Science.gov

Sample records for alga chlamydomonas nivalis

  1. Global Metabolic Regulation of the Snow Alga Chlamydomonas nivalis in Response to Nitrate or Phosphate Deprivation by a Metabolome Profile Analysis

    PubMed Central

    Lu, Na; Chen, Jun-Hui; Wei, Dong; Chen, Feng; Chen, Gu

    2016-01-01

    In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as “responding biomarkers” by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress. PMID:27171077

  2. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry.

    PubMed

    Stibal, Marek; Elster, Josef; Sabacká, Marie; Kastovská, Klára

    2007-02-01

    The seasonal and diel dynamics of the physiological state and photosynthetic activity of the snow alga Chlamydomonas nivalis were investigated in a snowfield in Svalbard. The snow surface represents an environment with very high irradiation intensities along with stable low temperatures close to freezing point. Photosynthetic activity was measured using pulse amplitude modulation fluorometry. Three types of cell (green biflagellate vegetative cells, orange spores clustered by means of mucilaginous sheaths, and purple spores with thick cell walls) were found, all of them photosynthetically active. The pH of snow ranged between 5.0 and 7.5, and the conductivity ranged between 5 and 75 microS cm(-1). The temperature of snow was stable (-0.1 to +0.1 degrees C), and the incident radiation values ranged from 11 to 1500 micromol photons m(-2) s(-1). The photosynthetic activity had seasonal and diel dynamics. The Fv/Fm values ranged between 0.4 and 0.7, and generally declined over the course of the season. A dynamic response of Fv/Fm to the irradiance was recorded. According to the saturating photon fluence values Ek, the algae may have obtained saturating light as deep as 3 cm in the snow when there were higher-light conditions, whereas they were undersaturated at prevalent low light even if on the surface.

  3. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow

    PubMed Central

    Remias, Daniel; Pichrtová, Martina; Pangratz, Marion; Lütz, Cornelius; Holzinger, Andreas

    2016-01-01

    Red snow is a well-known phenomenon caused by microalgae thriving in alpine and polar regions during the melting season. The ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance and freeze–thaw events, are still poorly understood. We compared two different snow habitats containing two different green algal genera in the European Alps, namely algae blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) and algae dominating waterlogged snow bedded over ice (Chlainomonas sp.). Despite the morphological similarity of the red spores found at the snow surface, we found differences in intracellular organization investigated by light and transmission electron microscopy and in secondary pigments investigated by chromatographic analysis in combination with mass spectrometry. Spores of Chlainomonas sp. show clear differences from Chlamydomonas nivalis in cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiological activity, despite no cell division being present. Lipid bodies containing the carotenoid astaxanthin, which produces the red color, dominate cells of both species, but are modified differently. While in Chlainomonas sp. astaxanthin is mainly esterified with two fatty acids and is more apolar, in Chamydomonas nivalis, in contrast, less apolar monoesters prevail. PMID:26884467

  4. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow.

    PubMed

    Remias, Daniel; Pichrtová, Martina; Pangratz, Marion; Lütz, Cornelius; Holzinger, Andreas

    2016-04-01

    Red snow is a well-known phenomenon caused by microalgae thriving in alpine and polar regions during the melting season. The ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance and freeze-thaw events, are still poorly understood. We compared two different snow habitats containing two different green algal genera in the European Alps, namely algae blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) and algae dominating waterlogged snow bedded over ice (Chlainomonassp.). Despite the morphological similarity of the red spores found at the snow surface, we found differences in intracellular organization investigated by light and transmission electron microscopy and in secondary pigments investigated by chromatographic analysis in combination with mass spectrometry. Spores ofChlainomonassp. show clear differences fromChlamydomonas nivalisin cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiological activity, despite no cell division being present. Lipid bodies containing the carotenoid astaxanthin, which produces the red color, dominate cells of both species, but are modified differently. While inChlainomonassp. astaxanthin is mainly esterified with two fatty acids and is more apolar, inChamydomonas nivalis, in contrast, less apolar monoesters prevail.

  5. The ice nucleation activity of extremophilic algae.

    PubMed

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.

  6. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature.

  7. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.

  8. How the green alga Chlamydomonas reinhardtii keeps time.

    PubMed

    Schulze, Thomas; Prager, Katja; Dathe, Hannes; Kelm, Juliane; Kiessling, Peter; Mittag, Maria

    2010-08-01

    The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability of its entire genome sequence along with homology studies and the analysis of several sub-proteomes render C. reinhardtii as an excellent eukaryotic model organism to study its circadian clock at different levels of organization. Previous studies point to several potential photoreceptors that may be involved in forwarding light information to entrain its clock. However, experimental data are still missing toward this end. In the past years, several components have been functionally characterized that are likely to be part of the oscillatory machinery of C. reinhardtii since alterations in their expression levels or insertional mutagenesis of the genes resulted in defects in phase, period, or amplitude of at least two independent measured rhythms. These include several RHYTHM OF CHLOROPLAST (ROC) proteins, a CONSTANS protein (CrCO) that is involved in parallel in photoperiodic control, as well as the two subunits of the circadian RNA-binding protein CHLAMY1. The latter is also tightly connected to circadian output processes. Several candidates including a significant number of ROCs, CrCO, and CASEIN KINASE1 whose alterations of expression affect the circadian clock have in parallel severe effects on the release of daughter cells, flagellar formation, and/or movement, indicating that these processes are interconnected in C. reinhardtii. The challenging task for the future will be to get insights into the clock network and to find out how the clock-related factors are functionally connected. In this respect, system biology approaches will certainly

  9. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Crespo, José L; Díaz-Troya, Sandra; Florencio, Francisco J

    2005-12-01

    The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the natural resistance of plants to rapamycin. Here, we report TOR inactivation by rapamycin treatment in a photosynthetic organism. We identified and characterized TOR and FKBP12 homologs in the unicellular green alga Chlamydomonas reinhardtii. Whereas growth of wild-type Chlamydomonas cells is sensitive to rapamycin, cells lacking FKBP12 are fully resistant to the drug, indicating that this protein mediates rapamycin action to inhibit cell growth. Unlike its plant homolog, Chlamydomonas FKBP12 exhibits high affinity to rapamycin in vivo, which was increased by mutation of conserved residues in the drug-binding pocket. Furthermore, pull-down assays demonstrated that TOR binds FKBP12 in the presence of rapamycin. Finally, rapamycin treatment resulted in a pronounced increase of vacuole size that resembled autophagic-like processes. Thus, our findings suggest that Chlamydomonas cell growth is positively controlled by a conserved TOR kinase and establish this unicellular alga as a useful model system for studying TOR signaling in photosynthetic eukaryotes.

  10. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures.

  11. Predicting the Physiological Role of Circadian Metabolic Regulation in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Voytsekh, Olga; Mittag, Maria; Schuster, Stefan

    2011-01-01

    Although the number of reconstructed metabolic networks is steadily growing, experimental data integration into these networks is still challenging. Based on elementary flux mode analysis, we combine sequence information with metabolic pathway analysis and include, as a novel aspect, circadian regulation. While minimizing the need of assumptions, we are able to predict changes in the metabolic state and can hypothesise on the physiological role of circadian control in nitrogen metabolism of the green alga Chlamydomonas reinhardtii. PMID:21887226

  12. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation.

    PubMed

    Liu, Chenlin; Wu, Guangting; Huang, Xiaohang; Liu, Shenghao; Cong, Bailin

    2012-05-01

    Antarctic ice alga Chlamydomonas sp. ICE-L can endure extreme low temperature and high salinity stress under freezing conditions. To elucidate the molecular acclimation mechanisms using gene expression analysis, the expression stabilities of ten housekeeping genes of Chlamydomonas sp. ICE-L during freezing stress were analyzed. Some discrepancies were detected in the ranking of the candidate reference genes between geNorm and NormFinder programs, but there was substantial agreement between the groups of genes with the most and the least stable expression. RPL19 was ranked as the best candidate reference genes. Pairwise variation (V) analysis indicated the combination of two reference genes was sufficient for qRT-PCR data normalization under the experimental conditions. Considering the co-regulation between RPL19 and RPL32 (the most stable gene pairs given by geNorm program), we propose that the mean data rendered by RPL19 and GAPDH (the most stable gene pairs given by NormFinder program) be used to normalize gene expression values in Chlamydomonas sp. ICE-L more accurately. The example of FAD3 gene expression calculation demonstrated the importance of selecting an appropriate category and number of reference genes to achieve an accurate and reliable normalization of gene expression during freeze acclimation in Chlamydomonas sp. ICE-L.

  13. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    PubMed

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.

  14. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Onishi, Masayuki; Pringle, John R.

    2016-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins. PMID:27770025

  15. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Sánchez-Marín, Paula; Fortin, Claude; Campbell, Peter G C

    2014-02-01

    The unicellular alga Chlamydomonas reinhardtii has a very high rate of lead (Pb) internalization and is known to be highly sensitive to dissolved Pb. However, the transport pathway that this metal uses to cross cellular membranes in microalgae is still unknown. To identify the Pb(2+) transport pathway in C. reinhartdii, we performed several competition experiments with environmentally relevant concentrations of Pb(2+) (~10 nM) and a variety of divalent cations. Among the essential trace metals tested, cobalt, manganese, nickel and zinc had no effect on Pb internalization. A greater than tenfold increase in the concentrations of the major ions calcium and magnesium led to a slight decrease (~34 %) in short-term Pb internalization by the algae. Copper (Cu) was even more effective: at a Cu concentration 50 times higher than that of Pb, Pb internalization by the algae decreased by 87 %. Pre-exposure of the algae to Cu showed that the effect was not due to a physiological effect of Cu on the algae, but rather to competition for the same transporter. A reciprocal effect of Pb on Cu internalization was also observed. These results suggest that Cu and Pb share a common transport pathway in C. reinhardtii at environmentally relevant metal concentrations.

  16. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  17. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  18. Genome analysis and its significance in four unicellular algae, Cyanidioschyzon [corrected] merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana.

    PubMed

    Misumi, Osami; Yoshida, Yamato; Nishida, Keiji; Fujiwara, Takayuki; Sakajiri, Takayuki; Hirooka, Syunsuke; Nishimura, Yoshiki; Kuroiwa, Tsuneyoshi

    2008-01-01

    Algae play a more important role than land plants in the maintenance of the global environment and productivity. Progress in genome analyses of these organisms means that we can now obtain information on algal genomes, global annotation and gene expression. The full genome information for several algae has already been analyzed. Whole genomes of the red alga Cyanidioschyzon [corrected] merolae, the green algae Ostreococcus tauri and Chlamydomonas reinhardtii, and the diatom Thalassiosira pseudonana have been sequenced. Genome composition and the features of cells among the four algae were compared. Each alga maintains basic genes as photosynthetic eukaryotes and possesses additional gene groups to represent their particular characteristics. This review discusses and introduces the latest research that makes the best use of the particular features of each organism and the significance of genome analysis to study biological phenomena. In particular, examples of post-genome studies of organelle multiplication in C. merolae based on analyzed genome information are presented.

  19. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Fristedt, Rikard; Dinc, Emine

    2016-01-01

    Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability. PMID:27637747

  20. First crystal structure of Rubisco from a green alga, Chlamydomonas reinhardtii.

    PubMed

    Taylor, T C; Backlund, A; Bjorhall, K; Spreitzer, R J; Andersson, I

    2001-12-21

    The crystal structure of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) from the unicellular green alga Chlamydomonas reinhardtii has been determined to 1.4 A resolution. Overall, the structure shows high similarity to the previously determined structures of L8S8 Rubisco enzymes. The largest difference is found in the loop between beta strands A and B of the small subunit (betaA-betaB loop), which is longer by six amino acid residues than the corresponding region in Rubisco from Spinacia. Mutations of residues in the betaA-betaB loop have been shown to affect holoenzyme stability and catalytic properties. The information contained in the Chlamydomonas structure enables a more reliable analysis of the effect of these mutations. No electron density was observed for the last 13 residues of the small subunit, which are assumed to be disordered in the crystal. Because of the high resolution of the data, some posttranslational modifications are unambiguously apparent in the structure. These include cysteine and N-terminal methylations and proline 4-hydroxylations.

  1. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C.

    PubMed

    Kim, Eun Jae; Jung, Woongsic; Lim, Suyoun; Kim, Sanghee; Han, Se Jong; Choi, Han-Gu

    2016-01-01

    Biodiesel produced from microalgae is a promising source of alternative energy. In winter, however, outdoor mass cultivation for biodiesel production is hampered by poor growth. Here, we report that Arctic Chlamydomonas sp. KNM0029C exhibits optimal growth at 4 °C and reaches densities up to 1.4 × 10(7) cells mL(-1). Lipid body formation in the alga was visualized through BODIPY 505/515 staining and fluorescence microscopy. The fatty acid methyl ester (FAME) production level of KNM0029C was 178.6 mg L(-1) culture and 2.3-fold higher than that of C. reinhardtii CC-125 at 4 °C. Analysis of the FAME content showed a predominance of polyunsaturated fatty acids such as C16:3, C18:2, C18:3, and C20:2. C18:3 fatty acids comprised the largest fraction (20.7%), and the content of polyunsaturated fatty acids (39.6%) was higher than that of saturated fatty acids (6.8%) at 4 °C. These results indicate that Chlamydomonas sp. KNM0029C, as a psychrophilic microalga, might represent a favorable source for biodiesel production in cold environments.

  2. Lack of mutagenic activity of crude and refined oils in the unicellular alga Chlamydomonas reinhardtii

    SciTech Connect

    Vandermeulen, J.H.; Lee, R.W.

    1986-02-01

    Over the past several years, an increasing number of studies have presented evidence for the mutagenicity and/or carcinogenic potential of petroleum-derived hydrocarbons. These most usually were obtained with individual hydrocarbons, and using either specialized bacterial strains (e.g. Ames' strains) or mammalian tissue preparations. While providing important insights into mutagenic mechanisms involving xenobiotic compounds, the relevance of these studies to the natural aquatic environment is not always evident. This applies especially to the mutagenic potential of water-soluble fractions of hydrocarbon mixtures, as in whole oils or in complex distillate fractions, and involving typical marine biota. Accordingly, the authors have examined the mutagenic potential of the water-soluble fractions of four oils (two crude oils and two refined oils) using the unicellular haploid alga Chlamydomonas reinhardtii.

  3. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).

    PubMed

    Zhang, Liping; Happe, Thomas; Melis, Anastasios

    2002-02-01

    Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process.

  4. Notes on freshwater and terrestrial algae from Ny-Alesund, Svalbard (high Arctic sea area).

    PubMed

    Kim, Gwang Hoon; Klochkova, Tatyana A; Kang, Sung Ho

    2008-07-01

    Field survey of algae and cyanobacteria from terrestrial and freshwater habitats in the vicinity of arctic Ny-Alesund, Svalbard (790N) (high Arctic sea area) was performed in June 2006. Species diversity and abundance were evaluated by using epifluorescence microscopy and culturing methods. In total, 29 taxa in 25 genera were identified, of which Leptolyngbya spp., Trichormus sp. and Chlamydomonas nivalis were abundantly present in almost every sample. In several locations, blooms were formed by species C. nivalis, Scotiellopsis sp., Klebsormidium flaccidum, Zygnema sp., Meridion circulare, Tabellaria fenestrata and Fragilaria sp. Eleven new species from this locality are described.

  5. Photosystem II stress tolerance in the unicellular green alga Chlamydomonas Reinhardtii under space conditions

    NASA Astrophysics Data System (ADS)

    Bertalan, Ivo; Esposito, Dania; Torzillo, Giuseppe; Faraloni, Cecilia; Johanningmeier, Udo; Giardi, Maria Teresa

    2007-09-01

    Photosynthesis was established on the earth 3.5 billion years ago. Due to the absence of the ozone layer in the early atmosphere it was most likely adapted to the presence of ionizing radiation continuously emitted by solar and stellar flares. That complex radiation spectrum comprises protons, alpha particles, heavy charged particle-HZE, electrons, X-ray and neutrons. Such spectrum has a significant impact on biological systems which capture light energy for e.g. photosynthesis. Oxygenic photosynthesis of plants, algae and cyanobacteria initiates at the level of photosystem II (PSII), a multisubunit protein complex embedded in the thylakoid membrane inside chloroplasts. PSII uses sunlight to power the unique photo-induced oxidation of water to atmospheric oxygen which is indispensable for most life forms. It is an especially sensitive component if exposed to space radiation and thus an important target for research aimed at improving bioregenerative life-support systems. The unicellular green algae Chlamydomonas reinhardtii is a long standing model organism for photosynthesis research. It was exposed to ionizing radiation in the ESA facility Biopan located in the Foton capsule brought to space by the Russian Soyuzfor 15 days. The algae were tested in space under shielded conditions in the past, but they were never exposed to direct ionizing radiation such as in Biopan. Conditions for survival were identified. It was observed that the effect of space stress on the survival of the algae varied depending on the light conditions to which they were exposed during the flight. In some cases the flight experience caused a stimulation of the photosystem II oxygen evolution of the cells.

  6. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch.

    PubMed

    Ramundo, Silvia; Rochaix, Jean-David

    2015-01-01

    Chloroplast genomes of land plants and algae contain generally between 100 and 150 genes. These genes are involved in plastid gene expression and photosynthesis and in various other tasks. The function of some chloroplast genes is still unknown and some of them appear to be essential for growth and survival. Repressible and reversible expression systems are highly desirable for functional and biochemical characterization of these genes. We have developed a genetic tool that allows one to regulate the expression of any coding sequence in the chloroplast genome of the unicellular alga Chlamydomonas reinhardtii. Our system is based on vitamin-regulated expression of the nucleus-encoded chloroplast Nac2 protein, which is specifically required for the expression of any plastid gene fused to the psbD 5'UTR. With this approach, expression of the Nac2 gene in the nucleus and, in turn, that of the chosen chloroplast gene artificially driven by the psbD 5'UTR, is controlled by the MetE promoter and Thi4 riboswitch, which can be inactivated in a reversible way by supplying vitamin B12 and thiamine to the growth medium, respectively. This system opens interesting possibilities for studying the assembly and turnover of chloroplast multiprotein complexes such as the photosystems, the ribosome, and the RNA polymerase. It also provides a way to overcome the toxicity often associated with the expression of proteins of biotechnological interest in the chloroplast.

  7. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  8. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Wang, Jiangxin; Zhang, Xuezhi; Chen, Yongsheng; Sommerfeld, Milton; Hu, Qiang

    2008-10-01

    With the rapid development of nanotechnology, there is an increasing risk of human and environmental exposure to nanotechnology-based materials and products. As water resources are particularly vulnerable to direct and indirect contamination of nonomaterials (NMs), the potential toxicity and environmental implication of NMs to aquatic organisms must be evaluated. In this study, we assessed potential toxicity of two commercially used NMs, titanium dioxide (TiO(2)) and quantum dots (QDs), using the unicellular green alga Chlamydomonas reinhartii as a model system. The response of the organism to NMs was assessed at physiological, biochemical, and molecular genetic levels. Growth kinetics showed that growth inhibition occurred during the first two to three days of cultivation in the presence of TiO(2) or QDs. Measurements of lipid peroxidation measurement indicated that oxidative stress of the cells occurred as early as 6 h after exposure to TiO(2) or QDs. The transcriptional expression profiling of four stress response genes (sod1, gpx, cat, and ptox2) revealed that transient up-regulation of these genes occurred in cultures containing as low as 1.0 mg L(-1) of TiO(2) or 0.1 mg L(-1) of QDs, and the maximum transcripts of cat, sod1, gpx, and ptox2 occurred at 1.5, 3, 3, and 6 h, respectively, and were proportional to the initial concentration of the NMs. As the cultures continued, recovery in growth was observed and the extent of recovery, as indicated by the final cell concentration, was dosage-dependent. QDs were found to be more toxic to Chlamydomonas cells than TiO(2) under our experimental conditions.

