NASA Technical Reports Server (NTRS)
Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, A.
1989-01-01
The excitation of the kinetic Alfven wave by resonant mode conversion and longitudinal heating of the plasma by the kinetic Alfven wave were demonstrated on the basis of a macroscale particle simulation. The longitudinal electron current was shown to be cancelled by the ions. The kinetic Alfven wave produced an ordered motion of the plasma particles in the wave propagation direction. The electrons were pushed forward along the ambient magnetic field by absorbing the kinetic Alfven wave through the Landau resonance.
Magnetic fluctuations due to thermally excited Alfven waves
Agim, Y.Z.; Prager, S.C.
1990-01-01
Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-{beta} regimes. 21 refs., 6 figs.
Magnetic fluctuations due to thermally excited Alfven waves
Agim, Y.Z.; Prager, S.C. )
1990-06-01
Magnetic fluctuations resulting from the thermally excited magnetohydrodynamic waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities that are roughly Lorentzian and exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber as a result of dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion resulting from the finite ion gyro-frequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-beta regimes.
Alfven Wave Propagation in Inhomogeneous Plasmas
NASA Astrophysics Data System (ADS)
Sears, Stephanie
Damping of Alfven waves is one of the most likely mechanisms for ion heating in the solar corona. Density gradients have significant but poorly-understood effects on energy transfer and Alfven wave propagation in partially ionized plasmas, such as those found in the solar chromosphere. Reflection of Alfven waves at density and magnetic field gradients can give rise to turbulence which sustains particle heating. The density profile in the Hot hELIcon eXperiment (HELIX) varies strongly with radius, giving access to a wide range of Alfven dynamics across the plasma column and providing an ideal environment to observe Alfven wave-driven particle heating. A new internal wave-launching antenna, situated at the edge of the high-density core and the density-gradient region of HELIX has been used to excite low-frequency waves in argon plasma. The propagation behavior of the launched waves was measured with a small-scale (smaller than the ion gyroradius) magnetic sense coil at multiple radial locations across the plasma column (from the high-density core through the density gradient region). Time-resolved laser induced fluorescence (LIF) and Langmuir probe measurements also yield insight into the plasma response to the perturbation. This dissertation presents cross-spectral and wavelet analysis of low-frequency waves in a helicon plasma with a strong density gradient. Building on the work of Houshmandyar, shear Alfven waves were launched in a helicon plasma source with a strong density gradient. Alfven wave turbulence is suggested from phase angle and wavelet analysis of magnetic sense coil probe measurements. The perturbation wavelength derived from phase angle measurements is consistent with predictions from the full Alfven wave dispersion relation (taking electron Landua damping, electron-ion collisions, and finite frequency effects into account). Time-resolved LIF measurements across the plasma column suggest ion heating where the turbulence is strongest. Time
Decay of magnetic helicity producing polarized Alfven waves
Yoshida, Z.; Mahajan, S.M.
1994-02-01
When a super-Alfvenic electron beam propagates along an ambient magnetic field, the left-hand circularly polarized Alfven wave is Cherenkov-emitted (two stream instability). This instability results in a spontaneous conversion of the background plasma helicity to the wave helicity. The background helicity induces a frequency (energy) shift in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it becomes possible for a sub-Alfvenic electron beam to excite a nonsingular Alfven mode.
Electron Signatures and Alfven Waves
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Clemmons, J.; Namgaladze, A. A.; Gustavsson, B.; Wahlund, J.-E.; Eliasson, L.; Yurik, R. Y.
2000-01-01
The electron signatures which appear together with Alfven waves observed by the Freja satellite in the auroral region are reported. Precipitating electrons are detected both with and just before the wave. The observed Alfven waves must therefore be capable of accelerating electrons to higher energies than the local phase velocity of these waves in order for the electrons to move in advance of the wave. The characteristics of such electrons suggest electrons moving infront of the wave have characteristics of origin from warmer and lower density plasma while the electrons moving with the wave have characteristics of cooler and denser plasma. The pitch angle distribution of the electrons moving with the wave indicates that there is continuous acceleration of new particles by the wave, i.e. a propagating Alfven wave is the source of these electrons . A simple model of a propagating source is made to model the electrons that are moving in advance of the wave. Depending on whether accelerated electrons leave the wave above or below the altitude where the Alfven wave has the highest phase velocity, the detected electron signatures will be different; electron dispersion or potential drop like, respectively. It is shown that the Alfven wave acceleration can create electron signatures similar to inverted-V structures.
Kinetic Alfven waves on auroral field lines
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1984-01-01
It is suggested on the basis of several observations of Alfven waves near auroral arcs that kinetic Alfven waves play a significant role in the process of particle acceleration. The characteristic properties of kinetic Alfven waves are summarized according to the theoretical classifications provided by Hasegawa and Mima (1979). The resonant coupling of large-scale surface waves to kinetic Alfven waves is also discussed. It is shown that kinetic Alfven waves can explain observations of what have previously been known as 'electrostatic' shocks.
Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves
NASA Astrophysics Data System (ADS)
Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos
2014-10-01
Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f
Ducted kinetic Alfven waves in plasma with steep density gradients
Houshmandyar, Saeid; Scime, Earl E.
2011-11-15
Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.
Excitation of dust kinetic Alfven waves by semi-relativistic ion beams
NASA Astrophysics Data System (ADS)
Rubab, N.; Jaffer, G.
2016-05-01
The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.
Toroidal Alfven wave stability in ignited tokamaks
Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.
1989-01-01
The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Nonlinear inertial Alfven wave in dusty plasmas
Mahmood, S.; Saleem, H.
2011-11-29
Solitary inertial Alfven wave in the presence of positively and negatively charged dust particles is studied. It is found that electron density dips are formed in the super Alfvenic region and wave amplitude is increased for the case of negatively charged dust particles in comparison with positively charged dust particles in electron-ion plasmas.
Do interplanetary Alfven waves cause auroral activity?
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron; Goldstein, Melvyn L.
1990-01-01
A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves
NASA Astrophysics Data System (ADS)
Namikawa, T.; Hamabata, H.
1983-04-01
The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.
Alfven Wave Tomography for Cold MHD Plasmas
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Alfven wave. DOE Critical Review Series
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Nonlinear evolution of astrophysical Alfven waves
NASA Technical Reports Server (NTRS)
Spangler, S. R.
1984-01-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
Alfvenic waves in solar spicules
NASA Astrophysics Data System (ADS)
Ebadi, Hossein
2016-07-01
We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.
Kinetic effects on global Alfven waves
Betti, R.
1992-01-01
A theoretical investigation is carried out on the effects of the kinetic particle response on global type shear-Alfven waves in tokamaks. Two kinds of wave-particle interactions have been identified: (1) resonant interaction between energetic circulating particles and high frequency Alfven waves, (2) nonresonant interaction between trapped particles and low frequency modes. The author focuses on gap modes which are discrete modes whose real frequency lies in gas of the Alfven continuum induced by geometrical effects. A new gap mode, the Ellipticity Induced Alfven Eigenmode (EAE), is induced by the ellipticity of the plasma cross section that couples the m and m + 2 poloidal harmonics. This mode is of the general class as the Toroidicity Induced Alfven Eigenmode (TAE). In configurations with finite ellipticity, the EAE (n; m, m + 2) has a global structure centered about the q = (m + 1)/n surface. In the presence of an energetic ion species any Alfven wave can be destabilized via transit resonance with circulating particles. A sufficient stability criterion is derived for energetic particle-Alfven mode. To include the stabilizing effects of the electron and ion Landau damping a general treatment using a newly derived drift kinetic description of each species is carried out. The analysis has been restricted to Alfven gap modes. Low frequency modes have been investigated using the new drift kinetic model. Focusing on the internal kink mode, the main kinetic contributions arises from trapped particles which process in the toroidal direction. The trapped bulk ions can destabilize the high frequency branch of the internal kink. The numerical solution of the dispersion relation shows that a sharp threshold in [beta][sub p] exists for the instability to grow and that stabilizing effects come from the trapped electron response.
PULSED ALFVEN WAVES IN THE SOLAR WIND
Gosling, J. T.; Tian, H.; Phan, T. D.
2011-08-20
Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.
Nonlinear Evolution of Alfvenic Wave Packets
NASA Technical Reports Server (NTRS)
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Cascade properties of shear Alfven wave turbulence
NASA Technical Reports Server (NTRS)
Bondeson, A.
1985-01-01
Nonlinear three-wave interactions of linear normal modes are investigated for two-dimensional incompressible magnetohydrodynamics and the weakly three-dimensional Strauss equations in the case where a strong uniform background field B0 is present. In both systems the only resonant interaction affecting Alfven waves is caused by the shear of the background field plus the zero frequency components of the perturbation. It is shown that the Alfven waves are cascaded in wavenumber space by a mechanism equivalent to the resonant absorption at the Alfven resonance. For large wavenumbers perpendicular to B0, the cascade is described by Hamilton's ray equations, dk/dt = -(first-order) partial derivative of omega with respect to vector r, where omega includes the effects of the zero frequency perturbations.
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
Macroscale particle simulation of kinetic Alfven waves
NASA Technical Reports Server (NTRS)
Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, Akira
1987-01-01
Two types of simulations of the kinetic Alfven wave are presented using a macroscale particle simulation code (Tanaka and Sato, 1986) which enables individual particle dynamics to be followed in the MHD scales. In this code, low frequency electromagnetic fields are solved by eliminating high frequency oscillations such as the light modes, and the scalar potential electric field is solved by eliminating Lagrangian oscillations. The dependences of the frequency and the Landau damping on the perpendicular wavenumber were studied, and good agreement was found between simulation and theoretical predictions. Some fundamental nonlinear interactions of the kinetic Alfven wave with the particles (parallel acceleration of the electrons) were also noted.
Electron acceleration by inertial Alfven waves
Thompson, B.J.; Lysak, R.L.
1996-03-01
Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when the transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.
Stationary nonlinear Alfven waves and solitons
NASA Technical Reports Server (NTRS)
Hada, T.; Kennel, C. F.; Buti, B.
1989-01-01
Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.
ALFVEN SIMPLE WAVES: EULER POTENTIALS AND MAGNETIC HELICITY
Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D. A.
2010-12-20
The magnetic helicity characteristics of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulae. Two basic Alfven modes are identified: (1) the plane one-dimensional Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis with wave phase {psi} = k{sub 0}(z - {lambda}t), where k{sub 0} is the wave number and {lambda} is the group velocity of the wave and (2) the generalized Barnes simple Alfven wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (1) is analogous to the slab Alfven mode and the generalized Barnes solution (2) is analogous to the two-dimensional mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.
The interaction of Io's Alfven waves with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Wright, A. N.
1987-09-01
A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.
An Alfven wave maser in the laboratory
Maggs, J.E.; Morales, G.J.; Carter, T.A.
2005-01-01
A frequency selective Alfven wave resonator results from the application of a locally nonuniform magnetic field to a plasma source region between the cathode and anode in a large laboratory device. When a threshold in the plasma discharge current is exceeded, selective amplification produces a highly coherent ({delta}{omega}/{omega}<5x10{sup -3}), large amplitude shear Alfven wave that propagates out of the resonator, through a semitransparent mesh anode, into the adjacent plasma column where the magnetic field is uniform. This phenomenon is similar to that encountered in the operation of masers/lasers at microwave and optical frequencies. The current threshold for maser action is found to depend upon the confinement magnetic field strength B{sub 0}. Its scaling is consistent with the condition for matching the drift speed of the bulk plasma electrons with the phase velocity of the mode in the resonator. The largest spontaneously amplified signals are obtained at low B{sub 0} and large plasma currents. The magnetic fluctuations {delta}B associated with the Alfven maser can be as large as {delta}B/B{sub 0}{approx_equal}1.5% and are observed to affect the plasma current. Steady-state behavior leading to coherent signals lasting until the discharge is terminated can be achieved when the growth conditions are well-above threshold. The maser is observed to evolve in time from an initial m=0 mode to an m=1 mode structure in the transition to the late steady state. The laboratory phenomenon reported is analogous to the Alfven wave maser proposed to exist in naturally occurring, near-earth plasmas.
Nonlinear waves in an Alfven waveguide
Dmitrienko, I.S.
1992-06-01
A nonlinear Schroedinger equation is derived for the envelopes of weakly nonlinear quasilongitudinal (k{sub 1}<{radical}{omega}/{omega}{sub i}k{sub {parallel}}) Alfven waves in a waveguide, the existence of which is ensured by the presence of ion inertia (m{sub i}{ne}0) in a plasma with a transverse density gradient. It is shown that the nonlinear properties of such waves are associated with the presence of transverse structure in the waveguide modes. Estimates show that weakly nonlinear processes can have a significant effect on the dynamics of Pc 1 geomagnetic pulsations. 7 refs.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.
1989-01-01
A two-dimensional quasi-linear numerical code was developed for studying ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves. The model assumes that the central plasma sheet is the particle source, and that the last magnetic field lines on which kinetic Alfven waves exist and diffusion occurs can be either open or closed. As the possible source for the excitement of the kinetic Alfven waves responsible for ion diffusion, the resonant mode conversion of the surface waves to kinetic Alfven waves is considered. It is shown that, depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., on whether field lines are open or closed, the ion distribution function may or may not reach a steady state.
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Shah, H. A.; Ali, Z.; Masood, W.
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Ulysses Observations of Alfven and Magnetosonic Waves at High Latitude
NASA Technical Reports Server (NTRS)
Smith, Edward J.
1997-01-01
Ulysses observations provide a unique opportunity to study diverse problems related to Alfven and magnetosonic waves. The large amplitude of the Alfven waves influences the distribution functions of the spiral angle, the azimuthal field component and, possibly, the radial component such that their averages are not equal to their most probable values.
Experiment to Study Alfven Wave Propagation in Plasma Loops
NASA Astrophysics Data System (ADS)
Kendall, Mark; Bellan, Paul
2010-11-01
Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.
Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Li, Xing; Shan, Lican; Wang, Shui
2013-07-01
Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.
Possible evidence for coronal Alfven waves
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Bird, M. K.; Volland, H.; Edenhofer, P.; Stelzried, C. T.; Seidel, B. L.
1982-01-01
A statistical ray analysis is used to analyze observed electron content and Faraday rotation fluctuations in the 2.29 GHz S band carrier signals of the two Helios spacecraft probing the magnetic and density structures of the solar corona inside 0.05 AU. It is found that (1) the observed Faraday rotation fluctuations cannot be due only to electron density fluctuations in the corona, unless the coronal magnetic field is about five times stronger than suggested by current estimates; and (2) the observed Faraday rotation fluctuations are consistent with the hypothesis that the sun radiates Alfven waves whose energies are great enough to heat and accelerate high-speed solar wind streams.
Ground observations of kinetic Alfven waves
Kloecker, N.; Luehr, H.; Robert, P.; Korth, A.
1985-01-01
Ground-based observations with the EISCAT magnetometer of locally confined intense drifting current systems and Geos-2 measurements during four events in November and December 1982 are examined. In the ground-based measurements near the Harang discontinuity, the events are characterized by strong pulsations with amplitudes in the horizontal component up to 1000 nT and periods of about 300 s and longer. They occur in the evening hours adjacent to the poleward side of the discontinuity with the onset of a substorm; at the same time, the inner edge of the plasma sheet passes the Geos-2 position, magnetically conjugate to ground stations. It is shown that the events can be explained in terms of kinetic Alfven waves. 8 references.
On reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.
1993-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the
Cusp Dynamics-Particle Acceleration by Alfven Waves
NASA Technical Reports Server (NTRS)
Ergun, Robert E.; Parker, Scott A.
2005-01-01
Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.
Effect of Dust Grains on Solitary Kinetic Alfven Wave
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-09-07
Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.
The Source of Alfven Waves That Heat the Solar Corona
NASA Technical Reports Server (NTRS)
Ruzmaikin, A.; Berger, M. A.
1998-01-01
We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.
Alfven wave filamentation and dispersive phase mixing
Sulem, P. L.; Passot, T.; Laveder, D.; Borgogno, D.
2009-11-10
The formation of three-dimensional magnetic structures from quasi-monochromatic left-hand polarized dispersive Alfven waves, under the effect of transverse collapse and/or the lensing effect of density channels aligned with the ambient magnetic field is discussed, both in the context of the usual Hall-MHD and using a fluid model retaining linear Landau damping and finite Larmor radius corrections. It is in particular shown that in a small-{beta} plasma (that is stable relatively to the filamentation instability in the absence of inhomogeneities), a moderate density enhancement leads the wave energy to concentrate into a filament whose transverse size is prescribed by the dimension of the channel, while for a strong density perturbation, this structure later on evolves to thin helical ribbons where the strong gradients permit dissipation processes to become efficient and heat the plasma. The outcome of this 'dispersive phase mixing' that leads to small-scale formation on relatively extended regions contrasts with the more localized oblique shocks formed in the absence of dispersion. Preliminary results on the effect of weak collisions that lead to an increase of the transverse ion temperature are also briefly mentioned.
Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks
Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.
1994-12-31
An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE`s in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles.
Nonlinear standing Alfven wave current system at Io: Theory
Neubauer, F.M.
1980-03-01
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1995-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1994-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.
The transmission of Alfven waves through the Io plasma torus
NASA Astrophysics Data System (ADS)
Wright, A. N.; Schwartz, S. J.
1989-04-01
The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.
Enhanced damping of Alfven waves in the solar corona by a turbulent wave spectrum
NASA Technical Reports Server (NTRS)
Kleva, Robert G.; Drake, J. F.
1992-01-01
The effect of a background spectrum of Alfven waves on the rate of dissipation of a test shear Alfven wave is numerically calculated. The results demonstrate that as the classical resistivity eta and classical viscosity mu become small, the damping rate of the Alfven wave remains large and depends only on the amplitude for the scalar potential of the wave spectrum and the wavenumber of the Alfven wave. The damping rate is virtually independent of eta and mu. The wave spectrum need not be turbulent or stochastic to affect the damping rate. The dissipation rate is nonlinear enhanced by nonstochastic spectra as well as by stochastic spectra if two conditions are met. First, the perpendicular magnetic field associated with Alfven wave spectrum must exceed a certain collision-frequency threshold and second, for nonstochastic spectra only, the magnetic field must exceed a threshold proportional to the parallel wavenumber of the shear Alfven wave. These conditions can be easily satisfied in the solar corona.
THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING
Antolin, P.; Shibata, K. E-mail: shibata@kwasan.kyoto-u.ac.j
2010-03-20
In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. New observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfven wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s{sup -1}) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several
Emission of radiation induced by pervading Alfven waves
Zhao, G. Q.; Wu, C. S.
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVEN WAVES IN STRATIFIED SOLAR WAVEGUIDES
Verth, G.; Goossens, M.; Erdelyi, R. E-mail: Marcel.Goossens@wis.kuleuven.b
2010-05-10
There have recently been significant claims of Alfven wave observation in the solar chromosphere and corona. We investigate how the radial and longitudinal plasma structuring affects the observational properties of torsional Alfven waves in magnetic flux tubes for the purposes of solar magnetoseismology. The governing magnetohydrodynamic equations of these waves in axisymmetric flux tubes of arbitrary radial and axial plasma structuring are derived and we study their observable properties for various equilibria in both thin and finite-width magnetic flux tubes. For thin flux tubes, it is demonstrated that observation of the eigenmodes of torsional Alfven waves can provide temperature diagnostics of both the internal and surrounding plasma. In the finite-width flux tube regime, it is shown that these waves are the ideal magnetoseismological tool for probing radial plasma inhomogeneity in solar waveguides.
Surface Alfven Wave Contribution to Coronal Heating in a Wave-Driven Solar Wind Model
NASA Astrophysics Data System (ADS)
Evans, Rebekah M.; Opher, M.; Oran, R.; Sokolov, I. V.
2010-05-01
We present results from the development of a solar wind model driven by Alfven waves with realistic damping mechanisms. We investigate the contribution of surface Alfven wave damping to the heating of the corona and acceleration of the solar wind. These waves are present and damp in regions of strong gradients in density or magnetic field (e.g., the border between open and closed magnetic fields). Recently Oran et al. (2009) implemented a first principle solar wind model driven by a spectrum of Alfven waves into the Space Weather Modeling Framework. The wave transport equation, including wave advection and dissipation, is coupled to the MHD equations for the wind. The waves contribute to the momentum and energy of the wind through the action of wave pressure. Here we extend this model to include surface Alfven wave damping as a dissipation mechanism, considering waves with frequencies lower than those damped in the chromosphere and on the order of those dominating the heliosphere (0.0001 to 100 Hz.) We demonstrate the influence of the damping by quantifying the differences between a solution that includes surface Alfven wave damping and one driven solely by Alfven wave pressure. We relate to possible observational signatures of heat transfer by surface Alfven wave damping. This work is the first to study surface Alfven waves self-consistently as an energy driven for the solar wind in a 4D (three in space and one in frequency) environment. This work is supported by the NSF CAREER Grant.
Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence
Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.
2012-08-15
The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.
Ion temperature in plasmas with intrinsic Alfven waves
NASA Astrophysics Data System (ADS)
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-15
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Kinetic Alfven Wave Electron Acceleration on Auroral Field Lines
NASA Technical Reports Server (NTRS)
Kletzing, Craig A.
2001-01-01
Major results of the S3-3 Langmuir sweep study are published. Studies show statistics and average density and temperature variation on auroral field lines up to 8000 km altitude. Alfven wave papers were published. Our model of Alfven wave propagation on auroral field lines was successfully extended to handle varying density and magnetic field for the inertial mode. The study showed that Alfven wave can create time-dispersed electron signatures. A study was undertaken to extend Langmuir sweep I-V curves to handle the case of an kappa electron distribution as well as Maxwellian. The manuscript is in preparation. Participated in International Space Science Institute study of Alfvenic structures which resulted in a group review paper. The proposed work was to develop an extended model of Alfven wave propagation along auroral field lines to study electron acceleration. As part of this work, a major task was to characterize density and temperature along auroral field lines by using spacecraft Langmuir sweep data. The work that was completed under this funding was successful at both tasks. Three papers have been published as part of this work and a fourth manuscript is in preparation.
Mechanisms for the Dissipation of Alfven Waves in Near-Earth Space Plasma
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Krivorutsky, E. N.; Davis, John M. (Technical Monitor)
2002-01-01
Alfven waves are a major mechanism for the transport of electromagnetic energy from the distant part of the magnetosphere to the near-Earth space. This is especially true for the auroral and polar regions of the Earth. However, the mechanisms for their dissipation have remained illusive. One of the mechanisms is the formation of double layers when the current associated with Alfven waves in the inertial regime interact with density cavities, which either are generated nonlinearly by the waves themselves or are a part of the ambient plasma turbulence. Depending on the strength of the cavities, weak and strong double layers could form. Such double layers are transient; their lifetimes depend on that of the cavities. Thus they impulsively accelerate ions and electrons. Another mechanism is the resonant absorption of broadband Alfven- wave noise by the ions at the ion cyclotron frequencies. But this resonant absorption may not be possible for the very low frequency waves, and it may be more suited for electromagnetic ion cyclotron waves. A third mechanism is the excitation of secondary waves by the drifts of electrons and ions in the Alfven wave fields. It is found that under suitable conditions, the relative drifts between different ion species and/or between electrons and ions are large enough to drive lower hybrid waves, which could cause transverse accelerations of ions and parallel accelerations of electrons. This mechanism is being further studied by means of kinetic simulations using 2.5- and 3-D particle-in-cell codes. The ongoing modeling efforts on space weather require quantitative estimates of energy inputs of various kinds, including the electromagnetic energy. Our studies described here contribute to the methods of determining the estimates of the input from ubiquitous Alfven waves.
Reflection of Alfven waves from boundaries with different conductivities
Leneman, D.
2007-12-15
The reflection of Alfven waves from the ionosphere plays a crucial role because the reflected wave can reduce or enhance the electric field pattern of the incident wave. The ionosphere is typically treated as a conducting surface, which has a height integrated Pederson conductivity. This approximation is appropriate in considering the reflection of Alfven waves because the wavelengths along the magnetic field are large compared to the height of the ionosphere. Shear Alfven wave reflection experiments have been performed in the large plasma device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. of Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. A single frequency wave is launched from an antenna and reflects from a large plate inserted into the plasma column. By alternatively using a conducting and an insulating plate, the two extremes of conductivity relative to the Alfven conductivity, 1/({mu}{sub o}v{sub A}) are tested. The data are compared with the expected theoretical behavior of the interference pattern of incident and reflected waves. Perhaps due to experimental effects, the conducting reflector is found to behave in much the same fashion as the insulator.
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
NASA Technical Reports Server (NTRS)
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
Resonant Alfven wave instabilities driven by streaming fast particles
Zachary, A.
1987-05-08
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.
Quantum effects on compressional Alfven waves in compensated semiconductors
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
On the kinetic dispersion for shear Alfven waves
Lysak, R.L.; Lotko, W.
1996-03-01
Kinetic Alfven waves have been invoked is association with auroral currents and particle acceleration since the pioneering work of Hasegawa. However, to date, no work has considered the dispersion relation including the full kinetic effects for both electrons and ions. Results from such a calculation are presented, with emphasis on the role of Landua damping in dissipating Alfven waves which propogate from the warm plasma of the outer magnetosphere to the cold plasma present in the ionosphere. It is found that the Landua damping is not important when the perpendicular wavelength is larger than the ion acoustic gyroradius and the electron inertial length. In addition, ion gyroradius effects lead to a reduction in the Landua damping by raising the parallel phase velocity of the wave above the electron thermal speed in the short perpendicular wavelength regime. These results indicate that low-frequency Alfven waves with perpendicular wavelengths greater than the order of 10 km when mapped to the ionosphere will not be significantly affected by Landau damping. While these results based on the local dispersion relation, are strictly valid only for short parallel wavelength Alfven waves, they do give an indication of the importance of Landua damping for longer parallel wavelength waves such as field line resonances. 26 refs., 5 fig.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.
1992-01-01
In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.
Analysis and gyrokinetic simulation of MHD Alfven wave interactions
NASA Astrophysics Data System (ADS)
Nielson, Kevin Derek
The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the
Theory of Alfven wave heating in general toroidal geometry
Tataronis, J.A.; Salat, A.
1981-09-01
A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.
Weakening of magnetohydrodynamic interchange instabilities by Alfven waves
Benilov, E. S.; Hassam, A. B.
2008-02-15
Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.
Compressibility and cyclotron damping in the oblique Alfven wave
Harmon, J.K. )
1989-11-01
Compressibility, magnetic compressibility, and damping rate are calculated for the obliquely propagating Alfven shear wave in high- and low-beta Vlasov plasmas. There is an overall increase in compressibility as beta is reduced from {beta} = 1 to {beta}{much lt}1. For high obliquity {theta} and low frequency ({omega} {much lt} {Omega}{sub p}) the compressibility C follows a k{sup 2} wave number dependence; for high {theta} and low {beta} the approximation C(k) {approx} k{sub n}{sup 2} {identical to} (kV{sub A}/{Omega}{sub p}){sup 2} holds for wave numbers up to the proton cyclotron resonance, where {Omega}{sub p} is the proton cyclotron frequency and V{sub A} is the Alfven velocity. Strong proton cyclotron damping sets in at k{sub n} of the order of unity; the precise k{sub n} position of the damping cutoff increases with decreasing {beta} and increasing {theta}. Hence compressibility can exceed unity near the damping cutoff for high-{theta} waves in a low-{beta} plasma. The magnetic compressibility of the oblique Alfven wave also has a k{sup 2} dependence and can reach a maximum value of the order of 10% at high wave number. It is shown that Alfven compressibility could be the dominant contributor to the near-Sun solar wind density fluctuation spectrum for k>10{sup {minus}2} km{sup {minus}1} and hence might cause some of the flattening at high wave number seen in radio scintillation measurements. This would also be consistent with the notion that the observed density spectrum inner scale is a signature of cyclotron damping.
Effects of unequal particle number densities on Alfven waves
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1989-01-01
Analytic plasma theory and numerical solutions of the dispersion equation are used to show that the assumption that the linear properties of the waves are determined by a charge-neutral plasma in the absence of the nonthermal particles, while the nonthermal particles cause growth or additional damping superposed onto the background, is seriously flawed even for stable plasmas. Even when the nonthermal particles do not contribute significantly to the dispersion equation, unequal thermal electron and ion number densities (due to the presence of the nonthermal particles) may cause fundamental low wave number modifications to the Alfven modes, including the creation of a new resonance and severely modified dispersion. These results are found for both cold and warm plasmas. Previous work on Alfven waves should be reevaluated in view of these results.
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
Hansen, Shelley C.; Cally, Paul S. E-mail: paul.cally@monash.edu
2012-05-20
Alfven waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvenic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.
Supergranulation-driven Alfven waves in the solar chromosphere and related phenomena.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1972-01-01
It has recently been recognized that Alfven waves frequently dominate the microstructure of the solar wind at the orbit of the earth. We seek a solar source for these waves, and consider here their excitation by the supergranular motions. The wave equation is solved in a horizontally stratified, bi-exponential solar atmosphere. The interaction of Alfven wave motions associated with adjacent supergranules is discussed qualitatively. The Alfven wave effectively conveys the supergranular motions to great heights in the chromosphere. These motions are oppositely directed above intersupergranule boundaries, and compress the magnetic field there. A naive calculation of the compression, based on balancing dynamic and magnetic pressures, leads to adequate agreement with observations of the chromospheric network. We find that the magnetic field is appreciably compressed only below about 1500 km, and on this basis we reject theories of spicule formation which require large vertical magnetic fields at the heights reached by spicules. We advance a theory for spicule formation, in which spicules form as a result of matter being squeezed upward, out of the compression region between adjacent supergranules.
Laboratory study of magnetic reconnection generated Alfven waves. Final report
Watts, Christopher
2002-02-08
This grant was funded through the Department of Energy, Office of Fusion Energy Junior Faculty Development Program. The grant funded the construction and start-up of the Articulated Large-area Plasma Helicon Array (alpha) experiment, and initial studies of Alfven wave propagation in helicon generated plasmas. The three year grant contract with Auburn University was terminated early (after two years) due to PI'S acceptance of a faculty position at New Mexico Tech. The project continues at New Mexico Tech under a different grant contract. The project met all of the second-year goals outlined in the proposal, and made progress toward meeting some of the third-year goals. The alpha facility was completed and multi-helicon operation was demonstrated. We have made initial measurements of Alfven waves in a helicon plasma source.
Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2007-01-01
Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.
Linear and non-linear numerical simulations of poloidal Alfven waves
NASA Astrophysics Data System (ADS)
Ribeiro, A.
2013-05-01
Among the many of numerical simulations of MHD turbulence, few studies had been made of Alfven waves interacting with realistic boundaries. Thus, we have developed a novel hybrid spectral/finite element code, which is capable of simulate properly realistic boundaries properties. Our model is based on a Fourier decompositions of all variables in the azimuthal direction and on a finite element projection in the meridian plan. In order to simulate realistic boundary conditions for the magnetic field we solve the induction equation enforcing continuity of the magnetic field H at the interface with the external insulating medium through a Interior Penalty Galerkin method (IPG) [1]. I will present the results of our investigation of Alfven waves propagating in a cylinder filled of liquid metal submitted to an axial magnetic field. Poloidal Alfven waves are excited magnetically by imposing an azimuthal current pulse at the bottom of the cylinder. In the linear axisymmetric model we find a good agreement with previous experiments in liquid metals by Lundquist and by Lenhert and more recently by Alboussiere et al [2]. This axisymmetric study is extended to the non linear regime, where the amplitudes of the perturbations are comparable to the external applied magnetic field,in this conditions a complex response is found due to waves waves interactions. [1] J. L. Guermond, J.L Leorat, F. Luddens, C. Nore, A. Ribeiro. Effects of discontinuous magnetic permeability on magnetodynamic problems, Journal of Computational Physics Volume 230, Issue 16, 10 July 2011, Pages 6299 -- 6319. [2] T. Alboussiere, P. Cardin, F. Debray, H. C. Nataf, F. Plunian, A. Ribeiro, D. Schmitt, Experimental evidence of Alfven wave propagation in a Gallium alloy, Physics of fluids, 2011, vol. 23, nb 9.
Investigation of an ion-ion hybrid Alfven wave resonator
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.
2013-01-15
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
Simulation of amplitude-modulated circularly polarized Alfven waves for beta less than one
NASA Technical Reports Server (NTRS)
Machida, S.; Spangler, S. R.; Goertz, C. K.
1987-01-01
The nonlinear properties of the amplitude-modulated circularly polarized Alfven wave are studied for beta less than one. The temporal behavior of the wave packet of the electromagnetic hybrid simulation is compared with a numerical solution of the derivative nonlinear Schroedinger (DNLS) equation. It is shown that the left-hand-polarized mode evolves into a shocklike structure due to the modulational instability. However, both cyclotron damping and a snowplow effect near the steepened wave packet suppress its further steepening, contrary to the predictions of the DNLS equation. For the right-hand mode, formation of the shock does not take place, and the initial time development is well described by the DNLS equation. The daughter Alfven wave and ion acoustic waves are excited due to the decay instability at a later time. Heating or acceleration of the particles takes place for both left- and right-hand waves. Energy transfer from the wave to the particles occurs effectively when substantial modulation in the wave amplitude is present.
PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES
Russell, A. J. B.; Fletcher, L.
2013-03-10
How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.
Modulational instability of finite-amplitude, circularly polarized Alfven waves
NASA Technical Reports Server (NTRS)
Derby, N. F., Jr.
1978-01-01
The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.
Alfven waves and associated energetic ions downstream from Uranus
Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )
1991-02-01
The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.
Emission of Alfven Waves by Planets in Close Orbits
NASA Astrophysics Data System (ADS)
MacGregor, Keith B.; Pinsonneault, M. H.
2011-01-01
We examine the electrodynamics of a conducting planet orbiting within a magnetized wind that emanates from its parent star. When the orbital motion differs from corotation with the star, an electric field exists in the rest frame of the planet, inducing a charge separation in its ionosphere. Because the planet is immersed in a plasma, this charge can flow away from it along the stellar magnetic field lines it successively contacts in its orbit. For sufficiently rapid orbital motion, a current system can be formed that is closed by Alfvenic disturbances that propagate along field lines away from the planet. Using a simple model for the wind from a Sun-like star, we survey the conditions under which Alfven wave emission can occur, and estimate the power radiated in the form of linear waves for a range of stellar, planetary, and wind properties. For a Jupiter-like planet in a close (a < 0.10 AU) orbit about a solar-type star, the emitted wave power can be as large as 1027 erg/s. While only a small influence on the planet's orbit, a wave power of this magnitude may have consequences for wind dynamics and localized heating of the stellar atmosphere. NCAR is sponsored by the NSF.
