parallel current (all along the field line) from what would be expected in the cold ion limit. This correspondingly affects the characteristics of the electron energization, reducing both the parallel elongation in the electron distribution function associated with electron trapping in the kinetic Alfven wave regime and the extent of high energy tails evident in the inertial Alfven wave region above the ionosphere. In this presentation, we build on these initial simulation results analyzing the characteristics of the parallel current system and electron acceleration (associated with both inertial and kinetic Alfven waves) for a range of wave amplitudes and ratios of the electron to ion temperature. One finding is that for a given ion temperature, increasing wave amplitude recovers some of the features of the electron energization evident in the cold ion limit, but this is modulated by the effect of wave energy dispersion perpendicular to the ambient magnetic field. These results will be summarized and the relevance and extension of this work to consider Alfvenic aurora in the Jupiter magnetosphere (e.g. via either interchange motion or the Io-Jupiter interaction) will also be discussed.
Optical motion sensor for resonant-bar gravitational wave antennas.
Richard, J P; Pang, Y; Hamilton, J J
1992-04-01
An experiment is described in which an optical method was used to measure fluctuations in the separation between two mirrors of a Fabry-Perot sensor cavity. Noise measurements were made to determine the sensitivity of this device to vibration amplitudes in the frequency range 1.1-2.1 kHz, which is of interestfor resonant-bar gravitational wave antennas. The rms spectral noise density for length fluctuations inthis range was 3.7 x 10(15-) m/Hz((1/2)) and can be related to electronic noise of the circuitry plus vibrationalnoise from the environment. The cavity finesse was relatively low at 117, and the power dissipated in the mirrors was estimated to be 1.9 muW. On a multimode gravitational wave detector, the sensor cavity would be formed by one reference mirror and by one mirror mounted on the last resonator. For a 1200-kg bar, 1.2-g last resonator system operating at 1600 Hz, the sensor described here would exhibit a noise temperature of 18 muK; the resolution in h in the case of negligible thermal noise from the mechanical system would be 3.7 x 10(-18)/Hz((1/2)). Improvements in the sensitivity in a quiet antenna-like environment should be possible with higher finesse mirrors.
Optical motion sensor for resonant-bar gravitational wave antennas
NASA Technical Reports Server (NTRS)
Richard, J.-P.; Pang, Y.; Hamilton, J. J.
1992-01-01
An experiment is described in which an optical method was used to measure fluctuations in the separation between two mirrors of a Fabry-Perot sensor cavity. Noise measurements were made to determine the sensitivity of this device to vibration amplitudes in the frequency range 1.1-2.1 kHz, which is of interest for resonant-bar gravitational wave antennas. The rms spectral noise density for length fluctuations in this range was sq rt 3.7 x 10 exp -15 m/Hz and can be related to electronic noise of the circuitry plus vibrational noise from the environment. The cavity finesse was relatively low at 117, and the power dissipated in the mirrors was estimated to be 1.9 micro-W. On a multimode gravitational wave detector, the sensor cavity would be formed by one reference mirror and by one mirror mounted on the last resonator. For a 1200-kg bar, 1.2-g last resonator system operating at 1600 Hz the sensor described here would exhibit a noise temperature of 18 micro-K; the resolution in h in the case of negligible thermal noise from the mechanical system would be sq rt 3.7 x 10 exp -18/Hz. Improvements in the sensitivity in a quiet antenna-like environment should be possible with higher finesse mirrors.
PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS
Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.
2010-02-22
Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.
NASA Astrophysics Data System (ADS)
Dombeck, John Paul
The presented studies investigate the characteristics of Alfvén wave events in the geomagnetic tail on the plasma sheet boundary layer (PSBL) and possibly well within the plasma sheet during substorms and major geomagnetic storms (<- 200 Dst). Such storms are rare but dramatically affect the state of the magnetosphere in ways that we have only recently been capable of investigating with sufficient in situ instrumentation. The first comparative study of major storm PSBL Alfvén waves events is presented. Properties of eight substorm and ten major storm events are compared using a new method, providing new insights into the phenomena, their interactions in the auroral acceleration region (AAR), and their generation. Direct comparison between Polar and FAST indicating a decrease (increase) in low-(high-)frequency shear (kinetic) earthward Alfvénic Poynting flux and an increase in earthward electron energy flux strongly suggests transfer of shear Alfvén wave Poynting flux to kinetic Alfvén waves which then accelerate auroral electrons. Polar observations also suggest a broadband source and indicate that small-scale, temporally/spatially variable factors, likely including density cavities and ionospheric conductivity structure, strongly affect the reflectivity/dissipation properties, as the waves in each frequency band contain a mixture of earthward, tailward, reflecting and incoherent wave intervals. Averages of these properties are consistent with theory, but the detailed structure has not been predicted. Tailward intervals also suggest ionospheric field line shear. Most major storm events were found have similar properties to substorm events with a few notable differences, consistent with effects related to the extended duration of storms. Low-latitude broadband auroral electrons and high-frequency Alfvén waves along with properties of a unique Alfvén wave event, related to a major storm tail reconfiguration, with very intense Poynting flux and the first
Kong Xiangkun; Liu Shaobin; Bian Borui; Li Haiming; Zhao Xin; Zhang Haifeng
2013-04-15
A 4 Multiplication-Sign 4 transfer matrix method has been applied to study the decomposition of any elliptically polarized wave in a magnetized resonator. When the incident elliptically polarized wave passes through the structure, it is orthogonally decomposed into two circular polarizations at two resonance frequencies. Without changing the structure of the resonator, the positions of the resonant frequencies of the right- and left-handed circularly polarized waves can be modulated by changing the external magnetized field. The results show that the proposed magnetized structure can be used to design a novel resonator, which can be applied in the decomposition of polarized electromagnetic waves.
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.
Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin
2015-05-21
We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation
Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin
2015-01-01
We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735
Spontaneous four-wave mixing in lossy microring resonators
NASA Astrophysics Data System (ADS)
Vernon, Z.; Sipe, J. E.
2015-05-01
We develop a general Hamiltonian treatment of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.
Design Optimization of a Wave Driven Resonant Sea Water Pump
NASA Astrophysics Data System (ADS)
Czitrom, Steven P. R.; Prado, Esteban
1998-11-01
Simplified algorithms for the air chamber volume and flow through a wave driven sea water pump at resonance based on solutions of the linearizaed equations of the system constitute powerful design tools for various applications of the pump. These include flushing of contaminated water bodies or the biological management of isolated coastal lagoon ecosystems. The algoritms are used in cost-benefit exercises that incorporate the dimensions of the various design parameters, the wave climate and the tidal range at a given location. The absence of moving parts in the sea water pump allows larvae of various organisms to pass through the system unscathed. This allows it to be used in the biological management of coastal water bodies with ephimerous connection to the adjacent ocean. An ongoing project with a fishermen's community is described.
RESONANTLY DAMPED PROPAGATING KINK WAVES IN LONGITUDINALLY STRATIFIED SOLAR WAVEGUIDES
Soler, R.; Verth, G.; Goossens, M.; Terradas, J.
2011-07-20
It has been shown that resonant absorption is a robust physical mechanism for explaining the observed damping of magnetohydrodynamic kink waves in the solar atmosphere due to naturally occurring plasma inhomogeneity in the direction transverse to the direction of the magnetic field. Theoretical studies of this damping mechanism were greatly inspired by the first observations of post-flare standing kink modes in coronal loops using the Transition Region and Coronal Explorer. More recently, these studies have been extended to explain the attenuation of propagating coronal kink waves observed by the Coronal Multi-Channel Polarimeter. In the present study, for the first time we investigate the properties of propagating kink waves in solar waveguides including the effects of both longitudinal and transverse plasma inhomogeneity. Importantly, it is found that the wavelength is only dependent on the longitudinal stratification and the amplitude is simply a product of the two effects. In light of these results the advancement of solar atmospheric magnetoseismology by exploiting high spatial/temporal resolution observations of propagating kink waves in magnetic waveguides to determine the length scales of the plasma inhomogeneity along and transverse to the direction of the magnetic field is discussed.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
NASA Astrophysics Data System (ADS)
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
NASA Technical Reports Server (NTRS)
Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-01-01
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Gamayunov, Konstantin V.; Zhang Ming; Rassoul, Hamid K.; Pogorelov, Nikolai V.; Heerikhuisen, Jacob
2012-09-20
A self-consistent model of the interstellar pickup protons, the slab component of the Alfvenic turbulence, and core solar wind (SW) protons is presented for r {>=} 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvenic power spectral density, and a third equation governs SW temperature including source due to the Alfven wave energy dissipation. A fraction of the pickup proton free energy, f{sub D} , which is actually released in the waveform during isotropization, is taken from the quasi-linear consideration without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C{sub sh}, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C{sub sh} Almost-Equal-To 1-1.5 and f{sub D} Almost-Equal-To 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from {approx}8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r {approx}> 20 AU if f{sub D} Almost-Equal-To 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r {approx}< 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r {approx}< 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfven wave damping by the core SW protons is small at heliocentric distances r {approx}< 10 AU for both the slab and the two-dimensional turbulent components
NASA Astrophysics Data System (ADS)
Zyuzin, A. M.; Bakulin, M. A.; Radaikin, V. V.; Yantsen, N. V.
2017-02-01
Zero spin-wave mode in inhomogeneous magnetic films with orthorhombic anisotropy has been found to exhibit a change of its localization region in two of three typical angular dependences of resonance fields of high-intensity modes. It has been shown that the anisotropy fields on both sides of the film can be determined from the resonance fields of the zero and uppermost high-intensity spin-wave modes of spin-wave resonance spectra.
Strongly nonlinear waves in locally resonant granular chains
NASA Astrophysics Data System (ADS)
Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna
2016-11-01
We explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e. exponentially localized, time-periodic states mounted on top of a non-vanishing background. A remarkable feature distinguishing our results from other settings where dark breathers are observed is the complete absence of precompression in the system, i.e. the absence of a linear spectral band. We also identify conditions under which the system admits long-lived bright breather solutions. Our results are obtained by means of an asymptotic reduction to a suitably modified version of the so-called discrete p-Schrödinger (DpS) equation, which is established as controllably approximating the solutions of the original system for large but finite times (under suitable assumptions on the solution amplitude and the resonator mass). The findings are also corroborated by detailed numerical computations. Long-lived bright breathers are proved to exist over long but finite times, after which numerical simulations indicate that the breathers disintegrate. In line with these results, we prove that the only exact time-periodic bright breathers consist of trivial linear oscillations, without contact interactions between discrete elements.
An Experimental Study of Nonlinear Standing Waves in Resonators with Numerical Comparison
NASA Technical Reports Server (NTRS)
Finkbeiner, Joshua R.; Raman, Ganesh; Li, Xiaofan; Steinetz, Bruce M.; Daniels, Christopher; Huff, Dennis (Technical Monitor)
2002-01-01
Lawrenson et. al. [Journal of the Acoustic Society of America, Nov. 1998] described the generation of shock-free high-amplitude pressure waves in closed cavities using large equipment and resonators to produce the reported effects. An attempt is made to generate shock-free high-amplitude pressure waves using relatively small resonators. Ambient air is used as the working fluid. A small cylindrical resonator is tested resulting in the lack of a shocked waveform while a larger model of the same shape produces shock waves. A small conical resonator produces shock-free pressure waves at resonance, but the amplitude of these waves is small. A larger cone resonator model produces shock-free pressure waves of higher amplitude. A large horn-cone resonator also produces shock-free high amplitude pressure waves, A numerical model is used to compare the experimental results to theoretical results. The effects of structural resonances on the production of shock-free high-amplitude pressure waves are discussed, especially concerning difficulties encountered when these resonances were in the frequency ranges of interest. Identifying features of a structural resonance are presented.
Record Balkan floods of 2014 linked to planetary wave resonance
Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan
2016-01-01
In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950–2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans. PMID:27152340
Record Balkan floods of 2014 linked to planetary wave resonance.
Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan
2016-04-01
In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.
Emergent Nonlinear Resonance in KEEN Wave Strength at Low Drive
NASA Astrophysics Data System (ADS)
Johnston, T. W.; Tyshetskiy, Y.; Afeyan, B.