  9. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    PubMed

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae.

  10. Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii▿ †

    PubMed Central

    Nguyen, Anh Vu; Thomas-Hall, Skye R.; Malnoë, Alizée; Timmins, Matthew; Mussgnug, Jan H.; Rupprecht, Jens; Kruse, Olaf; Hankamer, Ben; Schenk, Peer M.

    2008-01-01

    Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production. These studies were followed by real-time quantitative reverse transcription-PCR and protein analyses. The present work provides new insights into photosynthesis, sulfur acquisition strategies, and carbon metabolism-related gene expression during sulfur-induced hydrogen production. A general trend toward repression of transcripts encoding photosynthetic genes was observed. In contrast to all other LHCBM genes, the abundance of the LHCBM9 transcript (encoding a major light-harvesting polypeptide) and its protein was strongly elevated throughout the experiment. This suggests a major remodeling of the photosystem II light-harvesting complex as well as an important function of LHCBM9 under sulfur starvation and photobiological hydrogen production. This paper presents the first global transcriptional analysis of C. reinhardtii before, during, and after photobiological hydrogen production under sulfur deprivation. PMID:18708561

  11. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.

    PubMed

    Berger, Hanna; Blifernez-Klassen, Olga; Ballottari, Matteo; Bassi, Roberto; Wobbe, Lutz; Kruse, Olaf

    2014-10-01

    The unicellular green alga Chlamydomonas reinhardtii is capable of using organic and inorganic carbon sources simultaneously, which requires the adjustment of photosynthetic activity to the prevailing mode of carbon assimilation. We obtained novel insights into the regulation of light-harvesting at photosystem II (PSII) following altered carbon source availability. In C. reinhardtii, synthesis of PSII-associated light-harvesting proteins (LHCBMs) is controlled by the cytosolic RNA-binding protein NAB1, which represses translation of particular LHCBM isoform transcripts. This mechanism is fine-tuned via regulation of the nuclear NAB1 promoter, which is activated when linear photosynthetic electron flow is restricted by CO(2)-limitation in a photoheterotrophic context. In the wild-type, accumulation of NAB1 reduces the functional PSII antenna size, thus preventing a harmful overexcited state of PSII, as observed in a NAB1-less mutant. We further demonstrate that translation control as a newly identified long-term response to prolonged CO(2)-limitation replaces LHCII state transitions as a fast response to PSII over-excitation. Intriguingly, activation of the long-term response is perturbed in state transition mutant stt7, suggesting a regulatory link between the long- and short-term response. We depict a regulatory circuit operating on distinct timescales and in different cellular compartments to fine-tune light-harvesting in photoheterotrophic eukaryotes.

  12. Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii.

    PubMed

    Rodríguez, M Cecilia; Barsanti, Laura; Passarelli, Vincenzo; Evangelista, Valter; Conforti, Visitacion; Gualtieri, Paolo

    2007-10-01

    Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The presence of Cr leads to the selection of algal populations able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms include biosorption, diminished accumulation, precipitation, reduction of Cr(6+) to Cr(3+), and chromate efflux. In this paper we describe the effects of Cr(6+) (the more toxic species) on the photosynthetic and photoreceptive apparatus of the fresh water unicellular alga Chlamydomonas reinhardtii. We measured the effect of the heavy metal by means of in vivo absorption microspectroscopy of both the thylakoid compartments and the eyespot. The decomposition of the overall absorption spectra in pigment constituents indicates that Cr(6+) induced a complete pheophinitization of the chrorophylls and a modification of the carotenoids present in the eyespot only when its concentration is equal or greater than 10 microM. Due to this low tolerance level, C. reinhardtii could be used as indicator of Cr pollution, but it is not feasible for bioremediation purposes.

  13. Genome-wide characterization of genetic variation in the unicellular, green alga Chlamydomonas reinhardtii.

    PubMed

    Jang, Hyosik; Ehrenreich, Ian M

    2012-01-01

    Chlamydomonas reinhardtii is a model system for studying cilia, photosynthesis, and other core features of eukaryotes, and is also an emerging source of biofuels. Despite its importance to basic and applied biological research, the level and pattern of genetic variation in this haploid green alga has yet to be characterized on a genome-wide scale. To improve understanding of C. reinhardtii's genetic variability, we generated low coverage whole genome resequencing data for nearly all of the available isolates of this species, which were sampled from a number of sites in North America over the past ∼70 years. Based on the analysis of more than 62,000 single nucleotide polymorphisms, we identified two groups of isolates that represent geographical subpopulations of the species. We also found that measurements of genetic diversity were highly variable throughout the genome, in part due to technical factors. We studied the level and pattern of linkage disequilibrium (LD), and observed one chromosome that exhibits elevated LD. Furthermore, we detected widespread evidence of recombination across the genome, which implies that outcrossing occurs in natural populations of this species. In summary, our study provides multiple insights into the sequence diversity of C. reinhardtii that will be useful to future studies of natural genetic variation in this organism.

  14. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    PubMed

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H2DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation.

  15. Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii

    PubMed Central

    Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.

    2013-01-01

    Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of

  16. Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids.

    PubMed

    Sanchez, David; Houde, Magali; Douville, Mélanie; De Silva, Amila O; Spencer, Christine; Verreault, Jonathan

    2015-03-01

    Perfluoroalkyl phosphonic acids (PFPAs), a new class of perfluoroalkyl substances used primarily in the industrial sector as surfactants, were recently detected in surface water and wastewater treatment plant effluents. Toxicological effects of PFPAs have as yet not been investigated in aquatic organisms. The objective of the present study was to evaluate the effects of perfluorooctylphosphonic acid (C8-PFPA) and perfluorodecylphosphonic acid (C10-PFPA) exposure (31-250μg/L) on Chlamydomonas reinhardtii using genomic (qRT-PCR), biochemical (reactive oxygen species production (ROS) and lipid peroxidation), and physiological (cellular viability) indicators. After 72h of exposure, no differences were observed in cellular viability for any of the two perfluorochemicals. However, increase in ROS concentrations (36% and 25.6% at 125 and 250μg/L, respectively) and lipid peroxidation (35.5% and 35.7% at 125 and 250μg/L, respectively) was observed following exposure to C10-PFPA. C8-PFPA exposure did not impact ROS production and lipid peroxidation in algae. To get insights into the molecular response and modes of action of PFPA toxicity, qRT-PCR-based assays were performed to analyze the transcription of genes related to antioxidant responses including superoxide dismutase (SOD-1), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST), and ascorbate peroxidase (APX I). Genomic analyses revealed that the transcription of CAT and APX I was up-regulated for all the C10-PFPA concentrations. In addition, PFPAs were quantified in St. Lawrence River surface water samples and detected at concentrations ranging from 250 to 850pg/L for C8-PFPA and 380 to 650pg/L for C10-PFPA. This study supports the prevalence of PFPAs in the aquatic environment and suggests potential impacts of PFPA exposure on the antioxidant defensive system in C. reinhardtii.

  17. Refactoring the Six-Gene Photosystem II Core in the Chloroplast of the Green Algae Chlamydomonas reinhardtii.

    PubMed

    Gimpel, Javier A; Nour-Eldin, Hussam H; Scranton, Melissa A; Li, Daphne; Mayfield, Stephen P

    2016-07-15

    Oxygenic photosynthesis provides the energy to produce all food and most of the fuel on this planet. Photosystem II (PSII) is an essential and rate-limiting component of this process. Understanding and modifying PSII function could provide an opportunity for optimizing photosynthetic biomass production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct. Complementation of the knockout strain with the core PSII synthetic module from three different green algae resulted in reconstitution of photosynthetic activity to 85, 55, and 53% of that of the wild-type, demonstrating that the PSII core can be exchanged between algae species and retain function. The strains, synthetic cassettes, and refactoring strategy developed for this study demonstrate the potential of synthetic biology approaches for tailoring oxygenic photosynthesis and provide a powerful tool for unraveling PSII structure-function relationships.

  18. Deep Transcriptome Sequencing of Two Green Algae, Chara vulgaris and Chlamydomonas reinhardtii, Provides No Evidence of Organellar RNA Editing

    PubMed Central

    Cahoon, A. Bruce; Nauss, John A.; Stanley, Conner D.; Qureshi, Ali

    2017-01-01

    Nearly all land plants post-transcriptionally modify specific nucleotides within RNAs, a process known as RNA editing. This adaptation allows the correction of deleterious mutations within the asexually reproducing and presumably non-recombinant chloroplast and mitochondrial genomes. There are no reports of RNA editing in any of the green algae so this phenomenon is presumed to have originated in embryophytes either after the invasion of land or in the now extinct algal ancestor of all land plants. This was challenged when a recent in silico screen for RNA edit sites based on genomic sequence homology predicted edit sites in the green alga Chara vulgaris, a multicellular alga found within the Streptophyta clade and one of the closest extant algal relatives of land plants. In this study, the organelle transcriptomes of C. vulgaris and Chlamydomonas reinhardtii were deep sequenced for a comprehensive assessment of RNA editing. Initial analyses based solely on sequence comparisons suggested potential edit sites in both species, but subsequent high-resolution melt analysis, RNase H-dependent PCR (rhPCR), and Sanger sequencing of DNA and complementary DNAs (cDNAs) from each of the putative edit sites revealed them to be either single-nucleotide polymorphisms (SNPs) or spurious deep sequencing results. The lack of RNA editing in these two lineages is consistent with the current hypothesis that RNA editing evolved after embryophytes split from its ancestral algal lineage. PMID:28230734

  19. The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Wobbe, Lutz; Nixon, Peter J

    2013-07-01

    The molecular function of mTERFs (mitochondrial transcription termination factors) has so far only been described for metazoan members of the protein family and in animals they control mitochondrial replication, transcription and translation. Cells of photosynthetic eukaryotes harbour chloroplasts and mitochondria, which are in an intense cross-talk that is vital for photosynthesis. Chlamydomonas reinhardtii is a unicellular green alga widely used as a model organism for photosynthesis research and green biotechnology. Among the six nuclear C. reinhardtii mTERF genes is mTERF-like gene of Chlamydomonas (MOC1), whose inactivation alters mitorespiration and interestingly also light-acclimation processes in the chloroplast that favour the enhanced production of biohydrogen. We show here from in vitro studies that MOC1 binds specifically to a sequence within the mitochondrial rRNA-coding module S3, and that a knockout of MOC1 in the mutant stm6 increases read-through transcription at this site, indicating that MOC1 acts as a transcription terminator in vivo. Whereas the level of certain antisense RNA species is higher in stm6, the amount of unprocessed mitochondrial sense transcripts is strongly reduced, demonstrating that a loss of MOC1 causes perturbed mitochondrial DNA (mtDNA) expression. Overall, we provide evidence for the existence of mitochondrial antisense RNAs in C. reinhardtii and show that mTERF-mediated transcription termination is an evolutionary-conserved mechanism occurring in phototrophic protists and metazoans.

  20. The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii

    PubMed Central

    Wobbe, Lutz; Nixon, Peter J.

    2013-01-01

    The molecular function of mTERFs (mitochondrial transcription termination factors) has so far only been described for metazoan members of the protein family and in animals they control mitochondrial replication, transcription and translation. Cells of photosynthetic eukaryotes harbour chloroplasts and mitochondria, which are in an intense cross-talk that is vital for photosynthesis. Chlamydomonas reinhardtii is a unicellular green alga widely used as a model organism for photosynthesis research and green biotechnology. Among the six nuclear C. reinhardtii mTERF genes is mTERF-like gene of Chlamydomonas (MOC1), whose inactivation alters mitorespiration and interestingly also light-acclimation processes in the chloroplast that favour the enhanced production of biohydrogen. We show here from in vitro studies that MOC1 binds specifically to a sequence within the mitochondrial rRNA-coding module S3, and that a knockout of MOC1 in the mutant stm6 increases read-through transcription at this site, indicating that MOC1 acts as a transcription terminator in vivo. Whereas the level of certain antisense RNA species is higher in stm6, the amount of unprocessed mitochondrial sense transcripts is strongly reduced, demonstrating that a loss of MOC1 causes perturbed mitochondrial DNA (mtDNA) expression. Overall, we provide evidence for the existence of mitochondrial antisense RNAs in C. reinhardtii and show that mTERF-mediated transcription termination is an evolutionary-conserved mechanism occurring in phototrophic protists and metazoans. PMID:23649833

  1. Cooperative processing of primary miRNAs by DUS16 and DCL3 in the unicellular green alga Chlamydomonas reinhardtii

    PubMed Central

    Cerutti, Heriberto

    2017-01-01

    ABSTRACT We have previously reported that the RNA-binding protein Dull slicer 16 (DUS16) plays a key role in the processing of primary miRNAs (pri-miRNAs) in the unicellular green alga Chlamydomonas reinhardtii. In the present report, we elaborate on the interaction of DUS16 with Dicer-like 3 (DCL3) during pri-miRNA processing. Comprehensive analyses of small RNA libraries derived from mutant and wild-type algal strains allowed the de novo prediction of 35 pri-miRNA genes, including 9 previously unknown ones. The pri-miRNAs dependent on DUS16 for processing largely overlapped with those dependent on DCL3. Our findings suggest that DUS16 and DCL3 work cooperatively, presumably as components of a microprocessor complex, in the processing of the majority of pri-miRNAs in C. reinhardtii. PMID:28289490

  2. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; de Lamotte-Guery, F.; Buchanan, B. B.

    1990-01-01

    The components of the ferredoxin-thioredoxin (FT) system of Chlamydomonas reinhardtii have been purified and characterized. The system resembled that of higher plants in consisting of a ferredoxin-thioredoxin reductase (FTR) and two types of thioredoxin, a single f and two m species, m1 and m2. The Chlamydomonas m and f thioredoxins were antigenically similar to their higher-plant counterparts, but not to one another. The m thioredoxins were recognized by antibodies to both higher plant m and bacterial thioredoxins, whereas the thioredoxin f was not. Chlamydomonas thioredoxin f reacted, although weakly, with the antibody to spinach thioredoxin f. The algal thioredoxin f differed from thioredoxins studied previously in behaving as a basic protein on ion-exchange columns. Purification revealed that the algal thioredoxins had molecular masses (Mrs) typical of thioredoxins from other sources, m1 and m2 being 10700 and f 11500. Chlamydomonas FTR had two dissimilar subunits, a feature common to all FTRs studied thus far. One, the 13-kDa ("similar") subunit, resembled its counterpart from other sources in both size and antigenicity. The other, 10-kDa ("variable") subunit was not recognized by antibodies to any FTR tested. When combined with spinach, (Spinacia oleracea L.) thylakoid membranes, the components of the FT system functioned in the light activation of the standard target enzymes from chloroplasts, corn (Zea mays L.) NADP-malate dehydrogenase (EC 1.1.1.82) and spinach fructose 1,6-bisphosphatase (EC 3.1.3.11) as well as the chloroplast-type fructose 1,6-bisphosphatase from Chlamydomonas. Activity was greatest if ferredoxin and other components of the FT system were from Chlamydomonas. The capacity of the Chlamydomonas FT system to activate autologous FBPase indicates that light regulates the photosynthetic carbon metabolism of green algae as in other oxygenic photosynthetic organisms.

  3. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  4. Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis.

    PubMed

    Atkinson, Nicky; Leitão, Nuno; Orr, Douglas J; Meyer, Moritz T; Carmo-Silva, Elizabete; Griffiths, Howard; Smith, Alison M; McCormick, Alistair J

    2017-04-01

    Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.

  5. [Effect of Methylmercury on the Light Dependence Fluorescence Parameters in a Green Alga Chlamydomonas moewusii].

    PubMed

    Protopopov, F F; Matorin, D N; Seifullina, N H; Bratkovskaya, L B; Zayadan, B K

    2015-01-01

    The effect of a dangerous toxic substance, methylmercury, on light dependence curves of chlorophyll fluorescence in Chlamydomonas moewusii was studied. We found low concentration of methylmercury (10(-7) M) to cause a decrease in the relative rate of the non-cyclic electron transport activity of PS 2, a decline in the maximum utilization of light energy (α), and a decline in the saturation light intensity (E(s)). Non-photochemical fluorescence quenching increased after short-term exposure and decreased in the course of prolonged incubation. These parameters were more sensitive to the action of the toxic substance than the widely used parameter F(V)/F(M), which reflects the maximum quantum yield of PS 2. We propose the use of the method of fast measurement of light dependence curves of fluorescence to detect the changes in algal cells at the early stages of exposure to mercury salts.

  6. Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Yordanova, Zhenya P; Iakimova, Elena T; Cristescu, Simona M; Harren, Frans J M; Kapchina-Toteva, Veneta M; Woltering, Ernst J

    2010-02-22

    This work demonstrates a contribution of ethylene and NO (nitric oxide) in MP (mastoparan)-induced cell death in the green algae Chlamydomonas reinhardtii. Following MP treatment, C. reinhardtii showed massive cell death, expressing morphological features of PCD (programmed cell death). A pharmacological approach involving combined treatments with MP and ethylene- and NO-interacting compounds indicated the requirement of trace amounts of both ethylene and NO in MP-induced cell death. By employing a carbon dioxide laser-based photoacoustic detector to measure ethylene and a QCL (quantum cascade laser)-based spectrometer for NO detection, simultaneous increases in the production of both ethylene and NO were observed following MP application. Our results show a tight regulation of the levels of both signalling molecules in which ethylene stimulates NO production and NO stimulates ethylene production. This suggests that, in conjunction with the elicitor, NO and ethylene cooperate and act synchronously in the mediation of MP-induced PCD in C. reinhardtii. To the best of our knowledge, this is the first report on the functional significance of ethylene and NO in MP-induced cell death.

  7. Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2.

    PubMed

    Ünlü, Caner; Polukhina, Iryna; van Amerongen, Herbert

    2016-04-01

    In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). These transitions are accompanied by marked changes in the 77 K fluorescence spectrum, which form the accepted signature of state transitions. The changes are generally thought to reflect a redistribution of light-harvesting complexes (LHCs) over PSII (fluorescing below 700 nm) and PSI (fluorescing above 700 nm). Here we studied the picosecond fluorescence properties of C. reinhardtti over a broad range of wavelengths with very low excitation intensities (0.2 nJ per laser pulse). Cells were directly used for time-resolved fluorescence measurements at 77 K without further treatment, such as medium exchange with glycerol. It is observed that upon going from state 1 (relatively more fluorescence below 700 nm) to state 2 (relatively more fluorescence above 700 nm), a large part of the fluorescence of LHC/PSII becomes substantially quenched in concurrence with LHC detachment from PSII, whereas the absolute amount of PSI fluorescence hardly changes. These results are in agreement with the recent proposal that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is rather limited (Unlu et al. Proc Natl Acad Sci USA 111 (9):3460-3465, 2014).