Gravitational damping of Alfven waves in stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Khabibrakhmanov, I. K.; Mullan, D. J.
1994-01-01
We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.
Nonlinear astrophysical Alfven waves - Onset and outcome of the modulational instability
NASA Technical Reports Server (NTRS)
Spangler, S. R.
1985-01-01
The nonlinear development of Alfven waves is numerically studied, with applications to Alfven waves in astrophysical plasmas. It is found that amplitude-modulated Alfven wave packets undergo a collapse instability in which the wave packets become more intense and of smaller spatial extent. The wave packet steepening is eventually halted in a process most aptly described as soliton formation. A simple analytic model based on the method of characteristics can account for many of the results of the numerical calculations. The instability probably cannot prevent particle pitch angle isotropization due to self-generated Alfven waves. Nonlinear effects of the collapse may modify the process by which energetic electrons are reaccelerated by plasma turbulence. The model calculations can semiquantitatively account for properties of shock-associated Alfven waves in the solar system.
ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2013-01-20
A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.
Plasma transport induced by kinetic Alfven wave turbulence
Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.
2012-10-15
At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.
Motion of ions influenced by enhanced Alfven waves
Wu, C.S.; Yoon, P.H.; Chao, J.K.
1997-03-01
In this paper we discuss the dynamics of an ion interacting with large-amplitude Alfven waves. The objective of the present analysis is to attain an in-depth understanding of the ion-pickup process which has been extensively studied in the literature by means of both quasilinear theory and numerical simulations. In general, results from self-consistent simulations provide a more complete picture of the ion pickup process, but details of the pickup process are not easily comprehended on the basis of these results. For this reason, the present study is carried out in which a test particle approach is used. It is found that for moderately large-amplitude Alfven waves, an approximate analytical solution for the ion equation of motion can be obtained. This solution clarifies a number of basic issues such as (1) whether the cyclotron resonance is a necessary condition for the pickup to occur, (2) what is the role of initial ion phase space position on subsequent pitch angle scattering, and (3) how the wave amplitude affects the maximum velocity that an ion can gain along the direction of the ambient magnetic field during the pickup process. {copyright} {ital 1997 American Institute of Physics.}
The effect of random Alfven waves on the propagation of hydromagnetic waves in a finite-beta plasma
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1990-01-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, the evolution equation of the wave spectrum as well as the nonlinear forces generated by random Alfven waves in a finite-beta plasma with phenomenological Landau-damping effects are obtained. The effect of microscale random Alfven waves on the propagation of large-scale hydromagnetic waves is also investigated by solving the mean-field equations. It is shown that parallel-propagating random Alfven waves are modulationally stable and that obliquely propagating random Alfven waves can be modulationally unstable when the energy of random waves is converted to slow magnetoacoustic waves that can be Landau-damped, providing a dissipation mechanism for the Alfven waves.
Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.
1996-01-01
Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.
Parametric Instabilities of Alfven Waves in the Solar Wind.
NASA Astrophysics Data System (ADS)
Jayanti, Venku Babu
1995-01-01
We consider the stability of a circularly-polarized Alfven wave (the pump wave) propagating along a uniform ambient magnetic field B_{rm O}. The system is linearly perturbed to study the stability of the Alfven wave. The perturbations are also assumed to propagate along the ambient field. Four different problems are addressed relating to the stability of the Alfven wave. The first involves using Floquet's theorem to obtain a dispersion relation for studying the stability. The result is a hierarchy of dispersion relations. However, all the dispersion relations are found to be equivalent. This technique showed that some results of other workers are incorrect. This method is very useful to obtain a dispersion relation for obliquely propagating perturbations. The second problem is to obtain analytical approximations to the dispersion relation using A = (Delta B/BO)^2 as a small expansion parameter; DeltaB is the pump amplitude. The analysis shows the crucial role played by plasma beta ( beta) in determining the behavior of the parametric instabilities of the pump. Expressions for the growth rates are presented for four ranges of beta. The polarizations are also computed to give some physical insight into the properties of the daughter waves (the modes generated as a result of the instability are called daughter waves). The third problem is to study the effects of streaming He ^{++}. The growth rates for new instabilities due to streaming He^{++ } are presented as a function of plasma beta, pump wave frequency, and DeltaB. The studies show that these new instabilities could compete with the well known decay instability. The final problem is to develop a methodology to study kinetic effects on the instabilities. This was done by breaking the plasma into beams, and treating each beam as a fluid. The nonlinear fluid equations are solved iteratively to obtain the perturbed densities and velocities. These are then used to derive the kinetic dispersion relation for the decay
Heating of ions by low-frequency Alfven waves in partially ionized plasmas
Dong Chuanfei; Paty, Carol S.
2011-03-15
In the solar atmosphere, the chromospheric and coronal plasmas are much hotter than the visible photosphere. The heating of the solar atmosphere, including the partially ionized chromosphere and corona, remains largely unknown. In this letter, we demonstrate that the ions can be substantially heated by Alfven waves with very low frequencies in partially ionized low-beta plasmas. This differs from other Alfven wave related heating mechanisms such as ion-neutral collisional damping of Alfven waves and heating described by previous work on resonant Alfven wave heating. We find that the nonresonant Alfven wave heating is less efficient in partially ionized plasmas than when there are no ion-neutral collisions, and the heating efficiency depends on the ratio of the ion-neutral collision frequency to the ion gyrofrequency.
Coupling of axial plasma jets to compressional Alfven waves
NASA Astrophysics Data System (ADS)
Vincena, Stephen; Gekelman, Walter
2009-11-01
The coupling of mass, energy, and momentum from a localized, dense, and rapidly expanding plasma into a large-scale magnetized background plasma is central to understanding many physical processes; these include galactic jets, coronal mass ejections, tokamak pellet fueling, high-altitude nuclear detonations, chemical releases in the ionosphere, and supernovae. The large-scale magnetized plasmas are capable of supporting Alfv'en waves, which mediate the flow of currents and associated changes of magnetic topology on the largest size scales of the external system. We present initial results from a laboratory experiment wherein a fast-moving, laser-produced plasma (LPP) is allowed to propagate along the magnetic field lines of a pre-existing plasma column (17m long by 60 cm diameter). The LPP is generated using a 1J, 8ns Nd:YAG laser fired at a graphite target. The laser is pulsed along with the background plasma at 1Hz. This work focuses on the coupling of the LPP to compressional Alfv'en waves in the background plasma. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device.
Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2007-12-15
Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves.
Garcia-Munoz, M.; Hicks, N.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H.-U.; Igochine, V.; Maraschek, M.; Sassenberg, K.; Voornveld, R. van; Classen, I. G. J.; Jaemsae, S.
2010-05-07
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude.
On field line resonances of hydromagnetic Alfven waves in dipole magnetic field
Chen, Liu; Cowley, S.C. )
1989-08-01
Using the dipole magnetic field model, the authors have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived.
On field line resonances of hydromagnetic Alfven waves in dipole magnetic field
Chen, Liu; Cowley, S.C.
1989-07-01
Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs.
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A. P.; Banerjee, S.
2011-03-15
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.
Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas
Tishchenko, V N; Shaikhislamov, I F
2014-02-28
We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)
NASA Astrophysics Data System (ADS)
He, J.; Pei, Z. T.; Wang, L.; Tu, C. Y.; Marsch, E.; Yao, S.
2014-12-01
It is believed that MHD turbulence cascading is mainly caused by the collisions between Alfven waves, which propagate oppositely and are polarized perpendicularly to each other. Nonlinear interaction will vanish if the counter-propagating Alfven waves have their polarization aligned with each other. However, the Alfven waves satisfying these collision criteria have not yet been found in the solar wind observations. Here we report the existence of Alfven waves with opposite propagation and non-aligned polarization in the solar wind. In one case of anti-sunward magnetic sector, with RTN as the coordinates, the magnetic fluctuations in T-component (BT) are anti-correlated with the velocity fluctuations in T-component (VT), while BR and BN fluctuations are in positive correlation with VR and VN fluctuations, respectively. These features suggest a possible nonlinear interaction between outward propagating Alfven wave with polarization in T-direction and inward propagating Alfven wave with polarization in R&N-directions. Moreover, the associated proton kinetics shows the existence of field-aligned sunward beam rather than anti-sunward beam, which may indicate a parallel Landau heating by sunward kinetic Alfven waves. A statistical study including more cases is also conducted.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
It had been pointed out by Parker (1974) that the basic cause of the sunspot phenomenon is the enhanced heat transport in the magnetic field of the sunspot. The enhanced transport occurs through convective overstability which operates as a heat engine generating Alfven waves. The characteristics of the convective forces present are investigated along with questions concerning overstability and convectively driven Alfven waves. Relations regarding instability and convectively driven surface waves are discussed and attention is given to individual overstable Alfven modes. It is found that the form of an Alfven wave in the absence of convective forces is entirely arbitrary, so that waves with any arbitrary profile can be fitted into a vertical column of the field without disturbing the fluid outside. With the introduction of convective forces the situation changes so that the presence of lateral boundaries alters the form of the basic wave modes.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Boley, F I; Wilcox, J M
1962-08-17
We have described a set of laboratory experiments which establish the primary properties of Alfvén waves and have mentioned natural phenomena in which these waves exert a strong influence. To date, there have been few technological applications of Alfvén waves, although the waves are being considered for use in hydromagnetic amplifiers and in connection with plasma heating techniques associated with controlled thermonuclear fusion devices. As with any new findings, detailed prediction of future applications is impossible. PMID:17749626
Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.
NASA Technical Reports Server (NTRS)
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Some wave-particle effects on large-scale Alfven wave propagation and damping
NASA Technical Reports Server (NTRS)
Siregar, E.; Goldstein, M. L.
1995-01-01
Phase mixing can reduce greatly the torsional Alfven wave's dissipation length for propagation in complex magnetic field-line geometries. This phase mixing causes significant energy transfers from large to small scales where a conversion from ordered wave energy into a particle kinetic form occurs. This conversion during its initial stages is an entropy conserving process well described by Vlasov theory, Nonlinear stages of wave-particle resonance, particle trapping, and collisional resistivity are often invoked as processes eventually responsible for converting ordered wave motions into random thermal motion. Strictly speaking, this entropy producing phase cannot be described within Vlasov theory, and the large-scale effects of these microscopic events resides at the difficult frontier between generalized fluid and kinetic theories. We attempt to describe certain aspects of such resonances within the framework of fluid theory focusing on torsional Alfven wave energy transport and deposition within flux tubes.
Measurements of Inertial Limit Alfven Wave Dispersion for Finite Perpendicular Wave Number
Kletzing, C. A.; Thuecks, D. J.; Skiff, F.; Bounds, S. R.; Vincena, S.
2010-03-05
Measurements of the dispersion relation for shear Alfven waves as a function of perpendicular wave number are reported for the inertial regime for which V{sub A}>V{sub Te}. The parallel phase velocity and damping are determined as k{sub perpendicular} varies and the measurements are compared to theoretical predictions. The comparison shows that the best agreement between theory and experiment is achieved for a fully complex plasma dispersion relation which includes the effects of electron collisions.
Generation of Alfven waves by deceleration of magnetospheric convection and broadband Pi pulsations
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Longenecker, D. U.; Chiu, Y. T.
1982-01-01
The generation of Alfven waves by the deceleration of magnetospheric convection caused by ionospheric loading effects in the magnetospheric dynamo is considered. A one-dimensional model of that region of the plasma sheet where convection is decelerated due to the dynamo process in the magnetosphere-ionosphere coupling is formulated, and the stability of the region is analyzed in order to derive the growth rate of unstable Alfven waves. The effects of ionospheric damping on unstable Alfven wave packets bounding between hemispheres are estimated. It is found that the overall growth rate is proportional to the height-integrated Pedersen conductivity and the convection speed in the dynamic region, but changes into a damping rate when the Pedersen conductivity is reduced below a specific threshold. The unstable Alfven waves thus generated are also found to contribute to both burstlike and relatively continuous Pi pulsations observed during substorms.
LARGE-AMPLITUDE ALFVEN WAVE IN INTERPLANETARY SPACE: THE WIND SPACECRAFT OBSERVATIONS
Wang Xin; He Jiansen; Tu Chuanyi; Zhang Lei; Marsch, Eckart; Chao, Jih-Kwin
2012-02-20
We present, for the first time, measurements of arc-polarized velocity variations together with magnetic field variations associated with a large-amplitude Alfven wave as observed by the Wind satellite. The module of the magnetic field variance is larger than the magnitude of the average magnetic field, indicating the large amplitude of these fluctuations. When converting to the deHoffman-Teller frame, we find that the magnetic field and velocity vector components, in the plane perpendicular to the minimum-variance direction of the magnetic field, are arc-polarized, and their tips almost lie on the same circle. We also find that the normalized cross helicity and Alfven ratio of the wave are both nearly equal to unity, a result which has not been reported in previous studies at 1 AU. It is worthy to stress here that pure Alfven waves can also exist in the solar wind even near the Earth at 1 AU, but not only near 0.3 AU. Further study could be done to help us know more about the properties of pure Alfven wave at 1 AU that could not be figured out easily before because of the contaminations (e.g., Alfven waves propagating in different directions, magnetic structures, and other compressional waves) on previously reported Alfven wave cases.
Generation of magnetoacoustic zonal flows by Alfven waves in a rotating plasma
Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Tsypin, V. S.; Smolyakov, A. I.; Galvao, R. M. O.
2007-08-15
Analytical theory of nonlinear generation of magnetoacoustic zonal flows in a rotating plasma is developed. As the primary modes causing such a generation, a totality of the Alfven waves are considered, along with the kinetic, inertial, and rotational. It is shown that in all these cases of the Alfven waves the generation is possible if the double plasma rotation frequency exceeds the zonal flow frequency.
Nonlinear standing Alfven wave current system at Io - Theory
NASA Astrophysics Data System (ADS)
Neubauer, F. M.
1980-03-01
A nonlinear analytical model is presented of the Alfven current tubes continuing the currents through Io generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. It was shown that: (1) the portion of the currents needing Io is aligned with the Alfven characteristics at a specific angle to the magnetic field for the special case of perpendicular flow; (2) the Alfven tubes act like an external conductance; (3) the Alfven tubes may be reflected from the torus boundary or the Jovian atmosphere; and (4) from the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites because of its ionosphere arising from ionized volcanic gases and a high external Alfvenic conductance.
NASA Astrophysics Data System (ADS)
Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-01
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-15
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
ION HEATING BY A SPECTRUM OF OBLIQUELY PROPAGATING LOW-FREQUENCY ALFVEN WAVES
Lu Quanming; Chen Liu
2009-10-10
Ion stochastic heating by a monochromatic Alfven wave, which propagates obliquely to the background magnetic field, has been studied by Chen et al. It is shown that ions can be resonantly heated at frequencies a fraction of the ion cyclotron frequency when the wave amplitude is sufficiently large. In this paper, the monochromatic wave is extended to a spectrum of left-hand polarized Alfven waves. When the amplitude of the waves is small, the components of the ion velocity have several distinct frequencies, and their motions are quasi-periodic. However, when the amplitude of the waves is sufficiently large, the components of the ion velocity have a spectrum of continuous frequencies near the ion cyclotron frequency due to the nonlinear coupling between the Alfven waves and the ion gyromotion, and the ion motions are stochastic. Compared with the case of a monochromatic Alfven wave, the threshold of the ion stochastic heating by a spectrum of Alfven waves is much lower. Even when their frequencies are only several percent of the ion cyclotron frequency, the ions can also be stochastically heated. The relevance of this heating mechanism to solar corona is also discussed.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
WINDS FROM LUMINOUS LATE-TYPE STARS. II. BROADBAND FREQUENCY DISTRIBUTION OF ALFVEN WAVES
Airapetian, V.; Ofman, L.; Carpenter, K. G.
2010-11-10
We present the numerical simulations of winds from evolved giant stars using a fully nonlinear, time-dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully nonlinear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of the Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband nonlinear Alfven waves can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities, and the observed mass-loss rates. Comparison of the calculated mass-loss rates with the empirically determined mass-loss rate for {alpha} Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance
NASA Technical Reports Server (NTRS)
Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.
1978-01-01
The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.
Ionospheric Ion Upflows Associated with the Alfven Wave Heating
NASA Astrophysics Data System (ADS)
Song, P.; Tu, J.
2014-12-01
In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.
POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVEN WAVES
Hunana, P.; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2013-04-01
It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly larger than the proton gyroscale r{sub L} , magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the polarization and magnetic compressibility of oblique kinetic Alfven waves and show that, compared with linear kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be ignored even for kr{sub L} << 1.
Standing Alfven wave current system at Io - Voyager 1 observations
NASA Astrophysics Data System (ADS)
Acuna, M. H.; Neubauer, F. M.; Ness, N. F.
1981-09-01
The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io has been explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field-aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the Goddard Space Flight Center magnetic field experiment on Voyager 1 on March 5, 1979, when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 x 10 to the 6th A. A mass density of 7400-13,600 proton mass units/cu cm is derived, which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050-1500/cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.
Fast particles-wave interaction in the Alfven frequency range on the Joint European Torus tokamak
Fasoli, A.; Borba, D.; Association EURATOM Breizman, B.; Gormezano, C.; Heeter, R. F.; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 ; Juan, A.; Mantsinen, M.; Sharapov, S.; Testa, D.
2000-05-01
Wave-particle interaction phenomena in the Alfven Eigenmode (AE) frequency range are investigated at the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] using active and passive diagnostic methods. Fast particles are generated by neutral beam injection, ion cyclotron resonance heating, and fusion reactions. External antennas are used to excite stable AEs and measure fast particle drive and damping separately. Comparisons with numerical calculations lead to an identification of the different damping mechanisms. The use of the active AE diagnostic system to generate control signals based on the proximity to marginal stability limits for AE and low-frequency magnetohydrodynamic (MHD) modes is explored. Signatures of the different nonlinear regimes of fast particle driven AE instabilities predicted by theory are found in the measured spectra. The diagnostic use of AE measurements to get information both on the plasma bulk and the fast particle distribution is assessed. (c) 2000 American Institute of Physics.
Stellar winds with non-WKB Alfven waves 1: Wind models for solar coronal conditions
NASA Astrophysics Data System (ADS)
MacGregor, K. B.; Charbonneau, P.
1994-07-01
We have constructed numerical models for stationary, wind-type outflows that include treatment of the force produced by propagating Alfven waves. We make no assumptions regarding the relative sizes of the wavelengths of such disturbances and the scale lengths that characterize the variation of the physical properties of the expanding stellar atmosphere. Consequently, our models take account the process of Alfven wave reflection, and provide for dynamical effects arising from the simultaneous presence of outward and inward traveling waves in the wind. For physical conditions like those prevailing in the outer solar corona and wind, we find that even relatively high frequency, short wavelength waves can suffer some reflection from the gradient in Alfven speed at the vase of the flow. Among the consequences of the interaction between outward and inward directed perturbations in the sub-Alfvenic portion of the wind is a reduction in the magnitude of the time-averaged wave force relative to its value in the Wentzel-Kramer-Brillouin (WKB) (i.e., short-wavelenght) limit. As a result, the flow velocities of our models interior to the Alfven radius are smaller than those of corresponding WKB models. For models containing very low frequency, long wavelength waves, a substantial amount of wave reflection can also take place in the super-Alvenic portion of the wind. The resulting modifications to the spatial dependences of the eave magnetic and velocity amplitudes can lead to a wave force whose magnitude at large distances exceeds that of an equivalent WKB solution.
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Esser, R.; Jayanti, V.
1993-01-01
The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.
Alfven wave-driving mechanism of late-type stellar wind
NASA Astrophysics Data System (ADS)
Yong, Zheng; Li, Xiao-Qing
1990-05-01
Because late-type stellar wind has low temperature, massive outflow, and high terminal velocity, theoretical models of thermal pressure or radiation pressure cannot explain the acceleration of late-type stellar wind. Energy damping of Alfven wave in stellar winds is small, and Alfven wave is perhaps the driving force of late-type stellar wind if the wave energy-flux is large enough. After theoretical analysis and numerical calculation, various velocity distributions are obtained by taking various wave energy-fluxes in reliable range, the terminal velocities accord with observations. If late-type stellar winds are driven by thermal pressure, the temperature is higher that acceptable. The results of Alfven wave driving winds also indicate that massive stellar winds need large energy flux and acceleration is closely related with gravity. In discussion, it is thought that Alfven wave accelerating late-type stellar winds is feasible and the initial energy-flux, damping of Alfven wave in stellar winds need further study.
HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE
Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.
2011-07-20
A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics
Berk, H.L.; Breizman, B.N.; Pekker, M.
1994-01-01
An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection.
James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves
NASA Astrophysics Data System (ADS)
Chen, Liu
2012-10-01
Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
This paper presents a numerical study of the time evolution of plane, cosmic-ray modified shocks with magnetic field parallel to the shock normal, based on the diffusive shock acceleration formalism and including the effects from the finite propagation speed and energy of Alfven waves responsible for controlling the transport of the cosmic rays. The simulations discussed are based on a three-fluid model for the dynamics, but a more complete formalism is laid out for future work. The results of the simulations confirm earlier steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and the gas sound speed are comparable, i.e., when the plasma and magnetic pressures are similar. It is also clear, however, that the impact of Alfven transport effects, which tend to slow shock evolution and reduce the time asymptotic cosmic-ray pressure in the shock, is strongly dependent upon uncertain details in the transport models. Both cosmic-ray advection tied to streaming Alfven waves and dissipation of wave energy are important to include in the models. Further, Alfven transport properties on both sides of the shock are also influential.
Energy Budget of Alfven Wave Interactions with the Auroral Acceleration Region
NASA Astrophysics Data System (ADS)
Pilipenko, V.; Fedorov, E.; Engebretson, M. J.
2003-12-01
Recent Polar satellite observations of intense Alfven ULF bursts over auroral arcs prompted researchers to suggest that ULF wave activity does provide energy to the auroral arc intensification. However, to provide physical grounds for this suggestion, it is important to know possible bounds on the rate of the ULF wave energy transfer into electron acceleration. To estimate the power dissipated in the ionosphere and that transferred into electron acceleration, we consider the interaction of magnetospheric Alfven waves with the auroral ionosphere, comprising the auroral acceleration region (AAR). The AAR is characterized by a mirror resistance to the field-aligned upward current that can provide the potential drop and the acceleration of electrons. Analytical treatment of the interaction of Alfven waves with the combined magnetosphere-AAR-topside ionosphere-E-layer system has been made within the "thin" AAR approximation, which is valid for small-scale disturbances. The input of Alfven waves into the energy balance of the AAR depends critically on their transverse scale. Only waves with scales comparable to the Alfven transit scale, that is kperpendicular to λ A ˜= 1, will provide energy into electron acceleration. This process is expected to be more effective above a conductive ionosphere. These theoretical predictions could be verified with the multi-satellite measurements in the Cluster-2 mission.
Transmission of Alfven waves through the earth's bow shock - Theory and observation
NASA Technical Reports Server (NTRS)
Hassam, A. B.
1978-01-01
From both theoretical and experimental bases, the transmission of Alfven waves through the bow shock is investigated. The theory of Alfven wave transmission through fast MHD shocks is extended to all cases of incident wave vectors. Particular consideration is given to Alfven waves propagating parallel to the ambient magnetic field with field perturbations polarized in the plane formed by the ambient magnetic field and the shock normal. An analysis is also made of magnetic field and plasma data from Explorer-35 in the vicinity of the bow shock. It is suggested that hydromagnetic waves are present in all of the 14 shock crossings studied, and that in upstream regions of at least 6 crossings, predominantly Alfvenic fluctuations exist. Average amplitudes of these fluctuations are measured on either side of the shock and the enhancement is measured by comparing their levels. Theoretical and experimental findings are compared and the apparent discrepancy in amplification factors may be explained by the strong damping of any transmitted magnetoacoustic modes downstream with relatively little damping of any transmitted Alfven waves.
NASA Technical Reports Server (NTRS)
Lichtenstein, B. R.; Sonett, C. P.
1979-01-01
The paper shows that the experimentally observed close alignment of magnetic field minimum variance direction with the average magnetic field for Alfven waves in the solar wind is consistent with theoretically predicted properties of plane large amplitude Alfven waves in the MHD approximation. The theoretical properties of these Alfven waves constrain the time averaged magnetic field to cluster around the direction of minimum variance, which is aligned with the wave normal. Thus, spacecraft magnetometer observations in the solar wind of minimum variance directions strongly peaked about the average magnetic field direction are consistent with plane large amplitude Alfven waves which have wave normals aligned with the directions of minimum variance. This does not imply that geometrical hydromagnetic calculations for Alfven wave propagation direction in the solar wind are incorrect, but there is a discrepancy between geometrical hydromagnetics theory and observations that IMF minimum variance directions tend to be aligned with the ideal Parker spiral instead of the radial direction.
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.
2015-12-01
Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Gyrokinetic particle simulations of reversed shear Alfven eigenmode excited by antenna and fast ions
Deng Wenjun; Holod, Ihor; Xiao Yong; Lin Zhihong; Wang Xin; Zhang Wenlu
2010-11-15
Global gyrokinetic particle simulations of reversed shear Alfven eigenmode (RSAE) have been successfully performed and verified. We have excited the RSAE by initial perturbation, by external antenna, and by energetic ions. The RSAE excitation by antenna provides verifications of the mode structure, the frequency, and the damping rate. When the kinetic effects of the background plasma are artificially suppressed, the mode amplitude shows a near-linear growth. With kinetic thermal ions, the mode amplitude eventually saturates due to the thermal ion damping. The damping rates measured from the antenna excitation and from the initial perturbation simulation agree very well. The RSAE excited by fast ions shows an exponential growth. The finite Larmor radius effects of the fast ions are found to significantly reduce the growth rate. With kinetic thermal ions and electron pressure, the mode frequency increases due to the elevation of the Alfven continuum by the geodesic compressibility. The nonperturbative contributions from the fast ions and kinetic thermal ions modify the mode structure relative to the ideal magnetohydrodynamic (MHD) theory. The gyrokinetic simulations have been benchmarked with extended hybrid MHD-gyrokinetic simulations.
NASA Astrophysics Data System (ADS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1988-02-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, a new equation is derived governing the evolution of the spectrum tensor (including the energy and helicity spectrum functions) of the random velocity field as well as the ponderomotive and mean electromotive forces generated by random Alfven waves in a plasma with weak magnetic diffusion. The ponderomotive and mean electromotive forces are expressed as series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of the random velocity field. The effect of microscale random Alfven waves, through ponderomotive and mean electromotive forces generated by them, on the propagation of large-scale Alfven waves is also investigated by solving the mean-field equations, including the transport equation of the helicity spectrum function.
Generation of Alfven waves by high power pulse at the electron plasma frequency
NASA Astrophysics Data System (ADS)
van Compernolle, Bart Gilbert
The physics of the interaction between plasmas and high power waves with frequencies in the electron plasma frequency range is of importance in many areas of space and plasma physics. A great deal of laboratory research has been done on the interaction of microwaves in a density gradient when o = ope in unmagnetized plasmas. [SWK74, WS78, KSW74]. Extensive studies of HF-ionospheric modifications have been performed [Fej79] as evidenced by experiments at Arecibo [HMD92, BHK86, CDF92, FGI85], at the HAARP facility [RKK98] in Alaska, at the EISCAT observatory in Norway [IHR99], and at SURA in Russia [FKS99]. This dissertation focusses on the interaction with a fully magnetized plasma, capable of supporting Alfven waves. The experiment is performed in the upgraded LArge Plasma Device (LAPD) at UCLA [GPL91] (Helium, n = 1012 cm-3, B = 1 kG - 2.5 kG). A number of experiments have been done at LAPD using antennas, skin depth scale currents and laser produced plasmas to generate Alfven waves [LGM99, GVL97a, GVL97b, VGV01]. In this work a high power pulse 6th, frequency in the electron plasma frequency range is launched into the radial density gradient, perpendicular to the background magnetic field. The microwave pulses last on the order of one ion gyro period and has a maximum power of |E|2/ nT ≃ .5 in the afterglow. The absorption of these waves leads to a pulse of field aligned suprathermal electrons. This electron current pulse then launches with Alfven wave with o ≤ o ci. The experiment was performed bath in ordinary node (O-mode) and extraordinary (X-mode), for different background magnetic fields B0, different temperatures (afterglow vs discharge) and different power levels of the incoming microwaves. It was found that the Alfven wave generation can be explained by Cherenkov radiation of Alfven waves by the suprathermal electron pulse. Theoretical solutions for the perturbed magnetic field due to a pulse of field aligned electrons were obtained, and shown to be
The soliton transform and a possible application to nonlinear Alfven waves in space
NASA Technical Reports Server (NTRS)
Hada, T.; Hamilton, R. L.; Kennel, C. F.
1993-01-01
The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.
NASA Astrophysics Data System (ADS)
Koepke, Mark
2008-11-01
A small, off-axis mesh anode electrode at one plasma-column end is used to create a paraxial channel of both electron current and depleted density in the Large Plasma Device Upgrade (LAPD-U) at UCLA. It is shown that the on-axis, larger, surrounding-plasma column rotates about its cylindrical axis because a radial electric field is imposed by a multiple-segmented-disk termination electrode on the same end as the mesh-anode electrode. The radial profile of azimuthal velocity is shown to be consistent with rigid-body rotation. Launched inertial Alfven waves are shown to concentrate in the off-axis channel of electron current and depleted plasma density. In the absence of launched waves, time varying boundary conditions, or spatially structured boundary conditions, we demonstrate that a non-fluctuating, non-traveling pattern in the plasma density arises spontaneously in the channel, but only in the combined presence of electron current, density depletion, and cross-field convection (i.e., rotation). The experimental verification of stationary inertial Alfven waves is based on these results and the predictions from a model of finite-collisionality, finite-pressure stationary Alfven waves that links laboratory and auroral plasma regimes. Ground-based optical observations will be shown that indicate the need for a quasi- static theory of structured electron acceleration within auroral arcs. The properties of the stationary inertial Alfven wave suggest it as promising candidate.
High-resolution sounding rocket observations of large-amplitude Alfven waves
NASA Technical Reports Server (NTRS)
Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Mozer, F. S.
1990-01-01
Shear Alfven waves with amplitudes greater than 100 mV/m were observed on two recent sounding rocket flights. The largest waveforms are best described as a series of step functions, rather than as broadband noise or as single frequency waves. Complete two-dimensional E and B measurements at 4-ms time resolution were made, showing a downward propagation direction and implying insignificant reflection from the ionosphere at frequencies greater than 1 Hz. Intense, field-aligned, low-energy electron fluxes accompany the waves. Acceleration of these electrons by the Alfven waves is shown to be feasible. The waves in at least one case have a sufficently large ponderomotive potential to generate the observed density fluctuations of order one.
Huysmans, G.T.A.; Kerner, W.; Borba, D.; Holties, H.A.; Goedbloed, J.P.
1995-05-01
The active excitation of global Alfven modes using the saddle coils in the Joint European Torus (JET) [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfven mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfven Spectrum in TORoidal geometry) [18{ital th} {ital EPS} {ital Conference} {ital On} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-{ital n} global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfven and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfven mode with a density and magnetic field.
Correlation between excitation of Alfven modes and degradation of ICRF heating efficiency in TFTR
Bernabei, S.; Chang, Z.; Darrow, D.
1997-05-01
Alfven modes are excited by energetic ions in TFTR during intense minority ICRF heating. There is a clear threshold in rf power above which the modes are destabilized. The net effect of these modes is the increase of the fast ion losses, with an associated saturation of the ion tail energy and of the efficiency of the heating. Typically, several modes are excited with progressive n-numbers, with frequencies in the neighborhood of 200 kHz. Results suggest that Energetic Particle Modes (EPM), mostly unseen by the Mirnov coils, are generated near the center and are responsible for the ion losses. Stronger global TAE modes, which are destabilized by the stream of displaced fast ions, appear responsible only for minor losses.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.
2013-03-15
Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.
Small scales formation via Alfven wave propagation in compressible nonuniform media
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: High beta
NASA Technical Reports Server (NTRS)
Ghosh, S.; Vinas, A. F.; Goldstein, M. L.
1994-01-01
The nonlinear dynamics following saturation of the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation in the case of high plasma beta and no wave dispersion. The magnetohydrodynamic (MHD) code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Turbulent cascades develop after saturation of two coupled oblique three-wave parametric instabilities; one of which is an oblique filamentationlike instability reported earlier. Remnants of the parametric processes, as well as of the original Alfven pump wave, persist during late nonlinear times. Nearly incompressible MHD features such as spectral anisotropies appear as well.
Kinetic Alfven waves in a homogeneous dusty magnetoplasma with dust charge fluctuation effects
Zubia, K.; Rubab, N.; Shah, H. A.; Salimullah, M.; Murtaza, G.
2007-03-15
Kinetic Alfven waves with finite Larmor radius effects have been examined rigorously in a uniform dusty plasma in the presence of an external/ambient magnetic field. Two-potential theory has been applied for these electromagnetic waves and the dispersion relation is derived which shows a cutoff frequency at the dust-lower-hybrid frequency due to the hybrid motion of magnetized ions and cold and unmagnetized dust dynamics. The dust charge fluctuation effect was analyzed for finding the damping of the electromagnetic kinetic Alfven waves, which arises on account of the electrostatic parallel component of the waves. The dust charge fluctuation damping is seen to be contributed dominantly by the perpendicular motion of electrons and ions in the dusty magnetoplasma.