2006-10-01
KEEN-like waves studies [1] in a PIC simulation at low drive agreed with earlier 1-D Vlasov fluid code results [2,3], in that, for a given wavenumber the KEEN waves would, over a wide range of frequencies, give a rather similar response. For at least one frequency in a rather narrow range, keeping the drive going well past the (linearly estimated) trapping period (which usually gives no added benefit), proved to give a significantly larger final amplitude. We discuss our own 1-D Vlasov-fluid study of this nonlinear emergent resonance phenomenon. 1. F. Valentini, T.M. O'Neil, H.E. Dubin, Phys. Plasmas, 13, 052303 (2006) 2. B. Afeyan, K. Won, V. Savchenko, T.W. Johnston, A. Ghizzo, P. Bertrand, 3^rd Int. Conf. ``Inertial Fusion Sciences and Applications'' (IFSA) paper M034, Sept. 7-12, Monterey, CA (2003), p.213, eds. B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi, Amer. Nucl. Soc. 2004. 3. B. Afeyan, V. Savchenko, K. Won, T.W. Johnston ``New Long-Lived Nonstationary Coherent Structures in Vlasov Plasmas: KEEN Waves'', submitted to Physical Review Letters.
Drift-Alfven instabilities of a finite beta plasma shear flow along a magnetic field
NASA Astrophysics Data System (ADS)
Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June
2016-02-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows.
NASA Astrophysics Data System (ADS)
Tolman, Hendrik L.
2013-10-01
For several decades, the Discrete Interaction Approximation (DIA) for nonlinear resonant four-wave interactions has been the engine of third-generation wind-wave models. The present study presents a Generalized Multiple DIA (GMD) which expands upon the DIA by (i) expanding the definition of the representative quadruplet, (ii) formulating the DIA for arbitrary water depths, (iii) providing complimentary deep and shallow water scaling terms and (iv) allowing for multiple representative quadruplets. The GMD is rigorously derived to be an extension of the DIA, and is backward compatible with it. The free parameters of the GMD are optimized holistically, by optimizing full model behavior in the WAVEWATCH III® wave model as reported in a companion paper. Here, a cascade of GMD configurations with increasing complexity, accuracy and cost is presented. First, the performance of these configurations is discussed using idealized test cases used to optimize the GMD. It is shown that in deep water, GMD configurations can be found which remove most of the errors of the DIA. The GMD is also capable of representing four-wave interactions in extremely shallow water, although some remaining spurious behavior makes applications of this part of the GMD less suitable for operational wave models. Finally, several GMD configurations are applied to an idealized hurricane case, showing that results from idealized test cases indeed are representative for real-world applications, and confirming that such GMD configurations are economically feasible in operational wind wave models. Finally, the DIA results in surprisingly large model errors in hurricane conditions.
Resonance, particle trapping, and Landau damping in finite amplitude obliquely propagating waves
NASA Technical Reports Server (NTRS)
Palmadesso, P. J.
1972-01-01
The equations of motion for a particle in resonance with a small finite amplitude wave are solved approximately, using secularity free perturbation theory. The wave propagates at an arbitrary angle to a uniform background magnetic field in an infinite collisionless plasma. The wave fields include a longitudinal electrostatic component and elliptically polarized transverse electric and magnetic components. The trajectories of trapped and resonant untrapped particles are described, for each of the possible wave-particle resonances. These trajectories are used to construct an estimate of the nonlinear time dependent Landau damping rate of the wave.
A Note on the Resonant Interaction of a Surface Wave With two Interfacial Waves
NASA Astrophysics Data System (ADS)
Jamali, M.; Lawrence, G. A.; Seymour, B. R.
2002-12-01
Recently Hill and Foda (1998) and Jamali (1998) have performed theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings of the two studies there is one seemingly major difference. The analysis of Hill and Foda (1998) indicated that there are only narrow bands of frequency, density ratio, and direction angle within which growth is possible. On the other hand Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that second order representation of the dynamic interfacial boundary condition of Hill and Foda (1998) is missing a term proportional to the velocity shear across the interface. When this missing term is included in the analysis the resulting predictions are consistent with the laboratory experiments.
A note on the resonant interaction between a surface wave and two interfacial waves
NASA Astrophysics Data System (ADS)
Jamali, Mirmosadegh; Lawrence, Gregory A.; Seymour, Brian
2003-09-01
Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings there is one seemingly major difference. Hill & Foda's (1998) analysis indicated that there are only narrow bands of frequency, density ratio and direction angle within which growth is possible. On the other hand, Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that Hill & Foda's (1998) second-order representation of the dynamic interfacial boundary condition is missing a term proportional to the time derivative of the square of the velocity shear across the interface. When this missing term is included in the analysis, the resulting predictions are consistent with the laboratory experiments.
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu
2006-01-01
Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.
Bounce resonance scattering of radiation belt electrons by H+ band EMIC waves
NASA Astrophysics Data System (ADS)
Cao, Xing; Ni, Binbin; Summers, Danny; Bortnik, Jacob; Tao, Xin; Shprits, Yuri Y.; Lou, Yuequn; Gu, Xudong; Fu, Song; Shi, Run; Xiang, Zheng; Wang, Qi
2017-02-01
We perform a detailed analysis of bounce-resonant pitch angle scattering of radiation belt electrons due to electromagnetic ion cyclotron (EMIC) waves. It is found that EMIC waves can resonate with near-equatorially mirroring electrons over a wide range of L shells and energies. H+ band EMIC waves efficiently scatter radiation belt electrons of energy >100 keV from near 90° pitch angles to lower pitch angles where the cyclotron resonance mechanism can take over to further diffuse electrons into the loss cone. Bounce-resonant electron pitch angle scattering rates show a strong dependence on L shell, wave normal angle distribution, and wave spectral properties. We find distinct quantitative differences between EMIC wave-induced bounce-resonant and cyclotron-resonant diffusion coefficients. Cyclotron-resonant electron scattering by EMIC waves has been well studied and found to be a potentially crucial electron scattering mechanism. The new investigation here demonstrates that bounce-resonant electron scattering may also be very important. We conclude that bounce resonance scattering by EMIC waves should be incorporated into future modeling efforts of radiation belt electron dynamics.
Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F
2015-04-01
The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.
Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.
2014-01-01
Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.
Effects of acoustic wave resonance oscillation on immobilized enzyme
NASA Astrophysics Data System (ADS)
Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu
2014-03-01
In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.
Degenerate four-wave mixing in triply resonant Kerr cavities
NASA Astrophysics Data System (ADS)
Ramirez, David M.; Rodriguez, Alejandro W.; Hashemi, Hila; Joannopoulos, J. D.; Soljačić, Marin; Johnson, Steven G.
2011-03-01
We demonstrate theoretical conditions for highly efficient degenerate four-wave mixing in triply resonant nonlinear (Kerr) cavities. We employ a general and accurate temporal coupled-mode analysis in which the interaction of light in arbitrary microcavities is expressed in terms of a set of coupling coefficients that we rigorously derive from the full Maxwell equations. Using the coupled-mode theory, we show that light consisting of an input signal of frequency ω0-Δω can, in the presence of pump light at ω0, be converted with quantum-limited efficiency into an output shifted signal of frequency ω0+Δω, and we derive expressions for the critical input powers at which this occurs. We find the critical powers in the order of 10 mW, assuming very conservative cavity parameters (modal volumes ~10 cubic wavelengths and quality factors ~1000). The standard Manley-Rowe efficiency limits are obtained from the solution of the classical coupled-mode equations, although we also derive them from simple photon-counting “quantum” arguments. Finally, using a linear stability analysis, we demonstrate that maximal conversion efficiency can be retained even in the presence of self- and cross-phase modulation effects that generally act to disrupt the resonance condition.
Van Compernolle, B; Bortnik, J; Pribyl, P; Gekelman, W; Nakamoto, M; Tao, X; Thorne, R M
2014-04-11
Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hitherto tested in a controlled laboratory setting. In the present Letter we report on the first laboratory experiment to directly detect resonant pitch angle scattering of energetic (∼keV) electrons due to whistler mode waves. We show that the whistler mode wave deflects energetic electrons at precisely the predicted resonant energy, and that varying both the maximum beam energy, and the wave frequency, alters the energetic electron beam very close to the resonant energy.
NASA Technical Reports Server (NTRS)
Kouznetsov, Igor; Lotko, William
1995-01-01
The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the
NASA Technical Reports Server (NTRS)
Tkalcevic, S.
1982-01-01
The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.
Resonance vibrations of the Ross Ice Shelf and observations of persistent atmospheric waves
NASA Astrophysics Data System (ADS)
Godin, Oleg A.; Zabotin, Nikolay A.
2016-10-01
Recently reported lidar observations have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at midlatitude and low-latitude locations. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 h. Here we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity.
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
ERIC Educational Resources Information Center
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2013-12-01
The nonlinear interaction of incident and reflected Alfven wave packets in auroral acceleration regions can create non-propagating electromagnetic-plasma structures, such as transverse Alfvenic double layers and charge holes. These dynamical structures are often characterized by localized strong electrostatic electric fields, localized density cavities and enhanced magnetic or mechanical stresses, and are responsible for auroral particle acceleration and the formation of both Alfvenic and quasi-static inverted-V discrete auroras. Similar electromagnetic-plasma structures should also be generated in other cosmic plasmas, and would constitute effective high energy accelerators of charged particles in cosmic plasmas.
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.; Crocker, N. A.; Levinton, F. M.; Yuh, H.
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models
NASA Astrophysics Data System (ADS)
Geist, Eric L.
2016-02-01
Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ˜ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20-30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.
Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models
Geist, Eric L.
2016-01-01
Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Nonlinear trans-resonant waves, vortices and patterns: From microresonators to the early Universe.
Galiev, Sh. U.; Galiyev, T. Sh.
2001-09-01
Perturbed wave equations are considered. Approximate general solutions of these equations are constructed, which describe wave phenomena in different physical and chemical systems. Analogies between surface waves, nonlinear and atom optics, field theories and acoustics of the early Universe can be seen in the similarities between the general solutions that govern each system. With the help of the general solutions and boundary conditions and/or resonant conditions we have derived the basic highly nonlinear ordinary differential equation or the basic algebraic equation for traveling waves. Then, approximate analytic resonant solutions are constructed, which describe the trans-resonant transformation of harmonic waves into traveling shock-, jet-, or mushroom-like waves. The mushroom-like waves can evolve into cloud-like and vortex-like structures. The motion and oscillations of these waves and structures can be very complex. Under parametric excitation these waves can vary their velocity, stop, and change the direction of their motion. Different dynamic patterns are yielded by these resonant traveling waves in the x-t and x-y planes. They simulate many patterns observed in liquid layers, optical systems, superconductors, Bose-Einstein condensates, micro- and electron resonators. The harmonic excitation may be compressed and transformed inside the resonant band into traveling or standing particle-like waves. The area of application of these solutions and results may possibly vary from the generation of nuclear particles, acoustical turbulence, and catastrophic seismic waves to the formation of galaxies and the Universe. In particular, the formation of galaxies and galaxy clusters may be connected with nonlinear and resonant phenomena in the early Universe. (c) 2001 American Institute of Physics.
Phenomenon of Alfvenic Vortex Shedding
Gruszecki, M.; Nakariakov, V. M.; Van Doorsselaere, T.; Arber, T. D.
2010-07-30
Generation of Alfvenic (magnetohydrodynamic) vortices by the interaction of compressible plasma flows with magnetic-field-aligned blunt obstacles is modeled in terms of magnetohydrodynamics. It is found that periodic shedding of vortices with opposite vorticity is a robust feature of the interaction in a broad range of plasma parameters: for plasma beta from 0.025 to 0.5, and for the flow speeds from 0.1 to 0.99 of the fast magnetoacoustic speed. The Strouhal number is the dimensionless ratio of the blunt body diameter to the product of the period of vortex shedding and the inflow speed. It is found to be consistently in the range 0.15-0.25 in the whole range of parameters. The induced Alfvenic vortices are compressible and contain spiral-armed perturbations of the magnetic field strength and plasma mass density up to 50%-60% of the background values. The generated electric current also has the spiral-armed structuring.
Ellipticity and triangularity effects in tokamak Alfven spectrum
NASA Astrophysics Data System (ADS)
Puerta, Julio; Martin, Pablo; Castro, Enrique; Valdeblanquez, Eder
2006-10-01
Plasma configurations with ellipticity and triangularity are usual in tokamak experiments. These plasmas can be studied using a new system of coordinates of recent publications. Here this method has been applied to study Alfven spectrum in axisymmetric tokamaks with different values of ellipticity and triangularity [1-3]. Previous authors have developed numerical methods to obtain the Alfven spectrum using the Shafranov-Solove'v equilibrium flux function where the parameter ellipticity is also included [3]. Here more general configurations are treated and compared with the results of these authors, as well as those derived for the geometric optics or WKBJ approximation. The Alfven wave dispersion relation is obtained by the linearization of the MHD equations around a stationary equilibrium and the results are obtained by numerical calculations. [1] P. Martin, M. G. Haines and E. Castro, Phys. Plasma 12, 082506 (2005) [2] L. L. Lao, S. P. Hishman and R. M. Wieland, Phys. Fluids 24, 1431 (1981); H. Weitzner's Appendix. [3] G. O. Ludwig, Plasma Phys. Controlled Fusion 37, 633 (1995) [4] S. Novo, M. N'uñez and J. Rojo, Phys. Fluids B 3, 2967 (1991)
Plasma production for electron acceleration by resonant plasma wave
NASA Astrophysics Data System (ADS)
Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Artemyev, A. V.; Zelenyi, L. M.; Vainchtein, D. L.