  8. Comparison of the Structural Changes Occurring during the Primary Phototransition of Two Different Channelrhodopsins from Chlamydomonas Algae

    PubMed Central

    2015-01-01

    Channelrhodopsins (ChRs) from green flagellate algae function as light-gated ion channels when expressed heterologously in mammalian cells. Considerable interest has focused on understanding the molecular mechanisms of ChRs to bioengineer their properties for specific optogenetic applications such as elucidating the function of specific neurons in brain circuits. While most studies have used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2), in this work low-temperature Fourier transform infrared-difference spectroscopy is applied to study the conformational changes occurring during the primary phototransition of the red-shifted ChR1 from Chlamydomonas augustae (CaChR1). Substitution with isotope-labeled retinals or the retinal analogue A2, site-directed mutagenesis, hydrogen–deuterium exchange, and H218O exchange were used to assign bands to the retinal chromophore, protein, and internal water molecules. The primary phototransition of CaChR1 at 80 K involves, in contrast to that of CrChR2, almost exclusively an all-trans to 13-cis isomerization of the retinal chromophore, as in the primary phototransition of bacteriorhodopsin (BR). In addition, significant differences are found for structural changes of the protein and internal water(s) compared to those of CrChR2, including the response of several Asp/Glu residues to retinal isomerization. A negative amide II band is identified in the retinal ethylenic stretch region of CaChR1, which reflects along with amide I bands alterations in protein backbone structure early in the photocycle. A decrease in the hydrogen bond strength of a weakly hydrogen bonded internal water is detected in both CaChR1 and CrChR2, but the bands are much broader in CrChR2, indicating a more heterogeneous environment. Mutations involving residues Glu169 and Asp299 (homologues of the Asp85 and Asp212 Schiff base counterions, respectively, in BR) lead to the conclusion that Asp299 is protonated during P1 formation and suggest that

  9. Regulation of cellular manganese and manganese transport rates in the unicellular alga Chlamydomonas

    SciTech Connect

    Sunda, W.G.; Huntsman, S.A.

    1985-01-01

    The cellular accumulation and uptake kinetics of manganese by Chlamydomonas sp. were studied in model chelate buffer systems. Cellular manganese concentrations and uptake rates were related to the computed free manganese ion concentration and were independent of the total or chelated manganese concentration. Cellular manganese was constant at about 1 mmol liter/sup -1/ of cellular volume at free manganese ion concentrations of 10/sup -7/ /sup 6/-10/sup -6/ /sup 3/ mol liter/sup -1/ and decreased below this range. Manganese uptake rates followed saturation kinetics and V/sub max/, but not K/sub s/, varied with the free manganese ion concentration in the growth medium. V/sub max/ appeared to be under negative feedback control and increased with decreasing manganese ion concentration. Variations of up to 30-fold in this parameter seemed to be instrumental in limiting the variation in cellular manganese to a sixfold range despite a 1000-fold variation in free manganese ion concentration in the growth medium.

  10. Characterization of the Major Light-Harvesting Complexes (LHCBM) of the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Natali, Alberto; Croce, Roberta

    2015-01-01

    Nine genes (LHCBM1-9) encode the major light-harvesting system of Chlamydomonas reinhardtii. Transcriptomic and proteomic analyses have shown that those genes are all expressed albeit in different amounts and some of them only in certain conditions. However, little is known about the properties and specific functions of the individual gene products because they have never been isolated. Here we have purified several complexes from native membranes and/or we have reconstituted them in vitro with pigments extracted from C. reinhardtii. It is shown that LHCBM1 and -M2/7 represent more than half of the LHCBM population in the membrane. LHCBM2/7 forms homotrimers while LHCBM1 seems to be present in heterotrimers. Trimers containing only type I LHCBM (M3/4/6/8/9) were also observed. Despite their different roles, all complexes have very similar properties in terms of pigment content, organization, stability, absorption, fluorescence and excited-state lifetimes. Thus the involvement of LHCBM1 in non-photochemical quenching is suggested to be due to specific interactions with other components of the membrane and not to the inherent quenching properties of the complex. Similarly, the overexpression of LHCBM9 during sulfur deprivation can be explained by its low sulfur content as compared with the other LHCBMs. Considering the highly conserved biochemical and spectroscopic properties, the major difference between the complexes may be in their capacity to interact with other components of the thylakoid membrane. PMID:25723534

  11. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii.

    PubMed

    Morgan, Andrew D; Ness, Rob W; Keightley, Peter D; Colegrave, Nick

    2014-09-01

    Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ~10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters.

  12. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii.

    PubMed

    Jiang, Yongguang; Zhu, Yanli; Hu, Zhangli; Lei, Anping; Wang, Jiangxin

    2016-09-01

    Toxic effects of copper on aquatic organisms in polluted water bodies have garnered particular attention in recent years. Microalgae play an important role in aquatic ecosystems, and they are sensitive to heavy metal pollution. Thus, it is important to clarify the mechanism of copper toxicity first for ecotoxicology studies. In this study, the physiological, biochemical and gene expression characteristics of a model green microalga, Chlamydomonas reinhardtii, with 0, 50, 150 and 250 μM copper treatments were investigated. The response of C. reinhardtii to copper stress was significantly shown at a dose dependent manner. Inhibition of cell growth and variation of total chlorophyll content were observed with copper treatments. The maximum photochemical efficiency of PSII, actual photochemical efficiency of PSII and photochemical quenching value decreased in the 250 μM copper treatment with minimum values equal to 28, 24 and 60 % of the control values respectively. The content of lipid peroxidation biomarker malondialdehyde with copper treatments increased with a maximum value sevenfold higher than the control value. Inhibition of cell growth and photosynthesis was ascribed to peroxidation of membrane lipids. The glutathione content and activities of antioxidant enzymes, glutathione S-transferase, glutathione peroxidase, superoxide dismutase and peroxidase were induced by copper. Interestingly, the expression of antioxidant genes and the photosynthetic gene decreased in most copper treatments. In conclusion, oxidative stress caused by production of excess reactive oxidative species might be the major mechanism of copper toxicity on C. reinhardtii.

  13. Evidence for a photoprotective function for secondary carotenoids of snow algae

    SciTech Connect

    Bidigare, R.R.; Ondrusek, M.E. ); Kennicutt, M.C. II ); Iturriaga, R. ); Harvey, H.R. ); Hoham, R.W. ); Macko, S.A. )

    1993-08-01

    Snow algae occupy a unique habitat in high altitude and polar environments. These algae are often subject to extremes in nutrient availability, acidity, solar irradiance, desiccation, and ambient temperature. This report documents the accumulation of secondary carotenoids by snow algae in response to the availability of nitrogenous nutrients. Unusually large accumulations of astaxanthin esters in extra-chloroplastic lipid globules produce the characteristic red pigmentation typical of some snow algae (e.g., Chlamydomonas nivalis (Bauer) Wille). Consequently, these compounds greatly reduce the amount of light available for absorption by the light-harvesting pigment-protein complexes, thus potentially limiting photoinhibition and photodamage caused by intense solar radiation. The esterification of astaxanthin with fatty acids represents a possible mechanism by which this chromophore can be concentrated within cytoplasmic globules to maximize its photoprotective efficiency. 53 refs., 2 figs., 4 tabs.

  14. Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii.

    PubMed

    Johnson, Xenie

    2011-07-01

    The nuclear factor, Maturation/stability of RbcL (MRL1), regulates the accumulation of the chloroplast rbcL gene transcript in Chlamydomonas reinhardtii by stabilising the mRNA via its 5' UTR. An absence of MRL1 in algal mrl1 mutants leads to a complete absence of RuBisCO large subunit protein and thus a lack of accumulation of the RuBisCO holoenzyme. By complementing mrl1 mutants by random transformation of the nuclear genome with the MRL1 cDNA, different levels of rbcL transcript accumulate. We also observe that RuBisCO Large Subunit accumulation is perturbed. Complemented strains accumulating as little as 15% RuBisCO protein can grow phototrophically while RuBisCO in this range is limiting for phototrophic growth. We also observe that photosynthetic activity, here measured by the quantum yield of PSII, appears to be a determinant for phototrophic growth. In some strains that accumulate less RuBisCO, a strong production of reactive oxygen species is detected. In the absence of RuBisCO, oxygen possibly acts as the PSI terminal electron acceptor. These results show that random transformation of MRL1 into mrl1 mutants can change RuBisCO accumulation allowing a range of phototrophic growth phenotypes. Furthermore, this technique allows for the isolation of strains with low RuBisCO, within the range of acceptable photosynthetic growth and reasonably low ROS production. MRL1 is thus a potential tool for applications to divert electrons away from photosynthetic carbon metabolism towards alternative pathways.

  15. Two Loci Control Phytoglycogen Production in the Monocellular Green Alga Chlamydomonas reinhardtii1

    PubMed Central

    Dauvillée, David; Colleoni, Christophe; Mouille, Gregory; Buléon, Alain; Gallant, Daniel J.; Bouchet, Brigitte; Morell, Matthew K.; d'Hulst, Christophe; Myers, Alan M.; Ball, Steven G.

    2001-01-01

    The STA8 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that controls starch biosynthesis. Mutations of STA8 cause a significant reduction in the amount of granular starch produced during nutrient limitation and accumulate phytoglycogen. The granules remaining in sta8 mutants are misshapen, and the abundance of amylose and long chains in amylopectin is altered. Mutations of the STA7 locus, which completely lack isoamylase activity, also cause accumulation of phytoglycogen, although sta8 and sta7 mutants differ in that there is a complete loss of granular starch in the latter. This is the first instance in which mutations of two different genetic elements in one plant species have been shown to cause phytoglycogen accumulation. An analytical procedure that allows assay of isoamylase in total extracts was developed and used to show that sta8 mutations cause a 65% reduction in the level of this activity. All other enzymes known to be involved in starch biosynthesis were shown to be unaffected in sta8 mutants. The same amount of total isoamylase activity (approximately) as that present in sta8 mutants was observed in heterozygous triploids containing two sta7 mutant alleles and one wild-type allele. This strain, however, accumulates normal levels of starch granules and lacks phytoglycogen. The total level of isoamylase activity, therefore, is not the major determinant of whether granule production is reduced and phytoglycogen accumulates. Instead, a qualitative property of the isoamylase that is affected by the sta8 mutation is likely to be the critical factor in phytoglycogen production. PMID:11299352

  16. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device

    PubMed Central

    Kwak, Ho Seok; Sung, Young Joon

    2016-01-01

    There is a growing interest in the photosynthetic carbon fixation by microalgae for the production of valuable products from carbon dioxide (CO2). Microalgae are capable of transporting bicarbonate (HCO3−), the most abundant form of inorganic carbon species in the water, as a source of CO2 for photosynthesis. Despite the importance of HCO3− as the carbon source, little is known about the chemotactic response of microalgae to HCO3−. Here, we showed the chemotaxis of a model alga, Chlamydomonas reinhardtii, towards HCO3− using an agarose gel-based microfluidic device with a flow-free and stable chemical gradient during the entire assay period. The device was validated by analyzing the chemotactic responses of C. reinhardtii to the previously known chemoattractants (NH4Cl and CoCl2) and chemotactically neutral molecule (NaCl). We found that C. reinhardtii exhibited the strongest chemotactic response to bicarbonate at the concentration of 26 mM in a microfluidic device. The chemotactic response to bicarbonate showed a circadian rhythm with a peak during the dark period and a valley during the light period. We also observed the changes in the chemotaxis to bicarbonate by an inhibitor of bicarbonate transporters and a mutation in CIA5, a transcriptional regulator of carbon concentrating mechanism, indicating the relationship between chemotaxis to bicarbonate and inorganic carbon metabolism in C. reinhardtii. To the best of our knowledge, this is the first report of the chemotaxis of C. reinhardtii towards HCO3−, which contributes to the understanding of the physiological role of the chemotaxis to bicarbonate and its relevance to inorganic carbon utilization. PMID:26958101

  17. In silico analysis of the sequence features responsible for alternatively spliced introns in the model green alga Chlamydomonas reinhardtii.

    PubMed

    Raj-Kumar, Praveen-Kumar; Vallon, Olivier; Liang, Chun

    2017-03-31

    Alternatively spliced introns are the ones that are usually spliced but can be occasionally retained in a transcript isoform. They are the most frequently used alternative splice form in plants (~50% of alternative splicing events). Chlamydomonas reinhardtii, a unicellular alga, is a good model to understand alternative splicing (AS) in plants from an evolutionary perspective as it diverged from land plants a billion years ago. Using over 7 million cDNA sequences from both pyrosequencing and Sanger sequencing, we found that a much higher percentage of genes (~20% of multi-exon genes) undergo AS than previously reported (3-5%). We found a full component of SR and SR-like proteins possibly involved in AS. The most prevalent type of AS event (40%) was retention of introns, most of which were supported by multiple cDNA evidence (72%) while only 20% of them have coding capacity. By comparing retained and constitutive introns, we identified sequence features potentially responsible for the retention of introns, in the framework of an "intron definition" model for splicing. We find that retained introns tend to have a weaker 5' splice site, more Gs in their poly-pyrimidine tract and a lesser conservation of nucleotide 'C' at position -3 of the 3' splice site. In addition, the sequence motifs found in the potential branch-point region differed between retained and constitutive introns. Furthermore, the enrichment of G-triplets and C-triplets among the first and last 50 nt of the introns significantly differ between constitutive and retained introns. These could serve as intronic splicing enhancers. All the alternative splice forms can be accessed at http://bioinfolab.miamioh.edu/cgi-bin/PASA_r20140417/cgi-bin/status_report.cgi?db=Chre_AS .

  18. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii

    PubMed Central

    Wang, Lianyong; Yamano, Takashi; Takane, Shunsuke; Niikawa, Yuki; Toyokawa, Chihana; Ozawa, Shin-ichiro; Tokutsu, Ryutaro; Takahashi, Yuichiro; Minagawa, Jun; Kanesaki, Yu; Yoshikawa, Hirofumi; Fukuzawa, Hideya

    2016-01-01

    Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic activity in CO2-limiting conditions by sensing environmental CO2 and light availability. Previously, a novel high-CO2–requiring mutant, H82, defective in the induction of the CCM, was isolated. A homolog of calcium (Ca2+)-binding protein CAS, originally found in Arabidopsis thaliana, was disrupted in H82 cells. Although Arabidopsis CAS is reported to be associated with stomatal closure or immune responses via a chloroplast-mediated retrograde signal, the relationship between a Ca2+ signal and the CCM associated with the function of CAS in an aquatic environment is still unclear. In this study, the introduction of an intact CAS gene into H82 cells restored photosynthetic affinity for inorganic carbon, and RNA-seq analyses revealed that CAS could function in maintaining the expression levels of nuclear-encoded CO2-limiting–inducible genes, including the HCO3– transporters high-light activated 3 (HLA3) and low-CO2–inducible gene A (LCIA). CAS changed its localization from dispersed across the thylakoid membrane in high-CO2 conditions or in the dark to being associated with tubule-like structures in the pyrenoid in CO2-limiting conditions, along with a significant increase of the fluorescent signals of the Ca2+ indicator in the pyrenoid. Chlamydomonas CAS had Ca2+-binding activity, and the perturbation of intracellular Ca2+ homeostasis by a Ca2+-chelator or calmodulin antagonist impaired the accumulation of HLA3 and LCIA. These results suggest that Chlamydomonas CAS is a Ca2+-mediated regulator of CCM-related genes via a retrograde signal from the pyrenoid in the chloroplast to the nucleus. PMID:27791081

  19. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L.

    PubMed

    Xu, Dong; Wang, Yitao; Fan, Xiao; Wang, Dongsheng; Ye, Naihao; Zhang, Xiaowen; Mou, Shanli; Guan, Zheng; Zhuang, Zhimeng

    2014-07-15

    Studies on ocean acidification have mostly been based on short-term experiments of low latitude with few investigations of the long-term influence on sea ice communities. Here, the combined effects of ocean acidification and photoperiod on the physiological response of the Antarctic sea ice microalgae Chlamydomonas sp. ICE-L were examined. There was a general increase in growth, PSII photosynthetic parameters, and N and P uptake in continuous light, compared to those exposed to regular dark and light cycles. Elevated pCO2 showed no consistent effect on growth rate (p=0.8) and N uptake (p=0.38) during exponential phrase, depending on the photoperiod but had a positive effect on PSII photosynthetic capacity and P uptake. Continuous dark reduced growth, photosynthesis, and nutrient uptake. Moreover, intracellular lipid, mainly in the form of PUFA, was consumed at 80% and 63% in low and high pCO2 in darkness. However, long-term culture under high pCO2 gave a more significant inhibition of growth and Fv/Fm to high light stress. In summary, ocean acidification may have significant effects on Chlamydomonas sp. ICE-L survival in polar winter. The current study contributes to an understanding of how a sea ice algae-based community may respond to global climate change at high latitudes.

  20. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii.

    PubMed

    Deng, Xiaodong; Cai, Jiajia; Li, Yajun; Fei, Xiaowen

    2014-11-01

    The regulation of lipid biosynthesis is important in photosynthetic eukaryotic cells. This regulation is facilitated by the direct synthesis of fatty acids and triacylglycerol (TAG), and by other controls of the main carbon metabolic pathway. In this study, knockdown of the mRNA expression of the Chlamydomonas phosphoenolpyruvate carboxylase isoform 1 (CrPEPC1) gene by RNA interference increased TAG level by 20 % but decreased PEPC activities in the corresponding transgenic algae by 39-50 %. The decrease in CrPEPC1 expression increased the expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, CrPEPC1 over-expression decreased TAG level by 37 % and increased PEPC activities by 157-184 %. These observations suggest that the lipid content of algal cells can be controlled by regulating the CrPEPC1 gene.

  1. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Hazzouri, Khaled M.; Rosas, Ulises; Bahmani, Tayebeh; Nelson, David R.; Abdrabu, Rasha; Harris, Elizabeth H.; Salehi-Ashtiani, Kourosh; Purugganan, Michael D.

    2015-01-01

    We performed whole-genome resequencing of 12 field isolates and eight commonly studied laboratory strains of the model organism Chlamydomonas reinhardtii to characterize genomic diversity and provide a resource for studies of natural variation. Our data support previous observations that Chlamydomonas is among the most diverse eukaryotic species. Nucleotide diversity is ∼3% and is geographically structured in North America with some evidence of admixture among sampling locales. Examination of predicted loss-of-function mutations in field isolates indicates conservation of genes associated with core cellular functions, while genes in large gene families and poorly characterized genes show a greater incidence of major effect mutations. De novo assembly of unmapped reads recovered genes in the field isolates that are absent from the CC-503 assembly. The laboratory reference strains show a genomic pattern of polymorphism consistent with their origin as the recombinant progeny of a diploid zygospore. Large duplications or amplifications are a prominent feature of laboratory strains and appear to have originated under laboratory culture. Extensive natural variation offers a new source of genetic diversity for studies of Chlamydomonas, including naturally occurring alleles that may prove useful in studies of gene function and the dissection of quantitative genetic traits. PMID:26392080

  2. Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii.