Parametric instabilities of parallel-propagating Alfven waves: Some analytical results
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1993-01-01
We consider the stability of a circularly polarized Alfven wave (the pump wave) which propagates parallel to the ambient magnetic field. Only parallel-propagating perturbations are considered, and we ignore dispersive effects due to the ion cyclotron frequency. The dissipationless MHD equations are used throughout; thus possibibly important effects arising from Landau and transit time damping are omitted. We derive a series of analytical approximations to the dispersion relation using A = (Delta B/B(sub O))(exp 2) as a small expansion parameter; Delta B is the pump amplitude, and B(sub O) is the ambient magnetic field strength. We find that the plasma beta (the square of the ratio of the sound speed to the Alfven speed) plays a crucial role in determining the behavior of the parametric instabilities of the pump. If 0 less than beta less than 1 we find the familiar result that the pump decays into a forward propagating sound wave and a backward propagating Alfven wave with maximum growth rate gamma(sub max) varies A(sup 1/2), but beta cannot be too close to 0 or to 1. If beta approx. 1, we find gamma(sub max) varies A(sup 3/4), if beta greater than 1, we find gamma(sub max) varies A(sup 3/2), while if beta approx. 0, we obtain gamma(sub max) varies A(sup 1/3); moreover, if beta approx. 0 there is a nearly purely growing instability. In constrast to the familiar decay instability, for which the backward propagating Alfven wave has lower frequency and wavenumber than the pump, we find that if beta greater than or approx. equal to 1 the instability is really a beat instability which is dominated by a transverse wave which is forward propagating and has frequency and wavenumber which are nearly twice the pump values. Only the decay instability for 0 less than beta less than 1 can be regarded as producing two recognizable normal modes, namely, a sound wave and an Alfven wave. We discuss how the different characteristics of the instabilities may affect the evolution of
Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion
NASA Astrophysics Data System (ADS)
Christiansen, P. J.; Dum, C. T.
1989-06-01
The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
Modification and damping of Alfven waves in a magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.
1994-10-01
The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlations. It is found that in addition to the unusual Landau damping, which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field.
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-12-17
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas; Rudakov, Leonid
2012-10-15
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
NASA Technical Reports Server (NTRS)
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
Biglari, H.; Ono, M. . Plasma Physics Lab.); Diamond, P.H. . Dept. of Physics); Craddock, G.G. )
1991-01-01
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E {times} B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power ({approximately} few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Shrivastava, G. Ahirwar, G.; Shrivastava, J.
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
Theory of magnetospheric hydromagnetic waves excited by energetic ring-current protons
Chen, Liu; Hasegawa, Akira
1987-06-01
A general theoretical formulation, allowing finite ion Larmor radii, general magnetic field geometries and plasma equilibria, has been developed to investigate excitations of magnetohydrodynamic (MHD) Alfven waves within the earth's magnetosphere by the storm-time energetic ring-current protons. In particular, it is found that for adiabatically injected protons, various predicted instability properties are consistent with satellite observations. 8 refs.
Cherenkov radiation of shear Alfven waves in plasmas with two ion species
Farmer, W. A.; Morales, G. J.
2012-09-15
A calculation is presented of the radiation pattern of shear Alfven waves generated by a burst of charged particles in a charge-neutral plasma with two-ions of differing charge-to-mass ratios. The wake pattern is obtained for the inertial and kinetic regimes of wave propagation. Due to the presence of two ion-species, the Alfven waves propagate within two different frequency bands separated by a gap. One band is restricted to frequencies below the cyclotron frequency of the heavier species and the other to frequencies between the ion-ion hybrid frequency and the cyclotron frequency of the lighter species. The radiation pattern in the lower frequency band is found to exhibit essentially the same properties reported in a previous study [Van Compernolle et al., Phys. Plasmas 15, 082101 (2008)] of a single species plasma. However, the upper frequency band differs from the lower one in that it always allows for the Cherenkov radiation condition to be met. The methodology is extended to examine the Alfvenic wake of point-charges in the inertial and adiabatic regimes. The adiabatic regime is illustrated for conditions applicable to fusion-born alpha particles in ITER.
Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection
Ma, Z.W.; Lee, L.C.; Otto, A.
1995-07-01
The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a large portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.
Walker, A.D.M. )
1987-09-01
A new hydromagnetic theory is developed for describing compressional pulsations with azimuthal wave number. It is assumed that there are two plasma, one hot, in which pressure effects are important, and the other cold. The equations are derived in a general set of magnetic coordinates which allow realistic calculations including geometrical effects in the magnetosphere. The equations describe the three hydromagnetic modes which are coupled by the geometry. When the azimuthal wave number is large, the fast mode is strongly evanescent. This allows an expansion in 1/m in order to decouple the fast wave. The remaining equations describe the coupled transverse Alfven and magnetosonic modes. Some of the puzzling features of the observations of polarization are discussed.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
Chromospheric alfvenic waves strong enough to power the solar wind.
De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S
2007-12-01
Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784
NASA Technical Reports Server (NTRS)
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
High-n ideal and resistive shear Alfven waves in tokamaks
Cheng, C.Z.; Chen, L.; Chance, M.S.
1984-05-01
Ideal and resistive MHD equations for the shear Alfven waves are studied in a low-..beta.. toroidal model by employing the high-n ballooning formalism. The ion sound effects are neglected. For an infinite shear slab, the ideal MHD model gives rise to a continuous spectrum of real frequencies and discrete eigenmodes (Alfven-Landau modes) with complex frequencies. With toroidal coupling effects due to nonuniform toroidal magnetic field, the continuum is broken up into small continuum bands and new discrete toroidal eigenmodes can exist inside the continuum gaps. Unstable ballooning eigenmodes are also introduced by the bad curvature when ..beta.. > ..beta../sub c/. The resistivity (n) can be considered perturbatively for the ideal modes. In addition, four branches of resistive modes are induced by the resistivity: (1) Resistive entropy modes which are stable (..delta..' < 0) with frequencies approaching zero as n/sup 3/5/, (3) Resistive periodic shear Alfven waves which approach the finite frequency end points of the continuum bands and n/sup 1/2, and (4) Resistive ballooning modes which are purely growing with growth rate proportional to eta/sup 1/3/..beta../sup 2/3/ as eta ..-->.. O and ..beta.. ..-->.. O.
Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.
2015-12-01
Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.
Is the Alfven-wave propagation effect important for energy decay in homogeneous MHD turbulence?
Hossain, Murshed; Gray, Perry C.; Pontius, Duane H. Jr.; Matthaeus, William H.; Oughton, Sean
1996-07-20
We investigate the role of three-point decorrelation due to Alfven wave propagation in three-dimensional incompressible homogeneous MHD turbulence. By comparing numerical simulations with theoretical expectations, we have studied how this effect influences the decay of turbulent energy caused by both an external mean magnetic field and the fluctuating turbulent field. Decay is initially suppressed by a mean magnetic field, as expected, but the effect soon saturates. The decay rate does not scale with mean magnetic field for higher values. The disagreement with theoretical predictions can be accounted for by anisotropic spectral transfer. Thus, phenomenological models for energy decay that include decorrelation due to Alfvenic propagation are not substantiated. This work complements our detailed study of various models of energy decay in homogeneous MHD [Hossain et al., 1995].
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2004-01-01
When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.
Matsumoto, Takuma; Shibata, Kazunari
2010-02-20
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.
Schulze-Berge, S.; Crowley, S.; Chen, Liu.
1991-05-01
We have analyzed field line resonances of Alfven waves in a rectangular box model with a straight uniform magnetic field but three dimensionally varying density. Field line resonances are shown to exist even with this three-dimensional nonuniformity. For a given wave frequency, we can construct the surface on which the resonance occurs and derive the local form of the singular solution. Magnetic perturbations are found to lie predominantly in the resonant surface. In the presence of azimuthal inhomogeneities, the present theory could explain why some satellite measurements show geomagnetic pulsations of comparable magnitude in radial and azimuthal components. 5 refs.
Schulze-Berge, S.; Cowley, S.; Liu Chen )
1992-03-01
The authors have analyzed field line resonances of Alfven waves in a rectangular box model with a straight uniform magnetic field but three-dimensionally varying density. Field line resonances are shown to exist even with this three-dimensional uniformity. For a given wave frequency they can construct the surface on which the resonance occurs and derive the local form of the singular solution. Magnetic perturbations are found to lie predominantly in the resonant surface. In the presence of azimuthal inhomogeneous the present theory could explain why some satellite measurements show geomagnetic pulsations of comparable magnitude in radial and azimuthal components.
Effect of two ion species on the propagation of shear Alfven waves of small transverse scale
Vincena, S. T.; Morales, G. J.; Maggs, J. E.
2010-05-15
The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.
Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: Low beta
NASA Technical Reports Server (NTRS)
Ghosh, S.; Goldstein, M. L.
1994-01-01
The nature of turbulent cascades arising from the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation for the case of low plasma Beta and no wave dispersion. The magnetohydrodynamic code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Anisotropic turbulent cascades, similar to those found in early incompressible two-dimensional simulations, occur after nonlinear saturation of the parallel propagating decay instability. The turbulent spectrum can be divided into three regimes: the lowest wave numbers are dominated by lower sideband remnants of the parametric process, intermediate wave numbers display nearly incompressible dynamics, and the highest wave numbers are dominated by acoustic turbulence.
Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models
NASA Astrophysics Data System (ADS)
Nariyuki, Y.
2014-12-01
Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.
Slow Wave Excitation in the ICRF and HHFW Regimes
Phillips, C. K.; Valeo, E. J.; Hosea, J. C.; LeBlanc, B. P.; Wilson, J. R.; Jaeger, E. F.; Berry, L. A.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.; Smithe, D. N.
2011-12-23
Theoretical considerations and high spatial resolution numerical simulations of radio frequency (rf) wave heating in tokamaks and in spherical toruses (ST) indicate that fast waves launched into tokamaks in the ion cyclotron range of frequencies (ICRF) or into spherical toruses in the high harmonic fast wave (HHFW) regime may excite a short wavelength slow mode inside of the plasma discharge due to the presence of hot electrons that satisfy the condition {omega}
Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions
Galvao, R. A.; Ziebell, L. F.; Gaelzer, R.; Juli, M. C. de
2012-12-15
We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.
A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVEN WAVES
Van der Holst, B.; Manchester, W. B.; Frazin, R. A.; Toth, G.; Gombosi, T. I.; Vasquez, A. M.
2010-12-10
We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF) that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfven waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers but do address the heating of the protons by the Kolmogorov dissipation of the Alfven waves in open field-line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfven wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme-ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (2008 November 20 through December 17). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated corotating interaction regions (CIRs) with in situ ACE/WIND data. Although we do not capture all MHD variables perfectly, we do find that the time of occurrence and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.
Resonant excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves
Mazur, V. A.
2011-05-15
The effect of the magnetospheric MHD cavity on the excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves incident from the solar wind is investigated theoretically by using a one-dimensional nonuniform model of the medium. It is shown that most of the energy of stochastic waves is reflected from the magnetopause and that the only waves that penetrate into the magnetosphere are those with frequencies in narrow spectral ranges near the eigenfrequencies of the cavity. These waves lead to steadystate excitation of the eigenmodes of the cavity, the energy of which is determined by the spectral density of the energy flux of the incident waves at the corresponding eigenfrequencies. The energy of the eigenmodes penetrates through the opacity barrier in the vicinity of the Alfven resonance points (each corresponding to a particular mode), where the perturbation amplitude is sharply amplified, so the total energy localized close to the Alfven resonance point is much higher than the total energy of the corresponding eigenmode. In the vicinities, the perturbation energy is dissipated by the finite conductivity of the ionosphere, the dissipation power being equal to the energy flux of the incident waves that penetrates into the magnetosphere. The case of unsteady waves is analyzed by considering a wave pulse as an example. It is shown that most of the energy of the wave pulse is reflected from the magnetopause. The portion of the incident perturbation that penetrates into the magnetosphere leads to unsteady excitation of the eigenmodes of the magnetospheric cavity, which are then slowly damped because part of the energy of the cavity is emitted through the magnetopause back to the solar wind while the other part penetrates into the vicinities of the Alfven resonance points. In the vicinities, the perturbation is an Alfven wave standing between magnetically conjugate ionospheres and its energy is dissipated by the finite conductivity of the ionosphere at
Anomalous perturbative transport in tokamaks due to drift-Alfven-wave turbulence
Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )
1994-03-01
The method developed in Thoul, Similon, and Sudan [Phys. Plasmas [bold 1], 579 (1994)] is used to calculate the transport due to drift-Alfven-wave turbulence, in which electromagnetic effects such as the fluttering of the magnetic field lines are important. Explicit expressions are obtained for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma. Although the magnetic terms leave the transport by trapped electrons unaffected, they are important for the transport by circulating electrons.
Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui
2013-09-15
Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui
2013-09-01
Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.
Winds From Luminous Late-Type Stars. 1; The Effects of Nonlinear Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.
2000-01-01
We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.
THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE
Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.
2013-08-20
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.
Plasma turbulence driven by transversely large-scale standing shear Alfven waves
Singh, Nagendra; Rao, Sathyanarayan
2012-12-15
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
Polarization and Compressibility of Oblique Kinetic Alfven Waves
NASA Technical Reports Server (NTRS)
Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2012-01-01
Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects
Parametric instabilities of circularly polarized Alfven waves in high-beta plasmas
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu
1993-01-01
CGL relations including the effect of finite ion Larmor radius are used to consider a class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in high-beta plasmas. The disperison relation governing the instabilities is a sixth-order polynomial which is solved numerically. There are two types of instabilities: a modulational instability at k is less than k(0) and a relatively weak and narrow bandwidth instability at k is less than approximately k(0), where k and k(0) are the wavenumbers of the unstable density fluctuation and the 'pump' wave, respectively. It is shown that these instabilities can occur for left-handed pump waves and that the modulational instability is unstable over a very broad band in k with a maximum growth rate at finite k is not equal to 0.
Stability of the kinetic Alfven wave in a current-less plasma
NASA Astrophysics Data System (ADS)
Sreekala, G.; Sebastian, Sijo; Michael, Manesh; Abraham, Noble P.; Renuka, G.; Venugopal, Chandu
2015-06-01
The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities VdH and Vde. For the most general case, the dispersion relation is a polynomial equation of order five; it reduces to a relation which supports only one mode when VdH = 0. For typical parameters at comet Halley, we find that both VdH and Vde can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al. (2009).
Stability of the kinetic Alfven wave in a current-less plasma
NASA Astrophysics Data System (ADS)
Abraham, Noble P.; C, Venugopal; Sebastian, Sijo; Renuka, G.; Balan, Nanan; Sreekala, G.
The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities V_{dH} and V_{de}. For the most general case, the dispersion equation is a polynomial equation of order five; it reduces to a relation which supports only one mode when V_{dH}=0. For typical parameters at comet Halley, we find that both V_{dH} and V_{de} can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al.
Experimental Investigation of Driven Alfven Wave Resonances on the Pretext Tokamak.
NASA Astrophysics Data System (ADS)
Booth, William David
The results of the recent Alfven wave experiments conducted on the PRETEXT tokamak are presented. Two quarter -turn toroidal antennas were used to drive 2.1 MHz Alfven waves in the PRETEXT plasma. Three different Global Alfven Eigenmodes were identified. The resonance frequency for each of the three observed modes was compared to the value predicted by calculation.^{dagger } The value of the antenna loading associated with each global resonance was measured and also compared to values predicted by a kinetic model.^ {ddagger} Additionally, the radial profile of the RF magnetic field was measured to a depth of five centimeters past the limiter in the plasma and these magnetic fields were compared to predicted values. Generally good agreement was found between measured and predicted values. The resonance frequencies of the global modes agreed quite well and the value of the antenna loading agreed to within about 20%. The width of the measured resonances was much wider than the width of the calculated resonances. This difference is attributed principally to losses in the antenna impedance matching system but may be due partially to loss mechanisms in the plasma which are not included in the code model. The magnetic fields displayed good agreement at the edge of the plasma, but showed some divergence from predicted values at the deeper radial positions. The general shape of the magnetic fields is consistent with the prediction of broad distribution of the fields across the plasma for a global mode. ftn ^daggerS. M. Mahajan, Phys. Fluids 27, 2238 (1984). ^ddaggerD. W. Ross, G. L. Chen, and S. M. Mahajan, Phys. Fluids 25, 652 (1982).
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2006-01-01
Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.
Taylor, J.P.H.; Walker, A.D.M. )
1987-09-01
When the azimuthal wave number is large, the equations describing standing hydromagnetic waves in the magnetosphere can be written as a set of coupled equations describing the couples magnetosonic and Alfven waves. These equations are decoupled when the filed lines are straight. The eigenfrequencies of the decoupled oscillations are computed. For typical conditions in the outer magnetosphere these give periods in the Pc 4-5 band or above. The longitudinal magnetosonic wave consists of oscillations in the plasma pressure, the longitudinal plasma drift velocity and the compressional magnetic field. Higher harmonics of the standing waves have nodes quite near the equator. These higher harmonics have larger fractional pressure perturbations at high latitudes. The compressional magnetic field for all modes, however, is substantially attenuated at higher latitudes, and the theory predicts that compressional oscillations of B are only likely to be seen near the equator. Conditions can be favorable for resonance to occur between the magnetosonic mode and the transverse Alfven mode. The computed results show periods of the right order of magnitude to explain observations of compressional pulsations. The theory has the potential to explain the polarization when coupling is fully taken into account.
NASA Technical Reports Server (NTRS)
Bhattacharjee, A.; Hasegawa, A.
1990-01-01
The Final Technical Report on linear and non-linear studies of Alfven waves in space is presented. Areas of research included relaxation of magnetotail plasmas with field-aligned currents; the equilibrium dayside magnetosphere; macroscale particle simulation of kinetic Alfven wave physics; ballooning stability of plasmas with sheared equilibrium flows; theory of the drift-mirror instability; collisionless tearing instability in magnetotail plasmas; and nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field and the development of stochastic webs.
Convective Excitation of Internal Waves
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton; Vasil, Geoffrey; Quataert, Eliot; Brown, Benjamin; Oishi, Jeffrey
2015-11-01
We will present a joint experimental & computational study of internal wave generation by convection. First we describe an experiment using the peculiar property of water that its density maximum is at 4° C . A tank of water cooled from below and heated from above develops a cold, convective layer near 4° C at the bottom of the tank, adjacent to a hot stably stratified layer at the top of the tank. We simulate this setup in 2D using the open-source Dedalus code (dedalus-project.org). Our simulations show that waves are excited from within the convection zone, opposed to at the interface between the convective and stably stratified regions. Finally, we will present 3D simulations of internal wave excitation by convection in a fully compressible atmosphere with multiple density scaleheights. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number. The simulated waves are then compared to analytic predictions of the bulk excitation model.
Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves
Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A. )
1989-08-01
The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma {beta} (the ratio of plasma pressure to the magnetic pressure) varies from {beta} = 1 to {beta} << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet.
Propagation of large amplitude Alfven waves in the solar wind neutral sheet
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.
He Jiansen; Tu Chuanyi; Yao Shuo; Tian Hui; Marsch, Eckart
2011-04-20
The fluctuating magnetic helicity is considered an important parameter in diagnosing the characteristic modes of solar wind turbulence. Among them is the Alfven-cyclotron wave, which is probably responsible for the solar wind plasma heating, but has not yet been identified from the magnetic helicity of solar wind turbulence. Here, we present the possible signatures of Alfven-cyclotron waves in the distribution of magnetic helicity as a function of {theta}{sub VB}, which is the angle between the solar wind velocity and local mean magnetic field. We use magnetic field data from the STEREO spacecraft to calculate the {theta}{sub VB} distribution of the normalized reduced fluctuating magnetic helicity {sigma}{sub m}. We find a dominant negative {sigma}{sub m} for 1 s < p < 4 s (p is time period) and for {theta}{sub VB} < 30 deg. in the solar wind outward magnetic sector, and a dominant positive {sigma}{sub m} for 0.4 s < p < 4 s and for {theta}{sub VB}>150 deg. in the solar wind inward magnetic sector. These features of {sigma}{sub m} appearing around the Doppler-shifted ion-cyclotron frequencies may be consistent with the existence of Alfven-cyclotron waves among the outward propagating fluctuations. Moreover, right-handed polarized waves at larger propagation angles, which might be kinetic Alfven waves or whistler waves, have also been identified on the basis of the {sigma}{sub m} features in the angular range 40 deg. < {theta}{sub VB} < 140 deg. Our findings suggest that Alfven-cyclotron waves (together with other wave modes) play a prominent role in turbulence cascading and plasma heating of the solar wind.
Observation of Reversed-Shear Alfven Eigenmodes Excited by Energetic Ions in a Helical Plasma
Toi, K.; Tokuzawa, T.; Ida, K.; Morita, S.; Ido, T.; Shimizu, A.; Isobe, M.; Todo, Y.; Watari, T.; Ohdachi, S.; Sakakibara, S.; Narihara, K.; Osakabe, M.; Nagaoka, K.; Narushima, Y.; Watanabe, K. Y.; Funaba, H.; Goto, M.; Ikeda, K.; Kaneko, O.
2010-10-01
Reversed-shear Alfven eigenmodes were observed for the first time in a helical plasma having negative q{sub 0}{sup ''} (the curvature of the safety factor q at the zero shear layer). The frequency is swept downward and upward sequentially via the time variation in the maximum of q. The eigenmodes calculated by ideal MHD theory are consistent with the experimental data. The frequency sweeping is mainly determined by the effects of energetic ions and the bulk pressure gradient. Coupling of reversed-shear Alfven eigenmodes with energetic ion driven geodesic acoustic modes generates a multitude of frequency-sweeping modes.
Effects of Density Fluctuations on Weakly Nonlinear Alfven Waves: An IST Perspective
NASA Astrophysics Data System (ADS)
Hamilton, R.; Hadley, N.
2012-12-01
The effects of random density fluctuations on oblique, 1D, weakly nonlinear Alfven waves is examined through a numerical study of an analytical model developed by Ruderman [M.S. Ruderman, Phys. Plasmas, 9 (7), pp. 2940-2945, (2002).]. Consistent with Ruderman's application to the one-parameter dark soliton, the effects on both one-parameter bright and dark solitons, the two-parameter soliton as well as pairs of one-parameter solitons were similar to that of Ohmic dissipation found by Hamilton et al. [R. Hamilton, D. Peterson, and S. Libby, J. Geophys. Res 114, A03104,doi:10.1029/2008JA013582 (2009).] It was found in all cases where bright or two-parameter solitons are present initially, that the effects of density fluctuations results in the eventual damping of such compressive wave forms and the formation of a train of dark solitons, or magnetic depressions.
Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons
Panwar, A. E-mail: ryu201@postech.ac.kr Ryu, C. M. E-mail: ryu201@postech.ac.kr; Bains, A. S. E-mail: ryu201@postech.ac.kr
2015-09-15
A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.
Effect of the magnetic field curvature on the generation of zonal flows by drift-Alfven waves
Mikhailovskii, A. B.; Kovalishen, E. A.; Shirokov, M. S.; Tsypin, V. S.; Galvao, R. M. O.
2007-05-15
The generation of zonal flows by drift-Alfven waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm's law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.
Ito, T.; Toi, K.; Isobe, M.; Nagaoka, K.; Takeuchi, M.; Akiyama, T.; Matsuoka, K.; Minami, T.; Nishimura, S.; Okamura, S.; Shimizu, A.; Suzuki, C.; Yoshimura, Y.; Takahashi, C.; Matsunaga, G.
2009-09-15
Stable toroidicity-induced Alfven eigenmodes (TAEs) with low toroidal mode number (n=1 and n=2) were excited by application of alternating magnetic field perturbations generated with a set of electrodes inserted into the edge region of neutral beam injection heated plasmas on the Compact Helical System [K. Nishimura, K. Matsuoka, M. Fujiwara et al., Fusion Technol. 17, 86 (1990)]. The gap locations of TAEs excited by the electrodes are in the plasma peripheral region of {rho}>0.7 ({rho} is the normalized minor radius) where energetic ion drive is negligibly small, while some AEs are excited by energetic ions in the plasma core region of {rho}<0.4. The damping rate of these stable TAEs derived from plasma responses to applied perturbations is fairly large, that is, {approx}9% to {approx}12% of the angular eigenfrequency. This large damping rate is thought to be dominantly caused by continuum damping and radiative damping.
Carter, T A
2006-11-16
Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Buti, B.
1990-01-01
Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.
Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity
NASA Technical Reports Server (NTRS)
Fatuzzo, Marco; Melia, Fulvio
1993-01-01
Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.
Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)
Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S
2001-10-11
An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.
Evans, R. M.; Opher, M.; Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I.; Vasquez, A.
2012-09-10
The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave
The energy flux of MHD wave modes excited by realistic photospheric drivers
NASA Astrophysics Data System (ADS)
Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart
The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.
The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, David
2003-01-01
The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.
Drift-Alfven wave mediated particle transport in an elongated density depression
Vincena, Stephen; Gekelman, Walter
2006-06-15
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J. M.
2009-10-15
We propose initial conditions that could facilitate the excitation of rogue waves. Understanding the initial conditions that foster rogue waves could be useful both in attempts to avoid them by seafarers and in generating highly energetic pulses in optical fibers.
Dispersion characteristics of kinetic Alfven waves in a multi-ion cometary plasma
NASA Astrophysics Data System (ADS)
Jayapal, R.; Abraham, Noble P.; Blesson, Jose; Antony, S.; Anilkumar, C. P.; Venugopal, Chandu
We have studied the stability of the kinetic Alfven wave in a plasma composed of hydrogen and positively and negatively charged oxygen ions and electrons which approximates very well the plasma environment around comet Halley. In the direction parallel to the magnetic field, the electrons have been modelled by a drifting Maxwellian distribution. In the perpendicular direction, another ring simulated by a loss cone type distribution, obtained by subtracting two Maxwellians with different temperatures, model all the constituents of the plasma. The dispersion relation derived for KAWs is a generalisation of the pioneering dispersion relation of Hasegawa on two counts: it has been extended to a plasma described by a generalised distribution function and to a multi - ion plasma containing positively and negatively charged ions. We find that the dispersion characteristics of the KAW can be made independent of the heavy ion parameters by an appropriate choice of densities and temperatures. The source of free energy for the instability is the drift velocity of the electrons; the growth rate increases with increasing drift velocity of the electrons. The positively charged heavier ions enhance the instability while the negatively charged heavier ions tend to damp the wave.
Dispersion characteristics of kinetic Alfven waves in a multi-ion plasma
NASA Astrophysics Data System (ADS)
Venugopal, Chandu; Jayapal, R.; Sreekala, G.; Jose, Blesson; Savithri Devi, E.; Antony, S.
2014-06-01
The stability of the kinetic Alfven wave (KAW) has been studied in a plasma composed of electrons, hydrogen and positively and negatively charged oxygen ions. Using the two potential theory of Hasegawa, we have derived an expression for the frequency and growth/damping rate of the KAW. The dispersion relation derived in this paper is a generalization of the dispersion relation of Hasegawa on two counts: (i) we use a more generalized distribution function and show that our relation reduces to the dispersion relation of Hasegawa in the limiting case, and (ii) it is applicable to a multi-ion plasma containing lighter ions and positively and negatively charged heavier ions. We find the growth rate of the wave increases with increasing drift velocities of the electrons. Negatively charged oxygen ions (O-) decrease the growth rate; however, the growth rate is very sensitively dependent on O- ion density, especially when its density is greater than that of the positively charged oxygen ions (O+). Interestingly, the dispersion characteristics of KAWs can be made insensitive to the presence of the heavier ions by an appropriate choice of their densities and temperatures.
Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind
Mazur, V. A.
2010-11-15
The eigenfrequencies and eigenmodes of an MHD cavity in the front part of the magnetosphere and its excitation by monochromatic hydromagnetic waves incident onto the magnetosphere from solar wind are studied theoretically in the model of a plane-stratified plasma. The eigenmodes are damped due to both their absorption at the Alfven resonance points and their emission into solar wind through the magnetopause, which is partially transparent for the excited waves. It is shown that, due to the influence of the magnetospheric cavity, the pumping of the magnetosphere by the incident waves is resonance in character. The waves penetrate into the magnetosphere only if their frequencies lie in narrow spectral ranges near the eigenfrequencies of the cavity, the width of these ranges being on the order of the damping rate of the eigenmodes. Waves with other frequencies are almost completely reflected from the magnetopause.
Effects of ICRH on the Dynamics of Fast Particle Excited Alfven Eigenmodes
Bergkvist, T.; Hellsten, T.; Holmstroem, K.
2007-09-28
ICRH is often used in experiments to simulate destabilization of Alfven eigenmodes by thermonuclear {alpha}-particles. Whereas the slowing down distribution of {alpha}-particles is nearly isotropic, the ICRH creates an anisotropic distribution function with non-standard orbits. The ICRH does not only build up gradients in phase space, which destabilizes the AEs, but it also provides a strong phase decorrelation mechanism between ions and AEs. Renewal of the distribution function by thermonuclear reactions and losses of {alpha}-particles to the wall lead to a continuous drive of the AEs. Simulations of the non-linear dynamics of AEs and the impact they have on the heating profile due to particle redistribution are presented.
Oscillatory traveling waves in excitable media
Zemskov, E. P. Loskutov, A. Yu.
2008-08-15
A new type of waves in an excitable medium, characterized by oscillatory profile, is described. The excitable medium is modeled by a two-component activator-inhibitor system. Reaction-diffusion systems with diagonal and cross diffusion are examined. As an example, a front (kink) represented by a heteroclinic orbit in the phase space is considered. The wave shape and velocity are analyzed with the use of exact analytical solutions for wave profiles.
Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales
NASA Astrophysics Data System (ADS)
Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.
2010-12-01
Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.
An analytical solution of finite-amplitude solitary kinetic Alfven waves
Wu, D.; Wang, D.; Faelthammar, C.
1995-12-01
An analytical solution of finite-amplitude solitary kinetic Alfven waves (SKAWs) in a low-{beta} ({beta}{much_lt}{ital m}{sub {ital e}}/{ital m}{sub {ital i}}{much_lt}1) plasma is presented. This solution has been compared with the solution of the Korteweg--de Vries (KdV) equation in the small-amplitude limit. It is found that the KdV soliton solution is valid only for the maximum relative density perturbation {ital N}{sub {ital m}}{lt}0.1. For the larger {ital N}{sub {ital m}}, the exact analytical solution shows that the SKAWs have a much wider structure and much stronger perturbed fields than the KdV solitons with the same {ital N}{sub {ital m}}. Moreover, the relations between the width and the amplitude of SKAWs are also considerably different from that of the KdV solitons. In addition, the possibility for applying these results to some events observed from the Freja scientific satellite is discussed. (The Freja is a Swedish--German scientific project for the investigation of ionospheric and magnetospheric plasmas, and the Freja satellite was launched on a Long-March II rocket of China on October 6, 1992.) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Nonlinear excited waves on the interventricular septum
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi
2012-11-01
Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.
Alfven solitons in the solar wind
NASA Technical Reports Server (NTRS)
Ovenden, C.; Schwartz, S. J.
1983-01-01
A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.
Excitations of low-frequency hydromagnetic waves by freshly created ions in the solar wind
NASA Technical Reports Server (NTRS)
Price, C. P.; Gaffey, J. D.; Dong, J. Q.
1988-01-01
Low-frequency hydromagnetic waves excited by newborn ions in the solar wind plasma are studied. The freshly created ions appear in the solar wind frame with a ring beam distribution. Both Alfven and fast magnetosonic waves are made unstable by the presence of the newborn ions. The dependence of the growth rate of both waves on the newborn ion density, the angle between the interplanetary magnetic field (IMF) and solar wind flow, and the angle of wave propagation relative to the IMF is investigated. Analytic approximations for the growth rates are presented, and numerical solutions of the dispersion equation are shown. The approximations are quite close to the numerically determined growth rates. It is found that the waves grow preferentially in the direction parallel to the IMF, and that the growth rates increase with both newborn ion density and the angle between the IMF and the solar wind flow.
Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets
NASA Astrophysics Data System (ADS)
Jafelice, L. C.; Opher, R.
1990-11-01
evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS
Faraday Waves under Time-Reversed Excitation
NASA Astrophysics Data System (ADS)
Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas
2013-03-01
Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer , Phys. Rev. E 78, 036218 (2008)PLEEE81539-3755]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.
Faraday waves under time-reversed excitation.
Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas
2013-03-01
Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions. PMID:23496716
Finnegan, S. M.; Koepke, M. E.; Knudsen, D. J.
2008-05-15
A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.
THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF FAST-TO-ALFVEN CONVERSION IN SUNSPOTS
Felipe, T.
2012-10-20
The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-{beta} region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 Degree-Sign and low azimuths, while the Alfven wave conversions peak at high inclinations and azimuths between 50 Degree-Sign and 120 Degree-Sign . Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which is reflected due to the gradients of the Alfven speed. The simulations show that the Alfven energy at the chromosphere is comparable to the acoustic energy of the slow mode, being even higher at high inclined magnetic fields.
Fu, G.Y.; Cheng, C.Z.
1992-07-01
The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much_gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.
Fu, G.Y.; Cheng, C.Z.
1992-07-01
The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.
Helicon wave excitation with helical antennas
Light, M.; Chen, F.F.
1995-04-01
Components of the wave magnetic field in a helicon discharge have been measured with a single-turn, coaxial magnetic probe. Left- and right-handed helical antennas, as well as plane-polarized antennas, were used; and the results were compared with the field patterns computed for a nonuniform plasma. The results show that the right-hand circularly polarized mode is preferentially excited with all antennas, even those designed to excite the left-hand mode. For right-hand excitation, the radial amplitude profiles are in excellent agreement with computations. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Love waves excited by a moving source
NASA Astrophysics Data System (ADS)
Zaslavskii, Yu. M.
2016-01-01
The study analyzes the characteristics of surface Love waves excited by the moment of an oscillating torsional force with a point of action that moves uniformly and rectilinearly along the free flat boundary of a medium having the structure of a "layer on a half-space." The azimuthal-angular distribution of the amplitude and Doppler shift in frequency of the wave modes is studied as a function of the motion velocity of a vibrating source and the parameters of the medium.
Optimal Distributed Excitation of Surface Wave Plasmas
NASA Astrophysics Data System (ADS)
Bowers, K. J.; Birdsall, C. K.
2000-10-01
Surface wave sustained plasmas are an emerging technology for next generation sources for material processing. There is promise of producing high density, uniform sheath plasmas at low neutral pressures over large target surface areas. Such plasmas are being produced by distributed arrays of slot antennas by numerous groups. However, work remains to obtain the optimal surface wave frequency and wave vector for sustaining a plasma. In this work, the optimal phase shift between slot antennas in a surface wave plasma is being sought using 2d3v PIC-MCC simulation. A long plasma loaded planar metal waveguide with a distributed exciting structure along one wall is modeled in these simulations. Of particular interest is the wave-particle interaction of electrons in the high energy tail of the velocity distribution (responsible for ionization in low pressure discharges) with driven low phase velocity (v << c) surface waves.
Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.
2013-06-10
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.
Maneva, Y. G.; Ofman, L.; Vinas, A. F.
2013-06-13
In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.
NASA Astrophysics Data System (ADS)
Cranmer, S. R.; van Ballegooijen, A. A.
2004-05-01
The continually evolving convection below the solar photosphere gives rise to a wide spectrum of magnetohydrodynamic (MHD) fluctuations in the magnetic atmosphere and solar wind. The propagation of waves through the solar atmosphere has been studied for more than a half century, and the mainly incompressible Alfven mode has been believed to be dominant in regions that are open to the heliosphere. As a part of an ongoing study of various aspects of solar MHD waves and turbulence, we present a comprehensive model of the radially evolving properties of Alfvenic fluctuations in a representative open magnetic region. This work differs from previous models in the following ways. (1) The background plasma density, magnetic field, and flow velocity are constrained empirically from below the photosphere to distances past 1 AU. The successive merging of flux tubes on granular and supergranular scales is described using a two-dimensional magnetostatic model of a magnetic network element. (2) The frequency power spectrum of horizontal motions is specified only at the photosphere, based on prior analyses of G-band bright points. Everywhere else in the model the amplitudes of outward and inward propagating waves are computed with no free parameters. We compare the resulting wave properties with observed nonthermal motions in the chromosphere and corona, radio scintillation measurements, and in-situ fluctuation spectra. This work is supported by NASA under grants NAG5-11913, NAG5-12865, and NAG5-10996 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to the ESA PRODEX program.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Excitation of terahertz nanoantennas by Rabi waves
Slepyan, G. Ya.; Yerchak, Y. D.; Maksimenko, S. A.; Hoffmann, A.; Bass, F. G.
2011-10-03
Theoretical model of quantum dot ring, strongly coupled with classical electromagnetic field, is developed. We demonstrate, that tunnel current in the QD-ring has low-frequency component, excited by Rabi waves, propagating into the ring, and the ring can be considered as a candidate for role of terahertz magnetic loop antenna. The low-frequency current is inspired by the asymmetry of electron tunneling.
A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry
Koenies, Axel; Kleiber, Ralf
2012-12-15
While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.
Chemotaxis to Excitable Waves in Dictyostelium Discoideum
NASA Astrophysics Data System (ADS)
Bhowmik, Arpan; Rappel, Wouter-Jan; Levine, Herbert
In recent years, there have been significant advances in our understanding of the mechanisms underlying chemically directed motility by eukaryotic cells such as Dictyostelium. In particular, the LEGI model has proven capable of providing a framework for quantitatively explaining many experiments that present Dictyostelium cells with tailored chemical stimuli and monitor their subsequent polarization. Here, we couple the LEGI approach to an excitable medium model of the cAMP wave-field that is self-generated by the cells and investigate the extent to which this class of models enables accurate chemotaxis to the cAMP waveforms expected in vivo. Our results indicate that the ultra-sensitive version of the model does an excellent job in providing natural wave rectification, thereby providing a compelling solution to the ``back-of-the-wave paradox'' during cellular aggregation. This work was supported by National Institutes of Health Grant P01 GM078586.
Excitation of Global Alfvén Waves by Low RF Power on TCABR
NASA Astrophysics Data System (ADS)
Puglia, P. G. P.; Elfimov, A. G.; Ruchko, L.; Galvão, R. M. O.; Guimarães-Filho, Z. O.; Ronchi, G.; Fonseca, A. M. M.; Kuznetsov, Yu K.; Nascimento, I. C.; Reis, A. P.; de Sá, W. P.; Sanada, E. K.; Severo, J. H. F.; Theodoro, V. C.; Elizondo, J. I.
2015-03-01
Recent results of Global Alfvén wave (GAW) excited by external antenna and fed by low radio-frequency (RF) power (≤1kW) in tokamak TCABR are presented. The goal of this work is to develop a diagnostic tool based on the excitation of GAW using low power RF generators when the waves can be excited without perturbing the basic plasma parameters in TCABR. This method named MHD diagnostics has already been developed on other tokamaks for toroidicity induced Alfven eigenmodes as well for GAW. Two magnetic probes are used for measurements of the magnetic field perturbations in two regimes of excitation. In the first one, the fixed RF frequency is combined with gas-puffing induced density rise and relaxation (1-2)×1013/cm3 in order to meet the GAW resonance, while in the second excitation method RF frequency sweeps 2-4 MHz are applied to the relatively stable plasma density. The plasma discharges are accompanied by saw-tooth (ST) oscillations registered by Soft-X Ray diagnostics that helps in an identification of the GAW resonances due to ST density oscillations. It is found that the fixed frequency GAW resonance appears during density rise, as well during slow density reducing after stop of gas puffing. The effective mass number Aeff=1.36 is found.
Tsiklauri, D.
2014-05-15
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed
Excitation of turbulence by density waves
NASA Technical Reports Server (NTRS)
Tichen, C. M.
1985-01-01
A nonlinear system describes the microdynamical state of turbulence that is excited by density waves. It consists of an equation of propagation and a master equation. A group-scaling generates the scaled equations of many interacting groups of distribution functions. The two leading groups govern the transport processes of evolution and eddy diffusivity. The remaining sub-groups represent the relaxation for the approach of diffusivity to equilibrium. In strong turbulence, the sub-groups disperse themselves and the ensemble acts like a medium that offers an effective damping to close the hierarchy. The kinetic equation of turbulence is derived. It calculates the eddy viscosity and identifies the effective damping of the assumed medium self-consistently. It formulates the coupling mechanism for the intensification of the turbulent energy at the expense of the wave energy, and the transfer mechanism for the cascade. The spectra of velocity and density fluctuations find the power law k sup-2 and k sup-4, respectively.
NASA Technical Reports Server (NTRS)
Crawford, F. W.
1974-01-01
Active research is reported in the following areas: (1) whistler propagation; (2) whistler triggered VLF emissions; (3) Alfven wave excitation; (4) helical electron beams for whistler generation; and (5) ULF excitation by metallic electric or magnetic dipole antennas.
Excitation of parametric instabilities by radio waves in the ionosphere.
NASA Technical Reports Server (NTRS)
Fejer, J. A.; Leer, E.
1972-01-01
The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.
Optical evidence for Alfven wave breaking in the near-Earth magnetosphere
NASA Astrophysics Data System (ADS)
Semeter, J.; Blixt, M.
2006-12-01
Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.
Destabilization of the shear Alfven mode by alpha particles and other high energy ions
NASA Astrophysics Data System (ADS)
Belikov, V. S.; Kolesnichenko, Ya. I.; Silivra, O. A.
1992-08-01
Toroidal Alfven eigenmode (TAE) and elliptical Alfven eigenmode (EAE) instabilities in plasmas with high energy ions are considered in the context of local theory. The instability growth rate is found for cases when waves are excited by alpha particles or by ions produced as a result of neutral injection or RF heating. Electron and ion Landau damping due to the toroidal sideband wave-particle interaction is also calculated. The electron damping rate is shown to be much lower than the generally accepted value. The TAE instability observed in the experiment with neutral beam injection on TFTR is analysed and the principal experimental features of TAE instability are explained
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun.
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ``explosion`` occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
Unstable resonators with excited converging wave
Hodgson, N. ); Weber, H. )
1990-04-01
This paper reports the properties of unstable resonators with an additional mirror inside or outside the resonator investigated, both experimentally and theoretically. The additional mirror excites the converging wave, and by this, output coupling is decreased without affecting beam quality. Experiments were performed with a pulsed Nd:YAG system. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically. Agreement between theory and experiments indicates that this kind of resonator provides high focusability and maximum extraction efficiency simultaneously, even with low-gain media. This enables one to apply unstable resonators to solid-state lasers with low small-signal gain, like alexandrite or CW-pumped Nd:YAG.
Non-WKB Alfven Wave Reflection from the Solar Photosphere to the Distant Heliosphere
NASA Astrophysics Data System (ADS)
Cranmer, S. R.; van Ballegooijen, A.
2003-12-01
Magnetohydrodynamic (MHD) turbulence has been considered for several decades as a possibly substantial heat source for the solar chromosphere, corona, and heliosphere. However, it is still not well understood how the turbulent fluctuations are generated and how they evolve in frequency and wavenumber. Although the dominant population of Alfvén waves near the Sun must be propagating outwards, one also needs waves propagating inwards in order to ``seed'' a turbulent cascade. As a part of an ongoing study of various aspects of solar MHD turbulence, we present a model of linear, non-WKB reflection of Alfvén waves that propagate in both directions along an open magnetic flux tube. Our work differs from previous models in the following ways. (1) The background plasma density, magnetic field, and flow velocity are constrained empirically from below the photosphere to distances past 1 AU. The successive merging of flux tubes on granular and supergranular scales is described using a two-dimensional magnetostatic model of a magnetic network element in the stratified solar atmosphere. (2) The amplitudes of horizontal wave motions are specified only at the photosphere, based on previous analyses of G-band bright point motions. Everywhere else in the model the amplitudes of outward and inward propagating waves are computed self-consistently. We compare the resulting wave properties with observed nonthermal motions in the chromosphere and corona, radio scintillation measurements, and in-situ fluctuation spectra. Quantities such as the MHD turbulent heating rate and the non-WKB wave pressure are computed, and the need for other sources of inward waves (e.g., nonlinear reflection or scattering off density inhomogeneities) will also be discussed. This work is supported by the National Aeronautics and Space Administration under grants NAG5-11913 and NAG5-12865 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to the ESA
Simulations of Convective Excitation of Internal Waves in Water
NASA Astrophysics Data System (ADS)
Lecoanet, D.; Quataert, E.; Vasil, G. M.; Brown, B. P.; Oishi, J.
2014-12-01
Convection adjacent to stable stratification can excite internal waves. These convectively excited internal waves can transport energy, momentum, and other quantities in a variety of geophysical and atmospherical contexts, including in the Earth's stratosphere, and the radiative zones of stars. To better understand the excitation mechanism, we perform simplified 2D simulations of a recent experiment by Perrard et al. (2013). The simulations are run using the new, very flexible, pseudo-spectral code Dedalus. The experiment and simulations exploit water's density maximum at 4C: a linear temperature profile includes both convectively unstable and stably stratified regions. The simulations and experiment show qualitatively similar excitation spectra. We then test two heuristic models of internal wave excitation by convection, the interface forcing mechanism and the deep excitation mechanism. To test these, we run linear simulations of the simulation. In one case, we solve the linear wave equation, with a boundary condition mimicking the motions of the interface from the simulations. This successfully reproduces the low frequency waves, but overestimates the excitation of high frequency waves. This is because high frequency convective motions are nonlinear, but the interface forcing simulation treats them as linear. Next, we test the deep excitation mechanism by solving the linear wave equation with a source term related to the Reynolds stress in the convective region. This successfully reproduces all waves, and the correlation between the linear model and the full simulation is about 0.95. This suggests that the deep excitation mechanism most accurately explains the wave generation in this system.
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Goldstein, Melvyn L.
2010-01-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
Stabilized wave segments in an excitable medium with a phase wave at the wave back
NASA Astrophysics Data System (ADS)
Zykov, V. S.; Bodenschatz, E.
2014-04-01
The propagation velocity and the shape of a stationary propagating wave segment are determined analytically for excitable media supporting excitation waves with trigger fronts and phase backs. The general relationships between the medium's excitability and the wave segment parameters are obtained in the framework of the free boundary approach under quite usual assumptions. Two universal limits restricting the region of existence of stabilized wave segments are found. The comparison of the analytical results with numerical simulations of the well-known Kessler-Levine model demonstrates their good quantitative agreement. The findings should be applicable to a wide class of systems, such as the propagation of electrical waves in the cardiac muscle or wave propagation in autocatalytic chemical reactions, due to the generality of the free-boundary approach used.
Small-scale Solar Wind Turbulence Due to Nonlinear Alfven Waves
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Sharma, R. P.; Moon, Y.-J.
2015-10-01
We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k‑1.67) to the dispersion range (k‑3.0). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.
Gravity-jitters and excitation of slosh waves
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Leslie, F. W.; Wu, J. L.
1990-01-01
The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.
Slosh wave excitation and stability of spacecraft fluid systems
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Leslie, F. W.
1990-01-01
The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.
Tian Hui; McIntosh, Scott W.; Wang, Tongjiang; Ofman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-11-10
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Rehman, M. A.; Qureshi, M. N. S.; Shah, H. A.; Masood, W.
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
Ions Gyroresonant Surfing Acceleration by Alfven Waves in the Vicinity of SLAMS Boundary
NASA Astrophysics Data System (ADS)
Agapitov, Oleksiy; Kis, Arpad; Krasnoselskikh, Vladimir
2012-07-01
A well known feature of collisionless shocks which are formed in space plasmas is their capability to accelerate particles to high energies. On the other hand, the exact mechanism how this acceleration takes place is still unknown. This is especially true in the case of the so-called seed particle population, i.e. those particles which are being injected into the process of acceleration. In our study we present a case study of gyroresonant surfing acceleration observed on the quasi-parallel side of the Earth's bow shock. For our analysis we use simultaneous multi-spacecraft measurement data provided by the Cluster spacecraft ion (CIS), magnetic (FGM) and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. Our results show evidence that the gyroresonance surfing acceleration takes place as a consequence of interaction between monochromatic (or quasi-monochromatic) electromagnetic plasma waves and short large amplitude magnetic structures (SLAMS). The magnetic field inhomogeneity mirror force allows to keep the resonant conditions for the ions trapped by wave and thus to increase effectively the particle velocity. Since monochromatic wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in the front of the Earth's quasi-parallel bow shock, thus the gyroresonant surfing acceleration can be an effective particle injection mechanism resulting in the formation of the seed particle population.
Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves
NASA Astrophysics Data System (ADS)
Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.
Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.
Beat, modulational, and decay instabilities of a circularly polarized Alfven wave
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1994-01-01
A circulary polarized low-frequency electomagnetic pump wave propoagating along an ambient magnetic field is known to be unstable to the growth of several parallel-propagating parametric instabilties. If ion-cyclotron effects are retained in a two-fluid description, the dispersion relation is a sixth-order polynomial. We present a series of new analytical approximations to this dispersion relation. We emphasize new results for the beat instability that occurs as an interaction of the forward prpagating upper sideband with the backward propagating lower sideband. The nature of the beat instabitlity depends on beta = (v(sub sound)/v(sub A)(exp 2) and on the sense of polarization of the pump wave. The beat and decay instabilities can occur together if the pump is left-handed (i.e., ion resonant) and if beta is less than or approximately 1, but they cannot occur together if the pump is right-handed. For a left-handed pump the beat mode is the only instability if beta is greater than or approximately 1. If the pump is right-handed and beta is greater than or approximately 1, then the beat instability exists only when the pump amplitude exceeds a threshold value, and the beat will be the only instability if the pump amplitude is large enough to stabilize the modulational instability. If the pump is left-handed and beta is less than or approximately 1, then the beat mode is stabilized when the pump amplitude becomes sufficiently large. The beat instability primarily produces a forward propagating transverse wave in the upper sideband. Thus if beta is greater than or approximately 1, the instabilities considered here do not produce the backward propagating waves which are thought to affect turbulence and the evolution of cross helicity in the solar wind. New analytical results are presented also for the decay and modulational instabilites when beta is approximately equal to 1.
Excitation of Standing Waves by an Electric Toothbrush
ERIC Educational Resources Information Center
Cros, Ana; Ferrer-Roca, Chantal
2006-01-01
There are a number of ways of exciting standing waves in ropes and springs using non-commercial vibrators such as loudspeakers, jigsaws, motors, or a simple tuning fork, including the rhythmical shaking of a handheld Slinky. We have come up with a very simple and cheap way of exciting stationary waves in a string, which anyone, particularly…
Laser Excitation of a Fracture Source for Elastic Waves
Blum, Thomas E.; Wijk, Kasper van; Snieder, Roel; Willis, Mark E.
2011-12-30
We show that elastic waves can be excited at a fracture inside a transparent sample by focusing laser light directly onto this fracture. The associated displacement field, measured by a laser interferometer, has pronounced waves that are diffracted at the fracture tips. We confirm that these are tip diffractions from direct excitation of the fracture by comparing them with tip diffractions from scattered elastic waves excited on the exterior of the sample. Being able to investigate fractures - in this case in an optically transparent material - via direct excitation opens the door to more detailed studies of fracture properties in general.
Effects of abnormal excitation on the dynamics of spiral waves
NASA Astrophysics Data System (ADS)
Min-Yi, Deng; Xue-Liang, Zhang; Jing-Yu, Dai
2016-01-01
The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).
A note on runaway electrons in the presence of kinetic Alfven waves
NASA Astrophysics Data System (ADS)
de Assis, A. S.; de Azevedo, C. A.
1993-04-01
It is shown by the quasilinear Fokker-Planck approach that the shear kinetic Alfvén wave (KAW) cannot by itself produce runaway electrons, though it carries an electric field aligned with the ambient magnetic field. However, it can enhance the runaway production rate in case it propagates in presence of a background DC ambient electric field. Therefore, this note answers the question raised by Hollweg (1981) concerning the runaway electrons and nonthermal emission supposedly produced by KWA, without explanation until today. The main result presented here concerning the runaway production rate is valid for space or laboratory plasmas where the KWA and an ambient DC electric field coexist.
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.
Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves
F.W. Perkins; R.B. White; P. Bonoli
2000-06-13
Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-01-20
To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V{sub SW}) and analyze its orientation with respect to the local background magnetic field B{sub 0,local}. As an example, we take only measurements made in an outward magnetic sector. When B{sub 0,local} is quasi-perpendicular to V{sub SW}, we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B{sub 0,local}, a property that is characteristic of an oblique Alfven wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B{sub 0,local}, thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle ({theta}{sub kB}) increases toward 90 Degree-Sign . Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B{sub 0,local} seems to indicate that oblique Alfven/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.
A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence
Biglari, H.; Diamond, P.H.
1992-01-01
The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.
Optical control of excitation waves in cardiac tissue
NASA Astrophysics Data System (ADS)
Burton, Rebecca A. B.; Klimas, Aleksandra; Ambrosi, Christina M.; Tomek, Jakub; Corbett, Alex; Entcheva, Emilia; Bub, Gil
2015-12-01
In nature, macroscopic excitation waves are found in a diverse range of settings including chemical reactions, metal rust, yeast, amoeba and the heart and brain. In the case of living biological tissue, the spatiotemporal patterns formed by these excitation waves are different in healthy and diseased states. Current electrical and pharmacological methods for wave modulation lack the spatiotemporal precision needed to control these patterns. Optical methods have the potential to overcome these limitations, but to date have only been demonstrated in simple systems, such as the Belousov-Zhabotinsky chemical reaction. Here, we combine dye-free optical imaging with optogenetic actuation to achieve dynamic control of cardiac excitation waves. Illumination with patterned light is demonstrated to optically control the direction, speed and spiral chirality of such waves in cardiac tissue. This all-optical approach offers a new experimental platform for the study and control of pattern formation in complex biological excitable systems.
Influence of excitability on unpinning and termination of spiral waves.
Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2014-11-01
Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not. PMID:25493870
Electroseismic waves excited by vertical magnetic dipole in borenole
NASA Astrophysics Data System (ADS)
Cui, Zhiwen; Liu, Jinxia; Yao, Guijin; Wang, Kexie
2011-09-01
Acoustic and electromagnetic fields are coupled in a fluid saturated porous medium due to seismoelectric effect. Seismoelectric well logging method has been proposed to detect deep target formation utilizing such effect. Because of uncoupling of SH waves with P-SV waves, a simple and forthright way to get shear waves information is possible, especially for soft or slow formation whose shear wave velocity is lower than the velocity of borehole fluid. We consider the wave fields excited by a vertical magnetic dipole (VMD) source. Two methods are used to simulate, one is the coupled method based on Pride model and the other is the uncoupled method. For two methods, the frequency wavenumber domain representations of the acoustic field and associated seismoelectric field are formulated. The full waveforms of acoustic waves and electromagnetic wave induced SH waves excited by VMD source in the time domain propagation in borehole are simulated and analyzed.
The dispersion of parametrically excited surface waves in viscous ferrofluids
NASA Astrophysics Data System (ADS)
Müller, Hanns Walter
1999-07-01
Surface waves on a ferrofluid, which is exposed to a normal magnetic field, may exhibit a non-monotonous behavior. Stationary standing waves can be excited mechanically by a vertical vibration of the vessel, or magnetically by a modulation of the applied field. A linear stability analysis for the onset of these parametrically excited waves is presented. It will be shown that a careful choice of the filling depth allows for a detection of the anomalous dispersion branch. Furthermore, a theoretical confirmation is provided for the synchronous wave response, recently observed in a magnetic Faraday experiment.
Generation of strong MHD Alfvenic turbulence
NASA Technical Reports Server (NTRS)
Akimoto, K.; Winske, D.
1990-01-01
Strong Alfvenic turbulence containing a number of solitonlike structures propagating at super-Alfvenic speeds is generated self-consistently and studied by means of computer simulation. A one-dimensional hybrid (kinetic ions, fluid electrons) code is used to investigate the nonlinear evolution of an electromagnetic ion-beam instability that generates low-frequency Alfven-like waves. As the instability develops, the field-aligned hydromagnetic waves steepen, forming a soliton that bifurcates several times, leading to a fully turbulent state.
DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves
Bell, T.F.; Inan, U.S.; Lauben, D.; Sonwalkar, V.S.; Helliwell, R.A.; Sobolev, Ya.P.; Chmyrev, V.M.; Gonzalez, S.
1994-04-15
Past work demonstrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength {lambda}. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which {lambda} {le} 3.5 m when excitation occurs at a frequency roughly equal to the lower hybrid resonance frequency. This wavelength limit is a factor of {approximately} 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H{sup +} ions with energy {le} 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells. 19 refs., 3 figs.
DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves
NASA Technical Reports Server (NTRS)
Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.
1994-01-01
Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.
Formation of quasiparallel Alfven solitons
NASA Technical Reports Server (NTRS)
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Artificial excitation of ELF waves with frequency of Schumann resonance
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Stochastic excitation of seismic waves by a hurricane
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Valovcin, Anne
2015-11-01
We investigate how a tropical cyclone (Hurricane Isaac in 2012) generated seismic ground motions using seismic and barometric data from the Earthscope network. In the frequency band 0.01-0.02 Hz, seismic and surface pressure amplitudes show a systematic decreasing trend with distance from the center of the hurricane. However, the decreasing rate is much higher for seismic waves than for pressure. We develop a stochastic theory of seismic wave excitation by surface pressure that connects these two observed data sets; surface pressure is the excitation source, and seismic data are the resulting seismic wave field. This theory contains two parameters: (i) the pressure power spectral density (Sp) and (ii) the correlation length in the pressure field (L). Using the formula, we solve for the spatial variation of correlation lengths. The solution shows that longer correlation lengths in pressure are near the hurricane center. Because seismic wave excitation is proportional to L2Sp, the excitation for seismic waves becomes effectively more localized closer to the center. Also, the scaling relation between L and Sp leads to an excitation source which is approximately proportional to the third power of surface pressure. This centralized source for seismic wave excitation explains why the decreasing rate with distance is higher for seismic data than for barometric data. However, this spatial coherence mechanism may not be the only process, as strong turbulence near the center may cause transient bursts of pressure and also induce higher temporal correlation. These alternative mechanisms need to be carefully analyzed in the future.
Excitation of Banded Whistler Waves in the Magnetosphere
Gary, S. Peter; Liu, Kaijun; Winske, Dan
2012-07-13
Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-04-10
The angular distribution of the normalized reduced magnetic helicity density ({sigma} r{sub m}) in solar wind turbulence reveals two components of distinct polarity in different angle ranges. This kind of two-component {sigma}{sup r}{sub m} may indicate the possible wave modes and power spectral densities (PSDs) of the turbulent fluctuations. Here we model the measured angular distribution of {sigma}{sup r}{sub m} by assuming a PSD distribution for Alfven fluctuations in wavevector space, and then fit the model results to the observations by adjusting the pattern of the PSD distribution. It is found that the two-component form of the PSD, which has a major and minor component close to k and k{sub ||}, respectively, seems to be responsible for the observed two-component {sigma}{sup r}{sub m}. On the other hand, both an isotropic PSD and a PSD with only a single component bending toward k fail to reproduce the observations. Moreover, it is shown that the effect of gradual balance between outward and inward wave-energy fluxes with decreasing spatial scale needs to be considered in order to reproduce the observed diminishing of |{sigma}{sup r}{sub m}| at shorter scales. Therefore, we suggest that the observed two-component {sigma}{sup r}{sub m} in the solar wind turbulence may be due to a superposition of Alfven waves with quasi-perpendicular (major part) and quasi-parallel (minor part) propagation. The waves seem to become gradually balanced toward shorter scales.
Excitation of parasitic waves near cutoff in forward-wave amplifiers
Nusinovich, Gregory S.; Sinitsyn, Oleksandr V.; Antonsen, Thomas M. Jr.
2010-10-15
In this paper, excitation of parasitic waves near cutoff in forward-wave amplifiers is studied in a rather general form. This problem is important for developing high-power sources of coherent, phase controlled short-wavelength electromagnetic radiation because just the waves which can be excited near cutoff have low group velocities. Since the wave coupling to an electron beam is inversely proportional to the group velocity, these waves are the most dangerous parasitic waves preventing stable amplification of desired signal waves. Two effects are analyzed in the paper. The first one is the effect of signal wave parameters on the self-excitation conditions of such parasitic waves. The second effect is the role of the beam geometry on excitation of these parasitic waves in forward-wave amplifiers with spatially extended interaction space, such as sheet-beam devices. It is shown that a large-amplitude signal wave can greatly influence the self-excitation conditions of the parasitic waves which define stability of operation. Therefore the effect described is important for accurate designing of high-power amplifiers of electromagnetic waves.
Spin wave excitation patterns generated by spin torque oscillators
NASA Astrophysics Data System (ADS)
Macià, F.; Hoppensteadt, F. C.; Kent, A. D.
2014-01-01
Spin torque nano-oscillators (STNO) are nanoscale devices that can convert a direct current into short wavelength spin wave excitations in a ferromagnetic layer. We show that arrays of STNO can be used to create directional spin wave radiation similarly to electromagnetic antennas. Combining STNO excitations with planar spin waves also creates interference patterns. We show that these interference patterns are static and have information on the wavelength and phase of the spin waves emitted from the STNO. We describe a means of actively controlling spin wave radiation patterns with the direct current flowing through STNO, which is useful in on-chip communication and information processing and could be a promising technique for studying short wavelength spin waves in different materials.
NASA Astrophysics Data System (ADS)
Belashov, Vasily
We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega
Optical excitation of surface plasma waves without grating structures
NASA Astrophysics Data System (ADS)
Deng, Hai-Yao; Liu, Feng; Wakabayashi, Katsunori
2016-05-01
Surface plasma waves (SPWs) are usually discussed in the context of a metal in contact with a dielectric. However, they can also exist between two metals. In this work we study these bimetallic waves. We find that their dispersion curve always cuts the light line, which allows direct optical coupling without surface grating structures. We propose practical schemes to excite them and the excitation efficiency is estimated. We also show that these waves can be much less lossy than conventional SPWs and their losses can be systematically controlled, a highly desirable attribute in applications. Conducting metal oxides seem fit for experimental studies.
Synaptically Generated Wave Propagation in Excitable Neural Media
NASA Astrophysics Data System (ADS)
Bressloff, P. C.
1999-04-01
We study the propagation of solitary waves in a one-dimensional network of excitable integrate-and-fire neurons with axo-dendritic synaptic coupling. We show that for small axonal delays there exists a stable solitary wave, and derive a power scaling law for the velocity as a function of the coupling. In the case of large axonal delays and fast synapses we establish that the solitary wave can destabilize via a Hopf bifurcation in the firing times.
Antenna excitation of drift wave in a toroidal plasma
Diallo, A.; Ricci, P.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.; Skiff, F.
2007-10-15
In a magnetized toroidal plasma, an antenna tunable in vertical wave number is used to excite density perturbations. Coherent detection is performed by means of Langmuir probes to directly determine both the wave vector and the plasma response induced by the antenna. Comparison between the theoretical density response predicted by the generalized Hasegawa-Wakatani model, and the experimentally determined density response enables us the identification of one peak of the plasma response as a drift wave.
Stochastic excitation of gravity waves in rapidly rotating massive stars
NASA Astrophysics Data System (ADS)
Mathis, S.; Neiner, C.
2015-01-01
Stochastic gravity waves have been recently detected and characterised in stars thanks to space asteroseismology and they may play an important role in the evolution of stellar angular momentum. In this context, the observational study of the CoRoT hot Be star HD 51452 suggests a potentially strong impact of rotation on stochastic excitation of gravito-inertial waves in rapidly rotating stars. In this work, we present our results on the action of the Coriolis acceleration on stochastic wave excitation by turbulent convection. We study the change of efficiency of this mechanism as a function of the waves' Rossby number and we demonstrate that the excitation presents two different regimes for super-inertial and sub-inertial frequencies. Consequences for rapidly rotating early-type stars and the transport of angular momentum in their interiors are discussed.
Excitability of guided waves in composites with PWAS transducers
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2015-03-01
Piezoelectric Wafer Active Sensors (PWAS) are convenient enablers for generating and receiving ultrasonic guided waves. The wide application of composite structures has put new challenges for the Structural Health Monitoring (SHM) and Nondestructive Evaluation (NDE) community due to the general anisotropic behaviors and complicated guided wave features in composites. The excitability of guided waves in composite structures directly influences the implementation of active sensing systems to achieve the best interrogation of certain sensing directions. This paper presents a hybrid modeling technique for studying the excitably of guided waves in composite structures with PWAS transducers. This hybrid technique comprehensively covers local finite element model (FEM), semi-analytical finite element (SAFE) method, and analytical guided wave solutions. Harmonic analysis of a small-size local FEM with non-reflective boundaries (NRB) was carried out for obtaining guided wave generation features in plate structures. The PWAS transducers were modeled with coupled filed elements. Thus, the FEM can fully capture the geometry and material property effects of PWAS transducers and their influence on the guided wave excitation. SAFE method was used to obtain the complicated guided wave features in composites such as dispersion curves and modeshapes. The SAFE procedure was coded into MATLAB Graphical User Interface (GUI), and the software SAFE-DISPERSION was developed. To study the excitability of each wave mode, we considered all the possible wave modes being generated simultaneously and propagating independently. The analytical wave expressions based on the exact guided wave solution with Hankel functions were used to join the SAFE method and the local FEM. Formulated in frequency domain, the hybrid model is highly efficient, providing an over determined equation system for the calculation of mode participation factors. Case studies were carried out: (1) the Lamb wave excitability
[Effective control of excitable waves in 2D cardiac excitable media].
Li, Li; Liu, Li; Zhang, Guangcai; Wang, Guangrui; Qu, Zhi
2005-12-01
We propose a method for effective control of patter on dissipative system by use of little perturbation analysis, and apply this nonuniform feed back method to control the polarization wave of heart represented by FHN equation. In the numerical experiment, we successfully alter the propagating direction of planar waves and drift the spiral waves to boundary without resonant repulsion. The effective control of the excited system will be used to study the mechanism of defibrillation and that is our interesting work. PMID:16422076
Magnetically excited flexural plate wave apparatus
Martin, S.J.; Butler, M.A.; Frye, G.C.; Smith, J.H.
1998-11-17
A non-piezoelectric flexural plate wave apparatus having meander-line transducers mounted on a non-piezoelectric membrane is disclosed. A static magnetic field is directed perpendicularly to the conductive legs of the transducers in the plane of the membrane. Single-port, two-port, resonant, non-resonant, eigenmode, and delay-line modes may be employed. 15 figs.
Magnetically excited flexural plate wave apparatus
Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Smith, James H.
1998-01-01
A non-piezoelectric flexural plate wave apparatus having meander-line transducers mounted on a non-piezoelectric membrane. A static magnetic field is directed perpendicularly to the conductive legs of the transducers in the plane of the membrane. Single-port, two-port, resonant, non-resonant, eigenmode, and delay-line modes may be employed.
Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves
Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin
2008-09-07
The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.
Nonlinear spin-wave excitations at low magnetic bias fields
NASA Astrophysics Data System (ADS)
Woltersdorf, Georg
We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.
NASA Astrophysics Data System (ADS)
Murav'eva, O. V.; Len'kov, S. V.; Murashov, S. A.
2016-01-01
A theory of propagation of torsional waves excited by an electromagnetic-acoustic transducer in a pipe is proposed. This theory takes into account the excitation parameters, geometry, viscosity, and the elastic characteristics of an object. The main testing parameters (the frequency and geometry of the transducer) that determine the possibilities of guided-wave testing of pipelines of various dimensions using torsional waves are theoretically substantiated.
Numerical simulation of the resonantly excited capillary-gravity waves
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya
2015-11-01
Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.
Ruchko, L. F.; Elfimov, A. G.; Teixeira, C. M.; Elizondo, J. I.; Sanada, E.; Galvao, R. M. O.; Manso, M. E.; Silva, A.
2011-02-15
A frequency scanning O-mode reflectometer was used for studies of plasma density oscillations during local Alfven wave (LAW) excitation in the Tokamak Chauffage Alfven Bresilien (TCABR) at the frequency f{sub A}= 5 MHz. It was found that the spectrum of the reflectometer output signal, which consists mainly of the ''beat'' frequency f{sub B}, is modified by the LAW excitation, and two additional frequency peaks appear, which are symmetrical in relation to the LAW excitation frequency f=f{sub A}{+-}f{sub B}. This result opens the possibility to improve the efficiency of studying the LAW induced density oscillations. The symmetry of these frequency peaks yields the possibility of finding the microwave frequency at which the reflectometer cutoff layer coincides with radial position of the LAW resonance zone in the TCABR tokamak.
Nonlinear spin-wave excitations at low magnetic bias fields
Bauer, Hans G.; Majchrak, Peter; Kachel, Torsten; Back, Christian H.; Woltersdorf, Georg
2015-01-01
Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. Here we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behaviour in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. PMID:26374256
Improved ion acceleration via laser surface plasma waves excitation
Bigongiari, A.
2013-05-15
The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.