2010-12-15
We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere.
Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves
NASA Astrophysics Data System (ADS)
Yuan, Lijun; Lu, Ya Yan
2017-02-01
A one-dimensional periodic array of circular dielectric cylinders surrounded by air is a simple structure on which guided modes above the light line, also called bound states in the continuum (BICs), may exist. Recent studies reveal that such an array supports not only antisymmetric standing waves which are symmetry-protected BICs, but also propagating Bloch BICs and symmetric standing waves. Near a BIC, there is a family of resonant modes (depending on the Bloch wave number β ) with arbitrarily large quality factors. Using a perturbation method, we show that the quality factor of the resonant mode typically depends on β like 1 /(β-β*) 2 , where β* is the Bloch wave number of the BIC, but near a symmetric standing wave (β*=0 ) , the quality factor blows up like 1 /β4 . This indicates that strong resonances can be more easily induced near a symmetric standing wave. As an application, we numerically study optical bistability for the periodic array assuming the cylinders have a Kerr nonlinearity. With the nonlinear effects enhanced by the resonances, it is possible to have optical bistability for weak incident waves. The numerical results confirm that the weakest incident wave for optical bistability is realized through the resonances near the symmetric standing waves.
High-resolution inverse Raman and resonant-wave-mixing spectroscopy
Rahn, L.A.
1993-12-01
These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).
Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures
NASA Astrophysics Data System (ADS)
Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun
2016-02-01
We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.
Mode conversion of fast Alfvén waves at the ion-ion hybrid resonance
NASA Astrophysics Data System (ADS)
Ram, A. K.; Bers, A.; Schultz, S. D.; Fuchs, V.
1996-05-01
Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion-ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfvén waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B 3, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfvén waves in the immediate vicinity of the ion-ion hybrid resonance is extended to include the propagation and reflection of the fast Alfvén waves on the high magnetic-field side of the ion-ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfvén wave power incident on the ion-ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfvén waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion-ion hybrid resonance to the high magnetic-field cutoff. The condition for 100% mode conversion corresponds to a critical coupling of the fast Alfvén waves to this internal resonator. As an example, the appropriate plasma conditions for 100% mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski et al., Proceedings of the 11th Topical Conference on RF Power in Plasmas, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters.
Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave
NASA Technical Reports Server (NTRS)
Inan, U. S.; Tkalcevic, S.
1982-01-01
A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.
Microwave and millimeter-wave resonant-tunneling devices
NASA Technical Reports Server (NTRS)
Sollner, T. C. L. Gerhard; Le, Han Quang; Brown, E. L.
1988-01-01
Resonant-tunneling devices in microelectronic component form, whose structure is the electron analog of a Fabry-Perot resonator, encompass oscillators, self-oscillating mixers, and harmonic multipliers. The negative differential resistance characteristic of these devices has been obtained at room temperature, and resonant-tunneling transistors capable of operation in the THz-frequency range appear to be feasible. Three-terminal resonant-tunneling device development is in its infancy, as is that of devices for digital applications.
Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Gorelenkov, N.; Fredrickson, E.; Kaye, S.; Mazzucato, E.
2009-03-20
We report the observation of a correlation between shear Alfven eigenmode activity and electron transport in plasma regimes where the electron temperature gradient is flat, and thus the drive for temperature gradient microinstabilities is absent. Plasmas having rapid central electron transport show intense, broadband global Alfven eigenmode (GAE) activity in the 0.5-1.1 MHz range, while plasmas with low transport are essentially GAE-free. The first theoretical assessment of a GAE-electron transport connection indicates that overlapping modes can resonantly couple to the bulk thermal electrons and induce their stochastic diffusion.
Broadband Lamb wave trapping in cellular metamaterial plates with multiple local resonances.
Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng
2015-03-20
We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc.
Resonant scattering of ultrarelativistic electrons in the strong field of a pulsed laser wave
NASA Astrophysics Data System (ADS)
Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.
2016-02-01
Electron-electron scattering in a strong field of a pulsed laser wave is studied theoretically. Resonant scattering kinematics at the small polar angles for electron ultrarelativistic energy is studied in detail. Compact analytical expressions for the amplitude and the differential cross section for wave elliptical polarization are obtained under resonant conditions. The resonant cross section of electron-electron scattering is shown to decrease sharply with increasing the electron ultrarelativistic energies for weak and moderately strong fields. It was demonstrated that the resonant cross section of electron-electron scattering at wave circular polarization is four times greater than the corresponding cross section at linear polarization. The resonant cross section may exceed the corresponding cross section of a field-free process: by 5-6 orders of magnitude for electron MeV-energy and petawatt optical lasers (PHELIX, Vulcan); and 8-9 orders for multipetawatt laser fields within the femtosecond range (Vulcan10, ELI).
NASA Technical Reports Server (NTRS)
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle
Olsson, R. H., III
2012-03-01
The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.
On Properties of Compressional Alfven Eigenmode Instability Driven by Superalfvinic Ions
N.N. Gorelenkov; C.Z. Cheng
2002-02-06
Properties of the instability of Compressional Alfven Eigenmodes (CAE) in tokamak plasmas are studied in the cold plasma approximation with an emphasis on the instability driven by the energetic minority Ion Cyclotron Resonance Heating (ICRH) ions. We apply earlier developed theory [N.N. Gorelenkov and C.Z. Cheng, Nuclear Fusion 35 (1995) 1743] to compare two cases: Ion Cyclotron Emission (ICE) driven by charged fusion products and ICRH Minority driven ICE (MICE) [J. Cottrell, Phys. Rev. Lett. (2000)] recently observed on JET [Joint European Torus]. Particularly in MICE spectrum, only instabilities with even harmonics of deuterium-cyclotron frequency at the low-field-side plasma edge were reported. Odd deuterium-cyclotron frequency harmonics of ICE spectrum between the cyclotron harmonics of protons can be driven only via the Doppler-shifted cyclotron wave-particle resonance of CAEs with fusion products, but are shown to be damped due to the electron Landau damping in experiments on MI CE. Excitation of odd harmonics of MICE with high-field-side heating is predicted. Dependencies of the instability on the electron temperature is studied and is shown to be strong. Low electron temperature is required to excite odd harmonics in MICE.
Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances
NASA Astrophysics Data System (ADS)
Colombi, Andrea; Roux, Philippe; Guenneau, Sebastien; Gueguen, Philippe; Craster, Richard V.
2016-01-01
We explore the thesis that resonances in trees result in forests acting as locally resonant metamaterials for Rayleigh surface waves in the geophysics context. A geophysical experiment demonstrates that a Rayleigh wave, propagating in soft sedimentary soil at frequencies lower than 150 Hz, experiences strong attenuation, when interacting with a forest, over two separate large frequency bands. This experiment is interpreted using finite element simulations that demonstrate the observed attenuation is due to bandgaps when the trees are arranged at the sub-wavelength scale with respect to the incident Rayleigh wave. The repetitive bandgaps are generated by the coupling of the successive longitudinal resonances of trees with the vertical component of the Rayleigh wave. For wavelengths down to 5 meters, the resulting bandgaps are remarkably large and strongly attenuating when the acoustic impedance of the trees matches the impedance of the soil. Since longitudinal resonances of a vertical resonator are inversely proportional to its length, a man-made engineered array of resonators that attenuates Rayleigh waves at frequency ≤10 Hz could be designed starting from vertical pillars coupled to the ground with longitudinal resonance ≤10 Hz.
Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances.
Colombi, Andrea; Roux, Philippe; Guenneau, Sebastien; Gueguen, Philippe; Craster, Richard V
2016-01-11
We explore the thesis that resonances in trees result in forests acting as locally resonant metamaterials for Rayleigh surface waves in the geophysics context. A geophysical experiment demonstrates that a Rayleigh wave, propagating in soft sedimentary soil at frequencies lower than 150 Hz, experiences strong attenuation, when interacting with a forest, over two separate large frequency bands. This experiment is interpreted using finite element simulations that demonstrate the observed attenuation is due to bandgaps when the trees are arranged at the sub-wavelength scale with respect to the incident Rayleigh wave. The repetitive bandgaps are generated by the coupling of the successive longitudinal resonances of trees with the vertical component of the Rayleigh wave. For wavelengths down to 5 meters, the resulting bandgaps are remarkably large and strongly attenuating when the acoustic impedance of the trees matches the impedance of the soil. Since longitudinal resonances of a vertical resonator are inversely proportional to its length, a man-made engineered array of resonators that attenuates Rayleigh waves at frequency ≤10 Hz could be designed starting from vertical pillars coupled to the ground with longitudinal resonance ≤10 Hz.
Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances
Colombi, Andrea; Roux, Philippe; Guenneau, Sebastien; Gueguen, Philippe; Craster, Richard V.
2016-01-01
We explore the thesis that resonances in trees result in forests acting as locally resonant metamaterials for Rayleigh surface waves in the geophysics context. A geophysical experiment demonstrates that a Rayleigh wave, propagating in soft sedimentary soil at frequencies lower than 150 Hz, experiences strong attenuation, when interacting with a forest, over two separate large frequency bands. This experiment is interpreted using finite element simulations that demonstrate the observed attenuation is due to bandgaps when the trees are arranged at the sub-wavelength scale with respect to the incident Rayleigh wave. The repetitive bandgaps are generated by the coupling of the successive longitudinal resonances of trees with the vertical component of the Rayleigh wave. For wavelengths down to 5 meters, the resulting bandgaps are remarkably large and strongly attenuating when the acoustic impedance of the trees matches the impedance of the soil. Since longitudinal resonances of a vertical resonator are inversely proportional to its length, a man-made engineered array of resonators that attenuates Rayleigh waves at frequency ≤10 Hz could be designed starting from vertical pillars coupled to the ground with longitudinal resonance ≤10 Hz. PMID:26750489
{beta}-Induced Alfven Eigenmodes Destabilized by Energetic Electrons in a Tokamak Plasma
Chen, W.; Ding, X. T.; Yang, Q. W.; Liu, Yi; Ji, X. Q.; Zhang, Y. P.; Zhou, J.; Yuan, G. L.; Sun, H. J.; Li, W.; Zhou, Y.; Huang, Y.; Dong, J. Q.; Feng, B. B.; Song, X. M.; Shi, Z. B.; Liu, Z. T.; Song, X. Y.; Li, L. C.; Duan, X. R.
2010-10-29
The {beta}-induced Alfven eigenmode (BAE) excited by energetic electrons has been identified for the first time both in the Ohmic and electron cyclotron resonance heating plasma in HL-2A. The features of the instability, including its frequency, mode number, and propagation direction, can be observed by magnetic pickup probes. The mode frequency is comparable to that of the continuum accumulation point of the lowest frequency gap induced by the shear Alfven continuous spectrum due to finite {beta} effect, and it is proportional to Alfven velocity at thermal ion {beta} held constant. The experimental results show that the BAE is related not only with the population of the energetic electrons, but also their energy and pitch angles. The results indicate that the barely circulating and deeply trapped electrons play an important role in the mode excitation.
Van Zeeland, Michael; Heidbrink, W.; Nazikian, Raffi; Austin, M. E.; Cheng, C Z; Chu, M. S.; Gorelenkov, Nikolai; Holcomb, C T; Hyatt, A. W.; Kramer, G.; Lohr, J.T.; Mckee, G. R.; Petty, C C.; Prater, R.; Solomon, W. M.; Spong, Donald A
2009-01-01
Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including toroidicity and ellipticity induced Alfven eigenmodes (TAE/EAE, respectively) and reversed shear Alfven eigenmodes (RSAE) as well as their spatial coupling. These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. It is found that ideal MHD modelling of eigenmode spectral evolution, coupling and structure are in excellent agreement with experimental measurements. It is also found that higher radial envelope harmonic RSAEs are clearly observed and agree with modelling. Some discrepancies with modelling such as that due to up/down eigenmode asymmetries are also pointed out. Concomitant with the Alfvenic activity, fast ion (FIDA) spectroscopy shows large reductions in the central fast ion profile, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. The sensitivity of this effect to deposition power and current drive phasing as well as ECH modulation are presented.
