Science.gov

Sample records for alga anabaena cylindrica

  1. Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica.

    PubMed

    Daday, A; Platz, R A; Smith, G D

    1977-11-01

    An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5'-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described.

  2. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica.

    PubMed

    Weissman, J C; Benemann, J R

    1977-01-01

    Nitrogen-starved cultures of the alga Anabaena cylindrica 629 produced hydrogen and oxygen continuously for 7 to 19 days. Hydrogen production attained a maximum level after 1 to 2 days of starvation and was followed by a slow decline. The maximum rates were 30 ml of H2 evolved per liter of culture per h or 32 mul of H2 per mg of dry weight per h. In 5 to 7 days the rate of H2 evolution by the more productive cultures fell to one-half its maximum value. The addition of 10(-4) to 5 X 10(-4) M ammonium increased the rate of oxygen evolution and the total hydrogen production of the cultures. H2-O2 ratios were 4:1 under conditions of complete nitrogen starvation and about 1.7:1 after the addition of ammonium. Thus, oxygen evolution was affected by the extent of the nitrogen starvation. Thermodynamic efficiencies of converting incident light energy to free energy of hydrogen via algal photosynthesis were 0.4%. Possible factors limiting hydrogen production were decline of reductant supply and filament breakage. Hydrogen production by filamentous, heterocystous blue-green algae could be used for development of a biophotolysis system.

  3. Aluminum Effects on Uptake and Metabolism of Phosphorus by the Cyanobacterium Anabaena cylindrica

    PubMed Central

    Pettersson, Annette; Hällbom, Lars; Bergman, Birgitta

    1988-01-01

    Aluminum severely affects the growth of the cyanobacterium Anabaena cylindrica and induces symptoms indicating phosphorus starvation. Preor post-treating the cells with high (90 micromolar) phosphorus reduces the toxicity of aluminum compared to cells receiving a lower orthophosphate concentration. In this study aluminum (ranging from 9 to 36 micromolar) and phosphorus concentrations were chosen so that the precipitation of insoluble AIPO4 never exceeded 10% of the total phosphate concentration. The uptake of 32P-phosphorus is not disturbed by aluminum either at high (100 micromolar) or low (10 micromolar) concentrations of phosphate. Also, the rapid accumulation of polyphosphate granules in cells exposed to aluminum indicates that the incorporation of phosphate is not disturbed. However, a significant decrease in the mobilization of the polyphosphates is observed, as is a lowered activity of the enzyme acid phosphatase, in aluminum treated cells. We conclude that aluminum acts on the intracellular metabolism of phosphate, which eventually leads to phosphorus starvation rather than on its uptake in the cyanobacterium A. cylindrica. PMID:16665849

  4. Physiological Studies of Oxygen Protection Mechanisms in the Heterocysts of Anabaena cylindrica.

    PubMed

    Murry, M A; Horne, A J; Benemann, J R

    1984-03-01

    The mechanism of O(2) protection of nitrogenase in the heterocysts of Anabaena cylindrica was studied in vivo. Resistance to O(2) inhibition of nitrogenase activity correlated with the O(2) tension of the medium in which heterocyst formation was induced. O(2) resistance also correlated with the apparent K(m) for acetylene, indicating that O(2) tension may influence the development of a gas diffusion barrier in the heterocysts. The role of respiratory activity in protecting nitrogenase from O(2) that diffuses into the heterocyst was studied using inhibitors of carbon metabolism. Reductant limitation induced by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea increased the O(2) sensitivity of in vivo acetylene reduction. Azide, at concentrations (30 mM) sufficient to completely inhibit dark nitrogenase activity (a process dependent on oxidative phosphorylation for its ATP supply), severely inhibited short-term light-dependent acetylene reduction in the presence of O(2) but not in its absence. After 3 h of aerobic incubation in the presence of 20 mM azide, 75% of cross-reactive component I (Fe-Mo protein) in nitrogenase was lost; less than 35% was lost under microaerophilic conditions. Sodium malonate and monofluoroacetate, inhibitors of Krebs cycle activity, had only small inhibitory effects on nitrogenase activity in the light and on cross-reactive material. The results suggest that oxygen protection is dependent on both an O(2) diffusion barrier and active respiration by the heterocyst.

  5. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system.

    PubMed

    Galhano, Victor; Peixoto, Francisco; Gomes-Laranjo, José

    2010-10-01

    Rice fields are frequently exposed to environmental contamination by herbicides and cyanobacteria, as primary producers of these aquatic ecosystems, are adversely affected. Anabaena cylindrica is a cyanobacterium with a significantly widespread occurrence in Portuguese rice fields. This strain was studied throughout 72 h in laboratory conditions for its stress responses to sublethal concentrations (0.75-2 mM) of bentazon, a selective postemergence herbicide recommended for integrated weed management in rice, with special reference to oxidative stress, role of proline and intracellular antioxidant enzymes in herbicide-induced free radicals detoxification. Activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione S-transferase (GST) increased in a time- and herbicide dose-response manner and were higher than those in the control samples after 72 h. A time- and concentration-dependent increase of malondialdehyde (MDA) levels and the enhanced cell membrane leakage following bentazon exposure are indicative of lipid peroxidation, free radicals formation, and oxidative damage, while increased amounts of SOD, CAT, APX, GST, and proline indicated their involvement in free radical scavenging mechanisms. The appreciable decline in the reduced glutathione (GSH) pool after 72 h at higher bentazon concentrations could be explained by the reduction of the NADPH-dependent glutathione reductase (GR) activity. The obtained results suggested that the alterations of antioxidant systems in A. cylindrica might be useful biomarkers of bentazon exposure. As the toxic mechanism of bentazon is a complex phenomenon, this study also adds relevant findings to explain the oxidative stress pathways of bentazon promoting oxidative stress in cyanobacteria.

  6. The Azolla, Anabaena azollae Relationship

    PubMed Central

    Peters, Gerald A.; Mayne, Berger C.

    1974-01-01

    Cultures of Azolla caroliniana Willd. free of the symbiotic blue-green alga, Anabaena azollae, were obtained by treatment of Azolla fronds with a regimen of antibiotics. These symbiontfree plants can be maintained only on medium containing a combined nitrogen source. Morphological aspects of the symbiotic association show the confinement of the Anabaena azollae within the leaf cavity of the Azolla. Procedures were established for the isolation of pure preparations of Anabaena azollae and Azolla chloroplasts. It has not yet been possible to grow the isolated alga in independent culture. Photochemical activities of the isolated alga and fern chloroplasts were measured by spectrophotometric assays for photosystems I and II as well as by P700-content (photosystem I) and delayed light emission (photosystem II). In the algal fraction, both photosystems were repressed when compared to freeliving Anabaena cylindrica, but the relative ratio of photosystem I to photosystem II may be appreciably greater in Anabaena azollae. Azolla chloroplasts were generally comparable to spinach chloroplasts. A comparison of the chlorophyll a and b content of Azolla fronds with and without the symbiotic alga resulted in an estimate that in the symbiotic association, the Anabaena azollae accounts for from 7.5 to 15% of the total chlorophyll. Images PMID:16658796

  7. Formation of glutamine from [13n]ammonia, [13n]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica.

    PubMed

    Thomas, J; Meeks, J C; Wolk, C P; Shaffer, P W; Austin, S M

    1977-03-01

    A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C2H4 formed per mg of heterocyst chlorphyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of [13N]NH3 and of amidelabeled [13N]glutamine form [13N]N2. A method is also described for the production of 6-mCi amounts of [13N]NH3. Isolated heterocysts formed [13N]glutamine from [13N]NH3 and glutamate, and [14C]glutamine from NH3 and [14C]glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N2 by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either [13N]glutamine or alph-[14C]ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed [14C]glutamate rapidly from alpha-[14C]ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implication of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.

  8. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass

    PubMed Central

    Abdel -Aty, Azza M.; Ammar, Nabila S.; Abdel Ghafar, Hany H.; Ali, Rizka K.

    2012-01-01

    The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D–R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions. PMID:25685442

  9. Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion

    SciTech Connect

    Morales, I.; La Rosa, F.F. de )

    1992-07-01

    A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of oxygen into the solution. Hydrogen peroxide is produced during methyl viologen re-oxidation in two steps by means of the formation of superoxide. Experimental conditions for maximum photoproduction (catalyst charge, chlorophyll, and agar final concentration for cell immobilization) have been investigated using a continuous photosystem with immobilized A. variabilis as photocatalyst. Under the determined optimum conditions, the photosystem with immobilized A. variabilis is photocatalyst. Under the determined optimum conditions, the photosystem produces hydrogen peroxide at a rate of 100 {mu}moles/mg Chl{center dot}h, maintaining the production for several hours, and with an energy conversion efficiency of about 2%. Taking into account the use of hydrogen peroxide as fuel, this photosystem can be a useful tool in the storage of solar energy.

  10. Use of HPLC for the detection of iron chelators in cultures of bacteria, fungi, and algae. [E. coli; Bacillus megaterium; Ustilago sphaerogena; Anabaena flos-aqua

    SciTech Connect

    Boyer, G.L.; Speirs, R.J.; Morse, P.D. )

    1990-06-01

    Iron is essential for the growth of living cells. To meet biochemical needs, microorganisms, including algae, produce high affinity chelators termed siderophores. These compounds solubilize Fe and increase its bioavailability. We have developed a new method to study siderophore formation in cultured and natural environments. Based on the fact siderophores tightly bind 55-Fe, the radioactive complexes can be separated by HPLC using an inert PRP-1 column and detected by scintillation counting. This method cleanly resolves several known siderophores, including ferrichrome A, ferrichrome, desferal, and rhodotorulic acid. The optimization of the method and its use for analysis of siderophore formation in bacteria (E. coli, and Bacillus megaterium), fungi (Ustilago sphaerogena), and cyanobacteria (Anabaena flos-aqua UTEX 1444 and Anabaena sp. ATCC 27898) will be presented.

  11. The occurrence and biosynthesis of gamma-linolenic acid in a blue-green alga,Spirulina platensis.

    PubMed

    Nichols, B W; Wood, B J

    1968-01-01

    The acyl-lipid and fatty acid composition of six blue-green algae, namely,Spirulina platensis, Myxosarcina chroococcoides, Chlorogloea fritschii, Anabaena cylindrica, Anabaena flos-aquae, and Mastigocladus laminosus is reported.All contain major proportions of mono-and digalactosyl diglyceride, sulfoquinovosyl diglyceride, and phosphatidyl glycerol, but none possess lecithin, phophatidyl ethanolamine, or phosphatidyl inositol. Trans-3-hexadecenoic acid was absent from all extracts.The analyses provide further evidence that there is no general chemical or physical requirement for any specific fatty acid in photosynthesis. S. platensis is unique among photoautotrophic organisms so far studied, containing major quantities of gamma-linolenic acid (6,9,12-octadecatrienoic acid). This acid is synthesized by the alga by direct desaturation of linoleic acid and is primarily located in the mono- and digalactosyl diglyceride fractions.The possible phylogenetic relationship betweenS. platensis and other plant forms is discussed.

  12. The influence of nitrogen on heterocyst production in blue-green algae

    USGS Publications Warehouse

    Ogawa, Roann E.; Carr, John F.

    1969-01-01

    A series of experiments on heterocyst production in Anabaena variabilis provides some strong indirect evidence for the role of heterocysts in nitrogen fixation. Of the algae tested (Anabaena variabilis, A. inaequalis, A. cylindrica, A. flos-aquae, Tolypothrix distorta, Gloeotrichia echinulata, Aphanizomenon flos-aquae, Oscillatoria sp., and Microcystis aeruginosa), only those with heterocysts grew in a nitrate-free medium. Growth in the nitrate-free medium was accompanied by an increase in heterocysts. Heterocyst formation in A. variabilis was evident 24 hr after transfer from a nitrate-containing to a nitrate-free medium. The number of heterocysts was altered by changes in the nitrogen source. Numbers were lowest when NH4-N was used as a nitrogen source and highest when nitrogen (N2-N) was derived from the atmosphere. Heterocyst numbers could also be regulated by controlling the concentration of NO3-N in the medium. Heterocyst production depended on the absence of combined nitrogen and the presence of phosphate. Data are presented on the occurrence of blue-green algae (with heterocysts) in Lake Erie and the environmental conditions apparently necessary for them to become dominant.

  13. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  14. [Chemical constituents from Imperata cylindrica].

    PubMed

    Liu, Xuan; Zhang, Binfeng; Chou, Guixin; Yang, Li; Wang, Zhengtao

    2012-08-01

    Chemical investigation of Imperata cylindrica led to the isolation of thirteen compounds using various chromatographic techniques. The structure of these compounds were identified as: three phenylpropanoids, 1-(3,4,5-trimethoxyphenyl)-1,2,3-propanetriol ( 1 ), 1-O-p-coumaroylglycerol (2), 4-methoxy-5-methyl coumarin-7-O-beta-D-glucopyranoside (3); four organic acids, 4-hydroxybenzene carboxylic acid(4), 3,4-dihydroxybenzoic acid (5), vanillic acid (6), 3, 4-dihydroxybutyric acid (7); one phenolic compound, salicin (8); and five triterpenes, namely, arundoin (9), cylindrin (10), fernenol (11), simiarenol (12), glutinone (13) by their physicochemical properties and spectral data analysis. Among them, compounds 1-8 were isolated from the genus Imperata for the first time.

  15. The Azolla, Anabaena azollae Relationship

    PubMed Central

    Peters, Gerald A.; Mayne, Berger C.

    1974-01-01

    Anaerobic (microaerophilic) acetylene reduction by Azolla caroliniana Willd. was dependent on light and saturated at approximately 450 foot candles. Maximum rates of acetylene reduction were 60 nmoles/mg chlorophyll minute. However, rates of 25 to 30 nmoles/mg chlorophyll minute were more common. The growth of Azolla for 35 days with nitrate or urea as a nitrogen source decreased the rate of acetylene reduction approximately 30% compared to controls grown on nitrogen. Prolonged growth on nitrate or urea (6-7 months) resulted in a 90% decrease in the rate of acetylene reduction. The inhibition of acetylene reduction by 3 (3,4-dichlorophenol) 1,1-dimethylurea (12 μM) was not pronounced until the Azolla became depleted of the reserves formed during photosynthesis. The interval required for this depletion was dependent upon pretreatment and varied from 2 to more than 12 hours. Oxygen evolution was inhibited 75% in 10 minutes by the same concentration of 3 (3,4-dichlorophenol) 1,1-dimethylurea. The addition of oxygen, 20% volume per volume, resulted in a 30 to 40% decrease in the rate of acetylene reduction and the onsetof 3(3,4-dichlorophenol) 1,1-dimethylurea inhibition was more rapid then under microaerophilic conditions. The aerobic dark reduction of acetylene was from 10 to 30% of the rate of aerobic reduction in the light. Acetylene reduction activity was absent in fronds freed ofthe symbiotic algae and present in isolated Anabaena azollae. This study shows that the alga is the agent of acetylene reduction and suggests that there is considerable transport of metabolites between the fern and the blue-green alga. PMID:16658797

  16. Effects of acid stress on Scenedesmus quadricauda (chlorophyta) and Anabaena sp. (cyanophyta)

    SciTech Connect

    Hadden-Carter, P.J.

    1984-01-01

    The effects of pH in conjunction with light and temperature on growth of Scenedesmus quadricauda (Chlorophyta) and Anabaena sp. (Cyanophyta) were examined in culture. Decreasing pH from 7 to 3 inhibited growth, more so in the blue-green alga. Effects were greatly influenced by light and temperature. Above a critical level (pH4 with the blue-green, pH 3 with the green) both algae recovered when acid stress was removed; post-acidification growth rates varied inversely with pH for the green alga and directly for the blue-green. Two sheathed blue-green algae (Lyngbya and Gleocapsa) grew below pH 6, while two unsheathed blue-green algae (Anabaena and Oscillatoria) did not. Cell dimensions of both S. quadricaude and Anabaena sp. generally increased as pH declined; the green alga was the more plastic of the two. Acid stress significantly decreased photosynthetic rate in S. quadricauda but did not for Anabaena sp. Respiratory rates were not significantly related to pH for either alga. Chlorophyll a per cell was higher than controls (pH 7) at pH 5 and 6 in Anabaena sp. and at pH 4 through 6 for S. quadricauda. Both cell division and total culture biomass declined with pH. When grown in mixed culture, the green alga usually predominated at pH 4 and often at pH 5; the blue-green was favored at lower light intensities and higher temperatures. In no instance did one alga stimulate growth of the other, although mutual inhibition occurred in several instances.

  17. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica.

    PubMed

    Gandhi, Harish T; Vales, M Isabel; Watson, Christy J W; Mallory-Smith, Carol A; Mori, Naoki; Rehman, Maqsood; Zemetra, Robert S; Riera-Lizarazu, Oscar

    2005-08-01

    Aegilops cylindrica Host (2n = 4x = 28, genome CCDD) is an allotetraploid formed by hybridization between the diploid species Ae. tauschii Coss. (2n = 2x = 14, genome DD) and Ae. markgrafii (Greuter) Hammer (2n = 2x = 14, genome CC). Previous research has shown that Ae. tauschii contributed its cytoplasm to Ae. cylindrica. However, our analysis with chloroplast microsatellite markers showed that 1 of the 36 Ae. cylindrica accessions studied, TK 116 (PI 486249), had a plastome derived from Ae. markgrafii rather than Ae. tauschii. Thus, Ae. markgrafii has also contributed its cytoplasm to Ae. cylindrica. Our analysis of chloroplast and nuclear microsatellite markers also suggests that D-type plastome and the D genome in Ae. cylindrica were closely related to, and were probably derived from, the tauschii gene pool of Ae. tauschii. A determination of the likely source of the C genome and the C-type plastome in Ae. cylindrica was not possible.

  18. ent-Kaurene Glycosides from Ageratina cylindrica.

    PubMed

    Bustos-Brito, Celia; Sánchez-Castellanos, Mariano; Esquivel, Baldomero; Calderón, José S; Calzada, Fernando; Yépez-Mulia, Lilian; Joseph-Nathan, Pedro; Cuevas, Gabriel; Quijano, Leovigildo

    2015-11-25

    The aqueous extract of the leaves of Ageratina cylindrica afforded six new ent-kaurenoic acid glycosides together with the known diterpenoid paniculoside V, the flavonoid astragalin, chlorogenic acid, and L-chiro-inositol. The structures were elucidated mainly by NMR and MS methods, and the absolute configuration was established by vibrational circular dichroism spectroscopy. The new compounds showed moderate antiprotozoal activity against Entamoeba histolytica and Giardia lamblia trophozoites.

  19. [Effect of light and temperature on growth kinetics of Anabaena flosaquae under phosphorus limitation].

    PubMed

    Yin, Zhi-Kun; Li, Zhe; Wang, Sheng; Guo, Jin-Song; Xiao, Yan; Liu, Jing; Zhang, Ping

    2015-03-01

    Phosphorus, light and temperature are the key environmental factors leading to algae growth. But the effects of interaction between light and temperature on the growth of Anabaena flosaquae under phosphorus limitation were not well documented in literature. Anabaena flosaquae was selected for the study and lab-scale experiment and simulation were carried out. The results showed that the optimal temperature of Anabaena flosaquae was 20 degrees C under phosphorus limitation when the light intensity was constant, and the optimal light intensity (illuminance) of Anabaena flosaquae was 3 000 lx under phosphorus limitation when the temperature was constant. Based on model fitting and parameter calibration, the optimal temperature and light intensity of Anabaena flosaquae were 21.03 degress C ± 1.55 degrees C and 2 675.12 lx ± 262.93 lx, respectively. These data were close to the actual water environmental condition at the end of spring. Results of this study will provide important foundation for prediction of Anabaena blooms.

  20. Four new compounds from Imperata cylindrica.

    PubMed

    Liu, Xuan; Zhang, Bin-Feng; Yang, Li; Chou, Gui-Xin; Wang, Zheng-Tao

    2014-04-01

    Four new compounds, impecylone (1), deacetylimpecyloside (2), seguinoside K 4-methylether (3) and impecylenolide (4), were isolated from Imperata cylindrica along with two known compounds, impecyloside (5) and seguinoside K (6). Their structures were elucidated mainly by spectroscopic analyses including 1D- and 2D-NMR techniques, and the absolute configuration of 1 was confirmed by X-ray diffraction analysis. In calcium assay, the result indicated that compounds 1, 2, 4 and 5 cannot obviously inhibit the calcium peak value compared with the negative control, and suggested that the four compounds could not have anti-inflammatory activity.

  1. Cytological evidence for chromosome elimination in wheat x Imperata cylindrica hybrids.

    PubMed

    Komeda, Norio; Chaudhary, Harinder K; Suzuki, Go; Mukai, Yasuhiko

    2007-06-01

    Haploid induction of wheat by crossing with Imperata cylindrica pollen is an efficient method for doubled haploid breeding. We investigated the process of wheat haploid formation after crossing with I. cylindrica. Our cytological observations of zygotes showed the successful fertilization of parental gametes. Wheat haploids were formed by complete elimination of I. cylindrica chromosomes. Missegregation of I. cylindrica chromosomes was observed in the first cell division of zygote. At metaphase I. cylindrica chromosomes did not congress onto the equatorial plate. The sister chromosomes did not move toward the poles during anaphase, though their cohesion was released normally. I. cylindrica chromosomes were still in the cytoplasm at telophase and eliminated from daughter nuclei. After two-celled stage, we could find no I. cylindrica chromosome in the nuclei but micronuclei containing I. cylindrica chromatin in the cytoplasm. These observations indicate that I. cylindrica chromosomes are completely eliminated from nuclei in the first cell division probably due to lack of functional kinetochores.

  2. Uptake and Utilization of Sugar Phosphates by Anabaena flos-aquae1

    PubMed Central

    Rubin, Paul M.; Zetooney, Ellen; McGowan, Roy E.

    1977-01-01

    The effect of various sugar phosphates on CO2 fixation in Anabaena flos-aquae was investigated and found to be very similar to that found for isolated spinach chloroplasts. One exception, glucose 6-phosphate, has a stimulatory effect on CO2 fixation in Anabaena but not in isolated chloroplasts. Further examination of the role of glucose 6-phosphate metabolism in Anabaena indicates that: (a) this sugar phosphate can be taken up; (b) its uptake is greater in the light than the dark; (c) turnover of glucose 6-phosphate is inhibited in the light; and (d) glucose 6-phosphate can support dark CO2 fixation. These results are discussed with reference to photosynthesis-related control of glucose 6-phosphate metabolism and the role of glucose 6-phosphate as a source for reducing equivalents and ATP in blue-green algae. PMID:16660103

  3. Composition, speciation and distribution of iron minerals in Imperata cylindrica.

    PubMed

    Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús

    2007-05-01

    A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented.

  4. Further Thymol Derivatives from Ageratina cylindrica.

    PubMed

    Bustos-Brito, Celia; Esquivel, Baldomero; Calzada, Fernando; Yepez-Mulia, Lilian; Calderón, José S; Porras-Ramirez, Javier; Quijano, Leovigildo

    2016-10-01

    From the leaves of Ageratina cylindrica, in addition to the described [(2S)-2-{4-formyl-5-hydroxy-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl]methyl benzoate (cylindrinol A, 8), seven new thymol derivatives were isolated and named cylindrinols B - H (1 - 7). The structures of these compounds were established as (2-{4-(hydroxymethyl)-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl)methyl benzoate (1), (2-{4-formyl-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl)methyl benzoate (2), (2-{4-[(acetyloxy)methyl]-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl)methyl benzoate (3), [2-(2-[(2-methylpropanoyl)oxy]-4-{[(2-methylpropanoyl)oxy]methyl}phenyl)oxiran-2-yl]methyl benzoate (4), [2-(5-hydroxy-2-[(2-methylpropanoyl)oxy]-4-{[(2-methylpropanoyl)oxy]methyl}phenyl)oxiran-2-yl]methyl benzoate (5), 2-{4-(hydroxymethyl)-2-[(2-methylpropanoyl)oxy]phenyl}prop-2-en-1-yl benzoate (6), and 2-hydroxy-2-[2-hydroxy-4-(hydroxymethyl)-phenyl]-3-[(2-methylpropanoyl)oxy]propyl benzoate (7), by spectroscopic means. Compounds 1 showed moderate antiprotozoal activity on both protozoa. Compounds 4 and 5 showed selectivity on Giardia lamblia trophozoites. All isolated compounds were less active than two antiprotozoal drugs, metronidazole and emetine, used as positive controls. Compound 5 exhibited a high inhibitory effect on hyperpropulsive movement of the small intestine in rats; its effect was best than loperamide, antidiarrheal drug used as a positive control.

  5. The fate of glyphosate in water hyacinth and its physiological and biochemical influences on growth of algae

    SciTech Connect

    Tsai, Baolong.

    1989-01-01

    Absorption, translocation, distribution, exudation, and guttation of {sup 14}C-glyphosate in water hyacinth (Eichhornia crassipes) were studied. Glyphosphate entered the plant by foliage and solution treatment. Plants were harvested and separated into the following parts: treated leaf blade, treated leaf petiole, young leaf blade, young leaf petiole, old leak blade, old leaf petiole, and root. Each part was extracted with methanol. Treated leaves, which exist only in foliage treatment, were washed with water and chloroform to remove the glyphosate residues. All {sup 14}C counting was made by liquid scintillation spectrometry. Autoradiography was used to locate {sup 14}C-glyphosate after foliage treatment. Results indicated that glyphosate can be absorbed from the leaf surface and translocated rapidly through phloem tissues into the whole plant body. The roots of water hyacinth absorbed glyphosate without vertical transport. Guttation of glyphosate occurred in treated leaf tips. Exudation of glyphosate from roots of water hyacinth occurred within 8 hr after foliage treatment. Chlorella vulgaris, Chlamydomonas reihardii, Anabaena cylindrica, and Chroococcus turgidus were used to explore the physiological and biochemical effects of glyphosate on algae. Spectrophotometric assays were performed for algal growth, chlorophyll, carotenoids, phycobiliprotein, carbohydrate, and protein. TLC procedures and an image analyzer were used to detect the metabolites of glyphosate inside algal cells. The common visible symptom of glyphosate toxicity in all algal cells were bleaching effect and reduction of contents of carbohydrate, protein, and pigments. The results highly suggested that glyphosate injured the algal cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate and protein in algal cells.

  6. [Hybrids of Aegilops cylindrica Host with Triticum durum Desf. and T. aestivum L].

    PubMed

    Avsenin, V I; Motsnyĭ, A I; Rybalka, A I; Faĭt, V I

    2003-01-01

    The hybrids of durum and bread wheat with Ae. cylindrica have been obtained without using an embryo rescue technique. The hybrid output (of pollinated flower number) in the field conditions scored 1.0, 15.3 and 10.0% in the crosses T. durum x Ae. cylindrica, Ae. cylindrica x T. durum and T. aestivum x Ae. cylindrica, respectively. A high level of meiotic chromosome pairing between homologous D genomes of bread wheat and Aegilops has been revealed (c = 80.0-83.7%). The possibility of homoeological pairing between wheat and Ae. cylindrica chromosomes has been shown. Herewith, the correlation between the levels of homological and homoeological pairing is absent. The possibilities of genetic material interchange, including between the tetraploid species, as well as the using of Ae. cylindrica cytoplasm for durum wheat breeding are discussed.

  7. Imperanene, a novel phenolic compound with platelet aggregation inhibitory activity from Imperata cylindrica.

    PubMed

    Matsunaga, K; Shibuya, M; Ohizumi, Y

    1995-01-01

    Imperanene, a novel phenolic compound [1] has been isolated from Imperata cylindrica. Its structure was elucidated by spectroscopic evidence. Imperanene showed platelet aggregation inhibitory activity.

  8. Neuroprotective 2-(2-phenylethyl)chromones of Imperata cylindrica.

    PubMed

    Yoon, Jeong Seon; Lee, Mi Kyeong; Sung, Sang Hyun; Kim, Young Choong

    2006-02-01

    Bioactivity-guided fractionation of the methanolic extract of the rhizomes of Imperata cylindrica afforded a new compound, 5-hydroxy-2-(2-phenylethyl)chromone (1), together with three known compounds, 5-hydroxy-2-[2-(2-hydroxyphenyl)ethyl]chromone (2), flidersiachromone (3), and 5-hydroxy-2-styrylchromone (4). Among these four compounds, 1 and 2 showed significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultures of rat cortical cells.

  9. A new lignan glycoside from the rhizomes of Imperata cylindrica.

    PubMed

    Lee, Dae-Young; Han, Kyung-Min; Song, Myoung-Chong; Lee, Do-Gyeong; Rho, Yeong-Deok; Baek, Nam-In

    2008-01-01

    A new lignan glycoside, 6-acetyl-1-[1,3-(4,4'-dihydroxy-3,3'-dimethoxy-beta-truxinyl)-beta-d-fructofuranosyl]-alpha-d-glucopyranoside (1), named impecyloside, was isolated from the rhizomes of Imperata cylindrica. The structure of the compound was determined by spectroscopic data including FABMS, UV, IR, 1H NMR and 13C NMR (DEPT) and 2D NMR (COSY, HSQC, HMBC).

  10. Aprocta cylindrica (Nematoda) infection in a European Robin (Erithacus rubecula) in Britain.

    PubMed

    Beckmann, Katie M; Harris, Eileen; Pocknell, Ann M; John, Shinto K; Macgregor, Shaheed K; Cunningham, Andrew A; Lawson, Becki

    2014-10-01

    A European Robin (Erithacus rubecula) found dead in England had marked blepharitis and periocular alopecia associated with Aprocta cylindrica (Nematoda: Aproctidae) and concurrent mixed fungal infections. Aprocta cylindrica should be considered a differential diagnosis in periocular abnormalities of robins and other insectivorous, migratory passerines in Western Europe.

  11. Isolation and partial characterization of immunostimulating polysaccharides from Imperata cylindrica.

    PubMed

    Pinilla, V; Luu, B

    1999-08-01

    The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.

  12. A new bioactive steroidal saponin from Sansevieria cylindrica.

    PubMed

    Da Silva Antunes, Alexandra; Da Silva, Bernadete Pereira; Parente, José Paz; Valente, Ana Paula

    2003-02-01

    A new steroidal saponin was isolated from the leaves of Sansevieria cylindrica. Its structure was established as (3beta,12beta,15alpha,25S)-26-(beta-D-glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl 12-O- (6-deoxy-alpha-L-mannopyranosyl)-15-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside. The structural identification was performed using detailed analyses of (1)H and (13)C NMR spectra including 2D NMR spectroscopic techniques (COSY, HETCOR, HMBC and HMQC) and chemical conversions. The steroidal saponin showed no haemolytic effects in the in vitro assays and demonstrated inhibition of the capillary permeability activity.

  13. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  14. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    SciTech Connect

    Oboh, I.; Aluyor, E.; Audu, T.

    2015-03-30

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  15. Genetic effect of the Aegilops caudata plasmon on the manifestation of the Ae. cylindrica genome.

    PubMed

    Tsunewaki, Koichiro; Mori, Naoki; Takumi, Shigeo

    2014-01-01

    In the course of reconstructing Aegilops caudata from its own genome (CC) and its plasmon, which had passed half a century in common wheat (genome AABBDD), we produced alloplasmic Ae. cylindrica (genome CCDD) with the plasmon of Ae. caudata. This line, designated (caudata)-CCDD, was found to express male sterility in its second substitution backcross generation (SB2) of (caudata)-AABBCCDD pollinated three times with the Ae. cylindrica pollen. We repeatedly backcrossed these SB2 plants with the Ae. cylindrica pollen until the SB5 generation, and SB5F2 progeny were produced by self-pollination of the SB5 plants. Thirteen morphological and physiological characters, including pollen and seed fertilities, of the (caudata)-CCDD SB5F2 were compared with those of the euplasmic Ae. cylindrica. The results indicated that the male sterility expressed by (caudata)-CCDD was due to genetic incompatibility between the Ae. cylindrica genome and Ae. caudata plasmon that did not affect any other characters of Ae. cylindrica. Also, we report that the genome integrity functions in keeping the univalent transmission rate high.

  16. Allelopathic effect of alfalfa (Medicago sativa) on bladygrass (Imperata cylindrica).

    PubMed

    Abdul-Rahman, A A; Habib, S A

    1989-09-01

    Greenhouse and laboratory experiments were conducted at the Agricultural and Water Resources Research Center Station, Baghdad, in 1985 and 1986 to investigate the possible allelopathic potential of alfalfa (Medicago saliva L.) and its decomposed residues on bladygrass (Imperata cylin-drica L. Beauv.), a noxious weed in Iraq, and to isolate, characterize, and quantify possible allelopathic agents in alfalfa residues and root exudates. Results indicated that decomposed alfalfa roots and their associated soil produced a 51-56% reduction in bladygrass seed germination. Root and shoot length of bladygrass seedlings were reduced by an average of 88%. Decayed and undecayed mixtures of alfalfa roots and soil at 0.015∶1 (w/w) inhibited bladygrass seedlings reproduced from rhizomes by 30 and 42%. It was found that root exudates of alfalfa seedlings caused significant reduction in shoot and root dry weights of bladygrass seedlings when alfalfa and bladygrass were grown together in nutrient culture. Caffeic, chlorogenic, isochloro-genic,p-coumaric,p-OH-benzoic, and ferulic acids were detected in alfalfa root exudates and residues. The highest amount (126 fig phenolic acids/g soil) of these compounds was found in alfalfa root residues after six months of decomposition in soil.

  17. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  18. Morphological, physiochemical and molecular characterization of Anabaena strains.

    PubMed

    Prasanna, Radha; Kumar, Ramesh; Sood, Anjuli; Prasanna, B M; Singh, P K

    2006-01-01

    A set of 30 Anabaena strains, isolated from diverse geographical regions of India, were characterized using morphological and physiochemical attributes as well as molecular marker profiles. Significant differences were observed among the Anabaena strains with regard to the shape and size of trichomes and individual cells within a filament, besides qualitative and quantitative aspects of phycobiliprotein accumulation and activities of enzymes involved in nitrogen metabolism. Analyses of molecular polymorphisms in a selected set of 13 Anabaena strains, using primers based on repetitive sequences in the genome, led to unambiguous differentiation of the strains as well as understanding of their genetic relationships. Informative morphological, physio-chemical and molecular characters have been identified that could aid in differentiation and utilization of Anabaena strains as bioinoculants or as sources of pigments.

