A Study of Alfven Wave Propagation and Heating the Chromosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2013-12-01
Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of
NASA Astrophysics Data System (ADS)
He, J.; Pei, Z. T.; Wang, L.; Tu, C. Y.; Marsch, E.; Yao, S.
2014-12-01
It is believed that MHD turbulence cascading is mainly caused by the collisions between Alfven waves, which propagate oppositely and are polarized perpendicularly to each other. Nonlinear interaction will vanish if the counter-propagating Alfven waves have their polarization aligned with each other. However, the Alfven waves satisfying these collision criteria have not yet been found in the solar wind observations. Here we report the existence of Alfven waves with opposite propagation and non-aligned polarization in the solar wind. In one case of anti-sunward magnetic sector, with RTN as the coordinates, the magnetic fluctuations in T-component (BT) are anti-correlated with the velocity fluctuations in T-component (VT), while BR and BN fluctuations are in positive correlation with VR and VN fluctuations, respectively. These features suggest a possible nonlinear interaction between outward propagating Alfven wave with polarization in T-direction and inward propagating Alfven wave with polarization in R&N-directions. Moreover, the associated proton kinetics shows the existence of field-aligned sunward beam rather than anti-sunward beam, which may indicate a parallel Landau heating by sunward kinetic Alfven waves. A statistical study including more cases is also conducted.
Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2007-12-15
Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves.
The effect of random Alfven waves on the propagation of hydromagnetic waves in a finite-beta plasma
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu; Namikawa, Tomikazu
1990-01-01
Using first-order smoothing theory, Fourier analysis and perturbation methods, the evolution equation of the wave spectrum as well as the nonlinear forces generated by random Alfven waves in a finite-beta plasma with phenomenological Landau-damping effects are obtained. The effect of microscale random Alfven waves on the propagation of large-scale hydromagnetic waves is also investigated by solving the mean-field equations. It is shown that parallel-propagating random Alfven waves are modulationally stable and that obliquely propagating random Alfven waves can be modulationally unstable when the energy of random waves is converted to slow magnetoacoustic waves that can be Landau-damped, providing a dissipation mechanism for the Alfven waves.
Propagation velocity of Alfven wave packets in a dissipative plasma
Amagishi, Y.; Nakagawa, H. ); Tanaka, M. )
1994-09-01
We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.
Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.
2015-12-01
Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.
NASA Technical Reports Server (NTRS)
Lichtenstein, B. R.; Sonett, C. P.
1979-01-01
The paper shows that the experimentally observed close alignment of magnetic field minimum variance direction with the average magnetic field for Alfven waves in the solar wind is consistent with theoretically predicted properties of plane large amplitude Alfven waves in the MHD approximation. The theoretical properties of these Alfven waves constrain the time averaged magnetic field to cluster around the direction of minimum variance, which is aligned with the wave normal. Thus, spacecraft magnetometer observations in the solar wind of minimum variance directions strongly peaked about the average magnetic field direction are consistent with plane large amplitude Alfven waves which have wave normals aligned with the directions of minimum variance. This does not imply that geometrical hydromagnetic calculations for Alfven wave propagation direction in the solar wind are incorrect, but there is a discrepancy between geometrical hydromagnetics theory and observations that IMF minimum variance directions tend to be aligned with the ideal Parker spiral instead of the radial direction.
Effect of two ion species on the propagation of shear Alfven waves of small transverse scale
Vincena, S. T.; Morales, G. J.; Maggs, J. E.
2010-05-15
The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.
Non-WKB Alfven waves in the solar wind: Propagation and reflection of pulses
NASA Technical Reports Server (NTRS)
Hollweg, J. V.
1995-01-01
The non-WKB propagation of Alfven waves has been studied either for harmonic waves, or in terms of the evolution of power spectra. Here we present analytical and numerical solutions for the propagation of pulses, the goal being to understand how waves reflect in a smoothly varying medium. We here limit our discussion to a radial magnetic field. If we launch an outward-propagating delta function, it leaves behind an inward-propagaing signal which is roughly a square wave whose amplitude is proportional to the area under the initial pulse. The inward-propagating signal also reflects, producing an outward propagating pulse which is roughly triangular in shape and which grows with time. These signals also oscillate if v is less than v(A), but they grow if v is greater than v(A). The result reported by us earlier, that the 'ingoing Elsasser variable' can have outgoing phase, is now understood to be a consequence of interference. The inward-propagating signal depends to lowest order on the integral of the outgoing waves which have preceded it. Thus the ingoing signal can be expected to develop as a random walk. This will affect the radial evolution of cross-helicity in the solar wind.
On the dispersion relations for parametric instabilities of parallel-propagating Alfven waves
NASA Technical Reports Server (NTRS)
Yajanti, Venku; Hollweg, Joseph V.
1993-01-01
We consider the dispersion relation for the parametric instabilities of large-amplitude circularly polarized Alfven waves propagating parallel to the ambient magnetic field. A linear perturbation analysis is employed, and the perturbations are taken to propagate along the ambient field. We present an analysis based on Floquet's theorem. The result is a hierarchy of dispersion relations. However, all the dispersion relations are found to be equivalent to the one obtained via the standard analysis; the differences between them are due only to how ca and k are defined. Thus we conclude that physically there is really only one dispersion relation, namely the 'electrostatic dispersion relation', which is in agreement with earlier works. However, we disagree with Vinas and Goldstein (1991), who obtained additional dispersion relations which they have called the 'electromagnetic dispersion relations'. Their additional dispersion relations are a consequence of first truncating the dispersion relation for obliquely propagating perturbations and then taking the limit of parallel-propagating perturbations.
Propagation of large amplitude Alfven waves in the solar wind neutral sheet
NASA Technical Reports Server (NTRS)
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.
Matsumoto, Takuma; Shibata, Kazunari
2010-02-20
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.
Destabilisation of shear flows by counter-propagating Alfven waves at localised magnetic fields
NASA Astrophysics Data System (ADS)
Griffiths, Stephen
2016-04-01
The instability of shear flows in the presence of magnetic fields is fundamental to understanding a wide range of geophysical and astrophysical phenomena. We investigate the simplest paradigm problem of interest, which is the linear instability of a plane parallel shear flow with aligned field, to two-dimensional disturbances. We focus on cases where the shear flow has no inflexion points and is thus hydrodynamically stable, and show how such flows can be destabilised by the addition of two thin regions of magnetic field. An explicit analytical solution is presented for the case of a flow with uniform shear and where the magnetic fields are of infinitesimal width, showing that there is always instability for some range of along-stream wavenumbers. The strength of the instability is reduced for the more realistic case of magnetic fields of finite width, which can be investigated numerically, or analytically using matched-asymptotic expansions. The instability can be unambiguously attributed to the mutual amplification of a pair of counter-propagating Alfven waves, and should therefore be viewed as an extension to astrophysical fluid dynamics of various classical shear instabilities in geophysical fluid dynamics involving counter-propagating Rossby waves or gravity waves.
Magnetic Helicity of Alfven Simple Waves
NASA Technical Reports Server (NTRS)
Webb, Gary M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.
2010-01-01
The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase varphi=k_0(z-lambda t), where k_0 is the wave number and lambda is the group velocity of the wave, and (b)\\ the generalized Barnes (1976) simple Alfven wave in which the wave normal {bf n} moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Aifvenic fluctuations and structures observed in the solar wind are discussed.
Magnetic Helicity of Alfven Simple Waves
NASA Astrophysics Data System (ADS)
Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.
2010-12-01
The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase \\varphi=k0(z-λ t), where k0 is the wave number and λ is the group velocity of the wave, and (b) the generalized Barnes (1976) simple Alfvén wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.
PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES
Russell, A. J. B.; Fletcher, L.
2013-03-10
How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.
NASA Astrophysics Data System (ADS)
Rankin, R.; Sydorenko, D.
2015-12-01
Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.
Do interplanetary Alfven waves cause auroral activity?
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron; Goldstein, Melvyn L.
1990-01-01
A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
The many faces of shear Alfven waves
Gekelman, W.; Vincena, S.; Van Compernolle, B.; Morales, G. J.; Maggs, J. E.; Pribyl, P.; Carter, T. A.
2011-05-15
One of the fundamental waves in magnetized plasmas is the shear Alfven wave. This wave is responsible for rearranging current systems and, in fact all low frequency currents in magnetized plasmas are shear waves. It has become apparent that Alfven waves are important in a wide variety of physical environments. Shear waves of various forms have been a topic of experimental research for more than fifteen years in the large plasma device (LAPD) at UCLA. The waves were first studied in both the kinetic and inertial regimes when excited by fluctuating currents with transverse dimension on the order of the collisionless skin depth. Theory and experiment on wave propagation in these regimes is presented, and the morphology of the wave is illustrated to be dependent on the generation mechanism. Three-dimensional currents associated with the waves have been mapped. The ion motion, which closes the current across the magnetic field, has been studied using laser induced fluorescence. The wave propagation in inhomogeneous magnetic fields and density gradients is presented as well as effects of collisions and reflections from boundaries. Reflections may result in Alfvenic field line resonances and in the right conditions maser action. The waves occur spontaneously on temperature and density gradients as hybrids with drift waves. These have been seen to affect cross-field heat and plasma transport. Although the waves are easily launched with antennas, they may also be generated by secondary processes, such as Cherenkov radiation. This is the case when intense shear Alfven waves in a background magnetoplasma are produced by an exploding laser-produced plasma. Time varying magnetic flux ropes can be considered to be low frequency shear waves. Studies of the interaction of multiple ropes and the link between magnetic field line reconnection and rope dynamics are revealed. This manuscript gives us an overview of the major results from these experiments and provides a modern
Propagation of the shear Alfven wave from a skin-depth- scale source into nonuniform plasmas
NASA Astrophysics Data System (ADS)
Vincena, Stephen Thomas
Experiments are performed in the LArge Plasma Device (LAPD) at UCLA to study the propagation of the shear Alfvén wave into two spatial nonuniformities: a parallel gradient in the background magnetic field, and a perpendicular gradient in both electron temperature and density. The waves are excited by modulating an electron current drawn to a disk antenna with a radius on the order of the electron skin-depth, d=c/wpe . In the first experiment, the wave is launched with frequency w equal to one- half the local ion-cyclotron frequency, wci and propagates along a slowly decreasing background field to where w=wci . The measured wavelength decreases in accord with WKB solutions of the dispersion relation including finite ion temperature. Wave damping is also observed, and the best agreement with theory requires the inclusion of electron dissipation. Using this best-fit model, theory is used to identify the damping contributions of both species: within one wavelength of the antenna w equals 0.94wci and 51% of the launched energy is dissipated by the electrons (equally by Landau damping and Coulomb collisions). Above 0.94wci , ion-cyclotron damping dominates. Within the next wavelength, w equals wci by which point the ions have absorbed 45% of the initial energy, and the electrons an additional 3%, for a total of 99% dissipated. The wave is also observed to develop an axial component, with the maximum ratio: B∥/B⊥~0.5 at w~0.85wci . The axial component is also studied with experiment and theory in a uniform magnetic field. In the second experiment, the wave is launched in the center of the plasma column where the Alfvén speed, vA is one-half the electron thermal speed, ve . The wave propagates radially outward to the point where vA=ve . Two deviations from the expected radial energy distribution in a uniform plasma are observed: a peak at the plasma edge near vA=ve which grows and decays within two wave periods of the respective turn on and turn off of the antenna; a
Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui
2013-09-15
Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.
Electron acceleration by inertial Alfven waves
Thompson, B.J.; Lysak, R.L.
1996-03-01
Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when the transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.
Ducted kinetic Alfven waves in plasma with steep density gradients
Houshmandyar, Saeid; Scime, Earl E.
2011-11-15
Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS
Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu
2012-02-10
We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Riemann solvers and Alfven waves in black hole magnetospheres
NASA Astrophysics Data System (ADS)
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
Cusp Dynamics-Particle Acceleration by Alfven Waves
NASA Technical Reports Server (NTRS)
Ergun, Robert E.; Parker, Scott A.
2005-01-01
Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.
Toroidal Alfven wave stability in ignited tokamaks
Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.
1989-01-01
The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.
The transmission of Alfven waves through the Io plasma torus
NASA Astrophysics Data System (ADS)
Wright, A. N.; Schwartz, S. J.
1989-04-01
The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.
Conversion of compressional Alfven waves into ion-cyclotron waves in inhomogeneous magnetic fields
Amagishi, Y.; Tsushima, A.; Inutake, M.
1982-04-26
Axisymmetric compressional Alfven (fast) waves, which propagate into a region of an increasing magnetic field in a cylindrical plasma, are observed to be converted into ion-cyclotron (slow) waves via ion-cyclotron resonances.
PROPAGATING COUPLED ALFVEN AND KINK OSCILLATIONS IN AN ARBITRARY INHOMOGENEOUS CORONA
Pascoe, D. J.; Wright, A. N.; De Moortel, I.
2011-04-10
Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. We perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low {beta} plasma. We consider the cases of distorted cylindrical flux tubes and a randomly generated inhomogeneous medium. When density structuring is present, mode coupling in inhomogeneous regions leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave is observed as energy is transferred to the local Alfven mode. In all cases considered, modest changes in density were capable of efficiently converting energy from the driving footpoint motion to localized Alfven modes. We have demonstrated that mode coupling efficiently couples propagating kink perturbations to Alfven modes in an arbitrary inhomogeneous medium. This has the consequence that transverse footpoint motions at the base of the corona will deposit energy to Alfven modes in the corona.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Particle simulation of Alfven waves excited at a boundary
Tsung, F.S.; Tonge, J.W.; Morales, G.J.
2005-01-01
A particle-in-cell (PIC) code has been developed that is capable of describing the propagation of compressional and shear Alfven waves excited from a boundary. The code is used to elucidate the properties of Alfven wave cones radiated from sources having transverse scale comparable to the electron skin depth. Good agreement between theoretical predictions and simulation results is found over a wide range of frequencies. An investigation has been undertaken of the effect of hot ions on the Alfven wave cones. The PIC simulations demonstrate that as the ion temperature is increased there is a reversal in the cone angle. The reversal implies that there is a cross-field focusing of the shear Alfven waves. This is a feature which is presently being considered in studies of field-line resonances in the earth's magnetic field. The PIC results also illustrate the damping of shear modes due to the Doppler-shifted cyclotron resonance with hot ions.
On reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.
1993-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the
Reflection of Alfven waves in the solar wind
NASA Technical Reports Server (NTRS)
Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.; Moore, R. L.
1994-01-01
We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare Wentzel-Kramers-Brillouin (WKB) and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer and that non-WKB Alfven waves are no more effective in accelerating the solar wind than in WKB waves. There are several recently published papers that seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purposse of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinimann and Olbert, namely, calculate the efficieny of Alfven wave reflection by using the reflection coefficient and identfy the region of strongest wave reflection in different wind models. To achieve these goals, we investigate the influence of temperature, electron desity distribution, wind velocity, and magnetic field strength on te waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7)/cu cm. In these models as well as in the models with lower temperatures and higher densities Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective
Emission of radiation induced by pervading Alfven waves
Zhao, G. Q.; Wu, C. S.
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1994-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.
Magnetospheric filter effect for Pc 3 Alfven mode waves
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.
1995-01-01
We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.
Nonlinear standing Alfven wave current system at Io: Theory
Neubauer, F.M.
1980-03-01
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.
Nonlinear Landau damping and Alfven wave dissipation
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Alfven wave. DOE Critical Review Series
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Solitary kinetic Alfven waves in dusty plasmas
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-08-15
Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.
Alfvenic waves in solar spicules
NASA Astrophysics Data System (ADS)
Ebadi, Hossein
2016-07-01
We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.
Drift-Kinetic Alfven Waves Observed near a Reconnection X Line in the Earth's Magnetopause
Chaston, C.C.; Phan, T.D.; Bonnell, J.W.; Mozer, F.S.; Acuna, M.; Goldstein, M.L.; Balogh, A.; Andre, M.; Reme, H.; Fazakerley, A.
2005-08-05
We identify drift-kinetic Alfven waves in the vicinity of a reconnection X line on the Earth's magnetopause. The dispersive properties of these waves have been determined using wavelet interferometric techniques applied to multipoint observations from the Cluster spacecraft. Comparison of the observed wave dispersion with that expected for drift-kinetic Alfven waves shows close agreement. The waves propagate outwards from the X line suggesting that reconnection is a kinetic Alfven wave source. Energetic O{sup +} ions observed in these waves indicate that reconnection is a driver of auroral ion outflow.
Alfven Waves in Interstellar Gasdynamics
NASA Astrophysics Data System (ADS)
McKee, Christopher F.; Zweibel, Ellen G.
1995-02-01
Magnetohydrodynamic (MHD) waves contribute a significant pressure in both the diffuse interstellar medium and in molecular clouds. Alfvén waves are subject to less damping than compressive MHD waves and are therefore likely to be the dominant mode in astrophysical environments. Provided that the medium in which the waves are propagating is slowly varying, the dynamical effects of ideal MHD waves are governed by equations derived by Dewar. We show that these equations are similar in form to the equations of radiation hydrodynamics to order υ/c, provided that the radiation is nearly isotropic. For the case of Alfvén waves, the pressure due the waves, Pw, is isotropic. Furthermore, Pw is directly observable through the non- thermal line width σnt; for a randomly oriented field, Pw = (3/2)ρσ2nt. In several simple cases, including that in which the Alfvén waves are isotropic, that in which the density is spatially uniform, and that in which the medium undergoes a self-similar contraction or expansion, undamped Alfvén waves behave like a gas with a ratio of specific heats of 3/2; i.e., pressure variations are related to density variations by Δ ln Pw = γwΔ ln ρ with γw = 3/2. In a spatially nonuniform cloud, γw generally depends on position; an explicit expression is given. In the opposite limit of rapid variations, such as in a strong shock, the wave magnetic field behaves like a static field and the wave pressure can increase as fast as ρ2, depending on the orientation of the shock and the polarization of the waves. The jump conditions for a shock in a medium containing MHD waves are given. For strong nonradiative shocks, neither the wave pressure nor the static magnetic field pressure is significant downstream, but for radiative shocks these two pressures can become dominant. Alfvén waves are essential in supporting molecular clouds against gravitational collapse. In a static cloud with a nonuniform density ρ(r), the spatial variation of the wave
Solar Coronal Heating via Alfven Wave Turbulence
Bigot, B.; Galtier, S.; Politano, H.
2010-03-25
A short review is given about the self-consistent MHD model of solar coronal heating recently proposed by Bigot et al.(2008) in which the dynamical effect of the background magnetic field along a coronal structure is taken into account through exact results from Alfven wave turbulence. The main properties of the model are given as well as the heating rate and the microturbulent velocity obtained in the case of coronal loops. The conclusion is that Alfven wave turbulence may produce an efficient background heating for the solar corona.
Macroscale particle simulation of kinetic Alfven waves
NASA Technical Reports Server (NTRS)
Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, Akira
1987-01-01
Two types of simulations of the kinetic Alfven wave are presented using a macroscale particle simulation code (Tanaka and Sato, 1986) which enables individual particle dynamics to be followed in the MHD scales. In this code, low frequency electromagnetic fields are solved by eliminating high frequency oscillations such as the light modes, and the scalar potential electric field is solved by eliminating Lagrangian oscillations. The dependences of the frequency and the Landau damping on the perpendicular wavenumber were studied, and good agreement was found between simulation and theoretical predictions. Some fundamental nonlinear interactions of the kinetic Alfven wave with the particles (parallel acceleration of the electrons) were also noted.
Weakening of magnetohydrodynamic interchange instabilities by Alfven waves
Benilov, E. S.; Hassam, A. B.
2008-02-15
Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.
Analysis and gyrokinetic simulation of MHD Alfven wave interactions
NASA Astrophysics Data System (ADS)
Nielson, Kevin Derek
The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
Shear-Alfven Waves in Gyrokinetic Plasmas
W.W.Lee; J.L.V.Lewandowski; T.S. Hahm; Z. Lin
2000-10-18
It is found that the thermal fluctuation level of the shear-Alfven waves in a gyrokinetic plasma decreases with plasma b(* cs2/uA2), where cs is the ion acoustic speed and uA is the Alfven velocity. This unique thermodynamic property based on the fluctuation-dissipation theorem is verified in this paper using a new gyrokinetic particle simulation scheme, which splits the particle distribution function into the equilibrium part as well as the adiabatic and nonadiabatic parts.
The interaction of Io's Alfven waves with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Wright, A. N.
1987-09-01
A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.
Kinetic Alfven waves and plasma transport at the magnetopause
Johnson, J.R.; Cheng, C.Z.
1997-05-01
Large amplitude compressional type waves, with frequencies ranging from 10--500 mHz, are nearly always found in the magnetosheath near the magnetopause where there are large gradients in density, pressure and magnetic field. As compressional waves propagation to the magnetopause, there gradients efficiently couple them with shear/kinetic Alfven waves near the Alfven field-line resonance location ({omega} = k{sub {parallel}} v{sub A}). The authors present a solution of the kinetic-MHD wave equations for this process using a realistic equilibrium profile including full ion Larmor radius effects and wave-particle resonance interactions for electrons and ions to model the dissipation. For northward IMF a KAW propagates backward to the magnetosheath. For southward IMF the wave remains in the magnetopause but can propagate through the k{sub {parallel}} = 0 location. The quasi-linear theory predicts that KAWs produce plasma transport with a diffusion coefficient D{sub {perpendicular}} {approximately} 10{sup 9} m{sup 2}/s and plasma convection on the order of 1 km/s. However, for southward IMF additional transport can occur because magnetic islands form at the k{sub {parallel}} = 0 location. Due to the broadband nature of the observed waves these islands can overlap leading to stochastic transport which is much larger than that due to quasilinear effects.
Compressibility and cyclotron damping in the oblique Alfven wave
Harmon, J.K. )
1989-11-01
Compressibility, magnetic compressibility, and damping rate are calculated for the obliquely propagating Alfven shear wave in high- and low-beta Vlasov plasmas. There is an overall increase in compressibility as beta is reduced from {beta} = 1 to {beta}{much lt}1. For high obliquity {theta} and low frequency ({omega} {much lt} {Omega}{sub p}) the compressibility C follows a k{sup 2} wave number dependence; for high {theta} and low {beta} the approximation C(k) {approx} k{sub n}{sup 2} {identical to} (kV{sub A}/{Omega}{sub p}){sup 2} holds for wave numbers up to the proton cyclotron resonance, where {Omega}{sub p} is the proton cyclotron frequency and V{sub A} is the Alfven velocity. Strong proton cyclotron damping sets in at k{sub n} of the order of unity; the precise k{sub n} position of the damping cutoff increases with decreasing {beta} and increasing {theta}. Hence compressibility can exceed unity near the damping cutoff for high-{theta} waves in a low-{beta} plasma. The magnetic compressibility of the oblique Alfven wave also has a k{sup 2} dependence and can reach a maximum value of the order of 10% at high wave number. It is shown that Alfven compressibility could be the dominant contributor to the near-Sun solar wind density fluctuation spectrum for k>10{sup {minus}2} km{sup {minus}1} and hence might cause some of the flattening at high wave number seen in radio scintillation measurements. This would also be consistent with the notion that the observed density spectrum inner scale is a signature of cyclotron damping.
NASA Astrophysics Data System (ADS)
Song, Yan; Lysak, Robert
2015-04-01
In Earth's auroral acceleration regions, the nonlinear interaction of incident and reflected Alfven wave packets can collectively create non-propagating electromagnetic plasma structures, such as the Transverse Alfvenic Double Layer (TA-DL) and Charge Hole (TA-CH). These structures, such as TA-DL, encompass localized strong electrostatic electric fields, nested in low density cavities and surrounded by a local dynamo. Such structures constitute powerful high energy particle accelerators causing auroral particle acceleration and creating both Alfvenic and quasi-static discrete auroras. Similar electromagnetic plasma structures should also be generated by Alfvenic interaction in other inhomogenous cosmic plasma regions, and would constitute effective high energy particle accelerators.
Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma
Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui; Li, Xing
2013-07-15
Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.
Alfven waves and associated energetic ions downstream from Uranus
NASA Astrophysics Data System (ADS)
Zhang, M.; Belcher, J. W.; Richardson, J. D.; Smith, C. W.
1991-02-01
Low-frequency waves have been observed in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.
Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2007-01-01
Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.
Magnetohydrodynamic plasma instability driven by Alfven waves excited by cosmic rays
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Webb, G. M.
1984-04-01
Hydrodynamical equations describing the mutual interaction of cosmic rays, thermal plasma, magnetic field, and Alfven waves scattering the cosmic rays used in cosmic ray shock acceleration theory are analyzed for long-wavelength linear compressible instabilities. It is shown that the backward propagating slow magnetoacoustic mode is driven convectively unstable by the wave pressure of self-excited Alfven waves. The marginal stability curve is derived and the stabilizing effects of a preexisting wave field and propagation oblique to the magnetic field are discussed along with the dependence of the growth rates of the instability on the various parameters. A similar analysis is performed for a plasma which does not behave adiabatically, being dissipatively heated by the self-excited Alfven field. This system is found to be unstale to compressions associated with both backward and forward propagating slow magnetoacoustic waves.
Ulysses Observations of Alfven and Magnetosonic Waves at High Latitude
NASA Technical Reports Server (NTRS)
Smith, Edward J.
1997-01-01
Ulysses observations provide a unique opportunity to study diverse problems related to Alfven and magnetosonic waves. The large amplitude of the Alfven waves influences the distribution functions of the spiral angle, the azimuthal field component and, possibly, the radial component such that their averages are not equal to their most probable values.
Alfven waves and associated energetic ions downstream from Uranus
Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )
1991-02-01
The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.
Emission of Alfven Waves by Planets in Close Orbits
NASA Astrophysics Data System (ADS)
MacGregor, Keith B.; Pinsonneault, M. H.
2011-01-01
We examine the electrodynamics of a conducting planet orbiting within a magnetized wind that emanates from its parent star. When the orbital motion differs from corotation with the star, an electric field exists in the rest frame of the planet, inducing a charge separation in its ionosphere. Because the planet is immersed in a plasma, this charge can flow away from it along the stellar magnetic field lines it successively contacts in its orbit. For sufficiently rapid orbital motion, a current system can be formed that is closed by Alfvenic disturbances that propagate along field lines away from the planet. Using a simple model for the wind from a Sun-like star, we survey the conditions under which Alfven wave emission can occur, and estimate the power radiated in the form of linear waves for a range of stellar, planetary, and wind properties. For a Jupiter-like planet in a close (a < 0.10 AU) orbit about a solar-type star, the emitted wave power can be as large as 1027 erg/s. While only a small influence on the planet's orbit, a wave power of this magnitude may have consequences for wind dynamics and localized heating of the stellar atmosphere. NCAR is sponsored by the NSF.
HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE
Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.
2011-07-20
A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Esser, R.; Jayanti, V.
1993-01-01
The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2013-12-01
The nonlinear interaction of incident and reflected Alfven wave packets in auroral acceleration regions can create non-propagating electromagnetic-plasma structures, such as transverse Alfvenic double layers and charge holes. These dynamical structures are often characterized by localized strong electrostatic electric fields, localized density cavities and enhanced magnetic or mechanical stresses, and are responsible for auroral particle acceleration and the formation of both Alfvenic and quasi-static inverted-V discrete auroras. Similar electromagnetic-plasma structures should also be generated in other cosmic plasmas, and would constitute effective high energy accelerators of charged particles in cosmic plasmas.
Parametric coupling of low frequency whistler to Alfven wave in a plasma
Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.
2009-12-15
The parametric decay of a large amplitude electromagnetic wave in the ion cyclotron range of frequency into a compressional Alfven wave and an electromagnetic sideband wave in a magnetized plasma is investigated. The pump wave propagates in the direction of ambient magnetic field whereas the decay waves propagate at oblique angles. When the pump wave is left circularly polarized the decay is not permitted kinematically as the momentum of pump photon always exceeds the sum of momenta of the decay wave photons. For the right circularly polarized whistler mode pump the decay is permitted with sideband nearly right circularly polarized. The density perturbation associated with the Alfven wave couples with the pump driven oscillatory velocities of ions and electrons to produce a current driving the sideband. The sideband and the pump exert pondermotive force on ions and electrons that drive the Alfven wave. The frequency and growth rate of the Alfven wave increase with the normalized pump frequency. The threshold power density, determined by the collisional damping rates of the decay waves is rather modest.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS
Galinsky, V. L.; Shevchenko, V. I.
2013-01-20
A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.
Spectral gap of shear Alfven waves in a periodic array of magnetic mirrors
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Chen, Guangye; Breizman, B. N.; Vincena, S.; Carter, T.; Leneman, D.; Gekelman, W.; Pribyl, P.; Brugman, B.
2008-01-15
A multiple magnetic mirror array is formed at the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] to study axial periodicity-influenced Alfven spectra. Shear Alfven waves (SAW) are launched by antennas inserted in the LAPD plasma and diagnosed by B-dot probes at many axial locations. Alfven wave spectral gaps and continua are formed similar to wave propagation in other periodic media due to the Bragg effect. The measured width of the propagation gap increases with the modulation amplitude as predicted by the solutions to Mathieu's equation. A two-dimensional finite-difference code modeling SAW in a mirror array configuration shows similar spectral features. Machine end-reflection conditions and damping mechanisms including electron-ion Coulomb collision and electron Landau damping are important for simulation.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
Stellar winds with non-WKB Alfven waves 1: Wind models for solar coronal conditions
NASA Astrophysics Data System (ADS)
MacGregor, K. B.; Charbonneau, P.
1994-07-01
We have constructed numerical models for stationary, wind-type outflows that include treatment of the force produced by propagating Alfven waves. We make no assumptions regarding the relative sizes of the wavelengths of such disturbances and the scale lengths that characterize the variation of the physical properties of the expanding stellar atmosphere. Consequently, our models take account the process of Alfven wave reflection, and provide for dynamical effects arising from the simultaneous presence of outward and inward traveling waves in the wind. For physical conditions like those prevailing in the outer solar corona and wind, we find that even relatively high frequency, short wavelength waves can suffer some reflection from the gradient in Alfven speed at the vase of the flow. Among the consequences of the interaction between outward and inward directed perturbations in the sub-Alfvenic portion of the wind is a reduction in the magnitude of the time-averaged wave force relative to its value in the Wentzel-Kramer-Brillouin (WKB) (i.e., short-wavelenght) limit. As a result, the flow velocities of our models interior to the Alfven radius are smaller than those of corresponding WKB models. For models containing very low frequency, long wavelength waves, a substantial amount of wave reflection can also take place in the super-Alvenic portion of the wind. The resulting modifications to the spatial dependences of the eave magnetic and velocity amplitudes can lead to a wave force whose magnitude at large distances exceeds that of an equivalent WKB solution.
Asgari-Targhi, M.; Van Ballegooijen, A. A.
2012-02-10
It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.
Ground observations of kinetic Alfven waves
Kloecker, N.; Luehr, H.; Robert, P.; Korth, A.
1985-01-01
Ground-based observations with the EISCAT magnetometer of locally confined intense drifting current systems and Geos-2 measurements during four events in November and December 1982 are examined. In the ground-based measurements near the Harang discontinuity, the events are characterized by strong pulsations with amplitudes in the horizontal component up to 1000 nT and periods of about 300 s and longer. They occur in the evening hours adjacent to the poleward side of the discontinuity with the onset of a substorm; at the same time, the inner edge of the plasma sheet passes the Geos-2 position, magnetically conjugate to ground stations. It is shown that the events can be explained in terms of kinetic Alfven waves. 8 references.