    PubMed

    Kobayashi, Yusuke; Harada, Naomi; Nishimura, Yoshiki; Saito, Takafumi; Nakamura, Mami; Fujiwara, Takayuki; Kuroiwa, Tsuneyoshi; Misumi, Osami

    2014-09-29

    The primitive red alga Cyanidioschyzon merolae inhabits acidic hot springs and shows robust resistance to heat shock treatments up to 63 °C. Microarray analysis was performed to identify the key genes underlying the high temperature tolerance of this organism. Among the upregulated genes that were identified, we focused on two small heat shock proteins (sHSPs) that belong to a unique class of HSP families. These two genes are located side by side in an inverted repeat orientation on the same chromosome and share a promoter. These two genes were simultaneously and rapidly upregulated in response to heat shock treatment (>1,000-fold more than the control). Interestingly, upregulation appeared to be triggered not by a difference in temperatures, but rather by the absolute temperature. Similar sHSP structural genes have been reported in the green alga Chlamydomonas reinhardtii, but the threshold temperature for the expression of these sHSP-encoding genes in Ch. reinhardtii was different from the threshold temperature for the expression of the sHSP genes from Cy. merolae. These results indicate the possible importance of an absolute temperature sensing system in the evolution and tolerance of high-temperature conditions among unicellular microalgae.

  3. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    PubMed

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  4. Surface gas-exchange processes of snow algae

    PubMed Central

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, because of the red astaxanthin that surrounds and masks the algal chloroplasts. Integrating daily course measurements of gas exchange showed CO2 uptake around 2,300 μmol⋅m−2⋅day−1 in heavily colonized patches, indicating that summer snowfields can be surprisingly productive. PMID:12518048

  5. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    PubMed

    Winck, Flavia Vischi; Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd

    2013-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can

  6. RNA-binding protein DUS16 plays an essential role in primary miRNA processing in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Yamasaki, Tomohito; Onishi, Masayuki; Kim, Eun-Jeong; Cerutti, Heriberto; Ohama, Takeshi

    2016-09-20

    Canonical microRNAs (miRNAs) are embedded in duplexed stem-loops in long precursor transcripts and are excised by sequential cleavage by DICER nuclease(s). In this miRNA biogenesis pathway, dsRNA-binding proteins play important roles in animals and plants by assisting DICER. However, these RNA-binding proteins are poorly characterized in unicellular organisms. Here we report that a unique RNA-binding protein, Dull slicer-16 (DUS16), plays an essential role in processing of primary-miRNA (pri-miRNA) transcripts in the unicellular green alga Chlamydomonas reinhardtii In animals and plants, dsRNA-binding proteins involved in miRNA biogenesis harbor two or three dsRNA-binding domains (dsRBDs), whereas DUS16 contains one dsRBD and also an ssRNA-binding domain (RRM). The null mutant of DUS16 showed a drastic reduction in most miRNA species. Production of these miRNAs was complemented by expression of full-length DUS16, but the expression of RRM- or dsRBD-truncated DUS16 did not restore miRNA production. Furthermore, DUS16 is predominantly localized to the nucleus and associated with nascent (unspliced form) pri-miRNAs and the DICER-LIKE 3 protein. These results suggest that DUS16 recognizes pri-miRNA transcripts cotranscriptionally and promotes their processing into mature miRNAs as a component of a microprocessor complex. We propose that DUS16 is an essential factor for miRNA production in Chlamydomonas and, because DUS16 is functionally similar to the dsRNA-binding proteins involved in miRNA biogenesis in animals and land plants, our report provides insight into this mechanism in unicellular eukaryotes.

  7. RNA-binding protein DUS16 plays an essential role in primary miRNA processing in the unicellular alga Chlamydomonas reinhardtii

    PubMed Central

    Onishi, Masayuki; Kim, Eun-Jeong; Cerutti, Heriberto; Ohama, Takeshi

    2016-01-01

    Canonical microRNAs (miRNAs) are embedded in duplexed stem–loops in long precursor transcripts and are excised by sequential cleavage by DICER nuclease(s). In this miRNA biogenesis pathway, dsRNA-binding proteins play important roles in animals and plants by assisting DICER. However, these RNA-binding proteins are poorly characterized in unicellular organisms. Here we report that a unique RNA-binding protein, Dull slicer-16 (DUS16), plays an essential role in processing of primary-miRNA (pri-miRNA) transcripts in the unicellular green alga Chlamydomonas reinhardtii. In animals and plants, dsRNA-binding proteins involved in miRNA biogenesis harbor two or three dsRNA-binding domains (dsRBDs), whereas DUS16 contains one dsRBD and also an ssRNA-binding domain (RRM). The null mutant of DUS16 showed a drastic reduction in most miRNA species. Production of these miRNAs was complemented by expression of full-length DUS16, but the expression of RRM- or dsRBD-truncated DUS16 did not restore miRNA production. Furthermore, DUS16 is predominantly localized to the nucleus and associated with nascent (unspliced form) pri-miRNAs and the DICER-LIKE 3 protein. These results suggest that DUS16 recognizes pri-miRNA transcripts cotranscriptionally and promotes their processing into mature miRNAs as a component of a microprocessor complex. We propose that DUS16 is an essential factor for miRNA production in Chlamydomonas and, because DUS16 is functionally similar to the dsRNA-binding proteins involved in miRNA biogenesis in animals and land plants, our report provides insight into this mechanism in unicellular eukaryotes. PMID:27582463

  8. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii.

    PubMed

    Murik, Omer; Elboher, Ahinoam; Kaplan, Aaron

    2014-04-01

    Chlamydomonas reinhardtii tolerates relatively high H2 O2 levels that induce an array of antioxidant activities. However, rather than rendering the cells more resistant to oxidative stress, the cells become far more sensitive to an additional H2 O2 dose. If H2 O2 is provided 1.5-9 h after an initial dose, it induces programmed cell death (PCD) in the wild-type, but not in the dum1 mutant impaired in the mitochondrial respiratory complex III. This mutant does not exhibit a secondary oxidative burst 4-5 h after the inducing H2 O2 , nor does it activate metacaspase-1 after the second H2 O2 treatment. The intracellular dehydroascorbate level, a product of ascorbate peroxidase, increases under conditions leading to PCD. The addition of dehydroascorbate induces PCD in the wild-type and dum1 cultures, but higher levels are required in dum1 cells, where it is metabolized faster. The application of dehydroascorbate induces the expression of metacaspase-2, which is much stronger than the expression of metacaspase-1. The presence or absence of oxidative stress, in addition to the rise in internal dehydroascorbate, may determine which metacaspase is activated during Chlamydomonas PCD. Cell death is strongly affected by the timing of H2 O2 or dehydroascorbate admission to synchronously grown cultures, suggesting that the cell cycle phase may distinguish cells that perish from those that do not.

  9. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata, grown under continuous culture conditions: influence of thiosulphate.

    PubMed

    Hiriart-Baer, Véronique P; Fortin, Claude; Lee, Dae-Young; Campbell, Peter G C

    2006-06-15

    In a test of the biotic ligand model (BLM), the uptake and toxicity of silver, in the absence or presence of the inorganic ligand, thiosulphate, were assessed for two freshwater green algae, Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata, using turbidostat continuous cultures. In the initial experiments, run in the absence of thiosulphate, the influent Ag concentration was varied from 0 to 75 nM in steps; for each influent concentration, silver uptake was calculated and the algal growth rate was determined. Silver uptake rates at low Ag concentrations were similar for both algae (e.g., 14-19 nmolm(-2)h(-1), for influent Ag(+) concentrations of approximately 9 nM) but at higher exposures uptake by P. sub-capitata exceeded that of C. reinhardtii. Despite this higher uptake rate, in the absence of thiosulphate P. sub-capitata was not more sensitive to free silver; 50% growth inhibition was reached at influent free Ag(+) concentrations of 15+/-7 and 22+/-13 nM for C. reinhardtii and P. sub-capitata, respectively. In the second series of experiments, the free Ag(+) concentration was held constant ( approximately 9 nM in the influent; 2-3 nM in the effluent) while the concentration of the silver thiosulphate complex, AgS(2)O(3)(-), was increased from 9 to 90 nM in steps. Under such conditions, the BLM would predict that silver uptake and toxicity should remain constant. On the contrary, both silver uptake and silver toxicity increased, indicating that the anionic silver thiosulphate complex enters the algal cells via a membrane-bound sulphate transporter and contributes to uptake and toxicity. However, for both algae there were indications that silver assimilated in this manner was somewhat less toxic to the algal cell than silver that entered via cation transport only. Physiological indicators of stress revealed possible different intracellular targets for these two freshwater algae, proteins and enzymes for C. reinhardtii and the photosynthetic

  10. Negative Impact on Growth and Photosynthesis in the Green Alga Chlamydomonas reinhardtii in the Presence of the Estrogen 17α-Ethynylestradiol

    PubMed Central

    Pocock, Tessa; Falk, Stefan

    2014-01-01

    It is well known that estrogenic compounds affect development of fertilized eggs of many species of birds, fish and amphibians through disrupted activity of carbonic anhydrase (CA). The most potent activity comes from the most commonly occurring synthetic sterol, 17α-Ethynylestradiol (EE2). Less is known about the responses of aquatic phytoplankton to these compounds. Here we show for the first time that, in comparision to the control, the addition of 7 µM EE2 reduced the growth rate of the green alga Chlamydomonas reinhardtii by 68% for cells grown at high CO2. When cells were grown in ambient air (low Ci) with a fully activated carbon concentrating mechanism through the induction of CA activity, the growth rates were reduced by as much as 119%. A reduced growth rate could be observed at EE2 concentrations as low as 10 pM. This was accompanied by a reduced maximum capacity for electron transport in photosystem II as determined by a lower FV/FM for low Ci-grown cells, which indicates the involvement of CAH3, a CA specifically located in the thylakoid lumen involved in proton pumping across the thylakoid membranes. These results were in agreement with an observed reduction in the chloroplastic affinity for Ci as shown by a strong increase in the Michaelis-Menten K0.5 for HCO3−. In itself, a lowering of the growth rate of a green alga by addition of the sterol EE2 warrants further investigation into the potential environmental impact by the release of treated waste water. PMID:25310092

  11. Negative impact on growth and photosynthesis in the green alga Chlamydomonas reinhardtii in the presence of the estrogen 17α-ethynylestradiol.

    PubMed

    Pocock, Tessa; Falk, Stefan

    2014-01-01

    It is well known that estrogenic compounds affect development of fertilized eggs of many species of birds, fish and amphibians through disrupted activity of carbonic anhydrase (CA). The most potent activity comes from the most commonly occurring synthetic sterol, 17α-Ethynylestradiol (EE2). Less is known about the responses of aquatic phytoplankton to these compounds. Here we show for the first time that, in comparision to the control, the addition of 7 µM EE2 reduced the growth rate of the green alga Chlamydomonas reinhardtii by 68% for cells grown at high CO2. When cells were grown in ambient air (low Ci) with a fully activated carbon concentrating mechanism through the induction of CA activity, the growth rates were reduced by as much as 119%. A reduced growth rate could be observed at EE2 concentrations as low as 10 pM. This was accompanied by a reduced maximum capacity for electron transport in photosystem II as determined by a lower FV/FM for low Ci-grown cells, which indicates the involvement of CAH3, a CA specifically located in the thylakoid lumen involved in proton pumping across the thylakoid membranes. These results were in agreement with an observed reduction in the chloroplastic affinity for Ci as shown by a strong increase in the Michaelis-Menten K0.5 for HCO3-. In itself, a lowering of the growth rate of a green alga by addition of the sterol EE2 warrants further investigation into the potential environmental impact by the release of treated waste water.

  12. The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii.

    PubMed

    Kodru, Sireesha; Malavath, Tirupathi; Devadasu, Elsinraju; Nellaepalli, Sreedhar; Stirbet, Alexandrina; Subramanyam, Rajagopal; Govindjee

    2015-08-01

    The green alga Chlamydomonas (C.) reinhardtii is a model organism for photosynthesis research. State transitions regulate redistribution of excitation energy between photosystem I (PS I) and photosystem II (PS II) to provide balanced photosynthesis. Chlorophyll (Chl) a fluorescence induction (the so-called OJIPSMT transient) is a signature of several photosynthetic reactions. Here, we show that the slow (seconds to minutes) S to M fluorescence rise is reduced or absent in the stt7 mutant (which is locked in state 1) in C. reinhardtii. This suggests that the SM rise in wild type C. reinhardtii may be due to state 2 (low fluorescence state; larger antenna in PS I) to state 1 (high fluorescence state; larger antenna in PS II) transition, and thus, it can be used as an efficient and quick method to monitor state transitions in algae, as has already been shown in cyanobacteria (Papageorgiou et al. 1999, 2007; Kaňa et al. 2012). We also discuss our results on the effects of (1) 3-(3,4-dichlorophenyl)-1,4-dimethyl urea, an inhibitor of electron transport; (2) n-propyl gallate, an inhibitor of alternative oxidase (AOX) in mitochondria and of plastid terminal oxidase in chloroplasts; (3) salicylhydroxamic acid, an inhibitor of AOX in mitochondria; and (4) carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an uncoupler of phosphorylation, which dissipates proton gradient across membranes. Based on the data presented in this paper, we conclude that the slow PSMT fluorescence transient in C. reinhardtii is due to the superimposition of, at least, two phenomena: qE dependent non-photochemical quenching of the excited state of Chl, and state transitions.

  13. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.

    PubMed

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-04-04

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used "dynamic" metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel.

  14. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size.

    PubMed

    Polle, Juergen E W; Kanakagiri, Sarada-Devi; Melis, Anastasios

    2003-05-01

    DNA insertional mutagenesis and screening of the green alga Chlamydomonas reinhardtii was employed to isolate tla1, a stable transformant having a truncated light-harvesting chlorophyll antenna size. Molecular analysis showed a single plasmid insertion into an open reading frame of the nuclear genome corresponding to a novel gene ( Tla1) that encodes a protein of 213 amino acids. Genetic analysis showed co-segregation of plasmid and tla1 phenotype. Biochemical analyses showed the tla1 mutant to be chlorophyll deficient, with a functional chlorophyll antenna size of photosystem I and photosystem II being about 50% and 65% of that of the wild type, respectively. It contained a correspondingly lower amount of light-harvesting proteins than the wild type and had lower steady-state levels of Lhcb mRNA. The tla1 strain required a higher light intensity for the saturation of photosynthesis and showed greater solar conversion efficiencies and a higher photosynthetic productivity than the wild type under mass culture conditions. Results are discussed in terms of the tla1 mutation, its phenotype, and the role played by the Tla1 gene in the regulation of the photosynthetic chlorophyll antenna size in C. reinhardtii.

  15. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  16. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4

    PubMed Central

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-01-01

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used “dynamic” metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel. PMID:28374798

  17. Genome-Wide Identification of Regulatory Elements and Reconstruction of Gene Regulatory Networks of the Green Alga Chlamydomonas reinhardtii under Carbon Deprivation

    PubMed Central

    Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd

    2013-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can

  18. Sex determination in Chlamydomonas.

    PubMed

    Goodenough, Ursula; Lin, Huawen; Lee, Jae-Hyeok

    2007-06-01

    The sex-determination system of the unicellular green alga, Chlamydomonas reinhardtii, is governed by genes in the mating-type (MT) locus and entails additional genes located in autosomes. Gene expression is initiated by nitrogen starvation, and cells differentiate into plus or minus gametes within 6h. Reviewed is our current understanding of gametic differentiation and fertilization, initiation of zygote development, and the uniparental inheritance of organelle genomes.

  19. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii.

    PubMed

    Wannathong, Thanyanan; Waterhouse, Janet C; Young, Rosanna E B; Economou, Chloe K; Purton, Saul

    2016-06-01

    In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone.

  20. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  1. Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    PubMed Central

    Yang, Wei-Wan; Miao, Ai-Jun; Yang, Liu-Yan

    2012-01-01

    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii. PMID:22403644

  2. Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene.

    PubMed

    Kirst, Henning; García-Cerdán, Jose Gines; Zurbriggen, Andreas; Melis, Anastasios

    2012-02-01

    The truncated light-harvesting antenna2 (tla2) mutant of Chlamydomonas reinhardtii showed a lighter-green phenotype, had a lower chlorophyll (Chl) per-cell content, and higher Chl a/b ratio than corresponding wild-type strains. Physiological analyses revealed a higher intensity for the saturation of photosynthesis and greater P(max) values in the tla2 mutant than in the wild type. Biochemical analyses showed that the tla2 strain was deficient in the Chl a-b light-harvesting complex, and had a Chl antenna size of the photosystems that was only about 65% of that in the wild type. Molecular and genetic analyses showed a single plasmid insertion in the tla2 strain, causing a chromosomal DNA rearrangement and deletion/disruption of five nuclear genes. The TLA2 gene, causing the tla2 phenotype, was cloned by mapping the insertion site and upon complementation with each of the genes that were deleted. Successful complementation was achieved with the C. reinhardtii TLA2-CpFTSY gene, whose occurrence and function in green microalgae has not hitherto been investigated. Functional analysis showed that the nuclear-encoded and chloroplast-localized CrCpFTSY protein specifically operates in the assembly of the peripheral components of the Chl a-b light-harvesting antenna. In higher plants, a cpftsy null mutation inhibits assembly of both the light-harvesting complex and photosystem complexes, thus resulting in a seedling-lethal phenotype. The work shows that cpftsy deletion in green algae, but not in higher plants, can be employed to generate tla mutants. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions.

  3. RNAi Knock-Down of LHCBM1, 2 and 3 Increases Photosynthetic H2 Production Efficiency of the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Oey, Melanie; Ross, Ian L.; Stephens, Evan; Steinbeck, Janina; Wolf, Juliane; Radzun, Khairul Adzfa; Kügler, Johannes; Ringsmuth, Andrew K.; Kruse, Olaf; Hankamer, Ben

    2013-01-01

    Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m−2 s−1) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems. PMID:23613840

  4. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.

    PubMed

    Röhder, Lena A; Brandt, Tanja; Sigg, Laura; Behra, Renata

    2014-07-01

    Cerium oxide nanoparticles (CeO2 NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO2 NP and effects on algae are largely unknown. In this study, the short term effects of CeO2 NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO2 NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO2 NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO2 NP had a surface charge of ∼0mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO2 NP at pH 7.5 over 24h. This effect was exploited to test CeO2 NP dispersed in phosphate with a mean size of 140nm and agglomerated in absence of phosphate with a mean size of 2000nm. The level of dissolved cerium(III) in CeO2 NP suspensions was very low and between 0.1 and 27nM in all tested media. Exposure of C. reinhardtii to Ce(NO3)3 decreased the photosynthetic yield in a concentration dependent manner with EC50 of 7.5±0.84μM for wild type and EC50 of 6.3±0.53μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO3)3 with effective concentrations similar to those inhibiting photosynthesis. The agglomerated CeO2 NP caused a slight decrease of photosynthetic yield at the highest concentrations (100μM), while no effect was observed for dispersed CeO2 NP. The low toxicity of agglomerated CeO2 NP was attributed quantitatively to Ce(3+) ions co-occurring in the nanoparticle suspension whereas for dispersed CeO2 NP, dissolved Ce(3+) was precipitated with phosphate and not bioavailable. Furthermore CeO2 NP did not affect the intracellular ROS level. The cell wall free mutant and wild type of C

  5. Chlamydomonas: A Model Green Plant.

    ERIC Educational Resources Information Center

    Sheffield, E.