  19. Genetic structure of Aegilops cylindrica Host in its native range and in the United States of America.

    PubMed

    Gandhi, Harish T; Vales, M Isabel; Mallory-Smith, Carol; Riera-Lizarazu, Oscar

    2009-10-01

    Chloroplast and nuclear microsatellite markers were used to study genetic diversity and genetic structure of Aegilops cylindrica Host collected in its native range and in adventive sites in the USA. Our analysis suggests that Ae. cylindrica, an allotetraploid, arose from multiple hybridizations between Ae. markgrafii (Greuter) Hammer. and Ae. tauschii Coss. presumably along the Fertile Crescent, where the geographic distributions of its diploid progenitors overlap. However, the center of genetic diversity of this species now encompasses a larger area including northern Iraq, eastern Turkey, and Transcaucasia. Although the majority of accessions of Ae. cylindrica (87%) had D-type plastomes derived from Ae. tauschii, accessions with C-type plastomes (13%), derived from Ae. markgrafii, were also observed. This corroborates a previous study suggesting the dimaternal origin of Ae. cylindrica. Model-based and genetic distance-based clustering using both chloroplast and nuclear markers indicated that Ae. tauschii ssp. tauschii contributed one of its D-type plastomes and its D genome to Ae. cylindrica. Analysis of genetic structure using nuclear markers suggested that Ae. cylindrica accessions could be grouped into three subpopulations (arbitrarily named N-K1, N-K2, and N-K3). Members of the N-K1 subpopulation were the most numerous in its native range and members of the N-K2 subpopulation were the most common in the USA. Our analysis also indicated that Ae. cylindrica accessions in the USA were derived from a few founder genotypes. The frequency of Ae. cylindrica accessions with the C-type plastome in the USA (approximately 24%) was substantially higher than in its native range of distribution (approximately 3%) and all C-type Ae. cylindrica in the USA except one belonged to subpopulation N-K2. The high frequency of the C-type plastome in the USA may reflect a favorable nucleo-cytoplasmic combination.

  20. An ecophysiological study of the Azolla filiculoides- Anabaena azollae association

    NASA Astrophysics Data System (ADS)

    van Kempen, Monique; Smolders, Fons; Speelman, Eveline; Reichart, Gert Jan; Barke, Judith; Brinkhuis, Henk; Lotter, Andy; Roelofs, Jan

    2010-05-01

    The long term effects of salinity stress on the growth, nutrient content and amino acid composition of the Azolla filiculoides - Anabaena azollae association was studied in a laboratory experiment. It was demonstrated that the symbiosis could tolerate salt stress up to 90 mM NaCl, even after a 100 day period of preconditioning at salt concentrations that were 30 mM NaCl lower. In the 120 mM NaCl treatment the Azolla filiculoides survived, but hardly any new biomass was produced. It was shown that during the experiment, A. filiculoides became increasingly efficient in excluding salt ions from the plant tissue and was thus able to increase its salt tolerance. The amino acid analysis revealed that the naturally occurring high glutamine concentration in the plants was strongly reduced at salt concentrations of 120 mM NaCl and higher. This was the result of the reduced nitrogenase activity at these salt concentrations, as was demonstrated in an acetylene reduction assay. We suggest that the high glutamine concentration in the plants might play a role in the osmoregulatory response against salt stress, enabling growth of the A. filiculoides -Anabaena azollae association up to 90 mM NaCl. In a mesocosm experiment it furthermore was demonstrated that Azolla might manipulate its own microenvironment when grown at elevated salt concentration (up to ~50 mmol•L-1) by promoting salinity stratification, especially when it has formed a dense cover at the water surface. Beside salt stress, we also studied the growth of Azolla filiculoides in response to elevated atmospheric carbon dioxide concentration, in combination with different light intensities and different pH of the nutrient solution. The results demonstrated that as compared to the control (ambient pCO2 concentrations), Azolla filiculoides was able to produce twice as much biomass at carbon dioxide concentrations that were five times as high as the ambient pCO2 concentration. However, it was also shown that this

  1. [Molecular cytogenetic identification of Aegilops ventricosa x Aegilops cylindrica amphiploid SDAU18].

    PubMed

    Wang, Yu Hai; Bao, Yin Guang; Hao, Yuan Feng; Yuan, Yuan Yuan; Zhao, Chun Hua; Wang, Qing Zhuan; Wang, Hong Gang

    2009-02-01

    SDAU18, an amphiploid of Ae.ventricosa with Ae.cylindrica, was identified by cytological analysis, seed storage protein electrophoresis, genomic in situ hybridization (GISH) and inoculation assessment. The results are as follows: The chromosome number of root tip cells (RTCs) of SDAU18 plants varied from 52 to 56. 28 bivalents were observed in most PMCs MI of SDAU18 with 56 chromosomes, meanwhile, a few univalents, multivalents also existed in some PMCs MI, and the average chromosome configuration was 2n = 56 = 3.21 I +19.78 II, (Ring)+6.50 II (Rod)+0.01 III +0.04 IV (Ring)R+0.01 IV (Rod). There were both Ae. ventricosa-specific bands and Ae. cylindrica-specific bands in the seed storage protein electrophoretogram of SDAU18, furthermore, SDAU18 had one novel HMW-GS not found in the parents and two novel ones not found in common wheats. By labeling the total genomic DNA of Ae. ventricosa and Ae. cylindrica as probes respectively, and using that of another parent as block, GISH of RTCs spread of SDAU18 was carried out. The green hybridization signal was observed in 14 chromosomes respectively, within 56 ones in RTCs of SDAU18. SDAU18 was immune to powdery mildew and stripe rusts. SDAU18 was an amphiploid of Ae. ventricosa with Ae. cylindrica, and had very important significance in wheat breeding and genetic improvement.

  2. Graminone B, a novel lignan with vasodilative activity from Imperata cylindrica.

    PubMed

    Matsunaga, K; Shibuya, M; Ohizumi, Y

    1994-12-01

    Two novel lignans, graminones A [1] and B [2] have been isolated from Imperata cylindrica and their structures have been elucidated on the basis of their spectral data. Graminone B [2] showed inhibitory activity on the contraction of the rabbit aorta.

  3. Molecular analysis, cytogenetics and fertility of introgression lines from transgenic wheat to Aegilops cylindrica host.

    PubMed

    Schoenenberger, Nicola; Guadagnuolo, Roberto; Savova-Bianchi, Dessislava; Küpfer, Philippe; Felber, François

    2006-12-01

    Natural hybridization and backcrossing between Aegilops cylindrica and Triticum aestivum can lead to introgression of wheat DNA into the wild species. Hybrids between Ae. cylindrica and wheat lines bearing herbicide resistance (bar), reporter (gus), fungal disease resistance (kp4), and increased insect tolerance (gna) transgenes were produced by pollination of emasculated Ae. cylindrica plants. F1 hybrids were backcrossed to Ae. cylindrica under open-pollination conditions, and first backcrosses were selfed using pollen bags. Female fertility of F1 ranged from 0.03 to 0.6%. Eighteen percent of the sown BC1s germinated and flowered. Chromosome numbers ranged from 30 to 84 and several of the plants bore wheat-specific sequence-characterized amplified regions (SCARs) and the bar gene. Self fertility in two BC1 plants was 0.16 and 5.21%, and the others were completely self-sterile. Among 19 BC1S1 individuals one plant was transgenic, had 43 chromosomes, contained the bar gene, and survived glufosinate treatments. The other BC1S1 plants had between 28 and 31 chromosomes, and several of them carried SCARs specific to wheat A and D genomes. Fertility of these plants was higher under open-pollination conditions than by selfing and did not necessarily correlate with even or euploid chromosome number. Some individuals having supernumerary wheat chromosomes recovered full fertility.

  4. Ecotype variability and edaphic characteristics for cogongrass (Imperata cylindrica) populations in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cogongrass (Imperata cylindrica) is a highly invasive perennial grass in the southeastern United States and is found on all continents except Antartica. It has been reported from a wide array of habitats; however, soils from cogongrass populations have never been characterized. Live cogongrass pla...

  5. Algae Resources

    SciTech Connect

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  6. [Seasonal variation characteristics of algae biomass in Chaohu Lake].

    PubMed

    Jiang, Xia; Wang, Shu-Hang; Zhong, Li-Xiang; Jin, Xiang-Can; Sun, Shi-Qun

    2010-09-01

    The biomass and distribution of algae community in Chaohu Lake were investigated in 2008. At the same time, the seasonal variations of algae translocation between the sediment and overlying water were also quantitative studied by self-made "algae up/down trap". Chaohu Lake was dominated by Cyanobacteria all the year, and dominant Cyanobacteria species changed in different seasons. In spring, Anabaena was the dominant species, and Microcystis was the subdominant species; In the whole summer and autumn, the dominant species is Microcystis. Algae biomass increased significantly from May and the maximum appeared in August, was 146.37 mg x m(-3) with Chl-a. The value of algae biomass were 9.75-16.24 mg x kg(-1) in the surface sediments, and the minimum appeared in Summer, then the algae biomass increased gradually with the maximum value in winter. Translocation process between the sediment and the overlying water occurred throughout the study period. The recruitment rates increased at first with the maximum rates in early August, was 0.036 8 mg x (m2 x d) (-1), and then had a downward tendency. However the sedimentation rates increased slowly firstly with the maximum rate in early September, then it decreased sharply, was 0.032 1 mg x (m2 x d)(-1). Multiple stepwise regression showed that temperature was the most significant factor for the algae biomass in Chaohu Lake, Total nitrogen (TN) and Total phosphorus(TP) are sub-important factors.

  7. Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.; Stiles, E.A.

    1981-01-01

    To assess the possible effects of volcanic ash from the May 18,1980, eruption of Mt. St. Helens, Washington, on aquatic ecosystems, we conducted a bioassay experiment with a blue-green alga, Anabaena flos-aquae. Results showed that leachate (obtained by leaching 151 g of ash with 130 mL of simulated freshwater) was lethal to Anabaena flos-aquae cultures when diluted as much as 1:100 with culture medium. Cultures exposed to a 1:500 dilution grew, but a toxic effect was indicated by abnormalities in the Anabaena filaments. This study indicates that ash from the Mt. St. Helens volcano could have an effect on aquatic ecosystems in the areas of significant ashfall. Further study is needed to determine the toxic chemical constituents in the ash and also its possible effects on other aquatic organisms.

  8. [Study on the sorption of 4-octylphenol by freshwater algae].

    PubMed

    Peng, Zhang-e; Yang, Hai-zhen; Wang, Bei-bei; Deng, Nan-sheng

    2009-12-01

    The sorption of 4-octylphenol (4-OP) by two freshwater algae was investigated. Results showed that the sorption of 4-octylphenol by algae was obvious and quick, where 20% of initial 4-OP (2 mg/L) was accumulated by Chlorella vulgaris (CV) and 46% initial 4-OP (2 mg/L) was accumulated by Anabaena cylindrical (AC) after 5 min incubation. The sorption got equilibrium at 1 h after incubation. Langmuir sorption model was good appropriate type for this sorption. The effect of pH value on CV sorption was obvious than that on AC sorption. The sorption capacity of the biomass of two algae increased with the decrease of pH value. The analyzing of interaction between algae and 4-octylphenol was performed by fluorescence spectrum. Results showed that the algae could weaker the fluorescence spectrum intensity of 4-octylphenol and result in red shift of the maximum absorbance wavelength of mixture solution. Based on the results, it was speculated that algae bound with the contamination could use the near UV region of solar radiation and induced the contamination degradation.

  9. Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma Cell Line SCC-9 in Vitro.

    PubMed

    Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama

    2016-01-01

    Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

  10. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    PubMed

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation.

  11. Enhancing adsorption of U(VI) onto EDTA modified L. cylindrica using epichlorohydrin and ethylenediamine as a bridge

    PubMed Central

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2017-01-01

    Benefiting from strong coordination ability and unique vascular structure, EDTA modified L. cylindrica opens up an alternative way for uranium recovery from seawater. However, limitations, such as poor adsorption capacity and slow adsorption rate due to low graft ratio of EDTA via one-step esterification block its practical application. Here, a strategy for increasing the graft ratio is proposed in order to improve the adsorption performance. The strategy initially involves immobilization of epichlorohydrin (EPI) onto L. cylindrica and then ethylenediamine (EDA) is introduced via facile ring-opening reaction. EPI and EDA serve as a bridge between L. cylindrica and EDTA. The graft ratio is promoted (15.01 to 21.44%) contributing to the smaller steric hindrance of EPI and EDA than EDTA and improvement in adsorption performance. In addition, the adsorbent prepared by the new strategy exhibits excellent adsorption properties in simulated seawater. PMID:28272435

  12. Enhancing adsorption of U(VI) onto EDTA modified L. cylindrica using epichlorohydrin and ethylenediamine as a bridge.

    PubMed

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2017-03-08

    Benefiting from strong coordination ability and unique vascular structure, EDTA modified L. cylindrica opens up an alternative way for uranium recovery from seawater. However, limitations, such as poor adsorption capacity and slow adsorption rate due to low graft ratio of EDTA via one-step esterification block its practical application. Here, a strategy for increasing the graft ratio is proposed in order to improve the adsorption performance. The strategy initially involves immobilization of epichlorohydrin (EPI) onto L. cylindrica and then ethylenediamine (EDA) is introduced via facile ring-opening reaction. EPI and EDA serve as a bridge between L. cylindrica and EDTA. The graft ratio is promoted (15.01 to 21.44%) contributing to the smaller steric hindrance of EPI and EDA than EDTA and improvement in adsorption performance. In addition, the adsorbent prepared by the new strategy exhibits excellent adsorption properties in simulated seawater.

  13. Enhancing adsorption of U(VI) onto EDTA modified L. cylindrica using epichlorohydrin and ethylenediamine as a bridge

    NASA Astrophysics Data System (ADS)

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2017-03-01

    Benefiting from strong coordination ability and unique vascular structure, EDTA modified L. cylindrica opens up an alternative way for uranium recovery from seawater. However, limitations, such as poor adsorption capacity and slow adsorption rate due to low graft ratio of EDTA via one-step esterification block its practical application. Here, a strategy for increasing the graft ratio is proposed in order to improve the adsorption performance. The strategy initially involves immobilization of epichlorohydrin (EPI) onto L. cylindrica and then ethylenediamine (EDA) is introduced via facile ring-opening reaction. EPI and EDA serve as a bridge between L. cylindrica and EDTA. The graft ratio is promoted (15.01 to 21.44%) contributing to the smaller steric hindrance of EPI and EDA than EDTA and improvement in adsorption performance. In addition, the adsorbent prepared by the new strategy exhibits excellent adsorption properties in simulated seawater.

  14. Complete genome sequence of Anabaena variabilis ATCC 29413

    SciTech Connect

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun; Goodwin, Lynne A.; Copeland, A; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L; Kyrpides, Nikos C; Woyke, Tanja

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.

  15. Complete genome sequence of Anabaena variabilis ATCC 29413

    PubMed Central

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun; Goodwin, Lynne; Copeland, Alex; Lucas, Susan; Han, Cliff; Pitluck, Sam; Land, Miriam L.; Kyrpides, Nikos C; Woyke, Tanja

    2014-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Anabaena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40° C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence. PMID:25197444

  16. Assessment of blue-green algae in substantially reducing nitrogen fertilizer requirements for biomass fuel crops

    SciTech Connect

    Anderson, D.B.; Molten, P.M.; Metting, B.

    1981-07-01

    Laboratory, mass culture, and field studies are being undertaken in order to assess the potential of using blue-green algae (cyanobacteria) as nitrogen biofertilizers on irrigated ground. Of seven candidate strains, two were chosen for application to replicated field plots sown to field corn and the basis of laboratory-scale soil tray experiments and ease of semi-continuous 8000 l culture. Chosen were Anabaena BM-165, isolated from a local soil and Tolypothrix tenuis, imported from India. Using the acetylene reduction method, Anabaena is estimated from laboratory soil experiments to be able to fix from 30 to 62 kg N/ha/y, and has been mass cultured to a density of 1527 mg dry wt/l. T. tenuis is estimated from laboratory experiments to be able to fix from 27 to 65 kg N/ha/y, and has been mass cultured to a density of 1630 mg dry wt/l.

  17. Superoxide Dismutase in the Symbiont Anabaena azollae Strasb. 1

    PubMed Central

    Canini, A.; Galiazzo, F.; Rotilio, G.; Caiola, M. Grilli

    1991-01-01

    Superoxide dismutase was investigated in the symbiont Anabaena azollae Strasb. living in Azolla filiculoides Lam. In vegetative cells, three isoenzymatic forms of superoxide dismutase, containing manganese, iron, and the hybrid iron-manganese, respectively, were present. Hybrid superoxide dismutase, detected for the first time in cyanobacteria, was 7% of the total superoxide dismutase present in vegetative cells. All three superoxide dismutase forms increased in the Anabaena vegetative cells obtained from irradiated plants grown in winter. In heterocysts, only an iron superoxide dismutase was present, which amounted to 25% of total vegetative cell superoxide dismutase activity. Hybrid superoxide dismutase appeared in heterocysts after irradiation. In vegetative cells of Anabaena from plants grown in summer, the basal level of total superoxide dismutase increased by 60% as compared with winter, and was unaffected by irradiation. The levels of superoxide dismutase in heterocysts from control and exposed plants grown in summer were comparable to those observed in heterocysts obtained from the plants grown during winter. No direct correlation was found between nitrogenase activity and superoxide dismutase in heterocysts. The presence of cyanophycin granules, either within the heterocyst pore channel or close to the transversal septum of vegetative cells, suggested a mechanism to stop communications between vegetative cells and heterocysts. ImagesFigure 1Figure 3Figure 4Figure 5 PMID:16668392

  18. Regulation of Development and Nitrogen Fixation in Anabaena

    SciTech Connect

    James W Golden

    2004-08-05

    The nitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 is being used as a simple model of microbial development and pattern formation in a multicellular prokaryotic organism. Anabaena reduces atmospheric nitrogen to ammonia in highly specialized, terminally differentiated cells called heterocysts. Anabaena is an important model system because of the multicellular growth pattern, the suspected antiquity of heterocyst development, and the contribution of fixed nitrogen to the environment. We are especially interested in understanding the molecular signaling pathways and genetic regulation that control heterocyst development. In the presence of an external source of reduced nitrogen, the differentiation of heterocysts is inhibited. When Anabaena is grown on dinitrogen, a one-dimensional developmental pattern of single heterocysts separated by approximately ten vegetative cells is established to form a multicellular organism composed of two interdependent cell types. The goal of this project is to understand the signaling and regulatory pathways that commit a vegetative cell to terminally differentiate into a nitrogen-fixing heterocyst. Several genes identified by us and by others were chosen as entry points into the regulatory network. Our research, which was initially focused on transcriptional regulation by group 2 sigma factors, was expanded to include group 3 sigma factors and their regulators after the complete Anabaena genome sequence became available. Surprisingly, no individual sigma factor is essential for heterocyst development. We have used the isolation of extragenic suppressors to study genetic interactions between key regulatory genes such as patS, hetR, and hetC in signaling and developmental pathways. We identified a hetR R223W mutation as a bypass suppressor of patS overexpression. Strains containing the hetR R223W allele fail to respond to pattern formation signals and overexpression of this allele results in a lethal phenotype

  19. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization.

    PubMed

    Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V

    2005-03-01

    * The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.

  20. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica.

  1. Cylindol A, a novel biphenyl ether with 5-lipoxygenase inhibitory activity, and a related compound from Imperata Cylindrica.

    PubMed

    Matsunaga, K; Ikeda, M; Shibuya, M; Ohizumi, Y

    1994-09-01

    Cylindol A [1] and B [2], two novel substances, have been isolated from Imperata cylindrica, and their structures have been elucidated on the basis of their spectral data coupled with chemical evidence and total synthesis. Cylindol A [1] showed 5-lipoxygenase inhibitory activity.

  2. Potential biological control agents for management of cogongrass [Imperata cylindrica 15 (Cyperales: Poaceae)] in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  3. [Aprocta cylindrica Linstow, 1883, an oviparous filaria parasite of ploceid birds from Tchad. Larval morphogenesis (author's transl)].

    PubMed

    Quentin, J C; Troncy, P M; Barre, N

    1976-01-01

    Aprocta cylindrica Linstow, 1883, was identified in Africa (Tchad) from Passeriform birds Ploceidae belonging to the species Quelea quelea quelea (L), Ploceus capitalis (Latham), P. cucullatus (Müller) and Euplectes orix (Insert). Its experimental life cycle achieved in Orthoptera Locusta migratoria allows the study of the three first larval stages.

  4. Production and release of selenocyanate by different green freshwater algae in environmental and laboratory samples.

    PubMed

    LeBlanc, Kelly L; Smith, Matthew S; Wallschläger, Dirk

    2012-06-05

    In a previous study, selenocyanate was tentatively identified as a biotransformation product when green algae were exposed to environmentally relevant concentrations of selenate. In this follow-up study, we confirm conclusively the presence of selenocyanate in Chlorella vulgaris culture medium by electrospray mass spectrometry, based on selenium's known isotopic pattern. We also demonstrate that the observed phenomenon extends to other green algae (Chlorella kesslerii and Scenedesmus obliquus) and at least one species of blue-green algae (Synechococcus leopoliensis). Further laboratory experiments show that selenocyanate production by algae is enhanced by addition of nitrate, which appears to serve as a source of cyanide produced in the algae. Ultimately, this biotransformation process was confirmed in field experiments where trace amounts of selenocyanate (0.215 ± 0.010 ppb) were observed in a eutrophic, selenium-impacted river with massive algal blooms, which consisted of filamentous green algae (Cladophora genus) and blue-green algae (Anabaena genus). Selenocyanate abundance was low despite elevated selenium concentrations, apparently due to suppression of selenate uptake by sulfate, and insufficient nitrogen concentrations. Finally, trace levels of several other unidentified selenium-containing compounds were observed in these river water samples; preliminary suggestions for their identities include thioselenate and small organic Se species.

  5. Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1

    PubMed Central

    Zhang, Hangjun; Jiang, Xiaojun; Lu, Liping; Xiao, Wenfeng

    2015-01-01

    Polychlorinated biphenyls (PCBs), a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L) were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils. PMID:26177203

  6. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  7. Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution.

    PubMed

    Gogniashvili, Mari; Jinjikhadze, Tamar; Maisaia, Inesa; Akhalkatsi, Maia; Kotorashvili, Adam; Kotaria, Nato; Beridze, Tengiz; Dudnikov, Alexander Ju

    2016-11-01

    Hexaploid wheat (Triticum aestivum L., genomes AABBDD) originated in South Caucasus by allopolyploidization of the cultivated Emmer wheat T. dicoccum (genomes AABB) with the Caucasian Ae. tauschii ssp strangulata (genomes DD). Genetic variation of Ae. tauschii is an important natural resource, that is why it is of particular importance to investigate how this variation was formed during Ae. tauschii evolutionary history and how it is presented through the species area. The D genome is also found in tetraploid Ae. cylindrica Host (2n = 28, CCDD). The plasmon diversity that exists in Triticum and Aegilops species is of great significance for understanding the evolution of these genera. In the present investigation the complete nucleotide sequence of plasmon D (chloroplast DNA) of nine accessions of Ae. tauschii and two accessions of Ae. cylindrica are presented. Twenty-eight SNPs are characteristic for both TauL1 and TauL2 accessions of Ae. tauschii using TauL3 as a reference. Four SNPs are additionally observed for TauL2 lineage. The longest (27 bp) indel is located in the intergenic spacer Rps15-ndhF of SSC. This indel can be used for simple determination of TauL3 lineage among Ae. tauschii accessions. In the case of Ae. cylindrica additionally 7 SNPs were observed. The phylogeny tree shows that chloroplast DNA of TauL1 and TauL2 diverged from the TauL3 lineage. TauL1 lineage is relatively older then TauL2. The position of Ae. cylindrica accessions on Ae. tauschii phylogeny tree constructed on chloroplast DNA variation data is intermediate between TauL1 and TauL2. The complete nucleotide sequence of chloroplast DNA of Ae. tauschii and Ae. cylindrica allows to refine the origin and evolution of D plasmon of genus Aegilops.

  8. Regulation of Development and Nitrogen Fixation in Anabaena

    SciTech Connect

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  9. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  10. Inhibitory effects and mechanisms of Hydrilla verticillata (Linn.f.) Royle extracts on freshwater algae.

    PubMed

    Zhang, T-T; He, M; Wu, A-P; Nie, L-W

    2012-03-01

    To pursue an effective way to control freshwater algae, four extracts from a submerged macrophyte Hydrilla verticillata (Linn.f.) Royle were tested to study its inhibitory effects on Anabaena flos-aquae FACHB-245 and Chlorella pyrenoidosa Chick FACHB-9. Extract with the highest inhibiting ability was further studied in order to reveal the inhibitory mechanism. The results demonstrated that H. verticillata extracts inhibited the growth of A. flos-aquae and C. pyrenoidosa, and methanol extract had the highest inhibiting ability. The mechanism underlying the algal growth inhibition involves the superoxide anion radical generation that induces the damage of cell wall and release of intracellular components.

  11. Luffa cylindrica and phytosterols bioconversion: from shake flask to jar bioreactor.

    PubMed

    Bou Saab, Hamid; Fouchard, Samuel; Boulanger, Anna; Llopiz, Pierre; Neunlist, Serge

    2013-11-01

    Bioconversion of lipophilic compounds poorly soluble in water, such as sterols, required the use of chemicals and solubilizing agents. On the other hand, it was shown that immobilization of Mycobacterium species on the dried fruit of Luffa cylindrica (DFLC) allows a close interaction between immobilized cells and cholesterol particles and increases by then the product's yield. In this work, the use of DFLC in a 5-l jar bioreactor with phytosterols mixture (1 g/l) as substrate was assessed without addition of any chemicals or solubilizing agents. DFLC increased by a factor of four the volumetric productivity of androstenones (0.08 g/l day). Products were accumulated in the aqueous medium while substrates remained on the fibers of DFLC. This observation lets envisage a green semi-continuous process of androstenone production. DFLC has no influence on cell growth, and is moreover natural, inexpensive, non-toxic, and mechanically strong.

  12. Mootrala Karma of Kusha [Imperata cylindrica Beauv.] and Darbha [Desmostachya bipinnata Stapf.] - A comparative study.

    PubMed

    Shah, Niti T; Pandya, Tarulata N; Sharma, Parameshwar P; Patel, Bhupesh R; Acharya, Rabinarayan

    2012-07-01

    Kusha (Imperata cylindrica Beauv.) and Darbha (Desmostachya bipinnata Stapf.) are enlisted among Trinapanchamoola, which is a well-known diuretic and are individually enumerated in the Mootravirechaneeya Dashemani. The article deals with the evaluation and comparison of the individual Mootrala (diuretic) action of the two drugs in healthy volunteers. In this study, 29 healthy volunteers were divided into three groups administered with Darbha Moola Churna, Kusha Moola Churna, and placebo in each group for 14 days. The volunteers were subjected to evaluation of diuretic activity by maintaining the daily total input-output charts during the course of the study. The volunteers were advised to consume a minimum 2 l of water daily. Results show that Darbha and Kusha leaded to a percentage increase in urine volume as compared to placebo group, but the result was statistically insignificant.

  13. Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure.

    PubMed

    Rufo, Lourdes; Franco, Alejandro; de la Fuente, Vicenta

    2014-07-01

    Silicon concentration, distribution, and ultrastructure of silicon deposits in the Poaceae Imperata cylindrica (L.) P. Beauv. have been studied. This grass, known for its medicinal uses and also for Fe hyperaccumulation and biomineralization capacities, showed a concentration of silicon of 13,705 ± 9,607 mg/kg dry weight. Silicon was found as an important constituent of cell walls of the epidermis of the whole plant. Silica deposits were found in silica bodies, endodermis, and different cells with silicon-collapsed lumen as bulliforms, cortical, and sclerenchyma cells. Transmission electron microscope observations of these deposits revealed an amorphous material of an ultrastructure similar to that previously reported in silica bodies of other Poaceae.

  14. Mootrala Karma of Kusha [Imperata cylindrica Beauv.] and Darbha [Desmostachya bipinnata Stapf.] - A comparative study

    PubMed Central

    Shah, Niti T.; Pandya, Tarulata N.; Sharma, Parameshwar P.; Patel, Bhupesh R.; Acharya, Rabinarayan

    2012-01-01

    Kusha (Imperata cylindrica Beauv.) and Darbha (Desmostachya bipinnata Stapf.) are enlisted among Trinapanchamoola, which is a well-known diuretic and are individually enumerated in the Mootravirechaneeya Dashemani. The article deals with the evaluation and comparison of the individual Mootrala (diuretic) action of the two drugs in healthy volunteers. In this study, 29 healthy volunteers were divided into three groups administered with Darbha Moola Churna, Kusha Moola Churna, and placebo in each group for 14 days. The volunteers were subjected to evaluation of diuretic activity by maintaining the daily total input–output charts during the course of the study. The volunteers were advised to consume a minimum 2 l of water daily. Results show that Darbha and Kusha leaded to a percentage increase in urine volume as compared to placebo group, but the result was statistically insignificant. PMID:23723646

  15. Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica).

    PubMed

    Mazali, Italo O; Alves, Oswaldo L

    2005-03-01

    High fidelity calcium carbonate and hydroxyapatite (bio) inorganic replicas of the fibrous network of the dried fruit of Luffa cylindrica are described, utilizing a facile synthetic route. The loofa sponge is a highly complex macroscopic architectural template, an inexpensive and sustainable resource. In the context of the morphosynthesis, the capability of replication of the loofa sponge opens the possibility of the use of biodiversity in obtaining new materials. We would like to emphasize that the template proposed in this paper, makes possible the preparation of inorganic replicas with a very desirable size, on the centimeter scale. This fact is innovative with respect to inorganic replicas described in the literature, which predominate at the micrometric scale, limited to the original size of the template.

  16. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host x Triticum aestivum L. hybrids.

    PubMed

    Schoenenberger, N; Felber, F; Savova-Bianchi, D; Guadagnuolo, R

    2005-11-01

    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.

  17. Bioremoval of heavy metals and nutrients from sewage plant by Anabaena oryzae and Cyanosarcina fontana.

    PubMed

    Fawzy, Mustafa A; Issa, Ahmed A

    2016-01-01

    The present study demonstrated the growth of two species of cyanobacteria on wastewater isolated from sewage plant in Aswan, Egypt. We evaluated their efficiency for eliminating nitrogen, phosphorus, chemical oxygen demand (COD) and heavy metals (Fe(2+), Pb(2+), Cu(2+), and Mn(2+)). The growth of Cyanosarcina fontana has supported wastewater as a growth medium than Anabaena oryzae compared to standard medium. The nutrients concentration such as COD, NO3-N and PO4-P were decreased by the growth of A. oryzae and C. fontana in the wastewater after primary settling and centrate. However, the reduction of COD was less efficient than the other nutrients. The reduction percentage of COD, NO3-N and PO4-P reached 39.3, 84.1 and 90.7% as well as 54.6, 83.1, and 89.8%, in cultures of A. oryzae and C. fontana grown in the wastewater after primary settling, respectively. The reduction amounted to 10.1, 76.8, and 63.0% by A. oryzae and 43.2, 62.1, and 74.8% by C. fontana, grown in the centrate, respectively. Cyanobacteria species have the ability to accumulate the heavy metals from the wastewater to level far than the exceeding metal level in the water. Whereas, the heavy metals biosorption performance of C. fontana was higher in accumulating Fe(2+) (93.95%), Pb(2+) (81.21%), Cu(2+) (63.9%), and Mn(2+) (48.49%) compared to A. oryzae. The biosorption ability is dependent on the nature of the adsorbent studied and the type of wastewater treated. Therefore, removal of heavy metals and nutrients by the tested algae is strongly recommended as a powerful technique for the removal of pollutants from wastewater.

  18. Anabaenolysins, Novel Cytolytic Lipopeptides from Benthic Anabaena Cyanobacteria

    PubMed Central

    Jokela, Jouni; Oftedal, Linn; Herfindal, Lars; Permi, Perttu; Wahlsten, Matti; Døskeland, Stein Ove; Sivonen, Kaarina

    2012-01-01

    Two novel cyclic lipopeptides, anabaenolysin A and anabaenolysin B, were isolated from two benthic cyanobacterial strains of the genus Anabaena. This novel class of cyanobacterial lipopeptides has a general structure of a small peptide ring consisting of four amino acids from which two are proteinogenic and two unusual; glycine1, glycine2, 2-(3-amino-5-oxytetrahydrofuran-2-yl)-2-hydroxyacetic acid3 and a long unsaturated C18 β-amino acid4 with a conjugated triene structure. They are distinguished by the presence of a conjugated dienic structure in the C18 β-amino acid present in anabaenolysin A but not in anabaenolysin B. Conjugated triene structure generates a typical UV spectrum for anabaenolysins for easy recognition. Anabaenolysin A constituted up to 400 ppm of the cyanobacterial dry weight. We found evidence of thirteen variants of anabaenolysins in one cyanobacterial strain. This suggests that the anabaenolysins are an important class of secondary metabolites in benthic Anabaena cyanobacteria. Both anabaenolysin A and B had cytolytic activity on a number of mammalian cell lines. PMID:22829929

  19. Ecological health monitoring of the Mekong River by using benthic algae in 2003-2004

    NASA Astrophysics Data System (ADS)

    Kunpradid, T.

    2005-05-01

    The monitoring of ecological health of the Mekong River by using benthic algae was carried out from 2003 - 2004. Thirty sampling sites along the Mekong River and its tributaries were selected in Laos, Thailand, Cambodia and Veitnam. In this investigation, the distribution of some species of benthic algae in different environments revealed that there was a significant relationship in the presence of them to the water quality, and these species could be used as a potential biomonitor of water quality in the Mekong River. One hundred and eighty six species of benthic diatoms and 46 species of macroalgae were found. Some dominant species of benthic algae could be used as biomonitors to assess water quality. Hydrodictyon recticulatum and Microspora floccosa and indicated clean-moderate water quality; Audouinella cylindrica, Cladophora glomerata, Achnanthes inflate and Cymbella turgidula indicated moderate water quality; Stigeoclonium flagelliforum, Aulacoseira granulata and Cymbella tumida indicated moderate-polluted water quality and Caloglossa leprieurii, Gomphonema parvulum and Nitzschia clausii indicated polluted water quality. The ecological health assessment of the Mekong River by using the species of benthic algae as biomonitors reveled that in the upstream and tributaries revealed moderate water quality. In contrast, some sites in the lower Mekong showed moderate-polluted to polluted water quality.

  20. Azolla-Anabaena relationship. XIII. Fixation of (/sup 13/N)N/sub 2/. [Azolla caroliniana; Anabaena azollae

    SciTech Connect

    Meeks, J.C.; Steinberg, N.A.; Enderlin, C.S.; Joseph, C.M.; Peters, G.A.