Effect of Dust Grains on Solitary Kinetic Alfven Wave
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-09-07
Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.
Interplanetary Alfven waves and auroral (substorm) activity: IMP 8
Tsurutani, B.T.; Gould, T.; Goldstein, B.E. ); Gonzalez, W.D. ); Sugiura, Masahisa )
1990-03-01
Almost year of IMP 8 interplanetary magnetic field and plasma data (Days 1-312, 1979) have been examined to determine the interplanetary causes of geomagnetic AE activity. The nature of the interplanetary medium (Alfvenic or non-Alfvenic) and the B{sub 2} correlation with AE were examined over 12-hour increments throughout the study. It is found that Alfvenic wave intervals (defined as V{sub x}-B{sub x} cross-correlation coefficients of >0.6) are present over 60% of the time and the southward component of the Alfven waves is well correlated with AE (average peak correlation coefficient 0.62), with a median lag of 43 min. The most probable delay of AE from B{sub s} is considerably shorter, about 20-25 min. Southward magnetic fields during non-Alfvenic intervals (V{sub x}-B{sub x} cross-correlation coefficients of < 0.4) are equally effective in producing geomagnetic activity. Peak correlation coefficients and lags are similar to those of Alfvenic intervals. From this statistical study, no major differences in the magnetospheric response to Alfvenic and non-Alfvenic intervals were obvious. The high-intensity long-duration continuous AE activity (HILDCAA) events discussed previously by Tsurutani and Gonzalez (1987) are demosntrated to be caused by the southward components of the Alfven waves, presumably through the process of magnetic reconnection. The lag times of AE from B{sub s} were variable from event to event (and at different times within the Alfven wave train), ranging from 45 min to as little as 0 min. The cause of this variable delay is somewhat surprising and is not presently well understood.
The Source of Alfven Waves That Heat the Solar Corona
NASA Technical Reports Server (NTRS)
Ruzmaikin, A.; Berger, M. A.
1998-01-01
We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.
Excitation of Alfven waves by a spiraling ion beam in the Large Plasma Device
NASA Astrophysics Data System (ADS)
Tripathi, Shreekrishna; van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Heidbrink, William; Carter, Troy
2013-10-01
A hydrogen ion beam (15 kV, 10 A) has been obliquely injected from the end of the Large Plasma Device (LAPD) into a large magnetoplasma (n ~1012 cm-3, Te ~ 4 eV, B = 1.0 - 1.8 kG, 19 m long, 0.6 m diam) for performing fusion-relevant fast-ion studies. The beam was produced using a recently upgraded ion source that utilizes a hot-cathode LaB6 plasma source and a multi-aperture three-grid beam-extractor. Measurements of the beam profiles at multiple axial locations (up to 18 m distance from the source) have evinced a spiraling ion-beam (current-density ~ 60 mA/cm2, pitch angle in the plasma ~ 53°) that propagates with an Alfvenic speed (beam speed/Alfven speed = 0.5 - 1.2). Although the beam generates other waves, we will focus on the spontaneous generation of shear Alfven waves by the beam. To investigate the role of the resonant wave-particle interaction, an Alfven wave in the direction of the beam propagation was launched from an antenna. The ratio of beam-speed to wave phase-speed was varied. Initial results demonstrate spatial growth of the launched wave under suitable conditions for the resonant wave particle interaction. Work supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.
Alfven wave filamentation and dispersive phase mixing
Sulem, P. L.; Passot, T.; Laveder, D.; Borgogno, D.
2009-11-10
The formation of three-dimensional magnetic structures from quasi-monochromatic left-hand polarized dispersive Alfven waves, under the effect of transverse collapse and/or the lensing effect of density channels aligned with the ambient magnetic field is discussed, both in the context of the usual Hall-MHD and using a fluid model retaining linear Landau damping and finite Larmor radius corrections. It is in particular shown that in a small-{beta} plasma (that is stable relatively to the filamentation instability in the absence of inhomogeneities), a moderate density enhancement leads the wave energy to concentrate into a filament whose transverse size is prescribed by the dimension of the channel, while for a strong density perturbation, this structure later on evolves to thin helical ribbons where the strong gradients permit dissipation processes to become efficient and heat the plasma. The outcome of this 'dispersive phase mixing' that leads to small-scale formation on relatively extended regions contrasts with the more localized oblique shocks formed in the absence of dispersion. Preliminary results on the effect of weak collisions that lead to an increase of the transverse ion temperature are also briefly mentioned.
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
Nonlinear evolution of Alfven waves in a finite beta plasma
Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )
1989-12-01
A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.
Enhanced damping of Alfven waves in the solar corona by a turbulent wave spectrum
NASA Technical Reports Server (NTRS)
Kleva, Robert G.; Drake, J. F.
1992-01-01
The effect of a background spectrum of Alfven waves on the rate of dissipation of a test shear Alfven wave is numerically calculated. The results demonstrate that as the classical resistivity eta and classical viscosity mu become small, the damping rate of the Alfven wave remains large and depends only on the amplitude for the scalar potential of the wave spectrum and the wavenumber of the Alfven wave. The damping rate is virtually independent of eta and mu. The wave spectrum need not be turbulent or stochastic to affect the damping rate. The dissipation rate is nonlinear enhanced by nonstochastic spectra as well as by stochastic spectra if two conditions are met. First, the perpendicular magnetic field associated with Alfven wave spectrum must exceed a certain collision-frequency threshold and second, for nonstochastic spectra only, the magnetic field must exceed a threshold proportional to the parallel wavenumber of the shear Alfven wave. These conditions can be easily satisfied in the solar corona.
On the existence of finite amplitude, transverse Alfven waves in the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Sari, J. W.
1977-01-01
Interplanetary magnetic field data from the Mariner 10 spacecraft were examined for evidence of small and finite amplitude transverse Alfven waves, general finite amplitude Alfven waves, and magnetosonic waves. No evidence for transverse Alfven waves was found. Instead, the field fluctuations were found to be dominated by the general finite amplitude Alfven wave. Such wave modes correspond to non-plane-wave solutions of the nonlinear magnetohydrodynamic equations.
THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING
Antolin, P.; Shibata, K. E-mail: shibata@kwasan.kyoto-u.ac.j
2010-03-20
In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. New observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfven wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s{sup -1}) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several
Observation of mode conversion of m = minus 1 fast waves on the Alfven resonance layer
Amagishi, Y. )
1990-03-12
Fast waves or MHD surface waves of {ital m}={minus}1 (poloidal mode number of left-hand rotation) have been observed to be mode converted on the Alfven resonance layer. The converted waves are a quasielectrostatic form of the shear Alfven waves, i.e., kinetic Alfven wave and/or the resistive mode.
Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.
2013-03-15
Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.
Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence
Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.
2012-08-15
The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.
NASA Technical Reports Server (NTRS)
Ofman, L.; Davila, J. M.
1995-01-01
Coronal hole regions are well known sources of high-speed solar wind, however to account for the observed properties of the solar wind a source of momentum and heat must be included. Alfven waves were suggested as the possible source of heating that accelerates the solar wind. We investigate the propagation of the Alfven waves in coronal holes via numerical solution of the linearized 2-D resistive MHD equations in slab geometry. The Alfven waves are driven at the lower boundary of the coronal hole and propagate into the corona. The waves are reflected at the coronal hole boundary and part of the wave energy leaks out of the coronal hole. We compare the calculated wavelengths and the attenuation rate of the fast mode Alfven waves in the leaky waveguide formed by the coronal hole with the analytical ideal MHD solutions. The formation of resonance heating layers is found to occur when shear Alfven waves propagate in an inhomogeneous coronal hole. The heating is enhanced when fast mode waves couple to the shear Alfven waves. The narrow heating layers are formed near the location of the ideal resonance, which might occur near the coronal hole boundary for a nearly constant density coronal hole, surrounded by a higher density plasma. We investigate the dependence of the heating on the driver frequency, the Lundquist number, and on the heliocentric distance. and find that the low frequency Alfven waves can be an efficient source of heating at large distances from the Sun. We discuss the relation of our results to the observed properties of high-speed solar wind and coronal holes.
Ion-neutral collision effect on an Alfven wave
Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )
1993-07-19
This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-15
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Generation of kinetic Alfven waves by beam-plasma interaction in non-uniform plasma
Hong, M. H.; Lin, Y.; Wang, X. Y.
2012-07-15
This work reports a novel mechanism of the generation of kinetic Alfven waves (KAWs) using a two-dimensional hybrid simulation: the KAWs are generated by ion beam-plasma interaction in a non-uniform plasma boundary layer, in which the bulk velocity of the ion beam is assumed to be parallel to the ambient magnetic field. As a result of the beam-plasma interaction, strong shear Alfven waves as well as fast mode compressional waves are first generated on the side of the boundary layer with a high density and thus a low Alfven speed, propagating along the background magnetic field. Later, Alfven waves also form inside the boundary layer with a continuous spectrum. As the perpendicular wave number k{sub Up-Tack} of these unstably excited waves increases with time, large-amplitude, short wavelength KAWs with k{sub Up-Tack } Much-Greater-Than k{sub ||} clearly form in the boundary layer. The physics for the generation of KAWs is discussed.
Nonlinear interaction of dispersive Alfven waves and magnetosonic waves in space plasma
Sharma, R. P.; Kumar, Sanjay; Singh, H. D.
2009-03-15
This paper presents the model equations governing the nonlinear interaction between dispersive Alfven wave (DAW) and magnetosonic wave in the low-{beta} plasmas ({beta}<
Resonant Alfven wave instabilities driven by streaming fast particles
Zachary, A.
1987-05-08
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
NASA Technical Reports Server (NTRS)
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.
1992-01-01
In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.
Quantum effects on compressional Alfven waves in compensated semiconductors
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
Alfven Wave - DC Dualism in Description of Stationary Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2009-01-01
In many cases, the field-aligned currents (FACs) in the Earth's magnetosphere and heliosphere may be described in terms of both DC currents and the currents of a propagating Alfven wave. The simplest example is when a propagating Alfven wave transports a potential hop along the magnetic fieid: between the source of the wave and its front, the problem is well stationary and includes the stationary field-aligned currents, transporting the electric charges along the magnetic field, which may be described as a DC problem, and only at the front of the wave there are the polarization (inertial) currents, closing across the magnetic field. In some cases, the Alfven wave approach brings better understanding to many problems. We will consider here the results of the applications of this approach to two long-staying problems: the effect of saturation of the transpolar voltage in the Earth's magnetosphere, and the experimentally-observed existence of the strong field-aligned currents in the subtle Mercury's magnetosphere which is not able tc close the measured field-aligned currents.
A PARALLEL-PROPAGATING ALFVENIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND
Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.; Maruca, Bennett A. E-mail: s.bourouaine@unh.edu E-mail: bmaruca@ssl.berkeley.edu
2013-08-10
We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron waves are driven unstable by an isotropic (T{sub {alpha}} = T{sub Parallel-To {alpha}}) population of alpha particles drifting parallel to the magnetic field at an average speed U{sub {alpha}} with respect to the protons. We derive an approximate analytic condition for the minimum value of U{sub {alpha}} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is {approx_equal} 5% of the proton number density and the two species have similar thermal speeds, the instability requires that {beta}{sub p} {approx}> 1, where {beta}{sub p} is the ratio of the proton pressure to the magnetic pressure. For 1 {approx}< {beta}{sub p} {approx}< 12, the minimum U{sub {alpha}} needed to excite this instability ranges from 0.7v{sub A} to 0.9v{sub A}, where v{sub A} is the Alfven speed. This threshold is smaller than the threshold of {approx_equal} 1.2v{sub A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at {beta}{sub p} {approx}> 0.5. We discuss the role of the parallel Alfvenic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the Wind spacecraft's Faraday cups and show that the U{sub {alpha}} values measured in solar-wind streams with T{sub {alpha}} Almost-Equal-To T{sub Parallel-To {alpha}} are approximately bounded from above by the threshold of the parallel Alfvenic instability.
Three-fluid solar wind model with Alfven waves
NASA Technical Reports Server (NTRS)
Esser, Ruth; Habbal, Shadia R.; Hu, You Q.
1995-01-01
We present a study of a three-fluid solar wind model. with continuity, momentum and separate energy equations for protons. alpha particles and electrons. Allowing separate coronal heat sources for all three species, we study the flow properties of the solar wind as a function of heat input, Alfven wave energy input, and alpha particle abundance.
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas; Rudakov, Leonid
2012-10-15
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
A global 3-D MHD model of the solar wind with Alfven waves
NASA Technical Reports Server (NTRS)
Usmanov, A. V.
1995-01-01
A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.
Nonlinear Alfven waves in high-speed solar wind streams
NASA Technical Reports Server (NTRS)
Abraham-Shrauner, B.; Feldman, W. C.
1977-01-01
A nonlinear proton distribution function that is an exact stationary solution of the nonlinear Vlasov equation and Maxwell's equations and which supports a single nonlinear transverse Alfven (ion cyclotron) wave that is circularly polarized and nondispersive is proposed for most of the observations during high-speed solar wind streams. This nonlinear distribution removes the strong Alfven wave instability, inconsistent with the persistence of the observed proton distribution functions in high-speed streams, found by the linear stability analysis. Model temperature anisotropies and drift velocities of the two spatially inhomogeneous bi-Maxwellian components are consistent with typical proton velocity distributions measured in high-speed streams at 1 AU. Two derived relations for each of the wave number and the phase velocity of the wave are obeyed within experimental uncertainties by two typical proton measurements. Our model also predicts that the alpha particle bulk flow velocity exceeds the proton particle bulk flow velocity, as is observed.
Linear and non-linear numerical simulations of poloidal Alfven waves
NASA Astrophysics Data System (ADS)
Ribeiro, A.
2013-05-01
Among the many of numerical simulations of MHD turbulence, few studies had been made of Alfven waves interacting with realistic boundaries. Thus, we have developed a novel hybrid spectral/finite element code, which is capable of simulate properly realistic boundaries properties. Our model is based on a Fourier decompositions of all variables in the azimuthal direction and on a finite element projection in the meridian plan. In order to simulate realistic boundary conditions for the magnetic field we solve the induction equation enforcing continuity of the magnetic field H at the interface with the external insulating medium through a Interior Penalty Galerkin method (IPG) [1]. I will present the results of our investigation of Alfven waves propagating in a cylinder filled of liquid metal submitted to an axial magnetic field. Poloidal Alfven waves are excited magnetically by imposing an azimuthal current pulse at the bottom of the cylinder. In the linear axisymmetric model we find a good agreement with previous experiments in liquid metals by Lundquist and by Lenhert and more recently by Alboussiere et al [2]. This axisymmetric study is extended to the non linear regime, where the amplitudes of the perturbations are comparable to the external applied magnetic field,in this conditions a complex response is found due to waves waves interactions. [1] J. L. Guermond, J.L Leorat, F. Luddens, C. Nore, A. Ribeiro. Effects of discontinuous magnetic permeability on magnetodynamic problems, Journal of Computational Physics Volume 230, Issue 16, 10 July 2011, Pages 6299 -- 6319. [2] T. Alboussiere, P. Cardin, F. Debray, H. C. Nataf, F. Plunian, A. Ribeiro, D. Schmitt, Experimental evidence of Alfven wave propagation in a Gallium alloy, Physics of fluids, 2011, vol. 23, nb 9.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
Nonlinear interaction of kinetic Alfven wave with fast magnetosonic wave and turbulent spectrum
Modi, K. V.; Sharma, R. P.
2013-03-15
In the present paper, authors have investigated nonlinear interaction of kinetic Alfven wave (KAW) and fast magnetosonic wave for intermediate {beta}-plasma (m{sub e}/m{sub i} Much-Less-Than {beta} Much-Less-Than 1). Authors have developed the set of dimensionless equations in the presence of ponderomotive nonlinearity due to KAW in the dynamics of fast magnetosonic wave. Numerical simulation has been carried out to study the effect of nonlinear coupling and resulting turbulent/power spectrum for the different angles of propagation of fast magnetosonic wave applicable to solar wind at 1 AU. The localization of KAW has been found which becomes more complex as the angle of propagation of fast magnetosonic wave decreases. Results also reveal the steepening of power spectrum as the angle of propagation decreases which can be responsible for heating and acceleration of plasma particles in solar wind. Relevance of the obtained result is pointed out with observation received by Cluster spacecraft for the solar wind 1 AU.
Cherenkov radiation of shear Alfven waves in plasmas with two ion species
Farmer, W. A.; Morales, G. J.
2012-09-15
A calculation is presented of the radiation pattern of shear Alfven waves generated by a burst of charged particles in a charge-neutral plasma with two-ions of differing charge-to-mass ratios. The wake pattern is obtained for the inertial and kinetic regimes of wave propagation. Due to the presence of two ion-species, the Alfven waves propagate within two different frequency bands separated by a gap. One band is restricted to frequencies below the cyclotron frequency of the heavier species and the other to frequencies between the ion-ion hybrid frequency and the cyclotron frequency of the lighter species. The radiation pattern in the lower frequency band is found to exhibit essentially the same properties reported in a previous study [Van Compernolle et al., Phys. Plasmas 15, 082101 (2008)] of a single species plasma. However, the upper frequency band differs from the lower one in that it always allows for the Cherenkov radiation condition to be met. The methodology is extended to examine the Alfvenic wake of point-charges in the inertial and adiabatic regimes. The adiabatic regime is illustrated for conditions applicable to fusion-born alpha particles in ITER.
Systematic effects of Alfv'en waves on whistler mode transmission
NASA Astrophysics Data System (ADS)
Skiff, Fred; Schroeder, J.; Drake, J. D.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.; Auerbach, D.
2012-10-01
We study the systematic effects on whistler mode transmission measurements caused by shear Alfv'en waves in the LAPD plasma device with the goal of detecting the plasma dielectric response and electron acceleration along the magnetic field. Alfv'en waves with δB/B˜ 10-5 are generated using an arbitrary spatial waveform antenna adjusted to produce plane waves in the central region of the plasma with a perpendicular wavelength comparable to the collisionless skin depth. In the overdense (φp/φc˜ 2-3) LAPD plasma with B=1800 G, the whistler mode is the only wave propagating parallel to the magnetic field just below the electron cyclotron frequency. Whistler mode absorption has previously been used successfully to measure the electron temperature, but here we observe systematic changes to the whistler transmission signal caused by the Alfv'en wave. We will discuss the problems of separating out the effect of changes in the plasma density (including ducting) with measurements of the perturbed electron velocity distribution.
Stochastic heating and acceleration of minor ions by turbulent Alfven waves
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, B.; Yoon, P. H.; Wu, C. S.
2011-12-01
The heating and acceleration of ions in the solar corona and the solar wind is a longstanding topic in solar-terrestrial physics. SOHO observations show that minor heavy ions have higher perpendicular temperature anisotropy and their outflow velocities are significantly higher than that of protons in the solar corona. It is also known that heavy ions, with mass-proportional temperatures, flow faster than the protons by approximately the local Alfven speed in the fast solar wind. The present work addresses the stochastic heating of minor ions by obliquely-propagating low-frequency Alfven waves. An important characteristic of the stochastic heating is unearthed by means of test particle simulation. That is, when the wave amplitude exceeds some threshold condition for stochasticity, the quasi-asymptotic kinetic temperature associated with the minor ions becomes independent of the wave amplitude and proportional to the ion mass, and it always approaches the value dictated by the Alfven speed, to wit, Tkin≈mivA2/2. During the course of the heating process the minor ions gain a net average parallel speed, v||˜vA in the laboratory frame. The physical mechanism for the asymptotically independent heating is the pickup process that involves the formation of spherical shell velocity distribution function via the pitch-angle scattering. These results are generally consistent with observational properties of minor ions. In the corona, minor ions may be not fully picked up and just a partial shell velocity distribution is formed. Thus, the minor ion temperature is highly anisotropic, and flow faster than protons by a fraction of the local Alfven speed. On the other hand, in the interplanetary space, the fully spherical shell velocity distribution may have been nearly formed, so the minor ion temperature is proportional to their mass, and flow faster than protons by about the local Alfven speed.
Filamentation instability of large-amplitude Alfven waves
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Whang, M. H.; Lee, M. C.
1988-01-01
An instability that leads to the filamentation of large-amplitude Alfven waves and gives rise to purely growing density and magnetic field fluctuations is studied. The dispersion relation of the instability is derived, from which the threshold conditions and the growth rates of the instability are analyzed quantitatively for applications to the solar wind plasma. Their dependence on the filamentation spectrum, the plasma beta, and the pump frequency and intensity was examined for both right-hand and left-hand circularly polarized Alfven waves. The excitation of filamentation instability for certain cases of interest is discussed and compared with that of the parametric decay and modulation instability. The relevance of the proposed instability to some observations is discussed.
Polarizations of coupling kinetic Alfven and slow waves
Chen, L.; Wu, D. J.
2011-07-15
Kinetic Alfven waves (KAWs) are dispersive Alfven waves with short perpendicular wavelengths and have been extensively applied to various energization phenomena of plasma particles. KAWs are coupled to slow magnetosonic waves in the case of a finite-{beta} plasma. In this paper, the electromagnetic polarization states of the coupling KAWs and slow waves are investigated. The results show that the polarization states of these waves depend sensitively on the local plasma parameters such as the ion-electron temperature ratio ({alpha}=T{sub i}/T{sub e}) and the plasma kinetic-magnetic pressure ratio ({beta}=2{mu}{sub 0}n(T{sub i}+T{sub e})/B{sup 2}) as well as their perpendicular wavenumber (k{sub perpendicular}){rho}{sub i}). The polarization states of waves play an important and key role in wave-particle interactions and hence have a great interest of understanding the physics of particle energization phenomena by these waves.
Investigation of an ion-ion hybrid Alfven wave resonator
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.
2013-01-15
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
He Jiansen; Tu Chuanyi; Yao Shuo; Tian Hui; Marsch, Eckart
2011-04-20
The fluctuating magnetic helicity is considered an important parameter in diagnosing the characteristic modes of solar wind turbulence. Among them is the Alfven-cyclotron wave, which is probably responsible for the solar wind plasma heating, but has not yet been identified from the magnetic helicity of solar wind turbulence. Here, we present the possible signatures of Alfven-cyclotron waves in the distribution of magnetic helicity as a function of {theta}{sub VB}, which is the angle between the solar wind velocity and local mean magnetic field. We use magnetic field data from the STEREO spacecraft to calculate the {theta}{sub VB} distribution of the normalized reduced fluctuating magnetic helicity {sigma}{sub m}. We find a dominant negative {sigma}{sub m} for 1 s < p < 4 s (p is time period) and for {theta}{sub VB} < 30 deg. in the solar wind outward magnetic sector, and a dominant positive {sigma}{sub m} for 0.4 s < p < 4 s and for {theta}{sub VB}>150 deg. in the solar wind inward magnetic sector. These features of {sigma}{sub m} appearing around the Doppler-shifted ion-cyclotron frequencies may be consistent with the existence of Alfven-cyclotron waves among the outward propagating fluctuations. Moreover, right-handed polarized waves at larger propagation angles, which might be kinetic Alfven waves or whistler waves, have also been identified on the basis of the {sigma}{sub m} features in the angular range 40 deg. < {theta}{sub VB} < 140 deg. Our findings suggest that Alfven-cyclotron waves (together with other wave modes) play a prominent role in turbulence cascading and plasma heating of the solar wind.
Nonlinear interaction of kinetic Alfven wave and whistler: Turbulent spectra and anisotropic scaling
Kumar Dwivedi, Navin; Sharma, R. P.
2013-04-15
In this work, we are presenting the excitation of oblique propagating whistler wave as a consequence of nonlinear interaction between whistler wave and kinetic Alfven wave (KAW) in intermediate beta plasmas. Numerical simulation has been done to study the transient evolution of magnetic field structures of KAW when the nonlinearity arises due to ponderomotive effects by taking the adiabatic response of the background density. Weak oblique propagating whistler signals in these nonlinear plasma density filaments (produced by KAW localization) get amplified. The spectral indices of the power spectrum at different times are calculated with given initial conditions of the simulations. Anisotropic scaling laws for KAW and whistlers are presented. The relevance of the present investigation to solar wind turbulence and its acceleration is also pointed out.
Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: Low beta
NASA Technical Reports Server (NTRS)
Ghosh, S.; Goldstein, M. L.
1994-01-01
The nature of turbulent cascades arising from the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation for the case of low plasma Beta and no wave dispersion. The magnetohydrodynamic code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Anisotropic turbulent cascades, similar to those found in early incompressible two-dimensional simulations, occur after nonlinear saturation of the parallel propagating decay instability. The turbulent spectrum can be divided into three regimes: the lowest wave numbers are dominated by lower sideband remnants of the parametric process, intermediate wave numbers display nearly incompressible dynamics, and the highest wave numbers are dominated by acoustic turbulence.
NASA Astrophysics Data System (ADS)
Groenenboom, P. H. L.
The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.
Alfven waves, alpha particles, and pickup ions in the solar wind
NASA Technical Reports Server (NTRS)
Goldstein, B. E.; Neugebauer, M.; Smith, E. J.
1995-01-01
Past studies of the properties of Alfven waves in the solar wind have indicated that (1) the amplitude of the velocity fluctuations is almost always smaller than expected on the basis of the amplitude of the field fluctuations, even when the anisotropy of the plasma is taken into account, and (2) the alpha particles do not participate in the wave motions because they 'surf' on the waves carried by the proton fluid. Ulysses data are used to demonstrate that (1) the discrepancy between the velocity and field fluctuations is greater at high heliographic latitudes than in the ecliptic plane, and (2) the alphas do participate in the waves, being either in phase or out of phase with the proton motions depending on whether the differential flow speed between the alphas and protons is greater than or less than the 'observed' wave speed, B(sub o)(delta v squared / delta B squared)exp 1/2, as determined from the ratio of the amplitudes of the velocity and magnetic fluctuations. It is proposed that the modification of Alfven wave propagation speed is due to pressure anisotropies resulting from asymmetric distributions of interstellar pickup ions. If the proposed explanation is correct, it indicates that scattering of pickup ions onto a (bi)spherical shell may not be as complete as generally supposed.
KINETIC INSTABILITY OF DRIFT-ALFVEN WAVES IN SOLAR CORONA AND STOCHASTIC HEATING
Vranjes, J.; Poedts, S. E-mail: Stefaan.Poedts@wis.kuleuven.b
2010-08-20
The solar atmosphere is structured and inhomogeneous, both horizontally and vertically. The omnipresence of coronal magnetic loops implies gradients of the equilibrium plasma quantities such as the density, magnetic field, and temperature. These gradients are responsible for the excitation of drift waves that grow both within the two-component fluid description (both in the presence of collisions and without it) and within the two-component kinetic descriptions (due to purely kinetic effects). In this work, the effects of the density gradient in the direction perpendicular to the magnetic field vector are investigated within the kinetic theory, in both electrostatic (ES) and electromagnetic (EM) regimes. The EM regime implies the coupling of the gradient-driven drift wave with the Alfven wave. The growth rates for the two cases are calculated and compared. It is found that, in general, the ES regime is characterized by stronger growth rates, as compared with the EM perturbations. Also discussed is the stochastic heating associated with the drift wave. The released amount of energy density due to this heating should be more dependent on the magnitude of the background magnetic field than on the coupling of the drift and Alfven waves. The stochastic heating is expected to be much higher in regions with a stronger magnetic field. On the whole, the energy release rate caused by the stochastic heating can be several orders of magnitude above the value presently accepted as necessary for a sustainable coronal heating. The vertical stratification and the very long wavelengths along the magnetic loops imply that a drift-Alfven wave, propagating as a twisted structure along the loop, in fact occupies regions with different plasma-{beta} and, therefore, may have different (EM-ES) properties, resulting in different heating rates within just one or two wavelengths.
Plasma transport induced by kinetic Alfven wave turbulence
Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.
2012-10-15
At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.
Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions
Galvao, R. A.; Ziebell, L. F.; Gaelzer, R.; Juli, M. C. de
2012-12-15
We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.
Hybrid simulation of wave propagation in the Io plasma torus
NASA Astrophysics Data System (ADS)
Stauffer, B. H.; Delamere, P. A.; Damiano, P. A.
2015-12-01
The transmission of waves between Jupiter and Io is an excellent case study of magnetosphere/ionosphere (MI) coupling because the power generated by the interaction at Io and the auroral power emitted at Jupiter can be reasonably estimated. Wave formation begins with mass loading as Io passes through the plasma torus. A ring beam distribution of pickup ions and perturbation of the local flow by the conducting satellite generate electromagnetic ion cyclotron waves and Alfven waves. We investigate wave propagation through the torus and to higher latitudes using a hybrid plasma simulation with a physically realistic density gradient, assessing the transmission of Poynting flux and wave dispersion. We also analyze the propagation of kinetic Alfven waves through a density gradient in two dimensions.
Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons
Panwar, A. E-mail: ryu201@postech.ac.kr Ryu, C. M. E-mail: ryu201@postech.ac.kr; Bains, A. S. E-mail: ryu201@postech.ac.kr
2015-09-15
A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.
McCandless, Kathleen; Petersson, Anders; Nilsson, Stefan; Sjogreen, Bjorn
2007-01-08
WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see Users Manual [1].
Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas
Tishchenko, V N; Shaikhislamov, I F
2014-02-28
We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)
THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE
Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.
2013-08-20
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.
NASA Astrophysics Data System (ADS)
Sharma, A. S.; Karavaev, A. V.; Gumerov, N.; Shao, X.; Papadopoulos, K.; Gekelman, W.; Wang, Y.; Vincena, S.; Pribyl, P.
2010-11-01
Recent experiments conducted in the Large Plasma Device (LAPD) located at UCLA demonstrated efficient excitation of whistler and shear Alfven waves by a Rotating Magnetic Field (RMF) source. We present analytical theory, computational modeling and experimental results of the shear Alfven wave excitation by RMF source created by a phased orthogonal two-loop antenna in a plasma. An analytical theory and simulations using a three-dimensional cold two-fluid model of Alfven wave excitation were developed and compared with experiments. These comparisons show good agreement on linear shear Alfven wave properties, namely, spatio-temporal wave structure, dispersion relation, and the dependence of wave magnitude on the wave frequency. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed among the kinetic energies of ions and electrons and the electromagnetic energy of the wave. The wave magnetic field power calculated from the experimental data and using a fluid model agrees within ˜1 percent. The RMF source is thus very efficient in generating shear Alfven waves. Work supported by ONR MURI grant.
NASA Astrophysics Data System (ADS)
Shao, X.; Karavaev, A. V.; Gumerov, N.; Sharma, A. S.; Papadopoulos, K.; Gekelman, W. N.; Wang, Y.; Vincena, S. T.; Pribyl, P.
2010-12-01
Recent experiments conducted in the Large Plasma Device (LAPD) located at UCLA demonstrated efficient excitation of whistler and shear Alfven waves by a Rotating Magnetic Field (RMF) source. We present analytical theory, computational modeling and experimental results of the shear Alfven wave excitation by RMF source created by a phased orthogonal two-loop antenna in a plasma. An analytical theory and simulations using a three-dimensional cold two-fluid model of Alfven wave excitation were developed and compared with experiments. These comparisons show good agreement on linear shear Alfven wave properties, namely, spatio-temporal wave structure, dispersion relation, and the dependence of wave magnitude on the wave frequency. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed among the kinetic energies of ions and electrons and the electromagnetic energy of the wave. The wave magnetic field power calculated from the experimental data and using a fluid model agrees within 1 percent. The RMF source is thus very efficient in generating shear Alfven waves. Work supported by ONR MURI grant.