Gyrokinetic Particle Simulation of Fast Electron Driven Beta-induced Alfven Eigenmodes
NASA Astrophysics Data System (ADS)
Zhang, Wenlu; Cheng, Junyi; Lin, Zhihong
2016-10-01
The fast electron driven beta induced Alfven eigenmode (e-BAE) has been routinely observed in HL-2A tokamak. We study e-BAE for the first time using global gyrokinetic GTC simulation, where the fast electrons are described by the drift kinetic model. Frequency chirping is observed in nonlinear simulations in the absence of sources and sinks, which provide a new nonlinear paradigm beyond the standard ``bump-on-tail'' model. For weakly driven case, nonlinear frequency is observed to be in phase with particle flux, and nonlinear mode structure is almost the same as linear stage. In the strongly driven case, BAAE is also unstable and co-exists with BAE after the BAE saturation. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of the coherent structures in the fast electron phase space, where the dynamics of the coherent structure is controlled by the formation and destruction of phrase space islands in the canonical variables. Zonal fields are found to affect wave-particle resonance in the nonlinear e-BAE simulations.
Global particle-in-cell simulations of plasma pressure effects on Alfvenic modes
Mishchenko, Alexey; Koenies, Axel; Hatzky, Roman
2011-01-15
Global linear gyrokinetic particle-in-cell simulations of electromagnetic modes in realistic tokamak geometry are reported. The effect of plasma pressure on Alfvenic modes is studied. It is shown that the fast-particle pressure can considerably affect the shear Alfven wave continuum structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely stabilize them in a certain parameter range). Ballooning modes are found to be the dominant instabilities if the bulk-plasma pressure gradient is large enough.
NASA Astrophysics Data System (ADS)
Yang, Jin-Wei; Gao, Yi-Tian; Sun, Yu-Hao; Shen, Yu-Jia; Su, Chuan-Qi
2016-11-01
In this paper, a two-component (2 + 1) -dimensional long-wave-short-wave (LWSW) system with nonlinearity coefficients, which describes the nonlinear resonance interaction between two short waves and a long wave, is studied. Via the Hirota's bilinear method and Pfaffian, N -order rogue waves for the LWSW system are constructed. Furthermore, correction of the N -order rogue waves is proved directly via the Pfaffian, which is cumbersome or inaccessible in other methods. Results of the first- and second-order rogue waves are presented: 1) For the first-order rogue waves, the two short-wave components are bright, while the long-wave component is dark. The position of maximum amplitude of the rogue wave is analyzed. Evolution process for the first-order rogue wave is also presented and discussed. 2) Choosing different forms of the elements defined in the Pfaffian, we obtain some kinds of the second-order rogue waves with new spatial distributions: when the elements defined in Pfaffian are the same as the first-order rogue waves, we find that the second-order rogue waves for the two short-wave components are split into two first-order rogue waves and the two bumps coexist and interact with each other; when we change the combination of the elements in Pfaffian, we find that the second-order rogue waves for the two short-wave components are split into three and four first-order rogue waves. 3) N -order rogue waves for a general M -component LWSW system are constructed.
Numerical study of heterogeneous mean temperature and shock wave in a resonator
NASA Astrophysics Data System (ADS)
Yano, Takeru
2015-10-01
When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises. Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.
Numerical study of heterogeneous mean temperature and shock wave in a resonator
Yano, Takeru
2015-10-28
When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises. Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.
Verwichte, E.; Foullon, C.; White, R. S.; Van Doorsselaere, T.
2013-04-10
Two transversely oscillating coronal loops are investigated in detail during a flare on the 2011 September 6 using data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We compare two independent methods to determine the Alfven speed inside these loops. Through the period of oscillation and loop length, information about the Alfven speed inside each loop is deduced seismologically. This is compared with the Alfven speed profiles deduced from magnetic extrapolation and spectral methods using AIA bandpass. We find that for both loops the two methods are consistent. Also, we find that the average Alfven speed based on loop travel time is not necessarily a good measure to compare with the seismological result, which explains earlier reported discrepancies. Instead, the effect of density and magnetic stratification on the wave mode has to be taken into account. We discuss the implications of combining seismological, extrapolation, and spectral methods in deducing the physical properties of coronal loops.
YBCO superconducting ring resonators at millimeter-wave frequencies
NASA Technical Reports Server (NTRS)
Chorey, Christopher M.; Kong, Keon-Shik; Bhasin, Kul B.; Warner, J. D.; Itoh, Tatsuo
1991-01-01
Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performances compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.
The making of an Alfvenic fluctuation: The resolution of a second-order analysis
NASA Technical Reports Server (NTRS)
Vasquez, Bernard J.; Hollweg, Joseph V.
1995-01-01
Ulysses observations of the high speed polar streams show that they are largely occupied by very large amplitude Alfvenic fluctuations accompanied by many rotational discontinuities. These fluctuations have a nearly constant magnetic intensity or amplitude, and the magnetic field direction per wave cycle sweeps only through a limited arc, much as a car wiperblade would do. Barnes and Hollweg (JGR, 79, 2302, 1974) suggested that this unusual waveform could arise from an obliquely propagating and linearly polarized Alfven wave of finite amplitude. From a second-order analysis, they showed that the existence of a particular solution with a constant amplitude but could not resolve the outcome of the homogeneous solution which consisted of fast waves. They suggested that Landau damping of these fast waves may be needed to get the observed waveform. We present a 1 1/2 D hybrid simulation which is fully nonlinear and correctly describes the ion kinetics for an initially monochromatic and linearly polarized Alfven wave propagating obliquely to the background magnetic field. The wave has a large amplitude and a wavelength so long that it can be considered dispersionless for simulation times. At early times, the second harmonic in density and in magnetic field transverse to the initial wave magnetic field are generated and have more power than other harmonics. Steepening is observed with a weak fast shock emerging, but no rotational discontinuity is left behind, and instead a constant amplitude and an arc-shaped waveform is made. The compressional component which develops after the shocks have dissipated is to zeroth order better described as a pure acoustic wave than as a fast wave. This might be explained by the relaxing of the Alfven wave to a state where its ponderomotive force vanishes so that the compressional component can travel almost independently of it.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Stochastic acceleration of ions driven by Pc1 wave packets
Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-07-15
The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Observation of broad p -wave Feshbach resonances in ultracold 85Rb-87Rb mixtures
NASA Astrophysics Data System (ADS)
Dong, Shen; Cui, Yue; Shen, Chuyang; Wu, Yewei; Tey, Meng Khoon; You, Li; Gao, Bo
2016-12-01
We observe Feshbach resonances in ultracold mixtures of 85Rb and 87Rb atoms in the 85Rb|2 ,+2 >+87Rb|1 ,+1 > and 85Rb|2 ,-2 >+87Rb|1 ,-1 > scattering channels. The positions and properties of the resonances are predicted and characterized using the semianalytic multichannel quantum-defect theory by Gao. Of particular interest, a number of broad entrance-channel-dominated p -wave resonances are identified, implicating exciting opportunities for studying a variety of p -wave interaction-dominated physics.
Enhanced four-wave mixing via photonic bandgap coupled defect resonances.
Blair, S
2005-05-16
Frequency conversion efficiency via four-wave mixing in coupled 1-D photonic crystal defect structures is studied numerically. In structures where all interacting frequencies coincide with intraband defect resonances, energy conversion efficiencies greater than 5% are predicted. Because the frequency spacings are determined by the free-spectral range, thereby requiring long defects for small spacings using intraband resonances, four-wave mixing using coupled-defect miniband resonances in more compact structures is also studied. Conversion efficiencies of greater than 1% are obtained in this case.
Generation of shock-free pressure waves in shaped resonators by boundary driving.
Luo, C; Huang, X Y; Nguyen, N T
2007-05-01
Investigation of high amplitude pressure oscillations generated by boundary driving in shaped resonators has been carried out both theoretically and experimentally. In the theoretical modeling, the acoustic resonance in an axisymmetric resonator is studied by the Galerkin method. The resonator is exponentially expanded and the boundary driving is provided by a piston at one end. The pressure wave forms, amplitudes, resonance frequencies, and ratio of pressures at the two ends of the resonator are calculated for various expansion flare constants and driving strengths. These results are partially compared with those generated by shaking the resonator. They are also verified in the experiment, in which an exponentially expanded resonator is connected to a speaker box functioning as the piston. The experiment is further extended to a horn-shaped resonator with a rectangular cross section. The boundary driving in this case is generated by a circular piezoelectric disk, which forms one sidewall of the resonator cavity. The characteristics of axisymmetric resonators, such as the resonance frequency and amplitude ratio of pressures at the two ends, are observed in this low aspect ratio rectangular resonator with the sidewall driving.
Simulation and fabrication of thin film bulk acoustic wave resonator
NASA Astrophysics Data System (ADS)
Xixi, Han; Yi, Ou; Zhigang, Li; Wen, Ou; Dapeng, Chen; Tianchun, Ye
2016-07-01
In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by the eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Q s (Q at series resonance), Q p (Q at parallel resonance), Q max and k t 2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performance than previous reports. Project supported by the National Natural Science Foundation of China (Nos. 61274119, 61306141, 61335008) and the Natural Science Foundation of Jiangsu Province (No. BK20131099).
High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves
NASA Astrophysics Data System (ADS)
Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao
1994-05-01
High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.
Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma
NASA Astrophysics Data System (ADS)
Vladimirov, S. V.; Ishihara, O.
2016-07-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.
Johnson, Paul; Sutin, A.
2004-01-01
The nonlinear elastic response of materials (e.g., wave mixing, harmonic generation) is much more sensitive to the presence of damage than the linear response (e.g., wavespeed, dissipation). An overview of the four primary Nonlinear Elastic Wave Spectroscopy (NEWS) methods used in nonlinear damage detection are presented in this and the following paper. Those presented in this paper are Nonlinear Resonant Ultrasound Spectroscopy (NRUS), based on measurement of the nonlinear response of one or more resonant modes in a test sample, and Slow Dynamics Diagnostics (SDD), manifest by an alteration in the material dissipation and elastic modulus after application of relatively high-amplitude wave that slowly recovers in time.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Directional cloaking of flexural waves in a plate with a locally resonant metamaterial.
Colombi, Andrea; Roux, Philippe; Guenneau, Sebastien; Rupin, Matthieu
2015-04-01
This paper deals with the numerical design of a directional invisibility cloak for backward scattered elastic waves propagating in a thin plate (A0 Lamb waves). The directional cloak is based on a set of resonating beams that are attached perpendicular to the plate and are arranged at a sub-wavelength scale in ten concentric rings. The exotic effective properties of this locally resonant metamaterial ensure coexistence of bandgaps and directional cloaking for certain beam configurations over a large frequency band. The best directional cloaking was obtained when the resonators' length decreases from the central to the outermost ring. In this case, flexural waves experience a vanishing index of refraction when they cross the outer layers, leading to a frequency bandgap that protects the central part of the cloak. Numerical simulation shows that there is no back-scattering in these configurations. These results might have applications in the design of seismic-wave protection devices.
High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
Antao, Dion Savio; Farouk, Bakhtier
2013-08-01
A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.
Surface Gravity Waves: Resonance in a Fish Tank
ERIC Educational Resources Information Center
Sinick, Scott J.; Lynch, John J.
2010-01-01
In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…
Controlling normal incident optical waves with an integrated resonator.
Qiu, Ciyuan; Xu, Qianfan
2011-12-19
We show a diffraction-based coupling scheme that allows a micro-resonator to directly manipulate a free-space optical beam at normal incidence. We demonstrate a high-Q micro-gear resonator with a 1.57-um radius whose vertical transmission and reflection change 40% over a wavelength range of only 0.3 nm. Without the need to be attached to a waveguide, a dense 2D array of such resonators can be integrated on a chip for spatial light modulation and parallel bio-sensing.
NASA Astrophysics Data System (ADS)
Kornhuber, K.; Petoukhov, V.; Petri, S.; Rahmstorf, S.; Coumou, D.
2016-11-01
Several recent northern hemisphere summer extremes have been linked to persistent high-amplitude wave patterns (e.g. heat waves in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013). Recently quasi-resonant amplification (QRA) was proposed as a mechanism that, when certain dynamical conditions are fulfilled, can lead to such high-amplitude wave events. Based on these resonance conditions a detection scheme to scan reanalysis data for QRA events in boreal summer months was implemented. With this objective detection scheme we analyzed the occurrence and duration of QRA events and the associated atmospheric flow patterns in 1979-2015 reanalysis data. We detect a total number of 178 events for wave 6, 7 and 8 and find that during roughly one-third of all high amplitude events QRA conditions were met for respective waves. Our analysis reveals a significant shift for quasi-stationary waves 6 and 7 towards high amplitudes during QRA events, lagging first QRA-detection by typically one week. The results provide further evidence for the validity of the QRA hypothesis and its important role in generating high amplitude waves in boreal summer.