    1987-07-01

    The major radioactive products of the fixation of (/sup 13/N)N/sub 2/ by Azolla caroliniana willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of (/sup 13/N)N/sub 2/-derived /sup 13/NH/sub 4//sup +/ after long incubation periods was attributed to the spatial separation between the site of N/sub 2/-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from (/sup 13/N)N/sub 2/, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and (/sup 13/N)N/sub 2/-derived /sup 13/NH/sub 4//sup +/, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Azabaena.

  1. Specific Adhesion of Bacteria to Heterocysts of Anabaena spp. and Its Ecological Significance

    PubMed Central

    Lupton, F. S.; Marshall, K. C.

    1981-01-01

    Two bacterial isolates, Pseudomonas sp. SL10 and Zoogloea sp. SL20, attach to heterocysts of Anabaena spp. with a high degree of selectivity, and this attachment can be expressed quantitatively in terms of adsorption isotherms. Adhesion of Pseudomonas sp. SL10 was restricted to a monolayer and exhibited a type I (Langmuir) isotherm, whereas adhesion of Zoogloea sp. SL20 involved multilayer attachment and exhibited a type II isotherm. The degree of adhesion by the bacteria to heterocysts of different Anabaena species may reflect the distribution and abundance of binding sites on the surface of different heterocysts. Both Pseudomonas sp. SL10 and Zoogloea sp SL20 promoted higher rates of acetylene reduction by Anabaena spp. under oxygenated culture conditions when compared with a cyanobacterial control. At ambient oxygen levels, however, only Zoogloea sp. SL20 stimulated acetylene reduction by Anabaena spp. Images PMID:16345901

  2. Oxidative stress management in the filamentous, heterocystous, diazotrophic cyanobacterium, Anabaena PCC7120.

    PubMed

    Banerjee, Manisha; Raghavan, Prashanth S; Ballal, Anand; Rajaram, Hema; Apte, S K

    2013-10-10

    Reactive oxygen species (ROS) are inevitably generated as by-products of respiratory/photosynthetic electron transport in oxygenic photoautotrophs. Unless effectively scavenged, these ROS can damage all cellular components. The filamentous, heterocystous, nitrogen-fixing strains of the cyanobacterium, Anabaena, serve as naturally abundant contributors of nitrogen biofertilizers in tropical rice paddy fields. Anabaena strains are known to tolerate several abiotic stresses, such as heat, UV, gamma radiation, desiccation, etc., that are known to generate ROS. ROS are detoxified by specific antioxidant enzymes like superoxide dismutases (SOD), catalases and peroxiredoxins. The genome of Anabaena PCC7120 encodes two SODs, two catalases and seven peroxiredoxins, indicating the presence of an elaborate antioxidant enzymatic machinery to defend its cellular components from ROS. This article summarizes recent findings and depicts important perspectives in oxidative stress management in Anabaena PCC7120.

  3. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    PubMed

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants.

  4. Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp.

    PubMed

    Saadoun, I M; Schrader, K K; Blevins, W T

    2001-04-01

    A cyanobacterium isolated from a source-water reservoir during a spring odor and taste episode and identified as Anabaena sp. consistently produced geosmin during laboratory culture on modified BG-11 liquid medium. Maximal geosmin/biomass occurred at 20 degrees C and a light intensity of 17 microE/m2/s; geosmin/chla values directly correlated with increasing light intensity (r2 = 0.95, P < 0.01). It was concluded that at 20 degrees C, increasing light intensity favors less chla synthesis and higher geosmin synthesis; at 17 microE/m2/s, increasing temperature stimulates chla production (to 25 degrees C) while repressing geosmin synthesis (above 20 degrees C). Nutritional factors promoting biomass, chla, and geosmin synthesis by Anabaena sp. were also investigated. For cultures grown at 17 microE/m2/s and 20 degrees C for 20 days, both ammonium-N and nitrate-N generally enhanced the growth of Anabaena sp. Nitrate-N promoted more chla production (r2 = 0.99) than ammonium-N. Geosmin synthesis was directly correlated with ammonium-N concentrations (r2 = 0.89), with low nitrate-N (123.5 micrograms/l) favoring maximal geosmin production (2.8 micrograms/l). Increasing nitrate-N concentrations promoted a three-fold increase in chla content with geosmin synthesis decreased by two-fold. Geosmin/mg biomass was directly related to ammonium-N concentration; high nitrate-N levels suppressed geosmin production. No geosmin was detected at or below 118 micrograms phosphate-phosphorus/l. Geosmin, dry weight biomass, and chla production were correlated with increasing phosphorus (P) concentration (r2 = 0.76, 0.96 and 0.98, respectively). No geosmin was detected when copper was present in growth media at or above 6.92 micrograms Cu2+/l (CuSO4.5H2O). Dry weight biomass and chla production were negatively correlated with Cu2+ ion concentrations.

  5. UV-inducible DNA repair in the cyanobacteria Anabaena spp

    SciTech Connect

    Levine, E.; Thiel, T.

    1987-09-01

    Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation.

  6. [Hydrogen metabolism in Anabaena variabilis in the dark].

    PubMed

    Gogotov, I N; Kosiak, A V

    Cells and extracts of the cyanobacterium Anabaena variabilis are capable of hydrogen absorption in the dark in the presence of H-acceptors with various redox potentials. Preliminary adaptation of the cells to anaerobic conditions has no effect on the process. A. variabilis can also evolve hydrogen in the dark. Reduced methylviologen (RMV), formiate, pyruvate, and glucose may be substrates for hydrogen evolution by the cells. The extracts evolve hydrogen in the presence of RMV, benzylviologen, azocarmine, or NAD (P) H + ATP. No adaptation of the cells to anaerobic conditions is required for hydrogen evolution from RMV, and chloramphenicol has no effect on the process. The rate of hydrogen evolution is however higher in the cells adapted to anaerobic conditions. Production of hydrogen from pyruvate by the cells adapted and non-adapted to anaerobic conditions was detected only after their incubation with the substrate during 2--3 hours, and chloramphenicol inhibited the process.

  7. Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory.

    PubMed

    Schapiro, Igor; Ruhman, Sanford

    2014-05-01

    Light induced isomerization of the retinal chromophore activates biological function in all retinal protein (RP) driving processes such as ion-pumping, vertebrate vision and phototaxis in organisms as primitive as archea, or as complex as mammals. This process and its consecutive reactions have been the focus of experimental and theoretical research for decades. The aim of this review is to demonstrate how the experimental and theoretical research efforts can now be combined to reach a more comprehensive understanding of the excited state process on the molecular level. Using the Anabaena Sensory Rhodopsin as an example we will show how contemporary time-resolved spectroscopy and recently implemented excited state QM/MM methods consistently describe photochemistry in retinal proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.

  8. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  9. Mature Luffa Leaves (Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration

    PubMed Central

    Błażejewska, Kamila; Kapusta, Małgorzata; Zielińska, Elżbieta; Tukaj, Zbigniew; Chincinska, Izabela A.

    2017-01-01

    We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits. PMID:28270826

  10. Isoeugenin, a Novel Nitric Oxide Synthase Inhibitor Isolated from the Rhizomes of Imperata cylindrica.

    PubMed

    An, Hyo-Jin; Nugroho, Agung; Song, Byong-Min; Park, Hee-Juhn

    2015-12-01

    Phytochemical studies on the constituents of the rhizomes of Imperata cylindrica (Gramineae) were performed using high-performance liquid chromatography (HPLC). We also aimed to search for any biologically active substance capable of inhibiting nitric oxide (NO) formation in lipopolysaccharide (LPS)-activated macrophage 264.7 cells, by testing four compounds isolated from this plant. Four compounds, including a new chromone, isoeugenin, along with ferulic acid, p-coumaric acid, and caffeic acid were isolated and identified by NMR spectroscopy. The structure of isoeugenin was determined as 7-hydroxy-5-methoxy-2-methylchromone by the 2D-NMR technique. Among the four compounds, isoeugenin has the lowest IC50 value on the inhibition of NO production in LPS-activated macrophage RAW264.7 cells (IC50, 9.33 μg/mL). In addition, isoeugenin significantly suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines mRNA levels. Taken together, these results suggest that the anti-inflammatory activity of isoeugenin is associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines in RAW264.7 cells. Accordingly, our results suggest that the new chromone isoegenin should be considered a potential treatment for inflammatory disease.

  11. Biological and molecular characterization of a putative new sobemovirus infecting Imperata cylindrica and maize in Africa.

    PubMed

    Sérémé, Drissa; Lacombe, Séverine; Konaté, Moumouni; Pinel-Galzi, Agnès; Traoré, Valentin Stanislas Edgar; Hébrard, Eugénie; Traoré, Oumar; Brugidou, Christophe; Fargette, Denis; Konaté, Gnissa

    2008-01-01

    A new virus was isolated from both the grass Imperata cylindrica and maize plants that had yellow mottle symptoms in Burkina Faso, West Africa. The virus has isometric particles ca. 32 nm in diameter. The experimental host range was restricted to Rottboellia exaltata. Virions were isolated from leaves of systemically infected maize plants. Koch's postulates were completed by mechanically inoculating uninfected Imperata or maize with either purified virus or sap from infected Imperata plants. Virion preparations were used to produce a specific polyclonal antiserum, and an enzyme-linked immunosorbent assay test was set up. The full genome of the virus was sequenced, and it comprised 4,547 nucleotides. Phylogenetic studies indicated that the virus is closely related to rice yellow mottle virus, a sobemovirus that infects monocotyledons in Africa, and is more distantly related to cocksfoot mottle virus, another sobemovirus that infects monocotyledons. Although the virus can infect R. exaltata experimentally, it differs from Rottboellia yellow mottle virus, a member of a tentative species of the genus Sobemovirus that also infects monocotyledons in Africa. Particle morphology, serological properties, genomic organization, and phylogenetic analysis are all consistent with assignment of the new virus to the genus Sobemovirus. The name Imperata yellow mottle virus is proposed.

  12. Application of acid-modified Imperata cylindrica powder for latent fingerprint development.

    PubMed

    Low, Wei Zeng; Khoo, Bee Ee; Aziz, Zalina Binti Abdul; Low, Ling Wei; Teng, Tjoon Tow; bin Abdullah, Ahmad Fahmi Lim

    2015-09-01

    A novel powdering material that utilizes acid-modified Imperata cylindrica (IC) powder for the development of fingermarks was studied. Experiments were carried out to determine the suitability, adherence quality and sensitivity of the acid-modified IC powder. Fingermarks of different constituents (eccrine, sebaceous and natural fingermarks) on different types of surfaces were used. Acid-modified IC powder was also used to develop fingermarks of different ages as well as aged fingermarks recovered from the water. From the visual inspection, acid-modified IC powder was able to interact with different fingermark constituents and produced distinct ridge details on the examined surfaces. It was also able to develop aged fingermarks and fingermarks that were submerged in water. A statistical comparison was made against the Sirchie® Hi-Fi black powder in terms of the powders' sensitivity and quality of the developed natural fingermarks. The image quality was analyzed using MITRE's Image Quality of Fingerprint (IQF) software. From the experiments, acid-modified IC powder has the potential as a fingermark development powder, although natural fingermarks developed by Sirchie® black powder showed better quality and sensitivity based on the results of the statistical comparison.

  13. Mature Luffa Leaves (Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration.

    PubMed

    Błażejewska, Kamila; Kapusta, Małgorzata; Zielińska, Elżbieta; Tukaj, Zbigniew; Chincinska, Izabela A

    2017-01-01

    We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits.

  14. Genetic studies on a nitrogen-fixing cyanobacterium. [Anabaena; Escherichi coli

    SciTech Connect

    Wolk, C.P.; Cardemil, L.; Elhai, J.; Flores, E.; Murry, M.; Schmetterer, G.; Schrautemeier, B.

    1987-04-01

    Mutants of Anabaena PCC7120 capable of aerobic growth with NO/sub 3//sup -/ but not N/sub 2/, and capable of microaerobic reduction of C/sub 2/H/sub 2/, were isolated by penicillin enrichment after UV irradiation. Heterocysts of two mutants lack the principal envelope glycolipid, those of EF116 have a non-cohesive envelope polysaccharide, and those of other strains have other defects. A Nm/sup r/ cosmid library of DNA from wild type Anabaena PCC7120 was established in Escherichia coli bearing the Ap helper plasmid pDS4101. A conjugative plasmid was introduced, and the bacteria replicated to lawns of individual mutant strains of Anabaena. After one day of non-selective growth, selection was applied for Nm/sup r/ and nitrogen fixation. Overlapping cosmids complementing EF116 and one complementing another mutant have been mapped. The complementing genes are thought to act early in differentiation. Inclusion, in an E. coli donor of an appropriate methylase gene enhanced, by a factor of 10/sup 2/ to 10/sup 3/, transfer to Anabaena PCC7120 of a plasmid containing numerous sites for the Anabaena restriction endonuclease, AvaII.

  15. [The detection of nonallelic to known genes of resistance to Tilletia caries (DC) Tul. in wheat strains from interspecific hybridization (Triticum aestivum x Aegilops cylindrica)].

    PubMed

    Babaiants, L T; Dubinina, L A; Iushchenko, G M

    2000-01-01

    It was established by hybridological analysis that winter bread wheat lines 1/74-91, 3/36-91, 5/55-91 possess single dominant gene of resistance to bunt (Tilletia caries (DC) Tul.), but lines 8/2-91, 5/43-91, 4/11-91 and 8/16-91 have two independent dominant genes for this character. These genes originated from Aegilops cylindrica are not identical to Bt1-Bt17 genes and are unknown to date. The lines were obtained from crosses between winter bread wheat variety Odeskaya polukarlikovaya and Aegilops cylindrica.

  16. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium.

    PubMed

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar

    2017-01-01

    Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120.

  17. [Genetics determination of wheat resistance to Puccinia graminis F. sp. tritici deriving from Aegilops cylindrica, Triticum erebuni and amphidiploid 4].

    PubMed

    Babaiants, O V; Babaiants, L T; Horash, A F; Vasil'ev, A A; Trackovetskaia, V A; Paliasn'iĭĭ, V A

    2012-01-01

    The lines of winter soft wheat developed in the Plant Breeding and Genetics Institute contain new effective introgressive Sr-genes. Line 85/06 possess SrAc1 gene, lines 47/06, 54/06, 82/06, 85/06, 87/06, 238/06, and 367/06 possess SrAc1 and SrAc2 derived from Aegilops cylindrica, line 352/06 - SrTe1 and SrTe2 from Triticum erebuni, line 12/86-04 - SrAd1 and SrAd2 from Amphidiploid 4 (Triticum dicoccoides x Triticum tauschii).

  18. [Effect of an introgression from Aegilops cylindrica host on manifestation of productivity traits in winter common wheat F2 plants].

    PubMed

    Kozub, N A; Sozinov, I A; sozinov, A A

    2004-12-01

    The effect of introgression of a chromosome 1D segment from Aegilops cylindrica to winter common wheat on productivity traits in F2 plants was studied using storage protein loci as genetic markers. An allele of the gliadin-coding Gli-D1 locus served as a marker of the introgression. Using of two- and three-locus interaction models, it was shown that the introgression tagged with Gli-D1 affected the manifestation of productivity traits (productive tillering, grain weight per plant and grain number per plant) through interaction with other marker storage protein loci: Glu-B1, Glu-D1, and Gli-B2.

  19. [Detection of the introgression of genome elements of Aegilops cylindrica Host. into Triticum aestivum L. genome with ISSR-analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2003-01-01

    Comparative analysis of introgressive and parental forms of wheat was carried out to reveal the sites of donor genome with new loci of resistance to fungal diseases. By ISSR-method 124 ISSR-loci were detected in the genomes of 18 individual plants of introgressive line 5/20-91; 17 of them have been related to introgressive fragments of Ae. cylindrica genome in T. aestivum. It was shown that ISSR-method is effective for detection of the variability caused by introgression of alien genetic material to T. aestivum genome.

  20. Investigations on some aspects of chemical ecology of cogongrass,Imperata cylindrica (L.) Beauv.

    PubMed

    Inderjit; Dakshini, K M

    1991-02-01

    To understand the interference mechanism of the weed, cogongrass,Imperata cylindrica (L.) Beauv., its effect on nutrient availability and mycoflora of its soil rhizosphere as well as nodule characteristics, root length, and root/shoot ratio of Melilotus parviflora Desf. were investigated. Additionally, the effect of the leachates of leaves and root/rhizome of cogongrass on seed germination and seedling characteristics of radish, mustard, fenugreek, and tomato were examined. Furthermore, to assess the qualitative and quantitative differences in phytochemical components, the leachates and the soils from three sampling sites (with cogongrass and 1.5 m and 3 m away from cogongrass) were analyzed with high-performance liquid chromatography (HPLC) on a C18 column. No significant difference in nutrient availability was found, but qualitative and quantitative differences in phenolic fractions were recorded in the three sampling sites. Furthermore, of the 19 fungi recorded in the soils, decreases in the number of colonies (per gram of soil) ofAspergillus fumigatus, A. niger, A. candidus, and an increase of A. flavus was recorded in the soils with cogongrass. The inhibition in nodule number, weight, nitrogen fixation (acetylene reduction activity), root length, and root/shoot ratio of Melilotus parviflora were noted. Percent seed germination, root and shoot length, fresh and dry weight of seedlings of different seeds were affected by the leachates of leaves and root/rhizome. It was found that root/rhizome leachate was more inhibitory than leaf leachate. However, the inhibition was higher in soil+leaves leachate than soil+root/rhizome leachate. HPLC analysis established that four compounds were contributed by the weed to the soil system even though their relative concentration varies in various leachates. It is surmised that these compounds cause allelopathic inhibition of growth characteristics of seeds tested. Significance of the data vis-a-vis the interference potential of

  1. [Hydrogen production by the cyanobacterium Anabaena variablis in the light].

    PubMed

    Gogotov, I N; Kosiak, A V; Krupenko, A N

    1976-01-01

    Light of low intensity (less than or equal to 25-10(5) erg-cm(-2)-sec(-1)) stimulates hydrogen production by cell suspensions of Anabaena variabilis in the presence of glucose, pyruvate or formate. The maximum rate of hydrogen production in the presence of these substrates was observed at light intensities of 650, 1400 and 2250 erg-cm(-2)-sec(-1), respectively. The rate of oxygen production by the cells increases while the rate of hydrogen evolution decreases with increase in light intensity (2.5-6.0-10(3) erg-cm(-2)-sec(-1)). In the presence of DCMU (10(-5)-10(-4) M), hydrogen evolution is not inhibited in the presence of pyruvate or formiate and is inhibited to a less extent in the presence of glucose. According to the results obtained, hydrogen evolution by A. variabilis in the light does not require the action of two photosystems. Inhibition of hydrogen production at significant light intensities is due to the action of oxygen on this process; the rate of oxygen evolution increases with light intensity.

  2. The effects of SO sub 2 on Azolla - Anabaena symbiosis

    SciTech Connect

    Jaeseoun Hur; Wellburn, A.R. )

    1991-05-01

    Cultures of Azolla pinnata containing Anabaena were investigated as a sensitive and reproducible bioindicator of air pollution. Three equal doses of SO{sub 2} (week*ppb: 1*100, 2*50, 4*25) were applied to Azolla cultures growing in nitrogen-free medium in a specially-designed exposure system. Exposure to high concentrations of SO{sub 2} showed highly significant reductions in growth of the fern, while nitrogen fixation and heterocyst development were severely damaged. This was associated with a reduction of protein content in the SO{sub 2}-exposed ferns and again more significant at higher SO{sub 2} levels. There was a variation in the absolute amount of the individual pigments between SO{sub 2} doses and/or treatments which was related to the physiological development of the ferns throughout the fumigations. Moreover, the ratio of violaxanthin to antheraxanthin in the 100 ppb SO{sub 2}-treated ferns was significantly higher than that in the clean air-grown ferns. The results clearly demonstrate that SO{sub 2} has adverse effects on the symbiosis and suggest that this fern is a promising bioindicator of air pollution and a very good model to investigate the inter-relationships between photosynthesis, nitrogen fixation and air pollution stress.

  3. Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes.

    PubMed

    Chiang, Chang-Ling; Lee, Chi-Mei; Chen, Pei-Chung

    2011-05-01

    Before switching totally to alternative fuel stage, CO(2) mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO(2) mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO(2) tolerance even at 15% CO(2) level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO(2) bubble retention time could enhance CO(2) removal efficiencies by 79% and 67%, respectively. A maximum CO(2) fixation rate of 1.01 g CO(2)L(-1)day(-1) was measured experimentally.

  4. Biotransformation of 2,4,6-trinitrotoluene in Anabaena sp. cultures

    SciTech Connect

    Pavlostathis, S.G.; Jackson, G.H.

    1999-03-01

    The transformation of 2,4,6-trinitrotoluene (TNT) was investigated in cultures of the cyanobacterium Anabaena sp. by conducting a series of batch assays. 2,4,6-Trinitrotoluene was added to Anabaena sp. cultures in single and consecutive additions, at various initial concentrations, to determine its transformation kinetics, to identify products formed, to evaluate potential toxicity, and to determine the effect of light deprivation on the TNT transformation process. 2,4,6-Trinitrotoluene disappearance occurred only in the presence of Anabaena sp. cultures maintained under a normal 16-h photoperiod. Toxicity leading to culture chlorosis and death was observed in batch systems with an initial TNT concentration greater than 10 mg/L. A low rate and extent of TNT disappearance was observed in light-deprived cultures, which were inhibited even at low TNT concentrations. At pH values between 7.5 and 8.5, azoxy-tetranitrotoluene isomers were detected in both the culture medium and solvent extracts of biomass and accounted for only 20 and 4.4% of the initially added TNT moles, respectively. At a culture pH range between 5.6 and 5.9, achieved by aeration with a 5% CO{sub 2}/air mixture, hydroxylaminodinitrotoluene equimolar to the TNT addition was produced and then depleted from the culture medium with prolonged incubation. Although TNT reduction in Anabaena sp. cultures occurred, yielding low levels of azoxy-tetranitrotoluene isomers or hydroxylaminodinitrotoluene, uptake and other transformation reactions of TNT and/or its transformation products by Anabaena sp. may have taken place. Based on a less than 15% observed increase of biomass concentration over the relatively short incubation periods and by considering the mean biomass concentration constant, the TNT disappearance rate followed pseudo-first-order kinetics. The biomass carbon-normalized TNT disappearance rates in Anabaena sp. cultures were about three orders of magnitude higher than previously reported TNT

  5. Imperata cylindrica sp as Novel Silica-Based Heterogeneous Catalysts for Transesterification of Palm Oil Mill Sludge.

    PubMed

    Ngaini, Zainab; Shahrom, Farra Diana; Jamil, Nurfarahen; Wahi, Rafeah; Ahmad, Zainal Abiddin

    2016-06-01

    Biodiesel from palm oil mill sludge (POMS) was prepared in the presence of novel silica-based heterogeneous catalysts derived from Imperata cylindrica sp. Imperatacid and Imperatabase are two types of heterogeneous catalysts derived from Imperata cylindrica sp and characterized using scanning electron microscopy, Energy Dispersive X-ray, Brunauer-Emmett-Teller surface area and pore size measurement. Imperatacid has particle size of 43.1-83.9 µm while Imperatabase in the range of 89-193 µm. Imperatacid was conveniently applied in esterification step to afford > 90 wt% oil in 1:3 (oil/methanol) and 10 wt% catalyst, followed by transesterification with 1 wt% Imperatabase and 1:1 (oil/methanol) for 1 h at 65°C to afford 80% biodiesel with higher percentage of methyl palmitate (48.97%) and methyl oleate (34.14%) compare to conventional homogeneous catalyst. Reusability of the catalyst up to three times afforded biodiesel ranging from 78-80% w/w. The biodiesel was demonstrated onto alternative diesel engine (Megatech(®)-Mark III) and showed proportional increased of torque (ɽ) to biodiesel loading.

  6. Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer

    NASA Astrophysics Data System (ADS)

    Maurya, Ishwar Chandra; Srivastava, Pankaj; Bahadur, Lal

    2016-02-01

    The study reports use of natural dye extracted from petals of male flowers Luffa cylindrica L. as sensitizer for TiO2 based dye-sensitized solar cells. Optical characteristics of the dye extract and photoelectrochemical performance of the cells were studied. The extracts showed the UV-Vis absorptions in the 400-450 nm range with broad maxima at ∼430 nm. FTIR spectra of extract revealed the presence of anchoring groups and coloring constituents. DSSC was fabricated using natural dye loaded TiO2 photoelectrode, electrolyte containing I-/I3- redox mediator and Pt counter electrode by assembling them into a cell module. Conversion of solar light into electricity was successfully accomplished and DSSC based on petals of male flowers Luffa cylindrica L. extract exhibited an open-circuit voltage (Voc) of 0.52 V, short-circuit current density (Jsc) of 0.44 mA cm-2, Pmax 130 μW, fill factor (FF) of 0.60, conversion efficiency of 0.13% and IPCE ∼30% (at λ = 430 nm).

  7. Canopy CO2 exchange of two neotropical tree species exhibiting constitutive and facultative CAM photosynthesis, Clusia rosea and Clusia cylindrica

    PubMed Central

    Winter, Klaus; Garcia, Milton; Holtum, Joseph A. M.

    2009-01-01

    Photon flux density (PFD) and water availability, the daily and seasonal factors that vary most in tropical environments, were examined to see how they influenced expression of crassulacean acid metabolism (CAM) in 3-year-old Clusia shrubs native to Panama. Instead of the commonly used single-leaf approach, diel CO2 exchange was measured for whole individual canopies of plants in large soil containers inside a naturally illuminated 8.8 m3 chamber. In well-watered C. rosea, a mainly constitutive CAM species, nocturnally fixed CO2 contributed about 50% to 24 h carbon gain on sunny days but the contribution decreased to zero following overcast days. Nonetheless, CO2 fixation in the light responded in such a way that 24 h carbon gain was largely conserved across the range of daily PFDs. The response of C. rosea to drought was similarly buffered. A facultative component of CAM expression led to reversible increases in nocturnal carbon gain that offset drought-induced reductions of CO2 fixation in the light. Clusia cylindrica was a C3 plant when well-watered but exhibited CAM when subjected to water stress. The induction of CAM was fully reversible upon rewatering. C. cylindrica joins C. pratensis as the most unambiguous facultative CAM species reported in the genus Clusia. PMID:19487388

  8. Acrapex azumai Sugi (Lepidoptera, Noctuidae) as a possible biological control agent of the invasive weed Imperata cylindrica (L.) Beauv. (Poaceae) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lepidopteran larvae were discovered boring in the basal stems of Imperata cylindrica (L.) Beauv. (Poaceae) in Itoshima city, Fukuoka Prefecture, Kyushu, Japan. Adults reared from these larvae were identified as Acrapex azumai Sugi (Lepidoptera: Noctuidae). Sequencing of the CO1 (cytochrome oxidase 1...

  9. Exploring origins, invasion history and genetic diversity of Imperata cylindrica (L.) P. Beauv. (Cogongrass) in the United States using genotyping by sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imperata cylindrica (Cogongrass, Speargrass) is a diploid C4 grass that is a noxious weed in 73 countries and constitutes a significant threat to global biodiversity and sustainable agriculture. We used a cost-effective genotyping-by-sequencing (GBS)approach to identify the reproductive system, gene...

  10. [Effects of water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China].

    PubMed

    Zhong, Qi-Cheng; Wang, Jiang-Tao; Zhou, Jian-Hong; Ou, Qiang; Wang, Kai-Yun

    2014-02-01

    During the growing season of 2011, the leaf photosynthesis, morphological and growth traits of Phragmites australis and Imperata cylindrica were investigated along a gradient of water table (low, medium and high) in the reclaimed tidal wetland at the Dongtan of Chongming Island in the Yangtze Estuary of China. A series of soil factors, i. e., soil temperature, moisture, salinity and inorganic nitrogen content, were also measured. During the peak growing season, leaf photosynthetic capacity of P. australis in the wetland with high water table was significantly lower than those in the wetland with low and medium water tables, and no difference was observed in leaf photosynthetic capacity of I. cylindrica at the three water tables. During the entire growing season, at the shoot level, the morphological and growth traits of P. australis got the optimum in the wetland with medium water table, but most of the morphological and growth traits of I. cylindrica had no significant differences at the three water tables. At the population level, the shoot density, leaf area index and aboveground biomass per unit area were the highest in the wetland with high water table for P. australis, but all of the three traits were the highest in the wetland with low water table for I. cylindrica. At the early growing season, the rhizome biomass of P. australis in the 0-20 cm soil layer had no difference at the three water tables, and the rhizome biomass of I. cylindrica in the 0-20 cm soil layer in the wetland with high water table was significantly lower than those in the wetland with low and medium water table. As a native hygrophyte before the reclamation, the variations of performances of P. australis at the three water tables were probably attributed to the differences in the soil factors as well as the intensity of competition from I. cylindrica. To appropriately manipulate water table in the reclaimed tidal wetland may restrict the growth and propagation of the mesophyte I

  11. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  12. In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120.

    PubMed

    Singh, Shilpi; Shrivastava, Alok Kumar

    2017-03-14

    In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.

  13. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.

    PubMed

    Rudolf, Mareike; Kranzler, Chana; Lis, Hagar; Margulis, Ketty; Stevanovic, Mara; Keren, Nir; Schleiff, Enrico

    2015-08-01

    Iron is a member of a small group of nutrients that limits aquatic primary production. Mechanisms for utilizing iron have to be efficient and adapted according to the ecological niche. In respect to iron acquisition cyanobacteria, prokaryotic oxygen evolving photosynthetic organisms can be divided into siderophore- and non-siderophore-producing strains. The results presented in this paper suggest that the situation is far more complex. To understand the bioavailability of different iron substrates and the advantages of various uptake strategies, we examined iron uptake mechanisms in the siderophore-producing cyanobacterium Anabaena sp. PCC 7120. Comparison of the uptake of iron complexed with exogenous (desferrioxamine B, DFB) or to self-secreted (schizokinen) siderophores by Anabaena sp. revealed that uptake of the endogenous produced siderophore complexed to iron is more efficient. In addition, Anabaena sp. is able to take up dissolved, ferric iron hydroxide species (Fe') via a reductive mechanism. Thus, Anabaena sp. exhibits both, siderophore- and non-siderophore-mediated iron uptake. While assimilation of Fe' and FeDFB are not induced by iron starvation, FeSchizokinen uptake rates increase with increasing iron starvation. Consequently, we suggest that Fe' reduction and uptake is advantageous for low-density cultures, while at higher densities siderophore uptake is preferred.

  14. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena.

    PubMed Central

    Sivonen, K; Namikoshi, M; Evans, W R; Carmichael, W W; Sun, F; Rouhiainen, L; Luukkainen, R; Rinehart, K L

    1992-01-01

    Hepatotoxins (microcystins) from seven freshwater Anabaena strains originating from three different Finnish lakes and one lake in Norway were isolated by high-performance liquid chromatography and characterized by amino acid analysis and fast atom bombardment mass spectrometry. All strains produced three to seven different microcystins. A total of 17 different compounds were isolated, of which 8 were known microcystins. The known compounds identified from six strains were MCYST (microcystin)-LR, [D-Asp3]MCYST-LR, [Dha7]MCYST-LR, [D-Asp3,Dha7]MCYST-LR, MCYST-RR, [D-Asp3]MCYST-RR, [Dha7]MCYST-RR, and [D-Asp3,Dha7]MCYST-RR. With the exception of MCYST-LR and [D-Asp3]MCYST-LR, this is the first time that isolation of these toxins from Anabaena strains has been reported. Three of the strains produced one to three toxins as minor components which could not be identified. Anabaena sp. strain 66 produced four unidentified toxins. The other Anabaena strains always contained both MCYST-LR and MCYST-RR and/or their demethyl variants. Quantitative differences between toxins within and between strains were detected; at times MCYST-LR and at other times MCYST-RR or demethyl derivatives thereof were the most abundant toxins found in a strain. PMID:1514796

  15. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  16. Upstream factors affecting Tualatin River algae—Tracking the 2008 Anabaena algae bloom to Wapato Lake, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.; Carpenter, Kurt D.; Fesler, Kristel J.; Dorsey, Jessica L.

    2015-12-17

    The results and insights derived from this study can be used to enhance future monitoring and data collection strategies designed to improve water quality and plankton models and better predict dissolved-oxygen concentrations in the lower Tualatin River.

  17. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].

    PubMed

    Galaev, A V; Sivolap, Iu M

    2005-01-01

    Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes.

  18. [Molecular marker mapping of the gene resistant to common bunt transferred from Aegilops cylindrica into bread wheat].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2006-01-01

    Introgression lines 5/55-91 and 378/2000 of bread wheat contain the gene of resistance to Tilletia caries (DC.) Tul. transferred from Aegilops cylindrica Host. Using bulked segregant analysis with ISSR and SSR PCR the lincage of microsatellite locus Xgwm 259 with the gene of common bunt resistance has been identified in F2 population of 378/2000 x Lutestens 23397. DNA mapping made it possible to localize this highly effective gene in the intercalary region of the long arm of wheat chromosome 1B at the distance of 7.6-8.5 cM of the microsatellite Xgwm 259 locus which thus can be used in wheat breeding for selection of genotype resistance to common bunt.

  19. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  20. Penicillinase (beta-lactamase) formation by blue-green algae.

    PubMed

    Kushner, D J; Breuil, C

    1977-03-01

    Beta-Lactamase (penicillinase) activity was found in a number of strains of blue-green algea. In some cases, this enzyme permitted algae to overcome the inhibitory effects of penicillin. Production and localization of beta-lactamase were studied in a unicellular species, Coccochloris elabens (strain 7003), and in a filamentous, nitrogen-fixing Anabaena species (strain 7120). When cells were grown in a neutral medium with NaNO3 as N source, the pH rose during growth; at a pH of about 10, most of the enzyme was expressed equally well in intact or disrupted cells. If the pH was kept near neutrality during growth by gassing with CO2 in N2 or by growth under conditions of N2 fixation, the enzyme remained cell-bound and cryptic for most of the growth phase, being measurable only after cells were disrupted. The enzymes from strains 7003 and 7120 had greater activity on benzyl penicillin and other penicillins than on cephalosporins. Some differences were observed in the "substrate proliles" of penicillinases from the two strains against different penicillins.

  1. Phycobilisomes from Blue-Green and Red Algae

    PubMed Central

    Gantt, Elisabeth; Lipschultz, Claudia A.; Grabowski, Joseph; Zimmerman, Burke K.