Gamma-ray bursts from sheared Alfven waves
NASA Technical Reports Server (NTRS)
Melia, Fulvio; Fatuzzo, Marco
1991-01-01
The physical process by which sheared Alfven waves can accelerate electrons to a Lorentz factor of 10,000 to 100,000 within 5 km of the stellar surface is applied to a study of gamma-ray bursts, taking both resonant and nonresonant scattering into account. Several very encouraging features of the model are discussed. Although the field is oscillatory, virtually all the charges are ejected from the system, resulting in very little backheating of the stellar surface. The particle number density is accounted for naturally in terms of BA0 and m, which in principle are known from the physical manifestation of the agent causing the crustal disturbance. The resulting gamma-ray spectrum compares very favorably with the observation. The model restricts the geometry of the emission region, in the sense that only the Compton upscattering of soft photons from a warm polar cap can produce the correct spectral shape.
Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks
NASA Technical Reports Server (NTRS)
Jones, T. W.
1993-01-01
Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.
Alfven Waves and Turbulence in the Solar Atmosphere and Solar Wind
NASA Technical Reports Server (NTRS)
Verdini, Andrea; Velli, Marco
2007-01-01
We solve the problem of propagation and dissipation of Alfvenic turbulence in a model solar atmosphere consisting of a static photosphere and chromosphere, transition region, and open corona and solar wind using a phenomenological model for the turbulent dissipation based on wave reflection. We show that most of the dissipation for a given wave frequency spectrum occurs in the lower corona, and the overall rms amplitude of the fluctuations evolves in a way consistent with observations. The frequency spectrum for a Kolmogorov-like slope is not found to change dramatically from the photosphere to the solar wind; however, it does preserve signatures of transmission throughout the lower atmospheric layers, namely, oscillations in the spectrum at high frequencies reminiscent of the resonances found in the linear case. These may disappear once more realistic couplings for the nonlinear terms are introduced or if time-dependent variability of the lower atmospheric layer is introduced.
Plasma turbulence driven by transversely large-scale standing shear Alfven waves
Singh, Nagendra; Rao, Sathyanarayan
2012-12-15
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
Conservation Laws: (a) Alfven Waves in the Solar Wind (b) MHD fluid Relabeling Symmetries
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Hu, Q.; Dasgupta, B.; Zank, G. P.
2012-12-01
We discuss the use of Noether's first and second theorems in the derivation of conservation laws for fluid and plasma systems governed by a action principle. We apply Noether's first and second theorems to derive conservation laws for equations describing the interaction (wave mixing) of backward and forward (radially inward and outward) propagating Alfven waves in stellar winds, due to large scale gradients in the background flow. Noether's first theorem is used to derive the wave action, or canonical wave energy conservation equation which is associated with the linearity symmetry of the equations. More generally, this conservation law is a special case of the Green's theorem conservation law for the wave mixing system and the adjoint wave mixing system. The infinite class of conservation laws associated with Green's theorem, is a consequence of Noether's second theorem. A further conservation law associated with the time translation invariance of the action is also derived. In the latter case, the conserved density is the Hamiltonian density for the waves, which is distinct from the canonical wave energy density. As a second application of Noether's second theorem we revisit the formulation of the fluid relabeling symmetry for magnetohydrodynamics (MHD) and gas dynamics by using the Lagrange-multiplier approach to Noether's second theorem developed by Hydon and Mansfield (2011).
James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves
NASA Astrophysics Data System (ADS)
Chen, Liu
2012-10-01
Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.
Generation of magnetoacoustic zonal flows by Alfven waves in a rotating plasma
Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Tsypin, V. S.; Smolyakov, A. I.; Galvao, R. M. O.
2007-08-15
Analytical theory of nonlinear generation of magnetoacoustic zonal flows in a rotating plasma is developed. As the primary modes causing such a generation, a totality of the Alfven waves are considered, along with the kinetic, inertial, and rotational. It is shown that in all these cases of the Alfven waves the generation is possible if the double plasma rotation frequency exceeds the zonal flow frequency.
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.
2013-05-10
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Nonlinear standing Alfven wave current system at Io - Theory
NASA Astrophysics Data System (ADS)
Neubauer, F. M.
1980-03-01
A nonlinear analytical model is presented of the Alfven current tubes continuing the currents through Io generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. It was shown that: (1) the portion of the currents needing Io is aligned with the Alfven characteristics at a specific angle to the magnetic field for the special case of perpendicular flow; (2) the Alfven tubes act like an external conductance; (3) the Alfven tubes may be reflected from the torus boundary or the Jovian atmosphere; and (4) from the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites because of its ionosphere arising from ionized volcanic gases and a high external Alfvenic conductance.
Alfven wave trapping, network microflaring, and heating in solar coronal holes
NASA Technical Reports Server (NTRS)
Moore, R. L.; Suess, S. T.; Musielak, Z. E.; An, C.-H.
1991-01-01
Fresh evidence that much of the heating in coronal holes is provided by Alfven waves is presented. This evidence comes from examining the reflection of Alfven waves in an isothermal hydrostatic model coronal hole with an open magnetic field. Reflection occurs if the wavelength is as long as the order of the scale height of the Alfven velocity. For Alfven waves with periods of about 5 min, and for realistic density, magnetic field strength, and magnetic field spreading in the model, the waves are reflected back down within the model hole if the coronal temperature is only slightly less than 1.0 x 10 to the 6th K, but are not reflected and escape out the top of the model if the coronal temperature is only slightly greater than 1.0 x 10 to the 6th K. Because the spectrum of Alfven waves in real coronal holes is expected to peak around 5 min and the temperature is observed to be close to 1.0 x 10 to the 6th K, the sensitive temperature dependence of the trapping suggests that the temperature in coronal holes is regulated by heating by the trapped Alfven waves.
NASA Astrophysics Data System (ADS)
Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-01
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-15
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Nonlinear effects associated with the dispersive Alfven waves in space plasmas
Kumar, Sanjay; Sharma, R. P.
2010-03-15
This paper presents the model equations governing the nonlinear dynamics of the dispersive Alfven wave (DAW) in the low-beta plasmas (beta<
Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity
NASA Technical Reports Server (NTRS)
Fatuzzo, Marco; Melia, Fulvio
1993-01-01
Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.
Standing Alfven wave current system at Io - Voyager 1 observations
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.; Neubauer, F. M.
1981-01-01
The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io has been explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field-aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the Goddard Space Flight Center magnetic field experiment on Voyager 1 on March 5, 1979, when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 x 10 to the 6th A. A mass density of 7400-13,600 proton mass units/cu cm is derived, which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050-1500/cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.
Standing Alfven wave current system at Io - Voyager 1 observations
NASA Astrophysics Data System (ADS)
Acuna, M. H.; Neubauer, F. M.; Ness, N. F.
1981-09-01
The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io has been explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field-aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the Goddard Space Flight Center magnetic field experiment on Voyager 1 on March 5, 1979, when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 x 10 to the 6th A. A mass density of 7400-13,600 proton mass units/cu cm is derived, which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050-1500/cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.
POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVEN WAVES
Hunana, P.; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2013-04-01
It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly larger than the proton gyroscale r{sub L} , magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the polarization and magnetic compressibility of oblique kinetic Alfven waves and show that, compared with linear kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be ignored even for kr{sub L} << 1.
NASA Technical Reports Server (NTRS)
Ng, C. K.; Reames, D. V.
1994-01-01
We present a model of the focused transport of approximately 1 MeV solar energetic protons through interplanetary Alfven waves that the protons themselves amplify or damp. It is based on the quasi-linear theory but with a phenomenological pitch angle diffusion coefficient in the 'resonance gap.' For initial Alfven wave distributions that give mean free paths greater than approximately 0.5 AU for approximately 1 MeV protons in the inner heliosphere, the model predicts greater than roughly an order of magnitude amplification (damping) in the outward (inward) propagating resonant Alfven waves at less than or approximately equal to o.3 AU heliocentric distance. As the strength of proton source is increased, the peak differential proton intensity at approximately 1 MeV at 1 AU increases to a maximum of approximately 250 particles (/(sq cm)(s)(sr)(MeV)) and then decreases slowly. It may be attenuated by a factor of 5 or more relative to the case without wave evolution, provided that the proton source is sufficiently intense that the resulting peak differential intensity of approximately 1 MeV protons at 1 AU exceeds approximately 200 particles (/(sq cm)(s)(sr)(MeV)). Therefore, in large solar proton events, (1) one may have to take into account self-amplified waves in studying solar particle propagation, (2) the number of accelerated protons escaping from a flare or interplanetary shock may have been underestimated in past studies by a significant factor, and (3) accelerated protons escaping from a traveling interplanetary shock at r less than or approximately equal to 0.3 AU should amplify the ambient hydromagnetic waves siginificantly to make the shock an efficient accelerator, even if initially the mean free path is greater than or approximately equal to 1 AU.
Inertial Alfven-Wave-Driven Convective Cells in Low-Density Plasmas
Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Stenflo, L.; Balikhin, M.A.
2005-10-15
The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained. The relevance of our theory to spacecraft measurements in the Earth's ionosphere is discussed.
Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics
Berk, H.L.; Breizman, B.N.; Pekker, M.
1994-01-01
An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection.
Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations
Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.
2011-03-15
The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent experiments in the University of California, Los Angeles large plasma device. Comparison of the simulation results with the experimental measurements and the linear shear Alfven wave properties, namely, spatiotemporal wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the wave dependences on the wave frequency, show good agreement. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: {approx}1/2 is the energy of the electromagnetic field, {approx}1/2 is the kinetic energy of the ion fluid, and {approx}2.5% is the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from the experimental data and using a fluid model differ by {approx}1% and is {approx}250 W for the experimental parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics simulations the rotating magnetic field source was found to be very efficient for generating shear Alfven waves.
Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung
NASA Astrophysics Data System (ADS)
Taiurskii, A. A.; Gavrikov, M. B.
2016-10-01
We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Mechanisms for the Dissipation of Alfven Waves in Near-Earth Space Plasma
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Krivorutsky, E. N.; Davis, John M. (Technical Monitor)
2002-01-01
Alfven waves are a major mechanism for the transport of electromagnetic energy from the distant part of the magnetosphere to the near-Earth space. This is especially true for the auroral and polar regions of the Earth. However, the mechanisms for their dissipation have remained illusive. One of the mechanisms is the formation of double layers when the current associated with Alfven waves in the inertial regime interact with density cavities, which either are generated nonlinearly by the waves themselves or are a part of the ambient plasma turbulence. Depending on the strength of the cavities, weak and strong double layers could form. Such double layers are transient; their lifetimes depend on that of the cavities. Thus they impulsively accelerate ions and electrons. Another mechanism is the resonant absorption of broadband Alfven- wave noise by the ions at the ion cyclotron frequencies. But this resonant absorption may not be possible for the very low frequency waves, and it may be more suited for electromagnetic ion cyclotron waves. A third mechanism is the excitation of secondary waves by the drifts of electrons and ions in the Alfven wave fields. It is found that under suitable conditions, the relative drifts between different ion species and/or between electrons and ions are large enough to drive lower hybrid waves, which could cause transverse accelerations of ions and parallel accelerations of electrons. This mechanism is being further studied by means of kinetic simulations using 2.5- and 3-D particle-in-cell codes. The ongoing modeling efforts on space weather require quantitative estimates of energy inputs of various kinds, including the electromagnetic energy. Our studies described here contribute to the methods of determining the estimates of the input from ubiquitous Alfven waves.
NASA Astrophysics Data System (ADS)
Zhou, X.; Wang, Z. H.; Zong, Q.; Hao, Y.; Claudepierre, S. G.; Kivelson, M.; Angelopoulos, V.
2014-12-01
Ultra-Low Frequency (ULF) electromagnetic oscillations, usually interpreted as standing Alfven waves, are a major candidate to accelerate electrons to relativistic energies in the Earth's Van Allen radiation belt. Electrons can promptly gain energy from ULF waves when they resonate with each other via a process named drift resonance, which is characterized in spacecraft observations by an energy dependence of phase differences between electron fluxes and electromagnetic oscillations. Such a dependence, recently observed by Van Allen Probes, has been presented as a most unambiguous identification of the drift-resonance electron acceleration (Claudepierre et al., 2013). In this paper, we revisit the same event to find that in the early stage of the ULF oscillations, the observed phase relationship appeared to be not fully consistent with the drift resonance theory. We further examine these apparent inconsistencies, to suggest that they arose from the fast growth of travelling Alfven waves before they were transitioned into the more typical standing waves. These observations, therefore, provide a rare opportunity to understand the generation, evolution, and particle-interaction of ULF oscillations in the Earth's magnetosphere.
Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL
Jay R. Johnson; C.Z. Cheng
2002-05-31
At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the
The Nonlinear Coupling of Alfven and Lower Hybrid Waves in Space Plasma
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Singh, N.; Krivorutsky, E.
2003-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wave-wave interactions which are of crucial importance to magnetospheric and ionospheric plasma behavior. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves may generate LHWs in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We present several examples of observational data which illustrate that the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in the ionosphere and magnetosphere and demonstrate electron and ion energization involving these processes. Furthermore, we will present results from particle-in-cell simulations showing the generation of particle drifts in response to an Alfven wave, resulting in excitation of waves and ion heating in a multi- ion plasma.
Coupling and spatial structure of Alfven-ion-cyclotron waves in GAMMA 10
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Hirata, M.; Yokoyama, T.; Iimura, T.; Saito, Y.; Iwamoto, Y.; Okada, T.; Sumida, S.; Watanabe, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Gamma 10 Team
2013-10-01
In the GAMMA 10 tandem mirror, anisotropy-driven Alfven wave, referred as Alfven ion-cyclotron (AIC) wave, have been spontaneously excited in high-beta discharges. Density fluctuation, which we measured with a reflectometer, shows fruitful interactions of AIC waves with externally applied ICRF waves and with themselves. These wave-wave coupling phenomena are found to be an important issue for mirror-confinement of high-energy ions in GAMMA 10; the amount of axially transported high-energy ions of greater than 6 keV measured with a semiconductor detector demonstrated significant modulation by the difference frequencies between simultaneously excited AIC waves (about 100 kHz). This indicates pitch-angle scattering due to the excited low-frequency Alfven waves. We present detailed characteristics of the coupling phenomena observed in GAMMA 10 and also spatial structure of the spontaneously excited AIC waves, which we have investigated by using a two-channel reflectometer. This work is partly supported by a Grant-in-Aid for Scientific Research from JSPS, Japan (No. 25400531) and by the bidirectional collaborative research programme of the National Institute for Fusion Science, Japan (NIFS12KUGM067).
Fundamentals of Seismic Wave Propagation
NASA Astrophysics Data System (ADS)
Chapman, Chris
2004-08-01
Presenting a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics, this volume develops the theory of seismic wave propagation in acoustic, elastic and anisotropic media to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. The book is a text for graduate courses in theoretical seismology, and a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
Heating of coronal loops by phase-mixid shear Alfven waves
NASA Technical Reports Server (NTRS)
Abdelatif, Toufik E.
1987-01-01
The dissipation of shear Alfven waves in a coronal loop driven externally by an incident wave in the subcoronal region is investigated. The phase mixing of these incident shear Alfven waves serves as the dissipation mechanism in the corona. The wave solution found by Heyvaerts and Priest (1983) for coronal holes is used to compute the total energy deposited in a loop. The energy deposited is shown to depend upon the magnetic diffusivity nu(m) and viscosity nu(v), contrary to the conclusion of authors who assumed that coronal loops are perfect resonators. The energy deposited in a three-layer model is computed for incident waves with periods of five minutes or five seconds. For a five-minute period, almost no energy is deposited, especially for small loops. For a five-second period, a substantial amount of energy is deposited in the loop, but not enough to account for the heating of small loops.
Stochastic Ion Heating at the Magnetopause due to Kinetic Alfven Waves
Jay R. Johnson; C.Z. Cheng
2001-08-10
The magnetopause and boundary layer are typically characterized by large amplitude transverse wave activity with frequency below the ion cyclotron frequency. The signatures of the transverse waves suggest that they are kinetic Alfven waves with wavelength on the order of the ion gyroradius. We investigate ion motion in the presence of large amplitude kinetic Alfven waves with wavelength the order of rho(subscript ''i'') and demonstrate that for sufficiently large wave amplitude (delta B(subscript ''perpendicular'')/B(subscript ''0'') > 0.05) the particle orbits become stochastic. As a result, low energy particles in the core of the ion distribution can migrate to higher energy through the stochastic sea leading to an increase in T(subscript ''perpendicular'') and a broadening of the distribution. This process can explain transverse ion energization and formation of conics which have been observed in the low-latitude boundary layer.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: High beta
NASA Technical Reports Server (NTRS)
Ghosh, S.; Vinas, A. F.; Goldstein, M. L.
1994-01-01
The nonlinear dynamics following saturation of the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation in the case of high plasma beta and no wave dispersion. The magnetohydrodynamic (MHD) code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Turbulent cascades develop after saturation of two coupled oblique three-wave parametric instabilities; one of which is an oblique filamentationlike instability reported earlier. Remnants of the parametric processes, as well as of the original Alfven pump wave, persist during late nonlinear times. Nearly incompressible MHD features such as spectral anisotropies appear as well.
Excitation of ion-acoustic perturbations by incoherent kinetic Alfven waves in plasmas
Mendonca, J. T.; Shukla, P. K.
2007-12-15
The dispersion relation for ion-acoustic perturbations (IAPs) in the presence of incoherent kinetic Alfven waves (KAWs) in plasmas is derived. The wave-kinetic-approach is used to study the nonlinear interactions between an ensemble of random phase KAWs and IAPs. It is found that incoherent KAW spectrum is unstable against IAPs. The instability growth rates for particular cases are obtained. The present instability offers the possibility of heating ions in a turbulent magnetoplasma composed of incoherent KAWs.
Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion
NASA Astrophysics Data System (ADS)
Christiansen, P. J.; Dum, C. T.
1989-06-01
The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.
Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika
2016-07-01
Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.
On entropy-maximized velocity distributions in circularly polarized finite amplitude Alfven waves
Nariyuki, Yasuhiro
2011-05-15
A special solution of the Vlasov-Maxwell system, which represents a circularly polarized Alfven wave, is derived as an entropy-maximized state. It is shown that Alfvenic correlation between transverse bulk motion and magnetic field given by the entropy-maximized distribution is consistent with the equilibrium point of the single particle system. We demonstrate that as far as the monochromatic, circularly polarized magnetic field is concerned, the resultant distribution may be a relaxed state corresponding to one in the Hall-magnetohydrodynamic system. Stability of the distribution function is numerically discussed by using an ion-hybrid simulation code. Numerical results suggest that the relaxed states in nonmonochromatic waves are different from those in monochromatic waves.
Alfven wave scattering and the secondary to primary ratio
NASA Technical Reports Server (NTRS)
Bretthorst, G. L.; Margolis, S. H.
1985-01-01
The cosmic ray abundances have traditionally been used to determine the elemental and isotopic nature of galactic ray sources and average measures of propagation conditions. Detailed studies of the physics of propagation are usually paired with relatively straightforward estimates of the secondary-to-primary (S/P) ratios. In the work reported here, calculations of elemental abundances are paired with a more careful treatment of the propagation process. It is shown that the physics of propagation does indeed leave specific traces of Galactic structure in cosmic ray abundances.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Shrivastava, G. Ahirwar, G.; Shrivastava, J.
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Khan, S. A.
2011-11-29
Low frequency electrostatic and electromagnetic waves in a dense magnetoplasma are studied. The dispersive contribution of electron quantum effects in an electron-ion plasma in the presence of positively or negatively charged dust particles in the background is emphasized. By employing the quantum hydrodynamic model, a linear dispersion relation is derived which shows coupling of electrostatic and shear Alfven modes which shows influence of electron quantum effects and dust density.
NASA Astrophysics Data System (ADS)
Khan, S. A.
2011-11-01
Low frequency electrostatic and electromagnetic waves in a dense magnetoplasma are studied. The dispersive contribution of electron quantum effects in an electron-ion plasma in the presence of positively or negatively charged dust particles in the background is emphasized. By employing the quantum hydrodynamic model, a linear dispersion relation is derived which shows coupling of electrostatic and shear Alfven modes which shows influence of electron quantum effects and dust density.
Hansen, Shelley C.; Cally, Paul S. E-mail: paul.cally@monash.edu
2012-05-20
Alfven waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvenic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.
Polarization and Compressibility of Oblique Kinetic Alfven Waves
NASA Technical Reports Server (NTRS)
Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2012-01-01
Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Experimental studies of fast wave propagation in DIII-D
Ikezi, H.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.
1995-06-01
Fast Alfven waves radiated from the phased array antenna in the DIII-D tokamak and used for heating and current drive are studied by employing a B-loop array mounted on the vacuum vessel wall. The wave propagation direction controlled by the antenna phasing is clearly observed. A small divergence of the rays arising from the anisotropic nature of the fast wave is found. Comparison with a ray tracing code confirms that the ray position calculated by the code is accurate up to at least one toroidal turn of the rays. Conservation of Rk{sub t} which is a basic assumption in computer codes is tested. Although the upshift of toroidal wavenumber k{sub t} at small major radius R is confirmed, Rk{sub t} is not well conserved. A mass density interferometer is demonstrated by employing the extraordinary fast wave.
Transhorizon propagation of decameter waves
NASA Astrophysics Data System (ADS)
Kalinin, Yu. K.; Shchelkalin, A. V.
2013-04-01
Solutions to the problem of the point source field in a spherically layered medium are analyzed. For a three-layer waveguide model, a solution in the form of the Watson integral was used. A consideration of the singularities in the plane of the integration variable made it possible to represent the integral as a superposition of three waves. Two of them are connected with the interaction of the primary spherical wave with the lower convex and upper concave interfaces. The third wave is connected with the alternate action with both interfaces. The fourth wave is caused by the interaction between the primary wave and random inhomogeneities of the external medium (the ionosphere). Here, simulation was carried out based on Green equations. The considered unique data of flight measurements of the point source field strength indicate the efficiency of simulating the transhorizon propagation of decameter waves based on the superposition of all four aforesaid wave packets.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
NASA Technical Reports Server (NTRS)
Han, S. M.; Wu, S. T.; Nakagawa, Y.
1982-01-01
Radial propagation of one-dimensional magnetohydrodynamic (MHD) waves are analyzed numerically on the basis of the Implicit-Continuous-Fluid-Eulerian (ICE) scheme. Accuracy of the numerical method and other properties are tested through the study of MHD wave propagation. The three different modes of MHD waves (i.e., fast-, slow- and Alfven (transverse) mode) are generated by applying physically consistent boundary perturbations derived from MHD compatibility relations. It is shown that the resulting flow following these waves depend upon the relative configurations of the initial magnetic field and boundary perturbations.
Chromospheric alfvenic waves strong enough to power the solar wind.
De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S
2007-12-01
Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784
Chromospheric alfvenic waves strong enough to power the solar wind.
De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S
2007-12-01
Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona.
Seismic wave propagation modeling
Jones, E.M.; Olsen, K.B.
1998-12-31
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.
Wave propagation in solids and fluids
Davis, J. L.
1988-01-01
The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.
Heating of the solar corona by the resonant absorption of Alfven waves
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
1987-01-01
An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. To accomplish this, the wave equation for a dissipative, compressible plasma is derived from the linearized magnetohydrodynamic equations for a plasma with transverse Alfven speed gradients. For parameters representative of the solar corona, it is found that a two-scale description of the wave motion is appropriate. The large-scale motion, which can be approximated as nearly ideal, has a scale which is on the order of the width of the loop. The small-scale wave, however, has a transverse scale much smaller than the width of the loop, with a width of about 0.3-250 km, and is highly dissipative. These two wave motions are coupled in a narrow resonance region in the loop where the global wave frequency equals the local Alfven wave frequency. Formally, this coupling comes about from using the method of matched asymptotic expansions to match the inner and outer (small and large scale) solutions. The resultant heating rate can be calculated from either of these solutions. A formula derived using the outer (ideal) solution is presented, and shown to be consistent with observations of heating and line broadening in the solar corona.
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.
2008-10-15
The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
The Nonlinear Coupling of Alfven and Lower Hybrid Waves in Space Plasma
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2004-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wave-wave interactions which are of crucial importance to magnetospheric and ionospheric plasma behavior. The excitation of lower hybrid waves (LHWs) in particular is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves may generate LHWs in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We present several examples of observational data which illustrate that the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in the ionosphere and magnetosphere and demonstrate electron and ion energization involving these processes. We discuss the morphology dynamics and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al. 2002) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves
NASA Astrophysics Data System (ADS)
Luk, Onnie
The convective cells are observed in the auroral ionosphere and they could play an important role in the nonlinear interaction of Alfven waves and disrupt the kinetic Alfven wave (KAW) turbulence. Zonal fields, which are analogous to convective cells, are generated by microturbulence and regulate microturbulence inside toroidally confined plasmas. It is important to understand the role of convective cells in the nonlinear interaction of KAW leading to perpendicular cascade of spectral energy. A nonlinear gyrokinetic particle simulation has been developed to study the perpendicular spectral cascade of kinetic Alfven wave. However, convective cells were excluded in the study. In this thesis project, we have modified the formulation to implement the convective cells to study their role in the nonlinear interactions of KAW. This thesis contains detail description of the code formulation and convergence tests performed, and the simulation results on the role of convective cells in the nonlinear interactions of KAW. In the single KAW pump wave simulations, we observed the pump wave energy cascades to waves with shorter wavelengths, with three of them as dominant daughter waves. Convective cells are among those dominant daughter waves and they enhance the rate of energy transfer from pump to daughter waves. When zonal fields are present, the growth rates of the dominant daughter waves are doubled. The convective cell (zonal flow) of the zonal fields is shown to play a major role in the nonlinear wave interaction, while the linear zonal vector potential has little effects. The growth rates of the daughter waves linearly depends on the pump wave amplitude and the square of perpendicular wavenumber. On the other hand, the growth rates do not depend on the parallel wavenumber in the limit where the parallel wavenumber is much smaller than the perpendicular wavenumber. The nonlinear wave interactions with various perpendicular wavenumbers are also studied in this work. When
Propagation characteristics of waves upstream and downstream of quasi-parallel shocks
NASA Technical Reports Server (NTRS)
Krauss-Varban, D.; Omidi, N.
1993-01-01
The propagation characteristics of waves upstream and downstream of quasi-parallel shocks are investigated by using 2D hybrid simulations. At low Alfven Mach numbers, M(A) below about 2, the shock is initially associated with upstream phase-standing whistlers. At later times, backstreaming ions excite longer-wavelength whistlers via the right-hand resonant ion/ion instability. These waves propagate along the magnetic field at a group velocity no smaller than the upstream flow speed, so that the waves remain in the upstream region. At higher MA (above about 3), these waves are convected back into the shock, causing its reformation and downstream perturbations. Shock transmitted waves mode-convert into Alfven/ion-cyclotron waves which have a wave vector along the shock normal (pointing upstream) and convect downstream. The 2D simulation results confirm our earlier suggestion that the upstream waves should be field aligned, and that their convection into the downstream is associated with linear mode conversion into the Alfven/ion-cyclotron branch.
The evolution of nonlinear Alfven waves subject to growth and damping
NASA Technical Reports Server (NTRS)
Spangler, S. R.
1986-01-01
The effects of wave amplification (by streaming particle distributions) and damping (by ion-cyclotron resonance absorption) on the nonlinear evolution of Alfven waves are investigated theoretically. The results of numerical simulations based on the derivative-Schroedinger-equation model of Spangler and Sheerin (1983 and 1985) are presented graphically and characterized in detail, with an emphasis on astrophysical applications. Three phases of wave-packet evolution (linear, nonlinear-saturation, and postsaturation quasi-steady) are identified, and nonlinearity is found to transfer wave energy from growing or amplified wavenumbers to wavenumbers affected by damping. It is pointed out that although there are similarities between the solitonlike pulses predicted by the simulations and short-wavelength shocklet structures observed in the earth bow shock, the model does not explain why low-frequency waves stop growing in the vicinity of the bow shock.
Signatures of mode conversion and kinetic Alfven waves at the magnetopause
Jay R. Johnson; C. Z. Cheng
2000-07-21
It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations.
Simulations of Decaying Kinetic Alfv'en Wave Turbulence: Intermittent and Coherent Structures
NASA Astrophysics Data System (ADS)
Smith, Kurt; Terry, Paul
2008-11-01
We simulate decaying kinetic Alfv'en wave turbulence in a strong guide field, appropriate for modeling interstellar turbulence at scales <=10ρs. Ion flow decouples from the system at these scales, while electron density (ne) fluctuations equipartition with the magnetic field. Stable circularly symmetric structures form in J, B and ne fields after a few Alfv'en times; nonlinear magnetic shear prevents turbulence from mixing the structures into the background and allow the structures to persist for many Alfv'en times. J filaments are large in amplitude and spatially localized, and their associated B and ne structures are less localized, consistent with the Biot-Savart law and KAW equipartitioning. Ensemble-averaged pdfs indicate ne and ∇ne deviate strongly from Gaussian statistics following the onset of structure formation. The non-Gaussian ∇ne statistics are especially of interest as a possible explanation of τD^4 scaling of pulsar signal widths τ with distance-to-source D.---Work supported by NSF.
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A. P.; Banerjee, S.
2011-03-15
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.
Acceleration and heating of two-fluid solar wind by Alfven waves
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1994-01-01
Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.
Magnetic fluctuations due to thermally excited Alfven waves
Agim, Y.Z.; Prager, S.C.
1990-01-01
Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-{beta} regimes. 21 refs., 6 figs.
Magnetic fluctuations due to thermally excited Alfven waves
Agim, Y.Z.; Prager, S.C. )
1990-06-01
Magnetic fluctuations resulting from the thermally excited magnetohydrodynamic waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities that are roughly Lorentzian and exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber as a result of dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion resulting from the finite ion gyro-frequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-beta regimes.
A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVEN WAVES
Van der Holst, B.; Manchester, W. B.; Frazin, R. A.; Toth, G.; Gombosi, T. I.; Vasquez, A. M.
2010-12-10
We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF) that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfven waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers but do address the heating of the protons by the Kolmogorov dissipation of the Alfven waves in open field-line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfven wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme-ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (2008 November 20 through December 17). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated corotating interaction regions (CIRs) with in situ ACE/WIND data. Although we do not capture all MHD variables perfectly, we do find that the time of occurrence and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.
Winds From Luminous Late-Type Stars. 1; The Effects of Nonlinear Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.
2000-01-01
We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.
Filamentation of dispersive Alfven waves in density channels: Hall magnetohydrodynamics description
Borgogno, D.; Laveder, D.; Passot, T.; Sulem, P. L.; Sulem, C.
2008-06-15
Filamentation of dispersive Alfven waves initiated by low or high density channels (depending on the plasma beta) is simulated numerically in the framework of ideal Hall magnetohydrodynamics, and asymptotically modeled with a two-dimensional nonlinear Schroedinger equation including a linear attracting potential. Compared with the dynamics in a homogeneous plasma, the phenomenon is accelerated and occurs for a broader range of parameters. In the case of an isolated channel with a width comparable to the pump wavelength, the transverse wave collapse can be replaced by a moderate amplification. In many cases, a relatively complex dynamics takes place, characterized by an oscillation between magnetic filaments and magnetic ribbons, leading to the formation of small scales at which dissipative effects could become relevant. Alfven vortices, governed by the equations of the reduced magnetohydrodynamics, are also identified in the simulations, in spite of their small amplitude relative to the wave. The formation of structures under the effect of periodic or random distributions of low and high density channels is also discussed.