    1985-01-01

    Discusses the instructional potential of Chlamydomonas in providing a basis for a range of experimental investigations to illustrate basic biological phenomena. Describes the use of this algae genus in studies of population growth, photosynthesis, and mating behavior. Procedures for laboratory exercises are included. (ML)

  6. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2001-12-01

    The altitudinal distribution of a snow algal community was investigated on an Alaska glacier (Gulkana Glacier in the Alaska Range) from 1270 to 1770 m a.s.l.. Seven species of snow and ice algae (Chlorophyta and cyanobacteria) were observed on the glacier surface. These species were Chlamydomonas nivalis, Mesotaenium berggrenii, Ancylonema nordenskioldii, Cylindrocystis brébissonii, Raphidonema sp., and two Oscillatoriaceae cyanobacteria. The altitudinal distribution of snow algae was different among the species: Cd. nivalis was distributed on the middle to upper area, M. berggrenii; A. nordenskioldii, and one Oscillatoriaceae cyanobacterium on the middle to lower area; Raphidonema sp. on the middle area; and Cyl. brébissonii and one Oscillatoriaceae cyanobacterium on the lower area. The total cell concentration and the cell volume biomass of the snow algae ranged from 4·4 × 103 to 9·9 × 105 cells ml-1 and from 33 to 2211 µl m-2 respectively. The cell volume biomass changed with altitude; the biomass increased with altitude below 1600 m a.s.l., and decreased above 1600 m a.s.l. The community structure showed that nivalisalgae is discussed in terms of the physical and chemical condition of the glacier surface, and is compared with that on a Himalayan glacier. A larger biomass in the snow area on the Alaska glacier than that of the Himalayan glacier is likely due to less frequent snow cover in summer in Alaska. Small amounts of filamentous cyanobacteria on the Alaska glacier may allow washouts of unicellular green algae by running melt water and may cause a different pattern of altitudinal distribution of algal biomass on the ice area from the Himalayan glacier

  7. Deep Transcriptome Sequencing of Two Green Algae, Chara vulgaris and Chlamydomonas reinhardtii,  Provides No Evidence of Organellar RNA Editing.

    PubMed

    Cahoon, A Bruce; Nauss, John A; Stanley, Conner D; Qureshi, Ali

    2017-02-20

    Nearly all land plants post-transcriptionally modify specific nucleotides within RNAs, a process known as RNA editing. This adaptation allows the correction of deleterious mutations within the asexually reproducing and presumably non-recombinant chloroplast and mitochondrial genomes. There are no reports of RNA editing in any of the green algae so this phenomenon is presumed to have originated in embryophytes either after the invasion of land or in the now extinct algal ancestor of all land plants. This was challenged when a recent in silico screen for RNA edit sites based on genomic sequence homology predicted edit sites in the green alga Chara vulgaris, a multicellular alga found within the Streptophyta clade and one of the closest extant algal relatives of land plants. In this study, the organelle transcriptomes of C. vulgaris and Chlamydomonas reinhardtii were deep sequenced for a comprehensive assessment of RNA editing. Initial analyses based solely on sequence comparisons suggested potential edit sites in both species, but subsequent high-resolution melt analysis, RNase H-dependent PCR (rhPCR), and Sanger sequencing of DNA and complementary DNAs (cDNAs) from each of the putative edit sites revealed them to be either single-nucleotide polymorphisms (SNPs) or spurious deep sequencing results. The lack of RNA editing in these two lineages is consistent with the current hypothesis that RNA editing evolved after embryophytes split from its ancestral algal lineage.

  8. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  9. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds.

  10. Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene.

    PubMed

    Tetali, Sarada D; Mitra, Mautusi; Melis, Anastasios

    2007-03-01

    The Chlamydomonas reinhardtii tla1 (truncated light-harvesting chlorophyll antenna size) mutant was generated upon DNA insertional mutagenesis and shown to specifically possess a smaller than wild type (WT) chlorophyll antenna size in both photosystems. Molecular and genetic analysis revealed that the exogenous plasmid DNA was inserted at the end of the 5' UTR and just prior to the ATG start codon of a hitherto unknown nuclear gene (termed Tla1), which encodes a protein of 213 amino acids. The Tla1 gene in the mutant is transcribed with a new 5' UTR sequence, derived from the 3' end of the transforming plasmid. This replacement of the native 5' UTR and promoter regions resulted in enhanced transcription of the tla1 gene in the mutant but inhibition in the translation of the respective tla1 mRNA. Transformation of the tla1 mutant with WT Tla1 genomic DNA successfully rescued the mutant. These results are evidence that polymorphism in the 5' UTR of the Tla1 transcripts resulted in the tla1 phenotype and that expression of the Tla1 gene is a prerequisite for the development/assembly of the Chl antenna in C. reinhardtii. A blast search with the Tla1 deduced amino acid sequence

  11. Biochemical and Structural Studies of the Large Ycf4-Photosystem I Assembly Complex of the Green Alga Chlamydomonas reinhardtii[W

    PubMed Central

    Ozawa, Shin-ichiro; Nield, Jon; Terao, Akihiro; Stauber, Einar J.; Hippler, Michael; Koike, Hiroyuki; Rochaix, Jean-David; Takahashi, Yuichiro

    2009-01-01

    Ycf4 is a thylakoid protein essential for the accumulation of photosystem I (PSI) in Chlamydomonas reinhardtii. Here, a tandem affinity purification tagged Ycf4 was used to purify a stable Ycf4-containing complex of >1500 kD. This complex also contained the opsin-related COP2 and the PSI subunits PsaA, PsaB, PsaC, PsaD, PsaE, and PsaF, as identified by mass spectrometry (liquid chromatography–tandem mass spectrometry) and immunoblotting. Almost all Ycf4 and COP2 in wild-type cells copurified by sucrose gradient ultracentrifugation and subsequent ion exchange column chromatography, indicating the intimate and exclusive association of Ycf4 and COP2. Electron microscopy revealed that the largest structures in the purified preparation measure 285 × 185 Å; these particles may represent several large oligomeric states. Pulse-chase protein labeling revealed that the PSI polypeptides associated with the Ycf4-containing complex are newly synthesized and partially assembled as a pigment-containing subcomplex. These results indicate that the Ycf4 complex may act as a scaffold for PSI assembly. A decrease in COP2 to 10% of wild-type levels by RNA interference increased the salt sensitivity of the Ycf4 complex stability but did not affect the accumulation of PSI, suggesting that COP2 is not essential for PSI assembly. PMID:19700633

  12. CHLAMYDOMONAS FLAGELLA

    PubMed Central

    Witman, G. B.; Carlson, K.; Rosenbaum, Joel L.

    1972-01-01

    Quantitative ultrastructural analysis and quantitative gel electrophoresis of preparations of selectively solubilized Chlamydomonas outer doublets indicated that tubulins 1 and 2 were present in both the A tubule and the B tubule, and that only tubulin 1 was present in the three protofilaments which form the wall ("partition") between the lumens of the A and B tubules. The data suggested that the remaining protofilaments of the outer doublet were grouped together in pairs containing the same type of tubulin, pairs containing tubulin 1 alternating with pairs containing tubulin 2. These findings were used to construct models for the arrangement of the two tubulins in the outer doublet. Further analysis by isoelectric focusing resolved tubulins 1 and 2 into at least five bands. PMID:5044758

  13. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors.

    PubMed

    Pugliara, Alessandro; Makasheva, Kremena; Despax, Bernard; Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice; Sancho, Maria Carmen; Navarro, Enrique; Echegoyen, Yolanda; Bonafos, Caroline

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size <20nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs.

  14. A brief introduction to the model microswimmer Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Jeanneret, Raphaël; Contino, Matteo; Polin, Marco

    2016-11-01

    The unicellular biflagellate green alga Chlamydomonas reinhardtii has been an important model system in biology for decades, and in recent years it has started to attract growing attention also within the biophysics community. Here we provide a concise review of some of the aspects of Chlamydomonas biology and biophysics most immediately relevant to physicists that might be interested in starting to work with this versatile microorganism.

  15. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii sustainable over 2 weeks with the original cell culture without supply of fresh cells nor exchange of the whole culture medium.

    PubMed

    Yagi, Takafumi; Yamashita, Kyohei; Okada, Norihide; Isono, Takumi; Momose, Daisuke; Mineki, Shigeru; Tokunaga, Eiji

    2016-07-01

    Unicellular green algae Chlamydomonas reinhardtii are known to make hydrogen photoproduction under the anaerobic condition with water molecules as the hydrogen source. Since the hydrogen photoproduction occurs for a cell to circumvent crisis of its survival, it is only temporary. It is a challenge to realize persistent hydrogen production because the cells must withstand stressful conditions to survive with alternation of generations in the cell culture. In this paper, we have found a simple and cost-effective method to sustain the hydrogen production over 14 days in the original culture, without supply of fresh cells nor exchange of the culture medium. This is achieved for the cells under hydrogen production in a sulfur-deprived culture solution on the {anaerobic, intense light} condition in a desiccator, by periodically providing a short period of the recovery time (2 h) with a small amount of TAP(+S) supplied outside of the desiccator. As this operation is repeated, the response time of transition into hydrogen production (preparation time) is shortened and the rate of hydrogen production (build up time) is increased. The optimum states of these properties favorable to the hydrogen production are attained in a few days and stably sustained for more than 10 days. Since generations are alternated during this consecutive hydrogen production experiment, it is suggested that the improved hydrogen production properties are inherited to next generations without genetic mutation. The properties are reset only when the cells are placed on the {sulfur-sufficient, aerobic, moderate light} conditions for a long time (more than 1 day at least).

  16. Polyclonal antibodies against the TLA1 protein also recognize with high specificity the D2 reaction center protein of PSII in the green alga Chlamydomonas reinhardtii.

    PubMed

    Mitra, Mautusi; Dewez, David; García-Cerdán, Jose Gines; Melis, Anastasios

    2012-04-01

    The Chlamydomonas reinhardtii DNA-insertional transformant truncated light-harvesting antenna 1 (tla1) mutant, helped identify the novel TLA1 gene (GenBank Accession # AF534570-71) as an important genetic determinant in the chlorophyll antenna size of photosynthesis. Down-regulation in the amount of the TLA1 23 kDa protein in the cell resulted in smaller chlorophyll antenna size for both photosystems (in Tetali et al. Planta 225:813-829, 2007). Specific polyclonal antibodies, raised against the recombinant TLA1 protein, showed a cross-reaction with the predicted 23 kDa TLA1 protein in C. reinhardtii protein extracts, but also showed a strong cross-reaction with a protein band migrating to 28.5 kDa. Questions of polymorphism, or posttranslational modification of the TLA1 protein were raised as a result of the unexpected 28.5 kDa cross-reaction. Work in this paper aimed to elucidate the nature of the unexpected 28.5 kDa cross-reaction, as this was deemed to be important in terms of the functional role of the TLA1 protein in the regulation of the chlorophyll antenna size of photosynthesis. Immuno-precipitation of the 28.5 kDa protein, followed by LC-mass spectrometry, showed amino acid sequences ascribed to the psbD/D2 reaction center protein of PSII. The common antigenic determinant between TLA1 and D2 was shown to be a stretch of nine conserved amino acids V-F-L(V)LP-GNAL in the C-terminus of the two proteins, constituting a high antigenicity "GNAL" domain. Antibodies raised against the TLA1 protein containing this domain recognized both the TLA1 and the D2 protein. Conversely, antibodies raised against the TLA1 protein minus the GNAL domain specifically recognized the 23 kDa TLA1 protein and failed to recognize the 28.5 kDa D2 protein. D2 antibodies raised against an oligopeptide containing this domain also cross-reacted with the TLA1 protein. It is concluded that the 28.5 kDa cross-reaction of C. reinhardtii protein extracts with antiTLA1 antibodies is due to

  17. A new phthalide derivative from Peperomia nivalis.

    PubMed

    Vásquez-Ocmín, Pedro; Haddad, Mohamed; Gadea, Alice; Jullian, Valérie; Castillo, Denis; Paloque, Lucie; Cerapio, Juan Pablo; Bourdy, Geneviève; Sauvain, Michel

    2017-01-01

    One new phthalide (1) was isolated from aerial parts of Peperomia nivalis, along with known compounds (2 and 3), reported in this species for the first time. The structure of the new compound was characterised on the basis of 1D ((1)H and (13)C NMR), 2D (COSY, HMQC, HMBC and NOESY) NMR and high-resolution mass spectral (HRMS) data. Compound 2 was isolated from a natural source for the first time but previously synthesised. Compounds 1-3 were evaluated for their anti-Helicobacter pylori and anti-Plasmodium falciparum activities. Compound 1 showed moderate activities against H. pylori (MIC 47.5 μM) and the F32-Tanzania strain of P. falciparum (IC50 8.5 μM). Compounds 2 and 3 exhibited weak anti-H. pylori activity (MIC 241.3 and 237.6 μM, respectively) and were inactive against P. falciparum.

  18. The Chlamydomonas genome project: a decade on

    PubMed Central

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  19. Identification of an NADP/thioredoxin system in Chlamydomonas reinhardtii

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; Picaud, A.; Buchanan, B. B.; Miginiac-Maslow, M.

    1991-01-01

    The protein components of the NADP/thioredoxin system, NADP-thioredoxin reductase (NTR) and thioredoxin h, have been purified and characterized from the green alga, Chlamydomonas reinhardtii. The analysis of this system confirms that photoautotrophic Chlamydomonas cells resemble leaves in having both an NADP- and ferrodoxin-linked thioredoxin redox system. Chlamydomonas thioredoxin h, which is smaller on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than thioredoxin m from the same source, cross-reacted with antisera to thioredoxin h from spinach (Spinacia oleracea L.) and wheat germ (Triticum vulgaris L.) but not with antisera to m or f thioredoxins. In these properties, the thioredoxin h resembled a thioredoxin from Chlamydomonas, designated Ch1, whose sequence was reported recently (P. Decottignies et al., 1991, Eur. J. Biochem. 198, 505-512). The differential reactivity of thioredoxin h with antisera was used to demonstrate that thioredoxin h is enriched outside the chloroplast. The NTR was purified from Chlamydomonas using thioredoxin h from the same source. Similar to its counterpart from other organisms, Chlamydomonas NTR had a subunit size of approx. 36 kDa and was specific for NADPH. Chlamydomonas NTR effectively reduced thioredoxin h from the same source but showed little activity with the other thioredoxins tested, including spinach thioredoxin h and Escherichia coli thioredoxin. Comparison of the reduction of Chlamydomonas thioredoxins m and h by each of the endogenous thioredoxin reductases, NTR and ferredoxin-thioredoxin reductase, revealed a differential specificity of each enzyme for thioredoxin. Thus, NTR showed increased activity with thioredoxin h and ferredoxin-thioredoxin reductase with thioredoxins m and f.

  20. Photomixing of chlamydomonas rheinhardtii suspensions

    NASA Astrophysics Data System (ADS)

    Dervaux, Julien; Capellazzi Resta, Marina; Abou, Bérengère; Brunet, Philippe

    2014-11-01

    Chlamydomonas rheinhardtii is a fast swimming unicellular alga able to bias its swimming direction in gradients of light intensity, an ability know as phototaxis. We have investigated experimentally both the swimming behavior of individual cells and the macroscopic response of shallow suspensions of these micro-organisms in response to a localized light source. At low light intensity, algae exhibit positive phototaxis and accumulate beneath the excitation light. In weakly concentrated thin layers, the balance between phototaxis and cell motility results in steady symmetrical patterns compatible with a purely diffusive model using effective diffusion coefficients extracted from the analysis of individual cell trajectories. However, at higher cell density and layer depth, collective effects induce convective flows around the light source. These flows disturb the cell concentration patterns which spread and may then becomes unstable. Using large passive tracer particles, we have characterized the velocity fields associated with this forced bioconvection and their dependence on the cell density and layer depth. By tuning the light distribution, this mechanism of photo-bioconvection allows a fine control over the local fluid flows, and thus the mixing efficiency, in algal suspensions.

  1. Cross-reconstitution of the extrinsic proteins and photosystem II complexes from Chlamydomonas reinhardtii and Spinacia oleracea.

    PubMed

    Suzuki, T; Ohta, H; Enami, I

    2005-06-01

    Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.

  2. Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis.

    PubMed

    Shimakawa, Ginga; Akimoto, Seiji; Ueno, Yoshifumi; Wada, Ayumi; Shaku, Keiichiro; Takahashi, Yuichiro; Miyake, Chikahiro

    2016-12-01

    Some cyanobacteria, but not all, experience an induction of alternative electron flow (AEF) during CO2-limited photosynthesis. For example, Synechocystis sp. PCC 6803 (S. 6803) exhibits AEF, but Synechococcus elongatus sp. PCC 7942 does not. This difference is due to the presence of flavodiiron 2 and 4 proteins (FLV2/4) in S. 6803, which catalyze electron donation to O2. In this study, we observed a low-[CO2] induced AEF in the marine cyanobacterium Synechococcus sp. PCC 7002 that lacks FLV2/4. The AEF shows high affinity for O2, compared with AEF mediated by FLV2/4 in S. 6803, and can proceed under extreme low [O2] (about a few µM O2). Further, the transition from CO2-saturated to CO2-limited photosynthesis leads a preferential excitation of PSI to PSII and increased non-photochemical quenching of chlorophyll fluorescence. We found that the model green alga Chlamydomonas reinhardtii also has an O2-dependent AEF showing the same affinity for O2 as that in S. 7002. These data represent the diverse molecular mechanisms to drive AEF in cyanobacteria and green algae. In this paper, we further discuss the diversity, the evolution, and the physiological function of strategy to CO2-limitation in cyanobacterial and green algal photosynthesis.

  3. Photoperiodic control of germination in the unicell Chlamydomonas

    NASA Astrophysics Data System (ADS)

    Suzuki, Lena; Johnson, Carl Hirschie

    2002-03-01

    Photoperiodic time measurement is a well-documented adaptation of multicellular plants and animals to seasonal changes in the environment, but it is unclear whether unicellular organisms can exhibit bona fide photoperiodic responses. We demonstrate that the occurrence of zygospore germination of the unicellular alga Chlamydomonas is a genuine photoperiodic response. Germination efficiency is enhanced in long days as compared with short days. While the total amount of light exposure influences the efficiency of germination, the photoperiod is a significant cue for germination. The developmental stage that senses the photoperiod is just prior to mating and during the first days of zygospore development, so there may be a critical window of zygospore maturation that is regulated by photoperiod. Because zygospores are resistant to freezing injury, whereas vegetative cells are not, it is likely that the suppression of germination by short days is an adaptive response for overwintering of Chlamydomonas. Therefore, Chlamydomonas is a single-celled organism that is capable of photoperiodic responses.

  4. Isolation of Chlamydomonas Flagella

    PubMed Central

    Craige, Branch; Brown, Jason M.; Witman, George B.

    2014-01-01

    A simple, scalable, and fast procedure for the isolation of Chlamydomonas flagella is described. Chlamydomonas can be synchronously deflagellated by treatment with chemicals, pH shock, or mechanical shear. The Basic Protocol describes the procedure for flagellar isolation using dibucaine to induce flagellar abscission; we also describe the pH shock method as an Alternate Protocol when flagellar regeneration is desirable. Sub-fractionation of the isolated flagella into axonemes and the membrane + matrix fraction is described in a Support Protocol. PMID:23728744

  5. Resolving the phylogenetic relationship between Chlamydomonas sp. UWO 241 and Chlamydomonas raudensis sag 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences.