    1979-01-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin. PMID:16660778

  2. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-02-16

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  3. Genetic variation of jointed goatgrass (Aegilops cylindrica Host.) from Iran using RAPD-PCR and SDS-PAGE of seed proteins.

    PubMed

    Farkhari, M; Naghavi, M R; Pyghambari, S A; Sabokdast

    2007-09-01

    Genetic variation of 28 populations of jointed goatgrass (Aegilops cylindrica Host.), collected from different parts of Iran, were evaluated using both RAPD-PCR and SDS-PAGE of seed proteins. The diversity within and between populations for the three-band High Molecular Weight (HMW) subunits of glutenin pattern were extremely low. Out of 15 screened primers of RAPD, 14 primers generated 133 reproducible fragments which among them 92 fragments were polymorphic (69%). Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm and separated the 28 populations into two groups. Confusion can happen between populations with the same origin as well as between populations of very diverse geographical origins. Our results show that compare to seed storage protein, RAPD is suitable for genetic diversity assessment in Ae. cylindrica populations.

  4. Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity

    SciTech Connect

    Clarke, S.E.; Stuart, J.; Sanders-Loehr, J.

    1987-05-01

    Growth of Anabaena sp. strain 7120 (in the absence of chelators or added iron) was inhibited by the addition of 2.1 to 6.5 ..mu..M copper and was abolished by copper concentrations of 10 /sup +/M or higher. When the copper was chelated to schizokinen, the toxic effects were eliminated. Analysis of culture filtrates showed that the cupric schizokinen remains in the medium, thereby lowering the amount of copper taken up by the cells. Although this organism actively transports ferric schizokinen, it apparently does not recognize the cupric complex. Thus, Anabaena sp. is protected from copper toxicity under conditions in which siderophore is being produced. For cells grown in low iron, the accumulation of extracellular schizokinen was observed to parallel cell growth and continue well into stationary phase. The actual iron status of the organism was monitored by using iron uptake velocity as an assay. Cultures grown on 0.1 ..mu..M added iron were found to be severely iron limited upon reaching stationary phase, thus explaining the continued production of schizokinen. These data show that the siderophore system in Anabaena spp. has developed primarily as a response to iron starvation and that additional functions such as alleviation of copper toxicity or allelopathic inhibition of other algal species are merely secondary benefits.

  5. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  6. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  7. A PCR-based genotyping method to distinguish between wild-type and ornamental varieties of Imperata cylindrica.

    PubMed

    Cseke, Leland J; Talley, Sharon M

    2012-02-20

    Wild-type I. cylindrica (cogongrass) is one of the top ten worst invasive plants in the world, negatively impacting agricultural and natural resources in 73 different countries throughout Africa, Asia, Europe, New Zealand, Oceania and the Americas(1-2). Cogongrass forms rapidly-spreading, monodominant stands that displace a large variety of native plant species and in turn threaten the native animals that depend on the displaced native plant species for forage and shelter. To add to the problem, an ornamental variety [I. cylindrica var. koenigii (Retzius)] is widely marketed under the names of Imperata cylindrica 'Rubra', Red Baron, and Japanese blood grass (JBG). This variety is putatively sterile and noninvasive and is considered a desirable ornamental for its red-colored leaves. However, under the correct conditions, JBG can produce viable seed (Carol Holko, 2009 personal communication) and can revert to a green invasive form that is often indistinguishable from cogongrass as it takes on the distinguishing characteristics of the wild-type invasive variety(4) (Figure 1). This makes identification using morphology a difficult task even for well-trained plant taxonomists. Reversion of JBG to an aggressive green phenotype is also not a rare occurrence. Using sequence comparisons of coding and variable regions in both nuclear and chloroplast DNA, we have confirmed that JBG has reverted to the green invasive within the states of Maryland, South Carolina, and Missouri. JBG has been sold and planted in just about every state in the continental U.S. where there is not an active cogongrass infestation. The extent of the revert problem in not well understood because reverted plants are undocumented and often destroyed. Application of this molecular protocol provides a method to identify JBG reverts and can help keep these varieties from co-occurring and possibly hybridizing. Cogongrass is an obligate outcrosser and, when crossed with a different genotype, can produce

  8. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-27

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies.

  9. The effects of soil flooding on the establishment of cogongrass (Imperata cylindrica), a nonindigenous invader of the southeastern United States

    USGS Publications Warehouse

    King, S.E.; Grace, J.B.

    2000-01-01

    Cogongrass (Imperata cylindrica), an invasive perennial introduced from Southeast Asia, is currently spreading throughout the southeastern United States from Florida to Louisiana. In the U.S., cogongrass is generally not considered a wetland species, although it's range is expanding in regions with high wetland abundance. The objective of this study was to determine if excessive soil moisture might prevent cogongrass from establishing in areas with seasonally flooded soils. In one greenhouse experiment, we examined cogongrass germination and seedling growth in soils that were freely drained, saturated, and inundated. We performed a second greenhouse experiment to evaluate growth and survival of cogongrass seedlings of four different size classes in five soil moisture treatments ranging from dry to inundated. Cogongrass germination was lowest when seeds were overtopped with water. There were no differences in germination between saturated and freely drained treatments; however, seedlings grew largest in freely drained soil and were smallest when immersed. In our second experiment, most cogongrass plants survived except when given no water, but growth differed by watering treatment depending on seedling size. Increasing moisture was more detrimental to the growth of small seedlings compared to the growth of larger cogongrass plants. Overall, cogongrass was most sensitive to soil inundation in the earliest stages of establishment; thus, excessive moisture conditions in the spring, during early seedling development, could restrict invasion of cogongrass by seed. Once cogongrass is established, however, its tolerance of flooding appears to increase.

  10. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  11. Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application.

    PubMed

    Suzuki, Kengo; Mitra, Sharbanee; Iwata, Osamu; Ishikawa, Takahiro; Kato, Sueo; Yamada, Koji

    2015-01-01

    Euglena gracilis is a microalgae used as a model organism. Recently, mass cultivation of this species has been achieved for industrial applications. The genus Euglena includes more than 200 species that share common useful features, but the potential industrial applications of other Euglena species have not been evaluated. Thus, we conducted a pilot screening study to identify other species that proliferate at a sufficiently rapid rate to be used for mass cultivation; we found that Euglena anabaena var. minor had a rapid growth rate. In addition, its cells accumulated more than 40% weight of carbohydrate, most of which is considered to be a euglenoid specific type of beta-1-3-glucan, paramylon. Carbohydrate is stored in E. anabaena var. minor cells during normal culture, whereas E. gracilis requires nitrogen limitation to facilitate paramylon accumulation. These results suggest the potential industrial application of E. anabaena var. minor.

  12. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  13. Quantitative determination of paralytic shellfish toxins in cultured toxic algae by LC-MS/MS.

    PubMed

    Watanabe, Ryuichi; Matsushima, Ryoji; Harada, Tomoko; Oikawa, Hiroshi; Murata, Masakazu; Suzuki, Toshiyuki

    2013-01-01

    We developed a sample preparation and LC-MS/MS method for the determination of saxitoxins in toxic algae. Paralytic shellfish toxins (PSTs) were successfully separated by gradient elution on an amide column with the hydrophilic interaction mode and quantified with multiple reaction monitoring (MRM) detection in the positive ion mode. This method showed good performance in the summed LODs and LOQs for all 12 toxins, 25 and 84 nM, respectively. Next, extracts of cultured strains of a toxic dinoflagellate Alexandrium tamarense and a freshwater cyanobacteria Anabaena circinalis were treated in a short column of basic alumina and the toxic fractions were analysed by our LC-MS/MS method and by HPLC with fluorescence detection. Comparison of the results obtained by the two methods demonstrated that approximately equivalent results were obtained for both the dinoflagellate and the cyanobacteria. In addition, the retention time of the toxins showed acceptable shifts. Therefore, the clean-up of the toxic algal extracts by using the basic alumina column controlled unwanted chromatographic behaviour and variable ionisation efficiency during MS detection. LC-MS/MS for saxitoxins has great potential as a rapid analytical method for determining all primary saxitoxins in cultured algae.

  14. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles.

    PubMed

    Kwak, Dong-Heui; Kim, Mi-Sug

    2015-01-01

    The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF.

  15. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  16. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  17. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  18. H2, N2, and O2 metabolism by isolated heterocysts from Anabaena sp. strain CA.

    PubMed Central

    Smith, R L; Kumar, D; Zhang, X K; Tabita, F R; Van Baalen, C

    1985-01-01

    Metabolically active heterocysts isolated from wild-type Anabaena sp. strain CA showed high rates of light-dependent acetylene reduction and hydrogen evolution. These rates were similar to those previously reported in heterocysts isolated from the mutant Anabaena sp. strain CA-V possessing fragile vegetative cell walls. Hydrogen production was observed with isolated heterocysts. The ratio of C2H4 to H2 produced ranged from 0.9 to 1.2, and H2 production exhibited unique biphasic kinetics consisting of a 1 to 2-min burst of hydrogen evolution followed by a lower, steady-state rate of hydrogen production. This burst was found to be dependent upon the length of the dark period immediately preceding illumination and may be related to dark-to-light ATP transients. The presence of 100 nM NiCl2 in the growth medium exerted an effect on both acetylene reduction and hydrogen evolution in the isolated heterocysts from strain CA. H2-stimulated acetylene reduction was increased from 2.0 to 3.2 mumol of C2H4 per mg (dry weight) per h, and net hydrogen production was abolished. A phenotypic Hup- mutant (N9AR) of Anabaena sp. strain CA was isolated which did not respond to nickel. In isolated heterocysts from N9AR, ethylene production rates were the same under both 10% C2H2-90% Ar and 10% C2H2-90% H2 with or without added nickel, and net hydrogen evolution was not affected by the presence of 100 nM Ni2+. Isolated heterocysts from strain CA were shown to have a persistent oxygen uptake of 0.7 mumol of O2 per mg (dry weight) per h, 35% of the rate of whole filaments, at air saturating O2 levels, indicating that O2 impermeability is not a requirement for active heterocysts. PMID:3921524

  19. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity.

    PubMed

    Li, Gen-bao; Liu, Yong-ding; Wang, Gao-hong; Song, Li-rong

    2004-12-01

    It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of glutathione [correction of gluathione], an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.

  20. Bacterial Anabaena variabilis phenylalanine ammonia lyase: a biocatalyst with broad substrate specificity.

    PubMed

    Lovelock, Sarah L; Turner, Nicholas J

    2014-10-15

    Phenylalanine ammonia lyases (PALs) catalyse the regio- and stereoselective hydroamination of cinnamic acid analogues to yield optically enriched α-amino acids. Herein, we demonstrate that a bacterial PAL from Anabaena variabilis (AvPAL) displays significantly higher activity towards a series of non-natural substrates than previously described eukaryotic PALs. Biotransformations performed on a preparative scale led to the synthesis of the 2-chloro- and 4-trifluoromethyl-phenylalanine derivatives in excellent ee, highlighting the enormous potential of bacterial PALs as biocatalysts for the synthesis of high value, non-natural amino acids.

  1. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  2. Studies on the individual and combined diuretic effects of four Vietnamese traditional herbal remedies (Zea mays, Imperata cylindrica, Plantago major and Orthosiphon stamineus).

    PubMed

    Doan, D D; Nguyen, N H; Doan, H K; Nguyen, T L; Phan, T S; van Dau, N; Grabe, M; Johansson, R; Lindgren, G; Stjernström, N E

    1992-06-01

    Herbal remedies are widely used in Vietnam alongside modern drugs. We assessed the diuretic effect of four traditional Vietnamese herbal remedies from Zea mays, Imperata cylindrica, Plantago major and Orthosiphon stamineus, all claimed to produce an increase of diuresis. No influence was recorded for the 12- and 24-h urine output or on the sodium excretion for any of the drugs when tested under standardized conditions in a placebo controlled double-blind crossover model. The present study indicates the need for critical review of the present recommendations regarding therapy with plant materials in countries relying on empiric traditions.

  3. NADP(+)-isocitrate dehydrogenase from the cyanobacterium Anabaena sp. strain PCC 7120: purification and characterization of the enzyme and cloning, sequencing, and disruption of the icd gene.

    PubMed Central

    Muro-Pastor, M I; Florencio, F J

    1994-01-01

    NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) from the dinitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 was purified to homogeneity. The native enzyme is composed of two identical subunits (M(r), 57,000) and cross-reacts with antibodies obtained against the previously purified NADP(+)-IDH from the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Anabaena NADP(+)-IDH resembles in its physicochemical and kinetic parameters the typical dimeric IDHs from prokaryotes. The gene encoding Anabaena NADP(+)-IDH was cloned by complementation of an Escherichia coli icd mutant with an Anabaena genomic library. The complementing DNA was located on a 6-kb fragment. It encodes an NADP(+)-IDH that has the same mobility as that of Anabaena NADP(+)-IDH on nondenaturing polyacrylamide gels. The icd gene was subcloned and sequenced. Translation of the nucleotide sequence gave a polypeptide of 473 amino acids that showed high sequence similarity to the E. coli enzyme (59% identity) and with IDH1 and IDH2, the two subunits of the heteromultimeric NAD(+)-IDH from Saccharomyces cerevisiae (30 to 35% identity); however, a low level of similarity to NADP(+)-IDHs of eukaryotic origin was found (23% identity). Furthermore, Anabaena NADP(+)-IDH contains a 44-residue amino acid sequence in its central region that is absent in the other IDHs so far sequenced. Attempts to generate icd mutants by insertional mutagenesis were unsuccessful, suggesting an essential role of IDH in Anabaena sp. strain PCC 7120. Images PMID:8169222

  4. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Perez-Jones, Alejandro; Mallory-Smith, Carol A; Hansen, Jennifer L; Zemetra, Robert S

    2006-12-01

    Imidazolinone-resistant winter wheat (Triticum aestivum L.) is being commercialized in the USA. This technology allows wheat growers to selectively control jointed goatgrass (Aegilops cylindrica Host), a weed that is especially problematic because of its close genetic relationship with wheat. However, the potential movement of the imidazolinone-resistance gene from winter wheat to jointed goatgrass is a concern. Winter wheat and jointed goatgrass have the D genome in common and can hybridize and backcross under natural field conditions. Since the imidazolinone-resistance gene (Imi1) is located on the D genome, it is possible for resistance to be transferred to jointed goatgrass via hybridization and backcrossing. To study the potential for gene movement, BC(2)S(2) plants were produced artificially using imidazolinone-resistant winter wheat (cv. FS-4) as the female parent and a native jointed goatgrass collection as the male recurrent parent. FS-4, the jointed goatgrass collection, and 18 randomly selected BC(2)S(2) populations were treated with imazamox. The percentage of survival was 100% for the FS-4, 0% for the jointed goatgrass collection and 6 BC(2)S(2) populations, 40% or less for 2 BC(2)S(2) populations, and 50% or greater for the remaining 10 BC(2)S(2) populations. Chromosome counts in BC(2)S(3) plants showed a restoration of the chromosome number of jointed goatgrass, with four out of four plants examined having 28 chromosomes. Sequencing of AHASL1D in BC(2)S(3) plants derived from BC(2)S(2)-6 revealed the sexual transmission of Imi1 from FS-4 to jointed goatgrass. Imi1 conferred resistance to the imidazolinone herbicide imazamox, as shown by the in vitro assay for acetohydroxyacid synthase (AHAS) activity.

  5. Allelopathic exudates of cogongrass (Imperata cylindrica): implications for the performance of native pine savanna plant species in the southeastern US.

    PubMed

    Hagan, Donald L; Jose, Shibu; Lin, Chung-Ho

    2013-02-01

    We conducted a greenhouse study to assess the effects of cogongrass (Imperata cylindrica) rhizochemicals on a suite of plants native to southeastern US pine savanna ecosystems. Our results indicated a possible allelopathic effect, although it varied by species. A ruderal grass (Andropogon arctatus) and ericaceous shrub (Lyonia ferruginea) were unaffected by irrigation with cogongrass soil "leachate" (relative to leachate from mixed native species), while a mid-successional grass (Aristida stricta Michx. var. beyrichiana) and tree (Pinus elliottii) were negatively affected. For A. stricta, we observed a 35.7 % reduction in aboveground biomass, a 21.9 % reduction in total root length, a 24.6 % reduction in specific root length and a 23.5 % reduction in total mycorrhizal root length, relative to the native leachate treatment. For P. elliottii, there was a 19.5 % reduction in percent mycorrhizal colonization and a 20.1 % reduction in total mycorrhizal root length. Comparisons with a DI water control in year two support the possibility that the treatment effects were due to the negative effects of cogongrass leachate, rather than a facilitative effect from the mixed natives. Chemical analyses identified 12 putative allelopathic compounds (mostly phenolics) in cogongrass leachate. The concentrations of most compounds were significantly lower, if they were present at all, in the native leachate. One compound was an alkaloid with a speculated structure of hexadecahydro-1-azachrysen-8-yl ester (C23H33NO4). This compound was not found in the native leachate. We hypothesize that the observed treatment effects may be attributable, at least partially, to these qualitative and quantitative differences in leachate chemistry.

  6. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120

    SciTech Connect

    Wolk, C. Peter Wolk; Fan, Qing; Zhou, Ruanbao; Huang, Guocun; Lechno-Yossef, Sigal; Kuritz, Tanya; Wojciuch, Elizabeth

    2007-01-01

    The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF{sub A}) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.

  7. The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP+ -reductase.

    PubMed

    Peregrina, José Ramón; Lans, Isaías; Medina, Milagros

    2012-01-01

    Ferredoxin-NADP(+) reductase (FNR) catalyses the electron transfer from ferredoxin to NADP(+) via its flavin FAD cofactor. A molecular dynamics theoretical approach is applied here to visualise the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP(+). The particular role of some of the residues identified as key in binding and accommodating the 2'P-AMP moiety of the coenzyme is confirmed in molecular terms. Simulations also indicate that the architecture of the active site precisely contributes to the orientation of the N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring in the conformation of the catalytically competent hydride transfer complex and, therefore, contributes to the efficiency of the process. In particular, the side chain of the C-terminal Y303 in Anabaena FNR appears key to providing the optimum geometry by reducing the stacking probability between the isoalloxazine and nicotinamide rings, thus providing the required co-linearity and distance among the N5 of the flavin cofactor, the C4 of the coenzyme nicotinamide and the hydride that has to be transferred between them. All these factors are highly related to the reaction efficiency, mechanism and reversibility of the process.

  8. Modulation of carbonic anhydrase activity in two nitrogen fixing cyanobacteria, Nostoc calcicola and Anabaena sp.

    PubMed

    Jaiswal, Pranita; Prasanna, Radha; Kashyap, Ajai Kumar

    2005-10-01

    The activity of enzyme carbonic anhydrase (CA) was investigated in two diazotrophic cyanobacteria, Anabaena sp. (ARM 629) and Nostoc calcicola, in the presence of CO2/NaHCO3 and different inhibitors. The CA activity increased when the cells were pretreated with a high concentration of CO2/NaHCO3 and then transferred to ambient level CO2. Maximum activity of CA was observed after 8 h of incubation in light on transfer of cells from high Ci to ambient level CO2, and was low when incubated in dark. Addition of the photosynthetic inhibitor DCMU brought about a differential reduction in CA activity, depending on the carbon source (NaHCO3/CO2). CA inhibitors--ethoxyzolamide (EZ) and acetazolamide (AZ)--inhibited the enzyme activity in both the genera, but the extent of inhibition was greater in Anabaena sp. than in N. calcicola. Such a variation in extent of inhibition/stimulation of CA activity being different in the two genera reflects differences in their inherent potential and genetic background. The relevance of such cyanobacterial strains as CO2 sinks is also discussed.

  9. The Anabaena sp. PCC 7120 Exoproteome: Taking a Peek outside the Box

    PubMed Central

    Oliveira, Paulo; Martins, Nuno M.; Santos, Marina; Couto, Narciso A. S.; Wright, Phillip C.; Tamagnini, Paula

    2015-01-01

    The interest in examining the subset of proteins present in the extracellular milieu, the exoproteome, has been growing due to novel insights highlighting their role on extracellular matrix organization and biofilm formation, but also on homeostasis and development. The cyanobacterial exoproteome is poorly studied, and the role of cyanobacterial exoproteins on cell wall biogenesis, morphology and even physiology is largely unknown. Here, we present a comprehensive examination of the Anabaena sp. PCC 7120 exoproteome under various growth conditions. Altogether, 139 proteins belonging to 16 different functional categories have been identified. A large fraction (48%) of the identified proteins is classified as “hypothetical”, falls into the “other categories” set or presents no similarity to other proteins. The evidence presented here shows that Anabaena sp. PCC 7120 is capable of outer membrane vesicle formation and that these vesicles are likely to contribute to the exoproteome profile. Furthermore, the activity of selected exoproteins associated with oxidative stress has been assessed, suggesting their involvement in redox homeostasis mechanisms in the extracellular space. Finally, we discuss our results in light of other cyanobacterial exoproteome studies and focus on the potential of exploring cyanobacteria as cell factories to produce and secrete selected proteins. PMID:25782455

  10. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period.

  11. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120

    PubMed Central

    Laurent, Sophie; Chen, Han; Bédu, Sylvie; Ziarelli, Fabio; Peng, Ling; Zhang, Cheng-Cai

    2005-01-01

    In response to combined nitrogen starvation in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 is able to develop a particular cell type, called a heterocyst, specialized in molecular nitrogen fixation. Heterocysts are regularly intercalated among vegetative cells and represent 5–10% of all cells along each filament. In unicellular cyanobacteria, the key Krebs cycle intermediate, 2-oxoglutarate (2-OG), has been suggested as a nitrogen status signal, but in vivo evidence is still lacking. In this study we show that nitrogen starvation causes 2-OG to accumulate transiently within cells of Anabaena PCC 7120, reaching a maximal intracellular concentration of ≈0.1 mM 1 h after combined nitrogen starvation. A nonmetabolizable fluorinated 2-OG derivative, 2,2-difluoropentanedioic acid (DFPA), was synthesized and used to demonstrate the signaling function of 2-OG in vivo. DFPA is shown to be a structural analogue of 2-OG and the process of its uptake and accumulation in vivo can be followed by 19F magic angle spinning NMR because of the presence of the fluorine atom and its chemical stability. DFPA at a threshold concentration of 0.3 mM triggers heterocyst differentiation under repressing conditions. The multidisciplinary approaches using synthetic fluorinated analogues, magic angle spinning NMR for their analysis in vivo, and techniques of molecular biology provide a powerful means to identify the nature of the signals that remain unknown or poorly defined in many signaling pathways. PMID:15985552

  12. Physiological Adaptations in Response to Environmental Stress During an N2-Fixing Anabaena Bloom

    PubMed Central

    Kellar, Penelope E.; Paerl, Hans W.

    1980-01-01

    Anabaena spiroides has the ability to maintain intense biomass production for extensive periods in the epilimnion of a small eutrophic lake characterized by conditions shown to cause photooxidative death in a number of other phytoplankton. By the enhancement of carotenoid synthesis chlorophyll a was protected from photooxidation and prevented from catalyzing other photooxidative reactions within the cells. By temporally separating CO2 and N2 fixation, maximum utilization of photosynthetically active radiation was achieved. Because CO2 fixation was more sensitive than N2 fixation to a high oxygen concentration, the former was maximized during morning hours, before the afternoon buildup of dissolved oxygen. The diurnal partitioning of carbon and N2 fixation has two additional advantages; possible competition for reductant-generating compounds is minimized, and adequate endogenous pools of carbon skeletons are assured to accept newly fixed ammonia. Hence, Anabaena, far from undergoing photooxidative death, appears to utilize a physiological strategy which allows optimization of radiant energy use for reductive processes and dominance of surface waters and shading of deeper phytoplankton during summer blooms. PMID:16345637

  13. Mn-catalase (Alr0998) protects the photosynthetic, nitrogen-fixing cyanobacterium Anabaena PCC7120 from oxidative stress.

    PubMed

    Banerjee, Manisha; Ballal, Anand; Apte, Shree Kumar

    2012-11-01

    Role of the non-haem, manganese catalase (Mn-catalase) in oxidative stress tolerance is unknown in cyanobacteria. The ORF alr0998 from the Anabaena PCC7120, which encodes a putative Mn-catalase, was constitutively overexpressed in Anabaena PCC7120 to generate a recombinant strain, AnKat(+). The Alr0998 protein could be immunodetected in AnKat(+) cells and zymographic analysis showed a distinct thermostable catalase activity in the cytosol of AnKat(+) cells but not in the wild-type Anabaena PCC7120. The observed catalase activity was insensitive to inhibition by azide indicating that Alr0998 protein is indeed a Mn-catalase. In response to oxidative stress, the AnKat(+) showed reduced levels of intracellular ROS which was also corroborated by decreased production of an oxidative stress-inducible 2-Cys-Prx protein. Treatment of wild-type Anabaena PCC7120 with H(2)O(2) caused (i) RNA degradation in vivo, (ii) severe reduction of photosynthetic pigments and CO(2) fixation, (iii) fragmentation and lysis of filaments and (iv) loss of viability. In contrast, the AnKat(+) strain was protected from all the aforesaid deleterious effect under oxidative stress. This is the first report on protection of an organism from oxidative stress by overexpression of a Mn-catalase.

  14. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  15. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE IN A CONTINUOUS-FLOW ANABAENA SP. SYSTEM. (R825513C013)

    EPA Science Inventory

    Reductive transformation of 2,4,6-trinitrotoluene (TNT) was observed in a continuous-flow system of Anabaena sp. operated for 33 d with a 5.7 d hydraulic retention time and a range of influent TNT concentrations of 1–58 mg/l. The TNT removal effici...

  16. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  17. Anabaena sp. strain PCC 7120 responds to nitrogen deprivation with a cascade-like sequence of transcriptional activations.

    PubMed Central

    Cai, Y; Wolk, C P

    1997-01-01

    Anabaena sp. strain PCC 7120 adapts to deprivation of fixed nitrogen by undergoing physiological and genetic changes that include formation of N2-fixing heterocysts. Whether or not certain of the genes involved are interdependently expressed has been studied. PMID:8982007

  18. [Detection of the introgression of genome elements of the Aegilops cylindrica host. into the Triticum aestivum L. genome by ISSR and SSR analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2004-12-01

    To reveal sites of the donor genome in wheat crossed with Aegilops cylindrica, which acquired conferred resistance to fungal diseases, a comparative analysis of introgressive and parental forms was conducted. Two systems of PCR analysis, ISSR and SSR-PCR, were employed. Upon use of 7 ISSR primers in genotypes of 30 individual plants BC1 F9 belonging to lines 5/55-91 and 5/20-91, 19 ISSR loci were revealed and assigned to introgressive fragments of Aegilops cylindrica genome in Triticum aestivum. The 40 pairs of SSR primers allowed the detection of seven introgressive alleles; three of these alleles were located on common wheat chromosomes in the B genome, while four alleles, in the D genome. Based on data of microsatellite analysis, it was assumed that the telomeric region of the long arm of common wheat chromosome 6A also changed. ISSR and SSR methods were shown to be effective for detecting variability caused by introgression of foreign genetic material into the genome of common wheat.

  19. Cumberlandian Mollusk Conservation Program. Activity 3: identification of fish hosts. [Conradilla caelata; Quadrula intermedia; Epioblasma brevidens; Epioblasma capsaeformis; Epioblasma triquetra; Quadrula cylindrica; Carunculina moesta

    SciTech Connect

    Hill, D.M.

    1986-02-01

    A key element of the Cumberlandian Mollusk Conservation Program undertaken by TVA in 1979 was the determination of fish hosts of Cumberlandian mussel species unique to the Tennessee River drainage and especially the species whose habitat would be inundated by completion of Columbia Dam on the Duck River, Tennessee. Principal emphasis was placed on the birdwing pearly mussel, Conradilla caelata and the Cumberland monkeyface, Quadrula intermedia - two federally listed endangered species with limited distributions outside the proposed inundation zone of the Duck River. Additional species studied included three species of the genus Epioblasma (E. brevidens, E. capsaeformis, and E. triquetra), Quadrula cylindrica, Villosa iris, and Carunculina moesta. Experimental glochidial infection of 55 fish species resulted in the establishment of the following mussel-fish host relationships: Conradilla caelata - Etheostoma zonale; Quadrule intermedia - Hybopsis dissimilis, Hybopsis insignis; Epioblasma brevidens - Etheostoma blennioides, Etheostoma maculatum, Etheostoma rufilineatum, Etheostoma simoterum, Percina caprodes, Cottus carolinae; Epioblasma capsaeformis - Etheostoma maculatum, Etheostoma rufilineatum, Percina sciera, Cottus carolinae; Epioblasma triquetra - Percina caprodes, Cottus carolinae; Quadrula cylindrica - Notropis galacturus, Notropis spilopterus, Hybopsis amblops; and Carunculina moesta - Lepomis cyanellus, Lepomis megalotis.

  20. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  1. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  2. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  3. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  4. Role of the all1549 (ana-rsh) gene, a relA/spoT homolog, of the Cyanobacterium Anabaena sp. PCC7120.

    PubMed

    Ning, Degang; Qian, Yaru; Miao, Xiaogang; Wen, Chongwei

    2011-06-01

    The role of a single relA/spoT homolog all1549 (designated hereafter as ana-rsh) of the cyanobacterium Anabaena sp. PCC7120 was investigated. The complementation test in Escherichia coli showed that the protein encoded by ana-rsh possesses guanosine tetraphosphate (p)ppGpp-synthase/hydrolase activity. Under laboratory growth conditions, a low level of ppGpp was detected in Anabaena sp. PCC7120 and the loss of ana-rsh was lethal. Amino acid starvation induced ppGpp accumulation to an appropriate level, and nitrogen deficiency did not alter the ppGpp concentration in Anabaena cells. These data suggest that ana-rsh is required for cell viability under normal growth conditions and involved in the (p)ppGpp-related stringent response to amino acid deprivation, but not related to heterocyst formation and nitrogen fixation of Anabaena sp. PCC7120.

  5. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  6. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  7. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  8. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  9. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  10. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  11. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia...

  12. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  13. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  14. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  15. Algae -- a poor man's HAART?

    PubMed

    Teas, Jane; Hebert, James R; Fitton, J Helen; Zimba, Paul V

    2004-01-01

    Drawing inferences from epidemiologic studies of HIV/AIDS and in vivo and in vitro HIV inhibition by algae, we propose algal consumption as one unifying characteristic of countries with anomalously low rates. HIV/AIDS incidence and prevalence in Eastern Asia ( approximately 1/10000 adults in Japan and Korea), compared to Africa ( approximately 1/10 adults), strongly suggest that differences in IV drug use and sexual behavior are insufficient to explain the 1000-fold variation. Even in Africa, AIDS/HIV rates vary. Chad has consistently reported low rates of HIV/AIDS (2-4/100). Possibly not coincidentally, most people in Japan and Korea eat seaweed daily and the Kanemba, one of the major tribal groups in Chad, eat a blue green alga (Spirulina) daily. Average daily algae consumption in Asia and Africa ranges between 1 and 2 tablespoons (3-13 g). Regular consumption of dietary algae might help prevent HIV infection and suppress viral load among those infected.

  16. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  17. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  18. Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean maërl algae community.

    PubMed

    Aguado-Giménez, F; Ruiz-Fernández, J M

    2012-03-01

    This work concerns the monitoring of a Mediterranean maërl bed influenced by an experimental fish cage culture for eighteen months. The maërl bed showed an a priori stratified distribution with depth, which led to the selection of a stratified random sampling design that also took into account the gradient of influence by the fish cages. Maërl coverage and total biomass, macroalgae species richness and community structure as determined from semi-quantitative abundance data were assessed. The content of organic matter sediment was also considered. Sampling campaigns (performed by scuba divers) were carried out six months before the start of the culture, twice during the culture, and two months after the end of the experimental culture. Below the fish cages, the maërl community was almost completely buried and dead blackened calcareous algae were seen beneath a thin layer of sediment prior to the end of the study, and only a few specimens of Lithophyllum racemus, Flabellia petiolata, Gracilaria cylindrica and Meredithia microphylla remained alive. The influence of the experimental culture on the maërl algae community structure bed did not extend beyond the facilities, but a regression of the community was also observed close to the fish cages. Sensitivity to aquaculture activity, and the ecological benefits provided by maërl beds suggest that this community warrants further consideration when planning fish farm site selection and management.

  19. [Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421].

    PubMed

    Chakdar, N; Sakha, S; Pabbi, S

    2014-01-01

    Phycocyanin, a high value pigment was purified from diazotrophic cyanobacteria Anabaena variabilis CCC421 using a strategy involving ammonium sulfate precipitation, dialysis and anion exchange chromatography using DEAE-cellulose column. 36% phycocyanin with a purity of 2.75 was recovered finally after anion exchange chromatography. Purified phycocyanin was found to contain 2 subunits of 17 and 18 kDa which were identified as a-and (3 subunits by SDS-PAGE and MALDI-TOE HPLC method using a C5 column coupled with fluorescence or photodiode-based detection was also developed to separate and detect the A. variabilis CCC421 phycocyanin subunits. The fluorescence method was more sensitive than photodiode one. The purified phycocyanin from A. variabilis CCC421 as well as its subunits was characterized with respect to absorption and IR spectra. Spectral characterization of the subunits revealed that alpha and beta subunits contained one and two phycocyanobilin groups as chromophores, respectively.

  20. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis

    SciTech Connect

    Owttrim, G.W.; Coleman, J.R.

    1987-05-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system.

  1. EXPRESSION OF THE GEOSMIN SYNTHASE GENE IN THE CYANOBACTERIUM ANABAENA CIRCINALIS AWQC318(1).

    PubMed

    Giglio, Steven; Saint, Christopher P; Monis, Paul T

    2011-12-01

    The occurrence of taste and odor episodes attributed to geosmin continues to trouble water utilities worldwide, and only recently have advances been made in our fundamental understanding of the biochemical and genetic mechanisms responsible for the production of geosmin in microorganisms. For the first time, we have examined the expression of the geosmin synthase gene and corresponding geosmin production by Anabaena circinalis Rabenh. ex Bornet et Flahault AWQC318 under conditions of continuous light illumination and the removal of light as a stimulus and demonstrate that the expression of geosmin synthase appears to be constitutive under these conditions. The decrease in geosmin synthase transcription post maximum cell numbers and stationary phase suggests that a decrease in isoprenoid synthesis may occur before a decrease in the transcription of ribosomal units as the process of cell death is initiated.

  2. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis.

    PubMed Central

    Owttrim, G W; Coleman, J R

    1987-01-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system. Images PMID:3032896

  3. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F.