Wave Propagation in Bimodular Geomaterials
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim
2016-04-01
Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.
Stability of the kinetic Alfven wave in a current-less plasma
NASA Astrophysics Data System (ADS)
Sreekala, G.; Sebastian, Sijo; Michael, Manesh; Abraham, Noble P.; Renuka, G.; Venugopal, Chandu
2015-06-01
The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities VdH and Vde. For the most general case, the dispersion relation is a polynomial equation of order five; it reduces to a relation which supports only one mode when VdH = 0. For typical parameters at comet Halley, we find that both VdH and Vde can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al. (2009).
Stability of the kinetic Alfven wave in a current-less plasma
NASA Astrophysics Data System (ADS)
Abraham, Noble P.; C, Venugopal; Sebastian, Sijo; Renuka, G.; Balan, Nanan; Sreekala, G.
The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities V_{dH} and V_{de}. For the most general case, the dispersion equation is a polynomial equation of order five; it reduces to a relation which supports only one mode when V_{dH}=0. For typical parameters at comet Halley, we find that both V_{dH} and V_{de} can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2006-01-01
Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.
Wave equations for pulse propagation
NASA Astrophysics Data System (ADS)
Shore, B. W.
1987-06-01
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.
Doppler-shifted cyclotron resonance of fast ions with circularly polarized shear Alfven waves
Zhang Yang; Heidbrink, W. W.; Zhou Shu; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Lilley, M. K.
2009-05-15
The Doppler-shifted cyclotron resonance between fast ions and shear Alfven waves (SAWs) has been experimentally investigated with a test-particle fast-ion (Li{sup +}) beam launched in the helium plasma of the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. Left- or right-hand circularly polarized SAWs are launched by an antenna with four current channels. A collimated fast-ion energy analyzer characterizes the resonance by measuring the nonclassical spreading of the averaged beam signal. Left-hand circularly polarized SAWs resonate with the fast ions but right-hand circularly polarized SAWs do not. The measured fast-ion profiles are compared with simulations by a Monte Carlo Lorentz code that uses the measured wave field data.
3D Elastic Seismic Wave Propagation Code
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
Carter, T A
2006-11-16
Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.
Active Wave Propagation and Sensing in Plates
NASA Technical Reports Server (NTRS)
Ghoshal, Anindya; Martin, William N.; Sundaresan, Mannur J.; Schulz, Mark J.; Ferguson, Frederick
2001-01-01
Health monitoring of aerospace structures can be done using an active interrogation approach with diagnostic Lamb waves. Piezoelectric patches are often used to generate the waves, and it is helpful to understand how these waves propagate through a structure. To give a basic understanding of the actual physical process of wave propagation, a model is developed to simulate asymmetric wave propagation in a panel and to produce a movie of the wave motion. The waves can be generated using piezoceramic patches of any size or shape. The propagation, reflection, and interference of the waves are represented in the model. Measuring the wave propagation is the second important aspect of damage detection. Continuous sensors are useful for measuring waves because of the distributed nature of the sensor and the wave. Two sensor designs are modeled, and their effectiveness in measuring acoustic waves is studied. The simulation model developed is useful to understand wave propagation and to optimize the type of sensors that might be used for health monitoring of plate-like structures.
On apparent temperature in low-frequency Alfvenic turbulence
Nariyuki, Yasuhiro
2012-08-15
Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.
Possible evidence for the driving of the winds of hot stars by Alfven waves
Underhill, A.B.
1983-05-15
Ultraviolet spectra of the supergiants ..cap alpha.. Cam (09.5 Ia), HD 105056 (ON9.7 Iae), and 15 Sgr (09.7 Lab) are compared, and it is shown that the terminal outflow velocity ..nu../sub infinity/, of HD 105056 is one-half that of the other two stars even though HD 105056 has the highest effective temperature of the three stars. This anomaly, together with the fact that the observed ..nu../sub infinity/ values for early-type stars scatter about an empirical correlation between ..nu../sub infinity/ and log T/sub eff/ by an amount which is larger than the amount which is larger than the amount expected according to the observational errors in determining ..nu../sub infinity/ and log T/sub eff/, leads to the conclusion that an agent in addition to radiation. Alfven waves, is driving the winds of early-type stars.
Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)
Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S
2001-10-11
An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.
Evans, R. M.; Opher, M.; Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I.; Vasquez, A.
2012-09-10
The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave
Wave propagation in magnetic fluids
NASA Astrophysics Data System (ADS)
Cissoko, Mahdy
1987-08-01
This paper deals within the relativistic framework with the wave propagation in magnetizable fluids, assumed to be perfect, magnetically soft, isotropic, and inhomogeneous with an arbitrary isotropic law χ=χ(T,r,||b||2) (χ,T,r,||b|| being the magnetic susceptibility, the proper temperature, the proper material density, and the strength of the magnetic field, respectively). The characteristic manifolds of the flow are determined in a very elegant and rigorous manner which avoids the extensive algebraic manipulations one usually encounters in the classical methods of characteristics. It is shown that in a magnetic medium there exists a hyperbolic region of nonsteady flows of magnetizable fluids. This implies the existence of magnetosonic waves of the same kind as in nonmagnetic fluids (χ or μ=const), that is, as in ordinary magnetohydrodynamics. However, in magnetic fluids there is the possibility of the development of instabilities similar to that which arise in nonmagnetic fluids with transverse and longitudinal pressure [M. Cissoko, Ann. Mat. Pura Appl. 111, 331 (1976)].
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-01-20
To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V{sub SW}) and analyze its orientation with respect to the local background magnetic field B{sub 0,local}. As an example, we take only measurements made in an outward magnetic sector. When B{sub 0,local} is quasi-perpendicular to V{sub SW}, we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B{sub 0,local}, a property that is characteristic of an oblique Alfven wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B{sub 0,local}, thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle ({theta}{sub kB}) increases toward 90 Degree-Sign . Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B{sub 0,local} seems to indicate that oblique Alfven/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.
Propagation of a fluidization - combustion wave
Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.
1994-05-01
A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.
THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF FAST-TO-ALFVEN CONVERSION IN SUNSPOTS
Felipe, T.
2012-10-20
The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-{beta} region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 Degree-Sign and low azimuths, while the Alfven wave conversions peak at high inclinations and azimuths between 50 Degree-Sign and 120 Degree-Sign . Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which is reflected due to the gradients of the Alfven speed. The simulations show that the Alfven energy at the chromosphere is comparable to the acoustic energy of the slow mode, being even higher at high inclined magnetic fields.
Drift-Alfven wave mediated particle transport in an elongated density depression
Vincena, Stephen; Gekelman, Walter
2006-06-15
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Coronal heating by the resonant absorption of Alfven waves: Wavenumber scaling laws.
NASA Technical Reports Server (NTRS)
Ofman, L.; Davila, J. M.; Steinolfson, R. S.
1995-01-01
The importance of global modes in coronal loop heating is well established. In the present work the scaling of the global-mode resonant heating rate with the perturbation wavenumbers is studied with the numerical solution of the linearized time-dependent MHD equations for a full compressible, low-beta, resistive plasma using an implicit integration scheme. The numerical simulations demonstrate that the dissipation on inhomogeneties in the background Alfven speed occurs in narrow resonant layer with the highest heating rate at the global-mode frequency. The global-mode heating rate H (sub r) was found to scale as H (Sub r) approximately k (sub y) (exp 1.03) when k (sub z) = 0.1, and as H (sub r) approximately k (sub y) (exp -1.93) when k (sub z) = 0.75, where k (sub y) and k (sub z) are the wavenumbers in the perpendicular and parallel to the magnetic field directions, respectively, while the dependence of H (sub r) on k (sub z) is more complex. The quality factor Q of the MHD resonance cavity scales as Q approximately k (sub y) (exp -1.8) for k (sub z) = 0.75 and as Q approximately k (sub y) (exp -1.46) for k (sub z) = 0.1. The numerically determined heating rate scaling, the global-mode fequency, and the quality factor are in good agreement with the analytical linear theory. The magnitude of the perturbed velocities was found to decrease with k (sub y). Assuming typical coronal loop parameters (B (sub 0) = 100-200 G, upsilon (sub A) = 2000-4000 km/s), the Alfven waves can supply the required heating to a low-Q loops.
Pulse Wave Propagation in the Arterial Tree
NASA Astrophysics Data System (ADS)
van de Vosse, Frans N.; Stergiopulos, Nikos
2011-01-01
The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.
Nonlinear dispersive Alfven waves in dusty plasma in the transition limit, {alpha}{approx}1
Sah, O. P.
2011-10-15
Localized nonlinear structures associated with dispersive Alfven waves are investigated in dusty plasma in the transition limit, i.e., {alpha}{identical_to}({beta}/2Q){approx}1, where {beta} is the ratio of thermal to magnetic pressure and Q is electron to ion mass ratio. Sagdeev pseudopotential is obtained from the basic governing equations, which is then numerically solved to study the existence and the behaviors of the nonlinear structures. It is found that both compressive and rarefactive solitons can coexist above and below certain critical {alpha}- values determined by the wave direction cosine (K{sub Z}) and the Mach number (M); and the compressive (rarefactive) solitons are much wider than the rarefactive ones for the case M
Dispersion characteristics of kinetic Alfven waves in a multi-ion cometary plasma
NASA Astrophysics Data System (ADS)
Jayapal, R.; Abraham, Noble P.; Blesson, Jose; Antony, S.; Anilkumar, C. P.; Venugopal, Chandu
We have studied the stability of the kinetic Alfven wave in a plasma composed of hydrogen and positively and negatively charged oxygen ions and electrons which approximates very well the plasma environment around comet Halley. In the direction parallel to the magnetic field, the electrons have been modelled by a drifting Maxwellian distribution. In the perpendicular direction, another ring simulated by a loss cone type distribution, obtained by subtracting two Maxwellians with different temperatures, model all the constituents of the plasma. The dispersion relation derived for KAWs is a generalisation of the pioneering dispersion relation of Hasegawa on two counts: it has been extended to a plasma described by a generalised distribution function and to a multi - ion plasma containing positively and negatively charged ions. We find that the dispersion characteristics of the KAW can be made independent of the heavy ion parameters by an appropriate choice of densities and temperatures. The source of free energy for the instability is the drift velocity of the electrons; the growth rate increases with increasing drift velocity of the electrons. The positively charged heavier ions enhance the instability while the negatively charged heavier ions tend to damp the wave.
Dispersion characteristics of kinetic Alfven waves in a multi-ion plasma
NASA Astrophysics Data System (ADS)
Venugopal, Chandu; Jayapal, R.; Sreekala, G.; Jose, Blesson; Savithri Devi, E.; Antony, S.
2014-06-01
The stability of the kinetic Alfven wave (KAW) has been studied in a plasma composed of electrons, hydrogen and positively and negatively charged oxygen ions. Using the two potential theory of Hasegawa, we have derived an expression for the frequency and growth/damping rate of the KAW. The dispersion relation derived in this paper is a generalization of the dispersion relation of Hasegawa on two counts: (i) we use a more generalized distribution function and show that our relation reduces to the dispersion relation of Hasegawa in the limiting case, and (ii) it is applicable to a multi-ion plasma containing lighter ions and positively and negatively charged heavier ions. We find the growth rate of the wave increases with increasing drift velocities of the electrons. Negatively charged oxygen ions (O-) decrease the growth rate; however, the growth rate is very sensitively dependent on O- ion density, especially when its density is greater than that of the positively charged oxygen ions (O+). Interestingly, the dispersion characteristics of KAWs can be made insensitive to the presence of the heavier ions by an appropriate choice of their densities and temperatures.
COUPLED ALFVEN AND KINK OSCILLATIONS IN CORONAL LOOPS
Pascoe, D. J.; Wright, A. N.; De Moortel, I.
2010-03-10
Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. However, there is ongoing discussion regarding their interpretation as kink or Alfven waves. To investigate the nature of transverse waves propagating in the solar corona and their potential for use as a coronal diagnostic in MHD seismology, we perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low beta plasma. We consider the cases of both a uniform medium and one with loop-like density structure and perform a parametric study for our structuring parameters. When density structuring is present, resonant absorption in inhomogeneous layers leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave as energy is transferred to the local Alfven mode is in good agreement with a modified interpretation of the analysis of Ruderman and Roberts for standing kink modes. Numerical simulations support the most general interpretation of the observed loop oscillations as a coupling of the kink and Alfven modes. This coupling may account for the observed predominance of outward wave power in longer coronal loops since the observed damping length is comparable to our estimate based on an assumption of resonant absorption as the damping mechanism.
Numerical wave propagation in ImageJ.
Piedrahita-Quintero, Pablo; Castañeda, Raul; Garcia-Sucerquia, Jorge
2015-07-20
An ImageJ plugin for numerical wave propagation is presented. The plugin provides ImageJ, the well-known software for image processing, with the capability of computing numerical wave propagation by the use of angular spectrum, Fresnel, and Fresnel-Bluestein algorithms. The plugin enables numerical wave propagation within the robust environment provided by the complete set of built-in tools for image processing available in ImageJ. The plugin can be used for teaching and research purposes. We illustrate its use to numerically recreate Poisson's spot and Babinet's principle, and in the numerical reconstruction of digitally recorded holograms from millimeter-sized and pure phase microscopic objects.
Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP
McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C
2006-05-09
We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.
Asymptotic wave propagation in excitable media.
Bernus, Olivier; Vigmond, Edward
2015-07-01
Wave shape and velocity are important issues in reaction-diffusion systems, and are often the result of competition in media with heterogeneous conduction properties. Asymptotic wave front propagation at maximal conduction velocity has been previously reported in the context of anisotropic cardiac tissue, but it is unknown whether this is a universal property of excitable tissues where conduction velocity can be locally modulated by mechanisms other than anisotropy. Here, we investigate the impact of conduction heterogeneities and boundary effects on wave propagation in excitable media. Following a theoretical analysis, we find that wave-front cusps occur where local velocity is reduced and that asymptotic wave fronts propagate at the maximal translational conduction velocity. Simulations performed in different reaction-diffusion systems, including cardiac tissue, confirm our theoretical findings. We conclude that this property can be found in a wide range of reaction-diffusion systems with excitable dynamics and that asymptotic wave-front shapes can be predicted.
Monte-Carlo Orbit/Full Wave Simulation of Fast Alfven Wave (FW) Damping on Resonant Ions in Tokamaks
Choi, M.; Chan, V.S.; Pinsker, R.I.; Tang, V.; Bonoli, P.; Wright, J.
2005-09-26
To simulate the resonant interaction of fast Alfven wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-04-10
The angular distribution of the normalized reduced magnetic helicity density ({sigma} r{sub m}) in solar wind turbulence reveals two components of distinct polarity in different angle ranges. This kind of two-component {sigma}{sup r}{sub m} may indicate the possible wave modes and power spectral densities (PSDs) of the turbulent fluctuations. Here we model the measured angular distribution of {sigma}{sup r}{sub m} by assuming a PSD distribution for Alfven fluctuations in wavevector space, and then fit the model results to the observations by adjusting the pattern of the PSD distribution. It is found that the two-component form of the PSD, which has a major and minor component close to k and k{sub ||}, respectively, seems to be responsible for the observed two-component {sigma}{sup r}{sub m}. On the other hand, both an isotropic PSD and a PSD with only a single component bending toward k fail to reproduce the observations. Moreover, it is shown that the effect of gradual balance between outward and inward wave-energy fluxes with decreasing spatial scale needs to be considered in order to reproduce the observed diminishing of |{sigma}{sup r}{sub m}| at shorter scales. Therefore, we suggest that the observed two-component {sigma}{sup r}{sub m} in the solar wind turbulence may be due to a superposition of Alfven waves with quasi-perpendicular (major part) and quasi-parallel (minor part) propagation. The waves seem to become gradually balanced toward shorter scales.
Radio wave propagation and acoustic sounding
NASA Astrophysics Data System (ADS)
Singal, S. P.
Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.
Controls on flood and sediment wave propagation
NASA Astrophysics Data System (ADS)
Bakker, Maarten; Lane, Stuart N.; Costa, Anna; Molnar, Peter
2015-04-01
The understanding of flood wave propagation - celerity and transformation - through a fluvial system is of generic importance for flood forecasting/mitigation. In association with flood wave propagation, sediment wave propagation may induce local erosion and sedimentation, which will affect infrastructure and riparian natural habitats. Through analysing flood and sediment wave propagation, we gain insight in temporal changes in transport capacity (the flood wave) and sediment availability and transport (the sediment wave) along the river channel. Heidel (1956) was amongst the first to discuss the progressive lag of sediment concentration behind the corresponding flood wave based on field measurements. Since then this type of hysteresis has been characterized in a number of studies, but these were often based on limited amount of floods and measurement sites, giving insufficient insight into associated forcing mechanisms. Here, as part of a project concerned with the hydrological and geomorphic forcing of sediment transfer processes in alpine environments, we model the downstream propagation of short duration, high frequency releases of water and sediment (purges) from a flow intake in the Borgne d'Arolla River in south-west Switzerland. A total of >50 events were measured at 1 minute time intervals using pressure transducers and turbidity probes at a number of sites along the river. We show that flood and sediment wave propagation can be well represented through simple convection diffusion models. The models are calibrated/validated to describe the set of measured waves and used to explain the observed variation in wave celerity and diffusion. In addition we explore the effects of controlling factors including initial flow depth, flood height, flood duration, bed roughness, bed slope and initial sediment concentration, on the wave propagation processes. We show that the effects of forcing mechanisms on flood and sediment wave propagation will lead to different
KINETIC ALFVEN WAVE INSTABILITY DRIVEN BY FIELD-ALIGNED CURRENTS IN SOLAR CORONAL LOOPS
Chen, L.; Wu, D. J. E-mail: djwu@pmo.ac.cn
2012-08-01
Magneto-plasma loops, which trace closed solar magnetic field lines, are the primary structural elements of the solar corona. Kinetic Alfven wave (KAW) can play an important role in inhomogeneous heating of these magneto-plasma structures in the corona. By the use of a low-frequency kinetic dispersion equation, which is presented in this paper and is valid in a finite-{beta} plasma with Q < {beta} < 1 plasma (where {beta} is the kinetic to magnetic pressure ratio and Q = m{sub e} /m{sub i} is the mass ratio of electrons to ions), KAW instability driven by a field-aligned current in the current-carrying loops in the solar corona is investigated. The results show that the KAW instability can occur in wave number regimes 0 < k{sub z} < k{sup c}{sub z} and 0 < k < k{sup c} , and that the critical wave numbers k{sup c}{sub z} and k{sup c} and the growth rate both considerably increase as the drift velocity V{sub D} of the current-carrying electrons increases in the loops. In particular, for typical parameters of the current-carrying loops in the solar corona this instability mechanism results in a high growth rate of KAWs, {omega}{sub i} {approx} 0.01-0.1{omega}{sub ci} {approx} 10{sup 3}-10{sup 4} s{sup -1}. The results are of importance in understanding the physics of the electric current dissipation and plasma heating of the current-carrying loops in the solar corona.
Supersaturation of vertically propagating internal gravity waves
NASA Technical Reports Server (NTRS)
Lindzen, Richard S.
1988-01-01
The usual assumption that vertically propagating internal gravity waves will cease growing with height once their amplitudes are such as to permit convective instability anywhere within the wave is reexamined. Two factors lead to amplitude limitation: (1) wave clipping associated with convective mixing, and (2) energetic constraints associated with the rate at which the wave can supply energy to the convection. It is found that these two factors limit supersaturation to about 50 percent for waves with short horizontal wavelengths and high relative phase speeds. Usually the degree of supersaturation will be much less. These factors also lead to a gradual, rather than sudden, cessation of wave growth with height.
Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales
NASA Astrophysics Data System (ADS)
Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.
2010-12-01
Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.
ALFVEN-WAVE TURBULENCE AND PERPENDICULAR ION TEMPERATURES IN CORONAL HOLES
Chandran, Benjamin D. G.
2010-09-01
Low-frequency Alfven-wave turbulence causes ion trajectories to become chaotic, or 'stochastic', when the turbulence amplitude is sufficiently large. Stochastic orbits enable ions to absorb energy from the turbulence, increasing the perpendicular ion temperature T{sub perpendiculari} even when the fluctuation frequencies are too small for a cyclotron resonance to occur. In this paper, an analytic expression for the stochastic heating rate is used in conjunction with an observationally constrained turbulence model to obtain an analytic formula for T{sub perpendiculari} as a function of heliocentric distance r, ion mass, and ion charge in coronal holes at 2 R{sub sun} {approx}< r {approx}< 15 R{sub sun}. The resulting temperature profiles provide a good fit to observations of protons and O{sup +5} ions at 2 R {sub sun} {approx}< r {approx}< 3 R{sub sun} from the Ultraviolet Coronagraph Spectrometer (UVCS). Stochastic heating also offers a natural explanation for several detailed features of the UVCS observations, including the preferential and anisotropic heating of minor ions, the rapid radial increase in the O{sup +5} temperature between 1.6 R{sub sun} and 1.9 R{sub sun}, and the abrupt flattening of the O{sup +5} temperature profile as r increases above 1.9 R{sub sun}.
An analytical solution of finite-amplitude solitary kinetic Alfven waves
Wu, D.; Wang, D.; Faelthammar, C.
1995-12-01
An analytical solution of finite-amplitude solitary kinetic Alfven waves (SKAWs) in a low-{beta} ({beta}{much_lt}{ital m}{sub {ital e}}/{ital m}{sub {ital i}}{much_lt}1) plasma is presented. This solution has been compared with the solution of the Korteweg--de Vries (KdV) equation in the small-amplitude limit. It is found that the KdV soliton solution is valid only for the maximum relative density perturbation {ital N}{sub {ital m}}{lt}0.1. For the larger {ital N}{sub {ital m}}, the exact analytical solution shows that the SKAWs have a much wider structure and much stronger perturbed fields than the KdV solitons with the same {ital N}{sub {ital m}}. Moreover, the relations between the width and the amplitude of SKAWs are also considerably different from that of the KdV solitons. In addition, the possibility for applying these results to some events observed from the Freja scientific satellite is discussed. (The Freja is a Swedish--German scientific project for the investigation of ionospheric and magnetospheric plasmas, and the Freja satellite was launched on a Long-March II rocket of China on October 6, 1992.) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Propagation of waves along an impedance boundary
NASA Technical Reports Server (NTRS)
Wenzel, A. R.
1974-01-01
A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
Optical evidence for Alfven wave breaking in the near-Earth magnetosphere
NASA Astrophysics Data System (ADS)
Semeter, J.; Blixt, M.
2006-12-01
Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.
Atmospheric millimeter wave propagation model
NASA Astrophysics Data System (ADS)
Liebe, H. J.
1983-12-01
The neutral atmosphere is characterized for the frequency range from 1 to 300 GHz as nonturbulent propagation medium. Attenuation and propagation delay effects are predicated from meteorological data sets: pressure, temperature, humidity, suspended particle concentration, and rain rate. The physical data base of the propagation model consists of four terms: (1) resonance information for 30 water vapor and 48 oxygen absorption lines in the form of intensity coefficients and center frequency for each line; (2) a composite (oxygen, water vapor, and nitrogen) continum spectrum; (3) a hydrosol attenuation term for haze, fog, and cloud conditions; and (4) a rain attenuation model. Oxygen lines extend into the mesosphere, where they behave in a complicated manner due to the Zeeman effect.
Wave propagation into the middle atmosphere
NASA Technical Reports Server (NTRS)
Hirota, I.
1989-01-01
Recent observations of various types of waves propagating into the middle atmosphere are reviewed. Emphasis is made on the excitation processes in the lower atmosphere and their vertical propagation through the background flow as a function of the latitude, height and season. The following subjects are discussed: (1) Vertical propagation of quasi-stationary forced Rossby waves into the winter stratosphere in connection with the sudden warming; (2) Spectral distribution and seasonal characteristics of normal mode (free) Rossby waves and the asymmetry of the Northern and Southern Hemispheres; and (3) Seasonal variation of internal gravity waves in the middle atmosphere. Further discussions are presented for future studies based on accumulated observational data during the MAP period.
NASA Astrophysics Data System (ADS)
Mukhter, A.; Singh, N.; Khazanov, G.
2006-12-01
Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfvén waves (SAWs) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous feature of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvénic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in- cell simulations showing that the ES components are directly generated by cross-field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. In the simulation we drive the plasma by the transverse electric field, Ey, of the EM waves; the frequency of Ey is varied from a frequency below the heavy ion cyclotron frequency to below the light ion cyclotron frequency. We have also performed simulations for Ey having a continuous spectrum given by a power law with different spectral indexes. The driving electric
Faraday Pilot-Waves: Generation and Propagation
NASA Astrophysics Data System (ADS)
Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John
2015-11-01
We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.
Harmonic plane wave propagation in gyroelectric media
NASA Astrophysics Data System (ADS)
Hillion, Pierre
2006-05-01
We analyse the behaviour of harmonic plane waves in unbounded gyroelectric media once the refractive index in the direction of propagation is known from the Fresnel equation. We get, for the electric and magnetic fields, analytical expressions simple enough to use in a plane wave spectrum representation of more structured electromagnetic fields in these media. We also discuss the reflection and refraction of harmonic plane waves at the boundary between an isotropic medium and a gyroelectric material.
Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips
2012-03-13
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
Generation of Alfven-ion cyclotron waves on auroral field lines in the presence of heavy ions
NASA Technical Reports Server (NTRS)
Lysak, R. L.; Temerin, M. A.
1983-01-01
Observation of electromagnetic waves in the low-altitude auroral zone at frequencies between the proton and helium gyrofrequencies suggests that Alfven-ion cyclotron waves modified by the presence of helium ions are being excited. Estimates of the growth rates for this mode indicate that the auroral electron beam can provide the free energy for the instability. The effect of the heavy ions is to decrease the group velocity of the waves, leading to larger convective growth. Theoretical wave spectra are computed in the local approximation, which assumes that the gradient scale lengths in density and magnetic field are constant over the ray paths. Narrow banded spectral peaks similar to observations may be produced when the thickness of the electron beam is small (200 m at 3000 km altitude). Narrow beams also limit growth of whistler mode waves, which compete for the free energy of the electron beam.
High amplitude waves in the expanding solar wind plasma
Schmidt, J. M.; Velli, M.; Grappin, R.
1996-07-20
We simulated the 1 D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. It is the generation of sound due to ponderomotive forces of the Alfven wave which we can detect in the latter case. For slow magnetoacustic waves we find a kind of oscillation of the character of the wave between a sound wave and an Alfven wave. This is the more, the slow magnetoacustic wave is close to a sound wave in the beginning. On the other hand, fast magnetoacustic waves are much more dissipated than the other wave-types and their general behaviour is close to the Alfven. The normalized cross-helicity {sigma}{sub c} is close to one for Alfven-waves and this quantity is decreasing slightly when density-fluctuations are generated. {sigma}{sub c} decreases significantly when the waves are close to perpendicular propagation. Then, the waves are close to quasi-static structures.
Propagation of polarized waves in inhomogeneous media.
Charnotskii, Mikhail
2016-07-01
A parabolic equation for electromagnetic wave propagation in a random medium is extended to include the depolarization effects in the narrow-angle, forward-scattering setting. Closed-form parabolic equations for propagation of the coherence tensor are derived under a Markov approximation model. For a general partially coherent and partially polarized beam wave, this equation can be reduced to a system of ordinary differential equations, allowing a simple numeric solution. An analytical solution exists for statistically homogeneous waves. Estimates based on the perturbation solution support the common knowledge that the depolarization at the optical frequencies is negligible for atmospheric turbulence propagation. These results indicate that the recently published theory [Opt. Lett.40, 3077 (2015)10.1364/OL.40.003077] is not valid for atmospheric turbulence. PMID:27409697
Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma
Shukla, P. K.; Eliasson, B.; Stenflo, L.
2012-07-15
We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.
Role of 3d-dispersive Alfven waves in coronal heating
NASA Astrophysics Data System (ADS)
Sharma, R. P.; Yadav, N.; Pathak, N.
2014-05-01
Coronal heating is one of the unresolved puzzles in solar physics from decades. In the present paper we have investigated the dynamics of vortices to apprehend coronal heating problem. A three dimensional (3d) model has been developed to study propagation of dispersive Alfvén waves (DAWs) in presence of ion acoustic waves which results in excitation of DAW and evolution of vortices. Taking ponderomotive nonlinearity into account, development of these vortices has been studied. There are observations of such vortices in the chromosphere, transition region and also in the lower solar corona. These structures may play an important role in transferring energy from lower solar atmosphere to corona and result in coronal heating. Nonlinear interaction of these waves is studied in view of recent simulation work and observations of giant magnetic tornadoes in solar corona and lower atmosphere of sun by solar dynamical observatory (SDO).
Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets
NASA Astrophysics Data System (ADS)
Jafelice, L. C.; Opher, R.
1990-11-01
evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS
Finnegan, S. M.; Koepke, M. E.; Knudsen, D. J.
2008-05-15
A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.
Wave propagation in metamaterial lattice sandwich plates
NASA Astrophysics Data System (ADS)
Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong
2016-04-01
This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.
Kinetic Alfven eigenmodes in JET and DIII-D
Jaun, A.; Hellsten, T.; Heidbrink, W.W.; Carolipio, E.
1996-12-31
Kinetic effects are studied for global Alfven eigenmodes in realistic tokamak equilibria with finite aspect ratio and plasmas, comparing calculations from the full wave code PENN with experimental measurements. The kinetic plasma model is based on a Larmor radius expansion in toroidal geometry and takes into account the gradients in the equilibrium density and temperatures. It allows for a consistent description of the mode conversion to the kinetic Alfven wave (KAW) and the effect of diamagnetic drifts on electromagnetic waves. Comparisons axe first carried out for a JET discharge, showing that multiple peeks measured in the low frequency Alfven spectrum are the signature of kinetic Alfven eigenmodes (KAE) induced through coupling between a global ellipticity Alfven eigenmode (EAE) and the KAW. In general, series of modes appear in the proximity of global fluid modes, some with a regular spacing in frequency and a very weak Landau damping of {vert_bar}{gamma}/{omega}{vert_bar} {approx_equal} 0.0007. A kinetic analysis of a DIII-D discharge shows that TAE mode wavefields reach the plasma core through electromagnetic drift waves which propagate because of finite temperature gradients in the regions of small k{sub {parallel}}. They can lead to particle diffusion and may explain the large losses of beam ions observed during the TAE instabilities. Comparisons of frequency and eigenmode structure axe carried out for resistive and kinetic models, between the theoretical calculations using the PENN code and the experimental measurements from magnetic probes.
Antenna Construction and Propagation of Radio Waves.
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…
Wave propagation analysis using the variance matrix.
Sharma, Richa; Ivan, J Solomon; Narayanamurthy, C S
2014-10-01
The propagation of a coherent laser wave-field through a pseudo-random phase plate is studied using the variance matrix estimated from Shack-Hartmann wavefront sensor data. The uncertainty principle is used as a tool in discriminating the data obtained from the Shack-Hartmann wavefront sensor. Quantities of physical interest such as the twist parameter, and the symplectic eigenvalues, are estimated from the wavefront sensor measurements. A distance measure between two variance matrices is introduced and used to estimate the spatial asymmetry of a wave-field in the experiment. The estimated quantities are then used to compare a distorted wave-field with its undistorted counterpart. PMID:25401243
Shallow water sound propagation with surface waves.
Tindle, Chris T; Deane, Grant B
2005-05-01
The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.
Propagation of seismic waves in tall buildings
Safak, E.
1998-01-01
A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.