Nonlinear Frequency Chirping of β-induced Alfven Eigenmode
NASA Astrophysics Data System (ADS)
Zhang, Huasen
2012-03-01
The β-induced Alfven eigenmode (BAE) have been observed in many tokamaks. The BAE oscillates with the GAM frequency φ0, and therefore, has strong interactions with both thermal and energetic particles. In this work, linear gyrokinetic particle simulations show that nonperturbative contributions by energetic particles and kinetic effects of thermal particles modify BAE mode structure and frequency relative to the MHD theory. Gyrokinetic simulations have been verified by theory-simulation comparison and by benchmark with MHD-gyrokinetic hybrid simulation. Nonlinear simulations show that the unstable BAE saturates due to nonlinear wave-particle interactions with thermal and energetic particles. Wavelet analysis shows that the mode frequency chirping occurs in the absence of sources and sinks, thus it complements the standard ``bump-on-tail'' paradigm for the frequency chirping of Alfven eigenmodes. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of coherent structures in the energetic particle phase space of (ζ,φd) with toroidal angle ζ and precessional frequency φd. The dynamics of the coherent structures is controlled by the formation and destruction of phase space islands of energetic particles in the canonical variables of (ζ,Pζ) with canonical angular momentum Pζ. Our studies use the gyrokinetic toroidal code (GTC) recently upgraded with a comprehensive formulation for simulating kinetic-MHD processes. In collaborations with GTC team and SciDAC GSEP Center.
Rupin, Matthieu; Roux, Philippe; Lerosey, Geoffroy; Lemoult, Fabrice
2015-09-03
Locally resonant metamaterials derive their effective properties from hybridization between their resonant unit cells and the incoming wave. This phenomenon is well understood in the case of plane waves that propagate in media where the unit cell respects the symmetry of the incident field. However, in many systems, several modes with orthogonal symmetries can coexist at a given frequency, while the resonant unit cells themselves can have asymmetric scattering cross-sections. In this paper we are interested in the influence of symmetry breaking on the hybridization of a wave field that includes multiple propagative modes. The A0 and S0 Lamb waves that propagate in a thin plate are good candidates for this study, as they are either anti-symmetric or symmetric. First we designed an experimental setup with an asymmetric metamaterial made of long rods glued to one side of a metallic plate. We show that the flexural resonances of the rods induce a break of the orthogonality between the A0/S0 modes of the free-plate. Finally, based on numerical simulations we show that the orthogonality is preserved in the case of a symmetric metamaterial leading to the presence of two independent polariton curves in the dispersion relation.
NASA Astrophysics Data System (ADS)
Rupin, Matthieu; Roux, Philippe; Lerosey, Geoffroy; Lemoult, Fabrice
2015-09-01
Locally resonant metamaterials derive their effective properties from hybridization between their resonant unit cells and the incoming wave. This phenomenon is well understood in the case of plane waves that propagate in media where the unit cell respects the symmetry of the incident field. However, in many systems, several modes with orthogonal symmetries can coexist at a given frequency, while the resonant unit cells themselves can have asymmetric scattering cross-sections. In this paper we are interested in the influence of symmetry breaking on the hybridization of a wave field that includes multiple propagative modes. The A0 and S0 Lamb waves that propagate in a thin plate are good candidates for this study, as they are either anti-symmetric or symmetric. First we designed an experimental setup with an asymmetric metamaterial made of long rods glued to one side of a metallic plate. We show that the flexural resonances of the rods induce a break of the orthogonality between the A0/S0 modes of the free-plate. Finally, based on numerical simulations we show that the orthogonality is preserved in the case of a symmetric metamaterial leading to the presence of two independent polariton curves in the dispersion relation.
Rupin, Matthieu; Roux, Philippe; Lerosey, Geoffroy; Lemoult, Fabrice
2015-01-01
Locally resonant metamaterials derive their effective properties from hybridization between their resonant unit cells and the incoming wave. This phenomenon is well understood in the case of plane waves that propagate in media where the unit cell respects the symmetry of the incident field. However, in many systems, several modes with orthogonal symmetries can coexist at a given frequency, while the resonant unit cells themselves can have asymmetric scattering cross-sections. In this paper we are interested in the influence of symmetry breaking on the hybridization of a wave field that includes multiple propagative modes. The A0 and S0 Lamb waves that propagate in a thin plate are good candidates for this study, as they are either anti-symmetric or symmetric. First we designed an experimental setup with an asymmetric metamaterial made of long rods glued to one side of a metallic plate. We show that the flexural resonances of the rods induce a break of the orthogonality between the A0/S0 modes of the free-plate. Finally, based on numerical simulations we show that the orthogonality is preserved in the case of a symmetric metamaterial leading to the presence of two independent polariton curves in the dispersion relation. PMID:26333601
Effects of phase mixing and resonant detuning on GAMs
NASA Astrophysics Data System (ADS)
Hung, Chingpui; Hassam, Adil
2012-10-01
Geodesic acoustic modes (GAMs) are axisymmetric poloidal oscillations of plasma in tokamaks, caused by magnetic curvature and perpendicular compression of flux tubes as they move in a non-uniform magnetic field. It has been proposedfootnotetext K. Hallatschek and G. McKee, Sherwood Fusion Theory Meeting (Austin, Tx., 2011) to drive GAMS resonantly by external drivers. For power requirements, it is important to study the dissipation mechanisms. Here we study damping from (1) phase mixing of oscillations and (2) nonlinear detuning. Phase mixing of 2D waves propagating in inhomogeneous media can result in a higher damping rate. For example, for Alfven waves propagating transverse to a phase speed inhomogenenity, the damping rate is proportional to exp[-(t/τ)^3], instead of the usual exp(-t/τ), where 1/τ is proportional to the resistivity η. We study this phenomenon for Alfven waves and for GAMs. The results are verified by simulation with a dissipative MHD code. In addition, numerical simulation shows that the resonant amplification of magnetosonic waves driven at resonance is greatly inhibited by nonlinearities: the power spectrum is broader than the linear case Lorentzian. GAMs have similar mathematical structure to magnetosonic waves. The effect of nonlinearity in driven GAM systems will be examined.
Wave-particle interactions in the radiation belts: effect of wave spectra
NASA Astrophysics Data System (ADS)
Vassiliadis, Dimitris; Tornquist, Mattias; Koepke, Mark
2014-10-01
Particle acceleration in Earth's radiation belts is often explain in terms of radial diffusion theory. Some of the most important contributions to diffusive transport are stochastic as well as resonant interactions with low-frequency (Alfven/magnetosonic) waves. While spectra of such waves are traditionally assumed to be broadband and spectrally white, a number of recent studies [Rae et al., 2012; Ozeke et al., 2012] indicate that the spectra of ground geomagnetic pulsations are significantly more complex. We examine power-law spectra in particle simulations in a realistic magnetospheric field configuration and report on their effect on the transport and energization of the pre-storm electron population.
Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves
Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi
2010-01-15
We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.
Closed-loop experiment of resonator integrated optic gyro with triangular wave phase modulation
NASA Astrophysics Data System (ADS)
Tang, Yichuang; Liu, Huilan; Zhi, Yinzhou; Feng, Lishuang; Wang, Junjie
2014-10-01
A closed-loop resonator integrated optic gyro (RIOG) scheme based on triangular wave phase modulation is proposed. Only one integrated optic modulator (IOM) is employed. Triangular wave is applied on the IOM to modulate the passing light wave, and the feedback serrodyne wave is superimposed upon the triangular wave to compensate the resonant frequency-difference. The experimental setup is established and the related measurements are performed. The results show that the proposed scheme can realize the closed-loop RIOG employing an IOM, which has the advantage of miniature size. A bias stability of 0.39 deg/s (10 s integration time) over 1 hour is achieved. Moreover, good linearity and large dynamic range are also experimental demonstrated.
Edge waves and resonances in two-dimensional phononic crystal plates
NASA Astrophysics Data System (ADS)
Hsu, Jin-Chen; Hsu, Chih-Hsun
2015-05-01
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.
NASA Technical Reports Server (NTRS)
Hoppe, M. M.; Russell, C. T.
1983-01-01
The plasma rest frame frequencies and polarizations of the large amplitude low frequency (0.03 Hz) upstream waves are investigated using magnetic field data from the dual ISEE 1 and 2 spacecraft. The monochromatic sinusoidal waves associated with intermediate ion fluxes are propagating in both the Alfven and magnetosonic modes, in both cases with typical frequencies approximately 0.1 times the local proton gyrofrequency and wavelengths of approximately 1 R(E). It is shown that the generation of the magnetosonic mode can be explained by the cyclotron resonance mechanism driven by narrow reflected ion beams, but the concurrent observation of Alfven mode waves appears to require wave generation by the more isotropic diffuse ion distributions as well.
Universal one-dimensional atomic gases near odd-wave resonance
NASA Astrophysics Data System (ADS)
Cui, Xiaoling
2016-10-01
We show the renormalization of the contact interaction for odd-wave scattering in one-dimension (1D). Based on the renormalized interaction, we exactly solve the two-body problem in a harmonic trap and further explore the universal properties of spin-polarized fermions near odd-wave resonance by using the operator-product-expansion method. It is found that the high-momentum distribution behaves as C /k2 , with C being the odd-wave contact. Various universal relations are derived. Our work suggests a universal system emergent in 1D with large odd-wave scattering length.
Garcia-Chocano, Victor M; Nagaraj; Lòpez-Rios, Tomàs; Gumen, Lyudmila; Sànchez-Dehesa, Josè; Krokhin, Arkadii
2012-10-01
Coupling of Rayleigh waves propagating along two metal surfaces separated by a narrow fluid channel is predicted and experimentally observed. Although the coupling through a fluid (water) is weak, a strong synchronization in propagation of Rayleigh waves even for the metals with sufficiently high elastic contrast (brass and aluminum) is observed. Dispersion equation for two polarizations of the coupled Rayleigh waves is derived and experimentally confirmed. Excitation of coupled Rayleigh waves in a channel of finite length leads to anomalously low transmission of acoustic energy at discrete set of resonant frequencies. This effect may find useful applications in the design of acoustic metamaterial screens and reflectors.
Shifts and widths of p-wave confinement induced resonances in atomic waveguides
NASA Astrophysics Data System (ADS)
Saeidian, Shahpoor; Melezhik, Vladimir S.; Schmelcher, Peter
2015-08-01
We develop and analyze a theoretical model to study p-wave Feshbach resonances of identical fermions in atomic waveguides by extending the two-channel model of Lange et al (2009 Phys. Rev. A 79 013622) and Saeidian et al (2012 Phys. Rev. A 86 062713). The experimentally known parameters of Feshbach resonances in free space are used as input of the model. We calculate the shifts and widths of p-wave magnetic Feshbach resonance of 40K atoms emerging in harmonic waveguides as p-wave confinement induced resonance (CIR). Particularly, we show a possibility to control the width and shift of the p-wave CIR by the trap frequency and the applied magnetic field which could be used in corresponding experiments. Our analysis also demonstrates the importance of the inclusion of the effective range in the computational schemes for the description of the p-wave CIRs contrary to the case of s-wave CIRs where the influence of this term is negligible.
Investigation of an ion-ion hybrid Alfvén wave resonator
NASA Astrophysics Data System (ADS)
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.
2013-01-01
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfvén waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfvén wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H+-He+ mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
NASA Astrophysics Data System (ADS)
Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar
2016-03-01
The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.
NASA Astrophysics Data System (ADS)
Friedt, J.-M.; Droit, C.; Ballandras, S.; Alzuaga, S.; Martin, G.; Sandoz, P.
2012-05-01
Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.
Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P
2012-05-01
Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Hollweg, Joseph V.; Markovskii, S. A.
2002-06-01
There is a growing consensus that cyclotron resonances play important roles in heating protons and ions in coronal holes where the fast solar wind originates and throughout interplanetary space as well. Most work on cyclotron resonant interactions has concentrated on the special, but unrealistic, case of propagation along the ambient magnetic field, B0, because of the great simplification it gives. This paper offers a physical discussion of how the cyclotron resonances behave when the waves propagate obliquely to B0. We show how resonances at harmonics of the cyclotron frequency come about, and how the physics can be different depending on whether E⊥ is in or perpendicular to the plane containing k and B0 (k is wave vector, and E⊥ is the component of the wave electric field perpendicular to B0). If E⊥ is in the k-B0 plane, the resonances are analogous to the Landau resonance and arise because the particle tends to stay in phase with the wave during the part of its orbit when it is interacting most strongly with E⊥. If E⊥ is perpendicular to the k-B0 plane, then the resonances depend on the fact that the particle is at different positions during the parts of its orbit when it is interacting most strongly with E⊥. Our main results are our
Nonlinear dynamics of beta-induced Alfven eigenmode in tokamak
Zhang, H. S.; Lin, Z.; Deng, W.; Holod, I.; Wang, Z. X.; Xiao, Y.; Zhang, W. L.