Piezoelectric tube rotation effect owing to surface acoustic wave excitation
NASA Astrophysics Data System (ADS)
Biryukov, Sergey V.; Sotnikov, Andrei; Schmidt, Hagen
2016-03-01
It is shown experimentally that a macroscopic cylindrical solid shaped like a piezoelectric tube can be rotated due to the excitation of surface acoustic waves (SAWs) with different amplitudes propagating in opposite directions along the solid's surface. A unidirectional SAW transducer covering the whole cylindrical surface has been used for ac voltage excitation of waves with unequal amplitudes in both directions. The pattern of such a transducer consists of a periodic comb structure with two electrodes of different width per period. An external torque is not applied to the tube and, from the outside, its movement looks like a motion under the action of an internal force. The observed mechanical response of the piezoelectric cylindrical tube to excitation of waves is due to an angular momentum of SAWs, the value of which has been directly calculated from experimental results.
NASA Astrophysics Data System (ADS)
Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar
2016-03-01
The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.
Excitation of chaotic spin waves through modulational instability.
Wu, Mingzhong; Hagerstrom, Aaron M; Eykholt, Richard; Kondrashov, Alexander; Kalinikos, Boris A
2009-06-12
This Letter reports the first experimental demonstration of chaotic excitations through modulational instability for waves with a repulsive nonlinearity. The experiments were carried out for surface spin waves in a magnetic thin film strip in an active feedback ring configuration. At a low ring gain level, one observes the self-generation of one eigenmode. With an increase in the ring gain, one observes the production of additional modes and the onset and enrichment of chaotic behaviors. PMID:19658967
Necessary conditions for mode interactions in parametrically excited waves.
Epstein, T; Fineberg, J
2008-04-01
We study the spatial and temporal structure of nonlinear states formed by parametrically excited waves on a fluid surface (Faraday instability), in a highly dissipative regime. Short-time dynamics reveal that 3-wave interactions between different spatial modes are only observed when the modes' peak values occur simultaneously. The temporal structure of each mode is functionally described by the Hill's equation and is unaffected by which nonlinear interaction is dominant. PMID:18517955
Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification
NASA Technical Reports Server (NTRS)
Fejer, J. A.; Graham, K. N.
1974-01-01
Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.
EVIDENCE FOR THE PHOTOSPHERIC EXCITATION OF INCOMPRESSIBLE CHROMOSPHERIC WAVES
Morton, R. J.; Verth, G.; Fedun, V.; Erdelyi, R.; Shelyag, S.
2013-05-01
Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.
Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.
2009-05-15
Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
Excitation of propagating spin waves with global uniform microwave fields
NASA Astrophysics Data System (ADS)
Au, Y.; Davison, T.; Ahmad, E.; Keatley, P. S.; Hicken, R. J.; Kruglyak, V. V.
2011-03-01
We demonstrate a magnonic architecture that converts global free-space uniform microwaves into spin waves propagating in a stripe magnonic waveguide. The architecture is based upon dispersion mismatch between the narrow magnonic waveguide and a wide "antenna" patch, both patterned from the same magnetic film. The spin waves injected into the waveguide travel to distances as large as several tens of micrometers. The antennas can be placed at multiple positions on a magnonic chip and used to excite mutually coherent multiple spin waves for magnonic logic operations. This demonstration paves way for "magnonics" to become a pervasive technology for information processing.
Excitation of low-frequency waves by auroral electron beams
NASA Technical Reports Server (NTRS)
Lin, C. S.; Wong, H. K.; Koga, J.; Burch, J. L.
1989-01-01
The electron distribution functions measured by the Dynamics Explorer 1 satellite during an auroral pass in 1981 are used in a linear instability analysis of low-frequency electromagnetic and electrostatic waves near and below the hydrogen gyrofrequency. It is suggested that the low-frequency electric and magnetic noise in the auroral zone might be explained by O and H electromagnetic ion cyclotron waves excited by energetic electron beams. An instability analysis suggests that upward and downward streaming electrons throughout the central plasma sheet region provide the free energy for heating oxygen ion through oxygen electrostatic ion cyclotron waves.
Dynamic response of a riser under excitation of internal waves
NASA Astrophysics Data System (ADS)
Lou, Min; Yu, Chenglong; Chen, Peng
2015-12-01
In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.
Excitations of the spin-density wave in pure chromium
Werner, S.A.; Shirane, G.; Fincher, C.R.; Grier, B.H.
1981-01-01
This paper summarizes recent investigations of the magnetic excitations of the spin density wave (SDW) in pure Cr in both the low temperature longitudinally polarized phase (T < 122K) and in the higher temperature transversely polarized phase (122K < T < 312K). In both phases spin wave modes of very high velocity are observed originating from the incommensurate Bragg points. In the transversely polarized SDW phase new additional excitations are observed, centered in reciprocal space at the (1,0,0) commensurate point. These excitations are not affected by a magnetic field. Inelastic scattering in the paramagnetic phase above the Neel point (312K) is observed in a reasonably well localized region of reciprocal space near (1,0,0) indicating that there are spin-spin correlations extending over many bcc unit cells and persisting to temperatures at least as high as 1.7 T/sub N/.
Synchronization of self-excited dust acoustic waves
NASA Astrophysics Data System (ADS)
Suranga Ruhunusiri, W. D.; Goree, John
2012-10-01
Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.
Excitation of Internal Gravity Waves by Turbulent Stellar Convection
NASA Astrophysics Data System (ADS)
Lecoanet, D.; Quataert, E.
2013-05-01
Internal gravity waves (IGWs) are thought to play an important role in stars - their ability to influence composition, angular momentum, and energy transport in stars has been invoked to explain Li abundances, the Sun's differential rotation profile, and supernova observations. Furthermore, IGWs could also be important diagnostics of stellar structure. Here, we calculate the flux of internal gravity waves (IGWs) generated by turbulent convection in stars. We solve for the IGW eigenfunctions analytically near the radiative-convective interface in a local, Boussinesq, and cartesian domain. We consider both discontinuous and smooth transitions between the radiative and convective regions and derive Green's functions to solve for the IGWs in the radiative region. We find that if the radiative-convective transition is smooth, the IGW flux depends on the exact form of the buoyancy frequency near the interface. IGW excitation is most efficient for very smooth interfaces. However, in the smooth transition case, the most efficiently excited perturbations will break in the radiative zone. The flux of IGWs which do not break is moderately larger than the flux of IGWs for a discontinuous interface. The transition region in the Sun is smooth for the energy-bearing waves; as a result, we predict that the IGW flux is a few to five times larger than previous estimates. Our calculations also suggest that wave excitation within the convection zone can be more important than wave excitation by penetrative convection. We discuss the implications of our results for several astrophysical applications, including IGW driven mass loss and the detectability of convectively excited IGWs in main sequence stars.
Excitation of coherent propagating spin waves by pure spin currents
NASA Astrophysics Data System (ADS)
Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.
2016-01-01
Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.
Excitation of coherent propagating spin waves by pure spin currents.
Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O
2016-01-01
Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232
Excitation of coherent propagating spin waves by pure spin currents
Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.
2016-01-01
Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232
Excitation of parasitic waves in forward-wave amplifiers with weak guiding fields
NASA Astrophysics Data System (ADS)
Nusinovich, Gregory; Romero-Talamas, Carlos; Han, Yong; Antonsen, Thomas
2012-10-01
One of the issues critical for the development of high-power millimeter-wave amplifiers driven by electron beams is possible excitation of some parasitic oscillations. As a rule, the most dangerous are parasitic modes which can be excited at the ends of the passbands because such waves have low group velocities and, hence, can be strongly coupled to an electron beam. Excitation of parasitic waves near cutoff in forward-wave amplifiers was studied elsewhere [1] where the effect of the signal wave on the excitation conditions of such parasitic waves was analyzed. In Ref.1, it was assumed that electrons are guided by strong magnetic fields and, therefore, exhibit a 1D motion. In practice, it is often desirable to minimize the weight of the focusing systems, i.e. to operate in low focusing fields where electrons can exhibit 3D motion. This problem is analyzed in the present paper. Our study consists of two stages. First, we characterize the operation of a forward-wave amplifier in a weak magnetic field. This part of the study is a continuation of the work described in Ref.2. Next, we analyze the self-excitation of parasitic waves in the presence of forward waves and the effect of the signal wave on these excitation conditions.[4pt] [1] G. Nusinovich, O. Sinitsyn and T. Antonsen, Phys. Rev. E, 82, 046404 (2010).[0pt] [2] T. M. Abu-elfadl, G. S. Nusinovich, A. G. Shkvarunets, Y. Carmel, T. M. Antonsen, Jr., and D. Goebel, Phys. Rev. E, 63, 066501 (2001).
Second and third harmonic waves excited by focused Gaussian beams.
Levy, Uri; Silberberg, Yaron
2015-10-19
Harmonic generation by tightly-focused Gaussian beams is finding important applications, primarily in nonlinear microscopy. It is often naively assumed that the nonlinear signal is generated predominantly in the focal region. However, the intensity of Gaussian-excited electromagnetic harmonic waves is sensitive to the excitation geometry and to the phase matching condition, and may depend on quite an extended region of the material away from the focal plane. Here we solve analytically the amplitude integral for second harmonic and third harmonic waves and study the generated harmonic intensities vs. focal-plane position within the material. We find that maximum intensity for positive wave-vector mismatch values, for both second harmonic and third harmonic waves, is achieved when the fundamental Gaussian is focused few Rayleigh lengths beyond the front surface. Harmonic-generation theory predicts strong intensity oscillations with thickness if the material is very thin. We reproduced these intensity oscillations in glass slabs pumped at 1550nm. From the oscillations of the 517nm third-harmonic waves with slab thickness we estimate the wave-vector mismatch in a Soda-lime glass as Δk(H)= -0.249μm(-1). PMID:26480441
Role of Alfven instabilities in energetic ion transport
Bernabei, S.; Gorelenkov, N. N.; Budny, R.; Fredrickson, E. D.; Hosea, J. C.; Majeski, R.; Phillips, C. K.; Wilson, J. R.
1999-09-20
Experiments with plasma heating by waves at the ion cyclotron resonance of a minority species have shown that the heating efficiency degrades above a certain power threshold. It is found that this threshold is due to the destabilization of shear Alfven waves, which causes loss of fast ions. There are two distinct regimes characterized by low q{sub a} and high q{sub a}. In the first case, the fast ion distribution created by ICRF, lies entirely inside r{sub q=1}, away from the location of global TAE. This situation leads to the formation of a very strong fast ion population which stabilizes the sawteeth, but also excites Energetic Particle Modes (EPM), which transport fast ions outside r{sub q=1} causing the giant crash. At higher q{sub a}, the widening of the Alfven gap due to the steeper q profile, brings the global TAE ''in contact'' with the fast ion distribution. This results in an immediate and continuous depletion of fast ions from the core, which prevents the formation of the monster sawtooth and the excitation of EPM. (c) 1999 American Institute of Physics.
Study of EMIC wave excitation using direct ion measurements
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun; Bonnell, John W.; Breneman, Aaron W.; Denton, Richard E.; Funsten, Herbert O.; Jahn, Jöerg-Micha; Kletzing, Craig A.; Kurth, William S.; Larsen, Brian A.; Reeves, Geoffrey D.; Spence, Harlan E.; Wygant, John R.
2015-04-01
With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ˜2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one.
Highly Alfvenic Slow Solar Wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
Semi-analytical modelling of piezoelectric excitation of guided waves
NASA Astrophysics Data System (ADS)
Kalkowski, Michał K.; Rustighi, Emiliano; Waters, Timothy P.
2015-03-01
Piezoelectric elements are a key component of modern non-destructive testing (NDT) and structural health monitoring (SHM) systems and play a significant role in many other areas involving dynamic interaction with the structure such as energy harvesting, active control, power ultrasonics or removal of surface accretions using structural waves. In this paper we present a wave-based technique for modelling waveguides equipped with piezoelectric actuators in which there is no need for common simplifications regarding their dynamic behaviour or mutual interaction with the structure. The proposed approach is based on the semi-analytical finite element (SAFE) method. We developed a new piezoelectric semi-analytical element and employed the analytical wave approach to model the distributed electric excitation and scattering of the waves at discontinuities. The model is successfully validated against an experiment on a beam-like waveguide with emulated anechoic terminations.
Spin-wave excitations in arrays of asymmetric ferromagnetic nanorings
NASA Astrophysics Data System (ADS)
Nguyen, T. M.; Cottam, M. G.
2008-04-01
Calculations are reported for the spin-wave excitations in asymmetric ferromagnetic nanorings using a Hamiltonian-based formalism. Both the exchange and dipole-dipole interactions are included, as well as an external magnetic field and single-ion anisotropy. The equilibrium configurations of the nanorings are found by minimizing numerically the energy functional with respect to the spin orientation. Depending on the geometry, particularly the degree of asymmetry and the in-plane applied magnetic field, the nanorings can be in a vortex, onion, or other inhomogeneous state. Spin-dependent Green's functions are calculated to deduce the dispersion spectra and the mode profiles of the spin waves, and the dependence of the spin-wave properties on the asymmetry factor is studied. The effects of inter-ring dipolar coupling on the spin-wave spectrum are also investigated by considering small arrays (e.g., a 3×3 square array) of nanorings.
Trapped mountain wave excitations over the Kathmandu valley, Nepal
NASA Astrophysics Data System (ADS)
Regmi, Ram P.; Maharjan, Sangeeta
2015-11-01
Mid-wintertime spatial and temporal distributions of mountain wave excitation over the Kathmandu valley has been numerically simulated using Weather Research and Forecasting (WRF) modeling system. The study shows that low-level trapped mountain waves may remain very active during the night and early morning in the sky over the southern rim of the surrounding mountains, particularly, over the lee of Mt. Fulchoki. Calculations suggest that mountain wave activities are at minimum level during afternoon. The low-level trapped mountain waves in the sky over southern gateway of Tribhuvan International Airport (TIA) may pose risk for landings and takeoffs of light aircrafts. Detailed numerical and observational studies would be very important to reduce risk of air accidents and discomfort in and around the Kathmandu valley.
NASA Technical Reports Server (NTRS)
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
NASA Astrophysics Data System (ADS)
Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.
2015-12-01
The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.
Longitudinal spread of mechanical excitation through tectorial membrane traveling waves
Sellon, Jonathan B.; Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.
2015-01-01
The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity. PMID:26438861
Fluorescence excitation by enhanced plasmon upconversion under continuous wave illumination
NASA Astrophysics Data System (ADS)
Tasgin, Mehmet Emre; Salakhutdinov, Ildar; Kendziora, Dania; Abak, Musa Kurtulus; Turkpence, Deniz; Piantanida, Luca; Fruk, Ljiljana; Lazzarino, Marco; Bek, Alpan
2016-09-01
We demonstrate effective background-free continuous wave nonlinear optical excitation of molecules that are sandwiched between asymmetrically constructed plasmonic gold nanoparticle clusters. We observe that near infrared photons are converted to visible photons through efficient plasmonic second harmonic generation. Our theoretical model and simulations demonstrate that Fano resonances may be responsible for being able to observe nonlinear conversion using a continuous wave light source. We show that nonlinearity enhancement of plasmonic nanostructures via coupled quantum mechanical oscillators such as molecules can be several orders larger as compared to their classical counterparts.
Excitation of knotted vortex lines in matter waves
NASA Astrophysics Data System (ADS)
Maucher, F.; Gardiner, S. A.; Hughes, I. G.
2016-06-01
We study the creation of knotted ultracold matter waves in Bose–Einstein condensates via coherent two-photon Raman transitions with a Λ level configuration. The Raman transition allows an indirect transfer of atoms from the internal state | a> to the target state | b> via an excited state | e> , that would be otherwise dipole-forbidden. This setup enables us to imprint three-dimensional knotted vortex lines embedded in the probe field to the density in the target state. We elaborate on experimental feasibility as well as on subsequent dynamics of the matter wave.
Surface plasma wave excitation via laser irradiated overdense plasma foil
Kumar, Pawan; Tripathi, V. K.
2012-04-09
A laser irradiated overdense plasma foil is seen to be susceptible to parametric excitation of surface plasma wave (SPW) and ion acoustic wave (IAW) on the ion plasma period time scale. The SPW is localised near the front surface of the foil while IAW extends upto the rear. The evanescent laser field and the SPW exert a ponderomotive force on electrons driving the IAW. The density perturbation associated with the latter beats with the laser induced oscillatory electron velocity to drive the SPW. At relativistic laser intensity, the growth rate is of the order of ion plasma frequency.
Excitation and evolution of finite-amplitude plasma wave
Hou, Y. W.; Wu, Y. C.; Chen, M. X.; Yu, M. Y.; Wu, B.
2015-12-15
The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.
EXCITATION OF ACOUSTIC WAVES BY VORTICES IN THE QUIET SUN
Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2011-02-01
The five-minute oscillations are one of the basic properties of solar convection. Observations show a mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point of view of individual events, by using a realistic three-dimensional radiative hydrodynamic simulation of the quiet Sun. The results show that the excitation events are related to the dynamics of vortex tubes (or swirls) in intergranular lanes of solar convection. These whirlpool-like flows are characterized by very strong horizontal velocities (7-11 km s{sup -1}) and downflows ({approx}7 km s{sup -1}), and are accompanied by strong decreases of temperature, density, and pressure at the surface and 0.5-1 Mm below the surface. High-speed whirlpool flows can attract and capture other vortices. According to our simulation results the processes of vortex interaction, such as vortex annihilation, can cause excitation of acoustic waves on the Sun.
Excitation of nonlinear ion acoustic waves in CH plasmas
NASA Astrophysics Data System (ADS)
Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Xiao, C. Z.; Wang, Q.; He, X. T.
2016-08-01
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number k λ D e increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of T i / T e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with k λ D e increasing. When k λ D e is not large, such as k λ D e = 0.1 , 0.3 , 0.5 , the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when k λ D e is large, such as k λ D e = 0.7 , the linear frequency cannot be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.
Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
Hou, Zhuofei; Landau, David P; Stocks, George Malcolm; Brown, G.
2015-01-01
Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic latticewith linear sizesL 40 at a temperature below the N eel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion formore » individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q, ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST (q, ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q, ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.« less
Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
Hou, Zhuofei; Landau, David P; Stocks, George Malcolm; Brown, G.
2015-01-01
Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic latticewith linear sizesL 40 at a temperature below the N eel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q, ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST (q, ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q, ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.
Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
NASA Astrophysics Data System (ADS)
Hou, Zhuofei; Landau, D. P.; Stocks, G. M.; Brown, G.
2015-02-01
Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic lattice with linear sizes L ⩽40 at a temperature below the Néel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the x y direction, which are compared to the "infinite" system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S (q ,ω ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST(q ,ω ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q -space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST(q ,ω ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.
Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin
2011-03-15
The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectile speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.
Excitation of intense acoustic waves in hexagonal crystals
Alshits, V. I. Bessonov, D. A.; Lyubimov, V. N.
2013-11-15
Resonant excitation of an intense elastic wave using reflection of a pump wave from a free surface of hexagonal crystal is described. A resonance arises in the case of specially chosen propagation geometry where the reflecting boundary slightly deviates from symmetric orientation and the propagation direction of an intense reflected wave is close to that of an exceptional bulk wave, which satisfies the free boundary condition in unperturbed symmetric orientation. It is shown that, in crystals with elastic moduli c{sub 44}>c{sub 66}, a resonance arises when the initial boundary is chosen parallel to the hexagonal axis 6, whereas in crystals characterized by the relation c{sub 44}
Resonant excitation of intense acoustic waves in crystals
Alshits, V. I. Bessonov, D. A.; Lyubimov, V. N.
2013-06-15
The resonant excitation of an intense elastic wave through nonspecular reflection of a special pump wave in a crystal is described. The choice of the plane and angle of incidence is dictated by the requirement that the excited reflected wave be close to the bulk eigenmode with its energy flow along a free boundary. The resonance parameters have been found for a medium with an arbitrary anisotropy. General relations are concretized for monoclinic, rhombic, and hexagonal systems. A criterion is formulated for an optimal selection of crystals in which the resonant reflection is close to the conversion one, when almost all of the energy from the incident beam of the pump wave falls into the near-surface narrow high-intensity reflected beam. Estimates and illustrations are given for such crystals as an example. The intensity of the reflected beam increases with its narrowing, but its diffraction divergence also increases with this narrowing. Nevertheless, the intensity of the beam can be increased by a factor of 5-10 at sufficiently high frequencies while keeping its divergence at an acceptable level. Amplification by two orders of magnitude can be achieved by compressing the beam in two dimensions through its double reflection.
User-friendly software for modeling collective spin wave excitations
NASA Astrophysics Data System (ADS)
Hahn, Steven; Peterson, Peter; Fishman, Randy; Ehlers, Georg
There exists a great need for user-friendly, integrated software that assists in the scientific analysis of collective spin wave excitations measured with inelastic neutron scattering. SpinWaveGenie is a C + + software library that simplifies the modeling of collective spin wave excitations, allowing scientists to analyze neutron scattering data with sophisticated models fast and efficiently. Furthermore, one can calculate the four-dimensional scattering function S(Q,E) to directly compare and fit calculations to experimental measurements. Its generality has been both enhanced and verified through successful modeling of a wide array of magnetic materials. Recently, we have spent considerable effort transforming SpinWaveGenie from an early prototype to a high quality free open source software package for the scientific community. S.E.H. acknowledges support by the Laboratory's Director's fund, ORNL. Work was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
On the wave excitation in the turbulent meteor trace
NASA Technical Reports Server (NTRS)
Jandieri, G. V.; Kevanishvili, G. SH.; Lenin, V. I.
1987-01-01
The solution to the problem of excitation of longitudinal and transverse electromagnetic waves in randomly inhomogeneous media is reduced to the derivation of a complex effective dielectric constant (EDC) tensor which nonlocally connects together the average macroscopic electromagnetic fields in continuous media, it is implied that the field values which are rapidly fluctuating on a microscopic scale in space and time become smoothed out in a specified way due to the inhomogeneous mixing of diffusion. Proceedings from the derived general expression for the EDC tensor new modes of longitudinal and transverse electromagnetic wave generation due to fluctuation in the parameters of the medium was predicted. In this connection, it is of interest to investigate the peculiarities of electromagnetic longitudinal and transverse wave propagation in such randomly inhomogeneous media where, apart from the charged particle concentration change, the random spatial and temporal changes of natural frequency of closely located oscillators take place.
Excitation of Plasma Waves in Aurora by Electron Beams
NASA Technical Reports Server (NTRS)
daSilva, C. E.; Vinas, A. F.; deAssis, A. S.; deAzevedo, C. A.
1996-01-01
In this paper, we study numerically the excitation of plasma waves by electron beams, in the auroral region above 2000 km of altitude. We have solved the fully kinetic dispersion relation, using numerical method and found the real frequency and the growth rate of the plasma wave modes. We have examined the instability properties of low-frequency waves such as the Electromagnetic Ion Cyclotron (EMIC) wave as well as Lower-Hybrid (LH) wave in the range of high-frequency. In all cases, the source of free energy are electron beams propagating parallel to the geomagnetic field. We present some features of the growth rate modes, when the cold plasma parameters are changed, such as background electrons and ions species (H(+) and O(+)) temperature, density or the electron beam density and/or drift velocity. These results can be used in a test-particle simulation code, to investigate the ion acceleration and their implication in the auroral acceleration processes, by wave-particle interaction.
NASA Astrophysics Data System (ADS)
Srinivasan, G.; Patton, C. E.
1985-10-01
The technique of Brillouin light scattering has been used to detect magnetostatic wave (MSW) excitations in MSW microwave device structures. The present results are for a signal-to-noise enhancer consisting of a microstrip transmission line in contact with a yttrium iron garnet film with the applied magnetic field parallel to the microstrip line. At low input microwave power levels, the MSW spectra at 4 GHz consisted of surface excitations with wave numbers from about 80 to 470/cm, with the propagation direction perpendicular to the microstrip line. At high power levels, parametric half-frequency MSW excitations were observed, accompanied by a decrease in the scattering of the surface MSW excitations at the pump frequency.
NASA Astrophysics Data System (ADS)
Kaladze, Tamaz; Kahlon, Laila
Nonlinear dynamics of coupled internal-gravity (IG) and alfven electromagnetic planetary waves in the weakly ionized ionospheric E-layer is investigated. Under such coupling new type of alfven waves is revealed. It is shown that such short wavelength turbulence of IG and alfvén waves is unstable with respect to the excitation of low-frequency and large-scale perturbations of the zonal flow and magnetic field. A set of coupled equations describing the nonlinear interaction of coupled IG and alfven waves with zonal flows is derived. The nonlinear mechanism of the instability is driven by the advection of vorticity and is based on the parametric excitation of convective cells by finite-amplitude coupled IG and alfven waves leading to the inverse energy cascade toward the longer wavelength. The growth rates of the corresponding instability and the conditions for driving them are determined. The possibility of generation of the intense mean magnetic field is shown.
Tsiklauri, D.
2012-08-15
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
Excitation of the Two Day Wave in the MLT by Waves Emanating from the Troposphere
NASA Astrophysics Data System (ADS)
Ortland, D. A.
2015-12-01
Mechanistic model experiments will be presented, with the goal of understanding the excitation mechanism and interannual variability of the quasi two day wave (Q2DW) with zonal wavenumber 3. The model is initialized with the observed zonal mean structure of the atmosphere for austral summer solstice for various years. The summer jet contains regions that are baroclinically unstable, in which random wave excitation could stimulate unstable growth of the Q2DW, with rate and magnitude that depends on the variable mean state structure. Unstable modes do exist in linear inviscid model experiments, but they become marginally stable when the damping mechanisms of Newtonian cooling, eddy, and molecular diffusion are included in the model. In nonlinear model simulations with no imposed wave forcing, synoptic waves spontaneously form off of the tropospheric jet structure, and the resulting waves weakly excite and maintain a Q2DW (along with other waves with the same phase speed with zonal wavenumbers 1-4). With the addition of a rich spectrum of waves forced by latent heating (derived from TRMM observations of rainfall rate), a robust Q2DW with amplitude similar to those observed is excited. The unstable regions in the mean flow still play a role in the ease to which QTDWs are excited: The QTDW first appears near the subtropical barotropically unstable region that is associated with the stratopause QTDW. EP flux of the mature QTDW emanates from the baroclinically unstable region in the midlatitude jet. Further experiments, employing artificial local 2DW sources centered at various latitudes and altitudes, show that the QTDW is readily excited by any transient wave source with only moderate variation in efficiency. Furthermore, the amplitude and frequency of the QTDW does not strongly depend on which year the model is initialized. Thus a detailed understanding of the QTDW life cycle in a given year will depend on both the formation of the mean flow that will support resonant
Crowds as an Excitable Medium for Spiral Wave Dynamics
NASA Astrophysics Data System (ADS)
Welsh, Andrea; Greco, Edwin; Fenton, Flavio
Spiral wave (SW) patterns are studied in many physical, biological, and chemical excitable systems. Of particular importance are SW of electrical activity that develop in the heart and give rise to arrhythmias such as tachycardia (single SW) and fibrillation (multiple SWs). We investigate if a crowd of people given simple rules for activation and deactivation, modeled on cardiac cells, can act as a living simulation for SW dynamics. For group sizes ranging from 50 to 650 people we demonstrate, experimentally, the existence of stable spiral waves and of spiral wave breakup leading to chaotic dynamics. Numerical simulation predicts the simple rules lead to well define wave fronts. People, however, respond with various degrees of anticipation and misinformation. This human behavior can lead to smoothed fronts or even lead to spiral wave breakup and chaos. We present a new cell model that includes variations in reaction to account for the observed behavior in crowds. This model may be useful in the study of coupling and decoupling of cardiac cells that lead to arrhythmic behavior. Supported by NSF.
Excitation of chirping whistler waves in a laboratory plasma
NASA Astrophysics Data System (ADS)
An, Xin
2015-11-01
Whistler mode chorus emissions with a characteristic frequency chirp largely control the dynamic variability of the Earth's outer radiation belt. They are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a gyrating beam of energetic electrons injected into a cold plasma. It is shown that there is an optimal beam density for frequency chirps, which indicates the existence of optimum wave amplitude for the generation of chirps. Also, frequency chirps only occur for a very narrow range of ratio of fpe /fce , similar to that observed in space. Strong magnetic field gradient, which prohibits the formation of phase space electron hole, disrupts frequency chirps as expected. Broadband whistler waves similar to magnetospheric hiss are also observed at relatively high plasma density. Their mode structures are identified by the phase-correlation technique. It is demonstrated that broadband whistlers are excited through Landau resonance, cyclotron resonance and anomalous cyclotron resonance. Wave growth rate and wave normal angle given by linear theory are consistent with experimental results in general. Preliminary particle-in-cell simulation captures the linear theory prediction of broadband whistlers and also gives important information on the evolution of electron distribution function. Supported by NSF/DOE Plasma Partnership grant DE-SC0010578.
Theory of continuous-wave excitation of the sodium beacon
Milonni, P.W.; Fearn, H.; Telle, J.M.; Fugate, R.Q.
1999-10-01
We extend our previous analysis of the sodium beacon [J. Opt. Soc. Am. A {bold 15}, 217 (1998)] to the case of continuous-wave excitation. Various effects that could be ignored in the case of pulsed excitation, such as the geomagnetic field, the recoil of the sodium atoms upon absorption and emission, and collisions of the sodium atoms with other mesospheric species, are included. Spin-relaxation collisions are among the most important of these effects for the cases considered. Analytical approximations to numerical results are presented, and using a semi-empirical estimate for Na-O{sub 2} spin relaxation, we compute photon returns in good agreement with recently reported measurements at the Steward Observatory. {copyright} 1999 Optical Society of America
The Role of Shear and Interface Waves in the Excitation of T-waves
NASA Astrophysics Data System (ADS)
Odom, R. I.
2007-12-01
T-waves are late arriving phases on a seismogram which travel a significant portion of their journey from the source to the receiver along a slow oceanic path. Park, Soukup and Odom [2001] proposed a modal scattering mechanism which permits energy from steeply arriving rays impinging on the ocean bottom to be converted to shallow grazing angle rays corresponding to low order modes known to comprise the T-wave signal. The Scholte interface waves are crucial to this energy transfer as they have anti-nodes nearly coincident with the ocean bottom. Any seafloor roughness acts as a secondary source located right on the Scholte wave anti-node. This allows energy to be efficiently transferred from high energy modes to lower energy, and slower, T-wave modes. In fact the presence of the Scholte waves is crucial to the existence of T-waves. Some finite shear strength in the bottom sediments and/or upper ocean crust is essential for the existence of the Scholte waves. Elastic interface waves do not exist the boundary between two fluids. The effect of the the shear modulus of the ocean bottom sediment and ocean crust on the excitation of the interface waves and T-waves is discussed.
Excitation of whistler waves by reflected auroral electrons
NASA Technical Reports Server (NTRS)
Wu, C. S.; Dillenburg, D.; Ziebell, L. F.; Freund, H. P.
1983-01-01
Excitation of electron waves and whistlers by reflected auroral electrons which possess a loss-cone distribution is investigated. Based on a given magnetic field and density model, the instability problem is studied over a broad region along the auroral field lines. This region covers altitudes ranging from one quarter of an earth radius to five earth radii. It is found that the growth rate is significant only in the region of low altitude, say below the source region of the auroral kilometric radiation. In the high altitude region the instability is insignificant either because of low refractive indices or because of small loss cone angles.
Excitation of nearly steady finite-amplitude barotropic waves
NASA Technical Reports Server (NTRS)
Hou, A. Y.; Farrell, B. F.
1986-01-01
An exact nonlinear stationary solution is obtained for barotropic waves in a beta-plane channel and it is shown that it can be excited under a range of initial conditions. Results show that a finite-amplitude wave in a constant shear flow, given an initial phase tilt against the shear and a sufficient initial amplitude, interacts with the mean flow to produce a nearly steady state close to the exact stationary solution. This equilibration process involves nonlinear transients; in particular, as the flow equilibrates, the emergence of critical levels is accompanied by the neutralization of local mean vorticity gradients at these levels, thus allowing the solution to attain a nonsingular modal structure.
Resonant excitation of density waves in Saturn's rings
NASA Astrophysics Data System (ADS)
Griv, Evgeny
1996-06-01
The dynamics of regions in the Saturnian ring system with rare collisions between particles, that is, Ω 2≫ν c2, where Ω is the orbital angular frequency and νc the collision frequency, is considered. According to observations, such low optical depth regions can be found in the C ring, the inner portions of the B ring and the A ring. Kinetic theory with the Vlasov and Poisson equations is used to obtain the eigen-frequencies of oscillations propagating in the plane of the system. In the considered case of rare collisions the resulting kinetic equation for the perturbed distribution function can be solved by successive approximations, neglecting the effect of binary particle collisions in the zeroth-order approximation. An oscillating instability of the kinetic type is discussed. This instability of a particulate disk is similar to the magneto-drift instability first discovered by Krall and Rosenbluth ( Physics Fluids6, 254-265, 1963) in a nonuniform magnetic plasma, and belongs to the class of microinstabilities of an inhomogeneous plasma. The cause of the oscillating instability in Saturn's rings is a resonant interaction of drifting particles with nonaxisymmetric Jeans-stable waves at the corotation. The waves that may be produced by the corotation-resonance interaction represent non-radial normal modes of the gravitationally stable disk modified by a particle drift. It is shown that density waves are effectively excited at this resonance: the growth rate of the mode of maximum instability is large, Im ω∗˜Ω. The resonant excitation of density waves investigated in the present paper may be proposed as the cause of the irregular, small-scale ˜ 100 m structure in regions of low optical depth in Saturn's rings. It is suggested that Cassini spacecraft high-resolution images of low optical depth regions will show this kind of structure.
Chaos in driven Alfven systems
NASA Technical Reports Server (NTRS)
Hada, T.; Kennel, C. F.; Buti, B.; Mjolhus, E.
1990-01-01
The chaos in a one-dimensional system, which would be nonlinear stationary Alfven waves in the absence of an external driver, is characterized. The evolution equations are numerically integrated for the transverse wave magnetic field amplitude and phase using the derivative nonlinear Schroedinger equation (DNLS), including resistive wave damping and a long-wavelength monochromatic, circularly polarized driver. A Poincare map analysis shows that, for the nondissipative (Hamiltonian) case, the solutions near the phase space (soliton) separatrices of this system become chaotic as the driver amplitude increases, and 'strong' chaos appears when the driver amplitude is large. The dissipative system exhibits a wealth of dynamical behavior, including quasiperiodic orbits, period-doubling bifurcations leading to chaos, sudden transitions to chaos, and several types of strange attractors.