Solitary wave propagation influenced by submerged breakwater
NASA Astrophysics Data System (ADS)
Wang, Jin; Zuo, Qi-hua; Wang, Deng-ting; Shukrieva, Shirin
2013-10-01
The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation. "Water column collapsing" method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.
Speeding up tsunami wave propagation modeling
NASA Astrophysics Data System (ADS)
Lavrentyev, Mikhail; Romanenko, Alexey
2014-05-01
Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.
Mechanical surface waves accompany action potential propagation.
El Hady, Ahmed; Machta, Benjamin B
2015-01-01
Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404
Mechanical surface waves accompany action potential propagation
NASA Astrophysics Data System (ADS)
El Hady, Ahmed; Machta, Benjamin B.
2015-03-01
Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.
Radiation from accelerated Alfven solitons in inhomogeneous plasmas
NASA Technical Reports Server (NTRS)
Lakhina, G. S.; Buti, B.; Tsintsadze, N. L.
1990-01-01
In a weakly inhomogeneous plasma, the large-amplitude Alfven waves propagating parallel to the ambient magnetic field are shown to evolve into accelerated Alfven solitons. Nonlinear interaction of the accelerated Alfven solitons with the Langmuir waves results in the emission of coherent radiations. Analytical expression for the power radiated per unit solid angle from a soliton is derived for two inhomogeneity profiles, namely the linear profile and the parabolic profile. For the case of uniform plasmas, the emission occurs via a decay-type process or resonant modes. In the presence of inhomogeneity, nonresonant modes provide a new channel for the emission of radiation. The power radiated per unit solid angle is computed for the parameters relevant to Comet Halley's plasma environment. For the nonresonant modes it is found to be several orders of magnitude higher than that for the case of resonant modes.
Propagation characteristics of acoustic waves in snow
NASA Astrophysics Data System (ADS)
Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani
2015-04-01
Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.
Surface acoustic wave propagation in graphene film
Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula
2015-09-14
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Nonlinear guided wave propagation in prestressed plates.
Pau, Annamaria; Lanza di Scalea, Francesco
2015-03-01
The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress.
Wave propagation in spatially modulated tubes.
Ziepke, A; Martens, S; Engel, H
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Wave propagation in spatially modulated tubes
NASA Astrophysics Data System (ADS)
Ziepke, A.; Martens, S.; Engel, H.
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Nonlinear guided wave propagation in prestressed plates.
Pau, Annamaria; Lanza di Scalea, Francesco
2015-03-01
The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress. PMID:25786963
Wave propagation in spatially modulated tubes.
Ziepke, A; Martens, S; Engel, H
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train. PMID:27608990
Saturation of Alfven oscillations in the ring current region due to generation of lower hybrid waves
NASA Astrophysics Data System (ADS)
Gamaiunov, K. V.; Krivorutskii, E. N.; Veriaev, A. A.; Khazanov, G. V.
1992-04-01
The possibility of flux generation of lower hybrid oscillations in the ring current region of the earth's magnetosphere is suggested in this paper. The energy level of lower hybrid oscillations can exceed the modulational instability threshold, which leads to the formation of caverns. The consequences of this are qualitatively analyzed. Also, an assumption is made that the flux instability of lower hybrid oscillations may limit the level of Alfven oscillations in the ring current region.
Maneva, Y. G.; Ofman, L.; Vinas, A. F.
2013-06-13
In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.
Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.
2013-06-10
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.
Surface waves propagating on a turbulent flow
NASA Astrophysics Data System (ADS)
Gutiérrez, Pablo; AumaÃ®tre, Sébastien
2016-02-01
We study the propagation of monochromatic surface waves on a turbulent flow of liquid metal, when the waves are much less energetic than the background flow. Electromagnetic forcing drives quasi-two-dimensional turbulence with strong vertical vorticity. To isolate the surface-wave field, we remove the surface deformation induced by the background turbulent flow using coherent-phase averaging at the wave frequency. We observe a significant increase in wavelength, when the latter is smaller than the forcing length scale. This phenomenon has not been reported before and can be explained by multiple random wave deflections induced by the turbulent velocity gradients. The shift in wavelength thus provides an estimate of the fluctuations in deflection angle. Local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is visible. Finally, we quantify the damping enhancement induced by the turbulent flow and compare it to the existing theoretical predictions. Most of them suggest that the damping increases as the square of the Froude number, whereas our experimental data show a linear increase with the Froude number. We interpret this linear relationship as a balance between the time for a wave to cross a turbulent structure and the turbulent mixing time. The larger the ratio of these two times, the more energy is extracted from the wave. We conclude with possible mechanisms for energy exchange.
Lattice Boltzmann model for wave propagation.
Zhang, Jianying; Yan, Guangwu; Shi, Xiubo
2009-08-01
A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation.
BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA
Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu
2011-09-10
Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.
Obliquely propagating dust-density waves
Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.
2008-02-15
Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.
Wave Propagation in Jointed Geologic Media
Antoun, T
2009-12-17
Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.
SPECTROSCOPIC SIGNATURE OF ALFVEN WAVES DAMPING IN A POLAR CORONAL HOLE UP TO 0.4 SOLAR RADII
Bemporad, A.; Abbo, L.
2012-06-01
Between 2009 February 24 and 25, the EUV Imaging Spectrometer (EIS) spectrometer on board the Hinode spacecraft performed special 'sit and stare' observations above the south polar coronal hole continuously over more than 22 hr. Spectra were acquired with the 1'' slit placed off-limb covering altitudes up to 0.48 R{sub Sun} (3.34 Multiplication-Sign 10{sup 2} Mm) above the Sun surface, in order to study with EIS the non-thermal spectral line broadenings. Spectral lines such as Fe XII {lambda}186.88, Fe XII {lambda}193.51, Fe XII {lambda}195.12, and Fe XIII {lambda}202.04 are observed with good statistics up to high altitudes and they have been analyzed in this study. Results show that the FWHM of the Fe XII {lambda}195.12 line increases up to {approx_equal} 0.14 R{sub Sun }, then decreases higher up. EIS stray light has been estimated and removed. Derived electron density and non-thermal velocity profiles have been used to estimate the total energy flux transported by Alfven waves off-limb in the polar coronal hole up to {approx_equal} 0.4 R{sub Sun }. The computed Alfven wave energy flux density f{sub w} progressively decays with altitude from f{sub w} {approx_equal} 1.2 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1} at 0.03 R{sub Sun} down to f{sub w} {approx_equal} 8.5 Multiplication-Sign 10{sup 3} erg cm{sup -2} s{sup -1} at 0.4 R{sub Sun }, with an average energy decay rate of {Delta}f{sub w} /{Delta}h {approx_equal} -4.5 Multiplication-Sign 10{sup -5} erg cm{sup -1}. Hence, this result suggests energy deposition by Alfven waves in a polar coronal hole, thus providing a significant source for coronal heating.
Seismic Wave Propagation on the Tablet Computer
NASA Astrophysics Data System (ADS)
Emoto, K.
2015-12-01
Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the
Propagation of a constant velocity fission wave
NASA Astrophysics Data System (ADS)
Deinert, Mark
2011-10-01
The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.
NASA Technical Reports Server (NTRS)
Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.
1985-01-01
Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.
Modeling Propagation of Shock Waves in Metals
Howard, W M; Molitoris, J D
2005-08-19
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.
Wave propagation in negative index materials
NASA Astrophysics Data System (ADS)
Aylo, Rola
Properties of electromagnetic propagation in materials with negative permittivities and permeabilities were first studied in 1968. In such metamaterials, the electric field vector, the magnetic field vector, and the propagation vector form a left hand triad, thus the name left hand materials. Research in this area was practically non-existent, until about 10 years ago, a composite material consisting of periodic metallic rods and split-ring resonators showed left-handed properties. Because the dimension of the constituents of the metamaterial are small compared to the operating wavelength, it is possible to describe the electromagnetic properties of the composite using the concept of effective permittivity and permeability. In this dissertation, the basic properties of electromagnetic propagation through homogenous left hand materials are first studied. Many of the basic properties of left hand materials are in contrast to those in right hand materials, viz., negative refraction, perfect lensing, and the inverse Doppler effect. Dispersion relations are used to study wave propagation in negative index materials. For the first time to the best of our knowledge, we show that a reduced dispersion relation, obtained from the frequency dependence of the propagation constant by neglecting a linear frequency dependent term, obeys causality. Causality of the propagation constant enables us to use a novel and simple operator formalism approach to derive the underlying partial differential equations for baseband and envelope wave propagation. Various tools for understanding and characterizing left-handed materials are thereafter presented. The transfer matrix method is used to analyze periodic and random structures composed of positive and negative index materials. By random structures we mean randomness in layer position, index of refraction, and thickness. As an application of alternating periodic negative index and positive index structures, we propose a novel sensor using
Common omissions and misconceptions of wave propagation in turbulence: discussion.
Charnotskii, Mikhail
2012-05-01
This review paper addresses typical mistakes and omissions that involve theoretical research and modeling of optical propagation through atmospheric turbulence. We discuss the disregard of some general properties of narrow-angle propagation in refractive random media, the careless use of simplified models of turbulence, and omissions in the calculations of the second moment of the propagating wave. We also review some misconceptions regarding short-exposure imaging, propagation of polarized waves, and calculations of the scintillation index of the beam waves.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George
2004-01-01
When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.
Counterstreaming magnetized plasmas. II. Perpendicular wave propagation
Tautz, R.C.; Schlickeiser, R.
2006-06-15
The properties of longitudinal and transverse oscillations in magnetized symmetric counterstreaming Maxwellian plasmas with equal thermal velocities for waves propagating perpendicular to the stream direction are investigated on the basis of Maxwell equations and the nonrelativistic Vlasov equation. With the constraint of vanishing particle flux in the stream direction, three distinct dispersion relations are known, which are the ordinary-wave mode, the Bernstein wave mode, and the extraordinary electromagnetic wave mode, where the latter two are only approximations. In this article, all three dispersion relations are evaluated for a counterstreaming Maxwellian distribution function in terms of the hypergeometric function {sub 2}F{sub 2}. The growth rates for the ordinary-wave mode are compared to earlier results by Bornatici and Lee [Phys. Fluids 13, 3007 (1970)], who derived approximate results, whereas in this article the exact dispersion relation is solved numerically. The original results are therefore improved and show differences of up to 21% to the results obtained in this article.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1985-01-01
A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1986-01-01
In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
Seismic wave propagation in granular media
NASA Astrophysics Data System (ADS)
Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion
2016-10-01
Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in
Experimental evidence of MHD surface waves
Amagishi, Y.
1986-12-01
MND surface waves of m = -1 (poloidal mode number of left-hand rotation) compressional Alfven waves in a cylindrical finite-..beta.. plasma have been observed for the first time to propagate together with shear Alfven waves. These modes also show a distinctive feature of the dispersion merging with that of shear Alfven waves at the center of a plasma column when a limiting frequency below the ion cyclotron frequencey is reached. The experimental results confirm a recent prediction concerning surface-wave properties of the first radial eigenmode of a nonaxisymmetric compressional wave in a plasma surrounded by an insulating boundary.
A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry
Koenies, Axel; Kleiber, Ralf
2012-12-15
While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.
Propagation of gravity waves across the tropopause
NASA Astrophysics Data System (ADS)
Bense, Vera; Spichtinger, Peter
2015-04-01
The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause
Wave propagation in random granular chains.
Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H
2012-03-01
The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation. PMID:22587093
Wave propagation in random granular chains.
Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H
2012-03-01
The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation.
Calibration of seismic wave propagation in Jordan
Al-Husien, A; Amrat, A; Harris, D; Mayeda, K; Nakanishi, K; Rodgers, A; Ruppert, S; Ryall, F; Skinnell, K; Yazjeen, T
1999-07-23
The Natural Resources Authority of Jordan (NRA), the USGS and LLNL have a collaborative project to improve the calibration of seismic propagation in Jordan and surrounding regions. This project serves common goals of CTBT calibration and earthquake hazard assessment in the region. These objectives include accurate location of local and regional earthquakes, calibration of magnitude scales, and the development of local and regional propagation models. In the CTBT context, better propagation models and more accurately located events in the Dead Sea rift region can serve as (potentially GT5) calibration events for generating IMS location corrections. The detection and collection of mining explosions underpins discrimination research. The principal activity of this project is the deployment of two broadband stations at Hittiyah (south Jordan) and Ruweishid (east Jordan). These stations provide additional paths in the region to constrain structure with surface wave and body wave tomography. The Ruweishid station is favorably placed to provide constraints on Arabian platform structure. Waveform modeling with long-period observations of larger earthquakes will provide constraints on 1-D velocity models of the crust and upper mantle. Data from these stations combined with phase observations from the 26 short-period stations of the Jordan National Seismic Network (JNSN) may allow the construction of a more detailed velocity model of Jordan. The Hittiyah station is an excellent source of ground truth information for the six phosphate mines of southern Jordan and Israel. Observations of mining explosions collected by this station have numerous uses: for definition of templates for screening mining explosions, as ground truth events for calibrating travel-time models, and as explosion populations in development and testing discriminants. Following previously established procedures for identifying explosions, we have identified more than 200 explosions from the first 85 days of
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments. PMID:26357093
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.
Kink Wave Propagation in Thin Isothermal Magnetic Flux Tubes
NASA Astrophysics Data System (ADS)
Lopin, I. P.; Nagorny, I. G.; Nippolainen, E.
2014-08-01
We investigated the propagation of kink waves in thin and isothermal expanding flux tubes in cylindrical geometry. By using the method of radial expansion for fluctuating variables we obtained a new kink wave equation. We show that including the radial component of the tube magnetic field leads to cutoff-free propagation of kink waves along thin flux tubes.
Wave propagation in predator-prey systems
NASA Astrophysics Data System (ADS)
Fu, Sheng-Chen; Tsai, Je-Chiang
2015-12-01
In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).
Wave Propagation in Fractured Anisotropic Media
NASA Astrophysics Data System (ADS)
Shao, S.; Pyrak-Nolte, L. J.
2012-12-01
Discontinuities such as fractures, joints and faults occur in the Earth's crusts in a variety of rock types. While much theoretical, experimental and computational research have examined seismic wave propagation in fractured isotropic rock, few experimental studies have investigated seismic wave propagation in fractured anisotropic media. The co-existence of fractures and layers can complicate the interpretation of seismic properties because of the discrete guided modes that propagate along or are confined by the fractures. In this study, we use seismic arrays and acoustic wavefront imaging techniques to examine the competing sources of seismic anisotropy from fractures and from layers. Samples with textural anisotropy (100 mm x 100 mm x 100 mm) were fabricated from garolite, an epoxy - cloth laminate, with layer thickness 0f ~ 0.5 mm. Two sets of fractured samples were fabricated: (1) two single fractured samples with one fracture either parallel or (and) perpendicular to layers, and (2) four multi-fractured samples with 5 parallel fractures oriented either parallel, 30 degrees, 60 degrees or perpendicular to the layers. An intact sample containing no fractures was used as a standard orthorhombic medium for reference. Seismic arrays were used on the first set of samples to measure bulk waves and fracture interface waves as a function of stress. The seismic array contained two compressional and five shear-wave source-receiver pairs with a central frequency of 1 MHz. Shear wave transducers were polarized both perpendicular and parallel to the layering as well as to the fracture. Measurements were made for a range of stresses (0.4 - 4MPa). From these measurements it was observed that a fractured layered medium appears more isotropic or anisotropic than the orthorhombic background, depending on the orientation of the fracture relative to layers. The matrix anisotropy was recovered by increasing the normal stress on a fracture (i.e., by closing the fracture). For the
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed
Tsiklauri, D.
2014-05-15
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is
An investigation into Voigt wave propagation for optical sensing
NASA Astrophysics Data System (ADS)
Mackay, Tom G.
2013-09-01
In the nonsingular case of optical propagation in a linear, homogeneous, anisotropic, dielectric material, two independent plane waves, with orthogonal polarizations and different phase speeds, can propagate in a given direction. However, in certain dissipative biaxial materials there are particular directions along which these two waves coalesce to form a single plane wave. This coalescent Voigt wave represents the singular case. Most conspicuously, the amplitude of Voigt waves are linearly dependent upon propagation direction. A porous nanostructured thin film which supports Voigt wave propagation was investigated, with a view to possible optical sensing applications. The directions along which Voigt waves propagate can be highly sensitive to the refractive index of a fluid which infiltrates this porous material. Indeed, in our theoretical studies sensitivities which compare favourably to those of surface-plasmon-polariton-based optical sensors were found.
Effect of the magnetic field curvature on the generation of zonal flows by drift-Alfven waves
Mikhailovskii, A. B.; Kovalishen, E. A.; Shirokov, M. S.; Tsypin, V. S.; Galvao, R. M. O.
2007-05-15
The generation of zonal flows by drift-Alfven waves is studied with allowance for magnetic curvature effects. The basic plasmadynamic equations relating the electrostatic potential, vector potential, and perturbed plasma density are the vorticity equation, longitudinal Ohm's law, and continuity equation. The basic equations are analyzed by applying a parametric formalism similar to that used in the theory of the generation of convective cells. In contrast to most previous investigations on the subject, consideration is given to primary modes having an arbitrary spectrum rather than to an individual monochromatic wave packet. The parametric approach so modified makes it possible to reveal a new class of instabilities of zonal flows that are analogous to two-stream instabilities in linear theory. It is shown that, in the standard theory of zonal flows, the zonal components of the vector potential and perturbed density are not excited. It is pointed out that zonal flows can be generated both in the case of a magnetic hill and in the case of a magnetic well. In the first case, the instabilities of zonal flows are analogous to negative-mass instabilities in linear theory, and, in the second case, they are analogous to two-stream instabilities.
Nonlinear, dispersive, elliptically polarized Alfven wavaes
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.
1988-01-01
The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.
Regional Wave Propagation in Southeastern United States
NASA Astrophysics Data System (ADS)
Jemberie, A. L.; Langston, C. A.
2003-12-01
Broad band seismograms from the April 29, 2003, M4.6 Fort Payne, Alabama earthquake are analyzed to infer mechanisms of crustal wave propagation, crust and upper mantle velocity structure in southeastern United States, and source parameters of the event. In particular, we are interested in producing deterministic models of the distance attenuation of earthquake ground motions through computation of synthetic seismograms. The method first requires constraining the source parameters of an earthquake and then modeling the amplitude and times of broadband arrivals within the waveforms to infer appropriate layered earth models. A first look at seismograms recorded by stations outside the Mississippi Embayment (ME) show clear body phases such P, sP, Pnl, Sn and Lg. The ME signals are qualitatively different from others because they have longer durations and large surface waves. A straightforward interpretation of P wave arrival times shows a typical upper mantle velocity of 8.18 km/s. However, there is evidence of significantly higher P phase velocities at epicentral distances between 400 and 600km, that may be caused by a high velocity upper mantle anomaly; triplication of P-waves is seen in these seismograms. The arrival time differences between regional P and the depth phase sP at different stations are used to constrain the depth of the earthquake. The source depth lies between 9.5 km and 13km which is somewhat more shallow than the network location that was constrained to 15km depth. The Fort Payne earthquake is the largest earthquake to have occurred within the Eastern Tennessee Seismic Zone.
Anisotropic propagation of Ca2+ waves in isolated cardiomyocytes.
Engel, J; Fechner, M; Sowerby, A J; Finch, S A; Stier, A
1994-01-01
Digital imaging microscopy of fluor-3 fluorescence was used to study the propagation of intracellular Ca2+ waves in isolated adult rat cardiomyocytes from 17 to 37 degrees C. Ca2+ waves spread in both transverse and longitudinal direction of a myocyte. Transverse propagation was pronounced in waves starting from a focus at the edge of a myocyte and in waves following an irregular, curved path (spiral waves). For the former type of waves, propagation velocities were determined. Both transverse and longitudinal wave components propagated at constant velocity ranging from 30 to 125 micron/s. Myocytes were anisotropic with respect to wave propagation: waves propagated faster in the longitudinal than in the transverse direction. The ratio between longitudinal and transverse velocity increased from 1.30 at 17 degrees C to 1.55 at 37 degrees C. Apparent activation energies for transverse and longitudinal wave propagation were estimated to be -20 kJ/mol, suggesting that these processes are limited by diffusion of Ca2+. Direction-dependent propagation velocities are interpreted to result from the highly ordered structure of the myocytes, especially from the anisotropic arrangement of diffusion obstacles such as myofilaments and mitochondria. Images FIGURE 1 FIGURE 2 FIGURE 4 PMID:8075316
Wave Propagation in Expanding Cell Layers
NASA Astrophysics Data System (ADS)
Utuje, Kazage J. Christophe; Banerjee, Shiladitya; Marchetti, M. Cristina
2014-03-01
The coordinated migration of groups of cells drives important biological processes, such as wound healing and morphogenesis. In this talk we present a minimal continuum model of an expanding cell monolayer coupling elastic deformations to myosin-based activity in the cells. The myosin-driven contractile activity is quantified by the chemical potential difference for the process of ATP hydrolysis by myosin motors. A new ingredient of the model is a feedback of the local strain rate of the monolayer on contractility that naturally yields a mechanism for viscoelasticity of the cellular medium. By combining analytics and numerics we show that this simple model reproduces qualitatively many experimental findings, including the build-up of contractile stresses at the center of the cell monolayer, and the existence of traveling mechanical waves that control spreading dynamics and stress propagation in the cell monolayer. KJCU and MCM were supported by the NSF through grants DMR-1004789 and DGE-1068780.
Wave propagation in a random medium
NASA Technical Reports Server (NTRS)
Lee, R. W.; Harp, J. C.
1969-01-01
A simple technique is used to derive statistical characterizations of the perturbations imposed upon a wave (plane, spherical or beamed) propagating through a random medium. The method is essentially physical rather than mathematical, and is probably equivalent to the Rytov method. The limitations of the method are discussed in some detail; in general they are restrictive only for optical paths longer than a few hundred meters, and for paths at the lower microwave frequencies. Situations treated include arbitrary path geometries, finite transmitting and receiving apertures, and anisotropic media. Results include, in addition to the usual statistical quantities, time-lagged functions, mixed functions involving amplitude and phase fluctuations, angle-of-arrival covariances, frequency covariances, and other higher-order quantities.
Models and Observations of Shock Wave Propagation in Volcanic Settings
NASA Astrophysics Data System (ADS)
Anderson, J.; Johnson, J. B.; Ruiz, M. C.; Steele, A.
2013-12-01
High-amplitude air waves (shock waves) propagate nonlinearly; although this strongly affects recorded signals, it is not commonly modeled in studies of volcanic explosions. Failure to account for the shock wave component of air waves can lead to underestimation of source power and inaccurate source times. Additionally, propagation effects can significantly alter waveforms from the original source signals. In order to permit more accurate studies of shock wave sources, we examine modeling techniques and observations of shock waves. Shock wave signals begin with strong, abrupt compressions that, compared to typical sound waves, propagate and decay more quickly. Because of the high-amplitude discontinuities, numerical methods that are commonly used to study linear sound waves become unstable and inaccurate when applied to shock waves. We discuss the use of other techniques that are capable of modeling shock wave propagation. Equations relating wave speed to the difference of various physical quantities across the shock (such as pressure, density, and particle velocity) are useful for modeling these waves. Addressing the shock explicitly as such, in conjunction with use of traditional numerical methods for the remainder of the signal, permits modeling of full shock waveforms. Additionally, we present examples of recorded volcanic signals that propagate nonlinearly and demonstrate propagation effects on amplitude, waveform, and spectrum.
Wave propagation in sandwich panels with a poroelastic core.
Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez
2014-05-01
Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials.
NASA Astrophysics Data System (ADS)
Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar
2016-03-01
The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.
Effect of Resolution on Propagating Detonation Wave
Menikoff, Ralph
2014-07-10
Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.
Evolution of magnetohydrodynamic waves and associated ultrarelativistic electron acceleration
Takeyama, Yosuke; Nakayama, Shun-ichi; Ohsawa, Yukiharu
2011-09-15
The evolution of magnetosonic shock waves and Alfven waves generated by a strong disturbance and electron acceleration occurring in these waves is studied with fully kinetic, relativistic, electromagnetic, particle simulations. If two plasmas collide, magnetic field lines are compressed near the initial boundary of the two, resulting in the formation of a strong-magnetic-field pulse, which reflects ions of the two plasmas in two opposite directions. These ion motions create forward and backward shock waves. Furthermore, large-amplitude Alfven waves are produced, with their propagation speeds much lower than the shock speeds. In the Alfven wave region, three types of ultrarelativistic electron acceleration are observed, which are analyzed in detail.
Linear and nonlinear acoustic wave propagation in the atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Yu, Ping
1988-01-01
The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.
Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations
NASA Technical Reports Server (NTRS)
Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.
2014-01-01
Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.
Subspace model identification of guided wave propagation in metallic plates
NASA Astrophysics Data System (ADS)
Kim, Junhee; Kim, Kiyoung; Sohn, Hoon
2014-03-01
In this study, a data-driven subspace system identification approach is proposed for modeling guided wave propagation in plate media. In the data-driven approach, the subspace system identification estimates a mathematical model fitted to experimentally measured data, but the black-box model identified captures the dynamics of wave propagation. To demonstrate the versatility of the black-box model, wave motions in various shapes of aluminum plates are investigated in the study. In addition, a waveform predictor and temperature change indicator are proposed as applications of the black-box models, to further promote the modeling approach to guided wave propagation.
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun.
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability
Berk, H.L.; Breizman, B.N.; Ye, Huanchun
1992-03-01
Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ``explosion`` occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.
OBSERVATIONAL EVIDENCE OF RESONANTLY DAMPED PROPAGATING KINK WAVES IN THE SOLAR CORONA
Verth, G.; Goossens, M.; Terradas, J. E-mail: marcel.goossens@wis.kuleuven.b
2010-08-01
In this Letter, we establish clear evidence for the resonant absorption damping mechanism by analyzing observational data from the novel Coronal Multi-Channel Polarimeter. This instrument has established that in the solar corona there are ubiquitous propagating low-amplitude ({approx}1 km s{sup -1}) Alfvenic waves with a wide range of frequencies. Realistically interpreting these waves as the kink mode from magnetohydrodynamic wave theory, they should exhibit a frequency-dependent damping length due to resonant absorption, governed by the Terradas-Goossens-Verth relation showing that transverse plasma inhomogeneity in coronal magnetic flux tubes causes them to act as natural low-pass filters. It is found that the observed frequency dependence on damping length (up to about 8 mHz) can be explained by the kink wave interpretation; and furthermore, the spatially averaged equilibrium parameter describing the length scale of transverse plasma density inhomogeneity over a system of coronal loops is consistent with the range of values estimated from Transition Region and Coronal Explorer observations of standing kink modes.
General constitutive model for supercooled liquids: anomalous transverse wave propagation.
Mizuno, Hideyuki; Yamamoto, Ryoichi
2013-03-01
A transverse acoustic wave propagates through supercooled liquids in an anomalous manner: for a macroscopic wave number k, the wave propagates long distances, as in elastic solids, whereas it attenuates rapidly for a mesoscopic to microscopic wave number k, as in viscous liquids. In this work, we theoretically describe this anomalous wave propagation using the hydrodynamics of the two-mode Maxwell constitutive model, which were determined independently from the mechanical properties under oscillatory shear strains. To ensure that the Maxwell model can be applied down to a microscopic length scale, we extended it to a k-dependent equation, taking into account the recently reported k dependences of the shear viscosity and modulus [A. Furukawa and H. Tanaka, Phys. Rev. Lett. 103, 135703 (2009); A. Furukawa H. Tanaka Phys. Rev. E 84, 061503 (2011)]. The anomalous wave propagation in supercooled liquids can also be understood in terms of a linear coupling of many independent normal modes, as in amorphous solids. PMID:23496725
Wave-propagation formulation of seismic response of multistory buildings
Safak, E.
1999-01-01
This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.
NASA Technical Reports Server (NTRS)
Sahraoui, Fouad; Goldstein, Melvyn L.
2010-01-01
Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
Propagation of Axially Symmetric Detonation Waves
Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A
2002-06-26
We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.
Voltage modulation of propagating spin waves in Fe
Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti; Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya; Suzuki, Yoshishige
2015-05-07
The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.
Superluminal propagation of solitary kinklike waves in amplifying media.
Janowicz, Maciej; Mostowski, Jan
2006-04-01
It is shown that solitary-wave, kinklike structures can propagate superluminally in two- and four-level amplifying media with strongly damped oscillations of coherences. This is done by solving analytically the Maxwell-Bloch equations in the kinetic limit. It is also shown that the true wave fronts--unlike the pseudo wave fronts of the kinks--must propagate with velocity c, so that no violation of special relativity is possible. The conditions of experimental verification are discussed. PMID:16711948
Two cortical circuits control propagating waves in visual cortex.
Wang, Wenxue; Campaigne, Clay; Ghosh, Bijoy K; Ulinski, Philip S
2005-12-01
Visual stimuli produce waves of activity that propagate across the visual cortex of fresh water turtles. This study used a large-scale model of the cortex to examine the roles of specific types of cortical neurons in controlling the formation, speed and duration of these waves. The waves were divided into three components: initial depolarizations, primary propagating waves and secondary waves. The maximal conductances of each receptor type postsynaptic to each population of neurons in the model was systematically varied and the speed of primary waves, durations of primary waves and total wave durations were measured. The analyses indicate that wave formation and speed are controlled principally by feedforward excitation and inhibition, while wave duration is controlled principally by recurrent excitation and feedback inhibition. PMID:16284712
Manipulating Water Wave Propagation via Gradient Index Media
Wang, Zhenyu; Zhang, Pei; Nie, Xiaofei; Zhang, Yongqiang
2015-01-01
It is challenging to realise the perfect manipulation of water waves within a broad range of frequencies. By extending conformal transformation principles to water waves, their propagation can be controlled via gradually varying water depths, permitting the realisation of a desired refractive index profile for linear water surface waves. Wave bending, directional wave emission and wave focusing are analysed experimentally with accompanying simulations. The results demonstrate desired wave manipulations within a broad range of frequencies, confirming the accuracy and effectiveness of conformal transformation for water waves. PMID:26603312
Tian Hui; McIntosh, Scott W.; Wang, Tongjiang; Ofman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-11-10
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfven waves rather than flows. In a few cases, there seems to be a {pi}/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfvenic oscillations. In this scenario, the intensity oscillations associated with Alfvenic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
Fast damping of poloidal Alfven waves by bounce-resonant ions: observations and modeling
NASA Astrophysics Data System (ADS)
Wang, C.; Rankin, R.; Sydorenko, D.; Zong, Q.
2015-12-01
Interplanetary shocks and solar wind dynamic pressure variations can excite intense ultra-low-frequency (ULF) waves in the inner magnetosphere. An analysis of two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001 shows that the poloidal waves excited in these events are damped away rapidly in tens of minutes. This damping is the result of wave-particle interactions involving H+ and O+ ions with energies in the range of several to a few tens of keV [Wang et al., J. Geophys. Res., 2015]. Damping is found to be more effective in the plasmasphere boundary layer due to the relatively higher proportion of Landau resonant ions that exists in that region. In the November 2004 shock event it has been suggested that energy-dispersed ions observed travelling parallel and anti-parallel direction to the geomagnetic field immediately after the shockare locally accelerated rather than originating from Earth's ionosphere. We use test-particle simulations to show that adiabatic advection of the particle differential flux caused bydrift-bounce-resonance with ULF waves is responsible for the energy-dispersed ions observed in these events. In the simulations,Liouville's theorem is used to reconstruct the iondistribution function and differential flux in a model dipole magnetosphere.It is shown that flux modulations of H and O ions can be reproduced when test-particle ions are advanced in the electric fields of the 3D ULF wave model we have developed.