2013-01-15
The beta-induced Alfven eigenmode (BAE) excited by energetic particles in toroidal plasmas is studied in the global gyrokinetic simulations. It is found that the nonlinear BAE dynamics depends on the deviation from the marginality. In the strongly driven case, the mode exhibits a bursting state with fast and repetitive chirping. The nonlinear saturation is determined by the thermal ion nonlinearity and has no clear dependence on the linear growth rate. In the weakly driven case, the mode reaches a nearly steady state with small frequency chirping. The nonlinear dynamics is dominated by the energetic particle nonlinearity. In both cases, the nonlinear intensity oscillation and frequency chirping are correlated with the evolution of the coherent structures in the energetic particle phase space. Due to the radial variation of the mode amplitude and the radially asymmetric guiding center dynamics, the wave-particle interaction in the toroidal geometry is much more complex than the conventional one-dimensional wave-particle interaction paradigm.
The κ resonance in s wave πK scatterings
NASA Astrophysics Data System (ADS)
Zheng, H. Q.; Zhou, Z. Y.; Qin, G. Y.; Xiao, Z. G.; Wang, J. J.; Wu, N.
2004-03-01
A new unitarization approach incorporated with chiral symmetry is established and applied to study the πK elastic scatterings. We demonstrate that the κ resonance exists, if the scattering length parameter in the I=1/2, J=0 channel does not deviate much from its value predicted by chiral perturbation theory. The mass and width of the κ resonance is found to be Mκ=594±79 MeV, Γκ=724±332 MeV, obtained by fitting the LASS data up to 1430 MeV. Better determination to the pole parameters is possible if the chiral predictions on scattering lengths are taken into account.
Critical-layer nonlinearity in the resonance growth of three-dimensional waves in boundary layers
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1990-01-01
The nonlinear interactions of a triad of initially linear stability waves are addressed. The triad consisted of a single two-dimensional mode at a given frequency and two oblique modes with equal and opposite spanwise wave numbers. The oblique waves were at half the frequency and streamwise wave number of the two-dimensional mode. Attention was focused on the boundary-layer transition at low frequencies and high Reynolds numbers. A five-zoned structure and low-frequency scaling were used to derive the nonlinear-interaction equations. The initial nonlinear development of the waves was analyzed; the results indicated that the two-dimensional wave behaves according to linear theory. Nonlinear interactions caused exponential-of-an-exponential growth of the oblique modes. This resonant amplification of the subharmonic depended on the initial amplitude of the two-dimensional wave and on the initial phase angle between the two-dimensional wave and the oblique waves. The resonant growth of the oblique modes was more pronounced at lower frequencies than at higher frequencies. The results are in good agreement with experimental results and offer explanations of the observed process.
Fu, G.Y.; Cheng, C.Z.
1992-07-01
The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much_gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.
Fu, G.Y.; Cheng, C.Z.
1992-07-01
The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.
Magnetic resonance imaging of shear wave propagation in excised tissue.
Bishop, J; Poole, G; Leitch, M; Plewes, D B
1998-01-01
The propagation of shear waves in ex vivo tissue samples, agar/gel phantoms, and human volunteers was investigated. A moving coil apparatus was constructed to generate low acoustic frequency shear perturbations of 50 to 400 Hz. Oscillating gradients phase-locked with the shear stimulus were used to generate a series of phase contrast images of the shear waves at different time-points throughout the wave cycle. Quantitative measurements of wave velocity and attenuation were obtained to evaluate the effects of temperature, frequency, and tissue anisotropy. Results of these experiments demonstrate significant variation in shear wave behavior with tissue type, whereas frequency and anisotropic behavior was mixed. Temperature-dependent behavior related mainly to the presence of fat. Propagation velocities ranged from 1 to 5 m/sec, and attenuation coefficients of from 1 to 3 nepers/unit wavelength, depending on tissue type. These results confirm the potential of elastic imaging attributable to the intrinsic variability of elastic properties observed in normal tissue, although some difficulty may be experienced in clinical implementation because of viscous attenuation in fat.
Kondo resonance from p-wave hybridization in graphene.
Jafari, S A; Tohyama, T
2014-10-15
The p-wave hybridization in graphene present a distinct class of Kondo problem in pseudogap Fermi systems with bath density of states (DOS) ρ₀(ε) ∝ |ε|. The peculiar geometry of substitutional and hollow-site ad-atoms, and effectively the vacancies allow for a p-wave form of momentum dependence in the hybridization of the associated local orbital with the Dirac fermions of the graphene host which results in a different picture than the s-wave momentum independent hybridization. For the p-wave hybridization function, away from the Dirac point we find closed-form formulae for the Kondo temperature TK which in contrast to the s-wave case is non-zero for any value of hybridization strength V of the single impurity Anderson model (SIAM). At the Dirac point where the DOS vanishes, we find a conceivably small value of Vmin above which the Kondo screening takes place even in the presence of particle-hole symmetry. We also show that the non-Lorentzian line shape of the local spectrum arising from anomalous hybridization function leads to much larger TK in vacant graphene compared to a metallic host with similar bandwidth and SIAM parameters.
Sawtooth Stabilization and Onset of Alfvenic Instabilities
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Cheng, C. Z.
2011-10-01
Tokamak sawtooth instabilities can be stabilized by high energy particles as a consequence of conservation of the third adiabatic invariant.On the other hand, termination of the stabilized period is reported due to the onset of Alfvenic instabilities (and thus the absence of the stabilizing mechanism). In this work, employing a kinetic-fluid model, the interaction of m=1 resistive kink mode and high energy particles is investigated. The onset of Alfvenic instabilities is examined as a function of the inversion radius location. D.J. Campbell et al., Phys. Rev. Lett. 60, 2148 (1988); F. Porcelli, Plasma Phys. Controlled Fusion 33, 1601 (1991).
Theory of continuum damping of toroidal Alfven Eigenmodes in finite-[beta] tokamaks
Zonca, F.; Chen, Liu.
1993-05-01
We have formulated a general theoretical approach for analyzing two-dimensional structures of high-n Toroidal Alfven Eigenmodes (TAE) in large aspect-ratio, finite-[beta] tokamaks. Here, n is the toroidal wave number and [beta] is the ratio between plasma and magnetic pressures. The present approach generalizes the standard ballooning-mode formalism and is capable of treating eigenmodes with extended global radial structures as well as finite coupling between discrete and continuous spectra. Employing the well-known (s,[alpha]) model equilibrium and assuming a linear equilibrium profile, we have applied the present approach and calculated the corresponding resonant continuum damping rate of TAE modes. Here, s and [alpha] denote, respectively, the strengths of magnetic shear and pressure gradients. In particular, it is found that there exists a critical [alpha][sub c](s), such that, as [alpha] [yields] [alpha][sub c], the continuum damping rate is significantly enhanced and, thus, could suppress the potential TAE instability.
Theory of continuum damping of toroidal Alfven Eigenmodes in finite-{beta} tokamaks
Zonca, F.; Chen, Liu
1993-05-01
We have formulated a general theoretical approach for analyzing two-dimensional structures of high-n Toroidal Alfven Eigenmodes (TAE) in large aspect-ratio, finite-{beta} tokamaks. Here, n is the toroidal wave number and {beta} is the ratio between plasma and magnetic pressures. The present approach generalizes the standard ballooning-mode formalism and is capable of treating eigenmodes with extended global radial structures as well as finite coupling between discrete and continuous spectra. Employing the well-known (s,{alpha}) model equilibrium and assuming a linear equilibrium profile, we have applied the present approach and calculated the corresponding resonant continuum damping rate of TAE modes. Here, s and {alpha} denote, respectively, the strengths of magnetic shear and pressure gradients. In particular, it is found that there exists a critical {alpha}{sub c}(s), such that, as {alpha} {yields} {alpha}{sub c}, the continuum damping rate is significantly enhanced and, thus, could suppress the potential TAE instability.
Calculation of s-Wave Resonances by Means of Analytical Continuation
NASA Astrophysics Data System (ADS)
Horáček, Jiří; Ledvinka, Tomáš; Brožek, Pavel
2010-09-01
Calculation of s-wave resonances by means of the analytical continuation in the coupling constant is a difficult problem because the position of the critical bifurcation point is unknown. Here we propose a new variant of the method of analytical continuation which avoids this problem completely. The method is applied to a model case which allows for accurate determination of the input data. It is shown that very precise resonance parameters can be obtained in this way.
A Study of Standing Pressure Waves Within Open and Closed Acoustic Resonators
NASA Technical Reports Server (NTRS)
Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.
2002-01-01
The first section of the results presented herein was conducted on an axisymmetric resonator configured with open ventilation ports on either end of the resonator, but otherwise closed and free from obstruction. The remaining section presents the results of a similar resonator shape that was closed, but contained an axisymmetric blockage centrally located through the axis of the resonator. Ambient air was used as the working fluid. In each of the studies, the resonator was oscillated at the resonant frequency of the fluid contained within the cavity while the dynamic pressure, static pressure, and temperature of the fluid were recorded at both ends of the resonator. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previous studies due to the use of air instead of refrigerant as the working fluid. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when the configuration of the resonators was modified from closed to open. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes varied little from baseline measurements.
Resonance reflection of acoustic waves in piezoelectric bi-crystalline structures.
Darinskii, Alexander N; Weihnacht, Manfred
2005-05-01
The paper studies the bulk wave reflection from internal interfaces in piezoelectric media. The interfaces of two types have been considered. Infinitesimally thin metallic layer inserted into homogeneous piezoelectric crystal of arbitrary symmetry. Rigidly bonded crystals whose piezoelectric coefficients differ by sign but the other material constants are identical. Analytic expressions for the coefficients of mode conversion have been derived. An analysis has been carried out of specific singularities arising when the angle of incidence is such that the resonance excitation of leaky interface acoustic waves occurs. The conditions for the resonance total reflection have been established. The computations performed for lithium niobate (LiNbO3) illustrate general conclusions.
Resonant drift of spiral waves in the complex ginzburg-landau equation.
Biktasheva, I V; Elkin, Y E; Biktashev, V N
1999-06-01
Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.
Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO
NASA Astrophysics Data System (ADS)
Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.
2015-02-01
For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.
Zhou, Xiaoming; Badreddine Assouar, M. Oudich, Mourad
2014-11-21
We present analytical and numerical analyses of a yet unseen lensing paradigm that is based on a solid metamaterial slab in which the wave excitation source is attached. We propose and demonstrate sub-diffraction-limited acoustic focusing induced by surface resonant states in doubly negative metamaterials. The enhancement of evanescent waves across the metamaterial slab produced by their resonant coupling to surface waves is evidenced and quantitatively determined. The effect of metamaterial parameters on surface states, transmission, and wavenumber bandwidth is clearly identified. Based on this concept consisting of a wave source attached on the metamaterial, a high resolution of λ/28.4 is obtained with the optimum effective physical parameters, opening then an exciting way to design acoustic metamaterials for ultrasonic focused imaging.
Long Wave Resonance in Tropical Oceans and Implications on Climate: the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Pinault, Jean-Louis
2013-11-01
Based on the well established importance of long, non-dispersive baroclinic Kelvin and Rossby waves, a resonance of tropical planetary waves is demonstrated. Three main basin modes are highlighted through joint wavelet analyses of sea surface height (SSH) and surface current velocity (SCV), scale-averaged over relevant bands to address the co-variability of variables: (1) a 1-year period quasi-stationary wave (QSW) formed from gravest mode baroclinic planetary waves which consists of a northern, an equatorial and a southern antinode, and a major node off the South American coast that straddles the north equatorial current (NEC) and the north equatorial counter current (NECC), (2) a half-a-year period harmonic, (3) an 8-year sub-harmonic. Contrary to what is commonly accepted, the 1-year period QSW is not composed of wind-generated Kelvin and Rossby beams but results from the excitation of a tuned basin mode. Trade winds sustain a free tropical basin mode, the natural frequency of which is tuned to synchronize the excitation and the ridge of the QSWs. The functioning of the 1-year period basin mode is confirmed by solving the momentum equations, expanding in terms of Fourier series both the coefficients and the forcing terms. The terms of Fourier series have singularities, highlighting resonances and the relation between the resonance frequency and the wavenumbers. This ill-posed problem is regularized by considering Rayleigh friction. The waves are supposed to be semi-infinite, i.e. they do not reflect at the western and eastern boundaries of the basin, which would assume the waves vanish at these boundaries. At the western boundary the equatorial Rossby wave is deflected towards the northern antinode while forming the NECC that induces a positive Doppler-shifted wavenumber. At the eastern boundary, the Kelvin wave splits into coastal Kelvin waves that flow mainly southward to leave the Gulf of Guinea. In turn, off-tropical waves extend as an equatorially trapped
Tripathi, A. K.; Singhal, R. P.