    PubMed

    Possmayer, Marc; Gupta, Rajesh K; Szyszka-Mroz, Beth; Maxwell, Denis P; Lachance, Marc-André; Hüner, Norman P A; Smith, David Roy

    2016-04-01

    The Antarctic psychrophilic green alga Chlamy-domonas sp. UWO 241 is an emerging model for studying microbial adaptation to polar environments. However, little is known about its evolutionary history and its phylogenetic relationship with other chlamydomonadalean algae is equivocal. Here, we attempt to clarify the phylogenetic position of UWO 241, specifically with respect to Chlamydomonas rau-densis SAG 49.72. Contrary to a previous report, we show that UWO 241 is a distinct species from SAG 49.72. Our phylogenetic analyses of nuclear and plastid DNA sequences reveal that UWO 241 represents a unique lineage within the Moewusinia clade (sensu Nakada) of the Chlamydomonadales (Chlorophyceae, Chlorophyta), closely affiliated to the marine species Chlamydomonas parkeae SAG 24.89.

  6. Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii.

    PubMed

    Polle, J E; Niyogi, K K; Melis, A

    2001-05-01

    Chlamydomonas reinhardtii double mutant npq2 lor1 lacks the beta, epsilon-carotenoids lutein and loroxanthin as well as all beta,beta-epoxycarotenoids derived from zeaxanthin (e.g. violaxanthin and neoxanthin). Thus, the only carotenoids present in the thylakoid membranes of the npq2 lor1 cells are beta-carotene and zeaxanthin. The effect of these mutations on the photochemical apparatus assembly and function was investigated. In cells of the mutant strain, the content of photosystem-II (PSII) and photosystem-I (PSI) was similar to that of the wild type, but npq2 lor1 had a significantly smaller PSII light-harvesting Chl antenna size. In contrast, the Chl antenna size of PSI was not truncated in the mutant. SDS-PAGE and Western blot analysis qualitatively revealed the presence of all LHCII and LHCI apoproteins in the thylakoid membrane of the mutant. The results showed that some of the LHCII and most of the LHCI were assembled and functionally connected with PSII and PSI, respectively. Photon conversion efficiency measurements, based on the initial slope of the light-saturation curve of photosynthesis and on the yield of Chl a fluorescence in vivo, showed similar efficiencies. However, a significantly greater light intensity was required for the saturation of photosynthesis in the mutant than in the wild type. It is concluded that zeaxanthin can successfully replace lutein and violaxanthin in most of the functional light-harvesting antenna of the npq2 lor1 mutant.

  7. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs

    PubMed Central

    Valli, Adrian A.; Santos, Bruno A.C.M.; Hnatova, Silvia; Bassett, Andrew R.; Molnar, Attila; Chung, Betty Y.; Baulcombe, David C.

    2016-01-01

    We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species, Chlamydomonas reinhardtii. Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes. PMID:26968199

  8. Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii.

    PubMed

    Johnson, Xenie; Steinbeck, Janina; Dent, Rachel M; Takahashi, Hiroko; Richaud, Pierre; Ozawa, Shin-Ichiro; Houille-Vernes, Laura; Petroutsos, Dimitris; Rappaport, Fabrice; Grossman, Arthur R; Niyogi, Krishna K; Hippler, Michael; Alric, Jean

    2014-05-01

    The Chlamydomonas reinhardtii proton gradient regulation5 (Crpgr5) mutant shows phenotypic and functional traits similar to mutants in the Arabidopsis (Arabidopsis thaliana) ortholog, Atpgr5, providing strong evidence for conservation of PGR5-mediated cyclic electron flow (CEF). Comparing the Crpgr5 mutant with the wild type, we discriminate two pathways for CEF and determine their maximum electron flow rates. The PGR5/proton gradient regulation-like1 (PGRL1) ferredoxin (Fd) pathway, involved in recycling excess reductant to increase ATP synthesis, may be controlled by extreme photosystem I acceptor side limitation or ATP depletion. Here, we show that PGR5/PGRL1-Fd CEF functions in accordance with an ATP/redox control model. In the absence of Rubisco and PGR5, a sustained electron flow is maintained with molecular oxygen instead of carbon dioxide serving as the terminal electron acceptor. When photosynthetic control is decreased, compensatory alternative pathways can take the full load of linear electron flow. In the case of the ATP synthase pgr5 double mutant, a decrease in photosensitivity is observed compared with the single ATPase-less mutant that we assign to a decreased proton motive force. Altogether, our results suggest that PGR5/PGRL1-Fd CEF is most required under conditions when Fd becomes overreduced and photosystem I is subjected to photoinhibition. CEF is not a valve; it only recycles electrons, but in doing so, it generates a proton motive force that controls the rate of photosynthesis. The conditions where the PGR5 pathway is most required may vary in photosynthetic organisms like C. reinhardtii from anoxia to high light to limitations imposed at the level of carbon dioxide fixation.

  9. The High Efficiency of Photosystem I in the Green Alga Chlamydomonas reinhardtii Is Maintained after the Antenna Size Is Substantially Increased by the Association of Light-harvesting Complexes II*

    PubMed Central

    Le Quiniou, Clotilde; van Oort, Bart; Drop, Bartlomiej; van Stokkum, Ivo H. M.; Croce, Roberta

    2015-01-01

    Photosystems (PS) I and II activities depend on their light-harvesting capacity and trapping efficiency, which vary in different environmental conditions. For optimal functioning, these activities need to be balanced. This is achieved by redistribution of excitation energy between the two photosystems via the association and disassociation of light-harvesting complexes (LHC) II, in a process known as state transitions. Here we study the effect of LHCII binding to PSI on its absorption properties and trapping efficiency by comparing time-resolved fluorescence kinetics of PSI-LHCI and PSI-LHCI-LHCII complexes of Chlamydomonas reinhardtii. PSI-LHCI-LHCII of C. reinhardtii is the largest PSI supercomplex isolated so far and contains seven Lhcbs, in addition to the PSI core and the nine Lhcas that compose PSI-LHCI, together binding ∼320 chlorophylls. The average decay time for PSI-LHCI-LHCII is ∼65 ps upon 400 nm excitation (15 ps slower than PSI-LHCI) and ∼78 ps upon 475 nm excitation (27 ps slower). The transfer of excitation energy from LHCII to PSI-LHCI occurs in ∼60 ps. This relatively slow transfer, as compared with that from LHCI to the PSI core, suggests loose connectivity between LHCII and PSI-LHCI. Despite the relatively slow transfer, the overall decay time of PSI-LHCI-LHCII remains fast enough to assure a 96% trapping efficiency, which is only 1.4% lower than that of PSI-LHCI, concomitant with an increase of the absorption cross section of 47%. This indicates that, at variance with PSII, the design of PSI allows for a large increase of its light-harvesting capacities. PMID:26504081

  10. The High Efficiency of Photosystem I in the Green Alga Chlamydomonas reinhardtii Is Maintained after the Antenna Size Is Substantially Increased by the Association of Light-harvesting Complexes II.

    PubMed

    Le Quiniou, Clotilde; van Oort, Bart; Drop, Bartlomiej; van Stokkum, Ivo H M; Croce, Roberta

    2015-12-18

    Photosystems (PS) I and II activities depend on their light-harvesting capacity and trapping efficiency, which vary in different environmental conditions. For optimal functioning, these activities need to be balanced. This is achieved by redistribution of excitation energy between the two photosystems via the association and disassociation of light-harvesting complexes (LHC) II, in a process known as state transitions. Here we study the effect of LHCII binding to PSI on its absorption properties and trapping efficiency by comparing time-resolved fluorescence kinetics of PSI-LHCI and PSI-LHCI-LHCII complexes of Chlamydomonas reinhardtii. PSI-LHCI-LHCII of C. reinhardtii is the largest PSI supercomplex isolated so far and contains seven Lhcbs, in addition to the PSI core and the nine Lhcas that compose PSI-LHCI, together binding ∼ 320 chlorophylls. The average decay time for PSI-LHCI-LHCII is ∼ 65 ps upon 400 nm excitation (15 ps slower than PSI-LHCI) and ∼ 78 ps upon 475 nm excitation (27 ps slower). The transfer of excitation energy from LHCII to PSI-LHCI occurs in ∼ 60 ps. This relatively slow transfer, as compared with that from LHCI to the PSI core, suggests loose connectivity between LHCII and PSI-LHCI. Despite the relatively slow transfer, the overall decay time of PSI-LHCI-LHCII remains fast enough to assure a 96% trapping efficiency, which is only 1.4% lower than that of PSI-LHCI, concomitant with an increase of the absorption cross section of 47%. This indicates that, at variance with PSII, the design of PSI allows for a large increase of its light-harvesting capacities.

  11. Metabolism of D-lactate and structurally related organic acids in Chlamydomonas reinhardtii

    SciTech Connect

    Husic, D.W.

    1986-01-01

    During the initial minutes of anaerobiosis, /sup 14/C-labeled D-lactate, derived from the photosynthetic sugar phosphate pool, accumulated in the unicellular green alga, Chlamydomonas reinhardtii. The production of the D-isomer of lactate by algae is in contrast to plant and mammalian cells in which L-lactate is formed. After initial lactate formation, Chlamydomonas exhibits a mixed-acid type fermentation, thereby avoiding lactate accumulation and enabling the cells to tolerate extended periods of anaerobiosis. A pyruvate reductase which catalyzes the formation of D-lactate in Chlamydomonas was partially purified and characterized. Lactate produced anaerobically was metabolized only when Chlamydomonas cells were returned to aerobic conditions, and reoxidation of the D-lactate was apparently catalyzed by a mitochondrial membrane-bound dehydrogenase, rather than by the soluble pyruvate reductase. Mutants of Chlamydomonas, deficient in mitochondrial respiration, were used to demonstrate that lactate metabolism was linked to the mitochondrial electron transport chain. In addition, the oxidation of glycolate, a structural analog of lactate, was also linked to mitochondrial electron transport in vivo.

  12. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii.

    PubMed

    Eichler-Stahlberg, Alke; Weisheit, Wolfram; Ruecker, Ovidiu; Heitzer, Markus

    2009-03-01

    The unicellular green alga Chlamydomonas reinhardtii has been identified as a promising organism for the production of recombinant proteins. While during the last years important improvements have been developed for the production of proteins within the chloroplast, the expression levels of transgenes from the nuclear genome were too low to be of biotechnological importance. In this study, we integrated endogenous intronic sequences into the expression cassette to enhance the expression of transgenes in the nucleus. The insertion of one or more copies of intron sequences from the Chlamydomonas RBCS2 gene resulted in increased expression levels of a Renilla-luciferase gene used as a reporter. Although any of the three RBCS2 introns alone had a positive effect on expression, their integration in their physiological number and order created an over-proportional stimulating effect observed in all transformants. The secretion of the luciferase protein into the medium was achieved by using the export sequence of the Chlamydomonas ARS2 gene in a cell wall deficient strain and Renilla-luciferase could be successfully concentrated with the help of attached C-terminal protein tags. Similarly, a codon adapted gene variant for human erythropoietin (crEpo) was expressed as a protein of commercial relevance. Extracellular erythropoietin produced in Chlamydomonas showed a molecular mass of 33 kDa probably resulting from post-translational modifications. Both, the increased expression levels of transgenes by integration of introns and the isolation of recombinant proteins from the culture medium are important steps towards an extended biotechnological use of this alga.

  13. Cytoduction in Chlamydomonas reinhardtii.

    PubMed Central

    Matagne, R F; Remacle, C; Dinant, M

    1991-01-01

    After conjugation between Chlamydomonas gametes of opposite mating type, a transient dikaryon is formed. The two nuclei fuse within 4-6 hr after mating. The young diploid zygote differentiates into dormant zygospore competent to complete meiosis, or more rarely (2-10% of cases) it undergoes mitosis to produce a stable diploid progeny. We here bring genetical, biochemical, and cytological evidence that among the mitotic zygotes, a large proportion of them undergo cytokinesis without fusion of the nuclei-a process that has been termed "cytoduction." By using appropriate genetic markers, haploid cytoductants that possess the nuclear genotype of one parent and the chloroplast marker of the other parent can easily be isolated. Genetical analysis and hybridization experiments moreover show that many haploid cytoductants transmit the chloroplast DNA molecules of both parents and that, as in diploids, these DNA copies occasionally recombine. This process of cytoduction extends the life cycle of Chlamydomonas and provides new tools for its genetic analysis. Images PMID:1871143

  14. Reparation in unicellular green algae during chronic exposure to the action of mutagenic factors. II. Restoration of single-stranded DNA breaks following exposure of Chlamydomonas reinchardii to gamma-irradiation

    SciTech Connect

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-12-01

    The restoration of single-stranded breaks in the DNA in different strains of unicellular green algae (chlamydomonads) during chronic exposure to the action of mutagenic factors following ..gamma..-irradiation was investigated. It was shown that the restoration of DNA breaks was most effective in the case of strain M ..gamma../sup mt/sup +//, which is resistant to radiation. Strains, that were sensitive to UV irradiation showed a similar order of DNA break restoration as the wild-type strain. Strain UVS-1 showed a higher level of restoration than the wild-type strain. The data indicated that chlamydomonads have different pathways of reparation, which lead to the restoration of breaks induced by ..gamma..-irradiation and UV-rays.

  15. Analysis of cargo transport by IFT and GFP imaging of IFT in Chlamydomonas.

    PubMed

    Diener, Dennis

    2009-01-01

    Chlamydomonas reinhardtii is the organism in which intraflagellar transport (IFT) was first visualized and in which the composition of IFT particles was originally elucidated. As the universality of IFT among ciliated/flagellated cells was uncovered, the diversity of organisms used to study IFT has grown. Still, because of the ease of isolation of flagella from Chlamydomonas and the battery of temperature-sensitive mutants affecting IFT proteins and motors, this unicellular alga remains the principal model for biochemical studies of IFT motors and cargo; furthermore, the long, exposed flagella of this cell are ideally suited for observing IFT in real time with GFP-tagged components of IFT.

  16. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. [Chlamydomonas reinhardii; Chlorella pyrenoidosa; Chlorococcum minutum

    SciTech Connect

    Ohta, S.; Miyamoto, K.; Miura, Y.

    1987-04-01

    Dark anaerobic fermentation in the green algae Chlamydomonas MGA 161, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Chlorococcum minutum was studied. Their isolate, Chlamydomonas MGA 161, was unusual in having high H/sub 2/ but almost no formate. The fermentation pattern in Chlamydomonas MGA 161 was altered by changes in the NaCl or NH/sub 4/Cl concentration. Glycerol formation increased at low (0.1%) and high (7%) NaCl concentrations starch degradation, and formation of ethanol, H/sub 2/, and CO/sub 2/ increased with the addition of NH/sub 4/Cl to above 5 millimolar in N-deficient cells. C. reinhardtii and C.pyrenoidosa exhibited a very similar anaerobic metabolism, forming formate, acetate and ethanol in a ratio of about 2:2:1. C. minimum was also unusual in forming acetate, glycerol, and CO/sub 2/ as its main products, with H/sub 2/, formate, and ethanol being formed in negligible amounts. In the presence of CO, ethanol formation increased twofold in Chlamydomonas MGA 161 and C. reinhardtii, but the fermentation pattern in C. minimum did not change. An experiment with hypophosphite addition showed that dark H/sub 2/ evolution of the Escherichia coli type could be ruled out in Chlamydomonas MGA 161 and C. reinhardtii. Among the green algae investigated, three fermentation types were identified by the distribution pattern of the end products, which reflected the consumption model of reducing equivalents in the cells.

  17. [Development of the Chlamydomonas actinochloris culture after microwave irradiation].

    PubMed

    Grigor'eva, O O; Berezovskaia, M A; Datsenko, A I

    2012-01-01

    Effect of the microwave irradiation on the subsequent development of the Chlamydomonas actinochloris culture is studied. The number of cells in the suspension was controlled and photoluminescence measurements were performed for 25 days to estimate the functional state of the cells. The exposure at a dose of 80 J/g is shown to negligibly affect the green alga, whereas the 122 J/g dose led to deterioration of the functional state and, thereafter, to the death of most cells. However, the survivors intensively developed, the culture restored the normal state for 20 days, reached and later even left behind the control sample in development.

  18. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii

    PubMed Central

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals. PMID:25136510

  19. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Almaraz-Delgado, Alma Lorena; Flores-Uribe, José; Pérez-España, Víctor Hugo; Salgado-Manjarrez, Edgar; Badillo-Corona, Jesús Agustín

    2014-01-01

    Chloroplast transformation in the photosynthetic alga Chlamydomonas reinhardtii has been used to explore the potential to use it as an inexpensive and easily scalable system for the production of therapeutic recombinant proteins. Diverse proteins, such as bacterial and viral antigens, antibodies and, immunotoxins have been successfully expressed in the chloroplast using endogenous and chimeric promoter sequences. In some cases, proteins have accumulated to high level, demonstrating that this technology could compete with current production platforms. This review focuses on the works that have engineered the chloroplast of C. reinhardtii with the aim of producing recombinant proteins intended for therapeutical use in humans or animals.

  20. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.

  1. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    PubMed Central

    Karpowicz, Steven J.; Heinnickel, Mark; Dewez, David; Hamel, Blaise; Dent, Rachel; Niyogi, Krishna K.; Johnson, Xenie; Alric, Jean; Wollman, Francis-André; Li, Huiying; Merchant, Sabeeha S.

    2010-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus. PMID:20490922

  2. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    SciTech Connect

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  3. Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700(+)A1B(-) in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temperatures.

    PubMed

    Berthold, Thomas; von Gromoff, Erika Donner; Santabarbara, Stefano; Stehle, Patricia; Link, Gerhard; Poluektov, Oleg G; Heathcote, Peter; Beck, Christoph F; Thurnauer, Marion C; Kothe, Gerd

    2012-03-28

    Crystallographic models of photosystem I (PS I) highlight a symmetrical arrangement of the electron transfer cofactors which are organized in two parallel branches (A, B) relative to a pseudo-C2 symmetry axis that is perpendicular to the membrane plane. Here, we explore the electron transfer pathways of PS I in whole cells of the deuterated green alga Chlamydomonas reinhardtii using high-time-resolution electron paramagnetic resonance (EPR) at cryogenic temperatures. Particular emphasis is given to quantum oscillations detectable in the tertiary radical pairs P700(+)A1A(-) and P700(+)A1B(-) of the electron transfer chain. Results are presented first for the deuterated site-directed mutant PsaA-M684H in which electron transfer beyond the primary electron acceptor A0A on the PsaA branch of electron transfer is impaired. Analysis of the quantum oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the geometry of the B-side radical pair. The orientation of the g tensor of P700(+) in an external reference system is adapted from a time-resolved multifrequency EPR study of deuterated and 15N-substituted cyanobacteria (Link, G.; Berthold, T.; Bechtold, M.; Weidner, J.-U.; Ohmes, E.; Tang, J.; Poluektov, O.; Utschig, L.; Schlesselman, S. L.; Thurnauer, M. C.; Kothe, G. J. Am. Chem. Soc. 2001, 123, 4211-4222). Thus, we obtain the three-dimensional structure of the B-side radical pair following photoexcitation of PS I in its native membrane. The new structure describes the position and orientation of the reduced B-side quinone A1B(-) on a nanosecond time scale after light-induced charge separation. Furthermore, we present results for deuterated wild-type cells of C. reinhardtii demonstrating that both radical pairs P700(+)A1A(-) and P700(+)A1B(-) participate in the electron transfer process according to a mole ratio of 0.71/0.29 in favor of P700(+)A1A(-). A detailed comparison reveals different orientations of A1A(-) and A1B(-) in their

  4. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  5. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    PubMed

    Kim, Sangwoo; Kim, Hanul; Ko, Donghwi; Yamaoka, Yasuyo; Otsuru, Masumi; Kawai-Yamada, Maki; Ishikawa, Toshiki; Oh, Hee-Mock; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2013-01-01

    Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  6. Effective viscosity of non-gravitactic Chlamydomonas Reinhardtii microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Mussler, Matthias; Rafaï, Salima; Peyla, Philippe; Wagner, Christian

    2013-03-01

    Active microswimmers are known to affect the macroscopic viscosity of suspensions in a more complex manner than passive particles. For puller-like microswimmers an increase in the viscosity has been observed. It has been suggested that the persistence of the orientation of the microswimmers hinders the rotation that is normally caused by the vorticity. It was previously shown that some sorts of algae are bottom-heavy swimmers, i.e., their centre of mass is not located in the centre of the body. In this way, the algae affect the vorticity of the flow when they are perpendicularly oriented to the axis of gravity. This orientation of gravity to vorticity is given in a rheometer that is equipped with a cone-plate geometry. Here we present measurements of the viscosity both in a cone-plate and a Taylor-Couette cell. The two set-ups yielded the same increase in viscosity although the axis of gravitation in the Taylor-Couette cell is parallel to the direction of vorticity. In a complementary experiment we tested the orientation of the direction of swimming through microscopic observation of single Chlamydomonas reinhardtii and could not identify a preferred orientation, i.e., our specific strain of Chlamydomonas reinhardtii are not bottom-heavy swimmers. We thus conclude that bottom heaviness is not a prerequisite for the increase of viscosity and that the effect of gravity on the rheology of our strain of Chlamydomonas reinhardtii is negligible. This finding reopens the question of whether the origin of persistence in the orientation of cells is actually responsible for the increased viscosity of the suspension.