Excitation of Love waves in a thin film layer by a line source.
NASA Technical Reports Server (NTRS)
Tuan, H.-S.; Ponamgi, S. R.
1972-01-01
The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.
Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains.
Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun
2016-05-18
A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor [Formula: see text], which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field [Formula: see text] and the dislocation [Formula: see text], or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates. PMID:27092428
Semianalytical approach to criteria for ignition of excitation waves.
Bezekci, B; Idris, I; Simitev, R D; Biktashev, V N
2015-10-01
We consider the problem of ignition of propagating waves in one-dimensional bistable or excitable systems by an instantaneous spatially extended stimulus. Earlier we proposed a method [I. Idris and V. N. Biktashev, Phys. Rev. Lett. 101, 244101 (2008)] for analytical description of the threshold conditions based on an approximation of the (center-)stable manifold of a certain critical solution. Here we generalize this method to address a wider class of excitable systems, such as multicomponent reaction-diffusion systems and systems with non-self-adjoint linearized operators, including systems with moving critical fronts and pulses. We also explore an extension of this method from a linear to a quadratic approximation of the (center-)stable manifold, resulting in some cases in a significant increase in accuracy. The applicability of the approach is demonstrated on five test problems ranging from archetypal examples such as the Zeldovich-Frank-Kamenetsky equation to near realistic examples such as the Beeler-Reuter model of cardiac excitation. While the method is analytical in nature, it is recognized that essential ingredients of the theory can be calculated explicitly only in exceptional cases, so we also describe methods suitable for calculating these ingredients numerically. PMID:26565314
Semianalytical approach to criteria for ignition of excitation waves
NASA Astrophysics Data System (ADS)
Bezekci, B.; Idris, I.; Simitev, R. D.; Biktashev, V. N.
2015-10-01
We consider the problem of ignition of propagating waves in one-dimensional bistable or excitable systems by an instantaneous spatially extended stimulus. Earlier we proposed a method [I. Idris and V. N. Biktashev, Phys. Rev. Lett. 101, 244101 (2008), 10.1103/PhysRevLett.101.244101] for analytical description of the threshold conditions based on an approximation of the (center-)stable manifold of a certain critical solution. Here we generalize this method to address a wider class of excitable systems, such as multicomponent reaction-diffusion systems and systems with non-self-adjoint linearized operators, including systems with moving critical fronts and pulses. We also explore an extension of this method from a linear to a quadratic approximation of the (center-)stable manifold, resulting in some cases in a significant increase in accuracy. The applicability of the approach is demonstrated on five test problems ranging from archetypal examples such as the Zeldovich-Frank-Kamenetsky equation to near realistic examples such as the Beeler-Reuter model of cardiac excitation. While the method is analytical in nature, it is recognized that essential ingredients of the theory can be calculated explicitly only in exceptional cases, so we also describe methods suitable for calculating these ingredients numerically.
Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains
NASA Astrophysics Data System (ADS)
Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun
2016-05-01
A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor {θk}≤ft(Δ x,B\\right) , which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field B and the dislocation Δ x , or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates.
NASA Astrophysics Data System (ADS)
Maslovsky, Dmitry; Galayda, S.; Mauel, M.; Socrates, A.; Steinvurzel, P.; Leong, P.
1998-11-01
A broad-band antenna with m = 3 symmetry installed at one magnetic pole of the Collisionless Terrella Experiment(H. P. Warren and M. E. Mauel, Phys. Plasmas), 2 (1995) 4185. (CTX) is used to excite waves with frequencies between the ion and electron cyclotron frequencies (10-1000 MHz). Typically, waves are launched using a 100 W amplifier and a coherent signal generator capable of linear frequency sweeping. Launched waves are detected using movable electric and magnetic probes. In CTX, a population of energetic electrons is created using electron cyclotron resonance heating. We have focused on the the excitation of waves bounce-resonant with the energetic electrons which might change the saturation of lower-frequency hot electron interchange instabilities. For example, the inward propagation of ``phase-space holes'' associated with natural frequency sweeping should be arrested by the application of sufficiently intense waves. We report results of plasma wave spectroscopy between 10 MHz - 1 GHz and the identification of natural frequencies of the dipole-confined plasma.
Wave packet dynamics in doubly excited states of He
NASA Astrophysics Data System (ADS)
Feist, Johannes; Nagele, Stefan; Persson, Emil; Burgdörfer, Joachim; Schneider, Barry
2007-06-01
We have developed a method for the ab initio simulation of the interaction of ultrashort laser pulses with helium atoms. We expand the two-electron Schr"odinger equation in coupled spherical harmonics and perform direct time integration utilizing either the Arnoldi-Lanczos or the Leapfrog method. The spatial discretization is performed in an FEDVR basis [1]. This allows for a numerically accurate description while possessing desirable computational features, e.g. a block-diagonal form of the kinetic energy matrix. We will present results on electron-electron correlation and wave packet dynamics in He. By using a suitable combination of attosecond XUV/EUV pulses, we prepare a wave packet in the doubly excited states of helium. The motion of this wave packet can be observed by using a probe pulse to induce ionization. We aim for a detailed understanding of the process by a careful study of the ionized electrons, e.g. by investigating doubly differential momentum spectra. [enumi] *B. I. Schneider and L. A. Collins. J. Non-Cryst. Solids 351, 1551.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.
2015-08-01
The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.
Transformation and absorption of magnetosonic waves generated by solar wind in the magnetosphere
NASA Astrophysics Data System (ADS)
Kozlov, D. A.
2010-12-01
Resonant transformation of fast magnetosonic (FMS) wave flux into Alfven and slow magnetosonic (SMS) oscillations is investigated in the one-dimensionally inhomogeneous magnetosphere. Spatial distribution of energy absorption rate of FMS oscillations penetrating into the magnetosphere from the solar wind is studied. The FMS wave energy absorption rate caused by magnetosonic resonance excitation is shown to be several orders of magnitude greater than that caused by Alfven resonance excitation at the same surface. It is connected with the spectrum of incident FMS waves. The Kolmogorov spectrum is used in numerical calculations. Magnitude of the Fourier harmonics exciting resonant Alfven oscillations is much smaller than that of the harmonics driving lower-frequency magnetosonic resonance. It is shown that resonant transformation of FMS waves into SMS oscillations can be an effective mechanism of energy transfer from the solar wind to the magnetosphere.
Waves Excited by Noise: Applications to Helioseismology and Beyond
NASA Astrophysics Data System (ADS)
Duvall, Thomas L.
2014-06-01
The vigorous granular convection just beneath the solar photosphere excites acoustic waves. The resultant normal modes of the whole Sun are analogous to the ringing of a bell in a sandstorm. In classical helioseismology, the normal modes are used to study global solar properties, including the sound speed versus radius throughout the Sun and the rotation rate versus depth and latitude in the outer half of the Sun. But solar astronomers wished to better understand the subphotospheric 3-d structure of smaller scale features observed in the photosphere and were hence not satisfied studying only these global properties. One would like to have something akin to seismology, in which the waves from an earthquake traveling from a source through the interior to a distant receiver depend only on the properties along the path. However, the random nature of the solar convective wave sources generally prevents such a simple analogy. It was discovered that the temporal cross correlation of the solar oscillation signal between two locations averaged over many wave periods does mostly contain information about the properties along the path connecting the two locations. This discovery is the basis for time-distance helioseismology, in which travel times are extracted from the temporal cross correlations and mapped for different pairs of locations on the solar surface. A subsequent 3-d tomography aims to map the solar interior. This technique has been used to study the depth variation of a variety of solar photospheric features from small spatial scales (granulation) to larger scales (sunspots and supergranulation) to the largest scales (meridional circulation and rotation). The technique of temporal cross correlation of noise signals from two locations has subsequently been adopted successfully in a number of other fields including seismology, ultrasound, infrasound, ocean acoustics, structural engineering, lunar seismology, and medical diagnostics.
Chimera states and excitation waves in networks with complex topologies
NASA Astrophysics Data System (ADS)
Schöll, Eckehard
2016-06-01
Chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desyn- chronized) dynamics are studied in networks of FitzHugh-Nagumo systems with complex topologies. To test the robustness of chimera patterns with respect to changes in the structure of the network, we study the following network topologies: Regular ring topology with R nearest neigbors coupled to each side, small-world topology with additional long-range random links, and a hierarchical geometry in the connectivity matrix. We find that chimera states are generally robust with respect to these perturbations, but qualitative changes of the chimera patterns in form of nested coherent and incoherent regions can be induced by a hierarchical topology. The suppression of propagating excitation waves by a small-world topology is also reviewed.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, Theodosios; Karperaki, Angeliki; Theotokoglou, Efstathios; Belibassakis, Kostas
2014-05-01
The transient hydroelastic response of an ice shelf, under long wave forcing, is analysed by means of the Finite Element method. Our main goal is to provide a simple model for tsunami wave - ice shelf interaction, capable of reproducing, in an at least qualitative manner, the stress field induced in the ice shelf, when excited by a tsunami wave. The analysis is aimed to model ice calving caused by wave impact, as was the case after the Honsu 2011 incident [1]. Adopting several simplifying but realistic assumptions, the ice shelf is modeled as a variable thickness, Euler-Bernoulli, cantilever beam, while the 1+1 linear shallow water equations are employed for the hydrodynamic field representation, as described in [2]. The fixed cantilever beam resembles a constrained, continuous ice shelf extending into the ocean. The solution of such a system, for a freely floating plate, has been presented by Sturova [3], where a modal expansion of the hydroelastic response with respect to the dry modes of the beam has been used. Our solution approach is based on the development of a special hydroelastic finite element for the governing equations. Cases of constant and variable bathymetry are considered. Bending moment time profiles yield the maximum tensile stress at the upper and lower surfaces of the ice shelf, which is the critical parameter for crack initiation or propagation. As expected, maximum absolute bending moment values appear at the base of the ice shelf, where no deflection or rotation occurs. The fact that the wave is fully reflected on the vertical impermeable boundary, corresponding to the continental shelf under the base of the floe, leads to extreme focusing and thus extreme bending moment values. Finally, the case of cracked shelves has been considered with use of the elementary defective beam theory of Kienzler and Herrmann [4]. Future enhancement of the present model is proposed on the grounds of a higher order beam/plate theory and a 2-D formulation
Inertial Wave Excitation and Wave Attractors in an Annular Tank: DNS
NASA Astrophysics Data System (ADS)
Klein, Marten; Ghasemi, Abouzar; Harlander, Uwe; Will, Andreas
2014-05-01
Rotation is the most relevant aspect of geophysical fluid dynamics, manifesting itself by the Coriolis force. Small perturbations to the state of rigid body rotation can excite inertial waves (waves restored by Coriolis force) with frequencies in the range 0 < σ < 2Ω0. We can restrict our attention to an incompressible fluid so that inertial waves remain the only waves in the mathematical model, which can transport kinetic energy and angular momentum. In geophysics, inertial waves have received a lot attention over the last decades. A spherical shell, for instance, is already non-simple in a sense that its inertial mode's spatial structures are complex, forming so-called wave attractors [1]. But also other containers have been investigated, e.g., cylinders and boxes from the viewpoints of normal mode excitation [2,3], mean flow generation and boundary layer flow [4]. A simple wave attractor was found in a prism, which can be seen as idealized ocean basin [5]. However, local mechanisms of wave excitation are still not very well understood. In order to contribute to the ongoing discussion, we consider an annular geometry. Its rectangular symmetry was broken by replacing the inner cylinder with a frustum of apex half-angle α = 5.7°. The annular gap is filled with a fluid of kinematic viscosity ν. The whole vessel rotates with a mean angular velocity Ω0 around its axis of symmetry. Ekman numbers investigated are 1 ≠« E = ν(Ω0H2)-1 ≥ 10-5. Similarly to [1-5] we perturb the system by longitudinal libration, Ω(t) = Ω0(1 + ɛsinωt), where ω > 0 denotes the frequency and 0 < ɛ < 1 the amplitude of libration. Three-dimensional direct numerical simulations (3-D DNS) of the set-up were conducted in order to resolve different excitation mechanisms. We used an incompressible Navier-Stokes solver with the equations formulated for volume fluxes in generalized curvilinear coordinates. Under some constraints the scheme conserves three quantities of Hamiltonian
Thermal Mechanisms of Millimeter Wave Stimulation of Excitable Cells
Shapiro, Mikhail G.; Priest, Michael F.; Siegel, Peter H.; Bezanilla, Francisco
2013-01-01
Interactions between millimeter waves (MMWs) and biological systems have received increasing attention due to the growing use of MMW radiation in technologies ranging from experimental medical devices to telecommunications and airport security. Studies have shown that MMW exposure alters cellular function, especially in neurons and muscles. However, the biophysical mechanisms underlying such effects are still poorly understood. Due to the high aqueous absorbance of MMW, thermal mechanisms are likely. However, nonthermal mechanisms based on resonance effects have also been postulated. We studied MMW stimulation in a simplified preparation comprising Xenopus laevis oocytes expressing proteins that underlie membrane excitability. Using electrophysiological recordings simultaneously with 60 GHz stimulation, we observed changes in the kinetics and activity levels of voltage-gated potassium and sodium channels and a sodium-potassium pump that are consistent with a thermal mechanism. Furthermore, we showed that MMW stimulation significantly increased the action potential firing rate in oocytes coexpressing voltage-gated sodium and potassium channels, as predicted by thermal terms in the Hodgkin-Huxley model of neurons. Our results suggest that MMW stimulation produces significant thermally mediated effects on excitable cells via basic thermodynamic mechanisms that must be taken into account in the study and use of MMW radiation in biological systems. PMID:23790370
Fourier Transform Spectroscopy Using Surface Electromagnetic Waves With Aperture Excitation
NASA Astrophysics Data System (ADS)
Gushanskaya, N. Y.; Yakovlev, V. A.; Zhizhin, G. N.; Chesters, M. A.; Parker, S. F.
1989-12-01
The surface electromagnetic wave (SEW) spectroscopy 1 with laser sources of the IR radiat on has demonstrated high sensitivity to the state of the surface. The measurements of SEW attenuation on the sample give the information about the sample conductivity, surface roughness and about the presence of oxide or adsorbate on the metal surface, especially If their absorption bands are in the spectral region where laser lines are available. High sensitivity of modern Fourier transform spectrometers allows to detect SEW excited by broadband source. We have used Fourier transform spectrometers FTS-20V (Digilab) and IFS-113 (Bruker) with liquid nitrogen cooled detectors (Hg-CD-Te). On the metal (Ag, Al, Au, Cu, V, Be) surface SEW were excited using aperture coupling. The experiment is schematically shown on the fig.1. IR radiation from interferometer was focused on the gap between the sample 3 surface and the screen 1 placed at the distance of the order of 100 μm. In such a way on the gap propagating along a metal SEW and bulk radiation above the metal are excited. SEW runs from the aperture coupler to the edge of the sample (this distance could be varied from 2 to 30 mm) and decouples into the bulk radiation on the edge. The second screen 2 above the edge cut the bulk radiation from the aperture coupler. If we change the distance between the screens it is possible to obtain SEW absorption coefficient at different frequences from the output intensity variation. Fig.2 shows SEW propagation length spectra for Au and Cu. For these metals and also for Ag 2 propagation length is proportional to the square of the wavelength as it is predicted by Drude model. For Al such dependence is valid in the oxide transperancy region, in the region 800-1000 cm -1 natural oxide film give absorption band shown on Oxide films are well recognizible also on Be and V. Thermal growth or oxide film was studied (rig.4).
On apparent temperature in low-frequency Alfvenic turbulence
Nariyuki, Yasuhiro
2012-08-15
Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.
NASA Astrophysics Data System (ADS)
Zhurilenko, B. E.
1983-04-01
The spectrum of bulk magnetostatic waves (BMW) and oscillations (BMO) is studied in a rectangular YIG rod during excitation by different antenna systems. Theoretical and experimental results show that, besides the modes whose wave numbers depend on the specimen size, it is possible to excite BMW and BMO modes with various wave field structures. Dependencies and expressions are obtained for these dimensionless modes and oscillations which describe the structure of the wave field both inside and outside the specimen.
Continuum Spectrum and Radiation Pattern Contributions to T-Wave Excitation
NASA Astrophysics Data System (ADS)
Soukup, D. J.; Odom, R. I.
2001-12-01
Modal scattering along the seafloor bottom provides us with important insight into the excitation of T-waves, linking seafloor scattering with sloping seafloors. A modal representation of the seismic source field reveals how energy can transfer from seismic source modes to T-wave contributing acoustic modes. The key to the T-wave excitation is found in any boundary roughness or non-planar bathymetry which promotes energy conversion from crustal and ocean crustal/acoustic modes into low order T-wave acoustic modes. We compute seismic, acoustic and ocean crustal/acoustic hybrid modes for oceanic models with sediment covered bottoms. Various source depths are considered to determine the impact on the resulting T-wave excitation. We use the locked mode approach to determine the continuum modes as source depth increases. We also consider radiation pattern effects on T-wave excitation from a seismic source. Included in our investigation are the effects of sediment cover on T-wave excitation. At shallow source depths, the discrete modes contribute to the majority of the T-wave excitation. The continuum spectrum becomes more important with increasing source depth. While the lower order modes still contribute significantly to the T-wave excitation, the continuum spectrum cannot be neglected at large source depths. Preliminary results reveal radiation pattern effects and source type effects may be distinguishable in T-wave data.
A PARALLEL-PROPAGATING ALFVENIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND
Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.; Maruca, Bennett A. E-mail: s.bourouaine@unh.edu E-mail: bmaruca@ssl.berkeley.edu
2013-08-10
We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron waves are driven unstable by an isotropic (T{sub {alpha}} = T{sub Parallel-To {alpha}}) population of alpha particles drifting parallel to the magnetic field at an average speed U{sub {alpha}} with respect to the protons. We derive an approximate analytic condition for the minimum value of U{sub {alpha}} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is {approx_equal} 5% of the proton number density and the two species have similar thermal speeds, the instability requires that {beta}{sub p} {approx}> 1, where {beta}{sub p} is the ratio of the proton pressure to the magnetic pressure. For 1 {approx}< {beta}{sub p} {approx}< 12, the minimum U{sub {alpha}} needed to excite this instability ranges from 0.7v{sub A} to 0.9v{sub A}, where v{sub A} is the Alfven speed. This threshold is smaller than the threshold of {approx_equal} 1.2v{sub A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at {beta}{sub p} {approx}> 0.5. We discuss the role of the parallel Alfvenic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the Wind spacecraft's Faraday cups and show that the U{sub {alpha}} values measured in solar-wind streams with T{sub {alpha}} Almost-Equal-To T{sub Parallel-To {alpha}} are approximately bounded from above by the threshold of the parallel Alfvenic instability.
NASA Astrophysics Data System (ADS)
Vadas, Sharon L.; Makela, Jonathan J.; Nicolls, Michael J.; Milliff, Ralph F.
2015-11-01
In this paper, we derive the atmospheric gravity waves (GWs) and acoustic waves excited by an ocean surface wave packet with frequency ωF and duration χ in an f plane, isothermal, windless, and inviscid atmosphere. This packet is modeled as a localized vertical body force with Gaussian depth σz. The excited GW spectrum has discrete intrinsic frequencies (ωIr) at ωF and ωF±2π/χ ("sum" and "difference") and has a "continuum" of frequencies for ωIr<ωF+2π/χ. The momentum flux spectrum peaks at ωIr˜ωF and decreases rapidly as ωIr decreases. To simulate the effect these GWs have on the thermosphere, we present a new scheme whereby we sprinkle N GW spectra in the ocean wave packet region, ray trace the GWs, and reconstruct the GW field. We model the GWs excited by ocean wave packets with horizontal wavelengths of λH = 190 km, periods of τF = 2π/ωF = 14 - 20 min and χ = 30 - 50 min. The excited GWs begin to arrive at z = 250 km at t ˜ 75 - 80 min. Those with the largest temperature perturbations T' have large ωIr and arrive at t ˜ 90 - 130 min. If |α|=ωF+2π/χ is a solution of the GW dispersion relation and |α| is less than the buoyancy frequency at z = 250 km, the sum and highest-frequency continuum GWs have much larger phase speeds and arrive 50-60 min earlier with larger T' than the GWs with frequency ωF. For a packet with λH = 190 km, τF = 14 min, χ = 30 min, and height h0=1.3 m, the maximum T' at z = 250 km is ˜9, 22, and 40 K for σz = 1, 2, and 4 m, respectively.
Relativistic shock waves and the excitation of plerions
Arons, J. ); Gallant, Y.A. . Dept. of Physics); Hoshino, Masahiro; Max, C.E. . Inst. of Geophysics and Planetary Physics); Langdon, A.B. )
1991-01-07
The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.
The self-trapping of light waves by beat-wave excitation
Gibbon, P. )
1990-09-01
Self-fosusing thresholds are derived for multiple laser beams in the presence of a beat-excited plasma wave. The effects of relativistic electron quiver'' motion and the interaction of the beams with the plasma wave are included self-consistently. When the plasma wave is driven resonantly to large amplitude, transfer of the pump energy into sidebands causes the beams to defocus more rapidly. Consequently, relativistic focusing occurs above an irradiance threshold of {ital I}{lambda}{sup 2}{approx}2{times}10{sup 17} W cm{sup {minus}2} {mu}m{sup 2}, instead of the usual power threshold for double-frequency illumination {ital P}{approx}4{radical}2{times}10{sup 9}({omega}{sub 0}/{omega}{sub {ital p}}){sup 2} W. Numerical solusions show that self-trapping of the laser energy is possible only for relatively {ital small} amplitude plasma waves. Comparisons are made with cascade focusing,'' which occurs when the plasma wave is driven below the plasma frequency. The threshold for the latter is up to ten times lower than for relativistic focusing. Numerical studies in this case indicate that self-trapped solutions do not exist, but the rate of beam collapse can be controlled by choosing an appropriate density mismatch.
NASA Technical Reports Server (NTRS)
Rawford, F. W.
1975-01-01
The testing and refinement of various ideas for space plasma experimentation on the spacelab are dealt with. Special attention was given to whistlers and Alfven wave excitation by electron and proton beams. Data also consider nonlinear wave propagation, long delayed echoes, pulse propagation, and ionospheric heating and back scatter.
NASA Technical Reports Server (NTRS)
Bell, T. F.; Ngo, H. D.
1990-01-01
This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.
Excitation of surface waves by a short laser pulse in a conductor
Uryupin, S A; Frolov, A A
2013-12-31
We have studied the possibility of exciting surface waves in a conductor, which is irradiated by a focused femtosecond laser pulse incident along the normal to the surface. The time-dependent ponderomotive force is shown to lead to the excitation of surface waves in the terahertz frequency range. It is also shown that the total energy and the pulse amplitude of the surface waves increases with increasing effective electron collision frequency. (terahertz radiation)
Time dependent simulation of cosmic-ray shocks including Alfven transport
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Time evolution of plane, cosmic-ray modified shocks was simulated numerically for the case with parallel magnetic fields. Computations were done in a 'three-fluid' dynamical model incorporating cosmic-ray and Alfven wave energy transport equations. Nonlinear feedback from the cosmic-rays and Alfven waves is included in the equation of motion for the underlying plasma, as is the finite propagation speed and energy dissipation of the Alfven waves. Exploratory results confirm earlier, steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and gas sound speeds are comparable. As noted earlier Alfven transport effects tend to reduce the transfer of energy through a shock from gas to energetic particles. These studies show as well that the time scale for modification of the shock is altered in nonlinear ways. It is clear, however, that the consequences of Alfven transport are strongly model dependent and that both advection of cosmic-rays by the waves and dissipation of wave energy in the plasma will be important to model correctly when quantitative results are needed. Comparison is made between simulations based on a constant diffusion coefficient and more realistic diffusion models allowing the diffusion coefficient to vary in response to changes in Alfven wave intensity. No really substantive differences were found between them.
On Propagation of Excitation Waves in Moving Media: The FitzHugh-Nagumo Model
Ermakova, Elena A.; Shnol, Emmanuil E.; Panteleev, Mikhail A.; Butylin, Andrey A.; Volpert, Vitaly; Ataullakhanov, Fazoil I.
2009-01-01
Background Existence of flows and convection is an essential and integral feature of many excitable media with wave propagation modes, such as blood coagulation or bioreactors. Methods/Results Here, propagation of two-dimensional waves is studied in parabolic channel flow of excitable medium of the FitzHugh-Nagumo type. Even if the stream velocity is hundreds of times higher that the wave velocity in motionless medium (), steady propagation of an excitation wave is eventually established. At high stream velocities, the wave does not span the channel from wall to wall, forming isolated excited regions, which we called “restrictons”. They are especially easy to observe when the model parameters are close to critical ones, at which waves disappear in still medium. In the subcritical region of parameters, a sufficiently fast stream can result in the survival of excitation moving, as a rule, in the form of “restrictons”. For downstream excitation waves, the axial portion of the channel is the most important one in determining their behavior. For upstream waves, the most important region of the channel is the near-wall boundary layers. The roles of transversal diffusion, and of approximate similarity with respect to stream velocity are discussed. Conclusions These findings clarify mechanisms of wave propagation and survival in flow. PMID:19212435
Excitation of instability waves in a two-dimensional shear layer by sound
NASA Technical Reports Server (NTRS)
Tam, C. K. W.
1978-01-01
The excitation of instability waves in a plane compressible shear layer by sound waves is studied. The problem is formulated mathematically as an inhomogeneous boundary-value problem. A general solution for abitrary incident sound wave is found by first constructing the Green's function of the problem. Numerical values of the coupling constants between incident sound waves and excited instability waves for a range of flow Mach number are calculated. The effect of the angle of incidence in the case of a beam of acoustic waves is analyzed. It is found that for moderate subsonic Mach numbers a narrow beam aiming at an angle between 50 to 80 deg to the flow direction is most effective in exciting instability waves.
Heating and acceleration of ions in nonresonant Alfvenic turbulence
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2010-07-15
Nonlinear scattering of protons and alpha particles during the dissipation of the finite amplitude, low-frequency Alfvenic turbulence is studied. The process discussed here is not the coherent scattering and acceleration, as those often treated in the past studies, but is an incoherent process in which it is essential that the Alfvenic turbulence has a broadband spectrum. The presence of such an Alfvenic turbulence is widely recognized observationally both in the solar corona and in the solar wind. Numerical results suggest that, although there is no apparent sign of the occurrence of any parametric instabilities, the ions are heated efficiently by the nonlinear Landau damping, i.e., trapping and phase mixing by Alfven wave packets which are generated by beating of finite amplitude Alfven waves. The heating occurs both in the parallel and in the perpendicular directions, and the ion distribution function which is asymmetric with respect to the parallel velocity is produced. Eventual perpendicular energy of ions is much influenced by the spectrum and polarization of the given Alfvenic turbulence since the turbulence initially possess transverse energy as specified by Walen's relation.
Kinetic Alfven eigenmodes in JET and DIII-D
Jaun, A.; Hellsten, T.; Heidbrink, W.W.; Carolipio, E.
1996-12-31
Kinetic effects are studied for global Alfven eigenmodes in realistic tokamak equilibria with finite aspect ratio and plasmas, comparing calculations from the full wave code PENN with experimental measurements. The kinetic plasma model is based on a Larmor radius expansion in toroidal geometry and takes into account the gradients in the equilibrium density and temperatures. It allows for a consistent description of the mode conversion to the kinetic Alfven wave (KAW) and the effect of diamagnetic drifts on electromagnetic waves. Comparisons axe first carried out for a JET discharge, showing that multiple peeks measured in the low frequency Alfven spectrum are the signature of kinetic Alfven eigenmodes (KAE) induced through coupling between a global ellipticity Alfven eigenmode (EAE) and the KAW. In general, series of modes appear in the proximity of global fluid modes, some with a regular spacing in frequency and a very weak Landau damping of {vert_bar}{gamma}/{omega}{vert_bar} {approx_equal} 0.0007. A kinetic analysis of a DIII-D discharge shows that TAE mode wavefields reach the plasma core through electromagnetic drift waves which propagate because of finite temperature gradients in the regions of small k{sub {parallel}}. They can lead to particle diffusion and may explain the large losses of beam ions observed during the TAE instabilities. Comparisons of frequency and eigenmode structure axe carried out for resistive and kinetic models, between the theoretical calculations using the PENN code and the experimental measurements from magnetic probes.
Low-frequency electromagnetic waves driven by gyrotropic gyrating ion beams
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Patel, V. L.
1986-01-01
The origin of left- and right-hand-polarized low-frequency waves in space plasmas is analyzed. It has been shown that a gyrotropic gyrating ion beam, a ring in velocity space, can excite electromagnetic modes in the plasma near the beam gyrofrequency. It excites left-hand-polarized shear Alfven waves and their harmonics via the coupling of Alfven modes with the beam modes. It can also excite right-hand-polarized fast-mode magnetosonic waves and their harmonics as well. The excitation is possible for beam ions heavier than the plasma ions. The growth rate varies as one-third power of the beam density and decreases with the angle of wave propagation with respect to the ambient magnetic field. The nonlocality has a stabilizing effect on the instability. The predicted values of the wave frequencies compare reasonably well with those observed in satellite data.
Medium-frequency impulsive-thrust-excited slosh waves during propellant reorientation with a geyser
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.; Lee, C. C.
1992-01-01
Slosh wave excitation induced by a resettling flowfield activated by 1.0-Hz impulsive thrust during the course of liquid reorientation with the initiation of geyser for liquid-fill levels of 30, 50, 65, 70, and 80 percent has been studied. Characteristics of slosh waves of various frequencies excited by the resettling flowfield are discussed. Slosh wave excitations shift the fluid mass distribution in the container which imposes time-dependent variations in spacecraft moment of inertia. This information is important for spacecraft control during the course of liquid reorientation.
Unusual spiral wave dynamics in the Kessler-Levine model of an excitable medium
NASA Astrophysics Data System (ADS)
Oikawa, N.; Bodenschatz, E.; Zykov, V. S.
2015-05-01
The Kessler-Levine model is a two-component reaction-diffusion system that describes spatiotemporal dynamics of the messenger molecules in a cell-to-cell signaling process during the aggregation of social amoeba cells. An excitation wave arising in the model has a phase wave at the wave back, which simply follows the wave front after a fixed time interval with the same propagation velocity. Generally speaking, the medium excitability and the refractoriness are two important factors which determine the spiral wave dynamics in any excitable media. The model allows us to separate these two factors relatively easily since the medium refractoriness can be changed independently of the medium excitability. For rigidly rotating waves, the universal relationship has been established by using a modified free-boundary approach, which assumes that the front and the back of a propagating wave are thin in comparison to the wave plateau. By taking a finite thickness of the domain boundary into consideration, the validity of the proposed excitability measure has been essentially improved. A novel method of numerical simulation to suppress the spiral wave instabilities is introduced. The trajectories of the spiral tip observed for a long refractory period have been investigated under a systematic variation of the medium refractoriness.
Stationary propagation of a wave segment along an inhomogeneous excitable stripe
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhang, Hong; Zykov, Vladimir; Bodenschatz, Eberhard
2014-03-01
We report a numerical and theoretical study of an excitation wave propagating along an inhomogeneous stripe of an excitable medium. The stripe inhomogeneity is due to a jump of the propagation velocity in the direction transverse to the wave motion. Stationary propagating wave segments of rather complicated curved shapes are observed. We demonstrate that the stationary segment shape strongly depends on the initial conditions which are used to initiate the excitation wave. In a certain parameter range, the wave propagation is blocked at the inhomogeneity boundary, although the wave propagation is supported everywhere within the stripe. A free-boundary approach is applied to describe these phenomena which are important for a wide variety of applications from cardiology to information processing.
Nonlinear whistler wave scattering in space plasmas
Yukhimuk, V.; Roussel-Dupre, R.
1997-04-01
In this paper the evolution of nonlinear scattering of whistler mode waves by kinetic Alfven waves (KAW) in time and two spatial dimensions is studied analytically. The authors suggest this nonlinear process as a mechanism of kinetic Alfven wave generation in space plasmas. This mechanism can explain the dependence of Alfven wave generation on whistler waves observed in magnetospheric and ionospheric plasmas. The observational data show a dependence for the generation of long periodic pulsations Pc5 on whistler wave excitation in the auroral and subauroral zone of the magnetosphere. This dependence was first observed by Ondoh T.I. For 79 cases of VLF wave excitation registered by Ondoh at College Observatory (L=64.6 N), 52 of them were followed by Pc5 geomagnetic pulsation generation. Similar results were obtained at the Loparskaia Observatory (L=64 N) for auroral and subauroral zone of the magnetosphere. Thus, in 95% of the cases when VLF wave excitation occurred the generation of long periodic geomagnetic pulsations Pc5 were observed. The observations also show that geomagnetic pulsations Pc5 are excited simultaneously or insignificantly later than VLF waves. In fact these two phenomena are associated genetically: the excitation of VLF waves leads to the generation of geomagnetic pulsations Pc5. The observations show intensive generation of geomagnetic pulsations during thunderstorms. Using an electromagnetic noise monitoring system covering the ULF range (0.01-10 Hz) A.S. Fraser-Smith observed intensive ULF electromagnetic wave during a large thunderstorm near the San-Francisco Bay area on September 23, 1990. According to this data the most significant amplification in ULF wave activity was observed for waves with a frequency of 0.01 Hz and it is entirely possible that stronger enhancements would have been measured at lower frequencies.
PROPAGATING COUPLED ALFVEN AND KINK OSCILLATIONS IN AN ARBITRARY INHOMOGENEOUS CORONA
Pascoe, D. J.; Wright, A. N.; De Moortel, I.
2011-04-10
Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. We perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low {beta} plasma. We consider the cases of distorted cylindrical flux tubes and a randomly generated inhomogeneous medium. When density structuring is present, mode coupling in inhomogeneous regions leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave is observed as energy is transferred to the local Alfven mode. In all cases considered, modest changes in density were capable of efficiently converting energy from the driving footpoint motion to localized Alfven modes. We have demonstrated that mode coupling efficiently couples propagating kink perturbations to Alfven modes in an arbitrary inhomogeneous medium. This has the consequence that transverse footpoint motions at the base of the corona will deposit energy to Alfven modes in the corona.