    PubMed Central

    Chen, C H; Van Baalen, C; Tabita, F R

    1987-01-01

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[14C]glutamate from 2-keto-[1-14C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [14C]bicarbonate and L-[1-14C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution. Images PMID:2880834

  4. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Rudolf, Mareike; Stevanovic, Mara; Kranzler, Chana; Pernil, Rafael; Keren, Nir; Schleiff, Enrico

    2016-09-01

    Many cyanobacteria secrete siderophores to sequester iron. Alternatively, mechanisms to utilize xenosiderophores have evolved. The overall uptake systems are comparable to that of other bacteria involving outer membrane transporters energized by TonB as well as plasma membrane-localized transporters. However, the function of the bioinformatically-inferred components is largely not established and recent studies showed a high diversity of the complexity of the uptake systems in different cyanobacteria. Thus, we approached the systems of the filamentous Anabaena sp. PCC 7120 as a model of a siderophore-secreting cyanobacterium. Anabaena sp. produces schizokinen and uptake of Fe-schizokinen involves the TonB-dependent transporter, schizokinen transporter (SchT), and the ABC-type transport system FhuBCD. We confirm that this system is also relevant for the uptake of structurally similar Fe-siderophore complexes like Fe-aerobactin. Moreover, we demonstrate a function of the TonB-dependent transporter IutA2 in Fe-schizokinen uptake in addition to SchT. The iutA2 mutant shows growth defects upon iron limitation, alterations in Fe-schizokinen uptake and in the transcription profile of the Fe-schizokinen uptake system. The physiological properties of the mutant confirm the importance of iron uptake for cellular function, e.g. for the Krebs cycle. Based on the relative relation of expression of schT and iutA2 as well as of the iron uptake rate to the degree of starvation, a model for the need of the co-existence of two different outer membrane transporters for the same substrate is discussed.

  5. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  6. FurA from Anabaena PCC 7120: New insights on its regulation and the interaction with DNA

    NASA Astrophysics Data System (ADS)

    Hernández, J. A.; López-Gomollón, S.; Pellicer, S.; Martín, B.; Sevilla, E.; Bes, M. T.; Peleato, M. L.; Fillat, M. F.

    2006-08-01

    Fur (ferric uptake regulator) proteins are global regulatory proteins involved in the maintenance of iron homeostasis. They recognize specific DNA sequences denoted iron boxes. It is assumed that Fur proteins act as classical repressors. Under iron-rich conditions, Fur dimers complexed with ferrous ions bind to iron boxes, preventing transcription. In addition to iron homeostasis, Fur proteins control the concerted response to oxidative and acidic stresses in heterotrophic prokaryotes. Our group studies the interaction between Fur proteins and target DNA sequences. Moreover, the regulation of FurA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, whose genome codes for three fur homologues has been investigated. We present an overview about the different factors involved in the regulation of FurA and analyze the parameters that influence FurA-DNA interaction in the cyanobacterium Anabaena PCC 7120.

  7. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  8. The interaction of boron with glycolipids is required to increase tolerance to stresses in Anabaena PCC 7120.

    PubMed

    Abreu, Isidro; Orús, Isabel; Bolaños, Luis; Bonilla, Ildefonso

    2014-10-01

    Boron (B) is an essential nutrient for heterocystous cyanobacteria growing under diazotrophic conditions. Under B-deficient conditions, the heterocyst envelope is highly disorganized, and the glycolipid layer is predominantly lost. Therefore, we examined whether B is implicated in the regulation of synthesis or processing and/or stability of glycolipids in Anabaena PCC 7120. RT-PCR analysis indicated that the expression of hglE was not significantly changed under B deficiency, suggesting that the synthesis of glycolipids during heterocyst formation was not compromised. In contrast, the overexpression of devB and hepA, encoding a glycolipid and a carbohydrate transporter, respectively, results in the instability of the envelope under B-deficient conditions. The capacity of borate to bind and stabilize molecules is considered the basis of any B biological function. Using a borate-binding-specific resin and thin layer chromatography, we detected the glycolipids that interact with B. Several heterocyst-specific glycolipids were detected as putative B ligands, suggesting a role for B in stabilizing the heterocyst envelope. Moreover, the glycolipids of Anabaena growing in non-diazotrophic conditions were also detected as putative B ligands. Although B is not essential for Anabaena under non-N2-fixing conditions, the presence of this micronutrient increased the tolerance of Anabaena to detergent treatment, salinity and hyperosmotic conditions. Taken together, the results of the present experiment suggest a beneficial role for B in environmental adaptation. Furthermore, we discuss the nutrient requirement for living organisms growing in nature and not under laboratory conditions.

  9. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp. PCC7120.

    PubMed

    Sánchez-Riego, Ana M; Mata-Cabana, Alejandro; Galmozzi, Carla V; Florencio, Francisco J

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx) as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however, nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (ΔntrC), apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species) in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  10. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  11. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  12. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.

  13. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  14. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  15. Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors.

    PubMed

    Clares, Marta E; Moreno, José; Guerrero, Miguel G; García-González, Mercedes

    2014-10-10

    The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), respectively. The comparison among different reactors operating simultaneously - open pond, horizontal tubular reactor and vertical flat-panel - allowed to assess their relative efficiency for the outdoor development of Anabaena cultures. Despite the higher volumetric CO2 fixation capacity (and biomass productivity) exhibited by the tubular photobioreactor, yield of the flat-panel reactor was 50% higher than that of the tubular option on a per area basis, reaching values over 35 g CO2 fixed m(-2) d(-1). The flat-panel reactor actually represents a most suitable system for CO2 capture coupled to the generation of valuable biomass by Anabaena cultures.

  16. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    PubMed

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.

  17. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics.

    PubMed

    Gantt, E; Lipschultz, C A; Grabowski, J; Zimmerman, B K

    1979-04-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin.

  18. Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E; Mariscal, Vicente; Nürnberg, Dennis J; Mullineaux, Conrad W; Wolk, C Peter; Flores, Enrique

    2017-04-01

    When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions.IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2 These organisms grow as filaments that fix these gases specifically in vegetative

  19. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  20. Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter

    PubMed Central

    Escudero, Leticia; Mariscal, Vicente

    2015-01-01

    ABSTRACT In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. IMPORTANCE Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular

  1. Photobioreactors for mass cultivation of algae.

    PubMed

    Ugwu, C U; Aoyagi, H; Uchiyama, H

    2008-07-01

    Algae have attracted much interest for production of foods, bioactive compounds and also for their usefulness in cleaning the environment. In order to grow and tap the potentials of algae, efficient photobioreactors are required. Although a good number of photobioreactors have been proposed, only a few of them can be practically used for mass production of algae. One of the major factors that limits their practical application in algal mass cultures is mass transfer. Thus, a thorough understanding of mass transfer rates in photobioreactors is necessary for efficient operation of mass algal cultures. In this review article, various photobioreactors that are very promising for mass production of algae are discussed.

  2. Recovery of photosynthesis and growth rate in green, blue-green, and diatom algae after exposure to atrazine.

    PubMed

    Brain, Richard A; Arnie, Joshua R; Porch, John R; Hosmer, Alan J

    2012-11-01

    We evaluated the recovery of photosynthesis and growth rate in green (Pseudokirchneriella subcapitata), blue-green (Anabaena flos-aquae), and diatom (Navicula pelliculosa) algae after pulsed exposure to atrazine. Subsequent to a grow-up period of 24 to 72 h to establish requisite cell density for adequate signal strength to measure photosystem II (PSII) quantum yield, algae were exposed to a pulse of atrazine for 48 h followed by a 48-h recovery period in control media. Photosynthesis was measured at 0, 3, 6, 12, 24, and 48 h of the exposure and recovery phases using pulse amplitude modulation fluorometry; growth rate and cell density were also concomitantly measured at these time points. Exposure to atrazine resulted in immediate, but temporary, inhibition of photosynthesis and growth; however, these effects were transient and fully reversible in the tested species of algae. For all three algal species, no statistically significant reductions (p ≤ 0.05) in growth rate or PSII quantum yield were detected at any of the treatment concentrations 48 h after atrazine was removed from the test system. Effects at test levels up to the highest tested exposure levels were consequently determined to be algistatic (reversible). Both biochemically and physiologically, recovery of photosynthesis and growth rate occur immediately, reaching control levels within hours following exposure. Therefore, pulsed exposure profiles of atrazine typically measured in Midwestern U.S. streams are unlikely to result in biologically meaningful changes in primary production given that the effects of atrazine are temporary and fully reversible in species representative of native populations.

  3. ["Depilation" by micro-algae?].

    PubMed

    Ditrich, H

    1996-01-01

    Itching, reddening and depilation of body hairs was reported by swimmers in the Attersee-lake in Austria. Initially, an environmental crime was suspected. However, further investigations showed that a biological cause was probably responsible for these symptoms. The accrustations found on body hairs turned out in the scanning electron microscope to be dried mucus containing numerous diatoms. The prevailing micro-algae were identified as Cyclotella comensis. Thus, although the phenomenon had a natural, harmless cause, it may happen again given the appropriate environmental conditions.

  4. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Walter, Julia; Lynch, Fiona; Battchikova, Natalia; Aro, Eva-Mari

    2016-01-01

    Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca2+ in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca2+ has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca2+ induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca2+ adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca2+ plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca2+ for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions. PMID:27012282

  5. The cultivation of Anabaena variabilis in a bubble column operating under bubbly and slug flows.

    PubMed

    Yoon, Jong Hyun; Choi, Shin Sik; Park, Tai Hyun

    2012-04-01

    In a bubble column reactor with an inner diameter of 6cm and a height of 63cm for the culture of cyanobacteria two different shapes of bubbles can be generated, resulting in bubbly flow or slug flow. Growth of Anabaena variabilis under slug flow (1.9g/l/day) was 1.73 times higher than that under bubbly flow (1.1g/l/day) when the specific irradiation rate was maintained above 10μmol/s/g dry cell. Although a stepwise increase in superficial gas velocity enhanced the average cell growth rate under bubbly flow by 1.57 times, the average cell growth rate during the deceleration phase under bubbly flow (1.98g/l/day) was 0.61 times smaller than that under slug flow (3.22g/l/day). These results demonstrate that the bubble shape in the slug flow was advantageous in regards to the radial circulation of cells.

  6. Cryo-imaging of photosystems and phycobilisomes in Anabaena sp. PCC 7120 cells.

    PubMed

    Steinbach, Gábor; Schubert, Félix; Kaňa, Radek

    2015-11-01

    Primary photosynthetic reactions take place inside thylakoid membrane where light-to-chemical energy conversion is catalyzed by two pigment-protein complexes, photosystem I (PSI) and photosystem II (PSII). Light absorption in cyanobacteria is increased by pigment-protein supercomplexes--phycobilisomes (PBSs) situated on thylakoid membrane surfaces that transfer excitation energy into both photosystems. We have explored the localization of PSI, PSII and PBSs in thylakoid membrane of native cyanobacteria cell Anabaena sp. 7120 by means of cryogenic confocal microscopy. We have adapted a conventional temperature controlling stage to an Olympus FV1000 confocal microscope. The presence of red shifted emission of chlorophylls from PSI has been confirmed by spectral measurements. Confocal fluorescence images of PSI (in a spectral range 710-750 nm), PSII (in a spectral range 690-705 nm) and PBSs (in a spectral range 650-680 nm) were recorded at low temperature. Co-localization of images showed spatial heterogeneity of PSI, PSII and PBSs over the thylakoid membrane, and three dominant areas were identified: PSI-PSII-PBS supercomplex area, PSII-PBS supercomplex area and PSI area. The observed results were discussed with regard to light-harvesting regulation in cyanobacteria.

  7. Minutissamides E - L, antiproliferative cyclic lipodecapeptides from the cultured freshwater cyanobacterium cf. Anabaena sp

    PubMed Central

    Kang, Hahk-Soo; Sturdy, Megan; Krunic, Aleksej; Kim, Hyunjung; Shen, Qi; Swanson, Steven M.; Orjala, Jimmy

    2012-01-01

    The extract of UIC 10035, a strain obtained from a sample collected near the town of Homestead, south Florida, showed antiproliferative activity against MDA-MB-435 cells. Bioassay-guided fractionation led to the isolation of a series of cyclic lipodecapeptides, named minutissamides E - L (1 – 8). The planar structures were determined by analysis of HRESIMS, tandem MS, and 1D and 2D NMR data, and the stereoconfigurations were assigned by LC-MS analysis of the Marfey's derivatives after acid hydrolysis. Minutissamides E - L (1 – 8) exhibited antiproliferative activity against MDA-MB-435 cells with IC50 values ranging between 1 and 10 μM. The structures of minutissamides E - L (1 – 8) were closely related with those of the previously reported lipopeptides, puwainaphycins A - E and minutissamides A - D, characterized by the presence of a lipophilic -amino acid and three non-standard amino acids NMeAsn, OMeThr and Dhb (, -dehydro- -aminobutyric acid). The strain UIC 10035 was designated as cf. Anabaena sp. on the basis of morphological and 16S rRNA gene sequence analyses. PMID:22980217

  8. Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp.

    PubMed

    Rajasekhar, Pradeep; Fan, Linhua; Nguyen, Thang; Roddick, Felicity A

    2012-04-01

    Blooms of toxic cyanobacteria such as Microcystis aeruginosa periodically occur within wastewater treatment lagoons in the warmer months, and may consequently cause contamination of downstream water and outages of the supply of recycled wastewater. Lab-scale sonication (20 kHz) was conducted on suspensions of M. aeruginosa isolated from a wastewater treatment lagoon, and two other algal strains, Anabaena circinalis and Chlorella sp., to investigate cell reduction, growth inhibition, release of microcystin and sonication efficiency in controlling the growth of the M. aeruginosa. For M. aeruginosa, for all sonication intensities and exposure times trialled, sonication led to an immediate reduction in the population, the highest reduction rate occurring within the initial 5 min. Sonication for 5 min at 0.32 W/mL, or for a longer exposure time (>10 min) at a lower power intensity (0.043 W/mL), led to an immediate increase in microcystin level in the treated suspensions. However, prolonged exposure (>10 min) to sonication at higher power intensities reduced the microcystin concentration significantly. Under the same sonication conditions, the order of decreasing growth inhibition of the three algal species was: A. circinalis > M. aeruginosa > Chlorella sp., demonstrating sonication has the potential to selectively remove/deactivate harmful cyanobacteria from the algal communities in wastewater treatment lagoons.

  9. Effects of recombinated Anabaena sp. lipoxygenase on the protein component and dough property of wheat flour.

    PubMed

    Wang, Xiaoming; Lu, Fengxia; Zhang, Chong; Lu, Yingjian; Bie, Xiaomei; Xie, Yajuan; Lu, Zhaoxin

    2014-10-08

    The improvement effect of recombinated Anabaena sp. lipoxygenase (ana-rLOX) on the rheological property of dough was investigated with a farinograph and an extensograph. When 30 U/g ana-rLOX was added to wheat flour, the dough stability time extended from 7 to 9.5 min, the degree of softening increased about 31.1%, and the farinograph index also ascended. The dough with added ana-rLOX showed stronger resistance to extension throughout 135 min of resting time as compared to the dough without ana-rLOX. In addition, the protein component in the dough was varied with ana-rLOX. The glutenin in the dough was increased, whereas the gliadin, albumin, and globulin were decreased after the additino of ana-rLOX to the flours. Ana-rLOX could make globulin-3A, globulin 1a, and S48186 grain softness protein cross-link with gliadin and low-molecular-weight (LMW) glutenin, leading to the formation of the protein polymer. These results based on proteomic analysis might provide evidence that ana-rLOX could affect the gluten protein component and explain why it improved the farinograph and extensograph parameters of wheat flour.

  10. In Situ Structural Studies of Anabaena Sensory Rhodopsin in the E. coli Membrane

    PubMed Central

    Ward, Meaghan E.; Wang, Shenlin; Munro, Rachel; Ritz, Emily; Hung, Ivan; Gor’kov, Peter L.; Jiang, Yunjiang; Liang, Hongjun; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-01-01

    Magic-angle spinning nuclear magnetic resonance is well suited for the study of membrane proteins in the nativelike lipid environment. However, the natural cellular membrane is invariably more complex than the proteoliposomes most often used for solid-state NMR (SSNMR) studies, and differences may affect the structure and dynamics of the proteins under examination. In this work we use SSNMR and other biochemical and biophysical methods to probe the structure of a seven-transmembrane helical photoreceptor, Anabaena sensory rhodopsin (ASR), prepared in the Escherichia coli inner membrane, and compare it to that in a bilayer formed by DMPC/DMPA lipids. We find that ASR is organized into trimers in both environments but forms two-dimensional crystal lattices of different symmetries. It favors hexagonal packing in liposomes, but may form a square lattice in the E. coli membrane. To examine possible changes in structure site-specifically, we perform two- and three-dimensional SSNMR experiments and analyze the differences in chemical shifts and peak intensities. Overall, this analysis reveals that the structure of ASR is largely conserved in the inner membrane of E. coli, with many of the important structural features of rhodopsins previously observed in ASR in proteoliposomes being preserved. Small, site-specific perturbations in protein structure that occur as a result of the membrane changes indicate that the protein can subtly adapt to its environment without large structural rearrangement. PMID:25863060

  11. Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119.

    PubMed Central

    Serrano, A; Rivas, J; Losada, M

    1984-01-01

    An NADPH-glutathione reductase (EC 1.6.4.2) has been purified 6,000-fold to electrophoretic homogeneity from the filamentous cyanobacterium Anabaena sp. strain 7119. The purified enzyme exhibits a specific activity of 249 U/mg and is characterized by being a dimeric flavin adenine dinucleotide-containing protein with a ratio of absorbance at 280 nm to absorbance at 462 nm of 5.8, a native molecular weight of 104,000, a Stokes radius of 4.13 nm, and a pI of 4.02. The enzyme activity is inhibited by sulfhydryl reagents and heavy-metal ions, especially in the presence of NADPH, with oxidized glutathione behaving as a protective agent. As is the case with the same enzyme from other sources, the kinetic data are consistent with a branched mechanism. Nevertheless, the cyanobacterial enzyme presents three distinctive features with respect to that isolated from non-photosynthetic organisms: (i) absolute specificity for NADPH, (ii) an alkaline optimum pH value of ca. 9.0, and (iii) strong acidic character of the protein, as estimated by column chromatofocusing. The kinetic parameters are very similar to those found for the chloroplast enzyme, but the molecular weight is lower, being comparable to that of non-photosynthetic microorganisms. A protective function, analogous to that assigned to the chloroplast enzyme, is suggested. Images PMID:6425264

  12. Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7210 expressed in Escherichia coli

    SciTech Connect

    Gurevitz, M.; Somerville, C.R.; McIntosh, L.

    1985-10-01

    The authors have placed the genes encoding ribulosebisphosphate carboxylase/oxygenase from the Anabaena 7120 operon under transcriptional control of the lac promoter carried on the Escherichia coli plasmid pUC19. The genes encoding both the large and small subunit polypeptides (rbcL and rbcS) are transcribed and translated so that approx. = 0.6% of the soluble protein in E. coli extracts is a fully functional holoenzyme with a sedimentation coefficient of approximately 18S, which contains stoichiometric amounts of the two subunits. However, expression of the large subunit polypeptide vastly exceeds that of the small subunit because the majority of transcripts terminate in the intergenic region between the rbcL and rbcS genes. As a result, excess large subunit is synthesized and accumulates in E. coli as an insoluble and catalytically inactive form. Because small subunit is found only in the high molecular weight soluble form of ribulosebisphosphate carboxylase/oxygenase, the authors propose that the small subunit promotes assembly of the hexadecameric form of the enzyme via heterodimers of large and small subunits.

  13. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  14. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  15. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  16. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  17. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  18. The ice nucleation activity of extremophilic algae.

    PubMed

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.

  19. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  20. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.

  1. Advances in genetic engineering of marine algae.

    PubMed

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.

  2. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  3. Identification and characterization of the nifV-nifZ-nifT gene region from the filamentous cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Stricker, O; Masepohl, B; Klipp, W; Böhme, H

    1997-05-01

    The nifV and leuA genes, which encode homocitrate synthase and alpha-isopropylmalate synthase, respectively, were cloned from the filamentous cyanobacterium Anabaena sp. strain PCC 7120 by a PCR-based strategy. Since the N-terminal parts of NifV and LeuA from other bacteria are highly similar to each other, a single pair of PCR primers was used to amplify internal fragments of both Anabaena strain 7120 genes. Sequence analysis of cloned PCR products confirmed the presence of two different nifV-like DNA fragments, which were subsequently used as nifV- and leuA-specific probes, respectively, to clone XbaI fragments of 2.1 kbp (pOST4) and 2.6 kbp (pOST2). Plasmid pOST4 carried the Anabaena strain 7120 nifV-nifZ-nifT genes, whereas pOST2 contained the leuA and dapF genes. The nifVZT genes were not located in close proximity to the main nif gene cluster in Anabaena strain 7120, and therefore nifVZT forms a second nif gene cluster in this strain. Overlaps between the nifV and nifZ genes and between the nifZ and nifT genes and the presence of a 1.8-kb transcript indicated that nifVZT might form one transcriptional unit. Transcripts of nifV were induced not only in a nitrogen-depleted culture but also by iron depletion irrespective of the nitrogen status. The nifV gene in Anabaena strain 7120 was interrupted by an interposon insertion (mutant strain BMB105) and by a plasmid integration via a single crossover with a nifV internal fragment as a site for recombination (mutant strain BMB106). Both mutant strains were capable of diazotrophic growth, and their growth rates were only slightly impaired compared to that of the wild type. Heterologous complementation of the Rhodobacter capsulatus nifV mutant R229I by the Anabaena strain 7120 nifV gene corroborated the assumption that Anabaena strain 7120 nifV also encodes a homocitrate synthase. In contrast, the Anabaena strain 7120 leuA gene did not complement the nifV mutation of R229I efficiently.

  4. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems.

    PubMed

    Su, Ming; Gaget, Virginie; Giglio, Steven; Burch, Michael; An, Wei; Yang, Min

    2013-06-15

    Geosmin has often been associated with off-flavor problems in drinking water with Anabaena sp. as the major producer. Rapid on-site detection of geosmin-producers as well as geosmin is important for a timely management response to potential off-flavor events. In this study, quantitative polymerase chain reaction (qPCR) methods were developed to detect the levels of Anabaena sp. and geosmin, respectively, by designing two PCR primer sets to quantify the rpoC1 gene (ARG) and geosmin synthase one (GSG) in Anabaena sp. in freshwater systems. The ARG density determined by qPCR assay is highly related to microscopic cell count (r(2) = 0.726, p < 0.001), and the limit of detection (LOD) and limit of quantification (LOQ) of the qPCR method were 0.02 pg and 0.2 pg of DNA, respectively. At the same time, the relationship between geosmin concentrations measured by gas chromatography-mass spectrometry (GC-MS) and GSG copies was also established (r(2) = 0.742, p < 0.001) with similar LOD and LOQ values. Using the two qPCR protocols, we succeeded in measuring different levels of ARG and GSG copies in different freshwater systems with high incidence environmental substrata and diverse ecological conditions, showing that the methods developed could be applied for environmental monitoring. Moreover, comparing to the microscopic count and GC-MS analytical methods, the qPCR methods can reduce the time-to-results from several days to a few hours and require considerably less traditional algal identification and taxonomic expertise.

  5. Effect of pretreatment of salt, copper and temperature on ultraviolet-B-induced antioxidants in diazotrophic cyanobacterium Anabaena doliolum.

    PubMed

    Srivastava, Ashish Kumar; Bhargava, Poonam; Mishra, Yogesh; Shukla, Bideh; Rai, Lal Chand

    2006-01-01

    Effect of salt, copper, and temperature pretreatments on the UV-B-induced oxidative damage, measured in terms of peroxide and MDA (lipid peroxidation) contents, was studied in the diazotrophic cyanobacterium Anabaena doliolum. To understand the survival strategy enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (glutathione, ascorbate, alpha-tocopherol and carotenoid) antioxidants were studied. Among the various pretreatments salt was found to decrease and copper and temperature pretreatments increased the deleterious effects of UV-B. This study is the first to demonstrate that physical stress (high temperature) enhanced the damaging effect of UV-B more profoundly than chemical stresses (salt and copper).

  6. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  7. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  8. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  9. Determination of 2-methylisoborneol and geosmin produced by Streptomyces sp. and Anabaena PCC7120.

    PubMed

    Xie, Yuqun; He, Jin; Huang, Jun; Zhang, Jibin; Yu, Ziniu

    2007-08-22

    A new sample preparation and enrichment technique, headspace liquid-phase microextraction (HS-LPME) linked to gas chromatography-mass spectrometry (GC-MS), was developed for the determination of the off-flavor odorants, 2-methylisoborneol and geosmin, produced by Streptomyces sp. and Anabaena PCC7120. Some of the factors that influence the extraction efficiency of HS-LPME, such as the type of extraction solvent, ionic strength of sample solution, and sample agitation rate, were studied and optimized by a single factor test. Other factors, including extraction temperature, extraction time, microdrop volume, and headspace volume were optimized by orthogonal array design. Extraction of 2-methylisoborneol and geosmin was conducted by exposing 2.5 microL of 1-hexanol for 9 min at 50 degrees C in the headspace of a 20 mL vial with a 10 mL of sample solution saturated by NaCl and stirred at 800 rpm. The developed protocol demonstrated good repeatability (relative standard deviations (RSDs) < 5%), wide linear ranges (10-5000 ng/L, r2 > 0.999), and low limits of detection (LODs) for 2-methylisoborneol and geosmin (0.05 ng/L for both analytes). Subsequently, the method was successfully applied to extract the analytes in bacterial cultures with high recoveries (from 94% to 98%). Compared with headspace solid-phase microextraction (HS-SPME), HS-LPME demonstrates better linearity, precision, and recovery. Importantly, the sensitivity is about 1 order of magnitude higher than that of most HS-SPME. The results showed that HS-LPME coupled with GC-MS is a simple, convenient, rapid, sensitive, and effective method for the qualitative and quantitative analysis of 2-methylisoborneol and geosmin.

  10. Effects of Anabaena spiroides (Cyanobacteria) aqueous extracts on the acetylcholinesterase activity of aquatic species.

    PubMed

    Monserrat, J M; Yunes, J S; Bianchini, A

    2001-06-01

    The effects of aqueous extracts from a cyanobacteria species, Anabaena spiroides, on fish (Odontesthes argentinensis), crab (Callinectes sapidus), and purified eel acetylcholinesterase (AChE) activity were studied. In vitro concentrations of A. spiroides aqueous extract that inhibited 50% of enzyme activity (IC50) were 23.0, 17.2, and 45.0 mg/L of lyophilized cyanobacteria for eel, fish, and crab AChE, respectively. Eel AChE inhibition follows pseudo-first-order kinetics, the same expected for organophosphorus pesticides. Inhibition of purified eel AChE using mixtures of bioxidized malathion and aqueous extract of A. spiroides showed a competitive feature (p < 0.05), suggesting that the toxin(s) could be structurally similar to an organophosphorus pesticide and that toxins present in the aqueous extract inhibit the active site of the enzyme. The inhibition recovery assays using 2-PAM (0.3 mM) showed that (1) bioxidized malathion inhibited 27.0 +/- 1.1% of crab and 36.5 +/- 0.1% of eel AChE activities; (2) with bioxidized malathion + 2-PAM the registered inhibition was 13.2 +/- 2.1% and 3.7 +/- 0.5% in crab and eel AChE, respectively; (3) the aqueous extract from A. spiroides inhibited 17.4 +/- 2.2% and 59.9 +/- 0.5% of crab and eel AChE activity, respectively; and (4) aqueous extract + 2-PAM inhibited 22.3 +/- 2.6 and 61.5 +/- 0.2% of crab and eel AChEs. The absence of enzyme activity recovery after 2-PAM exposure could imply that the enzyme aging process was extremely quick.

  11. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress

    PubMed Central

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R.

    2015-01-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone. PMID:26025890

  12. Production of a halotolerant biofilm from green coffee beans immobilized on loofah fiber (Luffa cylindrica) and its effect on phenanthrene degradation in seawater.

    PubMed

    Acosta-Rubí, Sonia; Campocosio, Araceli Tomasini; Montes-Horcasitas, María Del Carmen; Quintanar-Vera, Liliana; Esparza-García, Fernando; Rodríguez-Vázquez, Refugio

    2017-03-16

    A biofilm developed from low quality green coffee beans was tested for its capacity to degrade the polynuclear aromatic hydrocarbon (PAH), phenanthrene (Phe), in seawater. Microorganisms were immobilized on two types of Luffa cylindrica (with three and four placental cavities), and the effects of moisture content (20, 30 and 40% of water holding capacity) and particle size (<0.42 mm, 0.42-0.86 mm and 0.86-2.0 mm) of green coffee beans on microbial activity were considered. Biofilm growth determined by respirometry showed a highest microbial activity at a moisture content of 40% and particle size of 0.42-0.86 mm. The loofah fiber with three placental cavities showed the highest adherence of microorganisms. The kinetics of microbial growth in both seawater and distilled water and the scanning electron microscopies indicated that the microorganisms associated with green coffee beans are halotolerant. In fact, I-GCB-SW-G biofilm degraded 67.56% of Phe (50 mg L(-1)) in seawater, at a significantly higher rate than in distilled water (I-GCB-DW-W).

  13. Complete characterization of wheat-alien metaphase I pairing in interspecific hybrids between durum wheat (Triticum turgidum L.) and jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Cifuentes, Marta; Benavente, Elena

    2009-05-01

    The pattern of homoeologous metaphase I (MI) pairing has been fully characterized in durum wheat x Aegilops cylindrica hybrids (2n = 4x = 28, ABC(c)D(c)) by an in situ hybridization procedure that has permitted individual discrimination of every wheat and wild constituent genome. One of the three hybrid genotypes examined carried the ph1c mutation. In all cases, MI associations between chromosomes of both species represented around two-third of total. Main results from the analysis are as follows (a) the A genome chromosomes are involved in wheat-wild MI pairing more frequently than the B genome partners, irrespective of the alien genome considered; (b) both durum wheat genomes pair preferentially with the D(c) genome of jointed goatgrass. These findings are discussed in relation to the potential of genetic transference between wheat crops and this weedy relative. It can also be highlighted that inactivation of Ph1 provoked a relatively higher promotion of MI associations involving B genome.

  14. Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) x jointed goatgrass (Aegilops cylindrica Host) backcross progenies.

    PubMed

    Wang, Z N; Hang, A; Hansen, J; Burton, C; Mallory-Smith, C A; Zemetra, R S

    2000-12-01

    Wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica) can cross with each other, and their self-fertile backcross progenies frequently have extra chromosomes and chromosome segments, presumably retained from wheat, raising the possibility that a herbicide resistance gene might transfer from wheat to jointed goatgrass. Genomic in situ hybridization (GISH) was used to clarify the origin of these extra chromosomes. By using T. durum DNA (AABB genome) as a probe and jointed goatgrass DNA (CCDD genome) as blocking DNA, one, two, and three A- or B-genome chromosomes were identified in three BC2S2 individuals where 2n = 29, 30, and 31 chromosomes, respectively. A translocation between wheat and jointed goatgrass chromosomes was also detected in an individual with 30 chromosomes. In pollen mother cells with meiotic configuration of 14 II + 2 I, the two univalents were identified as being retained from the A or B genome of wheat. By using Ae. markgrafii DNA (CC genome) as a probe and wheat DNA (AABBDD genome) as blocking DNA. 14 C-genome chromosomes were visualized in all BC2S2 individuals. The GISH procedure provides a powerful tool to detect the A or B-genome chromatin in a jointed goatgrass background, making it possible to assess the risk of transfer of herbicide resistance genes located on the A or B genome of wheat to jointed goatgrass.

  15. Exploring origins, invasion history and genetic diversity of Imperata cylindrica (L.) P. Beauv. (Cogongrass) in the United States using genotyping by sequencing.

    PubMed

    Burrell, A Millie; Pepper, Alan E; Hodnett, George; Goolsby, John A; Overholt, William A; Racelis, Alexis E; Diaz, Rodrigo; Klein, Patricia E

    2015-05-01

    Imperata cylindrica (Cogongrass, Speargrass) is a diploid C4 grass that is a noxious weed in 73 countries and constitutes a significant threat to global biodiversity and sustainable agriculture. We used a cost-effective genotyping-by-sequencing (GBS) approach to identify the reproductive system, genetic diversity and geographic origins of invasions in the south-eastern United States. In this work, we demonstrated the advantage of employing the closely related, fully sequenced crop species Sorghum bicolor (L.) Moench as a proxy reference genome to identify a set of 2320 informative single nucleotide and insertion-deletion polymorphisms. Genetic analyses identified four clonal lineages of cogongrass and one clonal lineage of Imperata brasiliensis Trin. in the United States. Each lineage was highly homogeneous, and we found no evidence of hybridization among the different lineages, despite geographical overlap. We found evidence that at least three of these lineages showed clonal reproduction prior to introduction to the United States. These results indicate that cogongrass has limited evolutionary potential to adapt to novel environments and further suggest that upon arrival to its invaded range, this species did not require local adaptation through hybridization/introgression or selection of favourable alleles from a broad genetic base. Thus, cogongrass presents a clear case of broad invasive success, across a diversity of environments, in a clonal organism with limited genetic diversity.

  16. Inducing rye 1R chromosome structural changes in common wheat cv. Chinese spring by the gametocidal chromosome 2C of Aegilops cylindrica.

    PubMed

    Shi, Fang; Liu, Kun-Fan; Endo, Takashi R; Wang, Dao-Wen

    2005-05-01

    To generate 1 R deletion and translocation lines, we introduced a 2C chromosome,which was derived from Aegilops cylindrica and was known to have a gametocidal function when added monosomically into common wheat cv. Chinese Spring (CS) and its derivative, into a wheat-rye 1R chromosome disomic addition line (CS-1R"). When the individuals with chromosome constitution 21" + 1R" + 2C' (2n = 45) were selfed, the 1R chromosome structural changes were found to be induced with high frequency (24.1%) among the progenies. By using C-banding and GISH analysis, we analyzed 1R structural changes in 46 F3 individuals, which came from 23 F2 plants. The rearranged 1R chromosomes could be characterized in about 85% of the F3 individuals. This included telosome 1RL (39.1%), iso-chromosome 1 RL (2.2%), whole arm translocation involving 1RL (32.6%), telosome 1RS (4.3%), iso-chromosome 1RS (4.3%), and 1R deletion mutant with break point in the long arm (2.2%). The mutant 1R lines obtained in this study will potentially be useful in mapping the chromosome locations of agronomically important genes located in 1R. This study also demonstrated that molecular markers might be used to identify wheat chromosome arm involved in translocation with 1R.