  7. Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii.

    PubMed

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2009-07-01

    Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum.

  8. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures

    DOE PAGES

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galvan, Aurora; ...

    2015-09-17

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Furthermore, the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.

  9. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures

    SciTech Connect

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galvan, Aurora; Fernandez, Emilio; Gonzalez-Ballester, David

    2015-09-17

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Furthermore, the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.

  10. 13th International Conference on Chlamydomonas

    SciTech Connect

    Silflow, Carolyn D.

    2014-03-11

    The 13th International Conference on Chlamydomonas (EMBO Workshop on the Cell and Molecular Biology of Chlamydomonas) was held May 27 to June 1, 2008 in Hyeres, France. The conference was the biennial meeting for all researchers studying the green algal systems Chlamydomonas and Volvox. The conference brought together approximately 200 investigators from around the world (North America, Asia, Europe and Australia) representing different fields and disciplines (cell biology, genetics, biochemistry, biophysics, plant physiology, genomics). It provided an opportunity for investigators from different countries to share methodologies and to discuss recent results with a focus on the Chlamydomonas experimental system.

  11. High-fidelity phototaxis in biflagellate algae

    NASA Astrophysics Data System (ADS)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  12. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  13. Individual Flagellar Waveform Affects Collective Behavior of Chlamydomonas reinhardtii.

    PubMed

    Kage, Azusa; Mogami, Yoshihiro

    2015-08-01

    Bioconvection is a form of collective motion that occurs spontaneously in the suspension of swimming microorganisms. In a previous study, we quantitatively described the "pattern transition," a phase transition phenomenon that so far has exclusively been observed in bioconvection of the unicellular green alga Chlamydomonas. We suggested that the transition could be induced by changes in the balance between the gravitational and shear-induced torques, both of which act to determine the orientation of the organism in the shear flow. As both of the torques should be affected by the geometry of the Chlamydomonas cell, alteration in the flagellar waveform might change the extent of torque generation by altering overall geometry of the cell. Based on this working hypothesis, we examined bioconvection behavior of two flagellar mutants of Chlamydomonas reinhardtii, ida1 and oda2, making reference to the wild type. Flagella of ida1 beat with an abnormal waveform, while flagella of oda2 show a normal waveform but lower beat frequency. As a result, both mutants had swimming speed of less than 50% of the wild type. ida1 formed bioconvection patterns with smaller spacing than those of wild type and oda2. Two-axis view revealed the periodic movement of the settling blobs of ida1, while oda2 showed qualitatively similar behavior to that of wild type. Unexpectedly, ida1 showed stronger negative gravitaxis than did wild type, while oda2 showed relatively weak gravitaxis. These findings suggest that flagellar waveform, not swimming speed or beat frequency, strongly affect bioconvection behavior in C. reinhardtii.

  14. New insights into the roles of molecular chaperones in Chlamydomonas and Volvox.

    PubMed

    Nordhues, André; Miller, Stephen M; Mühlhaus, Timo; Schroda, Michael

    2010-01-01

    The unicellular green alga Chlamydomonas reinhardtii has been used as a model organism for many decades, mainly to study photosynthesis and flagella/cilia. Only recently, Chlamydomonas has received much attention because of its ability to produce hydrogen and nonpolar lipids that have promise as biofuels. The best-studied multicellular cousin of Chlamydomonas reinhardtii is Volvox carteri, whose life cycle comprises events that have clear parallels in higher plants and/or animals, making it an excellent system in which to study fundamental developmental processes. Molecular chaperones are proteins that guide other cellular proteins through their life cycle. They assist in de novo folding of nascent chains, mediate assembly and disassembly of protein complexes, facilitate protein transport across membranes, disassemble protein aggregates, fold denatured proteins back to the native state, and transfer unfoldable proteins to proteolytic degradation. Hence, molecular chaperones regulate protein function under all growth conditions and play important roles in many basic cellular and developmental processes. The aim of this chapter is to describe recent advances toward understanding molecular chaperone biology in Chlamydomonas and Volvox.

  15. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002

    DOE PAGES

    Therien, Jesse B.; Zadvornyy, Oleg A.; Posewitz, Matthew C.; ...

    2014-10-18

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. We demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC7002.

  16. Propulsive Forces on the Flagellum during Locomotion of Chlamydomonas reinhardtii

    PubMed Central

    Bayly, P.V.; Lewis, B.L.; Ranz, E.C.; Okamoto, R.J.; Pless, R.B.; Dutcher, S.K.

    2011-01-01

    The distributed propulsive forces exerted on the flagellum of the swimming alga Chlamydomonas reinhardtii by surrounding fluid were estimated from experimental image data. Images of uniflagellate mutant Chlamydomonas cells were obtained at 350 frames/s with 125-nm spatial resolution, and the motion of the cell body and the flagellum were analyzed in the context of low-Reynolds-number fluid mechanics. Wild-type uniflagellate cells, as well as uniflagellate cells lacking inner dynein arms (ida3) or outer dynein arms (oda2) were studied. Ida3 cells exhibit stunted flagellar waveforms, whereas oda2 cells beat with lower frequency. Image registration and sorting algorithms provided high-resolution estimates of the motion of the cell body, as well as detailed kinematics of the flagellum. The swimming cell was modeled as an ellipsoid in Stokes flow, propelled by viscous forces on the flagellum. The normal and tangential components of force on the flagellum (fN and fT) were related by resistive coefficients (CN and CT) to the corresponding components of velocity (VN and VT).The values of these coefficients were estimated by satisfying equilibrium requirements for force and torque on the cell. The estimated values of the resistive coefficients are consistent among all three genotypes and similar to theoretical predictions. PMID:21641317

  17. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii

    PubMed Central

    Lemaire, Stéphane D.; Guillon, Blanche; Le Maréchal, Pierre; Keryer, Eliane; Miginiac-Maslow, Myroslawa; Decottignies, Paulette

    2004-01-01

    Proteomics were used to identify the proteins from the eukaryotic unicellular green alga Chlamydomonas reinhardtii that can be reduced by thioredoxin. These proteins were retained specifically on a thioredoxin affinity column made of a monocysteinic thioredoxin mutant able to form mixed disulfides with its targets. Of a total of 55 identified targets, 29 had been found previously in higher plants or Synechocystis, but 26 were new targets. Biochemical tests were performed on three of them, showing a thioredoxin-dependent activation of isocitrate lyase and isopropylmalate dehydrogenase and a thioredoxin-dependent deactivation of catalase that is redox insensitive in Arabidopsis. In addition, we identified a Ran protein, a previously uncharacterized nuclear target in a photosynthetic organism. The metabolic and evolutionary implications of these findings are discussed. PMID:15123830

  18. Regulation of Photosynthetic Capacity in Chlamydomonas mundana 1

    PubMed Central

    Russell, George K.; Gibbs, Martin

    1966-01-01

    A regulatory system has been described in the obligately phototrophic green alga Chlamydomonas mundana. Cells grown in acetate media are unable to fix carbon dioxide in the light but carry out a photoassimilation of acetate to carbohydrate: cells cultured with carbon dioxide as the sole source of cellular carbon carry out typical green plant photosynthesis. The control appears to take place at the level of the reductive pentose phosphate cycle. The presence of sodium acetate in the medium strongly inhibits formation of ribulose-1.5-diphosphate carboxylase, ribulose-5-phosphate kinase, and one of the 2 fructose-1,6-diphosphate aldolase activities of the cell. Ribose-5-phosphate isomerase is present in higher activity in autotrophic cells. Changes in the levels of triose phosphate dehydrogenase were also noted. The total pigment content of the cell and the photosynthetic electron transport reactions are not altered under different conditions of growth. PMID:16656335

  19. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii.

    PubMed

    Lemaire, Stéphane D; Guillon, Blanche; Le Maréchal, Pierre; Keryer, Eliane; Miginiac-Maslow, Myroslawa; Decottignies, Paulette

    2004-05-11

    Proteomics were used to identify the proteins from the eukaryotic unicellular green alga Chlamydomonas reinhardtii that can be reduced by thioredoxin. These proteins were retained specifically on a thioredoxin affinity column made of a monocysteinic thioredoxin mutant able to form mixed disulfides with its targets. Of a total of 55 identified targets, 29 had been found previously in higher plants or Synechocystis, but 26 were new targets. Biochemical tests were performed on three of them, showing a thioredoxin-dependent activation of isocitrate lyase and isopropylmalate dehydrogenase and a thioredoxin-dependent deactivation of catalase that is redox insensitive in Arabidopsis. In addition, we identified a Ran protein, a previously uncharacterized nuclear target in a photosynthetic organism. The metabolic and evolutionary implications of these findings are discussed.

  20. Reduction of PII signaling protein enhances lipid body production in Chlamydomonas reinhardtii.

    PubMed

    Zalutskaya, Zhanneta; Kharatyan, Nina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    In all examined organisms that have the PII signal transduction machinery, PII coordinates the central C/N anabolic metabolism. In green algae and land plants, PII is localized in the chloroplast and controls the L-arginine biosynthetic pathway pathway. To elucidate additional functions of PII in the model photosynthetic organism Chlamydomonas reinhardtii (CrPII), we generated and analyzed four strains, in which PII was strongly under-expressed by artificial microRNA (GLB1-amiRNA strains). In response to nitrogen deficiency, Chlamydomonas produces triacylglycerols (TAGs) that are accumulated in lipid bodies (LB). Quantification of LBs by confocal microscopy in four GLB1-amiRNA strains showed that reduced PII levels resulted in over-accumulation of LBs compared to their parental strains. Moreover, knock-down of PII caused also an increase in the total TAG level. We propose that the larger yields of TAG-filled LBs in N-starved GLB1-amiRNA cells can be attributed to the strain's depleted PII level and their inability to properly control acetyl-CoA carboxylase activity (ACCase). Together, our results imply that PII in Chlamydomonas negatively controls TAG accumulation in LBs during acclimation to nitrogen starvation of the alga.

  1. Characterization of the satellite DNA Msat-160 from the species Chionomys nivalis (Rodentia, Arvicolinae).

    PubMed

    Acosta, M J; Marchal, J A; Martínez, S; Puerma, E; Bullejos, M; la de Guardia, R Díaz; Sánchez, A

    2007-05-01

    The satellite DNA Msat-160 has been previously characterized in several species of the genus Microtus. Here we present the characterization of Msat-160 from Chionomys nivalis, a species with a very primitive karyotype. As in other Microtus species analyzed, C. nivalis Msat-160 is AT rich, has a monomer length of 160 bp, is undermethylated and is mainly located in all the pericentromeric heterochromatin of all autosomes and the X chromosome, but is completely absent from the Y chromosome. Hence, our results support the hypothesis that Msat-160 was initially distributed in the pericentromeric heterochromatin of all autosomes and the X chromosome. The taxonomic status of the genus Chionomys in relation to the genus Microtus is a very interesting issue, so we constructed phylogenetic dendrograms using Msat-160 sequences from several Microtus species. Although the results were not informative about this issue, the presence of Msat-160 in C. nivalis and Microtus species suggested that both genera are closely related and that this satellite DNA was present in the common ancestor. Studies of Msat-160 in different arvicoline species could help to determine the origin of this satellite and, perhaps, to establish the phylogenetic relationships of some arvicoline groups.

  2. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  3. Developing molecular tools for Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Noor-Mohammadi, Samaneh

    Microalgae have garnered increasing interest over the years for their ability to produce compounds ranging from biofuels to neutraceuticals. A main focus of researchers has been to use microalgae as a natural bioreactor for the production of valuable and complex compounds. Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. To take full advantage of these organisms' natural abilities, sophisticated molecular tools are needed to be able to introduce and functionally express multiple gene biosynthetic pathways in its genome. To achieve the above objective, we have sought to establish a method to construct, integrate and express multigene operons in the chloroplast and nuclear genome of the model microalgae Chlamydomonas reinhardtii. Here we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast, or by random integration in the nuclear genome of C. reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii and up to three reporter proteins (Ble, AphVIII, and GFP) in its nuclear genome. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated-region selection when constructing a target pathway. In addition, this work focuses on expressing the cofactor regeneration enzyme phosphite dehydrogenase (PTDH) in the chloroplast and nuclear genomes of C. reinhardtii. The PTDH enzyme converts phosphite into phosphate and NAD(P)+ into NAD(P)H. The reduced

  4. Evolution of sex and mating loci: an expanded view from Volvocine algae.

    PubMed

    Umen, James G

    2011-12-01

    Sexual reproduction in Volvocine algae coevolved with the acquisition of multicellularity. Unicellular genera such as Chlamydomonas and small colonial genera from this group have classical mating types with equal-sized gametes, while larger multicellular genera such as Volvox have differentiated males and females that produce sperm and eggs respectively. Newly available sequence from the Volvox and Chlamydomonas genomes and mating loci open up the potential to investigate how sex-determining regions co-evolve with major changes in development and sexual reproduction. The expanded size and sequence divergence between the male and female haplotypes of the Volvox mating locus (MT) not only provide insights into how the colonial Volvocine algae might have evolved sexual dimorphism, but also raise questions about why the putative ancestral-like MT locus in Chlamydomonas shows less divergence between haplotypes than expected.

  5. BiP links TOR signaling to ER stress in Chlamydomonas.

    PubMed

    Crespo, José L

    2012-02-01

    The highly conserved target of rapamycin (TOR) Ser/Thr kinase promotes protein synthesis under favorable growth conditions in all eukaryotes. Downregulation of TOR signaling in the model unicellular green alga Chlamydomonas reinhardtii has recently revealed a link between control of protein synthesis, endoplasmic reticulum (ER) stress and the reversible modification of the BiP chaperone by phosphorylation. Inhibition of protein synthesis by rapamycin or cycloheximide resulted in the phosphorylation of BiP on threonine residues while ER stress induced by tunicamycin or heat shock caused the fast dephosphorylation of the protein. Regulation of BiP function by phosphorylation/dephosphorylation events was proposed in early studies in mammalian cells although no connection to TOR signaling has been established so far. Here I will discuss about the coordinated regulation of BiP modification by TOR and ER stress signals in Chlamydomonas.

  6. Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation

    SciTech Connect

    Diener, D.R.; Curry, A.M.; Johnson, K.A.; Williams, B.D.; Rosenbaum, J.L. ); Lefebvre, P.A. ); Kindle, K.L. )

    1990-08-01

    The biflagellate alga Chlamydomonas has been used extensively in the genetic and biochemical analysis of flagellar assembly and motility. The authors have restored motility to a paralyzed-flagella mutant of Chlamydomonas by transforming with the corresponding wild-type gene. A nitrate reductase-deficient paralyzed-flagella strain, nit1-305 pf-14, carrying mutations in the genes for nitrate reductase and radial spoke protein 3, was transformed with wild-type copies of both genes. Two-thirds of the cells that survived nitrate selection also regained motility, indicating that they had been transformed with both the nitrate reductase and radial spoke protein 3 genes. Transformants typically contained multiple copies of both genes, genetically linked to each other, but not linked to the original mutant loci. Complementation of paralyzed-flagella mutants by transformation is a powerful tool for investigating flagellar assembly and function.

  7. Separate origins of ice-binding proteins in antarctic chlamydomonas species.

    PubMed

    Raymond, James A; Morgan-Kiss, Rachael

    2013-01-01

    The green alga Chlamydomonas raudensis is an important primary producer in a number of ice-covered lakes and ponds in Antarctica. A C. raudensis isolate (UWO241) from Lake Bonney in the McMurdo Dry Valleys, like many other Antarctic algae, was found to secrete ice-binding proteins (IBPs), which appear to be essential for survival in icy environments. The IBPs of several Antarctic algae (diatoms, a prymesiophyte, and a prasinophyte) are similar to each other (here designated as type I IBPs) and have been proposed to have bacterial origins. Other IBPs (type II IBPs) that bear no resemblance to type I IBPs, have been found in the Antarctic Chlamydomonas sp. CCMP681, a putative snow alga, raising the possibility that chlamydomonad IBPs developed separately from the IBPs of other algae. To test this idea, we obtained the IBP sequences of C. raudensis UWO241 by sequencing the transcriptome. A large number of transcripts revealed no sequences resembling type II IBPs. Instead, many isoforms resembling type I IBPs were found, and these most closely matched a hypothetical protein from the bacterium Stigmatella aurantiaca. The sequences were confirmed to encode IBPs by the activity of a recombinant protein and by the matching of predicted and observed isoelectric points and molecular weights. Furthermore, a mesophilic sister species, C. raudensis SAG49.72, showed no ice-binding activity or PCR products from UWO241 IBP primers. These results confirm that algal IBPs are required for survival in icy habitats and demonstrate that they have diverse origins that are unrelated to the taxonomic positions of the algae. Last, we show that the C. raudensis UWO241 IBPs can change the structure of ice in a way that could increase the survivability of cells trapped in the ice.

  8. Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake.

    PubMed

    Tittel, Jörg; Bissinger, Vera; Gaedke, Ursula; Kamjunke, Norbert

    2005-06-01

    Plankton communities in acidic mining lakes (pH 2.5-3.3) are species-poor because they face extreme environmental conditions, e.g. 150mg l(-1) Fe2+ +Fe3+. We investigated the growth characteristics of the dominant pigmented species, the flagellate Chlamydomonas acidophila, in semi-continuous culture experiments under in situ conditions. The following hypotheses were tested: (1) Low inorganic carbon (IC) concentrations in the epilimnion (e.g. 0.3 mg l(-1)) arising from the low pH limit phototrophic growth (H-1); (2) the additional use of dissolved organic carbon (mixotrophy) leads to higher growth rates under IC-limitation (H-2), and (3) phagotrophy is not relevant (H-3). H-1 was supported as the culture experiments, in situ PAR and IC concentrations indicated that IC potentially limited phototrophic growth in the mixed surface layers. H-2 was also supported: mixotrophic growth always exceeded pure phototrophic growth even when photosynthesis was saturated. Dark growth in filtered lake water illuminated prior to inoculation provided evidence that Chlamydomonas was able to use the natural DOC. The alga did not grow on bacteria, thus confirming H-3. Chlamydomonas exhibited a remarkable resistance to starvation in the dark. The compensation light intensity (ca. 20 micromol photons m(-2) s(-1)) and the maximum phototrophic growth (1.50 d(-1)) fell within the range of algae from non-acidic waters. Overall, Chlamydomonas, a typical r-strategist in circum-neutral systems, showed characteristics of a K-strategist in the stable, acidic lake environment in achieving moderate growth rates and minimizing metabolic losses.