2009-11-15
Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves using quasilinear diffusion theory. Unlike previous calculations, the parallel group velocity has been included in this study. Further, ECH wave intensity is expressed as a function of wave frequency and wave normal angle with respect to ambient magnetic field. It is found that observed wave electric field amplitudes in Earth's magnetosphere are sufficient to set electrons on strong diffusion in the energy ranges of a few hundred eV. However, the required amplitudes are larger than the observed values for keV electrons and higher by about a factor of 3 compared to past calculations. Required electric field amplitudes are smaller at larger radial distances. It is concluded that ECH waves are responsible for diffuse auroral precipitation of electrons with energies less than about 500 eV.
Non-resonant parametric decay of lower-hybrid waves in the ACT-1 toroidal device
Wong, K.L.; Ono, M.
1981-02-01
Non-resonant parametric decay of lower-hybrid waves, observed in a number of high-power tokamak rf heating experiments, is positively identified as a decay into ion-cyclotron quasi-modes. The decay-wave spectrum, wavelength and amplitude profile are measured inside a toroidal plasma with pump frequency f/sub 0/ approx. 3.5 f/sub ..pi../ approx. 25 f/sub ci/.
Excitation of solitons by an external resonant wave with a slowly varying phase velocity
Aranson, I.; Meerson, B. . Racah Inst. of Physics); Tajima, Toshiki )
1992-02-01
A novel mechanism is proposed for the excitation of solitons in nonlinear dispersive media. The mechanism employs an external pumping wave with a varying phase velocity, which provides a continuous resonant excitation of a nonlinear wave in the medium. Two different schemes of a continuous resonant growth (continuous phase-locking) of the induced nonlinear wave are suggested. The first of them requires a definite time dependence of the pumping wave phase velocity and is relatively sensitive to the initial wave phase. The second employs the dynamic autoresonance effect and is insensitive to the exact time dependence of the pumping wave phase velocity. It is demonstrated analytically and numerically, for a particular example of a driven Korteweg-de Vries (KdV) equation with periodic boundary conditions, that as the nonlinear wave grows, it transforms into a soliton, which continues growing and accelerating adiabatically. A fully nonlinear perturbation theory is developed for the driven KdV equation to follow the growing wave into the strongly nonlinear regime and describe the soliton formation.
Contact Tensor in a p-Wave Fermi Gas with Anisotropic Feshbach Resonances
NASA Astrophysics Data System (ADS)
Yoshida, Shuhei M.; Ueda, Masahito
2016-05-01
Recent theoretical and experimental investigations have revealed that a Fermi gas with a p-wave Feshbach resonance has universal relations between the system's high-momentum behavior and thermodynamics. A new feature introduced by the p-wave interaction is anisotropy in the Feshbach resonances; three degenerate p-wave resonances split according to the magnetic quantum number of the closed-channel molecules | m | due to the magnetic dipole-dipole interaction. Here, we investigate the consequences of the anisotropy. We show that the momentum distribution has a high-momentum asymptote nk ~k-2 ∑ m, m' = - 1 1 >Cm, m'Y1m * (\\kcirc)Y1m' (\\kcirc) , in which we introduce the p-wave contact tensor Cm ,m'. In contrast to the previous studies, it has nine components. We identify them as the number, angular momentum, and nematicity of the closed-channel molecules. We also discuss two examples, the anisotropic p-wave superfluid and a gas confined in a cigar-shaped trap, which exhibit a nematicity component in the p-wave contact tensor.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Double-resonant fast particle-wave interaction
NASA Astrophysics Data System (ADS)
Schneller, M.; Lauber, Ph.; Brüdgam, M.; Pinches, S. D.; Günter, S.
2012-10-01
In future fusion devices fast particles must be well confined in order to transfer their energy to the background plasma. Magnetohydrodynamic instabilities like toroidal Alfvén eigenmodes or core-localized modes such as beta-induced Alfvén eigenmodes and reversed shear Alfvén eigenmodes, both driven by fast particles, can lead to significant losses. This is observed in many ASDEX Upgrade discharges. This study applies the drift-kinetic HAGIS code with the aim of understanding the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Of particular interest is the resonant interaction of particles simultaneously with two different modes, referred to as ‘double-resonance’. Various mode overlapping scenarios with different q profiles are considered. It is found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Surprisingly, no radial mode overlap is necessary for this effect. Quite the contrary is found: small radial mode distances can lead to strong nonlinear mode stabilization of a linearly dominant mode.
Evaluation of partial widths and branching ratios from resonance wave functions
Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod
2010-11-15
A quantum system in a given resonance state has different open channels for decay. Partial widths are the decay rates of the resonance (metastable) state into the different open channels. Here we present a rigorous derivation of the partial widths from the solution of a time-dependent Schroedinger equation with outgoing boundary conditions. We show that the sum of the partial widths obtained from the resonance wave function is equal to the total width. The difference with respect to previous studies on partial widths and branching ratios is discussed.
MHD waves on solar magnetic flux tubes - Tutorial review
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1990-01-01
Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.
MHD waves on solar magnetic flux tubes - Tutorial review
NASA Astrophysics Data System (ADS)
Hollweg, Joseph V.
Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.
High amplitude waves in the expanding solar wind plasma
Schmidt, J. M.; Velli, M.; Grappin, R.
1996-07-20
We simulated the 1 D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. It is the generation of sound due to ponderomotive forces of the Alfven wave which we can detect in the latter case. For slow magnetoacustic waves we find a kind of oscillation of the character of the wave between a sound wave and an Alfven wave. This is the more, the slow magnetoacustic wave is close to a sound wave in the beginning. On the other hand, fast magnetoacustic waves are much more dissipated than the other wave-types and their general behaviour is close to the Alfven. The normalized cross-helicity {sigma}{sub c} is close to one for Alfven-waves and this quantity is decreasing slightly when density-fluctuations are generated. {sigma}{sub c} decreases significantly when the waves are close to perpendicular propagation. Then, the waves are close to quasi-static structures.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; Heidbrink, W. W.
2016-07-05
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge was found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...
2016-07-05
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less
Analysis of Alfven Eigenmodes destabilization by fast particles in Large Helical Device
NASA Astrophysics Data System (ADS)
Varela, Jacobo; Spong, Donald; Garcia, Luis
2016-10-01
Fast particle populations in nuclear fusion experiments can destabilize Alfven Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects by a closure relation. We apply this model to study the Alfven modes stability in Large Helical Device (LHD) equilibria for inward configurations, performing a parametric analysis along a range of realistic values of fast particle β (βfp), ratios of thermal/Alfven velocities (Vth/Vao), magnetic Lundquist numbers (S) and dominant toroidal (n) modes families. The n = 1 and n =2 toroidal families show the largest growth rates for parameters closer to a real LHD scenario (S = 5E6, βfp = 0.02 and Vth/Vao = 0.5), particularly the modes n/m = 1/2 and 2/4 located the inner and middle plasma (ρ = 0.25 - 0.5 with ρ the normalized minor radius). The n = 3 and n = 4 toroidal families are weakly perturbed by fast particles.
Equatorial electron loss by double resonance with oblique and parallel intense chorus waves
NASA Astrophysics Data System (ADS)
Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.; Mozer, F. S.; Krasnoselskikh, V. V.
2016-05-01
Puzzling satellite observations of butterfly pitch angle distributions and rapid dropouts of 30-150 keV electrons are widespread in the Earth's radiation belts. Several mechanisms have been proposed to explain these observations, such as enhanced outward radial diffusion combined with magnetopause shadowing or scattering by intense magnetosonic waves, but their effectiveness is mainly limited to storm times. Moreover, the scattering of 30-150 keV electrons via cyclotron resonance with intense parallel chorus waves should be limited to particles with equatorial pitch angle smaller than 70°-75°, leaving unaffected a large portion of the population. In this paper, we investigate the possible effects of oblique whistler mode waves, noting, in particular, that Landau resonance with very oblique waves can occur up to ˜89°. We demonstrate that such very oblique chorus waves with realistic amplitudes can very efficiently nonlinearly transport nearly equatorially mirroring electrons toward smaller pitch angles where nonlinear scattering (phase bunching) via cyclotron resonance with quasi-parallel waves can take over and quickly send them to much lower pitch angles <40°. The proposed double resonance mechanism could therefore explain the formation of butterfly pitch angle distributions as well as contribute to some fast dropouts of 30-150 keV electrons occurring during moderate geomagnetic disturbances at L = 4-6. Since 30-150 keV electrons represent a seed population for a further acceleration to relativistic energies by intense parallel chorus waves during storms or substorms, the proposed mechanism may have important consequences on the dynamics of 100 keV to MeV electron fluxes in the radiation belts.
A Resonant Wave in a Numerical Model of the 1979 Sudden Stratospheric Warming.
NASA Astrophysics Data System (ADS)
Smith, Anne K.; Avery, Susan K.
1987-11-01
A simple numerical model of the stratosphere has been used to examine the possibility that a resonant growth of wave 2 was responsible for the 1979 major sudden warning. The model solves for linear steady state solutions to the quasi-geographic wave equation in the presence of realistic damping. The basic state is taken from observations (NMC and LIMS), and the frequency of the wave forcing is varied over a wide range. The model results show that in the days during the initial observed amplification of wave 2 (14-15 February), a clear resonant mode existed. The maximum response is for a wave moving eastward with a period of 12-16 days. Another peak at very low frequency (period greater than 100 days) occurs on 22 February. Other days during the period 12-24 February show weaker, but nevertheless significant peaks for particular frequencies. The frequency of the maximum is lower for later days and is nearly stationary at the height of the warming around 21 February. This frequency shift found in the model corresponds closely to the observed wave behavior.Although the details of the results vary with changes in the model resolution or lower boundary position, the resonant wave does not disappear. However, when the wave forcing is applied at the earth&s surface rather than in the tropopause region, no resonance occurs. To test the effect of the lower boundary, the troposphere-stratosphere model was run with an internal vorticity forcing similar to the structure of the observed wave 2 in the troposphere. In this case the frequency dependence of the amplitude within the stratosphere was similar to that of the model with a tropopause boundary, although the magnitude was considerably smaller. This suggests that for resonance to have occurred, a planetary scale disturbance that did not propagate from the surface must have been maintained in the upper troposphere. The two well-developed blocking ridges present in the troposphere during this period may have contributed
Resonance of a tension leg platform exited by third-harmonic force in nonlinear regular waves.
Zhou, B Z; Wu, G X
2015-01-28
The resonance of a floating tension leg platform (TLP) excited by the third-harmonic force of a regular wave is investigated based on fully nonlinear theory with a higher order boundary element method (BEM). The total wave elevation and the total velocity potential are separated into two parts, based on the incoming wave from infinity and the disturbed potential by the body. A numerical radiation condition is then applied at the far field to absorb the disturbed potential without affecting the incident potential. The BEM mesh on the free surface is generated only once at the initial time and the element nodes are rearranged subsequently without changing their connectivity by using a spring analysis method. Through some auxiliary functions, the mutual dependence of fluid/structure motions is decoupled, which allows the body acceleration to be obtained without the knowledge of the pressure distribution. Numerical simulation is carried out for the interaction of a floating TLP with waves. The focus is on the motion principally excited by higher harmonic wave forces. In particular, the resonance of the ISSC TLP generated by the third-order force at the triple wave frequency in regular waves is investigated, together with the tensions of the tendons.
NASA Astrophysics Data System (ADS)
Pogrebnyak, Victor A.; Furlani, Edward P.
2016-05-01
We study wave propagation in uniform materials with periodic boundary profiles and introduce for the first time Bloch resonances and Bloch gaps. Bloch resonances are due to transverse phase matching, i.e., the coupling of two transverse standing waves corresponding to different harmonics. These are distinct from well-known Bragg resonances that result from longitudinal phase matching. We show that Bloch gaps can be engineered over the entire first Brillouin zone up to an infinite wavelength, i.e., kx=0 , where kx is the wave number in the direction of propagation. This is in contrast to Bragg gaps that open at a fixed wavelength, twice the period of the structure. Bloch resonances and gaps can be tuned by reconfiguring the boundary profile and we derive analytical expressions that predict these phenomena when the amplitude of the profile is small. The theory is fundamental as it broadly applies to wave phenomena that span the quantum to continuum scale with applications that range from condensed matter to acoustics. We validate the theory experimentally for the electromagnetic field at GHz frequencies. We also discuss potential photonic and electronic applications of the theory such as a white-light distributed feedback laser and a two-dimensional electron gas transistor.