  17. Method and apparatus for processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  18. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  19. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  20. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  1. Characterization of insertion sequence IS892 and related elements from the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed Central

    Cai, Y

    1991-01-01

    IS892, one of the several insertion sequence (IS) elements discovered in Anabaena sp. strain PCC 7120 (Y. Cai and C. P. Wolk, J. Bacteriol. 172:3138-3145, 1990), is 1,675 bp with 24-bp near-perfect inverted terminal repeats and has two open reading frames (ORFs) that could code for proteins of 233 and 137 amino acids. Upon insertion into target sites, this IS generates an 8-bp directly repeated target duplication. A 32-bp sequence in the region between ORF1 and ORF2 is similar to the sequence of the inverted termini. Similar inverted repeats are found within each of those three segments, and the sequences of these repeats bear some similarity to the 11-bp direct repeats flanking the 11-kb insertion interrupting the nifD gene of this strain (J. W. Golden, S. J. Robinson, and R. Haselkorn, Nature [London] 314:419-423, 1985). A sequence similar to that of a binding site for the Escherichia coli integration host factor is found about 120 bp from the left end of IS892. Partial nucleotide sequences of active IS elements IS892N and IS892T, members of the IS892 family from the same Anabaena strain, were shown to be very similar to the sequence of IS892. Images PMID:1653218

  2. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway.

    PubMed

    Drzyzga, Damian; Forlani, Giuseppe; Vermander, Jochen; Kafarski, Paweł; Lipok, Jacek

    2017-03-01

    Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using (31) P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found.

  3. A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Malatinszky, David; Steuer, Ralf; Jones, Patrik R

    2017-01-01

    Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism.

  4. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    PubMed

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph.

  5. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.

  6. On-water remote monitoring robotic system for estimating the patch coverage of Anabaena sp. filaments in shallow water.

    PubMed

    Romero-Vivas, E; Von Borstel, F D; Pérez-Estrada, C J; Torres-Ariño, D; Villa-Medina, J F; Gutiérrez, J

    2015-06-01

    An on-water remote monitoring robotic system was developed for indirectly estimating the relative density of marine cyanobacteria blooms at the subtidal sandy-rocky beach in Balandra Cove, Baja California Sur, Mexico. The system is based on an unmanned surface vehicle to gather underwater videos of the seafloor for avoiding physical damage on Anabaena sp. cyanobacteria colonies, which grow in tufts of filaments weakly attached to rocks, seagrass, and macroalgae. An on-axis image stabilization mechanism was developed to support a camcorder and minimize wave perturbation while recording underwater digital images of the seafloor. Color image processing algorithms were applied to estimate the patch coverage area and density, since Anabaena sp. filaments exhibit a characteristic green tone. Results of field tests showed the feasibility of the robotic system to estimate the relative density, distribution, and coverage area of cyanobacteria blooms, preventing the possible impact of direct observation. The robotic system could also be used in surveys of other benthos in the sublittoral zone.

  7. Expression of Shewanella oneidensis MR-1 [FeFe]-Hydrogenase Genes in Anabaena sp. Strain PCC 7120

    PubMed Central

    Gärtner, Katrin; Lechno-Yossef, Sigal; Cornish, Adam J.; Wolk, C. Peter

    2012-01-01

    H2 generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H2 from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O2 sensitive. Certain filamentous cyanobacteria protect nitrogenase from O2 by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter PhetN. Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O2. PMID:23023750

  8. Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions.

    PubMed

    Tiwari, Onkar Nath; Khangembam, Romi; Shamjetshabam, Minerva; Sharma, Aribam Subhalaxmi; Oinam, Gunapati; Brand, Jerry J

    2015-08-01

    Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.

  9. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  10. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  11. Pyogenic Flexor Tenosynovitis Caused by Shewanella algae.

    PubMed

    Fluke, Erin C; Carayannopoulos, Nikoletta L; Lindsey, Ronald W

    2016-07-01

    Pyogenic flexor tenosynovitis is an orthopedic emergency most commonly caused by Staphylococcus aureus and streptococci and occasionally, when associated with water exposure, Mycobacterium marinum. Shewanella algae, a gram-negative bacillus found in warm saltwater environments, has infrequently been reported to cause serious soft tissue infections and necrosis. In this case, S. algae caused complicated flexor tenosynovitis requiring open surgical irrigation and debridement. Flexor tenosynovitis caused by S. algae rapidly presented with all 4 Kanavel cardinal signs as well as subcutaneous purulence, ischemia, and necrosis, thus meeting the requirements for Pang et al group III classification of worst prognosis. Because of its rarity and virulence, S. algae should always be considered in cases of flexor tenosynovitis associated with traumatic water exposure to treat and minimize morbidity appropriately.

  12. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  13. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  14. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  15. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  16. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences

    SciTech Connect

    Cai, Yuping; Wolk, C.P. )

    1990-06-01

    Use of the sacB gene provides a simple, effective, positive selection for double recombinants in Anabaena sp. strain PCC 7120, a filamentous cyanobacterium. This gene, which encodes the secretory levansucrase of Bacillus subtilis, was inserted into the vector portion of a suicide plasmid bearing a mutant version of a chromosomal gene. Cells of colonies in which such a plasmid had integrated into the Anabaena chromosome through single recombination were plated on solid medium containing 5% sucrose. Under this condition, the presence of the sacB gene is lethal. A small fraction of the cells from initially sucrose-sensitive colonies became sucrose resistant; the majority of these sucrose-resistant derivatives had undergone a second recombinational event in which the sacB-containing vector had been lost and the wild-type form of the chromosomal gene had been replaced by the mutant form. By the use of this technique, they mutated two selected genes in the chromosome of Anabaena sp. strain PCC 7120. The conditionally lethal nature of the sacB gene was also used to detect insertion sequences from this Anabaena strain. Sucrose-resistant colonies derived from cells bearing a sacB-containing autonomously replicating plasmid were analyzed. Five different, presumed insertion sequences were found to have inserted into the sacB gene of the plasmids in these colonies. One of them, denoted IS892, was characterized by physical mapping. It is 1.7 kilobases in size and is present in at least five copies in the genome of Anabaena sp. strain PCC 7120.

  17. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    PubMed

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium.

  18. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena

    PubMed Central

    Burnat, Mireia; Flores, Enrique

    2014-01-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [14C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The Δalr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [14C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the Δalr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium. PMID:25209059

  19. Spatial fluctuations in expression of the heterocyst differentiation regulatory gene hetR in Anabaena filaments.

    PubMed

    Corrales-Guerrero, Laura; Tal, Asaf; Arbel-Goren, Rinat; Mariscal, Vicente; Flores, Enrique; Herrero, Antonia; Stavans, Joel

    2015-04-01

    Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these

  20. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  1. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  2. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites

    NASA Astrophysics Data System (ADS)

    Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.

    2015-05-01

    Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.

  3. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS.

    PubMed

    Singh, Sukhwinder; Franks, C D; Huang, L; Brown-Guedira, G L; Marshall, D S; Gill, B S; Fritz, A

    2004-02-01

    The leaf rust resistance gene Lr41 in wheat germplasm KS90WGRC10 and a resistance gene in wheat breeding line WX93D246-R-1 were transferred to Triticum aestivum from Aegilops tauschii and Ae. cylindrica, respectively. The leaf rust resistance gene in WX93D246-R-1 was located on wheat chromosome 2D by monosomic analysis. Molecular marker analysis of F(2) plants from non-critical crosses determined that this gene is 11.2 cM distal to marker Xgwm210 on the short arm of 2D. No susceptible plants were detected in a population of 300 F(2) plants from a cross between WX93D246-R-1 and TA 4186 ( Lr39), suggesting that the gene in WX93D246-R-1 is the same as, or closely linked to, Lr39. In addition, no susceptible plants were detected in a population of 180 F(2) plants from the cross between KS90WGRC10 and WX93D246-R-1. The resistance gene in KS90WGRC10, Lr41, was previously reported to be located on wheat chromosome 1D. In this study, no genetic association was found between Lr41 and 51 markers located on chromosome 1D. A population of 110 F(3 )lines from a cross between KS90WGRC10 and TAM 107 was evaluated with polymorphic SSR markers from chromosome 2D and marker Xgdm35 was found to be 1.9 cM proximal to Lr41. When evaluated with diverse isolates of Puccinia triticina, similar reactions were observed on WX93D246-R-1, KS90WGRC10, and TA 4186. The results of mapping, allelism, and race specificity test indicate that these germplasms likely have the same gene for resistance to leaf rust.

  4. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization

    PubMed Central

    Molnár, István; Vrána, Jan; Farkas, András; Kubaláková, Marie; Cseh, András; Molnár-Láng, Márta; Doležel, Jaroslav

    2015-01-01

    Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (UtUtCtCt) and Ae. cylindrica (DcDcCcCc) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. Methods The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. Key Results FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7Ct, T6UtS.6UtL-5CtL, 1Cc and 5Dc could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2–5. This identified a partial wheat–C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C–2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. Conclusions The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat. PMID:26043745

  5. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  6. Impact of diatomite on the slightly polluted algae-containing raw water treatment process using ozone oxidation coupled with polyaluminum chloride coagulation.

    PubMed

    Hu, Wenchao; Wu, Chunde; Jia, Aiyin; Zhang, Zhilin; Chen, Fang

    2014-01-01

    The impact of adding diatomite on the treatment performance of slightly polluted algae-containing raw water using ozone pre-oxidation and polyaluminum chloride (PAC) coagulation was investigated. Results demonstrated that the addition of diatomite is advantageous due to reduction of the PAC dose (58.33%) and improvement of the removal efficiency of algae, turbidity, and dissolved organic matter (DOM) in raw water. When the ozone concentration was 1.0 mg L⁻¹ and the PAC dosage was 2.5 mg L⁻¹, the removal rates of algae, turbidity, UV254, and TOC were improved by 6.39%, 7.06%, 6.76%, and 4.03%, respectively, with the addition of 0.4 g L⁻¹ diatomite. It has been found that the DOM presented in the Pearl River raw water mainly consisted of small molecules (<1 kDa) and large ones (> 50 kDa). After adding diatomite (0.4 g L⁻¹), the additional removal of 5.77% TOC and 14.82% UV254 for small molecules (<1 kDa) of DOM, and 8.62% TOC and 7.33% UV254 for large ones (>50 kDa) could be achieved, respectively, at an ozone concentration of 1.0 mg L⁻¹ and a PAC dose of 2.5 mg L⁻¹. The growth of anabaena flos-aquae (A.F.) was observed by an atomic force microscope (AFM) before and after adding diatomite. AFM images demonstrate that diatomite may have a certain adsorption on A.F.

  7. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  8. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  9. [Functional components in fish and algae oils].

    PubMed

    Conchillo, A; Valencia, I; Puente, A; Ansorena, D; Astiasarán, I

    2006-01-01

    An important area of the development of new functional foods is facussed on finding or applying food components which favour achieving a healthier lipid profile in the organism. The objective of this work was to carry out the characterisation of the lipid fraction of two oils, fish oil and algae oil, to evaluate their potential use as functional ingredients, in relation to the high molecular weight fatty acid content and the presence of sterols and other components of the unsaponificable fraction. Both oils showed a lipid fraction rich in high molecular weight polyunsaturated omega-3 fatty acids, containing a 33.75% in the fish oil and a 43.97% in the algae oil. Eicosapentaenoic acid was the major fatty acid in fish oil, whereas docosahexaenoic was the most abundant fatty acid in algae oil. The omega-6/omega-3 ratio was lower than 0.4 in both oils. In the unsaponificable fraction, algae oil had a Mold lower cholesterol content and a higher proportion of squalene than fish oil. The phytosterol content was significantly higher in the algae oil.

  10. Oil from algae; salvation from peak oil?

    PubMed

    Rhodes, Christopher J

    2009-01-01

    A review is presented of the use of algae principally to produce biodiesel fuel, as a replacement for conventional fuel derived from petroleum. The imperative for such a strategy is that cheap supplies of crude oil will begin to wane within a decade and land-based crops cannot provide more than a small amount of the fuel the world currently uses, even if food production were allowed to be severely compromised. For comparison, if one tonne of biodiesel might be produced say, from rape-seed per hectare, that same area of land might ideally yield 100 tonnes of biodiesel grown from algae. Placed into perspective, the entire world annual petroleum demand which is now provided for by 31 billion barrels of crude oil might instead be met from algae grown on an area equivalent to 4% of that of the United States. As an additional benefit, in contrast to growing crops it is not necessary to use arable land, since pond-systems might be placed anywhere, even in deserts, and since algae grow well on saline water or wastewaters, no additional burden is imposed on freshwater-a significant advantage, as water shortages threaten. Algae offer the further promise that they might provide future food supplies, beyond what can be offered by land-based agriculture to a rising global population.

  11. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements.

  12. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature.

  13. Direct measurement of excitation transfer dynamics between two trimers in C-phycocyanin hexamer from cyanobacterium Anabaena variabilis

    NASA Astrophysics Data System (ADS)

    Zhang, Jingmin; Zhao, Fuli; Zheng, Xiguang; Wang, Hezhou

    1999-05-01

    We provide the first experimental evidence for the excitation transfers between two trimers of an isolated C-phycocyanin hexamer (αβ) 6PCL RC27, at the end of the rod proximal to the core of PBS in cyanobacterium of Anabaena variabilis, with picosecond time-resolved fluorescence spectroscopy. Our results strongly suggest that the observed fluorescence decay constants around 20 and 10 ps time scales, shown in anisotropy decay, not in isotropic decay experiments arose from the excitation transfers between two trimers via two types of transfer pathways such as 1β 155↔6β 155 (2β 155↔5β 155 and 3β 155↔4β 155) and 2α 84↔5α 84 (3α 84↔6α 84 and 1α 84↔4α 84) channels and these could be described by Föster dipole-dipole resonance mechanism.

  14. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.

  15. A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach.

    PubMed

    Medina, M; Hervás, M; Navarro, J A; De la Rosa, M A; Gómez-Moreno, C; Tollin, G

    1992-11-30

    Electron transfer from P700 in photosystem I (PSI) particles from spinach to Anabaena sp. PCC 7119 flavodoxin has been studied using laser flash absorption spectroscopy. A non-linear protein concentration dependence of the rate constants was obtained, suggesting a two-step mechanism involving complex formation (k = 3.6 x 10(7) M-1.s-1) followed by intracomplex electron transfer (k = 270 s-1). The observed rate constants had a biphasic dependence on the concentrations of NaCl or MgCl2, with maximum values in the 40-80 mM range for NaCl and 4-12 mM for MgCl2. To our knowledge, this is the first time that the kinetics of PSI-dependent flavodoxin photoreduction have been determined.

  16. Control of nitrogenase recovery from oxygen inactivation by ammonia in the cyanobacterium Anabaena sp. strain CA (ATCC 33047).

    PubMed Central

    Smith, R L; Van Baalen, C; Tabita, F R

    1990-01-01

    The control of nitrogenase recovery from inactivation by oxygen was studied in Anabaena sp. strain CA (ATCC 33047). Nitrogenase activity (acetylene reduction) in cultures grown in 1% CO2 in air was inhibited by exposure to 1% CO2-99% O2 and allowed to recover in the presence of high oxygen tensions. Cultures exposed to hyperbaric levels of oxygen in the presence of 10 mM NH4NO3 were incapable of regaining nitrogenase activity, whereas control cultures returned to 65 to 80% of their original activity within about 3 h after exposure to high oxygen tension. In contrast to the regulation of heterocyst differentiation and nitrogenase synthesis, recovery from oxygen inactivation in this organism was shown to be under the control of NH4+ rather than NO3-. PMID:2110151

  17. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2016-07-12

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  18. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  19. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  20. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  1. Proteomic Strategy for the Analysis of the Polychlorobiphenyl-Degrading Cyanobacterium Anabaena PD-1 Exposed to Aroclor 1254

    PubMed Central

    Zhang, Hangjun; Jiang, Xiaojun; Xiao, Wenfeng; Lu, Liping

    2014-01-01

    The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  2. Modulation of fatty acids and hydrocarbons in Anabaena 7120 and its ntcA mutant under calcium.

    PubMed

    Singh, Savita; Verma, Ekta; Tiwari, Balkrishna; Niveshika; Mishra, Arun Kumar

    2017-02-01

    Calcium being a signaling molecule and mediator of cell response, we examined the modulation in fatty acid and hydrocarbon profiles of wild type cyanobacterium Anabaena sp. PCC 7120 and its ntcA mutant under the influence of different calcium chloride concentrations (0-10 mM). Dynamic modifications in fatty acid and hydrocarbon profile were evident through GC-FID analysis of extracted lipids. In the wild type, increase in CaCl2 (10 mM) resulted in unsaturation of fatty acids (observed in terms of high MUFA/PUFA ratio) while hydrocarbon production was distinctly high in the mutant strain compared to wild type at all tested concentrations. The synthesis of short chain hydrocarbons (C5-C8) were dominated at inhibitory concentration (10 mM CaCl2) in mutant strain. Results suggest that the increase in MUFA/PUFA ratio at inhibitory concentration in wild type, and higher percentage of hydrocarbons in mutant strain, may be attributed to the survival and acclimation strategies under altered calcium environment. Our results also suggest the involvement of the ntcA gene (master regulator of N2 metabolism) in regulation of carbon metabolism; specifically fatty acid, hydrocarbon, and other metabolic compounds essential for maintenance and sustenance of growth under stress condition. Thus, our study outlines basic acclimation response along with possibilities of production of fatty acid and hydrocarbon derived biofuel and other bioactive compounds in Anabaena sp. PCC 7120 under altered calcium levels which could be of biotechnological interest.

  3. Synergistic Effects of Nano-Sized Titanium Dioxide and Zinc on the Photosynthetic Capacity and Survival of Anabaena sp.

    PubMed Central

    Tang, Yulin; Li, Shuyan; Qiao, Junlian; Wang, Hongtao; Li, Lei

    2013-01-01

    Anabaena sp. was used to examine the toxicity of exposure to a nano-TiO2 suspension, Zn2+ solution, and mixtures of nano-TiO2 and Zn2+ suspensions. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Nano-TiO2 particles exhibited no significant toxicity at concentrations lower than 10.0 mg/L. The 96 h concentration for the 50% maximal effect (EC50) of Zn2+ alone to Anabaena sp. was 0.38 ± 0.004 mg/L. The presence of nano-TiO2 at low concentrations (<1.0 mg/L) significantly enhanced the toxicity of Zn2+ and consequently reduced the EC50 value to 0.29 ± 0.003 mg/L. However, the toxicity of the Zn2+/TiO2 system decreased with increasing nano-TiO2 concentration because of the substantial adsorption of Zn2+ by nano-TiO2. The toxicity curve of the Zn2+/TiO2 system as a function of incremental nano-TiO2 concentrations was parabolic. The toxicity significantly increased at the initial stage, reached its maximum, and then decreased with increasing nano-TiO2 concentration. Hydrodynamic sizes, concentration of nano-TiO2 and Zn2+ loaded nano-TiO2 were the main parameters for synergistic toxicity. PMID:23852017

  4. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  5. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  6. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  7. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  8. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  9. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  10. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  11. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  12. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  13. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution.

  14. Neonatal sepsis caused by Shewanella algae: A case report.

    PubMed

    Charles, Marie Victor Pravin; Srirangaraj, Sreenivasan; Kali, Arunava

    2015-01-01

    Sepsis remains a leading cause of mortality among neonates, especially in developing countries. Most cases of neonatal sepsis are attributed to Escherichia coli and other members of the Enterobacteriaceae family. Shewanella algae (S. algae) is a gram-negative saprophytic bacillus, commonly associated with the marine environment, which has been isolated from humans. Early onset neonatal sepsis caused by S. algae is uncommon. We report a case of S. algae blood stream infection in a newborn with early onset neonatal sepsis.

  15. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  16. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  17. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  18. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  19. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  20. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  1. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    PubMed

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  2. Sterol chemotaxonomy of marine pelagophyte algae.

    PubMed

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  3. Pheromone signaling during sexual reproduction in algae.

    PubMed

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  4. Research for Developing Renewable Biofuels from Algae

    SciTech Connect

    Black, Paul N.

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  5. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice.

  6. Polyamine biosynthetic diversity in plants and algae.

    PubMed

    Fuell, Christine; Elliott, Katherine A; Hanfrey, Colin C; Franceschetti, Marina; Michael, Anthony J

    2010-07-01

    Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.

  7. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  8. [Allelopathic effect of artemisinin on green algae].

    PubMed

    Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo; Li, Long-Yun

    2013-05-01

    To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.

  9. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  10. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  11. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  12. Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 71201[OPEN

    PubMed Central

    López-Igual, Rocío; Wilson, Adjélé; Bourcier de Carbon, Céline; Sutter, Markus; Turmo, Aiko

    2016-01-01

    The photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins. PMID:27208286

  13. Expression, nucleotide sequence and mutational analysis of two open reading frames in the nif gene region of Anabaena sp. strain PCC7120.

    PubMed

    Borthakur, D; Basche, M; Buikema, W J; Borthakur, P B; Haselkorn, R

    1990-04-01

    A 1.8 kb transcript corresponding to a region of the Anabaena 7120 chromosome 4 kb downstream of the nifHDK operon appears 12-18 h after heterocyst induction. The DNA corresponding to this transcript was sequenced and found to contain two open reading frames, designated ORF 1 and ORF 2. Two polypeptides, of 30 kDa and 13 kDa, encoded by these ORFs were expressed in Escherichia coli. An apparent start site for the transcript, detected by S1 nuclease protection, was located 42 bp upstream of the ATG start codon of ORF 1. ORF 2 shows strong sequence similarity to ORF 6 in the nif gene region of Azotobacter vinelandii. ORF 1 was interrupted using a 1.4 kb neomycin resistance cassette and the resulting mutant grew very slowly on medium lacking combined nitrogen. The mutant had 45% of wild-type acetylene reduction activity, which could be complemented by a 2.8 kb EcoRI fragment of wild-type Anabaena DNA containing only ORF 1 and ORF 2. Thus, one or both of these ORFs is required for efficient nitrogen fixation in Anabaena.

  14. Comparative analysis of MazEF and HicAB toxin-antitoxin systems of the cyanobacterium, Anabaena sp. PCC7120.

    PubMed

    Potnis, Akhilesh A; Raghavan, Prashanth S; Shelke, Ashwini; Nikam, T D; Rajaram, Hema

    2017-01-01

    Anabaena PCC7120 has two annotated toxin-antitoxin systems: MazEF and HicAB. Overexpression of either of the toxins severely inhibited the growth of Escherichia coli BL21(plysS)(DE3). Of the two Anabaena toxins, MazF exhibited higher toxicity than HicA as evidenced by (i) 100-fold lower viability upon overexpression of MazF compared to HicA; (ii) complete loss of cell viability within 1 h of induction of MazF expression, as against >10(3) colony forming units mL(-1) in case of HicA; (iii) inability to maintain the MazF overexpressing plasmid in E. coli cells; and (iv) neutralisation of the toxin was effective at the molar ratio of 1:1.9 for MazF:MazE and 13:1 for HicA:HicB, indicating higher antitoxin requirement for neutralisation of MazF. The growth inhibitory effect of MazF was found to be higher in lag phase cultures compared to mid-logarithmic phase cultures of E. coli, while the reverse was true for HicA. The results suggest possible distinct roles for MazEF and HicAB systems of Anabaena.

  15. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation.

    PubMed

    Valladares, Ana; Flores, Enrique; Herrero, Antonia

    2016-02-01

    Many filamentous cyanobacteria respond to the external cue of nitrogen scarcity by the differentiation of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. Heterocysts follow a spatial pattern along the filament of two heterocysts separated by ca. 10-15 vegetative cells performing oxygenic photosynthesis. HetR is a transcriptional regulator that directs heterocyst differentiation. In the model strain Anabaena sp. PCC 7120, the HetR protein was observed in various oligomeric forms in vivo, including a tetramer that peaked with maximal hetR expression during differentiation. Tetramers were not detected in a hetR point mutant incapable of differentiation, but were conspicuous in an over-differentiating strain lacking the PatS inhibitor. In differentiated filaments the HetR tetramer was restricted to heterocysts, being undetectable in vegetative cells. HetR co-purified with RNA polymerase from Anabaena mainly as a tetramer. In vitro, purified recombinant HetR was distributed between monomers, dimers, trimers and tetramers, and it was phosphorylated when incubated with (γ-(32)P)ATP. Phosphorylation and PatS hampered the accumulation of HetR tetramers and impaired HetR binding to DNA. In summary, tetrameric HetR appears to represent a functionally relevant form of HetR, whose abundance in the Anabaena filament could be negatively regulated by phosphorylation and by PatS.

  16. Zur (FurB) is a key factor in the control of the oxidative stress response in Anabaena sp. PCC 7120.

    PubMed

    Sein-Echaluce, Violeta C; González, Andrés; Napolitano, Mauro; Luque, Ignacio; Barja, Francisco; Peleato, M Luisa; Fillat, María F

    2015-06-01

    Iron and zinc are necessary nutrients whose homeostasis is tightly controlled by members of the ferric uptake regulator (FUR) superfamily in the cyanobacterium Anabaena sp. PCC7120. Although the link between iron metabolism and oxidative stress management is well documented, little is known about the connection between zinc homeostasis and the oxidative stress response in cyanobacteria. Zinc homeostasis in Anabaena is controlled by Zur, also named FurB. When overexpressed in Escherichia coli, Zur (FurB) improved cell survival during oxidative stress. In order to investigate the possible correlation between Zur and the oxidative stress response in Anabaena, zur deletion and zur-overexpressing strains have been constructed, and the consequences of Zur imbalance evaluated. The lack of Zur increased sensitivity to hydrogen peroxide (H2 O2 ), whereas an excess of Zur enhanced oxidative stress resistance. Both mutants displayed pleiotropic phenotypes, including alterations on the filament surfaces observable by scanning electron microscopy, reduced content of endogenous H2 O2 and altered expression of sodA, catalases and several peroxiredoxins. Transcriptional and biochemical analyses unveiled that the appropriate level of Zur is required for proper control of the oxidative stress response and allowed us to identify major antioxidant enzymes as novel members of the Zur regulon.

  17. GroE heat shock protein is required for in vivo assembly of recombinant Anabaena ribulose bisphosphate (Ru-P sub 2 ) carboxylase/oxygenase

    SciTech Connect

    Larimer, F.W.; Soper, T.S. )

    1991-03-11

    As a prerequisite for site-directed mutagenesis of a L{sub 8}S{sub 8} form of Ru-P{sub 2} carboxylase, the rbc operon from Anabaena 7120 was placed under control of the tac promoter (tac-rbcLrbcS, bla, ori(pMB1), from pFL260) in E. coli MV1190 (recA). Substantial amounts of insoluble large subunit were produced, but not active enzyme, suggesting that the carboxylase was not being correctly assembled in vivo. Coexpression of rbcLrbcS and the operon encoding the GroESL (HSP10, HSP60) complex from a compatible plasmid (tac-groESgroEL, cat, ori(p15A), from pFL261) resulted in high levels of active, soluble enzyme. Supplementation of rich medium with potassium ions, required for GroE complex function in vitro enhanced recovery of active enzyme. Under optimal expression conditions, active Ru-P{sub 2} carboxylase comprised 7-10% of soluble protein. The recombinant carboxylase, purified to homogeneity, was similar to the enzyme purified from the authentic cyanobacterium. Chaperonins are required for assembly of many complex proteins. The stringent requirement of Anabaena carboxylase for elevated levels of E. coli GroE chaperonin for proper assembly suggests that the GroE complex differs from the Anabaena chaperonin complex that is normally involved in the assembly of this L{sub 8}S{sub 8} carboxylase.

  18. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.

  19. Biofuels from algae: challenges and potential.

    PubMed

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2010-09-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.

  20. Hydrogen production by photosynthetic green algae.

    PubMed

    Ghirardi, Maria L

    2006-08-01

    Oxygenic photosynthetic organisms such as cyanobacteria, green algae and diatoms are capable of absorbing light and storing up to 10-13% of its energy into the H-H bond of hydrogen gas. This process, which takes advantage of the photosynthetic apparatus of these organisms to convert sunlight into chemical energy, could conceivably be harnessed for production of significant amounts of energy from a renewable resource, water. The harnessed energy could then be coupled to a fuel cell for electricity generation and recycling of water molecules. In this review, current biochemical understanding of this reaction in green algae, and some of the major challenges facing the development of future commercial algal photobiological systems for H2 production have been discussed.

  1. Engineering algae for biohydrogen and biofuel production.

    PubMed

    Beer, Laura L; Boyd, Eric S; Peters, John W; Posewitz, Matthew C

    2009-06-01

    There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.

  2. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  3. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  4. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  5. Algae: America’s Pathway to Independence

    DTIC Science & Technology

    2007-03-30

    Bioenergy, Biofuel, Energy Policy CLASSIFICATION: Unclassified The United States is dependent on foreign oil to meet 63% of its petroleum demand...source of bioenergy. ALGAE: AMERICA’S PATHWAY TO INDEPENDENCE Ensuring a secure supply of energy is a strategic challenge for...150 years,6 the U.S. will be competing with other nations to procure the 2 finite commodity. The Department of Energy (DOE) estimates that by the

  6. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  7. [Pharmacology and toxicology of Spirulina alga].

    PubMed

    Chamorro, G; Salazar, M; Favila, L; Bourges, H

    1996-01-01

    Spirulina, a unicellular filamentous blue-green alga has been consumed by man since ancient times in Mexico and central Africa. It is currently grown in many countries by synthetic methods. Initially the interest in Spirulina was on its nutritive value: it was found almost equal to other plant proteins. More recently, some preclinical testing suggests it has several therapeutic properties such as hypocholesterolemic, immunological, antiviral and antimutagenic. This has led to more detailed evaluations such as nucleic acid content and presence of toxic metals, biogenic toxins and organic chemicals: they have shown absence or presence at tolerable levels according to the recommendations of international regulatory agencies. In animal experiments for acute, subchronic and chronic toxicity, reproduction, mutagenicity, and teratogenicity the algae did not cause body or organ toxicity. In all instances, the Spirulina administered to the animals were at much higher amounts than those expected for human consumption. On the other hand there is scant information of the effects of the algae in humans. This area needs more research.

  8. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  9. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  10. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  11. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops.

  12. Electro-coagulation-flotation process for algae removal.

    PubMed

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  13. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power.

    PubMed

    Nozue, Shuho; Mukuno, Akira; Tsuda, Yumi; Shiina, Takashi; Terazima, Masahide; Kumazaki, Shigeichi

    2016-01-01

    Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to distinguish between photosystem I and photosystem II (PSI and PSII) in microscopic images, we have obtained dependence of FLIM data on input laser power from a filamentous cyanobacterium Anabaena variabilis and single cellular green alga Parachlorella kessleri. Nitrogen-fixing cells in A. variabilis, heterocysts, are mostly visualized as cells in which short-lived fluorescence (≤0.1 ns) characteristic of PSI is predominant. The other cells in A. variabilis (vegetative cells) and P. kessleri cells show a transition in the status of PSII from an open state with the maximal charge separation rate at a weak excitation limit to a closed state in which charge separation is temporarily prohibited by previous excitation(s) at a relatively high laser power. This transition is successfully reproduced by a computer simulation with a high fidelity to the actual imaging conditions. More details in the fluorescence from heterocysts were examined to assess possible functions of PSII in the anaerobic environment inside the heterocysts for the nitrogen-fixing enzyme, nitrogenase. Photochemically active PSII:PSI ratio in heterocysts is tentatively estimated to be typically below our detection limit or at most about 5% in limited heterocysts in comparison with that in vegetative cells.

  14. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production.

    PubMed

    Masukawa, Hajime; Inoue, Kazuhito; Sakurai, Hidehiro; Wolk, C Peter; Hausinger, Robert P

    2010-10-01

    Cyanobacteria use sunlight and water to produce hydrogen gas (H₂), which is potentially useful as a clean and renewable biofuel. Photobiological H₂ arises primarily as an inevitable by-product of N₂ fixation by nitrogenase, an oxygen-labile enzyme typically containing an iron-molybdenum cofactor (FeMo-co) active site. In Anabaena sp. strain 7120, the enzyme is localized to the microaerobic environment of heterocysts, a highly differentiated subset of the filamentous cells. In an effort to increase H₂ production by this strain, six nitrogenase amino acid residues predicted to reside within 5 Å of the FeMo-co were mutated in an attempt to direct electron flow selectively toward proton reduction in the presence of N₂. Most of the 49 variants examined were deficient in N₂-fixing growth and exhibited decreases in their in vivo rates of acetylene reduction. Of greater interest, several variants examined under an N₂ atmosphere significantly increased their in vivo rates of H₂ production, approximating rates equivalent to those under an Ar atmosphere, and accumulated high levels of H₂ compared to the reference strains. These results demonstrate the feasibility of engineering cyanobacterial strains for enhanced photobiological production of H₂ in an aerobic, nitrogen-containing environment.

  15. Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp.

    NASA Astrophysics Data System (ADS)

    Rösken, Liz M.; Körsten, Susanne; Fischer, Christian B.; Schönleber, Andreas; van Smaalen, Sander; Geimer, Stefan; Wehner, Stefan

    2014-04-01

    Customized metal nanoparticles are highly relevant in industrial processes, where they are used as catalysts and therefore needed on a large scale. An extremely economically and environmentally friendly way to produce metal nanoparticles is microbial biosynthesis, meaning the biosorption and bioreduction of diluted metal ions to zero valent (metal) nanoparticles. To maintain the key advantage of biosynthesis, including eco friendliness, a bioreactor (e.g., bacteria) has to be harmless by itself. Here, the ability of the cyanobacteria Anabaena sp. (SAG 12.82) is shown to fulfill both needs: bioreduction of Au3+ ions to Au0 and the subsequent formation of crystalline Au0-nanoparticles as well as absence of the release of toxic substances (e.g., anatoxin-a). The time-dependent growth of the nanoparticles is recorded by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) over a range of several days. Formation of nanoparticles starts within the first minutes at the heterocyst polysaccharide layer (HEP). After 4 h, the dominating amount of nanoparticles is found in the vegetative cells. The bioproduced nanoparticles are found in both cell types, mainly located along the thylakoid membranes of the vegetative cells and have a final average size of 9 nm within the examined timescale of a few days.

  16. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts.

  17. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  18. HetF and PatA control levels of HetR in Anabaena sp. strain PCC 7120.