Small-scale Solar Wind Turbulence Due to Nonlinear Alfven Waves
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Sharma, R. P.; Moon, Y.-J.
2015-10-01
We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k‑1.67) to the dispersion range (k‑3.0). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.
Study of nonlinear MHD equations governing the wave propagation in twisted coronal loops
NASA Technical Reports Server (NTRS)
Parhi, S.; DeBruyne, P.; Goossens, M.; Zhelyazkov, I.
1995-01-01
The solar corona, modelled by a low beta, resistive plasma slab, sustains MHD wave propagations due to shearing footpoint motions in the photosphere. By using a numerical algorithm the excitation and nonlinear development of MHD waves in twisted coronal loops are studied. The plasma responds to the footpoint motion by sausage waves if there is no twist. The twist in the magnetic field of the loop destroys initially developed sausage-like wave modes and they become kinks. The transition from sausage to kink modes is analyzed. The twist brings about mode degradation producing high harmonics and this generates more complex fine structures. This can be attributed to several local extrema in the perturbed velocity profiles. The Alfven wave produces remnants of the ideal 1/x singularity both for zero and non-zero twist and this pseudo-singularity becomes less pronounced for larger twist. The effect of nonlinearity is clearly observed by changing the amplitude of the driver by one order of magnitude. The magnetosonic waves also exhibit smoothed remnants of ideal logarithmic singularities when the frequency of the driver is correctly chosen. This pseudo-singularity for fast waves is absent when the coronal loop does not undergo any twist but becomes pronounced when twist is included. On the contrary, it is observed for slow waves even if there is no twist. Increasing the twist leads to a higher heating rate of the loop. The larger twist shifts somewhat uniformly distributed heating to layers inside the slab corresponding to peaks in the magnetic field strength.
[Propagation of shear waves in the muscle tissue].
Afanas'eva, D A; Tsaturian, A K
2010-01-01
A mathematical model of the propagation of acoustic shear waves in muscle tissue is considered. The muscle is modelled by an incompressible transversely isotropic viscoelastic continuum with quasi-one-dimensional active tension. Two types of shear waves in an infinite medium have been established. The waves of the second type (transverse) propagate without attenuation even when myofibril viscosity is taken into account. A problem of standing transverse waves in a rectangular layer has been investigated numerically. The values of the problem parameters have been found for which the active tension or muscle tonus is easily estimated from the characteristics of standing waves. This value is informative for the diagnosis of muscle state.
Rehman, M. A.; Qureshi, M. N. S.; Shah, H. A.; Masood, W.
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
ON THE SOURCE OF PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN SUNSPOTS
Prasad, S. Krishna; Jess, D. B.; Khomenko, Elena
2015-10-10
Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.
Wave propagation in a medium with cavities
NASA Astrophysics Data System (ADS)
Adler, Pierre; Pazdniakou, Aliaksei
2016-04-01
The detection and imaging of cavities is still difficult, but it generates a lot of interest because of its potential applications. We have developed a code based on Lattice Springs and Lattice Boltzmann which can calculate wave propagation through a three dimensional composite medium. The theoretical background of these techniques will only be briefly addressed during the talk. The solid phase may have properties which are variable in space; the solid matrix may contain voids of arbitrary shapes which are filled or not with a mixture of air and water. In addition some of the voids may be empty. The surface of the ground is also arbitrary and it may be hilly. The source may be either a disturbance applied to a region of the solid phase or an overpressure applied to a particular cavity. In both cases, the disturbance and the overpressure can be arbitrary in time. Several sources can be simultaneously employed. Any region can be recorded, but a particular attention is paid to surface signals since they are the ones which are usually measured. The code is parallelized. Systematic applications of this tool have been done in order to analyse the response of a medium containing cavities to various signals. This complete parametric study has analyzed the most important parameters. The shape and the nature of the source have been addressed first; step functions of a limited or of an infinite duration have been studied and they are shown to result in simpler outputs than Ricker functions. The position of the source with respect to the ground surface has been varied. If it is deep, the reflection of the initial signal with the surface complicates the analysis of the surface measurements. The distance between the source and the cavity does not appear to be a critical parameter as long as the signal remains sufficiently large when it interacts with the cavity. Moreover, when this distance is large, the signal is transformed into a plane wave. The influence of the shape of the
Impact of propagating and standing waves on cavitation appearance.
Kenis, Alexander M; Grinfeld, Javier; Zadicario, Eyal; Vitek, Shuki
2012-01-01
Standing waves play a significant role in the appearance of cavitation phenomena. The goal of this study was to investigate the effect that the relation between standing and propagating waves in a focused field has on acoustic bubble cloud formation. Measurements of the cavitation signals were performed on five different configurations of a hemispheric phased array transducer (230 kHz) representing a wide range of relations between propagating and standing waves. The results show that configurations with a larger propagating component induce bubble clouds at lower pressures than configurations with a larger standing component.
High amplitude waves in the expanding solar wind plasma
NASA Technical Reports Server (NTRS)
Schmidt, J. M.; Velli, M.; Grappin, R.
1995-01-01
We simulated the 1-D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacoustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. In our simulations, fast and slow magnetoacoustic waves seem to have a level in the density-fluctuations which is too high when we compare with the observations. Furthermore, the evolution of energies for slow magnetoacoustic waves differs strongly from the evolution of fluctuation energies in situ.
Analysis of guided wave propagation in a tapered composite panel
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw
2015-03-01
Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.
Propagation Dynamics of Airy Water-Wave Pulses.
Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady
2015-07-17
We observe the propagation dynamics of surface gravity water waves, having an Airy function envelope, in both the linear and the nonlinear regimes. In the linear regime, the shape of the envelope is preserved while propagating in an 18-m water tank, despite the inherent dispersion of the wave packet. The Airy wave function can propagate at a velocity that is slower (or faster if the Airy envelope is inverted) than the group velocity. Furthermore, the introduction of the Airy wave packet as surface water waves enables the observation of its position-dependent chirp and cubic-phase offset, predicted more than 35 years ago, for the first time. When increasing the envelope of the input Airy pulse, nonlinear effects become dominant, and are manifested by the generation of water-wave solitons. PMID:26230797
Simulation of guided wave propagation near numerical Brillouin zones
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Staszewski, Wieslaw J.; Packo, Pawel
2016-04-01
Attractive properties of guided waves provides very unique potential for characterization of incipient damage, particularly in plate-like structures. Among other properties, guided waves can propagate over long distances and can be used to monitor hidden structural features and components. On the other hand, guided propagation brings substantial challenges for data analysis. Signal processing techniques are frequently supported by numerical simulations in order to facilitate problem solution. When employing numerical models additional sources of errors are introduced. These can play significant role for design and development of a wave-based monitoring strategy. Hence, the paper presents an investigation of numerical models for guided waves generation, propagation and sensing. Numerical dispersion analysis, for guided waves in plates, based on the LISA approach is presented and discussed in the paper. Both dispersion and modal amplitudes characteristics are analysed. It is shown that wave propagation in a numerical model resembles propagation in a periodic medium. Consequently, Lamb wave propagation close to numerical Brillouin zone is investigated and characterized.
Local effects of gravity wave propagation and saturation
NASA Technical Reports Server (NTRS)
Fritts, D. C.
1985-01-01
In recent years, gravity waves were recognized to play a major role in the dynamics of the middle atmosphere. Perhaps the major effect of such motions are the reversal of the vertical shear of the mean zonal wind and the occurrence of a large turbulent diffusivity in the mesosphere due to gravity wave saturation. Yet, despite the importance of these gravity wave effects, the processes and the consequences of gravity wave propagation and saturation are only beginning to be understood in detail. The linear saturation theory predicts drag and turbulent diffusion due to saturating wave motion. This theory, however, fails to address a number of issues that are certain to be important for gravity wave propagation and saturation in the middle atmosphere. These issues, including wave transience, wave superposition, local convective adjustment, and nonlinearity, are discussed.
On the Propagation and Interaction of Spherical Blast Waves
NASA Technical Reports Server (NTRS)
Kandula, Max; Freeman, Robert
2007-01-01
The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.
Seismic-acoustic finite-difference wave propagation algorithm.
Preston, Leiph; Aldridge, David Franklin
2010-10-01
An efficient numerical algorithm for treating earth models composed of fluid and solid portions is obtained via straightforward modifications to a 3D time-domain finite-difference algorithm for simulating isotropic elastic wave propagation.
Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets
NASA Astrophysics Data System (ADS)
Shao, S.; Pyrak-Nolte, L. J.
2016-10-01
Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.
Lamb wave propagation in negative Poisson's ratio composites
NASA Astrophysics Data System (ADS)
Remillat, Chrystel; Wilcox, Paul; Scarpa, Fabrizio
2008-03-01
Lamb wave propagation is evaluated for cross-ply laminate composites exhibiting through-the-thickness negative Poisson's ratio. The laminates are mechanically modeled using the Classical Laminate Theory, while the propagation of Lamb waves is investigated using a combination of semi analytical models and Finite Element time-stepping techniques. The auxetic laminates exhibit well spaced bending, shear and symmetric fundamental modes, while featuring normal stresses for A 0 mode 3 times lower than composite laminates with positive Poisson's ratio.
Teaching Wave Propagation and the Emergence of Viete's Formula
ERIC Educational Resources Information Center
Cullerne, J. P.; Goekjian, M. C. Dunn
2012-01-01
The well-known result for the frequency of a simple spring-mass system may be combined with elementary concepts like speed = wavelength x frequency to obtain wave propagation speeds for an infinite chain of springs and masses (masses "m" held apart at equilibrium distance "a" by springs of stiffness "gamma"). These propagation speeds are dependent…
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.
NASA Technical Reports Server (NTRS)
Rosner, R.; An, C.-H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T.
1991-01-01
A simple qualitative model for the origin of the coronal and mass-loss dividing lines separating late-type giants and supergiants with and without hot, X-ray-emitting corona, and with and without significant mass loss is discussed. The basic physical effects considered are the necessity of magnetic confinement for hot coronal material on the surface of such stars and the large reflection efficiency for Alfven waves in cool exponential atmospheres. The model assumes that the magnetic field geometry of these stars changes across the observed 'dividing lines' from being mostly closed on the high effective temperature side to being mostly open on the low effective temperature side.
Time dependent wave envelope finite difference analysis of sound propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
Shear wave propagation in anisotropic soft tissues and gels.
Namani, Ravi; Bayly, Philip V
2009-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987
Influence of Plasma Pressure Fluctuation on RF Wave Propagation
NASA Astrophysics Data System (ADS)
Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Liu, Donglin; Zhou, Hui
2016-02-01
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (No. 61301173)
Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves
F.W. Perkins; R.B. White; P. Bonoli
2000-06-13
Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.
Autoresonant propagation of incoherent light-waves.
Barak, Assaf; Lamhot, Yuval; Friedland, Lazar; Segev, Mordechai
2010-08-16
We study, theoretically and experimentally, the evolution of optical waves with randomly-fluctuating phases in a spatially chirped nonlinear directional coupler. As the system crosses its linear resonance, we observe collective self-phase-locking (autoresonance) of all mutually-incoherent waves, each with its own pump, and simultaneous amplification until the pumps are exhausted. We show that the autoresonant transition in this system exhibits a sharp threshold, common to all mutually-incoherent waves comprising the light beam.
NASA Technical Reports Server (NTRS)
Ghosh, S.; Vinas, A. F.; Goldstein, M. L.
1993-01-01
The growth of parametric instabilities, which may lead to the development of a turbulent cascade, is studied using an MHD code that permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Parametric instabilities associated with a parallel-propagating decay instability are found to dominate the low-beta case. An obliquely propagating filamentationlike instability dominates the high-beta case. The nonlinear growth of the nth harmonic of a daughter wave growing as a factor of n times the fundamental's growth rate is found in both cases. Nonlinear saturation is caused by the parallel decay instability in the low-beta case and by the oblique filamentationlike instability in the high-beta case.
WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE
Heggland, L.; Hansteen, V. H.; Carlsson, M.; De Pontieu, B.
2011-12-20
We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.
Influence of atmospheric structure and topography on infrasonic wave propagation
NASA Astrophysics Data System (ADS)
Lacanna, G.; Ichihara, M.; Iwakuni, M.; Takeo, M.; Iguchi, M.; Ripepe, M.
2014-04-01
The effects of topography and atmospheric structures on infrasonic wave propagation from a volcanic source were investigated using observations and numerical modeling. This paper presents the first long-term observational data set showing spatiotemporal variations in patterns of infrasound propagation at distances of up to 60 km from a persistently active infrasound source (Sakurajima Volcano, Japan). The data show that the amplitudes of infrasonic waves received at distant stations relative to those received at a reference station close to the source can vary up to an order of magnitude over short time intervals and short distances and that they do not follow the theoretical geometric decay expected for homogeneous media. Moreover, waveforms also change significantly in both time and space. Numerical simulations were performed using a two-dimensional finite difference time domain (2-D FDTD) method. Effects of atmospheric structure and topography are included in a vertical section parallel to the wave propagation direction. The simulation successfully reproduced the variations of amplitudes and waveforms. Results are interpreted in terms of wave refraction due to sound and wind speed gradients and wave diffraction at topographic barriers. Our numerical results indicate that both atmospheric and topographic propagation effects are nonnegligible. To evaluate the propagation effects and determine source processes in spatially and temporally varying infrasound data, atmospheric data with a time resolution higher than is currently available are required. If the data are available, the present results suggest that the propagation effects could be evaluated using 2-D FDTD modeling at realistic calculation times.
In-plane propagation of electromagnetic waves in planar metamaterials
NASA Astrophysics Data System (ADS)
Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak
2016-08-01
Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.
Propagation and Dissipation of MHD Waves in Coronal Holes
NASA Astrophysics Data System (ADS)
Dwivedi, B. N.
2006-11-01
bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.
Wave propagation in reconfigurable magneto-elastic kagome lattice structures
NASA Astrophysics Data System (ADS)
Schaeffer, Marshall; Ruzzene, Massimo
2015-05-01
The paper discusses the wave propagation characteristics of two-dimensional magneto-elastic kagome lattices. Mechanical instabilities caused by magnetic interactions are exploited in combination with particle contact to bring about changes in the topology and stiffness of the lattices. The analysis uses a lumped mass system of particles, which interact through axial and torsional elastic forces as well as magnetic forces. The propagation of in-plane waves is predicted by applying Bloch theorem to lattice unit cells with linearized interactions. Elastic wave dispersion in these lattices before and after topological changes is compared, and large differences are highlighted.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Nonlinear propagation and control of acoustic waves in phononic superlattices
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.
2016-05-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"
Plasma wave propagation with a plasma density gradient
Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup
2011-03-15
Plasma waves with the plasma diffusion velocity u{sub n} due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 10{sup 6} s{sup -1} and it propagates with the group velocity u{sub g{approx}}c{sub s}{sup 2}/u{sub n{approx}}(10{sup 5}-10{sup 6}) m/s, where c{sub s} is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency {omega}{sub pe}. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.
Finite Element Modeling of Guided Wave Propagation in Plates
NASA Astrophysics Data System (ADS)
Kumar KM, Manoj; Ramaswamy, Sivaramanivas; Kommareddy, Vamshi; Baskaran, Ganesan; Zongqi, Sun; Kirkire, Gautam
2006-03-01
This paper aims at developing a numerical model for guided wave propagation in plates and the interaction of modes with defects using Finite Element Modeling (FEM). Guided waves propagate as extensional, flexural and torsional waves. Theoretically, these modes are infinite in number, but only some of these propagate and the others are attenuated. The dispersion curves for a structure reveal the plausibility of these modes. In this paper, FEM is used to examine interaction of first few symmetric and anti-symmetric modes independently with the cracks of various sizes in a plate. A time-frequency representation of the acquired guided wave mode signals will be discussed to show the mode sensitivity with crack size.
On the propagation of plane waves above an impedance surface
NASA Technical Reports Server (NTRS)
Zhong, F. H.; Vanmoorhem, W. K.
1990-01-01
The propagation of grazing incidence plane waves along a finite impedance boundary is investigated. A solution of the semi-infinite problem, where a harmonic motion, parallel to the boundary, is imposed along a line perpendicular to the boundary, is obtained. This solution consists of quasiplane waves, waves moving parallel to the boundary with amplitude and phase variations perpendicular to the boundary. Several approximations to the full solution are considered.
The making of an Alfvenic fluctuation: The resolution of a second-order analysis
NASA Technical Reports Server (NTRS)
Vasquez, Bernard J.; Hollweg, Joseph V.
1995-01-01
Ulysses observations of the high speed polar streams show that they are largely occupied by very large amplitude Alfvenic fluctuations accompanied by many rotational discontinuities. These fluctuations have a nearly constant magnetic intensity or amplitude, and the magnetic field direction per wave cycle sweeps only through a limited arc, much as a car wiperblade would do. Barnes and Hollweg (JGR, 79, 2302, 1974) suggested that this unusual waveform could arise from an obliquely propagating and linearly polarized Alfven wave of finite amplitude. From a second-order analysis, they showed that the existence of a particular solution with a constant amplitude but could not resolve the outcome of the homogeneous solution which consisted of fast waves. They suggested that Landau damping of these fast waves may be needed to get the observed waveform. We present a 1 1/2 D hybrid simulation which is fully nonlinear and correctly describes the ion kinetics for an initially monochromatic and linearly polarized Alfven wave propagating obliquely to the background magnetic field. The wave has a large amplitude and a wavelength so long that it can be considered dispersionless for simulation times. At early times, the second harmonic in density and in magnetic field transverse to the initial wave magnetic field are generated and have more power than other harmonics. Steepening is observed with a weak fast shock emerging, but no rotational discontinuity is left behind, and instead a constant amplitude and an arc-shaped waveform is made. The compressional component which develops after the shocks have dissipated is to zeroth order better described as a pure acoustic wave than as a fast wave. This might be explained by the relaxing of the Alfven wave to a state where its ponderomotive force vanishes so that the compressional component can travel almost independently of it.
Wave propagation on a random lattice
Sahlmann, Hanno
2010-09-15
Motivated by phenomenological questions in quantum gravity, we consider the propagation of a scalar field on a random lattice. We describe a procedure to calculate the dispersion relation for the field by taking a limit of a periodic lattice. We use this to calculate the lowest order coefficients of the dispersion relation for a specific one-dimensional model.
Modelling propagation of deflagration waves out of hot spots
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2015-06-01
It is widely accepted that shock initiation and detonation of heterogeneous explosives come about by a two-step process known as ignition and growth. In the first step a shock sweeping an explosive cell (control volume) creates hot spots that become ignition sites. In the second step deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in a cell depends on the speed of those deflagration waves and on the average distance between neighbouring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration wave depends on both pressure and temperature, where pressure dependence is dominant at low shock level, and temperature dependence is dominant at a higher shock level. From the simulation we obtain deflagration (or burn) fronts emanating out of the hot spots. For intermediate shock levels the deflagration waves consume the explosive between hot spots. For higher shock levels the deflagration waves strengthen to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds and show how they depend on reaction rate and on other material parameters.
Formation of quasiparallel Alfven solitons
NASA Technical Reports Server (NTRS)
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Impact of gravity waves on long-range infrasound propagation
NASA Astrophysics Data System (ADS)
Millet, Christophe; Lott, François; De La Camara, Alvaro
2016-04-01
In this work we study infrasound propagation in acoustic waveguides that support a finite number of propagating modes. We analyze the effects of gravity waves on these acoustic waveguides. Testing sound propagation in such perturbed fields can potentially be used to improve the gravity wave models. A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the forward-scattering approximation. The wave mode structure is determined by the effective sound speed profile which is strongly affected by gravity wave breaking. The random perturbations are described by a stochastic field predicted by a multiwave stochastic parameterization of gravity waves, which is operational in the LMDz climate model. The justification for this approach is two fold. On the one hand, the use of a few monochromatic waves mimics the observations of rather narrow-banded gravity wave packets in the lower stratosphere. On the other hand, the stochastic sampling of the gravity wave field and the random choice of wave properties deals with the inherent unpredictability of mesoscale dynamics from large scale conditions provided by the meteorological reanalysis. The transmitted acoustic signals contain a stable front and a small-amplitude incoherent coda. A general expression for the stable front is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. This approach extract the dominant effects in the acoustic - gravity wave interaction. We present results that show how statistics of the transmitted signal are related to a few saddle-points and how the GW field can trigger large deviations in the acoustic signals. While some of the characteristics of the stable front can be directly related to that of a few individual gravity waves, it is shown that the amount of the launched gravity waves included in climate models can be estimated using
Wave propagation in fiber composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to determine the wave propagation characteristics, transient strains and residual properties in unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicone rubber projectiles at velocities up to 250 MS-1. The predominant wave is flexural, propagating at different velocities in different directions. In general, measured wave velocities were higher than theoretically predicted values. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. The dynamics of impact were also studied with high speed photography.
Spatial damping of propagating sausage waves in coronal cylinders
NASA Astrophysics Data System (ADS)
Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-09-01
Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.
Scattering effects on lower hybrid wave propagation
NASA Astrophysics Data System (ADS)
Bertelli, N.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.; Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Wallace, G.; Wright, J. C.; Harvey, R. W.; Smirnov, A. P.
2012-10-01
The effects of edge plasma density fluctuations on the scattering of lower hybrid (LH) waves are studied. Scattering can improve the penetration of LH waves into the plasma core due to the k upshift that occurs through the poloidal field (because the rotation of k induces a finite poloidal mode number). Scattering can also inhibit wave penetration depending on the density fluctuation levels, resulting in enhanced collisional absorption of the waves in the SOL at high density. These two effects might contribute, respectively, to resolving the ``spectral gap'' problem [Bonoli P. T. and R. C. Englade, Phys. Fluids 9 (1986) 2937] and the ``density limit'' in the efficiency of LHCD [Wallace G. et al., Phys. Plasmas 17 (2010) 082508]. The scattering model used is based on the work of Bonoli and Ott [Phys. Fluids 25 (1982) 361] that introduces an electromagnetic wave kinetic equation solved by a Monte Carlo technique. This equation has been implemented in the ray tracing code GENRAY, which explicitly includes the SOL region. A detailed analysis of this scattering model will be presented in comparison with the experimental observations of LHCD for Alcator C-Mod tokamak.
Wave propagation in elastic medium with heterogeneous quadratic nonlinearity
Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin
2011-06-23
This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter {beta} when the nonlinearity distribution in the layer is a stochastic process.
Chandran, Benjamin D. G.; Dennis, Timothy J.; Quataert, Eliot; Bale, Stuart D. E-mail: tim.dennis@unh.edu E-mail: bale@ssl.berkeley.edu
2011-12-20
We develop a one-dimensional solar-wind model that includes separate energy equations for the electrons and protons, proton temperature anisotropy, collisional and collisionless heat flux, and an analytical treatment of low-frequency, reflection-driven, Alfven-wave (AW) turbulence. To partition the turbulent heating between electron heating, parallel proton heating, and perpendicular proton heating, we employ results from the theories of linear wave damping and nonlinear stochastic heating. We account for mirror and oblique firehose instabilities by increasing the proton pitch-angle scattering rate when the proton temperature anisotropy exceeds the threshold for either instability. We numerically integrate the equations of the model forward in time until a steady state is reached, focusing on two fast-solar-wind-like solutions. These solutions are consistent with a number of observations, supporting the idea that AW turbulence plays an important role in the origin of the solar wind.
Geometric effects on stress wave propagation.
Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R
2014-02-01
The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials
NASA Astrophysics Data System (ADS)
Eslaminia, Mehran
A novel method is developed to approximately solve acoustic wave equation in the frequency domain. The key idea of the method is to partition the domain into smaller subdomains and solve for the wavefield in each subdomain sequentially, which is facilitated by special interface (continuity) conditions. The sequential solution is performed in two steps: First the downward propagating wavefield is computed considering only downward propagation and transmission at the interfaces. The wavefield is then corrected by adding the upward propagating wavefield resulting from reflections and body forces. It is shown that the proposed method results in accurate amplitudes for downward propagation and primary reflections and is hence called the Amplitude-Preserving Propagator. This novel wave propagator leads to three disparate contributions in large scale computational wave modeling and seismic imaging: forward modeling, migration imaging and full waveform inversion. Forward Modeling: The amplitude-preserving propagator is implemented as a preconditioner to iteratively solve the Helmholtz equation. The effectiveness of the proposed preconditioner is studied using various numerical experiments. We show three significant properties of the proposed preconditioner. First, number of iterations grows very slowly with increasing frequency which is a significant advantage compared to other methods, e.g. sweeping preconditioner. Second, the mesh size (i.e. number of elements per wavelength) does not change number of iterations. Third, and the most important one, the computational time is much less than many other preconditioners. Migration Imaging: In the context of migration imaging, the amplitude-preserving propagator is implemented as an efficient forward solver to perform wave propagation simulation in the frequency domain. We show that the propagator results in a new migration algorithm that is almost as accurate as full-wave migration, while being significantly more efficient
Impact of mountain gravity waves on infrasound propagation
NASA Astrophysics Data System (ADS)
Damiens, Florentin; Lott, François; Millet, Christophe
2016-04-01
Linear theory of acoustic propagation is used to analyze how mountain waves can change the characteristics of infrasound signals. The mountain wave model is based on the integration of the linear inviscid Taylor-Goldstein equation forced by a nonlinear surface boundary condition. For the acoustic propagation we solve the wave equation using the normal mode method together with the effective sound speed approximation. For large-amplitude mountain waves we use direct numerical simulations to compute the interactions between the mountain waves and the infrasound component. It is shown that the mountain waves perturb the low level waveguide, which leads to significant acoustic dispersion. The mountain waves also impact the arrival time and spread of the signals substantially and can produce a strong absorption of the wave signal. To interpret our results we follow each acoustic mode separately and show which mode is impacted and how. We also show that the phase shift between the acoustic modes over the horizontal length of the mountain wave field may yield to destructive interferences in the lee side of the mountain, resulting in a new form of infrasound absorption. The statistical relevance of those results is tested using a stochastic version of the mountain wave model and large enough sample sizes.
Investigation of plasma waves propagation around traversible wormhole's throat
NASA Astrophysics Data System (ADS)
Ramezani-Arani, Reza; Mirzaee, Ali Reza; Abdoli-Arani, Abbas
2015-01-01
The ? formalism of general relativity is used in a preliminary investigation of waves propagating in a plasma around the throat of traversible wormhole. The relativistic two-fluid equations are used to take account of gravitational effects due to the throat of traversible wormhole. Here, a local approximation is used to investigate the one-dimensional electromagnetic waves radial propagation near the throat of wormhole. We use approximation near by the throat of wormhole for one-dimensional radial propagation. The dispersion relations for the transverse and longitudinal electromagnetic waves are obtained. Finally, the components of stress-energy tensor and the zero tidal force, and so flaring-out condition for traversible wormhole metric are calculated.
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence. PMID:22273930
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.
Variational principle for nonlinear wave propagation in dissipative systems.
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time. PMID:26986334
Variational principle for nonlinear wave propagation in dissipative systems.
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.
Variational principle for nonlinear wave propagation in dissipative systems
NASA Astrophysics Data System (ADS)
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.
Pc1 propagation in the ionospheric duct: wave vector determination
NASA Astrophysics Data System (ADS)
Nomura, Reiko; Glassmeier, Karl-Heinz; Narita, Yasuhito; Plaschke, Fedinand; Mann, Ian
2013-04-01
Pc1 geomagnetic pulsations (Pc1) are believed to propagate as fast mode waves in the ionospheric duct. Previous studies tried to locate the Pc1 source region with different methods using the characteristics of the ionospheric duct propagation (e.g., polarization method and amplitude distributions). However, no observational study of the wave vectors and the dispersion relations in the Pc1 source region has been compared with the results estimated from model calculations of the Pc1 ionospheic duct propagation. We have investigated propagation directions of Pc1 pulsations in the ionospheric duct with the 2D Wave Telescope technique. For our study, we used ground-based measurements of Pc1 pulsations from 27 May 2011, observed at 17 different stations of the Canadian magnetometer network CARISMA (www.carisma.ca). These multi-point measurements allow to derive detailed information directly on the wave propagation directions. We also show the dispersion relation of the Pc1 pulsations in the ionospheric duct.
On the propagation of Voigt waves in energetically active materials
NASA Astrophysics Data System (ADS)
Mackay, Tom G.; Lakhtakia, Akhlesh
2016-11-01
If Voigt-wave propagation is possible in a dissipative anisotropic dielectric material characterised by the permittivity dyadic \\mathop{\\varepsilon }\\limits\\raise{2pt=}, then it is also possible in the analogous energetically active material characterised by the permittivity dyadic \\mathop{\\tilde{\\varepsilon }}\\limits\\raise{2pt=}, where \\mathop{\\tilde{\\varepsilon }}\\limits\\raise{2pt=} is the hermitian conjugate of \\mathop{\\varepsilon }\\limits\\raise{2pt=}. This symmetry follows directly from a theoretical analysis of the necessary and sufficient conditions for Voigt-wave propagation in anisotropic materials. As a consequence of this symmetry, a porous dissipative material that exhibits Voigt-wave propagation can be used to construct a material that allows the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by means of infiltration with an electrically or optically activated dye, for example. This phenomenon is captured by the Bruggeman formalism for homogenised composite materials based on isotropic dielectric component materials that are randomly distributed as oriented spheroidal particles.
Spectral-Element Simulations of Wave Propagation in Porous Media
NASA Astrophysics Data System (ADS)
Morency, C.; Tromp, J.
2007-12-01
Biot theory has been extensively used in the petroleum industry, where seismic surveys are performed to determine the physical properties of reservoir rocks. The theory is also of broad general interest when a physical understanding of the coupling between solid and fluid phases is desired. One fundamental result of Biot theory is the prediction of a second compressional wave, which attenuates rapidly, often referred to as "type II" or "Biot's slow compressional wave", in addition to the classical fast compressional and shear waves. The mathematical formulation of wave propagation in porous media developed by Biot is based upon the principle of virtual work, ignoring processes at the microscopic level. Moreover, even if the Biot formulations are claimed to be valid for non-uniform porosity, gradients in porosity are not explicitly incorporated in the original theory. More recent studies focused on averaging techniques to derive the macroscopic porous medium equations from the microscale, and made an attempt to derive an expression for the change in porosity, but there is still room for clarification of such an expression, and to properly integrate the effects of gradients in porosity. We aim to present a straightforward derivation of the main equations describing wave propagation in porous media, with a particular emphasis on the effects of gradients in porosity. We also present a two dimensional numerical implementation of these equations using a spectral-element method. Finally, we have performed different benchmarks to validate our method, involving acoustic-poroelastic waves interaction and wave propagation in heterogenous porous media.
Maxwell Equation for the Coupled Spin-Charge Wave Propagation
Bernevig, B.Andrei; Yu, Xiaowei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
We show that the dissipationless spin current in the ground state of the Rashba model gives rise to a reactive coupling between the spin and charge propagation, which is formally identical to the coupling between the electric and the magnetic fields in the 2 + 1 dimensional Maxwell equation. This analogy leads to a remarkable prediction that a density packet can spontaneously split into two counter propagation packets, each carrying the opposite spins. In a certain parameter regime, the coupled spin and charge wave propagates like a transverse 'photon'. We propose both optical and purely electronic experiments to detect this effect.
The influence of polarization on millimeter wave propagation through rain
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.