NASA Technical Reports Server (NTRS)
Fortini, Pierluigi; Onofrio, Roberto; Rioli, Alessandro
1993-01-01
A review on the current efforts to approach and to surpass the fundamental limit in the sensitivity of the Weber type gravitational wave antennae is reported. Applications of quantum non-demolition techniques to the concrete example of an antenna resonant with the transducer are discussed in detail. Analogies and differences from the framework of the squeezed states in quantum optics are discussed.
NASA Technical Reports Server (NTRS)
Fortini, Pierluigi; Onofrio, Roberto; Rioli, Alessandro
1993-01-01
A review of current efforts to approach and to surpass the fundamental limit in the sensitivity of the Weber type gravitational wave antennae is reported. Applications of quantum non-demolition techniques to the concrete example of an antenna resonant with the transducer are discussed in detail. Analogies and differences from the framework of the squeezed states in quantum optics are discussed.
NASA Technical Reports Server (NTRS)
Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.
1992-01-01
An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.
Broadband Lamb Wave Trapping in Cellular Metamaterial Plates with Multiple Local Resonances
Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng
2015-01-01
We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc. PMID:25790858
NASA Astrophysics Data System (ADS)
Chen, Zaigao; Wang, Jianguo; Wang, Yue
2015-01-01
This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM020 mode of reflector to higher-order TM021 mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device.
Chen, Zaigao; Wang, Jianguo; Wang, Yue
2015-01-15
This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM{sub 020} mode of reflector to higher-order TM{sub 021} mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device.
NASA Astrophysics Data System (ADS)
Gowtham, P. G.; Labanowski, D.; Salahuddin, S.
2016-07-01
Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.
NASA Astrophysics Data System (ADS)
Ortiz, Noelia; Crespo, Gonzalo; Iriarte, Juan Carlos; Falcone, Francisco
2016-11-01
In this work, Electro-Inductive wave (EIW) propagation phenomenon is employed in order to introduce a polarization rotation capability in a rectangular patch antenna. The EIW propagation phenomenon is used to master the field distribution within the rectangular patch, and hence, to change the polarization of a patch antenna, which is shown to change from linear to circular polarization. EIW propagation is supported by a chain of Complementary Split Ring Resonators printed in a rectangular patch antenna at specific locations. This principle of operation is demonstrated with the design, fabrication, and measurement of antenna prototypes. Experimental results confirm numerical analysis, providing a simple antenna configuration with polarization variation capabilities, extendable to multiple configurations, in radiated waves as well as in guided wave phenomena.
Study of Toroidicity-Induced Alfv'en Eigenmodes on the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Koliner, J. J.; Forest, C. B.; Oliva, S.; Anderson, J. K.; Sarff, J. S.; Almagri, A. R.; Spong, D.
2009-11-01
Alfv'en waves are likely of fundamental importance in the reversed-field pinch (RFP). The large magnetic fluctuations are expected to inject energy into Alfv'en modes, and their subsequent cascade to shorter wavelengths may drive ion heating. A new effort is in progress to understand toroidicity-induced Alfv'en eigenmodes (TAE's) through their structure, driving terms and damping mechanisms on the MST. Coupling of multiple eigenmodes can introduce undamped TAE's with frequencies from hundreds of kHz up to the cyclotron frequency at over 2 MHz. These modes can also become unstable by inverse Landau damping due to fast ions, a condition pertinent to neutral beam injection heating on MST and fusion alpha particles in future RFP devices. Frequencies of weakly damped modes have been calculated by solving a 3D partial differential equation that describes shear Alfv'en dynamics numerically based on MST equilibrium conditions. To excite the calculated modes, a single strap poloidal antenna connected to a 1 kW broadband amplifier will be employed. An array of 64 toroidally distributed magnetic pickup coils will be utilized synchronously to resolve power spectra and mode numbers in the relevant range of frequencies.
Resonant attenuation of surface acoustic waves by a disordered monolayer of microspheres
NASA Astrophysics Data System (ADS)
Eliason, J. K.; Vega-Flick, A.; Hiraiwa, M.; Khanolkar, A.; Gan, T.; Boechler, N.; Fang, N.; Nelson, K. A.; Maznev, A. A.
2016-02-01
Attenuation of surface acoustic waves (SAWs) by a disordered monolayer of polystyrene microspheres is investigated. Surface acoustic wave packets are generated by a pair of crossed laser pulses in a glass substrate coated with a thin aluminum film and detected via the diffraction of a probe laser beam. When a 170 μm-wide strip of micron-sized spheres is placed on the substrate between the excitation and detection spots, strong resonant attenuation of SAWs near 240 MHz is observed. The attenuation is caused by the interaction of SAWs with a contact resonance of the microspheres, as confirmed by acoustic dispersion measurements on the microsphere-coated area. Frequency-selective attenuation of SAWs by such a locally resonant metamaterial may lead to reconfigurable SAW devices and sensors, which can be easily manufactured via self-assembly techniques.
NASA Technical Reports Server (NTRS)
Tung, K. K.; Lindzen, R. S.
1979-01-01
A theory of stationary long waves in the atmosphere is developed, with attention given to the blocking phenomenon caused by the resonant amplification of large-scale planetary waves in a uniform zonal flow and to resonant Rossby waves in an atmosphere with winds varying with height. A simple model is presented to illustrate the temporal behavior of Rossby waves forced by topography and differential heating of the land and the sea, using a beta-plane approximation and assuming a spatially uniform zonal wind which may vary in time, and quasi-geostrophic disturbances. Results are then extended to the case of resonant Rossby waves in the presence of realistic vertical shears. Numerical experiments in which the wind profiles are varied in a number of physically possible manners reveal the most favorable wind configurations for resonance.
New results on the Roper resonance and the P11 partial wave
NASA Astrophysics Data System (ADS)
Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Fösel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Höffgen, St.; Horn, I.; Hößl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthäy, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.; CB-ELSA; A2-TAPS Collaborations
2008-01-01
Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P11 partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at { (1371 ± 7) - i (92 ± 10) } MeV and an elasticity of 0.61 ± 0.03. The largest decay coupling is found for the Nσ (σ = (ππ)-S-wave). The analysis is based on new data on γp → pπ0π0 for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.
New results on the Roper resonance and the P partial wave
NASA Astrophysics Data System (ADS)
Cb-Elsa; A2-Taps Collaborations; Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Fösel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Höffgen, St.; Horn, I.; Hößl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthäy, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.
2008-01-01
Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {(1371±7)-i(92±10)} MeV and an elasticity of 0.61±0.03. The largest decay coupling is found for the Nσ (σ=(ππ)-S-wave). The analysis is based on new data on γp→pππ for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.
Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings
Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen E-mail: dongxiang87@gmail.com; Qi, Dong-Xiang E-mail: dongxiang87@gmail.com
2015-04-15
In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.
A mechanical analog of the two-bounce resonance of solitary waves: Modeling and experiment
NASA Astrophysics Data System (ADS)
Goodman, Roy H.; Rahman, Aminur; Bellanich, Michael J.; Morrison, Catherine N.
2015-04-01
We describe a simple mechanical system, a ball rolling along a specially-designed landscape, which mimics the well-known two-bounce resonance in solitary wave collisions, a phenomenon that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to exhibit the two-bounce resonance.
Casanova, David; Krylov, Anna I.
2016-01-07
A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.
Nonlinear series resonance and standing waves in dual-frequency capacitive discharges
NASA Astrophysics Data System (ADS)
Wen, De-Qi; Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Wang, You-Nian
2017-01-01
It is well-known that the nonlinear series resonance in a high frequency capacitive discharge enhances the electron power deposition and also creates standing waves which produce radially center-high rf voltage profiles. In this work, the dynamics of series resonance and wave effects are examined in a dual-frequency driven discharge, using an asymmetric radial transmission line model incorporating a Child law sheath. We consider a cylindrical argon discharge with a conducting electrode radius of 15 cm, gap length of 3 cm, with a base case having a 60 MHz high frequency voltage of 250 V and a 10 MHz low frequency voltage of 1000 V, with a high frequency phase shift {φ\\text{H}}=π between the two frequencies. For this phase shift there is only one sheath collapse, and the time-averaged spectral peaks of the normalized current density at the center are mainly centered on harmonic numbers 30 and 50 of the low frequency, corresponding to the first standing wave resonance frequency and the series resonance frequency, respectively. The effects of the waves on the series resonance dynamics near the discharge center give rise to significant enhancements in the electron power deposition, compared to that near the discharge edge. Adjusting the phase shift from π to 0, or decreasing the low frequency from 10 to 2 MHz, results in two or more sheath collapses, respectively, making the dynamics more complex. The sudden excitation of the perturbed series resonance current after the sheath collapse results in a current oscillation amplitude that is estimated from analytical and numerical calculations. Self-consistently determining the dc bias and including the conduction current is found to be important. The subsequent slow time variation of the high frequency oscillation is analyzed using an adiabatic theory.
On square-wave-driven stochastic resonance for energy harvesting in a bistable system
Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P
2014-11-15
Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
NASA Astrophysics Data System (ADS)
Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Hydromagnetic waves and cosmic-ray diffusion theory
NASA Technical Reports Server (NTRS)
Lee, M. A.; Voelk, H. J.
1975-01-01
Pitch-angle (and energy) diffusion of cosmic rays in hydromagnetic wave fields is considered. The treatment remains strictly within the quasi-linear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch-angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since the Landau resonance in this approximation also does not lead to particle reflections, a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well-known difficulties of quasi-linear scattering theory for cosmic rays near 90 deg pitch angle.
NASA Astrophysics Data System (ADS)
Pizzella, G.
2016-12-01
A history of the experiments for the search of gravitational waves, with emphasis on the experiments made by the Rome group, is given. The search for gravitational waves was initiated by the brilliant scientific acumen of Joseph Weber. In this paper we start from the early times of the resonant detectors at room temperature and continue with the cryogenic resonant detectors: STANFORD, ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These cryogenic detectors reached a sensitivity able to observe gravitational waves generated by the conversion of about 0.001 solar masses in the Galaxy. This was an improvement by a factor of a few thousand in energy with respect to the early room temperature experiments. No clear signals due to gravitational waves have been observed with this technique. This research, that has lasted four decades, has paved the way to the more sensitive detectors for gravitational waves, the long-arm laser interferometers, which announced, on February 12th 2016, the first observation of gravitational waves.
NASA Astrophysics Data System (ADS)
Artemyev, Anton; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Mourenas, Didier; Vasiliev, Alexei
Wave-particle resonant interaction is the main mechanism responsible for electron acceleration and scattering in the radiation belts. There are two approaches describing this interaction - quasi-linear theory describes particle diffusion in momentum space, while nonlinear trapping of particles by high-amplitude waves can describe fast particle acceleration. The diffusion approach is more developed and widely used now. However, many modern observations in the radiation belts suggest the presence of significant population of large amplitude waves which can be responsible for nonlinear wave-particle interaction. We show that such nonlinear wave-particle resonant interaction corresponds to the fast transport of particles in phase space. We show that the general approach for the description of the evolution of the particle velocity distribution based on the Fokker-Plank equation can be modified to consider the process of nonlinear wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed approach is illustrated by considering the acceleration of relativistic electrons by strongly oblique whistler waves. We determine the typical variation of electron phase-density due to nonlinear wave-particle interaction and compare this variation with pitch-angle/energy diffusion due to quasi-linear electron scattering. We show that relation between nonlinear and quasi-linear effects is controlled by the distribution of wave-amplitudes. When this distribution has a heavy tail, nonlinear effects can become dominant in the formation of the electron energy distribution. We compare effectiveness of quasi-linear diffusion and nonlinear trapping for conditions typical for Earth radiation belts.
Wen, Qiao; Sun, Liqun; Wang, Yonggang; Zhang, Enyao; Tian, Qian
2009-05-25
An effective method for designing the insensitive resonator of a continuous-wave passively mode-locked laser is firstly presented in this paper. This method, using resonator transform circle graphic theory, is both intuitive and reliable. Theoretical results show that the resonator is suitable to obtain highly stable mode locking operation when the following two conditions are fulfilled. First, the transform circle of the terminal mirror opposite the semiconductor saturable absorber mirror (SESAM) propagates through a series of lens (including the thermal lens of the gain medium) and a small transform circle in the image space is obtained, which ensures the small spot size at the SESAM. Second, the resonator transform circles orthogonally (or nearly orthogonally) intersect at the SESAM, which ensures the spot size at the SESAM is insensitive to the external perturbation. The experimental results of the mode locking lasers show good agreement with the theoretical studies very well.
Vortices at the magnetic equator generated by hybrid Alfvén resonant waves
Hiraki, Yasutaka
2015-01-15
We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.