NASA Astrophysics Data System (ADS)
Pirro, P.; Brächer, T.; Chumak, A. V.; Lägel, B.; Dubs, C.; Surzhenko, O.; Görnert, P.; Leven, B.; Hillebrands, B.
2014-01-01
We present an experimental study of spin-wave excitation and propagation in microstructured waveguides consisting of a 100 nm thick yttrium iron garnet/platinum (Pt) bilayer. The life time of the spin waves is found to be more than an order of magnitude higher than in comparably sized metallic structures, despite the fact that the Pt capping enhances the Gilbert damping. Utilizing microfocus Brillouin light scattering spectroscopy, we reveal the spin-wave mode structure for different excitation frequencies. An exponential spin-wave amplitude decay length of 31 μm is observed which is a significant step towards low damping, insulator based micro-magnonics.
Pirro, P.; Chumak, A. V.; Lägel, B.; Leven, B.; Hillebrands, B.; Brächer, T.; Dubs, C.; Surzhenko, O.; Görnert, P.
2014-01-06
We present an experimental study of spin-wave excitation and propagation in microstructured waveguides consisting of a 100 nm thick yttrium iron garnet/platinum (Pt) bilayer. The life time of the spin waves is found to be more than an order of magnitude higher than in comparably sized metallic structures, despite the fact that the Pt capping enhances the Gilbert damping. Utilizing microfocus Brillouin light scattering spectroscopy, we reveal the spin-wave mode structure for different excitation frequencies. An exponential spin-wave amplitude decay length of 31 μm is observed which is a significant step towards low damping, insulator based micro-magnonics.
ULF Waves in the Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Takahashi, K.
2016-02-01
This chapter presents examples that illustrate how recent spacecraft observations allow us to quantitatively understand the mode structure of various magnetohydrodynamic (MHD)-type ultra-low-frequency (ULF) waves propagating into or excited in the inner magnetosphere. In addition, particle observations provide evidence for specific types of wave-particle interaction. The fast mode waves may be free propagating or evanescent, depending on their frequency and wavelength and the spatial variation of the MHD wave speed. The inhomogeneity of the magnetosphere causes the fast mode energy to be transferred to standing Alfven waves through the well-known field line resonance mechanism. The cold plasma MHD equation for axisymmetric plasma with a dipole magnetic field yields two guided mode solutions called the axisymmetric toroidal mode and guided poloidal mode. Although toroidal and poloidal modes are always coupled in the real magnetosphere, the idealized modes are good approximation to the basic features of observed magnetospheric standing Alfven waves.
Conventional and nonconventional global Alfven eigenmodes in stellarators
Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.
2007-10-15
Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.
NASA Astrophysics Data System (ADS)
Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.
2016-01-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.
Phase velocity spectrum analysis for a time delay comb transducer for guided wave mode excitation
Quarry, M J; Rose, J L
2000-09-26
A theoretical model for the analysis of ultrasonic guided wave mode excitation of a comb transducer with time delay features was developed. Time delay characteristics are included via a Fourier transform into the frequency domain. The phase velocity spectrum can be used to determine the mode excitation on the phase velocity dispersion curves for a given structure. Experimental and theoretical results demonstrate the tuning of guided wave modes using a time delay comb transducer.
Characteristics of Short Wavelength Compressional Alfven Eigenmodes
Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-12-19
Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-09-28
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.
Wave structures excited in compressible Petschek-type magnetic reconnection
NASA Astrophysics Data System (ADS)
Penz, T.; Semenov, V. S.; Heyn, M. F.; Ivanova, V. V.; Ivanov, I. B.; Biernat, H. K.
We present a method to analyze the wave and shock structures arising from Petschek-type magnetic reconnection Based on a time-dependent analytical approach developed by Heyn and Semenov 1996 and Semenov et al 2004 we calculate the perturbations caused by a delta function-shaped reconnection magnetic field which allows to achieve a representation of the plasma variables in the form of Green s functions Different configurations for the initial conditions are considered In the case of symmetric antiparallel magnetic fields and symmetric plasma density the well-known structure of an Alfvén discontinuity a fast volume wave a slow shock a slow wave and a tube wave occurs In the case of asymmetric antiparallel magnetic fields additionally surface waves are found We also discuss the case of symmetric antiparallel magnetic fields and asymmetric densities which leads to a faster propagation in the lower half plane causing side waves forming a Mach cone in the upper half plane Complex effects like anisotropic propagation characteristics intrinsic wave coupling and the generation of different non-linear and linear wave modes in a finite beta plasma are retained The temporal evolution of these wave and shock structures is shown
COUPLED ALFVEN AND KINK OSCILLATIONS IN CORONAL LOOPS
Pascoe, D. J.; Wright, A. N.; De Moortel, I.
2010-03-10
Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. However, there is ongoing discussion regarding their interpretation as kink or Alfven waves. To investigate the nature of transverse waves propagating in the solar corona and their potential for use as a coronal diagnostic in MHD seismology, we perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low beta plasma. We consider the cases of both a uniform medium and one with loop-like density structure and perform a parametric study for our structuring parameters. When density structuring is present, resonant absorption in inhomogeneous layers leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave as energy is transferred to the local Alfven mode is in good agreement with a modified interpretation of the analysis of Ruderman and Roberts for standing kink modes. Numerical simulations support the most general interpretation of the observed loop oscillations as a coupling of the kink and Alfven modes. This coupling may account for the observed predominance of outward wave power in longer coronal loops since the observed damping length is comparable to our estimate based on an assumption of resonant absorption as the damping mechanism.
NASA Astrophysics Data System (ADS)
Zhang, Li-Sheng; Deng, Min-Yi; Kong, Ling-Jiang; Liu, Mu-Ren; Tang, Guo-Ning
2010-01-01
Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation and analysis lead to the conclusions that, the number of refractory states does not influence the wave-front speed; the wave-front speed decreases as the excitation threshold increases and increases as the neighbor radius increases; the period of target waves is equal to the number of cell states; the excitation condition for target waves is that the wave-front speed must be bigger than half of the neighbor radius.
T-waves excitation modeling for realistic earthquake source and oceanic crust
NASA Astrophysics Data System (ADS)
Yun, S.; Park, M.; Lee, W.
2009-12-01
There have been several studies about empirical relation between the seismic source parameters (e.g., focal depths, focal mechanisms, magnitudes) and T-wave observation. However, to delineate the relation, we need to theoretically understand how earthquakes generate T-waves. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes by assuming that excited T-phase energy is proportional to the seismic energy distribution on the seafloor. We calculate seismic P-and SV-energy on the seafloor using Direct Simulation Monte Carlo (DSMC) which can take into account realistic focal mechanism and wave scattering in a heterogeneous medium as well, and then estimate excited T-wave energy by normal mode computation. We synthesized T-wave envelopes for two different source types, two different source depths, and for two different cases of seismic wave propagation. The synthesized T-wave envelopes show directional changes of T-waves caused by anisotropic source radiation, focal depth effects on the slopes of T-wave envelopes and effects of seismic wave-scattering on shape of the envelopes.
Microwave excitation of spin wave beams in thin ferromagnetic films.
Gruszecki, P; Kasprzak, M; Serebryannikov, A E; Krawczyk, M; Śmigaj, W
2016-01-01
An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711
Microwave excitation of spin wave beams in thin ferromagnetic films
NASA Astrophysics Data System (ADS)
Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.
2016-03-01
An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency.
Microwave excitation of spin wave beams in thin ferromagnetic films
Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.
2016-01-01
An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711
Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Miao, Hongchen; Dong, Shuxiang; Li, Faxin
2016-05-01
The fundamental shear horizontal (SH0) wave in plate-like structures is extremely useful for non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive. However, currently, the SH0 wave is usually excited by electromagnetic acoustic transducers (EMAT) whose energy conversion efficiency is fairly low. The face-shear ( d 36 ) mode piezoelectrics is more promising for SH0 wave excitation, but this mode cannot appear in conventional piezoelectric ceramics. Recently, by modifying the symmetry of poled PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering, we realized the face-shear d 36 mode in both soft and hard PZT ceramics. In this work, we further improved the face-shear properties of PZT-4 and PZT-5H ceramics via lateral compression under elevated temperature. It was found that when bonded on a 1 mm-thick aluminum plate, the d 36 type PZT-4 exhibited better face-shear performance than PZT-5H. We then successfully excite SH0 wave in the aluminum plate using a face-shear PZT-4 square patch and receive the wave using a face-shear 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] (PMN-PT) patch. The frequency response and directionality of the excited SH0 wave were also investigated. The SH0 wave can be dominated over the Lamb waves (S0 and A0 waves) from 160 kHz to 280 kHz. The wave amplitude reaches its maxima along the two main directions (0° and 90°). The amplitude can keep over 80% of the maxima when the deviate angle is less than 30°, while it vanishes quickly at the 45° direction. The excited SH0 wave using piezoelectric ceramics could be very promising in the fields of NDT and SHM.
Radiation from accelerated Alfven solitons in inhomogeneous plasmas
NASA Technical Reports Server (NTRS)
Lakhina, G. S.; Buti, B.; Tsintsadze, N. L.
1990-01-01
In a weakly inhomogeneous plasma, the large-amplitude Alfven waves propagating parallel to the ambient magnetic field are shown to evolve into accelerated Alfven solitons. Nonlinear interaction of the accelerated Alfven solitons with the Langmuir waves results in the emission of coherent radiations. Analytical expression for the power radiated per unit solid angle from a soliton is derived for two inhomogeneity profiles, namely the linear profile and the parabolic profile. For the case of uniform plasmas, the emission occurs via a decay-type process or resonant modes. In the presence of inhomogeneity, nonresonant modes provide a new channel for the emission of radiation. The power radiated per unit solid angle is computed for the parameters relevant to Comet Halley's plasma environment. For the nonresonant modes it is found to be several orders of magnitude higher than that for the case of resonant modes.
Analytical theory of interchange and compressional Alfven instabilities in EBT
Cheng, C.Z.; Tsang, K.T.
1981-07-01
The local stability of the EBT plasma is analyzed for the long wavelength perturbations in the frequency regime, ..omega.. approx. less than or equal to ..cap omega../sub i/(..cap omega../sub i/ is ion cyclotron frequency). In addition to the low frequency interchange instability, the plasma can be unstable to the compressional Alfven wave. Contrary to the previously obtained quadratic dispersion relation in ..omega.. for the interchange mode, our dispersion relations for both types of instabilities are cubic in ..omega... New stability boundaries are found, for the hot electron interchange mode, to relate to the enhanced compressibility of the core plasma in the presence of hot electrons. The compressional Alfven instability is driven due to the coupling of hot electron magnetic drifts and diamagnetic drift with the compressional Alfven wave. The stability conditions of these two types of instabilities are opposite to each other.
NASA Astrophysics Data System (ADS)
Fromme, P.
2015-03-01
Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.
Deviation from exponential decay for spin waves excited with a coplanar waveguide antenna
NASA Astrophysics Data System (ADS)
Birt, Daniel R.; An, Kyongmo; Tsoi, Maxim; Tamaru, Shingo; Ricketts, David; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.; Li, Xiaoqin
2012-12-01
We have investigated the propagation of surface spin waves in a Permalloy thin film excited by an asymmetric coplanar antenna. A surprising oscillatory behavior superimposed on the exponential decay is observed in the spin wave intensity mapped with the micro-Brillouin light scattering technique. The oscillations can be modeled as the interference between a propagating spin wave and a background magnetization with spatially uniform phase. We use a simple closed-form equation that includes both contributions to fit our experimental results. From the fit results, we extract the spin wave propagation length and the spin wave vector in a frequency range limited by the antenna bandwidth.
NASA Astrophysics Data System (ADS)
Hong, T.-K.
2009-04-01
Understanding the shear-wave excitation mechanism is a key issue for effective seismic monitoring of underground nuclear explosions (UNEs). We often observe strong shear waves from UNEs, which causes difficulty in prompt discrimination of nuclear explosions from natural earthquakes. Various mechanisms have been proposed to explain the shear-wave excitation from the UNEs. Consensus on dominant mechanism of shear-wave excitation has not been made. To constrain the shear-wave excitation mechanism, we examine the consistency in shear-wave radiation pattern using a source-array slowness-wavenumber (F-K) analysis, which allows us to check the time-invariant feature in the shear waves. We examine regional and teleseismic waveforms for the UNEs of the Balapan test site and Nevada test site along with the Indian and North Korean UNEs. We observe consistent radiation pattern in both regional and teleseismic shear waves. The observed radiation pattern suggests that the shear waves were not excited azimuthally-isotropic. Shear waves observed in teleseismic distances are far weak compared to those in regional distances, which implies that shear waves are excited stronger at high takeoff angles. Also, spectra of shear waves display significantly low overshoot feature that is different from those of P phases. The time-invariant anisotropic radiation pattern, strong excitation in high takeoff angle and low overshoot feature allow us to constrain the shear-wave excitation mechanism.
Local probing of magnetic films by optical excitation of magnetostatic waves
NASA Astrophysics Data System (ADS)
Chernov, A. I.; Kozhaev, M. A.; Vetoshko, P. M.; Dodonov, D. V.; Prokopov, A. R.; Shumilov, A. G.; Shaposhnikov, A. N.; Berzhanskii, V. N.; Zvezdin, A. K.; Belotelov, V. I.
2016-06-01
Excitation of volume and surface magnetostatic spin waves in ferrite garnet films by circularly polarized laser pulses utilizing to the inverse magnetooptical Faraday effect has been studied experimentally. The region of excitation of the magnetostatic spin waves is determined by the diameter of the laser beam (˜10 μm). At the same time, the characteristic propagation length of the modes is 30 μm. A method of finding the local characteristics of a magnetic film, in particular, the cubic and uniaxial anisotropy constants, based on the analysis of the azimuthal-angle dependence of the spectrum of the magnetostatic spin waves has been proposed.
Resonant X-ray emission with a standing wave excitation
Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo
2016-01-01
The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531
NASA Astrophysics Data System (ADS)
Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu
2016-08-01
Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.
Similarity rules in gravity jitter-related spacecraft liquid propellant slosh waves excitation
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Leslie, F. W.
1992-01-01
The dynamical behavior of fluids, in particular the effect of surface tension on partially filled rotating fluids in a full-scale prototype Gravity Probe-B Spacecraft propellant tank and various 10 percent subscale containers with identical values of similarity parameters such as Bond number, dynamical capillary number, rotational Reynolds number, and Weber number, as well as imposed gravity jitters have been investigated. It is shown that the Bond number can be used to simulate the wave characteristics of slosh wave excitation, whereas the Weber number can be used to simulate the wave amplitude of slosh-mode excitation. It is shown that a dynamical capillary number can be used to simulate the induced perturbation of the fluid stress distribution exerted on the wall. This distribution is governed by the interaction between surface tension (slosh-wave excitation along the liquid-vapor interface) and viscous (fluid stress exerted on the wall) forces.
Analysis of solitary wave impulses in granular chains using ultrasonic excitation
NASA Astrophysics Data System (ADS)
Yang, J.; Hutchins, D. A.; Akanji, O.; Thomas, P. J.; Davis, L. A. J.; Harput, S.; Gelat, P.; Freear, S.; Saffari, N.
2016-06-01
The propagation of broad bandwidth solitary wave impulses, generated within granular chains by narrow bandwidth ultrasonic excitation, is studied in detail. Theoretical predictions are compared to experimental results. It is demonstrated that the observed effects result from a sum of a solitary wave traveling out from the source with a wave that reflects from the far end of the chain. It is shown that this combination, when used with an excitation in the form of a long-duration tone burst, encourages the generation of multiple impulses with a characteristic periodicity. This study shows that the properties of the chain structure and the excitation can be adjusted so as to generate ultrasonic solitary wave impulses with a high amplitude and known frequency content, which are of interest in applications such as biomedical ultrasound.
Inverse spin-Hall effect voltage generation by nonlinear spin-wave excitation
NASA Astrophysics Data System (ADS)
Feiler, Laura; Sentker, Kathrin; Brinker, Manuel; Kuhlmann, Nils; Stein, Falk-Ulrich; Meier, Guido
2016-02-01
We investigate spin currents in microstructured permalloy/platinum bilayers that are excited via magnetic high-frequency fields. Due to this excitation spin pumping occurs at the permalloy/platinum interface and a spin current is injected into the platinum layer. The spin current is detected as a voltage via the inverse spin-Hall effect. We find two regimes reflected by a nonlinear, abrupt voltage surge, which is reproducibly observed at distinct excitation field strengths. Micromagnetic simulations suggest that the surge is caused by excitation of a spin-wave-like mode. The comparatively large voltages reveal a highly efficient spin-current generation method in a mesoscopic spintronic device.
Resonant and quasi-resonant excitation of baroclinic waves in the Eady model
NASA Astrophysics Data System (ADS)
Kalashnik, M. V.
2015-11-01
The structure of baroclinic waves in a geostrophic flow with a constant vertical shear (Eady model) is very consistent with that of atmospheric vortex formations. This paper proposes an approach to describing the generation of these waves by initial perturbations of potential vorticity (PV). Within the framework of the suggested approach, the solution to the initial-value problem for a quasi-geostrophic form of the PV transfer equation is represented as a sum of the wave and vortex components with zero and nonzero PV, respectively. A set of ordinary differential equations with the right-hand side dependent on the vertical PV distribution is formulated using Green functions for the amplitude of the wave component (amplitude of excited baroclinic waves). The solution provides a simple description of the resonant and quasi-resonant baroclinic-wave excitation effects under which the wave amplitude grows according to the linear or logarithmic laws. These types of excitation take place for singular and discontinuous initial PV distributions if the frequencies of the wave and vortex components coincide. Smooth distributions generate finite-amplitude waves.
Nonlinear, dispersive, elliptically polarized Alfven wavaes
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.
1988-01-01
The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.
Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)
NASA Astrophysics Data System (ADS)
Fromme, Paul
2016-02-01
Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.
Scroll wave meandering induced by phase difference in a three-dimensional excitable medium.
Yang, Zhao; Gao, Shiyuan; Ouyang, Qi; Wang, Hongli
2012-11-01
We investigated scroll waves in an inhomogeneous excitable 3D system with gradient of excitability. The gradient promotes twisting of the scroll waves. Sufficiently large excitability gradient enhances the twisting and causes simple scroll waves to transition to meandering scroll waves. For the twist-induced instability of scroll waves, we analyzed the stability of 2D spiral waves sliced from the twisted scroll in the vertical direction. The 3D problem is simplified by taking into account the diffusive coupling in the third direction as a time-delayed perturbation to the 2D spiral wave. An additional "negative mass" term measuring the twist thus arises in the 2D system and induces the transition from simple rotation to meandering. A further increase in the gradient ruins partially the unity of the meandering scrolls and generates semiturbulence, the analogs of which were observed in the Belousov-Zhabotinski reaction. We also generated the phase diagram in the parameter space by adjusting the threshold for excitation of the media. PMID:23214859
SDO/AIA Observation and Modeling of Flare-excited Slow Waves in Hot Coronal Loops
NASA Astrophysics Data System (ADS)
Wang, T.; Ofman, L.; Provornikova, E.; Sun, X.; Davila, J. M.
2014-12-01
The flare-excited standing slow waves were first detected by SOHO/SUMER as Doppler shift oscillations in hot (>6 MK) coronal loops. It has been suggested that they are excited by small or micro- flares at one loop's footpoint. However, the detailed excitation mechanism remains unclear. In this study, we report an oscillation event observed by SDO/AIA in the 131 channel. The intensity disturbances excited by a C-class flare propagated back and forth along a hot loop for about two period with a strong damping. From the measured oscillation period and loop length, we estimate the wave phase speed to be about 410 km/s. Using a regularized DEM analysis we determine the loop temperature and electron density evolution and find that the loop plasma is heated to a temperature of 8-12 MK with a mean about 9 MK. These measurements support the interpretation as slow magnetoacousic waves. Magnetic field extrapolation suggests that the flare is triggered by slipping and null-point-type reconnections in a fan-spine magnetic topology, and the injected (or impulsively evaporated) hot plasmas flowing along the large spine field lines form the oscillating hot loops. To understand why the propagating waves but not the standing waves as observed previously are excited in this event, we preform simulations using a 3D MHD model based on the observed magnetic configuration including full energy equation. Our simulations indicate that the nature of loop temperature structure is critical for the excitation of whether propagating or standing waves in a hot loop. Our result demonstrates that the slow waves may be used for heating diagnostics of coronal loops with coronal seismology. We also discuss the application of coronal seismology for estimating the average magnetic field strength in the hot loop based on the observed slow waves.
Semiannual Status Report. [excitation of electromagnetic waves in the whistler frequency range
NASA Technical Reports Server (NTRS)
1994-01-01
During the last six months, we have continued our study of the excitation of electromagnetic waves in the whistler frequency range and the role that these waves will play in the acceleration of electrons and ions in the auroral region. A paper entitled 'Electron Beam Excitation of Upstream Waves in the Whistler Mode Frequency Range' was listed in the Journal of Geophysical Research. In this paper, we have shown that an anisotropic electron beam (or gyrating electron beam) is capable of generating both left-hand and right-hand polarized electromagnetic waves in the whistler frequency range. Since right-hand polarized electromagnetic waves can interact with background electrons and left-hand polarized waves can interact with background ions through cyclotron resonance, it is possible that these beam generated left-hand and right-hand polarized electromagnetic waves can accelerate either ions or electrons (or both), depending on the physical parameters under consideration. We are currently carrying out a comprehensive study of the electromagnetic whistler and lower hybrid like waves observed in the auroral zone using both wave and particle data. Our first task is to identify these wave modes and compare it with particle observations. Using both the DE-1 particle and wave measurements, we can positively identify those electromagnetics lower hybrid like waves as fast magnetosonic waves and the upper cutoff of these waves is the local lower hybrid frequency. From the upper cutoff of the frequency spectrum, one can infer the particle density and the result is in very good agreement with the particle data. Since these electromagnetic lower hybrid like waves can have frequencies extended down to the local ion cyclotron frequency, it practically confirms that they are not whistler waves.
Excitation of Chirping Whistler Waves in a Laboratory Plasma.
Van Compernolle, B; An, X; Bortnik, J; Thorne, R M; Pribyl, P; Gekelman, W
2015-06-19
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. PMID:26196981
Excitation of Chirping Whistler Waves in a Laboratory Plasma
NASA Astrophysics Data System (ADS)
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.
2015-06-01
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.
Surface wave excitations and backflow effect over dense polymer brushes.
Biagi, Sofia; Rovigatti, Lorenzo; Sciortino, Francesco; Misbah, Chaouqi
2016-01-01
Polymer brushes are being increasingly used to tailor surface physicochemistry for diverse applications such as wetting, adhesion of biological objects, implantable devices and much more. Here we perform Dissipative Particle Dynamics simulations to study the behaviour of dense polymer brushes under flow in a slit-pore channel. We discover that the system displays flow inversion at the brush interface for several disconnected ranges of the imposed flow. We associate such phenomenon to collective polymer dynamics: a wave propagating on the brush surface. The relation between the wavelength, the amplitude and the propagation speed of the flow-generated wave is consistent with the solution of the Stokes equations when an imposed traveling wave is assumed as the boundary condition (the famous Taylor's swimmer). PMID:26975329
Surface wave excitations and backflow effect over dense polymer brushes
Biagi, Sofia; Rovigatti, Lorenzo; Sciortino, Francesco; Misbah, Chaouqi
2016-01-01
Polymer brushes are being increasingly used to tailor surface physicochemistry for diverse applications such as wetting, adhesion of biological objects, implantable devices and much more. Here we perform Dissipative Particle Dynamics simulations to study the behaviour of dense polymer brushes under flow in a slit-pore channel. We discover that the system displays flow inversion at the brush interface for several disconnected ranges of the imposed flow. We associate such phenomenon to collective polymer dynamics: a wave propagating on the brush surface. The relation between the wavelength, the amplitude and the propagation speed of the flow-generated wave is consistent with the solution of the Stokes equations when an imposed traveling wave is assumed as the boundary condition (the famous Taylor’s swimmer). PMID:26975329
Surface wave excitations and backflow effect over dense polymer brushes
NASA Astrophysics Data System (ADS)
Biagi, Sofia; Rovigatti, Lorenzo; Sciortino, Francesco; Misbah, Chaouqi
2016-03-01
Polymer brushes are being increasingly used to tailor surface physicochemistry for diverse applications such as wetting, adhesion of biological objects, implantable devices and much more. Here we perform Dissipative Particle Dynamics simulations to study the behaviour of dense polymer brushes under flow in a slit-pore channel. We discover that the system displays flow inversion at the brush interface for several disconnected ranges of the imposed flow. We associate such phenomenon to collective polymer dynamics: a wave propagating on the brush surface. The relation between the wavelength, the amplitude and the propagation speed of the flow-generated wave is consistent with the solution of the Stokes equations when an imposed traveling wave is assumed as the boundary condition (the famous Taylor’s swimmer).
SAW devices based on novel surface wave excitations
NASA Astrophysics Data System (ADS)
Therrien, Joel; Dai, Lian
2015-03-01
Surface Acoustic Wave (SAW) devices have applications in radio frequency and microwave filtering as well as highly sensitive sensors. Current SAW design employs the use of an array of electrode pairs, referred to as Inter-Digitated Transducers (IDTs) for creating and receiving surface waves on piezoelectric substrates. The pitch of the electrode pairs along with the properties of the substrate determine the operating frequency. The number of electrode pairs determine the bandwidth of the emitted waves. We will present a novel configuration that eliminates the need for the IDTs and replaces with with a single circular electrode located inside a larger ground ring. This configuration induces drumhead modes. We will show that the resonant frequencies follow the zeros of Bessel functions of the first kind. Applications in RF filtering and mass sensing will be presented.
Direct observation of Kelvin waves excited by quantized vortex reconnection.
Fonda, Enrico; Meichle, David P; Ouellette, Nicholas T; Hormoz, Sahand; Lathrop, Daniel P
2014-03-25
Quantized vortices are key features of quantum fluids such as superfluid helium and Bose-Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid (4)He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system. PMID:24704878
Direct observation of Kelvin waves excited by quantized vortex reconnection
Fonda, Enrico; Meichle, David P.; Ouellette, Nicholas T.; Hormoz, Sahand; Lathrop, Daniel P.
2014-01-01
Quantized vortices are key features of quantum fluids such as superfluid helium and Bose–Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid 4He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system. PMID:24704878
Tarver, C M
2004-05-11
The Non-Equilibrium Zeldovich - von Neumann - Doring (NEZND) theory of self-sustaining detonation identified amplification of pressure wavelets during equilibration of vibrationally excited reaction products in the reaction zone as the physical mechanism by which exothermic chemical energy release sustains detonation waves. This mechanism leads to the formation of the well-known, complex three-dimensional structure of a self-sustaining detonation wave. This amplification mechanism is postulated to be a general property of subsonic and supersonic reactive flows occurring during: shock to detonation transition (SDT); hot spot ignition and growth; deflagration to detonation transition (DDT); flame acceleration by shock or compression waves; and acoustic (sound) wave amplification. The existing experimental and theoretical evidence for pressure wave amplification by chemical energy release into highly vibrationally excited product molecules under these reactive flow conditions is reviewed in this paper.
Spin wave excitation in yttrium iron garnet films with micron-sized antennas
Khivintsev, Y. V. Filimonov, Y. A.; Nikitov, S. A.
2015-02-02
In this paper, we explore spin waves excitation in monolithic structures based on yttrium iron garnet (YIG) films with micro-sized antennas. Samples based on plain and patterned YIG film were fabricated and tested for tangential bias field geometries. We observed spin wave excitation and propagation with wave numbers up to 3.5 × 10{sup 4} rad/cm. The corresponding wavelength is thus shorter more than by one order of magnitude compared to previous experiments with such films. For the sample with a periodic array of nanotrenches, we observed the effect of the shape anisotropy resulting in the shift of the spin wave propagation band in comparison to the unpatterned YIG film. Our results are very promising for the exploitation of short spin waves in YIG and provide great opportunity for significant miniaturization of YIG film based microwave devices.
Parametric Excitation of Spin Waves by Voltage-Controlled Magnetic Anisotropy
NASA Astrophysics Data System (ADS)
Verba, Roman; Tiberkevich, Vasil; Krivorotov, Ilya; Slavin, Andrei
2014-05-01
A theory of parametric excitation of spin waves (SWs) in ultrathin ferromagnetic strips by a microwave electric field is developed. The excitation uses the effect of voltage-controlled magnetic anisotropy in ferromagnet-dielectric heterostuctures. The characteristic values of the electric field necessary for parametric excitation of propagating SWs of 5-10 GHz frequency in Fe /MgO structure are found to be 0.1-1.5 V/nm. The minimum excitation threshold is achieved in narrow strip (strip width wx˜10-20 nm) for relatively long dipole-dominated SWs. In wider strips (wx≳100 nm) electric parametric pumping excites mostly short exchange-dominated SWs having higher excitation thresholds, but substantially wider range of possible SW frequencies.
Rettig, L.; Cortés, R.; Chu, J.-H.; Fisher, I. R.; Schmitt, F.; Moore, R. G.; Shen, Z.-X.; Kirchmann, P. S.; Wolf, M.; Bovensiepen, U.
2016-01-01
Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order. PMID:26804717
Impact of rotation on stochastic excitation of gravity and gravito-inertial waves in stars
NASA Astrophysics Data System (ADS)
Mathis, S.; Neiner, C.; Tran Minh, N.
2014-05-01
Context. Gravity waves (or their signatures) are detected in stars thanks to helio- and asteroseismology, and they may play an important role in the evolution of stellar angular momentum. Moreover, a previous observational study of the CoRoT target HD 51452 demonstrated the potential strong impact of rotation on the stochastic excitation of gravito-inertial waves in stellar interiors. Aims: Our goal is to explore and unravel the action of rotation on the stochastic excitation of gravity and gravito-inertial waves in stars. Methods: The dynamics of gravito-inertial waves in stellar interiors in both radiation and in convection zones is described with a local non-traditional f-plane model. The coupling of these waves with convective turbulent flows, which leads to their stochastic excitation, is studied in this framework. Results: First, we find that in the super-inertial regime in which the wave frequency is twice as high as the rotation frequency (σ > 2Ω), the evanescence of gravito-inertial waves in convective regions decreases with decreasing wave frequency. Next, in the sub-inertial regime (σ < 2Ω), gravito-inertial waves become purely propagative inertial waves in convection zones. Simultaneously, turbulence in convective regions is modified by rotation. Indeed, the turbulent energy cascade towards small scales is slowed down, and in the case of rapid rotation, strongly anisotropic turbulent flows are obtained that can be understood as complex non-linear triadic interactions of propagative inertial waves. These different behaviours, due to the action of the Coriolis acceleration, strongly modify the wave coupling with turbulent flows. On one hand, turbulence weakly influenced by rotation is coupled with evanescent gravito-inertial waves. On the other hand, rapidly rotating turbulence is intrinsically and strongly coupled with sub-inertial waves. Finally, to study these mechanisms, the traditional approximation cannot be assumed because it does not properly
The dynamics and excitation of torsional waves in geodynamo simulations
NASA Astrophysics Data System (ADS)
Teed, R. J.; Jones, C. A.; Tobias, S. M.
2014-02-01
The predominant force balance in rapidly rotating planetary cores is between Coriolis, pressure, buoyancy and Lorentz forces. This magnetostrophic balance leads to a Taylor state where the spatially averaged azimuthal Lorentz force is compelled to vanish on cylinders aligned with the rotation axis. Any deviation from this state leads to a torsional oscillation, signatures of which have been observed in the Earth's secular variation and are thought to influence length of day variations via angular momentum conservation. In order to investigate the dynamics of torsional oscillations (TOs), we perform several 3-D dynamo simulations in a spherical shell. We find TOs, identified by their propagation at the correct Alfvén speed, in many of our simulations. We find that the frequency, location and direction of propagation of the waves are influenced by the choice of parameters. Torsional waves are observed within the tangent cylinder and also have the ability to pass through it. Several of our simulations display waves with core traveltimes of 4-6 yr. We calculate the driving terms for these waves and find that both the Reynolds force and ageostrophic convection acting through the Lorentz force are important in driving TOs.
Combining spiral and target wave detection to analyze excitable media dynamics
NASA Astrophysics Data System (ADS)
Geberth, Daniel; Hütt, Marc-Thorsten
2010-01-01
Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.
1983-01-01
Molybdate, tungstate, fluoride, vanadate, and GTP-gamma-S [guanosine-5'- 0-(3-thiotriphosphate)] were injected into Limulus ventral photoreceptors by ionophoresis from microelectrodes. All of these drugs induce discrete waves of depolarization similar in waveform to, but smaller in amplitude than, those normally elicited by dim light. As for light-evoked waves, the amplitude of drug-induced waves decreases with light adaptation. For the compounds examined so far (fluoride, vanadate, GTP-gamma-S), the drug-induced waves share a reversal potential with light-induced discrete waves at about +15 mV. The induction of discrete waves by fluoride, vanadate, and molybdate was found to be reversible, whereas the induction of waves by GTP-gamma-S was not. Unlike fluoride and vanadate, which induce waves when added to the bath, molybdate appears to be ineffective when applied extracellularly. Because of the similarity of the drug-induced waves to light-induced discrete waves, we conclude that the drug-induced waves arise from a process similar or perhaps identical to visual excitation of the photoreceptor. However, the smaller size of drug-induced waves suggests that they arise at a stage of phototransduction subsequent to the isomerization of rhodopsin. On the basis of the chemical properties and action of the drugs, we suggest that discrete waves may arise through the activation of a GTP-binding protein. PMID:6315860
Global structures of Alfven-ballooning modes in magnetospheric plasmas
Vetoulis, G.; Chen, Liu
1994-03-01
The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations.
A sub-Alfvenic solar wind - Interplanetary and magnetosheath observations
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Russell, C. T.
1982-01-01
During much of an approximately 5-hour period on November 22, 1979, plasma and field instruments on ISEE 3 measured a solar wind flow that was simultaneously supersonic and sub-Alfvenic (about 320 km/s) due to an abnormally low ion density (about 0.07 per cu cm). The nature of the disturbed flow adjacent to the magnetosphere is examined. This examination suggests that the earth's bow wave retained its shock-like character when the solar wind flow was sub-Alfvenic.