1972-01-01
A program for the measurement and analysis of the depolarization and differential attenuation that occur when millimeter wave signals propagate through rain is described. Initial data are taken along a 1.43 km path at 17.65 GHz and a supporting theoretical model is developed to relate the propagation effects to rainfall rate and wind velocity. A block diagram of the overall experiment is included. It consists of: (1) an RF system (millimeter wave transmitter and receiver), (2) transmitting and receiving antennas, (3) a weather system with rain gauges, wind sensors, and drop counters, and (4) a digital control, processing, and data storage system.
A nonlinear wave equation in nonadiabatic flame propagation
Booty, M.R.; Matalon, M.; Matkowsky, B.J.
1988-06-01
The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time.
Propagating spectroscopy of backward volume spin waves in a metallic FeNi film
Sato, N.; Ishida, N.; Kawakami, T.; Sekiguchi, K.
2014-01-20
We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.
Numerical study on pressure wave propagation in a mercury loop
Kogawa, Hiroyuki; Hasegawa, Shoichi; Futakawa, Masatoshi; Riemer, Bernie; Wendel, Mark W; Haines, John R
2008-01-01
On-beam tests were carried out at the Los Alamos Neutron Science Center Weapons Neutron Research (LANSCE WNR) facility in June 2005 to investigate pressure wave mitigation in mercury targets for the MW-class spallation neutron sources under international collaboration between US Spallation Neutron Source (SNS) and Japanese Spallation Neutron Source (JSNS). A mercury loop was used for the target, a so-called In-Beam Bubbling Test Loop (IBBTL). The loop consists of the rectangular pipe of 25 mm x 50 mm^2 in cross section, 1.5 mm in wall thickness and 2 m in total length approximately. The SNS team set 8 strain sensors on the pipe wall to measure the strain propagation caused by the pressure wave. The maximum strain appeared at 350 mm apart from the proton-bombarded point at 5.5 ms after the proton bombardment. It is known that the propagation velocity of the pressure wave in mercury is ca. 1500 m/s and that of the stress wave in stainless steel is ca. 5000 m/s. However, the apparent wave propagation velocity in the IBBTL was lower than those velocities and was observed to be 65 m/s. Numerical analysis was carried out to understand the strain propagation in the pipe wall of the IBBTL. Numerical results showed that the maximum strain at 350 mm apart from the beam spot appeared at 5.5 ms after proton bombardment in good agreement with experimental results.
Propagation of sound waves in tubes of noncircular cross section
NASA Technical Reports Server (NTRS)
Richards, W. B.
1986-01-01
Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.
Multi-layer Study of Wave Propagation in Sunspots
NASA Astrophysics Data System (ADS)
Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.
2010-10-01
We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I λ10,827 and the He I λ10,830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line of sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed nonlinearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I λ10,830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified atmosphere with radiative losses according to Newton's cooling law to the phase spectra and derive the difference in the formation height of the spectral lines. We show that the linear model describes well the wave propagation up to the formation height of Ca II H, where nonlinearities start to become very important.
Holographic measurement of wave propagation in axi-symmetric shells
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.
1972-01-01
The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.
Propagation of elastic waves through textured polycrystals: application to ice
Maurel, Agnès; Lund, Fernando; Montagnat, Maurine
2015-01-01
The propagation of elastic waves in polycrystals is revisited, with an emphasis on configurations relevant to the study of ice. Randomly oriented hexagonal single crystals are considered with specific, non-uniform, probability distributions for their major axis. Three typical textures or fabrics (i.e. preferred grain orientations) are studied in detail: one cluster fabric and two girdle fabrics, as found in ice recovered from deep ice cores. After computing the averaged elasticity tensor for the considered textures, wave propagation is studied using a wave equation with elastic constants c=〈c〉+δc that are equal to an average plus deviations, presumed small, from that average. This allows for the use of the Voigt average in the wave equation, and velocities are obtained solving the appropriate Christoffel equation. The velocity for vertical propagation, as appropriate to interpret sonic logging measurements, is analysed in more details. Our formulae are shown to be accurate at the 0.5% level and they provide a rationale for previous empirical fits to wave propagation velocities with a quantitative agreement at the 0.07–0.7% level. We conclude that, within the formalism presented here, it is appropriate to use, with confidence, velocity measurements to characterize ice fabrics. PMID:27547099
A space-time discretization procedure for wave propagation problems
NASA Technical Reports Server (NTRS)
Davis, Sanford
1989-01-01
Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.
Propagation of guided waves through weak penetrable scatterers.
Maurel, Agnès; Mercier, Jean-François
2012-03-01
The scattering of a scalar wave propagating in a waveguide containing weak penetrable scatterers is inspected in the Born approximation. The scatterers are of arbitrary shape and present a contrast both in density and in wavespeed (or bulk modulus), a situation that can be translated in the context of SH waves, water waves, or transverse electric/transverse magnetic polarized electromagnetic waves. For small size inclusions compared to the waveguide height, analytical expressions of the transmission and reflection coefficients are derived, and compared to results of direct numerical simulations. The cases of periodically and randomly distributed inclusions are considered in more detail, and compared with unbounded propagation through inclusions. Comparisons with previous results valid in the low frequency regime are proposed. PMID:22423685
Propagation of guided waves through weak penetrable scatterers.
Maurel, Agnès; Mercier, Jean-François
2012-03-01
The scattering of a scalar wave propagating in a waveguide containing weak penetrable scatterers is inspected in the Born approximation. The scatterers are of arbitrary shape and present a contrast both in density and in wavespeed (or bulk modulus), a situation that can be translated in the context of SH waves, water waves, or transverse electric/transverse magnetic polarized electromagnetic waves. For small size inclusions compared to the waveguide height, analytical expressions of the transmission and reflection coefficients are derived, and compared to results of direct numerical simulations. The cases of periodically and randomly distributed inclusions are considered in more detail, and compared with unbounded propagation through inclusions. Comparisons with previous results valid in the low frequency regime are proposed.
Skewon field and cosmic wave propagation
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou
2014-03-01
We study the propagation of the Hehl-Obukhov-Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplification condition implies that the additional skewon field must be of Type II. For Type I skewon field, the dissipation/amplification is proportional to the frequency and the CMB spectrum would deviate from Planck spectrum. From the high precision agreement of the CMB spectrum with 2.755 K Planck spectrum, we constrain the Type I cosmic skewon field |χijkl(SkI)| to ⩽ a few ×10-35. The skewon part of constitutive tensor constructed from asymmetric metric is of Type II, hence it is allowed. This study may also be applied to macroscopic electrodynamics in the case of laser pumped medium or dissipative medium.
Three-wave coupling coefficients for perpendicular wave propagation in a magnetized plasma
Brodin, G.; Stenflo, L.
2015-10-15
The resonant interaction between three waves in a uniform magnetized plasma is reconsidered. Starting from previous kinetic expressions, we limit our investigation to waves propagating perpendicularly to the external magnetic field. It is shown that reliable results can only be obtained in the two-dimensional case, i.e., when the wave vectors have both x and y components.
Analysis of wave propagation in periodic 3D waveguides
NASA Astrophysics Data System (ADS)
Schaal, Christoph; Bischoff, Stefan; Gaul, Lothar
2013-11-01
Structural Health Monitoring (SHM) is a growing research field in the realm of civil engineering. SHM concepts are implemented using integrated sensors and actuators to evaluate the state of a structure. Within this work, wave-based techniques are addressed. Dispersion effects for propagating waves in waveguides of different materials are analyzed for various different cross-sections. Since analytical theory is limited, a general approach based on the Waveguide Finite Element Method is applied. Numerical results are verified experimentally.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Interface Conditions for Wave Propagation Through Mesh Refinement Boundaries
NASA Technical Reports Server (NTRS)
Choi, Dae-II; Brown, J. David; Imbiriba, Breno; Centrella, Joan; MacNeice, Peter
2002-01-01
We study the propagation of waves across fixed mesh refinement boundaries in linear and nonlinear model equations in 1-D and 2-D, and in the 3-D Einstein equations of general relativity. We demonstrate that using linear interpolation to set the data in guard cells leads to the production of reflected waves at the refinement boundaries. Implementing quadratic interpolation to fill the guard cells eliminates these spurious signals.
Interface conditions for wave propagation through mesh refinement boundaries
NASA Astrophysics Data System (ADS)
Choi, Dae-Il; David Brown, J.; Imbiriba, Breno; Centrella, Joan; MacNeice, Peter
2004-01-01
We study the propagation of waves across fixed mesh refinement boundaries in linear and nonlinear model equations in 1-D and 2-D, and in the 3-D Einstein equations of general relativity. We demonstrate that using linear interpolation to set the data in guard cells leads to the production of reflected waves at the refinement boundaries. Implementing quadratic interpolation to fill the guard cells suppresses these spurious signals.
Classical chaos in nonseparable wave propagation problems
NASA Astrophysics Data System (ADS)
Palmer, David R.; Brown, Michael G.; Tappert, Frederick D.; Bezdek, Hugo F.
1988-06-01
Numerical calculations show that acoustic ray paths in a weakly range-dependent deterministic ocean model exhibit chaotic behavior, that is, have an exponentially sensitive dependence on initial conditions. Since the ray equations define a nonautonomous Hamiltonian system with one degree of freedom, these results may be understood in terms of recent advances in classical chaos. The Hamiltonian structure of ray equations in general suggests that chaotic ray trajectories will be present in all types of linear wave motion in geophysics when variables do not separate, as in laterally inhomogeneous media.
Group velocity and nonlinear dispersive wave propagation.
NASA Technical Reports Server (NTRS)
Hayes, W. D.
1973-01-01
By the use of a Hamiltonian formulation, a basic group velocity is defined as the derivative of frequency with respect to wavenumber keeping action density constant, and is shown to represent an incremental action velocity in the general nonlinear case. The stability treatment of Whitham and Lighthill is extended to several dimensions. The water-wave analysis of Whitham (1967) is extended to two space dimensions, and is shown to predict oblique-mode instabilities for kh smaller than 1.36. A treatment of Lighthill's (1965) solution in the one-dimensional elliptic case resolves the problem of the energy distribution in the solution past the critical time.
Modification of Spin Wave Propagation by Current Injection
NASA Astrophysics Data System (ADS)
Ono, Teruo
2010-03-01
We studied the effect of an electric current on the spin wave propagation in magnetic wires, and found the following two effects. (i) Current injection changes the velocity of spin wave; the velocity is increased or decreased depending on the current polarity. (ii) Current injection modifies the attenuation length of spin wave; the attenuation length of spin wave can increase when the spin waves and electrons move in the same direction. The first finding can be interpreted as the time-domain observation of the spin-wave Doppler shift by current injection [1]. The second effect is thought to be affected by the nonadiabaticity of the spin transfer torque and thus can be used to estimate the nonadiabaticity [2]. [4pt] [1] V. Vlaminck and M. Bailleul, Science 322, (2008) 410. [0pt] [2] S. M. Seo, K. J. Lee, H. Yang, and T. Ono, Phys. Rev. Lett. 102, (2009) 147202.
Nonlinear wave propagation in constrained solids subjected to thermal loads
NASA Astrophysics Data System (ADS)
Nucera, Claudio; Lanza di Scalea, Francesco
2014-01-01
The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.
Modeling ocean wave propagation under sea ice covers
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley H.; Cheng, Sukun
2015-02-01
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology
The Propagation of Slow Wave Potentials in Pea Epicotyls.
Stahlberg, R.; Cosgrove, D. J.
1997-01-01
Slow wave potentials are considered to be electric long-distance signals specific for plants, although there are conflicting ideas about a chemical, electrical, or hydraulic mode of propagation. These ideas were tested by comparing the propagation of hydraulic and electric signals in epicotyls of pea (Pisum sativum L). A hydraulic signal in the form of a defined step increase in xylem pressure (Px) was applied to the root of intact seedlings and propagated nearly instantly through the epicotyl axis while its amplitude decreased with distance from the pressure chamber. This decremental propagation was caused by a leaky xylem and created an axial Px gradient in the epicotyl. Simultaneously along the epicotyl surface, depolarizations appeared with lag times that increased acropetally with distance from the pressure chamber from 5 s to 3 min. When measured at a constant distance, the lag times increased as the size of the applied pressure steps decreased. We conclude that the Px gradient in the epicotyl caused local depolarizations with acropetally increasing lag times, which have the appearance of an electric signal propagating with a rate of 20 to 30 mm min-1. This static description of the slow wave potentials challenges its traditional classification as a propagating electric signal. PMID:12223601
Electromagnetic wave propagation in rain and polarization effects
OKAMURA, Sogo; OGUCHI, Tomohiro
2010-01-01
This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593
A compendium of millimeter wave propagation studies performed by NASA
NASA Technical Reports Server (NTRS)
Kaul, R.; Rogers, D.; Bremer, J.
1977-01-01
Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.
Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation
Christov, Ivan; Christov, C. I.; Jordan, P. M.
2014-12-18
This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.
A k-space method for moderately nonlinear wave propagation.
Jing, Yun; Wang, Tianren; Clement, Greg T
2012-08-01
A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant-Friedrichs-Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation.
Wave propagation of functionally graded material plates in thermal environments.
Sun, Dan; Luo, Song-Nan
2011-12-01
The wave propagation of an infinite functionally graded plate in thermal environments is studied using the higher-order shear deformation plate theory. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived by using the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. Numerical examples show that the characteristics of wave propagation in the functionally graded plate are relates to the volume fraction index and thermal environment of the functionally graded plate. The influences of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.
A k-Space Method for Moderately Nonlinear Wave Propagation
Jing, Yun; Wang, Tianren; Clement, Greg T.
2013-01-01
A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114
Propagation of longitudinal thermoplastic waves in layered structures
NASA Astrophysics Data System (ADS)
Li, Chen; Cetinkaya, Cetin
2000-05-01
The recent advances in photonics and laser instrumentation have been creating a favorable environment for thermal-based elastic wave generation techniques and their applications in various fields, such as nondestructive testing and smart structures. The main advantages of laser-based NDE include noncontact evaluation, freedom for complex surface geometry, high spatial and temporal resolution, easy access to cavities, and fast scanning. Two disadvantages are that the laser-based method requires a good physical understanding of thermoelastic wave propagation in solids, which is considerably more complicated than elastic wave propagation, and more complicated instrumentation needed for data collection. In an idealized solid, thermal energy is transported by two different mechanisms: by quantized electronic excitations, which are called free electrons, and the quanta of lattice vibrations, which are called phonons. These quanta undergo collisions of a dissipative nature, giving rise to thermal resistance in the medium. A relaxation time is associated with the average communication time between these collisions for the commencement of resistive flow. There are a number of optical methods available for elastic wave generation and detection. The most commonly utilized techniques include interferometric and noninterferometric techniques, optical heterodyning, differential interferometry, and time-delay interferometry. In the current work, a transfer matrix formulation including the second sound effect is developed for a thermoelastic layer. The second sound effect is included to eliminate the thermal wave travelling with infinite velocity as predicted by the diffusion heat transfer model, and, consequently, the immediate arrival of waves. Utilizing this formulation and the periodic systems framework, the attenuation and propagation properties of one-dimensional thermoelastic wave in both continuum and layered structures are studied. A perturbation analysis is carried out
Effects of D region ionization on radio wave propagation
NASA Technical Reports Server (NTRS)
Larsen, T. R.
1979-01-01
The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.
Wave propagation in a chiral fluid: an undergraduate study
NASA Astrophysics Data System (ADS)
Garel, Thomas
2003-09-01
We study the propagation of electromagnetic waves in a chiral fluid, where the molecules are described by a simplified version of the Kuhn coupled oscillator model. The eigenmodes of Maxwell's equations are circularly polarized waves. The application of a static magnetic field further leads to a magnetochiral term in the index of refraction of the fluid, which is independent of the wave polarization. A similar result holds when absorption is taken into account. Interference experiments and photochemical reactions have recently demonstrated the existence of the magnetochiral term. The comparison with Faraday rotation in an achiral fluid emphasizes the different symmetry properties of the two effects.
Wave propagation within some non-homogeneous continua
NASA Astrophysics Data System (ADS)
Antonio Tamarasselvame, Nirmal; Buisson, Manuel; Rakotomanana, Lalaonirina R.
We investigate the elastic wave propagation within a non-homogeneous continuum according to W. Noll. After some preliminaries in geometry approach suggested by E. Cartan, the linear momentum equation of so-called weakly continuous medium is written. A first example illustrates the modal analysis of an axisymmetric non-homogeneous thick tube. The overall solution is the product of an attenuating exponential response with Kummer's functions. The second example deals with a Timoshenko beam involving transversal displacement and angular rotation of section. We observe the presence of various waves with spatial attenuation, either for the displacement or the section rotation, together with the occurring waves at different scale levels.
Smoothed Particle Hydrodynamics for water wave propagation in a channel
NASA Astrophysics Data System (ADS)
Omidvar, Pourya; Norouzi, Hossein; Zarghami, Ahad
2015-01-01
In this paper, Smoothed Particle Hydrodynamics (SPH) is used to simulate the propagation of waves in an intermediate depth water channel. The major advantage of using SPH is that no special treatment of the free surface is required, which is advantageous for simulating highly nonlinear flows with possible wave breaking. The SPH method has an option of different formulations with their own advantages and drawbacks to be implemented. Here, we apply the classical and Arbitrary Lagrange-Euler (ALE) formulation for wave propagation in a water channel. The classical SPH should come with an artificial viscosity which stabilizes the numerical algorithm and increases the accuracy. Here, we will show that the use of classical SPH with an artificial viscosity may cause the waves in the channel to decay. On the other hand, we will show that using the ALE-SPH algorithm with a Riemann solver is more stable, and in addition to producing the pressure fields with much less numerical noise, the waves propagate in the channel without dissipation.
Surface wave propagation in non-ideal plasmas
NASA Astrophysics Data System (ADS)
Pandey, B. P.; Dwivedi, C. B.
2015-03-01
The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the non-ideal magnetohydrodynamic (MHD) effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few per cent) due to the compressibility of the medium in both ideal as well as Hall-diffusion-dominated regimes. However, unlike ideal regime, only waves below certain cut-off frequency can propagate in the medium in Hall dominated regime. This cut-off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut-off is introduced by the Hall diffusion, the fractional ionization of the medium is more important than the plasma compressibility in determining such a cut-off. Therefore, for both compressible as well incompressible medium, the surface modes of shorter wavelength are permitted with increasing ionization in the medium. We discuss the relevance of these results in the context of solar photosphere-chromosphere.
Experimental and theoretical study of Rayleigh-Lamb wave propagation
NASA Technical Reports Server (NTRS)
Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.
1990-01-01
Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.
Simulation of wave propagation in three-dimensional random media
NASA Technical Reports Server (NTRS)
Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1993-01-01
Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.
Propagation of electromagnetic waves in P T -symmetric hyperbolic structures
NASA Astrophysics Data System (ADS)
Shramkova, O. V.; Tsironis, G. P.
2016-07-01
We investigate theoretically and numerically the propagation of electromagnetic waves in P T -symmetric periodic stacks composed of hyperbolic metamaterial layers separated by dielectric media with balanced loss and gain. We derive the characteristic frequencies governing the dispersion properties of the eigenwaves of P T -symmetric semiconductor-dielectric stacks. By tuning the loss/gain level and thicknesses of the layers, we study the evolution of the dispersion dependencies. We show that the effective-medium approach does not adequately describe the propagating waves in the P T -symmetric hypercrystals, even for wavelengths that are about 100 times larger than the period of the stack. We demonstrate the existence of anisotropic transmission resonances and above-unity reflection in P T -symmetric hyperbolic systems. The P T -symmetry-breaking transition of the scattering matrix is strongly influenced by the constitutive and geometrical parameters of the layers and the angles of wave incidence.
Excitation of coherent propagating spin waves by pure spin currents
Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.
2016-01-01
Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232
Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity
NASA Astrophysics Data System (ADS)
Arda, Mustafa; Aydogdu, Metin
2016-03-01
Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.
Quasinormal modes and classical wave propagation in analogue black holes
Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.
2004-12-15
Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.
S-Wave Normal Mode Propagation in Aluminum Cylinders
Lee, Myung W.; Waite, William F.
2010-01-01
Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.
Obliquely propagating magnetosonic waves in multicomponent quantum magnetoplasma
NASA Astrophysics Data System (ADS)
Masood, W.; Mushtaq, A.
2008-06-01
Linear properties of obliquely propagating magnetosonic waves (both fast and slow) in multicomponent (electron-positron-ion ( e- p- i) and dust-electron-ion ( d- e- i)) quantum magnetoplasma are studied. It is found that the quantum Bohm potential term significantly changes the propagation of fast and slow magnetosonic waves in both e- p- i and d- e- i quantum plasmas. The variation of the dispersion characteristics with the increase/decrease of positron concentration in e- p- i and dust concentration in d- e- i quantum magnetoplasma is explored. Finally, the effect of angle θ (that the ambient magnetic field makes with the x-axis) on the dispersion properties of magnetosonic waves in multicomponent quantum magnetoplasma is investigated. The relevance of the present investigation to the dense astrophysical environments and microelectronic devices is also pointed out.
Nonlinear wave propagation in strongly coupled dusty plasmas
Veeresha, B. M.; Tiwari, S. K.; Sen, A.; Kaw, P. K.; Das, A.
2010-03-15
The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain.
Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.
2015-12-01
The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334
Wave packet propagation across barriers by semiclassical initial value methods
NASA Astrophysics Data System (ADS)
Petersen, Jakob; Kay, Kenneth G.
2015-07-01
Semiclassical initial value representation (IVR) formulas for the propagator have difficulty describing tunneling through barriers. A key reason is that these formulas do not automatically reduce, in the classical limit, to the version of the Van Vleck-Gutzwiller (VVG) propagator required to treat barrier tunneling, which involves trajectories that have complex initial conditions and that follow paths in complex time. In this work, a simple IVR expression, that has the correct tunneling form in the classical limit, is derived for the propagator in the case of one-dimensional barrier transmission. Similarly, an IVR formula, that reduces to the Generalized Gaussian Wave Packet Dynamics (GGWPD) expression [D. Huber, E. J. Heller, and R. Littlejohn, J. Chem. Phys. 89, 2003 (1988)] in the classical limit, is derived for the transmitted wave packet. Uniform semiclassical versions of the IVR formulas are presented and simplified expressions in terms of real trajectories and WKB penetration factors are described. Numerical tests show that the uniform IVR treatment gives good results for wave packet transmission through the Eckart and Gaussian barriers in all cases examined. In contrast, even when applied with the proper complex trajectories, the VVG and GGWPD treatments are inaccurate when the mean energy of the wave packet is near the classical transmission threshold. The IVR expressions for the propagator and wave packet are cast as contour integrals in the complex space of initial conditions and these are generalized to potentially allow treatment of a larger variety of systems. A steepest descent analysis of the contour integral formula for the wave packet in the present cases confirms its relationship to the GGWPD method, verifies its semiclassical validity, and explains results of numerical calculations.
Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.
Yan, Xiang; Yuan, Fuh-Gwo
2015-06-01
This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Constraining Gravitational-Wave Propagation Speed with Multimessenger Observations
NASA Astrophysics Data System (ADS)
Nishizawa, Atsushi; Nakamura, Takashi
2015-04-01
Detection of gravitational waves (GW) provides us an opportunity to test general relativity in strong and dynamical regimes of gravity. One of the tests is checking whether GW propagates with the speed of light or not. This test is crucial because the velocity of GW has not ever been directly measured. Propagation speed of a GW can deviate from the speed of light due to the modification of gravity, graviton mass, and the nontrivial spacetime structure such as extra dimensions and quantum gravity effects. Here we report a simple method to measure the propagation speed of a GW by directly comparing arrival times between gravitational waves, and neutrinos from supernovae or photons from short gamma-ray bursts. As a result, we found that the future multimessenger observations of a GW, neutrinos, and photons can test the GW propagation speed with the precision of 10-16, improving the previous suggestions by 8-10 orders of magnitude. We also propose a novel method that distinguishes the true signal due to the deviation of GW propagation speed from the speed of light and the intrinsic time delay of the emission at a source by looking at the redshift dependence. A. N. is supported by JSPS Postdoctoral Fellowships for Research Abroad.
Propagating and Localized Surface Waves in Metamaterial Stacks
NASA Astrophysics Data System (ADS)
Peng, Ruwen; Bao, Yongjun; Tang, Zhaohui; Gao, Feng; Zhang, Zhijian; Sun, Weihua; Wu, Xin; Wang, Mu
2009-03-01
We demonstrate the interference effect between propagating and localized surface modes of electromagnetic wave in metamaterial stacks, which leads to a transmission extremum. When radiation is incident on a metal surface perforated with an array of ring-shaped subwavelength apertures, the phase difference between the propagating surface Bloch wave and the localized surface wave can be tailored by the geometrical parameters of the array so as to affect the shape of the transmission spectrum. Above the resonant frequency of the aperture, interference between the surface waves leads to a minimum in the transmission spectrum, whereas below it, the interference leads to a maximum. While in multiple metamaterial stacks with hole arrays, the coupling of surface electromagnetic wave yields a new resonant mode with increasing quality factor of the transmission peak. We suggest that these features provide flexibility in engineering surface wave-based all-optical devices. Reference: Y. J. Bao, R. W. Peng, D. J. Shu, Mu Wang, X. Lu, J. Shao, W. Lu,and N. B. Ming, Phys. Rev. Lett. (2008) 101, 087401.
Efficient way to convert propagating waves into guided waves via gradient wire structures.
Chu, Hong Chen; Luo, Jie; Lai, Yun
2016-08-01
We propose a method for the design of gradient wire structures that are capable of converting propagating waves into guided waves along the wire. The conversion process is achieved by imposing an additional wave vector to the scattered waves via the gradient wire structure, such that the wave vector of scattered waves is beyond the wave number in the background medium. Thus, the scattered waves turn into evanescent waves. We demonstrate that two types of gradient wire structures, with either a gradient permittivity and a fixed radius, or a gradient radius and a fixed permittivity, can both be designed to realize such a wave conversion effect. The principle demonstrated in our work has potential applications in various areas including nanophotonics, silicone photonics, and plasmonics.
Efficient way to convert propagating waves into guided waves via gradient wire structures.
Chu, Hong Chen; Luo, Jie; Lai, Yun
2016-08-01
We propose a method for the design of gradient wire structures that are capable of converting propagating waves into guided waves along the wire. The conversion process is achieved by imposing an additional wave vector to the scattered waves via the gradient wire structure, such that the wave vector of scattered waves is beyond the wave number in the background medium. Thus, the scattered waves turn into evanescent waves. We demonstrate that two types of gradient wire structures, with either a gradient permittivity and a fixed radius, or a gradient radius and a fixed permittivity, can both be designed to realize such a wave conversion effect. The principle demonstrated in our work has potential applications in various areas including nanophotonics, silicone photonics, and plasmonics. PMID:27472616
Electron plasma wave propagation in external-electrode fluorescent lamps
Cho, Guangsup; Kim, Jung-Hyun; Jeong, Jong-Mun; Hong, Byoung-Hee; Koo, Je-Huan; Choi, Eun-Ha; Verboncoeur, John P.; Uhm, Han Sup
2008-01-14
The optical propagation observed along the positive column of external electrode fluorescent lamps is shown to be an electron plasma wave propagating with the electron thermal speed of (kT{sub e}/m){sup 1/2}. When the luminance of the lamp is 10 000-20 000 cd/m{sup 2}, the electron plasma temperature and the plasma density in the positive column are determined to be kT{sub e}{approx}1.26-2.12 eV and n{sub o}{approx}(1.28-1.69)x10{sup 17} m{sup -3}, respectively.
Dynamics and Predictability of Deep Propagating Atmospheric Gravity Waves
NASA Astrophysics Data System (ADS)
Doyle, J.; Fritts, D. C.; Smith, R.; Eckermann, S. D.
2012-12-01
An overview will be provided of the first field campaign that attempts to follow deeply propagating gravity waves (GWs) from their tropospheric sources to their mesospheric breakdown. The DEEP propagating gravity WAVE experiment over New Zealand (DEEPWAVE-NZ) is a comprehensive, airborne and ground-based measurement and modeling program focused on providing a new understanding of GW dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program will employ the new NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. The NGV will be equipped with new lidar and airglow instruments for the DEEPWAVE measurement program, providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand is chosen since all the relevant GW sources occur strongly here, and upper-level winds in austral winter permit GWs to propagate to very high altitudes. Given large-amplitude GWs that propagate routinely into the MLT, the New Zealand region offers an ideal natural laboratory for studying these important GW dynamics and effects impacting weather and climate over a much deeper atmospheric layer than previous campaigns have attempted (0-100 km altitude). The logistics of making measurements in the vicinity of New Zealand are potentially easier than from the Andes and Drake Passage region. A suite of GW-focused modeling and predictability tools will be used to guide NGV flight planning to GW events of greatest scientific significance. These models will also drive scientific interpretation of the GW measurements, together providing answers to the key science questions posed by DEEPWAVE about GW dynamics, morphology, predictability and impacts from 0-100 km. Preliminary results will be presented from high-resolution and adjoint models applied over areas featuring deep wave propagation. The high
RESONANTLY DAMPED PROPAGATING KINK WAVES IN LONGITUDINALLY STRATIFIED SOLAR WAVEGUIDES
Soler, R.; Verth, G.; Goossens, M.; Terradas, J.
2011-07-20
It has been shown that resonant absorption is a robust physical mechanism for explaining the observed damping of magnetohydrodynamic kink waves in the solar atmosphere due to naturally occurring plasma inhomogeneity in the direction transverse to the direction of the magnetic field. Theoretical studies of this damping mechanism were greatly inspired by the first observations of post-flare standing kink modes in coronal loops using the Transition Region and Coronal Explorer. More recently, these studies have been extended to explain the attenuation of propagating coronal kink waves observed by the Coronal Multi-Channel Polarimeter. In the present study, for the first time we investigate the properties of propagating kink waves in solar waveguides including the effects of both longitudinal and transverse plasma inhomogeneity. Importantly, it is found that the wavelength is only dependent on the longitudinal stratification and the amplitude is simply a product of the two effects. In light of these results the advancement of solar atmospheric magnetoseismology by exploiting high spatial/temporal resolution observations of propagating kink waves in magnetic waveguides to determine the length scales of the plasma inhomogeneity along and transverse to the direction of the magnetic field is discussed.
Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.
2009-05-15
Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.
Observations of acoustic surface waves in outdoor sound propagation
NASA Astrophysics Data System (ADS)
Albert, Donald G.
2003-05-01
Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.
Experimental study of wave propagation dynamics of multicomponent distillation columns
Ting, J.; Helfferich, F.G.; Hwang, Y.L.; Graham, G.K.; Keller, G.E. II
1999-10-01
Distillation columns with sharp separations exhibit severely nonlinear behavior, which has been known to cause difficulties in column control and design. Such a column is characterized by sharp composition and temperature variations in the column. Previously, the binary distillation case was thoroughly analyzed using a nonlinear wave theory and such an analysis was experimentally validated. For multicomponent distillation, the complicated nonlinear dynamics of the movement and interference of multiple sharp composition variations can be elucidated with a coherent-wave theory developed earlier for general countercurrent separation processes. With a ternary alcohol mixture, the present study has experimentally verified the theory by demonstrating the existence and propagation of constant-pattern coherent waves in a 50-tray stripping column in response to a step disturbance of feed composition, feed flow rate, or reboiler heat supply. The study has also tested the theory's predictions of composition profile, wave velocities, and asymmetric dynamics.
Experimental study of wave propagation dynamics of binary distillation columns
Hwang, Y.L.; Graham, G.K.; Keller, G.E. II; Ting, J.; Helfferich, F.G.