    PubMed

    Risser, Douglas D; Callahan, Sean M

    2008-12-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that differentiates heterocysts in response to deprivation of combined nitrogen. A hetF deletion strain lacked heterocysts and had aberrant cell morphology. Site-directed mutagenesis of the predicted active-site histidine and cysteine residues of this putative caspase-hemoglobinase fold protease abolished HetF function, supporting the hypothesis that HetF is a protease. Deletion of patA, which is necessary for the formation of most intercalary heterocysts, or hetF resulted in an increase in HetR protein, and extra copies of hetF on a plasmid functionally bypassed the deletion of patA. A hetR-gfp translational fusion expressed from an inducible promoter demonstrated that hetF-dependent downregulation of HetR levels occurs rapidly in vegetative cells, as well as developing heterocysts. "Mosaic" filaments in which only one cell of a filament had a copy of hetR or hetF indicated that hetF is required for differentiation only in cells that will become heterocysts. hetF was required for transcription from a hetR-dependent transcription start point of the hetR promoter and induction of transcription from the patS promoter. The inverse correlation between the level of HetR protein and transcription from hetR-dependent promoters suggests that the transcriptional activity of HetR is regulated by HetF and PatA.

  19. Primary structural response in tryptophan residues of Anabaena sensory rhodopsin to photochromic reactions of the retinal chromophore

    NASA Astrophysics Data System (ADS)

    Inada, Seisuke; Mizuno, Misao; Kato, Yoshitaka; Kawanabe, Akira; Kandori, Hideki; Wei, Zhengrong; Takeuchi, Satoshi; Tahara, Tahei; Mizutani, Yasuhisa

    2013-06-01

    Anabaena sensory rhodopsin (ASR) is a microbial rhodopsin found in eubacteria and functions as a photosensor. The photoreaction of ASR is photochromic between all-trans, 15-anti (ASRAT), and 13-cis, 15-syn (ASR13C) isomers. To understand primary protein dynamics in the photoreaction starting in ASRAT and ASR13C, picosecond time-resolved ultraviolet resonance Raman spectra were obtained. In the intermediate state appearing in the picosecond temporal region, spectral changes of Trp bands were observed. For both ASRAT and ASR13C, the intensities of the Trp bands were bleached within the instrumental response time and recovered with a time constant of 30 ps. This suggests that the rates of structural changes in the Trp residue in the vicinity of the chromophore do not depend on the direction of the isomerization of retinal. A comparison between spectra of the wild-type and Trp mutants indicates that the structures of Trp76 and Trp46 change upon the primary photoreaction of retinal.

  20. In silico analysis and experimental validation of lipoprotein and novel Tat signal peptides processing in Anabaena sp. PCC7120.

    PubMed

    Kumari, Sonika; Chaurasia, Akhilesh Kumar

    2015-12-01

    Signal peptide (SP) plays a pivotal role in protein translocation. Lipoprotein- and twin arginine translocase (Tat) dependent signal peptides were studied in All3087, a homolog of competence protein of Synechocystis PCC6803 and in two putative alkaline phosphatases (ALPs, Alr2234 and Alr4976), respectively. In silico analysis of All3087 is shown to possess the characteristics feature of competence proteins such as helix-hairpin-helix, N and C-terminal HKD endonuclease domain, calcium binding domain and N-terminal lipoprotein signal peptide. The SP recognition-cleavage site in All3087 was predicted (AIA-AC) using SignalP while further in-depth analysis using Pred-Lipo and WebLogo analysis for consensus sequence showed it as IAA-C. Activities of putative ALPs were confirmed by heterologous overexpression, activity assessment and zymogram analysis. ALP activity in Anabaena remains cell bound in log-phase, but during late log/stationary phase, an enhanced ALP activity was detected in extracellular milieu. The enhancement of ALP activity during stationary phase was not only due to inorganic phosphate limitation but also contributed by the presence of novel bipartite Tat-SP. The Tat signal transported the folded active ALPs to the membrane, followed by anchoring into the membrane and successive cleavage enabling transportation of the ALPs to the extracellular milieu, because of bipartite architecture and processing of transit Tat-SP.

  1. Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Burnat, Mireia; Schleiff, Enrico; Flores, Enrique

    2014-12-01

    Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ.

  2. Optimising water treatment practices for the removal of Anabaena circinalis and its associated metabolites, geosmin and saxitoxins.

    PubMed

    Ho, Lionel; Tanis-Plant, Paul; Kayal, Nawal; Slyman, Najwa; Newcombe, Gayle

    2009-12-01

    The cyanobacterium Anabaena circinalis has the ability to co-produce geosmin and saxitoxins, compounds which can compromise the quality of drinking water. This study provides pertinent information in optimising water treatment practices for the removal of geosmin and saxitoxins. In particular, it demonstrates that pre-oxidation using potassium permanganate could be applied at the head of water treatment plants without releasing intracellular geosmin and saxitoxins from A. circinalis. Furthermore, powdered activated carbon (PAC) was shown to be an effective treatment barrier for the removal of extracellular (dissolved) geosmin and saxitoxins, with similar adsorption trends of both compounds. The relative removal of the saxitoxins compared with geosmin was determined to be 0.84 +/- 0.27, which implies that saxitoxin removal with PAC can be estimated to be approximately 60 to 100% of the removal of geosmin under equivalent conditions. Chlorine was shown to be effective for the oxidation of the saxitoxins with CT values of approximately 30 mg min l(-1) required for greater than 90% destruction of the saxitoxins.

  3. Effects of the Alkaloid Gramine on the Light-Harvesting, Energy Transfer, and Growth of Anabaena sp. (PCC 7119).

    PubMed Central

    Foguel, D.; Chaloub, R. M.

    1993-01-01

    Long-term and short-term effects of gramine on cells of Anabaena sp. were studied. Culture death was observed after an initial growth in the presence of 0.5 mM gramine, and lower concentrations decreased both the specific growth rate and the growth yield. Cultures showed a reduction in the chlorophyll content as well as an increase in the level of accessory pigments, which were proportional to the alkaloid concentration. When cultures were excited with green light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the fluorescence spectra of the cells showed a shoulder at 685 nm related to the photosystem II (PSII) antennae emission. This band was reduced when gramine was present during the growth, suggesting that gramine suppresses the energy transfer between the phycobilisomes and PSII. At lethal concentrations for cellular growth, gramine suppressed immediately the photosynthetic oxygen production as well as the electron transport from H2O to p-benzoquinone. The influence of gramine on the PSII photochemical reactions was investigated by flash-induced fluorescence measurements, and the results suggest that the alkaloid could act as an electron donor to the PSII reaction center. PMID:12231719

  4. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses

    SciTech Connect

    Mishra, Yogesh; Chaurasia, Neha; Rai, Lal Chand

    2009-04-17

    Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 {sup o}C), NaCl (6% w/v), carbofuron (0.025 mg ml{sup -1}), CdCl{sub 2} (4 mM), CuCl{sub 2} (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.

  5. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

    2014-10-15

    The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.

  6. Desiccation induced changes in osmolytes production and the antioxidative defence in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Singh, Priyanka; Tiwari, Anupam; Singh, Sureshwar Prasad; Asthana, Ravi Kumar

    2013-01-01

    Cells of Anabaena sp. PCC 7120, a low desiccation tolerant cyanobacterium, was subjected to prolonged desiccation and effect of loss of water was examined on production of osmolytes, and antioxidant response as well as on overall viability in terms of photosynthetic activity. During dehydration (22 h), the organism maintained about 98.5 % loss of cellular water, yet cells remained viable as about 30 % of photosynthetic O2-evolution activity resumed upon hydrating (1 h) such cells. In desiccated state, cyanobacterial cells accumulated osmolytes within 1 h though their contents decreased thereafter. The highest levels of trehalose (179 nmol mg(-1) protein), sucrose (805 nmol mg(-1) protein) and proline (23.2 nmol mg(-1) protein) were attained within 1 h. Chlorophyll a and carotenoid contents also increased within 1 h but phycocyanin level showed opposite trend. The oxygen-evolving activity declined in desiccated cyanobacterial biomass while rehydration led to instant recovery, indicating that cells protect the photosynthetic machinery against desiccation. Notwithstanding, activities of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) attained their peaks after 3 h of desiccation, though within 10 min of rehydration, their levels returned back close to basal activities of the cultured cells. We propose that onset of osmolyte production in conjunction with upshift of antioxidant enzymes apparently protects the cyanobacterial cells from desiccation stress.

  7. Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC33047

    SciTech Connect

    Ramos, J.L.; Guerrero, M.G.; Losada, M.

    1984-07-01

    Conditions have been developed that lengthen the time during which photosynthetic dinitrogen fixation by filaments of the cyanobacterium Anabaena sp. strain ATCC 33047 proceeds freely, whereas the subsequent conversion of ammonia into organic nitrogen remains blocked, with the resulting ammonia released to the outer medium. When L-methionine-DL-sulfoximine was added every 20 h, maximal rates of ammonia production (25 to 30 ..mu..mol/mg of chlorophyll per h) were maintained for about 50 h. After this time, ammonia production ceased due to a deficiency of glutamine and other nitrogenous compounds in the filaments, conditions which finally led to cell lysis. The effective ammonia production period could be further extended to about 7 days by adding a small amount of glutamine at the end of a 40-h production period or by allowing the cells to recover for 8 h in the absence of L-methionine-DL-sulfoximine after every 40-h period in the presence of the inhibitor. A more prolonged steady production of ammonia, lasting for longer than 2 weeks, was achieved by alternating treatments with the glutamine synthetase inhibitors L-methionine-DL-sulfoximine and phosphinothricin, provided that 8-h recovery periods in the absence of either compound were also alternated throughout. The biochemically manipulated cyanobacterial filaments thus represent a system that is relatively stable with time for the conversion of light energy into chemical energy, with the net generation of a valuable fuel and fertilizer through the photoreduction of dinitrogen to ammonia.

  8. Cogongrass [Imperata cylindrica (L.) Beauv.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cogongrass is a non-native, aggressive, perennial grass that is considered the World’s seventh worst weed. Over the past decade, this invasive grass has moved north and is now recorded from at least one site in 75% of the counties in Mississippi. The most recent discoveries and results from resear...

  9. Exploring the potential of algae/bacteria interactions.

    PubMed

    Kouzuma, Atsushi; Watanabe, Kazuya

    2015-06-01

    Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes.

  10. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2016-07-12

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  11. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  12. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  13. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1990-05-01

    division Cyanophyta , commonly called blue -green algae cr cyanobacteria . Although cyanobacteria are found in almost any environment ranging from hot...p ecst Available Copy ~’ COPy Ni AD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS:’ I ISOLATION AND CHARACTERIZATION < DTIC ANNUAL/FINAL...AA I 78 11. TITLE (In•.ju . ’,curry Ci.si fication) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolatior and CharacteriZation 12. PERSONAL

  14. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1989-01-15

    exclusively caused by strains of species that are members of the L division Cyanophyta , commonly called blue -green algae or cyanobacteria . Although...0 0 Lfl (NAD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS: ISOLATION AND CHARACTERIZATION ANNCUAL REPORT Wayne W. Carmichael Sarojini Bose...Frederick, Maryland 21701-5012 62770A 6277GA871 AA 378 11 TITLE &who* Secwn~y C11mrfaon) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolation

  15. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  16. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  17. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  18. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  19. Application of synthetic biology in cyanobacteria and algae.

    PubMed

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO(2) and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.

  20. Method and apparatus for lysing and processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  1. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  2. Acetone, butanol, and ethanol production from wastewater algae.

    PubMed

    Ellis, Joshua T; Hengge, Neal N; Sims, Ronald C; Miller, Charles D

    2012-05-01

    Acetone, butanol, and ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4 using wastewater algae biomass as a carbon source was demonstrated. Algae from the Logan City Wastewater Lagoon system grow naturally at high rates providing an abundant source of renewable algal biomass. Batch fermentations were performed with 10% algae as feedstock. Fermentation of acid/base pretreated algae produced 2.74 g/L of total ABE, as compared with 7.27 g/L from pretreated algae supplemented with 1% glucose. Additionally, 9.74 g/L of total ABE was produced when xylanase and cellulase enzymes were supplemented to the pretreated algae media. The 1% glucose supplement increased total ABE production approximately 160%, while supplementing with enzymes resulted in a 250% increase in total ABE production when compared to production from pretreated algae with no supplementation of extraneous sugar and enzymes. Additionally, supplementation of enzymes produced the highest total ABE production yield of 0.311 g/g and volumetric productivity of 0.102 g/Lh. The use of non-pretreated algae produced 0.73 g/L of total ABE. The ability to engineer novel methods to produce these high value products from an abundant and renewable feedstock such as algae could have significant implications in stimulating domestic energy economies.

  3. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses.

  4. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  5. Sigma factor genes sigC, sigE, and sigG are upregulated in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Aldea, M Ramona; Mella-Herrera, Rodrigo A; Golden, James W

    2007-11-01

    We used gfp transcriptional fusions to investigate the regulation of eight sigma factor genes during heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Reporter strains containing gfp fusions with the upstream regions of sigB2, sigD, sigI, and sigJ did not show developmental regulation. Time-lapse microscopy of sigC, sigE, and sigG reporter strains showed increased green fluorescent protein fluorescence in differentiating cells at 4 h, 16 h, and 9 h, respectively, after nitrogen step down.

  6. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    PubMed

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of (60)Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  7. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  8. Biodiesel from algae: challenges and prospects.

    PubMed

    Scott, Stuart A; Davey, Matthew P; Dennis, John S; Horst, Irmtraud; Howe, Christopher J; Lea-Smith, David J; Smith, Alison G

    2010-06-01

    Microalgae offer great potential for exploitation, including the production of biodiesel, but the process is still some way from being carbon neutral or commercially viable. Part of the problem is that there is little established background knowledge in the area. We should look both to achieve incremental steps and to increase our fundamental understanding of algae to identify potential paradigm shifts. In doing this, integration of biology and engineering will be essential. In this review we present an overview of a potential algal biofuel pipeline, and focus on recent work that tackles optimization of algal biomass production and the content of fuel molecules within the algal cell.

  9. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated.

  10. pH dependence of Anabaena sensory rhodopsin: retinal isomer composition, rate of dark adaptation, and photochemistry.

    PubMed

    Rozin, Rinat; Wand, Amir; Jung, Kwang-Hwan; Ruhman, Sanford; Sheves, Mordechai

    2014-07-31

    Microbial rhodopsins are photoactive proteins, and their binding site can accommodate either all-trans or 13-cis retinal chromophore. The pH dependence of isomeric composition, dark-adaptation rate, and primary events of Anabaena sensory rhodopsin (ASR), a microbial rhodopsin discovered a decade ago, are presented. The main findings are: (a) Two pKa values of 6.5 and 4.0 assigned to two different protein residues are observed using spectroscopic titration experiments for both ground-state retinal isomers: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). The protonation states of these protein residues affect the absorption spectrum of the pigment and most probably the isomerization process of the retinal chromophore. An additional pKa value of 8.5 is observed only for 13C-ASR. (b) The isomeric composition of ASR is determined over a wide pH range and found to be almost pH-independent in the dark (>96% AT isomer) but highly pH-dependent in the light-adapted form. (c) The kinetics of dark adaptation is recorded over a wide pH range, showing that the thermal isomerization from 13C to AT retinal occurs much faster at high pH rather than under acidic conditions. (d) Primary photochemical events of ASR at pH 5 are recorded using VIS hyperspectral pump-probe spectroscopy with <100 fs resolution and compared with the previously recorded results at pH 7.5. For AT-ASR, these are shown to be almost pH-independent. However, photochemistry of 13C-ASR is pH-dependent and slowed down in acidic environments.

  11. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity.

    PubMed

    Singh, Garvita; Babele, Piyoosh K; Shahi, Shailesh K; Sinha, Rajeshwar P; Tyagi, Madhu B; Kumar, Ashok

    2014-10-01

    In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEMselected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag- CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

  12. Influence of Various Levels of Iron and Other Abiotic Factors on Siderophorogenesis in Paddy Field Cyanobacterium Anabaena oryzae.

    PubMed

    Singh, Anumeha; Mishra, Arun Kumar

    2015-05-01

    Siderophore production in Anabaena oryzae was investigated under the influence of various levels of iron and other abiotic factors such as pH, temperature, light and different nitrogen sources. Optimization of culture conditions under controlled mechanisms of these abiotic factors lead to the siderophore production in significant amount. Under iron-starved condition, A. oryzae extracellularly releases 89.17% hydroxymate-type siderophore. Slightly alkaline pH and 30 °C temperature was found stimulatory for the cyanobacterial growth and siderophorogenesis (88.52% SU and 83.87% SU, respectively). Excess iron loading had a negative impact on siderophore production along with the alterations in the morphology and growth. Further, scanning electron microphotographs signified that higher concentrations of iron lead to complete damage of the cells and alterations in membrane proteins possibly transporters responsible for exchange of siderophore complex from environment to the cell. SDS-PAGE analysis of whole cell proteins showed overexpression of low molecular weight proteins ranges between 20.1 to 29.0 kDa up to 100-μM iron concentrations. These polypeptides/proteins might be involved in maintaining iron homeostasis by regulating siderophore production. Results suggest that lower concentrations of iron ≤ 50 μM along with other abiotic factors are stimulatory, whereas higher concentrations (>50 μM) are toxic. Data further suggested that cyanobacterium A. oryzae can serve as a potential biofertilizer especially in iron-rich soil through sequestration by the power of natural Fe(III)-siderophore complex formation.

  13. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    PubMed Central

    2012-01-01

    Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus

  14. The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120.

    PubMed

    Videau, Patrick; Rivers, Orion S; Hurd, Kathryn; Ushijima, Blake; Oshiro, Reid T; Ende, Rachel J; O'Hanlon, Samantha M; Cozy, Loralyn M

    2016-10-24

    The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9-14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234 Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein-protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription-quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein-protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes.

  15. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  16. Algae-based oral recombinant vaccines.

    PubMed

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  17. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  18. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  19. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  20. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  1. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  2. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study.

  3. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    SciTech Connect

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium as a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.

  4. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term.

  5. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter.

  6. PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Jang, Jichan; Wang, Li; Jeanjean, Robert; Zhang, Cheng-Cai

    2007-04-01

    Protein phosphatases play important roles in the regulation of cell growth, division and differentiation. The cyanobacterium Anabaena PCC 7120 is able to differentiate heterocysts specialized in nitrogen fixation. To protect the nitrogenase from inactivation by oxygen, heterocyst envelope possesses a layer of polysaccharide and a layer of glycolipids. In the present study, we characterized All1731 (PrpJ), a protein phosphatase from Anabaena PCC 7120. prpJ was constitutively expressed in both vegetative cells and heterocysts. Under diazotrophic conditions, the mutant DeltaprpJ (S20) did not grow, lacked only one of the two heterocyst glycolipids, and fragmented extensively at the junctions between developing cells and vegetative cells. No heterocyst glycolipid layer could be observed in the mutant by electron microscopy. The inactivation of prpJ affected the expression of hglE(A) and nifH, two genes necessary for the formation of the glycolipid layer of heterocysts and the nitrogenase respectively. PrpJ displayed a phosphatase activity characteristic of PP2C-type protein phosphatases, and was localized on the plasma membrane. The function of prpJ establishes a new control point for heterocyst maturation because it regulates the synthesis of only one of the two heterocyst glycolipids while all other genes so far analysed regulate the synthesis of both heterocyst glycolipids.

  7. A comparative laser-flash absorption spectroscopy study of Anabaena PCC 7119 plastocyanin and cytochrome c6 photooxidation by photosystem I particles.

    PubMed

    Medina, M; Díaz, A; Hervás, M; Navarro, J A; Gómez-Moreno, C; de la Rosa, M A; Tollin, G

    1993-05-01

    Laser-flash absorption spectroscopy has been used to investigate the kinetics of electron transfer from reduced cytochrome c6 and plastocyanin, isolated from Anabaena PCC 7119, to oxidized P700 in photosystem-I particles isolated from the same cyanobacterium and from spinach. For all metalloproteins and photosystems, the observed rate constant has a non-linear protein-concentration dependence, thus suggesting complex formation preceding electron transfer. Plastocyanin and cytochrome c6 have similar association constants for complex formation with spinach photosystem I, but the copper protein exhibits a higher intracomplex-electron-transfer rate constant (twofold). With Anabaena photosystem I, the two redox proteins are more effective with respect to both complex formation (5-10-fold) and electron transfer (1.5-4-fold) than with the spinach photosystem. In all cases, the observed rate constants for electron-transfer monotonically decrease with increasing NaCl or MgCl2 concentration. This is interpreted in terms of the involvement of attractive electrostatic interactions, which result in the initial collision complex having the most productive orientation for the electron transfer process, without a requirement for further reorientation. The magnitude of the response to MgCl2 suggests the occurrence of specific ion effects as well. In the absence of added salts, the reduction rate of oxidized P700 increases with pH from approximately 6 to 8, but decreases slightly at pH 8.5.

  8. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Paulpandi, Manickam; Althbyani, Abdulaziz Dakhellah Meqbel; Subramaniam, Jayapal; Madhiyazhagan, Pari; Wang, Lan; Suresh, Udaiyan; Kumar, Palanisamy Mahesh; Mohan, Jagathish; Rajaganesh, Rajapandian; Wei, Hui; Kalimuthu, Kandasamy; Parajulee, Megha N; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Mosquitoes are blood-feeding insects serving as the most important vectors for spreading human pathogens and parasites. Dengue is a viral disease mainly vectored through the bite of Aedes mosquitoes. Its transmission has recently increased in urban and semi-urban areas of tropical and subtropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depend on effective vector control measures. Mangrove plants have been used in Indian traditional medicine for a wide array of purposes. In this research, we proposed a method for biosynthesis of antiviral and mosquitocidal silver nanoparticles (AgNP) using the aqueous extract of Bruguiera cylindrica leaves. AgNP were characterized using a variety of biophysical analyses, including UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Bruguiera cilyndrica aqueous extract and green-synthesized AgNP were tested against the primary dengue vector Aedes aegypti. AgNP were the most effective. LC50 values ranged from 8.93 ppm (larva I) to 30.69 ppm (pupa). In vitro experiments showed that 30 μg/ml of AgNP significantly inhibited the production of dengue viral envelope (E) protein in vero cells and downregulated the expression of dengue viral E gene. Concerning nontarget effects, we observed that the predation efficiency of Carassius auratus against A. aegypti was not affected by exposure at sublethal doses of AgNP. Predation in the control was 71.81 % (larva II) and 50.43 % (larva III), while in an AgNP-treated environment, predation was boosted to 90.25 and 76.81 %, respectively. Overall, this study highlights the concrete potential of green-synthesized AgNP in the fight against dengue virus. Furthermore, B. cylindrica-synthesized AgNP can be employed at low doses to reduce larval and pupal population of A. aegypti, without detrimental

  9. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.

    PubMed

    Ozkan, Altan; Kinney, Kerry; Katz, Lynn; Berberoglu, Halil

    2012-06-01

    This paper reports the construction and performance of an algae biofilm photobioreactor that offers a significant reduction of the energy and water requirements of cultivation. The green alga Botryococcus braunii was cultivated as a biofilm. The system achieved a direct biomass harvest concentration of 96.4 kg/m(3) with a total lipid content 26.8% by dry weight and a productivity of 0.71 g/m(2) day, representing a light to biomass energy conversion efficiency of 2.02%. Moreover, it reduced the volume of water required to cultivate a kilogram of algal biomass by 45% and reduced the dewatering energy requirement by 99.7% compared to open ponds. Finally, the net energy ratio of the cultivation was 6.00 including dewatering. The current issues of this novel photobioreactor are also identified to further improve the system productivity and scaleup.

  10. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins.

  11. Random flow induced by swimming algae

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Rushkin, Ilia; Goldstein, Raymond

    2010-11-01

    In this work we studied the random flow induced in a fluid by the motion of a dilute suspension of the swimming algae Volvox carteri. The fluid velocity in the suspension is a superposition of the flow fields set up by the individual organisms, which in turn have multipole contributions that decay as inverse powers of distance from the organism. Here we show that the conditions under which the central limit theorem guarantees a Gaussian probability distribution function of velocity fluctuations are satisfied when the leading force singularity is a Stokeslet. Deviations from Gaussianity are shown to arise from near-field effects. Comparison is made with the statistical properties of abiotic sedimenting suspensions. The experimental results are supplemented by extensive numerical studies.

  12. Swimming like algae: biomimetic soft artificial cilia.

    PubMed

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond

    2013-01-06

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia.

  13. An algae-covered alligator rests warily

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  14. Interactions of metals and protons with algae

    SciTech Connect

    Crist, R.H.; Oberholser, K.; Schwartz, D.; Marzoff, J.; Ryder, D.; Crist, D.R.

    1988-07-01

    Proton uptake by intact algal cells was found to consist of two processes: (1) a fast (<4 s) surface reaction and (2) a slow (2h) diffusion of protons into cells. A pH titration technique measured only the rapid surface reaction that forms negative sites at higher pH. Adsorption of alkali, alkaline earth, and transition metal ions on algae was quantitatively represented by the Langmuir adsorption isotherm with its two parameters y/sub m/, the maximum amount of metal adsorbed, and K, the equilibrium constant taken as a measure of bond strength. Variations of these parameters with pH and type of metal indicate that metals adsorb to algal surfaces by electrostatic attraction to negative sites, such as carboxylate anions of poly(galaturonic acid) (pectin), as previously suggested.

  15. High-fidelity phototaxis in biflagellate algae

    NASA Astrophysics Data System (ADS)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  16. The globins of cyanobacteria and algae.

    PubMed

    Johnson, Eric A; Lecomte, Juliette T J

    2013-01-01

    Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.

  17. Chloroplast Phylogenomic Inference of Green Algae Relationships.

    PubMed

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-02-05

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences.

  18. Gas Exchange with Mass Cultures of Algae

    PubMed Central

    Hannan, P. J.; Patouillet, Constance

    1963-01-01

    Comparisons of oxygen production and carbon dioxide absorption by an algal gas exchanger were made over a 3-month period. The data do not represent a continuous test, but they do represent results obtained when identical light intensities, CO2 supply rates, and dilution rates with fresh culture medium had been used for more than 1 day. Steady-state conditions were thus assured, and the agreement in the data was excellent. Under the same experimental conditions, the unit was operated continuously for a 5-day period, and the daily variability in this test was less than in the results obtained from month to month. The variation between the average O2 production during the 5-day test and the average of the tests over a several-month period was less than 3%. It is concluded, therefore, that the reliability of the algae in producing oxygen is sufficient to warrant their use in either submarine or space ship use. PMID:14063790

  19. Algae biomass cultivation in nitrogen rich biogas digestate.

    PubMed

    Krustok, I; Diaz, J G; Odlare, M; Nehrenheim, E

    2015-01-01

    Because microalgae are known for quick biomass growth and nutrient uptake, there has been much interest in their use in research on wastewater treatment methods. While many studies have concentrated on the algal treatment of wastewaters with low to medium ammonium concentrations, there are several liquid waste streams with high ammonium concentrations that microalgae could potentially treat. The aim of this paper was to test ammonium tolerance of the indigenous algae community of Lake Mälaren and to use this mixed consortia of algae to remove nutrients from biogas digestate. Algae from Lake Mälaren were cultivated in Jaworski's Medium containing a range of ammonium concentrations and the resulting algal growth was determined. The algae were able to grow at NH4-N concentrations of up to 200 mg L(-1) after which there was significant inhibition. To test the effectiveness of the lake water algae on the treatment of biogas digestate, different pre-cultivation set-ups and biogas digestate concentrations were tested. It was determined that mixing pre-cultivated suspension algae with 25% of biogas digestate by volume, resulting in an ammonium concentration of around 300 mg L(-1), produced the highest algal growth. The algae were effective in removing 72.8±2.2% of NH4-N and 41.4±41.4% of PO4-P.

  20. Biomass of algae growth on natural water medium.

    PubMed

    Ramaraj, Rameshprabu; Tsai, David Dah-Wei; Chen, Paris Honglay

    2015-01-01

    Algae are the dominant primary producers in aquatic ecosystems. Since algae are highly varied group organisms, which have important functions in ecosystem, and their biomass is an essential biological resource. Currently, algae have been applied increasingly to diverse range of biomass applications. Therefore, this study was aimed to investigate the ecological algae features of microalgal production by natural medium, ecological function by lab scale of the symbiotic reactor which is imitated nature ecosystem, and atmospheric CO2 absorption that was related the algal growth of biomass to understand algae in natural water body better. Consequently, this study took advantages of using the unsupplemented freshwater natural medium to produce microalgae. Algal biomass by direct measurement of total suspended solids (TSS) and volatile suspended solids (VSS) resulted as 0.14g/L and 0.08g/L respectively. The biomass measurements of TSS and VSS are the sensible biomass index for algae production. The laboratory results obtained in the present study proved the production of algae by the natural water medium is potentially feasible.

  1. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  2. [Numerical simulation on hydrodynamic character for algae growth].

    PubMed

    Wang, Hua; Pang, Yong

    2008-04-01

    In order to quantificationally study the direct effects of hydrodynamic condition on the growth of algae, the Microcystis aeruginosa was chosen to carry through the disturbance-experiment. By keeping the same value of illumination, temperature and nutrition and changing the rotate speed of oscillator, the growing processes of algae under different disturbance intensities were researched. The hydraulic parameter was presented to amend the formula for the growth of algae. Take Neijiang as an example. A 2-D unsteady model for algae growth was established to forecast the scope of water blooms in Neijiang. It is found that the growth of algae is obviously influenced by hydrodynamic condition, and a condign low velocity is beneficial for its growth while both the quiescence condition and high velocity will restrain its growth rate. After the close of the water gate in Leading Channel, the velocity in Neijiang will be decreased, which accelerated the growth rate of algae, and the area of water blooms will be increased to 2.5 km2 which is about 36.8 percent of the total water surface area of Neijiang. Under the quiescent condition and the improved hydrodynamic condition, the growth rate of algae will be effectively controlled and the area of water blooms will be reduced to 0.78 km2 and 0.18 km2 respectively.

  3. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  4. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOEpatents

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  5. Preliminary survey of fungistatic properties of marine algae.

    PubMed

    WELCH, A M

    1962-01-01

    Welch, Ann Marie (U. S. Veterans Administration Hospital, Durham, N. C.). Preliminary survey of fungistatic properties of marine algae. J. Bacteriol. 83:97-99. 1962-Homogenized preparations of 35 marine algae were tested for inhibitory activity against 6 pathogenic or opportunistically pathogenic fungi with saturated filter-paper discs on seeded Sabouraud agar plates; 11 of these preparations produced wide zones of inhibition against 1 or more test organisms, and at least 4 of the 11 are considered to be worthy of further study. The results indicated that further search should be made for antifungal substances from marine algae.

  6. Optimization of Hydrothermal and Diluted Acid Pretreatments of Tunisian Luffa cylindrica (L.) Fibers for 2G Bioethanol Production through the Cubic Central Composite Experimental Design CCD: Response Surface Methodology

    PubMed Central

    Ziadi, Manel; Ben Hassen-Trabelsi, Aida; Mekni, Sabrine; Aïssi, Balkiss; Alaya, Marwen; Bergaoui, Latifa; Hamdi, Moktar

    2017-01-01

    This paper opens up a new issue dealing with Luffa cylindrica (LC) lignocellulosic biomass recovery in order to produce 2G bioethanol. LC fibers are composed of three principal fractions, namely, α-cellulose (45.80%  ± 1.3), hemicelluloses (20.76%  ± 0.3), and lignins (13.15%  ± 0.6). The optimization of LC fibers hydrothermal and diluted acid pretreatments duration and temperature were achieved through the cubic central composite experimental design CCD. The pretreatments optimization was monitored via the determination of reducing sugars. Then, the 2G bioethanol process feasibility was tested by means of three successive steps, namely, LC fibers hydrothermal pretreatment performed at 96°C during 54 minutes, enzymatic saccharification carried out by means of a commercial enzyme AP2, and the alcoholic fermentation fulfilled with Saccharomyces cerevisiae. LC fibers hydrothermal pretreatment liberated 33.55 g/kg of reducing sugars. Enzymatic hydrolysis allowed achieving 59.4 g/kg of reducing sugars. The conversion yield of reducing sugar to ethanol was 88.66%. After the distillation step, concentration of ethanol was 1.58% with a volumetric yield about 70%. PMID:28243606

  7. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth

    PubMed Central

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-01-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797

  8. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  9. Lab on a chip technologies for algae detection: a review.

    PubMed

    Schaap, Allison; Rohrlack, Thomas; Bellouard, Yves

    2012-08-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae detection and monitoring. We start with an overview of the detection methods currently used for algae monitoring, followed by a review of lab on a chip devices for algae detection and classification, and then discuss a case study based on our own research activities. We conclude with a discussion on future challenges and motivations for algae-oriented lab on a chip technologies.

  10. [Parameter determination of algae growth based on ecological tank experiment].

    PubMed

    Pang, Yong; Ding, Ling; Gao, Guang

    2005-05-01

    A dynamic simulation experiment of algae in an ecological tank was performed at the Taihu Laboratory for Lake Ecosystem Research. During the experiment, water from Taihu Lake was infused into the ecological tank and samples were taken continually to observe algae growth under varying conditions, such as temperature, sunlight and nutrients. Based on the experiment, an algae growth model, considering nitrogen and phosphorus cycle, was developed by using the advanced PHREEQC model. After that, a detailed calibration and validation of parameters in the model were done on the basis of experimental results. The least square method was used to determine the optimal set of parameters. The calculated values of algae and nutrient concentrations show fairly satisfying fittness with measured data.

  11. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  12. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  13. Exploration of the gasification of Spirulina algae in supercritical water.

    PubMed

    Miller, Andrew; Hendry, Doug; Wilkinson, Nikolas; Venkitasamy, Chandrasekar; Jacoby, William

    2012-09-01

    This study presents non-catalytic gasification of Spirulina algae in supercritical water using a plug flow reactor and a mechanism for feeding solid carbon streams into high pressure (>25 MPa) environments. A 2(III)(3-1) factorial experimental design explored the effect of concentration, temperature, and residence time on gasification reactions. A positive displacement pump fed algae slurries into the reactor at a temperature range of 550-600°C, and residence times between 4 and 9s. The results indicate that algae gasify efficiently in supercritical water, highlighting the potential for a high throughput process. Additional experiments determined Arrhenius parameters of Spirulina algae. This study also presents a model of the gasification reaction using the estimated activation energy (108 kJ/mol) and other Arrhenius parameters at plug flow conditions. The maximum rate of gasification under the conditions studied of 53 g/Ls is much higher than previously reported.

  14. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  15. Bicarbonate produced from carbon capture for algae culture.

    PubMed

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system.