The oblique behavior of low-frequency electromagnetic waves excited by newborn cometary ions
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
The free energy in oxygen or hydrogen ions freshly created in the solar wind stimulates low-frequency electromagnetic waves whose growth does not always maximize at parallel propagation. Exploration of the wave vector plane discloses the frequent occurrence of islets of oblique growth unconnected to the unstable parallel modes. Contour plots of the growth rate, real frequency, polarization, and magnetic compression characterize the oblique wave behavior for large values of the initial pitch angle of the cometary particles. Although wave-particle (Landau and cyclotron) resonances feed most of the surveyed oblique instabilities, some are seemingly fluidlike. The results, obtained from the numerical solution of the kinetic dispersion and wave equations, imply that newborn ions can easily excite significant oblique hydromagnetic wave activity. Cometary environments provide the adopted plasma model, but the study is helpful in the interpretation of other low-frequency wave observations in space.
Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers.
Koju, Vijay; Robertson, William M
2016-07-01
The existence of Bloch surface waves in periodic dielectric multilayer structures with a surface defect is well known. Not yet recognized is that quasi-crystals and aperiodic dielectric multilayers can also support Bloch-like surface waves. In this work, we numerically show the excitation of Bloch-like surface waves in Fibonacci quasi-crystals and Thue-Morse aperiodic dielectric multilayers using the prism coupling method. We report improved surface electric field intensity and penetration depth of Bloch-like surface waves in the air side in such structures compared to their periodic counterparts. PMID:27367064
Transient Dynamics of d -Wave Superconductors after a Sudden Excitation
NASA Astrophysics Data System (ADS)
Peronaci, Francesco; Schiró, Marco; Capone, Massimo
2015-12-01
Motivated by recent ultrafast pump-probe experiments on high-temperature superconductors, we discuss the transient dynamics of a d -wave BCS model after a quantum quench of the interaction parameter. We find that the existence of gap nodes, with the associated nodal quasiparticles, introduces a decay channel which makes the dynamics much faster than in the conventional s -wave model. For every value of the quench parameter, the superconducting gap rapidly converges to a stationary value smaller than the one at equilibrium. Using a sudden approximation for the gap dynamics, we find an analytical expression for the reduction of spectral weight close to the nodes, which is in qualitative agreement with recent experiments.
Cross focusing of two laser beams and plasma wave excitation
Gupta, M.K.; Sharma, R.P.; Gupta, V.L.
2005-12-15
This article presents the cross focusing of two high power laser beams in a plasma when relativistic and ponderomotive nonlinearities are operative. The effect of electron density modification changes the critical power significantly in contrast to (only) relativistic case. The plasma wave generation at the difference frequency and particle acceleration has also been studied. In a typical case when laser wavelengths are 1047 and 1064 nm and electron density 1.9x10{sup 19} cm{sup -3}, the maximum electron plasma wave power flux comes out to be 6x10{sup 17} W/cm{sup 2} (laser power P{sub 1}=3.6x10{sup 18} W/cm{sup 2} and P{sub 2}=3.2x10{sup 18} W/cm{sup 2})
HF Doppler observations of acoustic waves excited by the earthquake
NASA Technical Reports Server (NTRS)
Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.
1985-01-01
Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.
Davidsen, Jörn; Glass, Leon; Kapral, Raymond
2004-11-01
We analyze the way topological constraints and inhomogeneity in the excitability influence the dynamics of spiral waves on spheres and punctured spheres of excitable media. We generalize the definition of an index such that it characterizes not only each spiral but also each hole in punctured, oriented, compact, two-dimensional differentiable manifolds and show that the sum of the indices is conserved and zero. We also show that heterogeneity and geometry are responsible for the formation of various spiral-wave attractors, in particular pairs of spirals in which one spiral acts as a source and a second as a sink--the latter similar to an antispiral. The results provide a basis for the analysis of the propagation of waves in heterogeneous excitable media in physical and biological systems. PMID:15600724
Novel Piezoelectric Fiber Transducers for Mode Selective Excitation and Detection of Lamb Waves
NASA Astrophysics Data System (ADS)
Koehler, B.; Frankenstein, B.; Schubert, F.; Barth, M.
2009-03-01
One of the most widely applied methods for Structural Health Monitoring of plate like structures, shells and tubes is based on the transmission and reception of guided elastic waves. But, dispersion of various wave modes leads to complex signals which are difficult to interpret. Piezoelectric fiber patches (PFP) have been developed which can be used to excite and detect Lamb waves. These are of low thickness having the potential to be integrated into structures. This paper deals with a novel method to excite PFP. By this method a Lamb modes can be both excited and detected selectively. In addition, also directivity can be realized. These sensors can be used to simplify the interpretation of the acoustic signals considerably.
Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco
2011-10-12
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426
2011-01-01
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426
Liquid hydrogen slosh waves excited by constant reverse gravity acceleration of geyser initiation
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.; Lee, C. C.
1992-01-01
The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank before main engine restart poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing the optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet. In this study slosh wave excitation induced by the resettling flowfield during the course of liquid reorientation with the initiation of geyser for liquid-filled levels of 30, 50, 65, 70, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed. Slosh wave excitations will affect the fluid stress distribution exerted on the container wall and shift the fluid mass distribution inside the container, which imposes the time-dependent variations in the moment of inertia of the container. This information is important for the spacecraft control during the course of liquid reorientation.
Resonant Absorption of Solar Wind-Generated Fast Magnetosonic Waves in the Magnetosphere
NASA Astrophysics Data System (ADS)
Kozlov, Daniil
Resonant transformation of fast magnetosonic (FMS) waves into Alfven and slow magnetosonic (SMS) oscillations during their propagation from the solar wind to the magnetosphere is inves-tigated. The one-dimensionally inhomogeneous medium model with non-isothermal plasma is used to describe the day-side magnetosphere. In order to determine integrated properties of the FMS wave absorption after their transformation into resonant Alfven and SMS oscillations, we use the Kolmogorov spectrum typical of waves in turbulent plasma of the solar wind. Spatial distribution of energy dissipation rate of FMS oscillations penetrating into the magnetosphere from the solar wind is studied. The FMS wave energy dissipation rate caused by magnetosonic resonance excitation is shown to be several orders of magnitude greater than that caused by the Alfven resonance excitation at the same surface. It is connected with the spectrum of incident FMS waves. Magnitude of the Fourier harmonics exciting resonant Alfven oscillations is much smaller than that of the harmonics driving lower-frequency magnetosonic resonance. Being a low-frequency extension of ion-sound branch, SMS oscillations strongly interact with background ions. We estimate efficiency of the magnetospheric plasma heating via absorption of resonant SMS oscillations. The additional temperature related to such a heating turns out to be four orders of magnitude smaller than the background temperature.
Tunable short-wavelength spin wave excitation from pinned magnetic domain walls
Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan
2016-01-01
Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893
Tunable short-wavelength spin wave excitation from pinned magnetic domain walls.
Van de Wiele, Ben; Hämäläinen, Sampo J; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan
2016-01-01
Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893
Tunable short-wavelength spin wave excitation from pinned magnetic domain walls
NASA Astrophysics Data System (ADS)
van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan
2016-02-01
Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors.
Rouze, Ned C.; Wang, Michael H.; Palmeri, Mark L.; Nightingale, Kathy R.
2013-01-01
Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material. PMID:24094454
Flute mode waves near the lower hybrid frequency excited by ion rings in velocity space
NASA Technical Reports Server (NTRS)
Cattell, C.; Hudson, M.
1982-01-01
Discrete emissions at the lower hybrid frequency are often seen on the S3-3 satellite. Simultaneous observation of perpendicularly heated ions suggests that these ions may provide the free energy necessary to drive the instability. Studies of the dispersion relation for flute modes excited by warm ion rings in velocity space show that waves are excited with real frequencies near the lower hybrid frequency and with growth rates ranging from about 0.01 to 1 times the ion cyclotron frequency. Numerical results are therefore consistent with the possibility that the observed ions are the free energy source for the observed waves.
Bekki--Nozaki Hole in Traveling Excited Waves on Human Cardiac Interventricular Septum
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi
2012-07-01
We observe some phase singularities in traveling excited waves noninvasively measured by a novel ultrasonic method, on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining a part of one-dimensional cardiac dynamics of the observed phase defects on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki--Nozaki hole solution in the complex Ginzburg--Landau equation, although the creation and annihilation of phase singularities on the IVS give birth to a variety of complex patterns.
Slosh wave excitation due to cryogenic liquid reorientation in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.; Lee, C. C.
1991-01-01
The objective of the cryogenic fluid management of the spacecraft propulsion system is to develop the technology necessary for acquistion or positioning of liquid and vapor within a tank in reduced gravity to enable liquid outflow or vapor venting. In this study slosh wave excitation induced by the resettling flow field activated by 1.0 Hz medium frequency impulsive reverse gravity acceleration during the course of liquid fluid reorientation with the initiation of geyser for liquid filled levels of 30, 50, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed.
A focused electric spark source for non-contact stress wave excitation in solids.
Dai, Xiaowei; Zhu, Jinying; Haberman, Michael R
2013-12-01
A focused electric spark is used as a non-contact acoustic source to excite stress waves in solids. The source consists of an electric spark source located at the near focus of an ellipsoidal reflector that focuses the acoustic disturbance generated by the spark source to the far focal point. Experimental studies using both contact and non-contact sensors indicate that the source has the capability to excite the Rayleigh surface wave and impact-echo mode (S1-zero-group-velocity Lamb mode) in a 250 mm thick concrete slab and to enable fully air-coupled testing of concrete specimens. PMID:25669297
NASA Astrophysics Data System (ADS)
Zhou, Chen; Li, Wen; Thorne, Richard M.; Bortnik, Jacob; Ma, Qianli; An, Xin; Zhang, Xiao-jia; Angelopoulos, Vassilis; Ni, Binbin; Gu, Xudong; Fu, Song; Zhao, Zhengyu
2015-10-01
The excitation of magnetospheric whistler-mode chorus in response to interplanetary (IP) shocks is investigated using wave data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. As an example, we show a typical chorus wave excitation following an IP shock event that was observed by THEMIS in the postnoon sector near the magnetopause on 3 August 2010. We then analyze characteristic changes during this event and perform a survey of similar events during the period 2008-2014 using the THEMIS and OMNI data set. Our statistical analysis demonstrates that the chorus wave excitation/intensification in response to IP shocks occurs only at high L shells (L > 8) on the dayside. We analyzed the variations of magnetic curvature following the arrival of the IP shock and found that IP shocks lead to more homogeneous background magnetic field configurations in the near-equatorial dayside magnetosphere; and therefore, the threshold of nonlinear chorus wave growth is likely to be reduced, favoring chorus wave generation. Our results provide the observational evidence to support the concept that the geomagnetic field line configuration plays a key role in the excitation of dayside chorus.
Spin-wave excitation by direct current in obliquely magnetized nanostructures
NASA Astrophysics Data System (ADS)
Rodríguez-Suárez, R. L.; Azevedo, A.; de Aguiar, F. M.; Rezende, S. M.
2009-09-01
The magnetization dynamics of magnetic nanostructures magnetized at an arbitrary out-of-plane angle is investigated with the spin-wave formalism. The magnetic excitations driven by a spin-polarized direct current are considered to be standing spin-wave modes appropriate for nanopillar structures. The spin waves grow exponentially above a certain critical value of the current density and their post-threshold nonlinear dynamics leads to magnetization oscillations in the microwave range. Due to demagnetizing fields, the current-driven excitation strongly depends on the direction of the applied external magnetic field. In order to calculate the microwave oscillation frequency we derive an equation of motion for the spin-wave amplitude as a function of the out-of-plane angle of the applied field. The results are compared with recent experimental data as well as with another theoretical approach.
BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA
Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu
2011-09-10
Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.
Spontaneous excitation of convective cells by kinetic Alfvén waves
NASA Astrophysics Data System (ADS)
Zonca, Fulvio; Lin, Yu; Chen, Liu
2015-12-01
Spontaneous excitation of convective cells by kinetic Alfvén waves in a uniform plasma is investigated analytically employing the nonlinear gyrokinetic equations. Self-consistent theoretical analysis demonstrates the novel results that excitation via modulational instability can only occur when the finite ion Larmor radius effects are properly included, and, furthermore, both the electrostatic and magnetostatic convective cells are excited simultaneously. Theoretical predictions are verified with direct numerical simulations; showing excellent agreement in the modulational growth rate and field structures. Significant implications of the present results to the cross-field transport in space and fusion plasmas are also briefly discussed.
Helicon wave excitation to produce energetic electrons for manufacturing semiconductors
Molvik, Arthur W.; Ellingboe, Albert R.
1998-01-01
A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18-0.35 mm or less.
Helicon wave excitation to produce energetic electrons for manufacturing semiconductors
Molvik, A.W.; Ellingboe, A.R.
1998-10-20
A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18--0.35 mm or less. 16 figs.
Excitation, propagation, and damping of electron Bernstein waves in tokamaks
NASA Astrophysics Data System (ADS)
Ram, A. K.; Schultz, S. D.
2000-10-01
The conventional ordinary O-mode and the extraordinary X-mode in the electron cyclotron range of frequencies are not suitable for core heating in high-β spherical tokamak plasmas, like the National Spherical Torus Experiment [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th International Atomic Energy Agency Fusion Energy Conference (International Atomic Energy Agency, Vienna, 1999), Vol. 3, p. 1135], as they are weakly damped at high harmonics of the electron cyclotron frequency. However, electron Bernstein waves (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBWs via mode conversion of either the X-mode or the O-mode. The two mode conversions are optimized in different regions of the parameter space spanned by the parallel wavelength and wave frequency. The conditions for optimized mode conversion to EBWs are evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. From geometric optics ray tracing it is found that the EBWs damp strongly near the Doppler-broadened resonance at harmonics of the electron cyclotron frequency.
Excitation of large-{kappa}{sub {theta}} ion-Bernstein waves in tokamaks
Valeo, E.J.; Fisch, N.J.
1994-09-01
The mode-converted ion-Bernstein wave excited in tokamaks is shown to exhibit certain very interesting behavior, including the attainment of very small poloidal phase velocities, the reversal of poloidal direction, and up-down asymmetries in propagation and damping. Because of these effects, this wave holds promise for channeling {alpha}-particle power to ions, something that would make a tokamak fusion reactor far more attractive than presently envisioned.
Mode Locking of Spin Waves Excited by Direct Currents in Microwave Nano-oscillators
NASA Astrophysics Data System (ADS)
Rezende, S. M.; de Aguiar, F. M.; Rodríguez-Suárez, R. L.; Azevedo, A.
2007-02-01
A spin-wave theory is presented which explains the frequency pulling and mode locking observed when two closely spaced spin-transfer nanometer-scale oscillators with slightly different frequencies are separately driven in the same magnetic thin film by spin-polarized carriers at high direct-current densities. The theory confirms recent experimental evidence that the origin of the phenomena lies in the nonlinear interaction between two overlapping spin waves excited in the magnetic nanostructure.
Excitation of solitons by an external resonant wave with a slowly varying phase velocity
Aranson, I.; Meerson, B. . Racah Inst. of Physics); Tajima, Toshiki )
1992-02-01
A novel mechanism is proposed for the excitation of solitons in nonlinear dispersive media. The mechanism employs an external pumping wave with a varying phase velocity, which provides a continuous resonant excitation of a nonlinear wave in the medium. Two different schemes of a continuous resonant growth (continuous phase-locking) of the induced nonlinear wave are suggested. The first of them requires a definite time dependence of the pumping wave phase velocity and is relatively sensitive to the initial wave phase. The second employs the dynamic autoresonance effect and is insensitive to the exact time dependence of the pumping wave phase velocity. It is demonstrated analytically and numerically, for a particular example of a driven Korteweg-de Vries (KdV) equation with periodic boundary conditions, that as the nonlinear wave grows, it transforms into a soliton, which continues growing and accelerating adiabatically. A fully nonlinear perturbation theory is developed for the driven KdV equation to follow the growing wave into the strongly nonlinear regime and describe the soliton formation.
Nonlinear Resonant Excitation of Fast Sausage Waves in Current-Carrying Coronal Loops
NASA Astrophysics Data System (ADS)
Mikhalyaev, B. B.; Bembitov, D. B.
2014-11-01
We consider a model of a coronal loop that is a cylindrical magnetic tube with two surface electric currents. Its principal sausage mode has no cut-off in the long-wavelength limit. For typical coronal conditions, the period of the mode is between one and a few minutes. The sausage mode of flaring loops could cause long-period pulsations observed in microwave and hard X-ray ranges. There are other examples of coronal oscillations: long-period pulsations of active-region quiet loops in the soft X-ray emission are observed. We assume that these can also be caused by sausage waves. The question arises of how the sausage waves are generated in quiet loops. We assume that they can be generated by torsional oscillations. This process can be described in the framework of the nonlinear three-wave interaction formalism. The periods of interacting torsional waves are similar to the periods of torsional oscillations observed in the solar atmosphere. The timescale of the sausage-wave excitation is not much longer than the periods of interacting waves, so that the sausage wave is excited before torsional waves are damped.
Excitation of magnetohydrodynamic waves by plasmoids ejection in the solar corona
NASA Astrophysics Data System (ADS)
Yang, Liping; Zhang, Lei; He, Jiansen; Peter, Hardi; Tu, Chuanyi; Wang, Linghua; Feng, Xueshang
2016-03-01
In this study, we numerically investigate the excitation of MHD waves in the interchange reconnection scenario in the solar corona. The modeling results show that as a result of tearing instability, the magnetic reconnection occurs, accompanying the creation of plasmoids. The created plasmoids are quickly shot, and strongly collide with the magnetic field in the outflow regions, which consecutively triggers the perturbations of velocity component Vx, Vy, and Vz. The perturbations of Vy satisfy the polarity relations of slow-mode wave, and their propagating speed approaches the sonic speed in the model, while the perturbations of Vz satisfy the polarity relations of Alfvén wave, and their propagating speed is about the Alfvén speed, thus verifying that they are slow-mode waves and Alfvén waves, respectively. These simulation results indicate that not only fast-mode wave but also slow-mode wave and Alfvén wave can be simultaneously excited by plasmoid ejections and releases.
Reaction-diffusion waves in neuronal tissue and the window of cortical excitability
NASA Astrophysics Data System (ADS)
Dahlem, M. A.; Müller, S. C.
2004-07-01
Spreading depression (SD) is a dynamic wave phenomenon occurring in all gray matter regions of the central nervous systems (CNS). It is characterized by a sudden breakdown of neuronal activity and accompanied by a massive influx and efflux of ions across the membrane of neurons. The retina is a constituent of the CNS in which one can easily observe the dynamic behavior of the SD wave fronts, because SD changes the optical properties of the tissue. There is ample evidence that SD belongs to the self-organization processes due to the coupling of reaction with diffusion in excitable medium. It is assumed that the occurrence of SD is associated with some neurological symptoms of migraine with aura. A frequently reported aura symptom is a traveling visual blind region (scotoma) with a preceding figure of scintillating line segments. The characteristic form and development of the scotoma suggests that the underlying phenomenon is a wave propagating through the primary visual cortex, most likely the cortical spreading depression. In this article we discuss similarities between SD waves and the migraine aura on the basis of properties of reaction-diffusion waves known from other excitable media. In particular, the propagation velocities, the shape and the dynamics of the waves are compared with each other. We find that the assumption of the neuronal tissue to be in a state of only weak excitability explains some properties of the migraine aura, such as the confined appearance and its propagation with a stable velocity.
Frequent excitations of T waves by earthquakes in the South Mariana Arc
NASA Astrophysics Data System (ADS)
Chen, Po-Fei; Chen, Kai-Xun; Cheng, Hui-Yun
2015-02-01
We used broadband stations in Taiwan and on the Ryukyu Arc islands to investigate T waves induced by earthquakes in the Izu-Bonin-Mariana subduction zone. Of the 48 earthquakes that took place in 2005, 17 earthquakes exhibited T-wave signals consistent with predicted arrival times at stations. Of theses T-excited events, 13 were located in the South Mariana Arc, where the isobaths exhibit strong concave curvature, and were predominantly of normal faulting type. The energies of observed T waves were used quantitatively to evaluate the relative efficiency of receiver-side acoustic-elastic conversions by Gamma calculations. Results show that the steep slopes of offshore bathymetry together with nearly perpendicular angles of back azimuth relative to local isobaths are suitable conditions for T waves observations. In 2010, two clusters of repeated moderate earthquakes in the north and south ends of the Mariana Arc displayed stark contrasts in terms of T-wave excitations despite their normal faulting type. Examining of this discrepancy indicate that a specific curvature together with a specific radiation pattern accounts for the frequent excitations of T waves from shallow earthquakes in the South Mariana Arc.
Excitation of surface waves on the interfaces of general bi-isotropic media.
Kim, Seulong; Kim, Kihong
2016-07-11
We study theoretically the characteristics of surface waves excited at the interface between a metal and a general bi-isotropic medium, which includes isotropic chiral media and Tellegen media as special cases. We derive an analytical dispersion relation for surface waves, using which we calculate the effective index and the propagation length numerically. We also calculate the absorptance, the cross-polarized reflectance and the spatial distribution of the electromagnetic fields for plane waves incident on a bilayer system consisting of a metal layer and a bi-isotropic layer in the Kretschmann configuration, using the invariant imbedding method. The results obtained using the invariant imbedding method agree with those obtained from the dispersion relation perfectly. In the case of chiral media, the effective index is an increasing function of the chirality index, whereas in Tellegen media, it is a decreasing function of the Tellegen parameter. The propagation length for surface waves in both cases increase substantially as either the chirality index or the Tellegen parameter increases. In Tellegen media, it diverges to infinity when the effective index goes to zero, whereas in chiral media, it does when the parameters approach the cutoff values where quasi surface waves are excited. We investigate the characteristics of quasi surface waves excited when the chirality index is sufficiently large. PMID:27410858
Collective Lipid Bilayer Dynamics Excited by Surface Acoustic Waves
NASA Astrophysics Data System (ADS)
Reusch, T.; Schülein, F. J. R.; Nicolas, J. D.; Osterhoff, M.; Beerlink, A.; Krenner, H. J.; Müller, M.; Wixforth, A.; Salditt, T.
2014-09-01
We use standing surface acoustic waves to induce coherent phonons in model lipid multilayers deposited on a piezoelectric surface. Probing the structure by phase-controlled stroboscopic x-ray pulses we find that the internal lipid bilayer electron density profile oscillates in response to the externally driven motion of the lipid film. The structural response to the well-controlled motion is a strong indication that bilayer structure and membrane fluctuations are intrinsically coupled, even though these structural changes are averaged out in equilibrium and time integrating measurements. Here the effects are revealed by a timing scheme with temporal resolution on the picosecond scale in combination with the sub-nm spatial resolution, enabled by high brilliance synchrotron x-ray reflectivity.
Dust Acoustic Wave Excitation in a Plasma with Warm Dust
NASA Astrophysics Data System (ADS)
Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.
2008-11-01
Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).
Control of spiral-wave dynamics in active media by periodic modulation of excitability
NASA Astrophysics Data System (ADS)
Steinbock, Oliver; Zykov, Vladimir; Müller, Stefan C.
1993-12-01
EXCITABLE media exhibit a wide variety of geometrically complex spatio-temporal patterns, perhaps the most striking of which are rotating spiral waves. Spiral waves have now been observed in many excitable systems, including heart muscle1, aggregating slime-mould cells2, retinae3, CO oxidation on platinum4 and oscillatory chemical systems such as the Belousov-Zhabotinsky (BZ) reaction5,6. In the last case, the spiral cores trace out circular or hypocycloidal trajectories, depending on the specific reaction conditions7-9. In addition, if the excitability of the BZ reaction is light-sensitive10-13, constant illumination has been shown to influence the dynamics of spiral waves14,15. Here we investigate the effect of illumination that is periodically modulated in time. We find that, for a single set of reaction conditions, the motion of the spiral cores can be forced to describe a wide range of open and closed hypocycloidal trajectories, in phase with the applied modulation frequency. Numerical simulations using a modified version of the Oregonator model16,17 of the BZ reaction reproduce this behaviour. We suggest that the modulation of excitability with weak external forces might be used as a means for controlling the dynamics of other excitable media.
Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei
2016-01-01
The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called “phase mechanism” described by the Zakharov-L’vov-Starobinets “S-theory” and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the “S-theory”, which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect. PMID:27113392
NASA Astrophysics Data System (ADS)
Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei
2016-04-01
The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called “phase mechanism” described by the Zakharov-L’vov-Starobinets “S-theory” and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the “S-theory”, which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect.
Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei
2016-01-01
The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called "phase mechanism" described by the Zakharov-L'vov-Starobinets "S-theory" and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the "S-theory", which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect. PMID:27113392
Electron-impact excitation-autoionization of helium in the S-wave limit
Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.
2004-10-01
Excitation of the autoionizing states of helium by electron impact is shown in calculations in the s-wave limit to leave a clear signature in the singly differential cross section for the (e,2e) process. It is suggested that such behavior should be seen generally in (e,2e) experiments on atoms that measure the single differential cross section.
Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study
NASA Astrophysics Data System (ADS)
Madami, M.; Iacocca, E.; Sani, S.; Gubbiotti, G.; Tacchi, S.; Dumas, R. K.; Åkerman, J.; Carlotti, G.
2015-07-01
Nanocontact spin-torque oscillators are devices in which the generation of propagating spin waves can be sustained by spin transfer torque. In the present paper, we perform combined electrical and optical measurements in a single experimental setup to systematically investigate the excitation of spin waves by a nanocontact spin-torque oscillator and their propagation in a N i80F e20 extended layer. By using microfocused Brillouin light scattering we observe an anisotropic emission of spin waves, due to the broken symmetry imposed by the inhomogeneous Oersted field generated by the injected current. In particular, spin waves propagate on the side of the nanocontact where the Oersted field and the in-plane component of the applied magnetic field are antiparallel, while propagation is inhibited on the opposite side. Moreover, propagating spin waves are efficiently excited only in a limited frequency range corresponding to wavevectors inversely proportional to the size of the nanocontact. This frequency range obeys the dispersion relation for exchange-dominated spin waves in the far field, as confirmed by micromagnetic simulations of similar devices. The present results have direct consequences for spin wave based applications, such as synchronization, computation, and magnonics.
Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas
NASA Astrophysics Data System (ADS)
Kavitha, L.; Lavanya, C.; Senthil Kumar, V.; Gopi, D.; Pasqua, A.
2016-04-01
We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales much shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.
Formation of virtual isthmus: A new scenario of spiral wave death after a decrease in excitability
NASA Astrophysics Data System (ADS)
Erofeev, I. S.; Agladze, K. I.
2015-11-01
Termination of rotating (spiral) waves or reentry is crucial when fighting with the most dangerous cardiac tachyarrhythmia. To increase the efficiency of the antiarrhythmic drugs as well as finding new prospective ones it is decisive to know the mechanisms how they act and influence the reentry dynamics. The most popular view on the mode of action of the contemporary antiarrhythmic drugs is that they increase the core of the rotating wave (reentry) to that extent that it is not enough space in the real heart for the reentry to exist. Since the excitation in cardiac cells is essentially change of the membrane potential, it relies on the functioning of the membrane ion channels. Thus, membrane ion channels serve as primary targets for the substances, which may serve as antiarrhythmics. At least, the entire group of antiarrhythmics class I (modulating activity of sodium channels) and partially class IV (modulating activity of calcium channels) are believed to destabilize and terminate reentry by decreasing the excitability of cardiac tissue. We developed an experimental model employing cardiac tissue culture and photosensitizer (AzoTAB) to study the process of the rotating wave termination while decreasing the excitability of the tissue. A new scenario of spiral wave cessation was observed: an asymmetric growth of the rotating wave core and subsequent formation of a virtual isthmus, which eventually caused a conduction block and the termination of the reentry.
Time-dependent wave selection for information processing in excitable media
NASA Astrophysics Data System (ADS)
Stevens, William M.; Adamatzky, Andrew; Jahan, Ishrat; Costello, Ben de Lacy
2012-06-01
We demonstrate an improved technique for implementing logic circuits in light-sensitive chemical excitable media. The technique makes use of the constant-speed propagation of waves along defined channels in an excitable medium based on the Belousov-Zhabotinsky reaction, along with the mutual annihilation of colliding waves. What distinguishes this work from previous work in this area is that regions where channels meet at a junction can periodically alternate between permitting the propagation of waves and blocking them. These valvelike areas are used to select waves based on the length of time that it takes waves to propagate from one valve to another. In an experimental implementation, the channels that make up the circuit layout are projected by a digital projector connected to a computer. Excitable channels are projected as dark areas and unexcitable regions as light areas. Valves alternate between dark and light: Every valve has the same period and phase, with a 50% duty cycle. This scheme can be used to make logic gates based on combinations of or and and-not operations, with few geometrical constraints. Because there are few geometrical constraints, compact circuits can be implemented. Experimental results from an implementation of a four-bit input, two-bit output integer square root circuit are given.
Three-dimensional structure of self-excited dust density waves under microgravity conditions
Arp, Oliver; Menzel, Kristoffer; Piel, Alexander
2008-09-07
Self-excited dust density waves in a dusty plasma, containing micrometer-sized particles, have been observed under microgravity conditions at low gas pressures and high dust densities. The waves emerge spontaneously and propagate from the void edge radially outwards to the plasma boundary. We found that the wave propagates obliquely to the local ion flow in regions with high electric fields close to the sheath, whereas it propagates parallel in the plasma bulk. So far the observation was limited to a fixed two-dimensional section through the discharge volume. Recent experiments were performed on parabolic flights in a parallel plate rf discharge, which used the technique of scanning video microscopy. This technique utilizes the high temporal coherence of the waves to reconstruct their full three-dimensional structure. The analysis yields a surprising global spatial coherence of the wave phenomenon.
Stress waves in an isotropic elastic plate excited by a circular transducer
NASA Technical Reports Server (NTRS)
Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.
1985-01-01
Steady state harmonic stress waves in an isotropic elastic plate excited on one face by a circular transducer are analyzed theoretically. The transmitting transducer transforms an electrical voltage into a uniform normal stress at the top of the plate. To solve the boundary value problem, the radiation into a half-space is considered. The receiving transducer produces an electrical voltage proportional to the average spatially integrated normal stress over its face due to an incident wave. A numerical procedure is given to evaluate the frequency response at a receiving point due to a multiply reflected wave in the near field. Its stability and convergence are discussed. Parameterization plots which determine the particular wave whose frequency response has maximum magnitude compared with other multiple reflected waves are given for a range of values of dimensionless parameters. The effects of changes in the values of the parameters are discussed.
Thermo-mechanical simulation of guided waves in pipes excited by laser pulses
NASA Astrophysics Data System (ADS)
Lim, Hyeong Uk; Hong, Jung-Wuk
2013-04-01
Ultrasonic guided waves have been widely utilized for the structural health monitoring (SHM) of structural components such as plates and pipes. In particular, the noncontact excitation of the pipe surfaces using laser pulses has shown several advantages in experiments by eliminating the bonding process of the dielectric patches on the curved surfaces and the complicated interpretation of the temperature effect on the bonding layers. However, the numerical simulation of the methodology requires thermo-mechanical coupling and large-scale computation. Therefore, the numerical efficiency of the spatial partitioning by deploying thermo-mechanical elements and mechanical elements is investigated. Then, the laser excitation on the surface is modeled in the form of heat flux, and the generated wave forms are observed. The formation and propagation of the guided waves are also represented numerically.
Tsai, Jun-Yi; Tsai, Ya-Yi; I, Lin
2015-01-15
The wave-particle dynamics for the evolutions of defects and surrounding pitchfork type waveforms of a weakly disordered self-excited dust acoustic wave is experimentally investigated in an rf dusty plasma system. Particle trajectories are tracked and correlated with waveform evolution to construct an Eulerian-Lagrangian wave-particle dynamical picture. It is found that the local accumulation and depletion of particles in the wave crest and rear, respectively, determines the local crest speed, and the growth and decay of the local crest height, which in turn determine the waveform evolution. The local crest height and the focusing and defocusing of particle trajectories due to the transverse force fields from the tilted wave crest and the non-uniform crest height along the wave crest are the key factors to determine the above particle accumulation and depletion. It explains the observations such as the lower speed of smaller crests, the straightening of the leading front of the pitchfork waveform associated with the transverse motion of defect to the open side, and the vertical defect gliding in the wave frame through the detachment of the strongly kinked pitchfork branch followed by its reconnection with the trailing crest.
Markov, G. A.; Belov, A. S.; Komrakov, G. P.; Parrot, M.
2012-03-15
The possibility of controlled excitation of ELF-VLF electromagnetic waves through modification of the F{sub 2} ionospheric layer by high-power high-frequency emission is demonstrated in a natural experiment by using the Sura midlatitude heating facility. The excited low-frequency waves can be used to explore the near-Earth space and stimulate the excitation of a magnetospheric maser.
π -Flux Dirac Bosons and Topological Edge Excitations in a Bosonic Chiral p -Wave Superfluid
NASA Astrophysics Data System (ADS)
Xu, Zhi-Fang; You, Li; Hemmerich, Andreas; Liu, W. Vincent
2016-08-01
We study the topological properties of elementary excitations in a staggered px±i py Bose-Einstein condensate realized in recent orbital optical lattice experiments. The condensate wave function may be viewed as a configuration space variant of the famous px+i py momentum space order parameter of strontium ruthenate superconductors. We show that its elementary excitation spectrum possesses Dirac bosons with π Berry flux. Remarkably, if we induce a population imbalance between the px+i py and px-i py condensate components, a gap opens up in the excitation spectrum resulting in a nonzero Chern invariant and topologically protected edge excitation modes. We give a detailed description of how our proposal can be implemented with standard experimental technology.
Millimeter- and submillimeter-wave spectrum of highly excited states of water
NASA Astrophysics Data System (ADS)
Pearson, J. C.; De Lucia, Frank C.; Anderson, Todd; Herbst, Eric; Helminger, Paul
1991-09-01
To facilitate studies of water in the interstellar medium and late-type stars, the frequencies of 30 new millimeter- and submillimeter-wave transitions of H2O-16 have been measured, which lie between 100 GHz and 600 GHz. This represents almost a doubling of the number of water lines that have been observed in the laboratory in this spectral region at high resolution. All of the newly observed lines are highly excited, lying between 2400 and 4200/cm above the ground level. Some of these have large excitation energies because of their high rotational states and others because they lie in excited vibrational states. These lines are potentially of substantial astrophysical significance because they are related to the study of interstellar masers and because their high excitation eliminates the atmospheric self-absorption associated with the more well-known water lines.