1996-10-01
High-purity distillation columns are typically difficult to control because of their severely nonlinear behavior reflected by their sharp composition and temperature profiles. The dynamic behavior of such a column, as characterized by the movement of its sharp profile, was elucidated by a nonlinear wave theory established previously. With binary alcohol mixtures, this study provides an experimental observation of such wave-propagation dynamics of a 40-tray stripping column and a 50-tray fractionation column in response to step disturbances of feed composition, feed flow rate, and reboiler heat supply. These experimental results have verified that the sharp profile in a high-purity column moves as a constant-pattern wave and that the nonlinear wave theory predicts its velocity satisfactorily with very simple mathematics. Results also demonstrate the asymmetric dynamics of the transitions between two steady states.
Laser characterization of ultrasonic wave propagation in random media.
Scales, John A; Malcolm, Alison E
2003-04-01
Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path. PMID:12786520
Matter wave propagation using the Fourier optics approach
NASA Astrophysics Data System (ADS)
Shayganmanesh, M.; Hematizadeh, A.
2016-09-01
In this paper propagation of matter wave of particles is modeled using the Fourier optics approach. In first step the Schrödinger equation of quantum mechanics is used to find the wave function of the particle. In the second step Fourier optics is employed to model the diffraction of the wave function of the particle through single and double slits. The results of the calculations are presented as graphs of diffraction patterns. The results of the presented method are compared to the existing results in the literature (with different methods) to check the validity of the introduced model. It is shown that the Fourier optics approach is applicable to matter wave of particles in diffraction through slits.
Propagating spin waves in YIG micro-channel on Silicon
NASA Astrophysics Data System (ADS)
Chen, Jilei; Che, Ping; Tu, Sa; Zhang, Yan; Qin, Jun; Bi, Lei; Liu, Chuanpu; Liao, Zhimin; Yu, Dapeng; Yu, Haiming; Fert Beijing Research Institute Team; University Of Electronic Science; Technology Of China Team; Peking University Collaboration
Recently the utilization of spin waves in the field of information processing has been widely developed because it is free of Joule heat dissipation and beneficial to miniaturization of the magnon based devices. Here we study spin waves in yttrium iron garnet (YIG) with a low damping property. The YIG film is fabricated on silicon substrate using pulsed laser deposition and the measured FMR linewidth is only a few Gauss. Using ebeam lithography, we are able to pattern the YIG film into a micro-channel and integrate sub-meter waveguides to generate and detect spin waves of wavelength down to 1 μm or below. We show results of propagating spin waves in the YIG micro-channel measured by the S12 parameter of the vector network analyzer.
PROPAGATION OF GRAVITY WAVES IN A CONVECTIVE LAYER
Onofri, M.; Vecchio, A.; Veltri, P.; De Masi, G.
2012-02-10
We perform numerical simulations of gravity mode propagation in a convective layer to investigate the observed association between small spatial scales and low frequencies in the photospheric velocity fields. According to the linear theory, when the fluid layer is convectively unstable, gravity modes are evanescent waves. However, in simple two-dimensional numerical settings, we find that when the equilibrium structure is modified by coherent large-scale convective motions, the waves injected at the bottom of the layer are no longer evanescent. In this situation, gravity waves can be detected at the surface of the layer. In our simplified model the injected wave's frequency remains unchanged, but its amplitude has a spatial modulation determined by the convective structure. This result may explain some analyses done with the proper orthogonal decomposition method of the solar surface velocity field even though solar convection is far more complex than the convection model considered here.
Asymptotic analysis of numerical wave propagation in finite difference equations
NASA Technical Reports Server (NTRS)
Giles, M.; Thompkins, W. T., Jr.
1983-01-01
An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.
Obliquely propagating electromagnetic waves in magnetized kappa plasmas
NASA Astrophysics Data System (ADS)
Gaelzer, R.; Ziebell, L. F.
2016-02-01
Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, the formalism is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions such as the bi-kappa or product-bi-kappa.
Modeling anomalous surface - wave propagation across the Southern Caspian basin
Priestly, K.F.; Patton, H.J.; Schultz, C.A.
1998-01-09
The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.
Propagation of waves in a medium with high radiation pressure
NASA Technical Reports Server (NTRS)
Bisnovatyy-Kogan, G. S.; Blinnikov, S. I.
1979-01-01
The propagation and mutual transformation of acoustic and thermal waves are investigated in media with a high radiative pressure. The equations of hydrodynamics for matter and the radiative transfer equations in a moving medium in the Eddington approximation are used in the investigation. Model problems of waves in a homogeneous medium with an abrupt jump in opacity and in a medium of variable opacity are presented. The characteristic and the times of variability are discussed. Amplitude for the brightness fluctuations for very massive stars are discussed.
Wave propagation in a quasi-chemical equilibrium plasma
NASA Technical Reports Server (NTRS)
Fang, T.-M.; Baum, H. R.
1975-01-01
Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.
Effect of propagation on pulsed four-wave mixing
NASA Astrophysics Data System (ADS)
Weisman, P.; Wilson-Gordon, A. D.; Friedmann, H.
2000-05-01
We examine the effect of propagation on the resonance Rabi sideband of the four-wave mixing (FWM) spectrum, obtained when short temporally displaced pump and probe pulses interact with an optically thick medium of two-level atoms. We find that the dependence of the time-integrated FWM signal on the pump-probe delay is considerably altered by propagation. In particular, the logarithm of the FWM signal, for the case where the probe precedes the pump, deviates from linearity and may even increase over a range of values. An explanation is given in terms of the overlap of the pump envelope with the coherent response of the atomic system to the probe, both of which are modified on propagation.
Resonance absorption of propagating fast waves in a cold plasma
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1990-01-01
Absorption of propagating waves impinging on a surface in which the plasma and magnetic field may change is investigated by examining in depth the problem of a combination of cold plasma, uniform magnetic field and a surface density which varies linearly from zero at the left end to some finite value at the right end, beyond which the density is constant. Two cases are considered: one in which the plasma is a vacuum everywhere to the left of the surface (which may correspond to coronal conditions) and one in which the plasma density jumps to a very large value to the left of the surface (which may mimic the magnetosphere with the dense region at the left corresponding to the plasmasphere). A complete discussion of the resonance absorption of propagating fast waves for the case considered by Kiveloson and Southwood (1986) is presented, emphasizing approximate analytical results whenever possible; these results are then compared with exact numerical solutions.
Numerical modelling of nonlinear full-wave acoustic propagation
Velasco-Segura, Roberto Rendón, Pablo L.
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Electrostatic wave propagation and trapping near the magnetic equator
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1985-01-01
Results of a two-dimensional ray tracing computer code, based on Snell's law, for electrostatic wave propagation in a dipole magnetic field are discussed. A survey of possible ray paths varying a wide range of parameters is conducted for low-harmonic Bernstein modes in a high-density plasma. It is shown that the ray paths exhibit similarity with radial distance and that there exists the possibility of two classes of wave statistics of the equator: a broad emission region extending to about + or - 4 deg and a class of events restricted to the smaller region of 1-2 deg about the magnetic equator. The regulating parameter between these two types of events is the transition energy from the isotropic background electrons to the unstable distribution of superthermals. Ray paths for propagation in the magnetic equatorial plane are considered and an explanation is given for ray focusing in the equatorial plane based on electron gyroradius considerations.
Numerical simulation of shock wave propagation in flows
NASA Astrophysics Data System (ADS)
Rénier, Mathieu; Marchiano, Régis; Gaudard, Eric; Gallin, Louis-Jonardan; Coulouvrat, François
2012-09-01
Acoustical shock waves propagate through flows in many situations. The sonic boom produced by a supersonic aircraft influenced by winds, or the so-called Buzz-Saw-Noise produced by turbo-engine fan blades when rotating at supersonic speeds, are two examples of such a phenomenon. In this work, an original method called FLHOWARD, acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction, is presented. It relies on a scalar nonlinear wave equation, which takes into account propagation in a privileged direction (one-way approach), with diffraction, flow, heterogeneous and nonlinear effects. Theoretical comparison of the dispersion relations between that equation and parabolic equations (standard or wide angle) shows that this approach is more precise than the parabolic approach because there are no restrictions about the angle of propagation. A numerical procedure based on the standard split-step technique is used. It consists in splitting the nonlinear wave equation into simpler equations. Each of these equations is solved thanks to an analytical solution when it is possible, and a finite differences scheme in other cases. The advancement along the propagation direction is done with an implicit scheme. The validity of that numerical procedure is assessed by comparisons with analytical solutions of the Lilley's equation in waveguides for uniform or shear flows in linear regime. Attention is paid to the advantages and drawbacks of that method. Finally, the numerical code is used to simulate the propagation of sonic boom through a piece of atmosphere with flows and heterogeneities. The effects of the various parameters are analysed.
Wave propagation in the chromosphere and transition region
NASA Technical Reports Server (NTRS)
Steffens, S.; Deubner, F.-L.; Fleck, B.; Wilhelm, K.; Harrison, R.; Gurman, J.
1997-01-01
The results from a joint observing program involving the solar ultraviolet measurement of emitted radiation (SUMER), the coronal diagnostic spectrometer (CDS) and the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) are presented. These operations were coordinated with ground-based observations at the vacuum tower telescope at Izana (Tenerife). The purpose was to characterize the wave propagation properties in the solar atmosphere, from the photosphere through the chromosphere into the transition region.
Monograph on propagation of sound waves in curved ducts
NASA Technical Reports Server (NTRS)
Rostafinski, Wojciech
1991-01-01
After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.
Radio Wave Propagation Handbook for Communication on and Around Mars
NASA Technical Reports Server (NTRS)
Ho, Christian; Golshan, Nasser; Kliore, Arvydas
2002-01-01
This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.
NASA Technical Reports Server (NTRS)
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media
Vorobiev, O; Antoun, T
2009-12-11
This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.
NASA Astrophysics Data System (ADS)
Nakayama, M.; Kawakata, H.; Doi, I.; Takahashi, N.
2015-12-01
Recently, landslides due to heavy rain and/or earthquakes have been increasing and severe damage occurred in Japan in some cases (e.g., Chigira et al., 2013, Geomorph.). One of the principle factors activating landslides is groundwater. Continuous measurements of moisture in soil and/or pore pressure are performed to investigate the groundwater behavior. However, such measurements give information on only local behavior of the groundwater. To monitor the state of target slope, it is better to measure signals affected by the behavior of groundwater in a widely surrounding region. The elastic waves propagating through the medium under the target slope are one of candidates of such signals. In this study, we measure propagating waves through a sand soil made in laboratory, injecting water into it from the bottom. We investigate the characteristics of the propagating waves. We drop sand particles in a container (750 mm long, 300 mm wide and 400 mm high) freely and made a sand soil. The sand soil consists of two layers. One is made of larger sand particles (0.2-0.4 mm in diameter) and the other is made of smaller sand particles (0.05-0.2 mm in diameter). The dry density of these sand layers is about 1.45 g/cm3. We install a shaker for generating elastic waves, accelerometers and pore pressure gauges in the sand soil. We apply small voltage steps repeatedly, and we continuously measure elastic waves propagating through the sand soil at a sampling rate of 51.2 ksps for a period including the water injection period. We estimate the spatio-temporal variation in the maximum cross-correlation coefficients and the corresponding time lags, using template waveforms recorded in the initial period as references. The coefficient for the waveforms recorded at the accelerometer attached to the tip of the shaker is almost stable in high values with a slight decrease down to 0.94 in the period when the sand particles around the shaker are considered to become wet. On the other hand
Theoretical Methods for Wave Propagation across Jointed Rock Masses
NASA Astrophysics Data System (ADS)
Perino, A.; Zhu, J. B.; Li, J. C.; Barla, G.; Zhao, J.
2010-11-01
Different methods are presently available for the analysis of wave propagation across jointed rock masses with the consideration of multiple wave reflections between joints. These methods can be divided into two categories. One is based on the displacement discontinuity model for representing rock joints, where the displacements across a joint are discontinuous and the tractions are continuous, and the other is the equivalent medium method. For the first category, there are three methods, i.e., method of characteristics (MC), scattering matrix method (SMM) and virtual wave source method (VWS). MC solves the equation of motion by using the theory of characteristic curves. SMM is based on the definition of the scattering matrix in which the reflection and transmission coefficients of a set of joints are stored. VWS method replaces the joints in the rock mass with a virtual concept. For the second category, equivalent medium model treats the problem in the frame of continuum mechanics and simplifies it from an explicit wave propagation equation. The objective of this paper is to review and compare these theoretical methods. The comparison shows that the four solutions agree very well with each other. Some additional considerations about the advantages and disadvantages of these methods are also given in the paper.
A Kinetic Approach to Propagation and Stability of Detonation Waves
NASA Astrophysics Data System (ADS)
Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.
2008-12-01
The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.
Highly Alfvenic Slow Solar Wind
NASA Technical Reports Server (NTRS)
Roberts, D. Aaron
2010-01-01
It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.
Determination of particle size distributions from acoustic wave propagation measurements
Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.
1999-05-01
The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}
Propagation of acoustic waves in the partly ionized interstellar medium
NASA Astrophysics Data System (ADS)
Chalov, S. V.
2014-07-01
The properties of linear acoustic waves propagating in the interstellar medium, which is a mixture of electron-proton plasma and hydrogen atoms, are studied analytically. The plasma component interacts with hydrogen atoms through resonant charge exchange between the atoms and protons. To make the problem tractable, only short-wavelength disturbances are considered. Namely, the wavelength is assumed to be small as compared with the mean free path of atoms with respect to charge exchange. It is shown that short waves are damped out due to the charge exchange process, and the magnitude of decrement increases with the cross-section for charge exchange, number density of atoms and sound speed. In the first approximation, decrement does not depend on the wavelength, and acoustic waves are dispersionless. The advantage of our model is fully kinetic treatment of the interstellar atom motion.
Paraxial WKB Method Applied to the Lower Hybrid Wave Propagation
Bertelli, N; Poli, E; Harvey, R; Wright, J C; Bonoli, P T; Phillips, C K; Simov, A P; Valeo, E
2012-07-12
The paraxial WKB (pWKB) approximation, also called beam tracing method, has been employed in order to study the propagation of lower hybrid (LH) waves in a tokamak plasma. Analogous to the well-know ray tracing method, this approach reduces Maxwell's equations to a set of ordinary differential equations, while, in addition, retains the effects of the finite beam cross-section, and, thus, the effects of diffraction. A new code, LHBEAM (Lower Hybrid BEAM tracing), is presented, which solves the pWKB equations in tokamak geometry for arbitrary launching conditions and for analytic and experimental plasma equilibria. In addition, LHBEAM includes linear electron Landau damping for the evaluation of the absorbed power density and the reconstruction of the wave electric field in both the physical and Fourier space. Illustrative LHBEAM calculations are presented along with a comparison with the ray tracing code GENRAY and the full wave solver TORIC-LH.
On a method computing transient wave propagation in ionospheric regions
NASA Technical Reports Server (NTRS)
Gray, K. G.; Bowhill, S. A.
1978-01-01
A consequence of an exoatmospheric nuclear burst is an electromagnetic pulse (EMP) radiated from it. In a region far enough away from the burst, where nonlinear effects can be ignored, the EMP can be represented by a large-amplitude narrow-time-width plane-wave pulse. If the ionosphere intervenes the origin and destination of the EMP, frequency dispersion can cause significant changes in the original pulse upon reception. A method of computing these dispersive effects of transient wave propagation is summarized. The method described is different from the standard transform techniques and provides physical insight into the transient wave process. The method, although exact, can be used in approximating the early-time transient response of an ionospheric region by a simple integration with only explicit knowledge of the electron density, electron collision frequency, and electron gyrofrequency required. As an illustration of the method, it is applied to a simple example and contrasted with the corresponding transform solution.
Zero-group-velocity propagation of electromagnetic wave through nanomaterial
NASA Astrophysics Data System (ADS)
Fan, Taian
This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (10-6 m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3x108 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.
Generation, propagation, and breaking of internal solitary waves.
Grue, John
2005-09-01
Tidal, two-layer flow over topography generates a kink of the interface separating an upstream interfacial elevation from a depression above the topography. Upstream undular bores and solitary waves of large amplitude are generated from the interfacial kink. The waves propagate upstream when the tide turns. Interfacial simulations of this kind of generation process fit with the observations at Knight Inlet in British Columbia, in the Sulu Sea experiment, and undular bores generated by internal tides in the Strait of Gibraltar. Fully nonlinear interfacial computations compare successfully with experimental observations of solitary waves in the laboratory and in the field for wave amplitudes ranging from small to maximal values. The waves exhibit only minor sensitivity to a finite thickness of the pycnocline. Analytical solitary waves are recaptured in the small amplitude limit. Shear-induced breaking appears first in the top part of the pycnocline and is expressed in terms of the Richardson number. Convective breaking in the top part of the water column occurs beyond a threshold amplitude when a pronounced stratification continues all the way to the ocean surface.
Generation, propagation, and breaking of internal solitary waves.
Grue, John
2005-09-01
Tidal, two-layer flow over topography generates a kink of the interface separating an upstream interfacial elevation from a depression above the topography. Upstream undular bores and solitary waves of large amplitude are generated from the interfacial kink. The waves propagate upstream when the tide turns. Interfacial simulations of this kind of generation process fit with the observations at Knight Inlet in British Columbia, in the Sulu Sea experiment, and undular bores generated by internal tides in the Strait of Gibraltar. Fully nonlinear interfacial computations compare successfully with experimental observations of solitary waves in the laboratory and in the field for wave amplitudes ranging from small to maximal values. The waves exhibit only minor sensitivity to a finite thickness of the pycnocline. Analytical solitary waves are recaptured in the small amplitude limit. Shear-induced breaking appears first in the top part of the pycnocline and is expressed in terms of the Richardson number. Convective breaking in the top part of the water column occurs beyond a threshold amplitude when a pronounced stratification continues all the way to the ocean surface. PMID:16253005
Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA
NASA Astrophysics Data System (ADS)
Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.
2014-12-01
The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the
NASA Technical Reports Server (NTRS)
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
NASA Astrophysics Data System (ADS)
Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.
2015-12-01
The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.
Wave propagation in media having negative permittivity and permeability
NASA Astrophysics Data System (ADS)
Ziolkowski, Richard W.; Heyman, Ehud
2001-11-01
Wave propagation in a double negative (DNG) medium, i.e., a medium having negative permittivity and negative permeability, is studied both analytically and numerically. The choices of the square root that leads to the index of refraction and the wave impedance in a DNG medium are determined by imposing analyticity in the complex frequency domain, and the corresponding wave properties associated with each choice are presented. These monochromatic concepts are then tested critically via a one-dimensional finite difference time domain (FDTD) simulation of the propagation of a causal, pulsed plane wave in a matched, lossy Drude model DNG medium. The causal responses of different spectral regimes of the medium with positive or negative refractive indices are studied by varying the carrier frequency of narrowband pulse excitations. The smooth transition of the phenomena associated with a DNG medium from its early-time nondispersive behavior to its late-time monochromatic response is explored with wideband pulse excitations. These FDTD results show conclusively that the square root choice leading to a negative index of refraction and positive wave impedance is the correct one, and that this choice is consistent with the overall causality of the response. An analytical, exact frequency domain solution to the scattering of a wave from a DNG slab is also given and is used to characterize several physical effects. This solution is independent of the choice of the square roots for the index of refraction and the wave impedance, and thus avoids any controversy that may arise in connection with the signs of these constituents. The DNG slab solution is used to critically examine the perfect lens concept suggested recently by Pendry. It is shown that the perfect lens effect exists only under the special case of a DNG medium with ɛ(ω)=μ(ω)=-1 that is both lossless and nondispersive. Otherwise, the closed form solutions for the field structure reveal that the DNG slab converts
Surface Wave Propagation on a Laterally Heterogeneous Earth
NASA Astrophysics Data System (ADS)
Tromp, Jeroen
1992-01-01
Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in
Multiphase flow, deformation and wave propagation in porous media
NASA Astrophysics Data System (ADS)
Pazdniakou, A.; Adler, P. M.
2010-12-01
Our goals are to determine some of the most important macroscopic properties of porous media whether they are dry or saturated by one or two fluids such as permeabilities, solid deformations and acoustic velocities. Therefore, one needs to calculate fluid flow through the pores and the deformation of the solid matrix. Single and multiphase flows are determined by Lattice Boltzmann Models (LBM) where fluid motion is described in terms of a discretized particle distribution function which obeys a Lattice Boltzmann Equation equivalent to the Navier-Stokes equations at the macroscopic level. Complex boundary conditions can be easily treated by LBM which makes it convenient for flow simulations in porous media. Applications to the determination of the absolute permeability and of the relative permeabilities in complex media are given as well as examples of transient phenomena. Elastic deformations of the solid matrix whether they are static or time dependent can be determined by Lattice Spring Models (LSM). The solid matrix is represented by a regular cubic lattice whose points are connected by springs which are either linear (between the lattice points) or angular (between the linear springs). The spring set is selected in order to obtain an equivalent isotropic solid. The elastic properties of the medium can be calculated from the elastic energy stored in the elementary cell. A mass can be assigned to the lattice points. Applications to the determination of the macroscopic Young modulus and Poisson ratio of porous solids are given as well as direct simulations of wave propagation through dry porous solids. In order to study wave propagation in porous media containing one or two fluids, the LBM and LSM codes are coupled by using a momentum exchange algorithm which equates the velocities and the normal stresses at the solid-fluid interface. Then, two different methods can be used to study wave propagation. In the first direct method, a pressure variation is induced at a
Electromagnetic wave propagation through an overdense magnetized collisional plasma layer
NASA Astrophysics Data System (ADS)
Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.
2009-08-01
The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.
Synthetic observations of wave propagation in a sunspot umbra
Felipe, T.; Socas-Navarro, H.; Khomenko, E.
2014-11-01
Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic field oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.
Poleward propagation of parametric subharmonic instability-induced inertial waves
NASA Astrophysics Data System (ADS)
Xie, Xiaohui; Liu, Qian; Shang, Xiaodong; Chen, Guiying; Wang, Dongxiao
2016-03-01
This study presents two sets of current records obtained from the South China Sea and satellite altimeter data, and it suggests that near-inertial waves induced by parametric subharmonic instability (PSI) associated with internal tides can be transported poleward beyond their critical latitude φc by background geostrophic flow (BGF). The two mooring locations were poleward of φc (≈14°N) for diurnal subharmonics (0.5D1; half diurnal frequency D1); however, both of the current records revealed clear signals at 0.5D1. The enhanced subinertial motion at 0.5D1 exhibited a fortnightly spring-neap cycle but did not agree with that of D1, indicating that it may not be generated via PSI associated with the local D1. Observations from the altimeter data and a ray-tracing simulation suggested that these nonlocally generated 0.5D1 waves may be excited near their φc, after which they propagated poleward under the role of the BGF to the observation site with a latitude higher than φc. The poleward propagation of near-inertial waves can produce elevated vertical shears; thus, it may play an important role in enhancing the local turbulent mixing.
Shock wave propagation along constant sloped ocean bottoms.
Maestas, Joseph T; Taylor, Larissa F; Collis, Jon M
2014-12-01
The nonlinear progressive wave equation (NPE) is a time-domain model used to calculate long-range shock propagation using a wave-following computational domain. Current models are capable of treating smoothly spatially varying medium properties, and fluid-fluid interfaces that align horizontally with a computational grid that can be handled by enforcing appropriate interface conditions. However, sloping interfaces that do not align with a horizontal grid present a computational challenge as application of interface conditions to vertical contacts is non-trivial. In this work, range-dependent environments, characterized by sloping bathymetry, are treated using a rotated coordinate system approach where the irregular interface is aligned with the coordinate axes. The coordinate rotation does not change the governing equation due to the narrow-angle assumption adopted in its derivation, but care is taken with applying initial, interface, and boundary conditions. Additionally, sound pressure level influences on nonlinear steepening for range-independent and range-dependent domains are used to quantify the pressures for which linear acoustic models suffice. A study is also performed to investigate the effects of thin sediment layers on the propagation of blast waves generated by explosives buried beneath mud line.
Electromagnetic wave propagation through an overdense magnetized collisional plasma layer
Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P.
2009-08-15
The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.
Workshop on Research Techniques in Wave Propagation and Scattering
NASA Astrophysics Data System (ADS)
Varadan, V. V.; Varadan, V. K.
1983-05-01
A Workshop/Symposium on Research Techniques in Wave Propagation and Scattering was held at the Ohio State University October 18-21, 1982. This workshop was co-sponsored with the generous financial support of the U.S. Army Research Office, U.S. Office of Naval Research, the Center for Welding Research, O.S.U., and the Department of Engineering Mechanics, O.S.U. The workshop format consisted of a core of a general lectures of fifty minutes duration each and several shorter contributions that were of twenty minutes duration each. In addition, there were three panel discussions. The general lectures were of an expository nature on fundamental concepts and basic analytical/numerical techniques for the solution of wave scattering and propagation problems. The speakers were noted for their contribution to these techniques and in many cases have pioneered the techniques that they elaborated upon. These lectures were invaluable to the participants since they were of a pedagogical nature and easily understood by even those not very familiar with the particular method. The written version of many of these lectures will appear in a four volume Handbook on Acoustic, Electromagnetic and Elastic Wave Scattering to be published by North Holland as a separate project.
Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering
NASA Astrophysics Data System (ADS)
Kondorskiy, Alexey D.; Nanbu, Shinkoh
2015-09-01
We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.
Propagation of three-dimensional electron-acoustic solitary waves
Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.
2011-06-15
Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.
Synthetic Observations of Wave Propagation in a Sunspot Umbra
NASA Astrophysics Data System (ADS)
Felipe, T.; Socas-Navarro, H.; Khomenko, E.
2014-11-01
Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic field oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.
Shock wave propagation along constant sloped ocean bottoms.
Maestas, Joseph T; Taylor, Larissa F; Collis, Jon M
2014-12-01
The nonlinear progressive wave equation (NPE) is a time-domain model used to calculate long-range shock propagation using a wave-following computational domain. Current models are capable of treating smoothly spatially varying medium properties, and fluid-fluid interfaces that align horizontally with a computational grid that can be handled by enforcing appropriate interface conditions. However, sloping interfaces that do not align with a horizontal grid present a computational challenge as application of interface conditions to vertical contacts is non-trivial. In this work, range-dependent environments, characterized by sloping bathymetry, are treated using a rotated coordinate system approach where the irregular interface is aligned with the coordinate axes. The coordinate rotation does not change the governing equation due to the narrow-angle assumption adopted in its derivation, but care is taken with applying initial, interface, and boundary conditions. Additionally, sound pressure level influences on nonlinear steepening for range-independent and range-dependent domains are used to quantify the pressures for which linear acoustic models suffice. A study is also performed to investigate the effects of thin sediment layers on the propagation of blast waves generated by explosives buried beneath mud line. PMID:25480048
Double porosity modeling in elastic wave propagation for reservoir characterization
Berryman, J. G., LLNL
1998-06-01
Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.
Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering
Kondorskiy, Alexey D.; Nanbu, Shinkoh
2015-09-21
We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.
a New Approach to Bulk Wave Propagation in Anisotropic Media.
NASA Astrophysics Data System (ADS)
Tverdokhlebov, Andrey
A new approach to a theoretical description of ultrasonic bulk wave propagation through anisotropic media is developed from the retarded potential representation which was obtained for the Green's function of the elastic wave equation in anisotropic media. The general formulation of the problem and the method of solution are presented. On the basis of the theoretical development, a quantitative model was obtained that yields and properly describes all major features of the phenomena of an anisotropic filter influence. A comparison with other contemporary methods and models for the quantitative evaluation of the bulk wave propagation in anisotropic media is outlined and briefly discussed. The experimental proof of principle was established by ultrasonic measurements performed on centrifugally cast stainless steel (CCSS) and unidirectional graphite fiber -epoxy composite specimens. The experimental technique used a skip-distance arrangement of the identical quasi -point probes serving as a sender and a receiver. Consistent experimental results were attained allowing us to consider the suggested experimental arrangements as a basis for the future development of NDE technique for anisotropic material characterization. Three different types of pilot computer software were developed from this generalized retarded potential model. The results of the simulation runs turn out to be self- and mutually consistent and supported by experiments. The phenomena, such as beam skewing, beam splitting, beam focusing, unsymmetrical beams and other anisotropic effects, some of which have been already known from earlier experimental observations, emerge as computational results of the software developed from the model.
Propagation and Reflection of Diffusionless Torsional Waves in a Sphere
NASA Astrophysics Data System (ADS)
Maffei, S.; Jackson, A.
2015-12-01
The magnetohydrodynamics of stars and planetary cores is usually dominated by the overwhelming importance of rotation compared to other forces. Under these conditions the fluid motions are characterized by a strong invariance along the rotation axis. In the presence of a background magnetic field, magnetohydrodynamic oscillations can be triggered. Among these, of particular interest are the torsional waves, azimuthal perturbations of the fluid that are axisymmetric and invariant along the vertical direction. Their periods depend solely on the intensity of the magnetic field component aligned with the radial direction of propagation. As the detection of the fundamental period could constrain the magnetic field intensity in the Earth's outer core there is a long history of attempted detection of torsional waves from geomagnetic data. There is however a fundamental lack of knowledge concerning the propagation and reflection properties of these waves, as observational studies suggests behaviors that are different from theoretical expectations. In particular, recent findings (Gillet et al., 2011) suggest the lack of reflection at the equator and at the rotation axis. Through numerical simulation and analytical techniques we analyze the temporal evolution of diffusionless torsional waves in spherical geometry, with particular attention on the reflection at the equator and the pseudo-reflection at the rotation axis. We develop a novel analytical solution to the torsional wave eigenvalue problem whose behavior at the boundaries helps us to illustrate the meaning of the boundary conditions. Furthermore we find that for any acceptable magnetic background field, reflections at both boundaries are allowed and we illustrate how the WKBJ approximation is an efficient tool for investigating them.
Anomalous wave propagation across the South Caspian Basin
Priestly, K.; Patton, H.J.; Schultz, C.
1997-10-01
The Caspian basin blocks the propagation of the regional seismic phase Lg and this has importance consequences for seismic discrimination in the Middle East. Intermediate period surface waves propagating across the basin are also severely affected. In a separate study we have developed a crustal model of the south Caspian basin and the surrounding region. The crust of the basin consists of 15-25 km of low velocity, highly attenuating sediments lying on high velocity crystalline crust. The Moho beneath the basin is at a depth of about 30 km as compared to about 50 km in the surrounding region. In this study we used an idealized rendition of this crustal model to compute hybrid normal mode finite difference synthetic seismograms to identify the features of the Caspian basin which lead to the seismic blockage. Of the various features of the basin, the thickness and attenuation of the sediments appear to be the dominant blocking mechanism.
PROPAGATION AND STABILITY OF SUPERLUMINAL WAVES IN PULSAR WINDS
Mochol, Iwona; Kirk, John G. E-mail: john.kirk@mpi-hd.mpg.de
2013-07-01
Nonlinear electromagnetic waves with superluminal phase velocity can propagate in the winds around isolated pulsars, and around some pulsars in binary systems. Using a short-wavelength approximation, we find and analyze an integrable system of equations that govern their evolution in spherical geometry. A confined mode is identified that stagnates to finite pressure at large radius and can form a precursor to the termination shock. Using a simplified criterion, we find this mode is stable for most isolated pulsars, but may be unstable if the external pressure is high, such as in the pulsar wind nebulae in starburst galaxies and in W44. Pulsar winds in eccentric binary systems, such as PSR 1259-63, may go through phases with stable and unstable electromagnetic precursors, as well as phases in which the density is too high for these modes to propagate.