  16. Harmful algae blooms removal from fresh water with modified vermiculite.

    PubMed

    Miao, Chunguang; Tang, Yi; Zhang, Hong; Wu, Zhengyan; Wang, Xiangqin

    2014-01-01

    Vermiculite and vermiculite modified with hydrochloric acid were investigated to evaluate their flocculation efficiencies in freshwater containing harmful algae blooms (HABs) (Microcystis aeruginosa). Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, converted fluorescence microscope, plasma-atomic emission spectrometry, and Zetasizer were used to study the flocculation mechanism of modified vermiculite. It was found that the vermiculite modified with hydrochloric acid could coagulate algae cells through charge neutralization, chemical bridging, and netting effect. The experimental results show that the efficiency of flocculation can be notably improved by modified vermiculite. Ninety-eight per cent of algae cells in algae solution could be removed within 10 min after the addition ofmodified vermiculite clay. The method that removal of HABs with modified vermiculite is economical with high efficiency, and more research is needed to assess their ecological impacts before using in practical application.

  17. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  18. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  19. Study on algae removal by immobilized biosystem on sponge

    NASA Astrophysics Data System (ADS)

    Pei, Haiyan; Hu, Wenrong

    2006-10-01

    In this study, sponges were used to immobilize domesticated sludge microbes in a limited space, forming an immobilized biosystem capable of algae and microcystins removal. The removal effects on algae, microcystins and UV260 of this biosystem and the mechanism of algae removal were studied. The results showed that active sludge from sewage treatment plants was able to remove algae from a eutrophic lake’s water after 7 d of domestication. The removal efficiency for algae, organic matter and microcystins increased when the domesticated sludge was immobilized on sponges. When the hydraulic retention time (HRT) was 5h, the removal rates of algae, microcystins and UV260 were 90%, 94.17% and 84%, respectively. The immobilized biosystem consisted mostly of bacteria, the Ciliata and Sarcodina protozoans and the Rotifer metazoans. Algal decomposition by zoogloea bacteria and preying by microcreatures were the two main modes of algal removal, which occurred in two steps: first, absorption by the zoogloea; second, decomposition by the zoogloea bacteria and the predacity of the microcreatures.

  20. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  1. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  2. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-03

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.

  3. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  4. Modelling the effect of fluctuating herbicide concentrations on algae growth.

    PubMed

    Copin, Pierre-Jean; Coutu, Sylvain; Chèvre, Nathalie

    2015-03-01

    Herbicide concentrations fluctuate widely in watercourses after crop applications and rain events. The level of concentrations in pulses can exceed the water chronic quality criteria. In the present study, we proposed modelling the effects of successive pulse exposure on algae. The deterministic model proposed is based on two parameters: (i) the typical growth rate of the algae, obtained by monitoring growth rates of several successive batch cultures in growth media, characterizing both the growth of the control and during the recovery periods; (ii) the growth rate of the algae exposed to pulses, determined from a dose-response curve obtained with a standard toxicity test. We focused on the herbicide isoproturon and on the freshwater alga Scenedesmus vacuolatus, and we validated the model prediction based on effect measured during five sequential pulse exposures in laboratory. The comparison between the laboratory and the modelled effects illustrated that the results yielded were consistent, making the model suitable for effect prediction of the herbicide photosystem II inhibitor isoproturon on the alga S. vacuolatus. More generally, modelling showed that both pulse duration and level of concentration play a crucial role. The application of the model to a real case demonstrated that both the highest peaks and the low peaks with a long duration affect principally the cell density inhibition of the alga S. vacuolatus. It is therefore essential to detect these characteristic pulses when monitoring of herbicide concentrations are conducted in rivers.

  5. Phosphorus-Limited Growth of a Green Alga and a Blue-Green Alga

    PubMed Central

    Lang, Douglas S.; Brown, Edward J.

    1981-01-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nägeli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nägeli than in S. quadricauda. Synechococcus Nägeli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). PMID:16345896

  6. Phosphorus-limited growth of a green alga and a blue-green alga

    SciTech Connect

    Lang, D.S.; Brown, E.J.

    1981-12-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).

  7. Substrate Specificities and Availability of Fucosyltransferase and β-Carotene Hydroxylase for Myxol 2′-Fucoside Synthesis in Anabaena sp. Strain PCC 7120 Compared with Synechocystis sp. Strain PCC 6803▿ † ‡

    PubMed Central

    Mochimaru, Mari; Masukawa, Hajime; Maoka, Takashi; Mohamed, Hatem E.; Vermaas, Wim F. J.; Takaichi, Shinichi

    2008-01-01

    To elucidate the biosynthetic pathways of carotenoids, especially myxol 2′-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2′-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and 1H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2′-rhamnoside and 4-ketomyxol 2′-rhamnoside as polar carotenoids instead of the myxol 2′-fucoside and 4-ketomyxol 2′-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2′-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The β-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2′-fucoside to myxol and myxol 2′-fucoside, respectively, but not the β-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed. PMID:18708496

  8. Is the Future Really in Algae?

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  9. Coccolithophorid algae culture in closed photobioreactors.

    PubMed

    Moheimani, Navid R; Isdepsky, Andreas; Lisec, Jan; Raes, Eric; Borowitzka, Michael A

    2011-09-01

    The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L(-1) day(-1) respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20-25% of dry weight) and calcium carbonate (11-12% of dry weight) contents were also the highest of all species tested.

  10. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  11. Detection of Cyanotoxins in Algae Dietary Supplements

    PubMed Central

    Roy-Lachapelle, Audrey; Solliec, Morgan; Bouchard, Maryse F.; Sauvé, Sébastien

    2017-01-01

    Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer’s awareness on the potential risks associated with the consumption of these supplements. PMID:28245621

  12. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120.

    PubMed

    Corrales-Guerrero, Laura; Mariscal, Vicente; Nürnberg, Dennis J; Elhai, Jeff; Mullineaux, Conrad W; Flores, Enrique; Herrero, Antonia

    2014-10-01

    In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide.

  13. Mutagenesis of hetR reveals amino acids necessary for HetR function in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Risser, Douglas D; Callahan, Sean M

    2007-03-01

    HetR is the master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Genetic selection was used to identify 33 amino acid substitutions in HetR that reduced the proportion of cells undergoing heterocyst differentiation to less than 2%. Conservative substitutions in the wild-type HetR protein revealed three mutations that dramatically reduced the amount of heterocyst differentiation when the mutant allele was present in place of the wild-type allele on a replicating plasmid in a mutant lacking hetR on the chromosome. An H69Y substitution resulted in heterocyst formation among less than 0.1% of cells, and D17E and G36A substitutions resulted in a Het- phenotype, compared to heterocyst formation among approximately 25% of cells with the wild-type hetR under the same conditions. The D17E substitution prevented DNA binding activity exhibited by wild-type HetR in mobility shift assays, whereas G36A and H69Y substitutions had no affect on DNA binding. D17E, G36A, and H69Y substitutions also resulted in higher levels of the corresponding HetR protein than of the wild-type protein when each was expressed from an inducible promoter in a hetR deletion strain, suggesting an effect on HetR protein turnover. Surprisingly, C48A and S152A substitutions, which were previously reported to result in a Het- phenotype, were found to have no effect on heterocyst differentiation or patterning when the corresponding mutations were introduced into an otherwise wild-type genetic background in Anabaena sp. strain PCC 7120. The clustering of mutations that satisfied the positive selection near the amino terminus suggests an important role for this part of the protein in HetR function.

  14. Inactivation of the monocistronic rca gene in Anabaena variabilis suggests a physiological ribulose bisphosphate carboxylase/oxygenase activase-like function in heterocystous cyanobacteria.

    PubMed

    Li, L A; Zianni, M R; Tabita, F R

    1999-06-01

    There was no discernible effect after incubating recombinant Anabaena Rubisco and carboxyarabinitol 1-phosphate with the product of the Anabaena rca gene. Since the unactivated cyanobacterial Rubisco is not readily inhibited by ribulose 1,5-bisphosphate and fallover is not observed, a genetic basis for the function of the Rubisco activase-like gene (rca) was sought. The monocistronic rca gene was inactivated in vivo and resulting mutant strains of A. variabilis were found to be incapable of synthesizing immunologically detected RCA protein. The requirement for the product of the rca gene in the light was further examined by measuring Rubisco activity in permeabilized whole cells of wild-type and rca mutant strains at different light intensities. In a 1% CO2-air atmosphere, inactivation of rca reduced the ability of A. variabilis to elevate Rubisco activity under high light (73 micromol quanta m(-2) s(-1)), but had little effect under low light (8 micromol m(-2) s(-1)). For air-grown cultures, differences in the rates exhibited by the wild-type and rca mutant to fully activate Rubisco during a whole-cell assay were enhanced by increases in light intensity. The significance of the rca mutation was underlined by effects on growth as, unlike the wild-type, growth rates did not increase after cells transferred from low to high light intensities. Higher exogenous CO2 concentrations (1%) were required to sustain a normal growth rate for the A. variabilis rca mutant. When grown in air levels of CO2, the rca mutant not only needed longer times to double in cell density but also exhibited greatly diminished Rubisco activity compared with the wild-type strain. Despite the unusual properties of cyanobacterial Rubisco, these results suggest a physiological role for the product of the rca gene in maximizing the activity of Rubisco in heterocystous cyanobacteria.

  15. Two-step evolution of endosymbiosis between hydra and algae.

    PubMed

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  16. Plasticity predicts evolution in a marine alga.

    PubMed

    Schaum, C Elisa; Collins, Sinéad

    2014-10-22

    Under global change, populations have four possible responses: 'migrate, acclimate, adapt or die' (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167-178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298-230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells.

  17. Plasticity predicts evolution in a marine alga

    PubMed Central

    Schaum, C. Elisa; Collins, Sinéad

    2014-01-01

    Under global change, populations have four possible responses: ‘migrate, acclimate, adapt or die’ (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167–178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298–230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells. PMID:25209938

  18. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    SciTech Connect

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  19. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    PubMed Central

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  20. Evolution of reproductive development in the volvocine algae.

    PubMed

    Hallmann, Armin

    2011-06-01

    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed.

  1. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  2. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  3. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  4. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    PubMed

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications.

  5. Development and characteristics of an adhesion bioassay for ectocarpoid algae.

    PubMed

    Evariste, Emmanuelle; Gachon, Claire M M; Callow, Maureen E; Callow, James A

    2012-01-01

    Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.

  6. Application of algae-biosensor for environmental monitoring.

    PubMed

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-01-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor.

  7. Visualization of oxygen distribution patterns caused by coral and algae.

    PubMed

    Haas, Andreas F; Gregg, Allison K; Smith, Jennifer E; Abieri, Maria L; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  8. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  9. [Nutritive value of the spirulina algae (Spirulina maxima)].

    PubMed

    Tejada de Hernández, I; Shimada, A S

    1978-06-01

    Nine experiments were conducted, five of them in vivo to determine the limiting amino acids and digestibility of spiruline algae for the rat, and four in vitro to determine the digestibility of the product in pepsin and ruminal liquid. None of the amino acids studied (lysine, methionine, histidine) added alone or in combination to 10% protein (either crude or true) diets provided exclusively by spiruline, seems to be limiting although the results could be masked by the low palatability and acceptability of the product by the rats. The apparent digestibility of the algae was 67.4%. For the in vitro tests, the algae were subjected to several physical or chemical treatments, and the digestibility of the resulting product determined by four different techniques. In no case did the tested treatments have any effect on its digestibility.

  10. Algae from the arid southwestern United States: an annotated bibliography

    SciTech Connect

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  11. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-12-24

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel.

  12. An updated comprehensive techno-economic analysis of algae biodiesel.

    PubMed

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality.

  13. Potential anti-inflammatory natural products from marine algae.

    PubMed

    Fernando, I P Shanura; Nah, Jae-Woon; Jeon, You-Jin

    2016-12-01

    Inflammatory diseases have become one of the leading causes of health issue throughout the world, having a considerable influence on healthcare costs. With the emerging developments in natural product, synthetic and combinatorial chemistry, a notable success has been achieved in discovering natural products and their synthetic structural analogs with anti-inflammatory activity. However, many of these therapeutics have indicated detrimental side effects upon prolonged usage. Marine algae have been identified as an underexplored reservoir of unique anti-inflammatory compounds. These include polyphenols, sulfated polysaccharides, terpenes, fatty acids, proteins and several other bioactives. Consumption of these marine algae could provide defense against the pathophysiology of many chronic inflammatory diseases. With further investigation, algal anti-inflammatory phytochemicals have the potential to be used as therapeutics or in the synthesis of structural analogs with profound anti-inflammatory activity with reduced side effects. The current review summarizes the latest knowledge about the potential anti-inflammatory compounds discovered from marine algae.

  14. Benefits of using algae as natural sources of functional ingredients.

    PubMed

    Ibañez, Elena; Cifuentes, Alejandro

    2013-03-15

    Algae have been suggested as a potential source of bioactive compounds to be used in the food and pharmaceutical industries. With the strong development of functional foods as a method to improve or maintain health, the exploration of new compounds with real health effects is now an intense field of research. The potential use of algae as source of functional food ingredients, such as lipids, proteins, polysaccharides, phenolics, carotenoids, etc., is presented, together with the different possibilities of improving valuable metabolites production either using the tools and the knowledge provided by marine biotechnology or improving the different factors involved in the production on a large scale of such metabolites. The bio-refinery concept is also presented as a way to improve the efficient use of algae biomass while favouring process sustainability.

  15. The evolution of photosynthesis in chromist algae through serial endosymbioses

    PubMed Central

    Stiller, John W.; Schreiber, John; Yue, Jipei; Guo, Hui; Ding, Qin; Huang, Jinling

    2014-01-01

    Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity. PMID:25493338

  16. Extremophilic micro-algae and their potential contribution in biotechnology.

    PubMed

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized.

  17. Enhanced lipid extraction from algae using free nitrous acid pretreatment.

    PubMed

    Bai, Xue; Naghdi, Forough Ghasemi; Ye, Liu; Lant, Paul; Pratt, Steven

    2014-05-01

    Lipid extraction has been identified as a major bottleneck for large-scale algal biodiesel production. In this work free nitrous acid (FNA) is presented as an effective and low cost pretreatment to enhance lipid recovery from algae. Two batch tests, with a range of FNA additions, were conducted to disrupt algal cells prior to lipid extraction by organic solvents. Total accessible lipid content was quantified by the Bligh and Dyer method, and was found to increase with pretreatment time (up to 48 h) and FNA concentration (up to 2.19 mg HNO2-N/L). Hexane extraction was used to study industrially accessible lipids. The mass transfer coefficient (k) for lipid extraction using hexane from algae treated with 2.19 mg HNO2-N/L FNA was found to be dramatically higher than for extraction from untreated algae. Consistent with extraction results, cell disruption analysis indicated the disruption of the cell membrane barrier.

  18. [Sedimentary Phosphorus Forms Under Disturbances and Algae in Taihu Lake].

    PubMed

    Chen, Jun; Li, Da-peng; Zhu, Pei-ying; Huang, Yong; Wang, Ren

    2015-12-01

    Sedimentary phosphorus forms were investigated to clarify the release of sedimentary phosphorus forms under the repeated disturbance with the addition of algae at different initial concentrations. The sediments and overlying water were taken from the Meiliang Bay in Taihu Lake. The results showed that the concentrations of NH₄ Cl-P and Res-P decreased, while the content of Fe/Al-P and Ca-P increased without disturbance. In addition, the Ca-P increased with the increase of the initial concentration of algae and the net increase of Ca-P increased by 48% (30 µg · L⁻¹), 66% (60 µg · L⁻¹), 74% (120 µg · L⁻¹), respectively. However, under the disturbance, the NH₄Cl-P and Res-P were significantly reduced, the Fe/Al-P increased significantly. The percentage of Fe/Al-P to Tot-P was up to 66. 2% (average of the 3 experiments with the addition of algae of 30 µg · L⁻¹, 60 µg · L⁻¹ and 120 µg L-¹), it was higher than the value (53.%, average of the 3 experiments) without the disturbance. Moreover, under the disturbance, the percentage of Ca-P to Tot-P was 24.1% (average of the 3 experiments with the addition of algae of 30 µg · L⁻¹, 60 µg⁻¹ and 120 µg · L⁻¹) and it was slightly lower than that (33.0%, average of the 3 experiments) without the disturbance. It is suggested that the coexistence of disturbance and algae facilitated the formation of Fe/Al-P, but the algae accelerated the formation of Ca-P without disturbance.

  19. Aragonitic Pennsylvanian phylloid algae from New Mexico: The missing link

    SciTech Connect

    Kirkland, B.L.; Moore, C.H. Jr. ); Dickson, J.A.D. )

    1991-03-01

    Remarkably well-preserved codiacean algae (Eugonophyllum and Anchicodium) retaining original aragonite are present in the Virgilian Holder Formation, Sacramento Mountains, south-central New Mexico. The algae are preserved in a 20-cm-thick packstone between two thick (> 5m) shale beds. Aragonite is preserved as a felt-like mesh of needles in the algal skeletons, in the shell fragments of molluscs, in the walls of sponges, and in botryoidal and isopachous marine cements. The aragonite is confirmed by X-ray diffraction, by visual inspection of pristine aragonite needles with SEM, and by a high content of Sr as revealed by microprobe analysis. The average Sr content of the algae (9,091 ppm, n = 21) is comparable to modern codiaceans. Preservation of internal structure in Eugonophyllum was previously unknown. The medullary (interior) region of the Eugonophyllum thallus is composed of an aragonite felt punctuated by small (20 {mu}m diameter), parallel utricles. As in modern codiaceans, the utricles in the cortical (exterior) region of the thallus increase in diameter and their bulbous tips coalesce to form the outer cortex of the plant. This occurrence provides a key piece of evidence in support of hypotheses concerning the nature and origin of phylloid algal bioherms. Because the internal structure of most fossil phylloid algae is replaced by sparry mosaic calcite, taxonomic classification has been difficult even at the fundamental level of division (phylum). The authors discovery confirms that at least some ancient phylloid algae resembled the modern green algae Halimeda or Udotea, and lends credibility to the suggestion that ancient phylloid algal mounds are analogous to modern Halimeda mounds of the South Pacific.

  20. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants.

  1. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  2. Homogeneity of Danish environmental and clinical isolates of Shewanella algae.

    PubMed

    Vogel, B F; Holt, H M; Gerner-Smidt, P; Bundvad, A; Sogaard, P; Gram, L

    2000-01-01

    Danish isolates of Shewanella algae constituted by whole-cell protein profiling a very homogeneous group, and no clear distinction was seen between strains from the marine environment and strains of clinical origin. Although variation between all strains was observed by ribotyping and random amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection.

  3. Algae as promising organisms for environment and health

    PubMed Central

    2011-01-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  4. Heavy metals in marine algae of the Kuwait coast

    SciTech Connect

    Buo-Olayan, A.H.; Subrahmanyam, M.N.V.

    1996-12-31

    Marine algae are considered as important primary producers in the coastal region. Several marine algal species are being considered as raw material for various economically important products and this has resulted in their increasing demand. Marine algal species also have been suggested to be the indicators of pollution. Keeping in view the importance of marine algal species for direct or indirect human and cattle consumption, it is necessary to monitor the bioaccumulation of certain elements in these species. This study was aimed at establishing the concentration levels of trace metals in marine algae of the Kuwait coast. 26 refs., 1 fig., 3 tabs.

  5. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  6. [Effectiveness and characteristics of treating algae-laden raw water by stocking silver carp].

    PubMed

    Fan, Zhen-Qiang; Cui, Fu-Yi; Ma, Hua; He, Wen-Jie; Yin, Pei-Jun

    2008-03-01

    To reduce the negative effect of algae on conventional water treatment, a full-scale research of removing algae from algae-laden raw water by stocking filter-feeding silver carp was processed. After the pretreatment in a presedimentation tank with silver carp, the concentration of phytoplankton, the biomass of cyanobacteria and Microsystis flos-aquae in algae-laden raw water with Microsystis flos-aquae its dominant species decreased 61.8%, 76.1% and 78.2% respectively. This effective decrease of algae load on conventional process created favorable conditions for water treatment. Analysis indicates that food habit of silver carp and algae size are two causes of different removal efficiency between cyanobacteria and green algae. The results show that biomanipulation of silver carp is applicable for treating algae-laden raw water in which colonial cyanobacteria is dominant.

  7. Modeling and Control of Algae Harvesting, Dewatering and Drying (HDD) Systems

    DTIC Science & Technology

    2012-05-01

    MODELING AND CONTROL OF ALGAE HARVESTING, DEWATERING AND DRYING (HDD) SYSTEMS by FENGMING LI Submitted in partial fulfillment of the...Modeling and Control of Algae Harvesting, Dewatering and Drying (HDD) Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ALTERNATIVE ENERGY .................................................................................................................. 3 1.3 ALGAE OIL

  8. Where Have All the Algae Gone, or, How Many Kingdoms Are There?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    1995-01-01

    Examined 10 introductory college-level, general biology survey textbooks for the coverage of algae to assess the efficacy of coverage. Describes a proposal of seven kingdoms and discusses the disposition of algae among five of these kingdoms. Contends that textbooks should highlight the concept of algae across the five kingdoms. Contains 59…

  9. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  10. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    DTIC Science & Technology

    2012-07-10

    Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices Key...Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices 5a. CONTRACT NUMBER...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This is the report of a project to use photosynthetic antenna pigment complexes from algae and plants as

  11. Critical conditions for ferric chloride-induced flocculation of freshwater algae.

    PubMed

    Wyatt, Nicholas B; Gloe, Lindsey M; Brady, Patrick V; Hewson, John C; Grillet, Anne M; Hankins, Matthew G; Pohl, Phillip I

    2012-02-01

    The effects of algae concentration, ferric chloride dose, and pH on the flocculation efficiency of the freshwater algae Chlorella zofingiensis can be understood by considering the nature of the electrostatic charges on the algae and precipitate surfaces. Two critical conditions are identified which, when met, result in flocculation efficiencies in excess of 90% for freshwater algae. First, a minimum concentration of ferric chloride is required to overcome the electrostatic stabilization of the algae and promote bridging of algae cells by hydroxide precipitates. At low algae concentrations, the minimum amount of ferric chloride required increases linearly with algae concentration, characteristic of flocculation primarily through electrostatic bridging by hydroxide precipitates. At higher algae concentrations, the minimum required concentration of ferric chloride for flocculation is independent of algae concentration, suggesting a change in the primary flocculation mechanism from bridging to sweep flocculation. Second, the algae must have a negative surface charge. Experiments and surface complexation modeling show that the surface charge of C. zofingiensis is negative above a pH of 4.0 ± 0.3 which agrees well with the minimum pH required for effective flocculation. These critical flocculation criteria can be extended to other freshwater algae to design effective flocculation systems.

  12. MicroRNAs in a multicellular green alga Volvox carteri.

    PubMed

    Li, Jingrui; Wu, Yang; Qi, Yijun

    2014-01-01

    microRNAs (miRNAs) have emerged as key components in the eukaryotic gene regulatory network. We and others have previously identified many miRNAs in a unicellular green alga, Chlamydomonas reinhardtii. To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage, we examined small RNAs in Volvox carteri, a multicellular species in the same family with Chlamydomonas reinhardtii. We identified 174 miRNAs in Volvox, with many of them being highly enriched in gonidia or somatic cells. The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo, suggesting that miRNAs play regulatory roles in the biology of green algae. Our catalog of miRNAs and their targets provides a resource for further studies on the evolution, biological functions, and genomic properties of miRNAs in green algae.

  13. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-02-10

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt(+)) and mating type minus (mt(-)), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt(+) and mt(-) mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  14. Carbon Partitioning in Green Algae (Chlorophyta) and the Enolase Enzyme

    PubMed Central

    Polle, Jürgen E. W.; Neofotis, Peter; Huang, Andy; Chang, William; Sury, Kiran; Wiech, Eliza M.

    2014-01-01

    The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae. PMID:25093929

  15. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  16. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  17. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    PubMed

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage.

  18. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption.

  19. Ecological assessments with algae: a review and synthesis.

    PubMed

    Stevenson, Jan

    2014-06-01

    Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site-specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional-scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management.

  20. Lysis of Blue-Green Algae by Myxobacter

    PubMed Central

    Shilo, Miriam

    1970-01-01

    Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine ∼70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter. Images PMID:4990764

  1. Survey of Hydrogenase Activity in Algae: Final Report

    SciTech Connect

    Brand, J. J.

    1982-04-01

    The capacity for hydrogen gas production was examined in nearly 100 strains of Eukaryotic algae. Each strain was assessed for rate of H2 production in darkness, at compensating light intensity and at saturating Tight intensity. Maximum H2 yield on illumination and sensitivity to molecular oxygen were also measured.

  2. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  3. Optimization of light use efficiency for biofuel production in algae.

    PubMed

    Simionato, Diana; Basso, Stefania; Giacometti, Giorgio M; Morosinotto, Tomas

    2013-12-01

    A major challenge for next decades is development of competitive renewable energy sources, highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among different possibilities, which are currently under investigation, there is the exploitation of unicellular algae for production of biofuels and biodiesel in particular. Some algae species have the ability of accumulating large amount of lipids within their cells which can be exploited as feedstock for the production of biodiesel. Strong research efforts are however still needed to fulfill this potential and optimize cultivation systems and biomass harvesting. Light provides the energy supporting algae growth and available radiation must be exploited with the highest possible efficiency to optimize productivity and make microalgae large scale cultivation energetically and economically sustainable. Investigation of the molecular bases influencing light use efficiency is thus seminal for the success of this biotechnology. In this work factors influencing light use efficiency in algal biomass production are reviewed, focusing on how algae genetic engineering and control of light environment within photobioreactors can improve the productivity of large scale cultivation systems.

  4. Basis for the Resistance of Several Algae to Microbial Decomposition

    PubMed Central

    Gunnison, Douglas; Alexander, Martin

    1975-01-01

    The basis for the resistance of certain algae to microbial decomposition in natural waters was investigated using Pediastrum duplex, Staurastrum sp., and Fischerella muscicola as test organisms. Enzyme preparations previously found to convert susceptible algae into spheroplasts had no such effect on the resistant species, although glucose and galacturonic acid were released from P. duplex walls. Little protein or lipid but considerable carbohydrate was found in the walls of the refractory organisms, but resistance was not correlated with the presence of a unique sugar monomer. A substance present in Staurastrum sp. walls was characterized as lignin or lignin-like on the basis of its extraction characteristics, infrared spectrum, pyrolysis pattern, and content of an aromatic building block. Sporopollenin was found in P. duplex, and cellulose in Staurastrum sp. Cell walls of the algae were fractionated, and the fractions least susceptible to microbial degradation were the sporopollenin of P. duplex, the polyaromatic component of Staurastrum sp., and two F. muscicola fractions containing several sugar monomers. The sporopollenin content of P. duplex, the content of lignin or a related constituent of Staurastrum sp., and the resistance of the algae to microbial attack increased with age. It is suggested that resistance results from the presence of sporopollenin in P. duplex, a lignin-like material in Staurastrum sp., and possibly heteropolysaccharides in F. muscicola. PMID:808166

  5. Study of ecotoxicity of silver nanoparticles using algae

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.; Abramenko, N. B.

    2016-11-01

    Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.

  6. Decreased abundance of crustose coralline algae due to ocean acidification

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  7. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  8. Recovery of dairy manure nutrients by benthic freshwater algae.

    PubMed

    Wilkie, Ann C; Mulbry, Walter W

    2002-08-01

    Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.

  9. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.

  10. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-12-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria.

  11. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed Central

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-01-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria. Images PMID:2123860

  12. Polar-biased localization of the cold stress-induced RNA helicase, CrhC, in the Cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    El-Fahmawi, Bassam; Owttrim, George W

    2003-11-01

    Shift of the filamentous cyanobacterium, Anabaena sp. strain PCC 7120, from 30 degrees C to 20 degrees C induces expression of a cold shock response gene encoding the RNA helicase CrhC. Subcellular localization using cellular fractionation and membrane purification indicated that CrhC is localized to the plasma membrane with no evidence of a soluble-cytoplasmic form. Treatment of spheroplasts with trypsin and membrane fractions with various denaturing agents identified CrhC as an integral membrane protein associated with the cytoplasmic face of the plasma membrane. Immunoelectron microscopy confirmed the plasma membrane association of CrhC. Interestingly, a higher specific labelling was observed at the cell poles on the septa between adjacent cells within cell filaments. On a per cell area basis, CrhC localization to the cell pole was 3.5- and >1000-fold higher than to the lateral portion of the plasma membrane or cytoplasm respectively. In addition, CrhC also localizes to new cell poles forming within a dividing cell. Polar-biased localization of the CrhC RNA helicase implies a role in RNA metabolism that is plasma membrane associated and preferentially occurs at the cell poles during cyanobacterial response to cold stress.

  13. Removal of Anabaena flos-aquae in water treatment process using Moringa oleifera and assessment of fatty acid profile of generated sludge.

    PubMed

    Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela

    2016-01-01

    This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.

  14. Probing ultrafast photochemistry of retinal proteins in the near-IR: bacteriorhodopsin and anabaena sensory rhodopsin vs retinal protonated Schiff base in solution.

    PubMed

    Wand, Amir; Loevsky, Boris; Friedman, Noga; Sheves, Mordechai; Ruhman, Sanford

    2013-04-25

    Photochemistry of bacteriorhodopsin (bR), anabaena sensory rhodopsin (ASR), and all-trans retinal protonated Schiff base (RPSB) in ethanol is followed with femtosecond pump-hyperspectral near-IR (NIR) probe spectroscopy. This is the first systematic probing of retinal protein photochemistry in this spectral range. Stimulated emission of the proteins is demonstrated to extend deep into the NIR, and to decay on the same characteristic time scales previously determined by visible probing. No signs of a transient NIR absorption band above λpr > 1.3 μm, which was recently reported and is verified here for the RPSB in solution, is observed in either protein. This discrepancy demonstrates that the protein surroundings change photochemical traits of the chromophore significantly, inducing changes either in the energies or couplings of photochemically relevant electronic excited states. In addition, low-frequency and heavily damped spectral modulations are observed in the NIR signals of all three systems up to 1.4 μm. By background subtraction and Fourier analysis they are shown to resemble wave packet signatures in the visible, stemming from multiple vibrational modes and by analogy are assigned to torsional wave packets in the excited state of the retinal chromophore. Differences in the vibrational frequencies between the three samples and the said discrepancy in transient spectra are discussed in terms of opsin effects on the RPSB electronic structure.

  15. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic.

    PubMed

    Singh, Meenakshi; Sharma, Naveen K; Prasad, Shyam Babu; Yadav, Suresh Singh; Narayan, Gopeshwar; Rai, Ashwani K

    2013-03-01

    Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture.

  16. Preparation of calibration standards of N1-H paralytic shellfish toxin analogues by large-scale culture of cyanobacterium Anabaena circinalis (TA04).

    PubMed

    Watanabe, Ryuichi; Suzuki, Toshiyuki; Oshima, Yasukatsu

    2011-03-22

    Mouse bioassay is the official testing method to quantify paralytic shellfish toxins (PSTs) in bivalves. A number of alternative analytical methods have been reported. Some methods have been evaluated by a single laboratory validation. Among the different types of methods, chemical analyses are capable of identifying and quantifying the toxins, however a shortage of the necessary calibration standards hampers implementation of the chemical analyses in routine monitoring of PSTs in bivalves. In our present study, we studied preparation of major PST analogues as calibrants by large-scale cultivation of toxic freshwater cyanobacteria Anabaena circinalis TA04. The cells were steadily grown in 10 L bottle for 28 days. The primary N1-H toxins, C1/C2, were produced at a concentration of 1.3 ± 0.1 μmol/L. The intracellular and extracellular toxins occupied 80% and 20%, respectively. Over 220 μmol of the toxins was obtained from approximately 200 L of the culture over six months, demonstrating that it is sufficient to prepare saxitoxin analogues. The toxins were chemically converted to six N1-H analogues. Preparation of the analogues was carried out at relatively high yields (50-90%). The results indicate that our preparation method is useful to produce N1-H toxins. In our present study, detailed conditions for preparation of one of the rare N1-H analogues, gonyautoxin-5, were investigated.

  17. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  18. Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC

    PubMed Central

    Garces, Robert G; Wu, Ning; Gillon, Wanda; Pai, Emil F

    2004-01-01

    The cyanobacterial clock proteins KaiA and KaiB are proposed as regulators of the circadian rhythm in cyanobacteria. Mutations in both proteins have been reported to alter or abolish circadian rhythmicity. Here, we present molecular models of both KaiA and KaiB from the cyanobacteria Anabaena sp PCC7120 deduced by crystal structure analysis, and we discuss how clock-changing or abolishing mutations may cause their resulting circadian phenotype. The overall fold of the KaiA monomer is that of a four-helix bundle. KaiB, on the other hand, adopts an alpha–beta meander motif. Both proteins purify and crystallize as dimers. While the folds of the two proteins are clearly different, their size and some surface features of the physiologically relevant dimers are very similar. Notably, the functionally relevant residues Arg 69 of KaiA and Arg 23 of KaiB align well in space. The apparent structural similarities suggest that KaiA and KaiB may compete for a potential common binding site on KaiC. PMID:15071498

  19. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli

    SciTech Connect

    Chaurasia, Neha; Mishra, Yogesh; Rai, Lal Chand

    2008-11-07

    Phytochelatin synthase (PCS) is involved in the synthesis of phytochelatins (PCs), plays role in heavy metal detoxification. The present study describes for first time the functional expression and characterization of pcs gene of Anabaena sp. PCC 7120 in Escherichia coli in terms of offering protection against heat, salt, carbofuron (pesticide), cadmium, copper, and UV-B stress. The involvement of pcs gene in tolerance to above abiotic stresses was investigated by cloning of pcs gene in expression vector pGEX-5X-2 and its transformation in E. coli BL21 (DE3). The E. coli cells transformed with pGEX-5X-pcs showed better growth than control cells (pGEX-5X-2) under temperature (47 deg. C), NaCl (6% w/v), carbofuron (0.025 mg ml{sup -1}), CdCl{sub 2} (4 mM), CuCl{sub 2} (1 mM), and UV-B (10 min) exposure. The enhanced expression of pcs gene revealed by RT-PCR analysis under above stresses at different time intervals further advocates its role in tolerance against above abiotic stresses.

  20. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses

    SciTech Connect

    Narayan, Om Prakash; Kumari, Nidhi; Rai, Lal Chand

    2010-03-26

    This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml{sup -1}), CuCl{sub 2} (1 mM), UV-B (10 min), heat (47 {sup o}C), NaCl (6% w/v) and CdCl{sub 2} (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.