  9. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases.

    PubMed

    Sizova, Irina; Greiner, Andre; Awasthi, Mayanka; Kateriya, Suneel; Hegemann, Peter

    2013-03-01

    The unicellular green alga Chlamydomonas reinhardtii is a versatile model for fundamental and biotechnological research. A wide range of tools for genetic manipulation have been developed for this alga, but specific modification of nuclear genes is still not routinely possible. Here, we present a nuclear gene targeting strategy for Chlamydomonas that is based on the application of zinc-finger nucleases (ZFNs). Our approach includes (i) design of gene-specific ZFNs using available online tools, (ii) evaluation of the designed ZFNs in a Chlamydomonas in situ model system, (iii) optimization of ZFN activity by modification of the nuclease domain, and (iv) application of the most suitable enzymes for mutagenesis of an endogenous gene. Initially, we designed a set of ZFNs to target the COP3 gene that encodes the light-activated ion channel channelrhodopsin-1. To evaluate the designed ZFNs, we constructed a model strain by inserting a non-functional aminoglycoside 3'-phosphotransferase VIII (aphVIII) selection marker interspaced with a short COP3 target sequence into the nuclear genome. Upon co-transformation of this recipient strain with the engineered ZFNs and an aphVIII DNA template, we were able to restore marker activity and select paromomycin-resistant (Pm-R) clones with expressing nucleases. Of these Pm-R clones, 1% also contained a modified COP3 locus. In cases where cells were co-transformed with a modified COP3 template, the COP3 locus was specifically modified by homologous recombination between COP3 and the supplied template DNA. We anticipate that this ZFN technology will be useful for studying the functions of individual genes in Chlamydomonas.

  10. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  11. Algae Resources

    SciTech Connect

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  12. Cell and molecular biology of Chlamydomonas

    SciTech Connect

    Not Available

    1988-01-01

    This document contains only the abstracts of 92 presentations on the biology of Chlamydomonas. Topics include gene transformations, gene regulation, biosynthetic pathways, cell surfaces, circadian clocks, and the development and structure of the flagellar apparatus. (TEM)

  13. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics

    PubMed Central

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-01-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([13C6]arginine/[12C6]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains. PMID:20190198

  14. Select Acetophenones Modulate Flagellar Motility in Chlamydomonas

    PubMed Central

    Evans, Shakila K.; Pearce, Austin A.; Ibezim, Prudence K.; Primm, Todd P.; Gaillard, Anne R.

    2009-01-01

    Acetophenones were screened for activity against positive phototaxis of Chlamydomonas cells, a process that requires coordinated flagellar motility. The structure-activity relationships of a series of acetophenones are reported, including acetophenones that affect flagellar motility and cell viability. Notably, 4-methoxyacetophenone, 3,4-dimethoxyacetophenone, and 4-hydroxyacetophenone induced negative phototaxis in Chlamydomonas, suggesting interference with activity of flagellar proteins and control of flagellar dominance. PMID:20659114

  15. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  16. Production of antibiotics by Collybia nivalis, Omphalotus olearis, a Favolaschia and a Pterula species on natural substrates.

    PubMed

    Engler, M; Anke, T; Sterner, O

    1998-01-01

    Collybia nivalis, Favolaschia sp. 87129, Pterula sp. 82168 and Omphalotus olearius were cultivated on natural substrates. The antibiotic metabolites oudemansin A. strobilurins A, D, illudin S and pterulone were isolated and identified. A new antifungal metabolite, pterulone B, was described from cultures of Pterula sp. 82168 on wood. Collybia nivalis was found to be the first species of this genus to produce strobilurins and oudemansin A. As compared to rich media the cultivation on natural substrates resulted in the production of fewer metabolites. The concentrations of the antibiotics, however, were sufficient to inhibit other saprophytic fungi.

  17. [Effect of microwaves on Chlamydomonas actinochloris culture in the stationary phase of growth].

    PubMed

    Grigor'eva, O O; Berezovskaia, M A; Datsenko, A I

    2013-01-01

    Effects of the microwave radiation on the culture of Chlamydomonas actinochloris green flagellar alga in the stationary phase of growth are studied. After exposure to radiation at the maximum dose of 125 J/g, the cell functional state worsened but all the studied parameters were restored in 20 days and in the long run found to be even better than the control indices. The data are compared with the similar ones obtained earlier for the lag phase culture. The studied sample is found to be more resistant to the irradiation than the previous one.

  18. Phosphatase of Chlamydomonas reinhardi: biochemical and cytochemical approach with specific mutants.

    PubMed Central

    Matagne, R F; Loppes, R; Deltour, R

    1976-01-01

    The unicellular alga Chlamydomonas reinhardi produces two constitutive acid phosphatases and three depressible phosphatases (a neutral and two alkaline ones) that can utilize napthyl phosphate as a substrate. Specific mutants depressible phosphatase were used to investigate biochemical properties and the cytochemical localization of these enzymes. The two constitutive phosphatases show similar pH optima (about 5.0) and Km values (2 x 10(-3) to 3.3 x 10(-3) M) but differ in their heat sensitivity and affinity for glycerophosphate. Images PMID:4437

  19. Emergent Run-and-Tumble Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise

    NASA Astrophysics Data System (ADS)

    Bennett, Rachel R.; Golestanian, Ramin

    2013-04-01

    Recent experiments on the green alga Chlamydomonas that swims using synchronized beating of a pair of flagella have revealed that it exhibits a run-and-tumble behavior similar to that of bacteria such as E. coli. Using a simple purely hydrodynamic model that incorporates a stroke cycle and an intrinsic Gaussian white noise, we show that a stochastic run-and-tumble behavior could emerge due to the nonlinearity of the combined synchronization-rotation-translation dynamics. Our study suggests that nonlinear mechanics could be a significant contributing factor to how the trajectories of the microorganism are selected.

  20. Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms.

    PubMed

    Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2007-01-01

    Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

  1. A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis

    PubMed Central

    2012-01-01

    Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds. PMID:23158586

  2. MicroRNAs in a multicellular green alga Volvox carteri.

    PubMed

    Li, Jingrui; Wu, Yang; Qi, Yijun

    2014-01-01

    microRNAs (miRNAs) have emerged as key components in the eukaryotic gene regulatory network. We and others have previously identified many miRNAs in a unicellular green alga, Chlamydomonas reinhardtii. To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage, we examined small RNAs in Volvox carteri, a multicellular species in the same family with Chlamydomonas reinhardtii. We identified 174 miRNAs in Volvox, with many of them being highly enriched in gonidia or somatic cells. The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo, suggesting that miRNAs play regulatory roles in the biology of green algae. Our catalog of miRNAs and their targets provides a resource for further studies on the evolution, biological functions, and genomic properties of miRNAs in green algae.

  3. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-02-10

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt(+)) and mating type minus (mt(-)), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt(+) and mt(-) mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  4. Research for Developing Renewable Biofuels from Algae

    SciTech Connect

    Black, Paul N.

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  5. Mutants of Chlamydomonas: tools to study thylakoid membrane structure, function and biogenesis.

    PubMed

    de Vitry, C; Vallon, O

    1999-06-01

    The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex.

  6. Partial purification of the chloroplast ATP synthase from Chlamydomonas reinhardtii and the cloning and sequencing of a cDNA encoding the gamma subunit

    SciTech Connect

    Yu, L.M.

    1988-01-01

    The chloroplast ATP synthase was partially purified from the green alga Chlamydomonas reinhardtii by extracting membranes with deoxycholate and KCl, followed by centrifugation and ammonium sulfate fractionation of the supernatant. The enzyme assay involved the reconstitution of such fractions with bacteriorhodopsin and soybean phospholipids to form vesicles capable of light-dependent ({sup 32}P)-phosphate esterification. A cDNA for the gamma subunit from Chlamydomonas was isolated, expressed in vitro and sequenced. It contains the entire coding region for the gamma subunit precursor. A 35 amino acid long transit peptide resides at the NH{sub 2}-terminus of a 323 amino acid long mature peptide that is 77% similar to the spinach gamma subunit. Six cysteines were found; three were conserved in Chlamydomonas and spinach.

  7. Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase.

    PubMed

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C; Grossman, Arthur R

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H(2) production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H(2) production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  8. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    SciTech Connect

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  9. Temperature-sensitive rubisco mutant of Chlamydomonas. [Chlamydomonas reinhardtii

    SciTech Connect

    Chen, Z.; Spreitzer, R.J.; Chastain, C.J.

    1987-04-01

    The Chlamydomonas reinhardtii mutant 68-4PP is a temperature-sensitive mutant that lacks photosynthetic ability at 35/sup 0/C, but is able to grow photosynthetically at 25/sup 0/C. Genetic analysis indicated that 68-4PP is a chloroplast mutant that is allelic with known Rubisco large-subunit structural-gene mutants, implying that 68-4PP also resulted from a mutation in the large-subunit gene. The 68-4PP mutant has about 35% of the wild-type level of Rubisco holoenzyme and carboxylase activity when grown at 25/sup 0/C, but it has less than 10% of normal holoenzyme and carboxylase activity when grown at 35/sup 0/C. However, (/sup 35/S)-sulfate pulse labeling showed that Rubisco subunits were synthesized at normal rates at both temperatures. More significantly, the ratio of carboxylase activity in the absence and presence of oxygen at a limiting CO/sub 2/ concentration (6.6 ..mu..M) was about 2.2 for the mutant enzyme, as compared to about 3.0 for the wild-type enzyme. The decreased ratio of the mutant enzyme is maternally inherited, indicating that this reduced oxygen sensitivity results from a mutation in chloroplast DNA. The authors have recently cloned the 68-4PP Rubisco large-subunit gene, and DNA sequencing is in progress.

  10. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii.

    PubMed

    Lauersen, Kyle J; Baier, Thomas; Wichmann, Julian; Wördenweber, Robin; Mussgnug, Jan H; Hübner, Wolfgang; Huser, Thomas; Kruse, Olaf

    2016-11-01

    The heterologous expression of terpene synthases in microbial hosts has opened numerous possibilities for bioproduction of desirable metabolites. Photosynthetic microbial hosts present a sustainable alternative to traditional fermentative systems, using freely available (sun)light and carbon dioxide as inputs for bio-production. Here, we report the expression of a patchoulol synthase from Pogostemon cablin Benth in the model green microalga Chlamydomonas reinhardtii. The sesquiterpenoid patchoulol was produced from the alga and was used as a marker of sesquiterpenoid production capacity. A novel strategy for gene loading was employed and patchoulol was produced up to 922±242µgg(-1) CDW in six days. We additionally investigated the effect of carbon source on sesquiterpenoid productivity from C. reinhardtii in scale-up batch cultivations. It was determined that up to 1.03mgL(-1) sesquiterpenoid products could be produced in completely photoautotrophic conditions and that the alga exhibited altered sesquiterpenoid production metabolism related to carbon source.

  11. Diversification of the Core RNA Interference Machinery in Chlamydomonas reinhardtii and the Role of DCL1 in Transposon Silencing

    PubMed Central

    Casas-Mollano, J. Armando; Rohr, Jennifer; Kim, Eun-Jeong; Balassa, Eniko; van Dijk, Karin; Cerutti, Heriberto

    2008-01-01

    Small RNA-guided gene silencing is an evolutionarily conserved process that operates by a variety of molecular mechanisms. In multicellular eukaryotes, the core components of RNA-mediated silencing have significantly expanded and diversified, resulting in partly distinct pathways for the epigenetic control of gene expression and genomic parasites. In contrast, many unicellular organisms with small nuclear genomes seem to have lost entirely the RNA-silencing machinery or have retained only a basic set of components. We report here that Chlamydomonas reinhardtii, a unicellular eukaryote with a relatively large nuclear genome, has undergone extensive duplication of Dicer and Argonaute polypeptides after the divergence of the green algae and land plant lineages. Chlamydomonas encodes three Dicers and three Argonautes with DICER-LIKE1 (DCL1) and ARGONAUTE1 being more divergent than the other paralogs. Interestingly, DCL1 is uniquely involved in the post-transcriptional silencing of retrotransposons such as TOC1. Moreover, on the basis of the subcellular distribution of TOC1 small RNAs and target transcripts, this pathway most likely operates in the nucleus. However, Chlamydomonas also relies on a DCL1-independent, transcriptional silencing mechanism(s) for the maintenance of transposon repression. Our results suggest that multiple, partly redundant epigenetic processes are involved in preventing transposon mobilization in this green alga. PMID:18493041

  12. An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering in Chlamydomonas.

    PubMed

    Specht, Elizabeth A; Nour-Eldin, Hussam Hassan; Hoang, Kevin T D; Mayfield, Stephen P

    2015-03-01

    The model alga Chlamydomonas reinhardtii has been used to pioneer genetic engineering techniques for high-value protein and biofuel production from algae. To date, most studies of transgenic Chlamydomonas have utilized the chloroplast genome due to its ease of engineering, with a sizeable suite of reporters and well-characterized expression constructs. The advanced manipulation of algal nuclear genomes has been hampered by limited strong expression cassettes, and a lack of high-throughput reporters. We have improved upon an endogenous reporter gene - the ARS2 gene encoding an arylsulfatase enzyme - that was first cloned and characterized decades ago but has not been used extensively. The new construct, derived from ARS2 cDNA, expresses significantly higher levels of reporter protein and transforms more efficiently, allowing qualitative and quantitative screening using a rapid, inexpensive 96-well assay. The improved arylsulfatase expression cassette was used to screen a new transgene promoter from the ARG7 gene, and found that the ARG7 promoter can express the ARS2 reporter as strongly as the HSP70-RBCS2 chimeric promoter that currently ranks as the best available promoter, thus adding to the list of useful nuclear promoters. This enhanced arylsulfatase reporter construct improves the efficiency and ease of genetic engineering within the Chlamydomonas nuclear genome, with potential application to other algal strains.

  13. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.

    PubMed

    Liu, Chenlin; Wang, Xiuliang; Wang, Xingna; Sun, Chengjun

    2016-07-01

    The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae.

  14. A steering mechanism for phototaxis in Chlamydomonas

    PubMed Central

    Bennett, Rachel R.; Golestanian, Ramin

    2015-01-01

    Chlamydomonas shows both positive and negative phototaxis. It has a single eyespot near its equator, and as the cell rotates during the forward motion, the light signal received by the eyespot varies. We use a simple mechanical model of Chlamydomonas that couples the flagellar beat pattern to the light intensity at the eyespot to demonstrate a mechanism for phototactic steering that is consistent with observations. The direction of phototaxis is controlled by a parameter in our model, and the steering mechanism is robust to noise. Our model shows switching between directed phototaxis when the light is on and run-and-tumble behaviour in the dark. PMID:25589576

  15. Stable isotope fractionation in photosynthesis: Analysis of autotrophic competence following transformation of the chloroplast genome of Chlamydomonas

    SciTech Connect

    Boynton, J.E.; Gillham, N.W.; Osmond, C.B.

    1991-06-15

    Isotopic techniques needed to assess the interactions between photosynthesis and respiration in Chlamydomonas have been devised for {sup 13}C, using plate and liquid cultures. The effectiveness of various transformation strategies for the chloroplast psbA gene has been evaluated with respect to their utility in constructing and characterizing strains homoplasmic for site-directed mutations in an otherwise isogenic background. Our analysis of the first site-directed change in the D-1 protein of Chlamydomonas indicates that a second site mutation (arg{sub 238} > lys) in the loop between transmembrane helices IV -- V can partially compensate for the reduced photosynthetic performance that accompanies the atrazine resistant mutation (ser{sub 264} > ala/gly) in this alga and in higher plants grown under high light intensities. 31 refs., 2 figs.

  16. Trade-offs between activity and thermoregulation in a small carnivore, the least weasel Mustela nivalis.

    PubMed

    Zub, K; Szafranska, P A; Konarzewski, M; Redman, P; Speakman, J R

    2009-05-22

    We studied factors influencing daily energy expenditures (DEE) of male least weasels (Mustela nivalis) using the doubly labelled water technique. The relationship between ambient temperature and DEE formed a triangular pattern, characterized by invariance of the maximum DEE and an inverse relationship between minimum DEE and temperature. A simple energetic model relating the DEE of male weasels to activity time (AT) and ambient temperature predicted that, across seasons, less than 10 per cent of measurements approach the upper bound of observed DEE. Male weasels were able to maintain a relatively constant maximum energy output across varying temperatures by adjusting their AT to changes in temperature. They achieved maximum energy expenditures in winter due to high thermoregulatory costs, and in spring and summer due to high levels of physical activity. This pattern exemplifies a 'metabolic niche' of a small mammal having extremely high energy expenditures primarily driven by ambient temperature.

  17. Homer's moly identified as Galanthus nivalis L.: physiologic antidote to stramonium poisoning.

    PubMed

    Plaitakis, A; Duvoisin, R C

    1983-03-01

    The antidotal properties of certain naturally occurring medicinal plants against central nervous system intoxication appear to have been empirically established in ancient times. Homer, in his epic poem, the Odyssey, described a plant, "moly," used by Odysseus as an antidote against Circe's poisonous drugs. Centrally acting anticholinergic agents are thought to have been used by Circe to induce amnesia and a delusional state in Odysseus' crew. We present evidence to support the hypothesis that "moly" might have been the snowdrop, Galanthus nivalis, which contains galanthamine, a centrally acting anticholinesterase. Thus the description of "moly" as an antidote in Homer's Odyssey may represent the oldest recorded use of an anticholinesterase to reverse central anticholinergic intoxication.

  18. Pollination intensity influences sex ratios in dioecious Rumex nivalis, a wind-pollinated plant.

    PubMed

    Stehlik, Ivana; Barrett, Spencer C H

    2006-06-01

    Determining the mechanisms governing sex-ratio variation in dioecious organisms represents a central problem in evolutionary biology. It has been proposed that in plants with sex chromosomes competition between pollen tubes of female- versus male-determining microgametophytes (certation) causes female-biased primary sex ratios. Experimental support for this hypothesis is limited and recent workers have cast doubt on whether pollen-tube competition can modify sex ratios in dioecious plants. Here we investigate the influence of variation in pollination intensity on sex ratios in Rumex nivalis, a wind-pollinated alpine herb with strongly female-biased sex ratios. In a garden experiment, we experimentally manipulated pollination intensity using three concentric rings of female recipient plants at different distances from a central group of male pollen donors. This design enabled us to test the hypothesis that increasing pollen load size, by intensifying gametophyte competition, promotes female-biased sex ratios in R. nivalis. We detected a significant decline in pollen load at successive distance classes with concomitant reductions in seed set. Sex ratios of progeny were always female biased, but plants at the closest distance to male donors exhibited significantly greater female bias than more distant plants. The amount of female bias was positively correlated with the seed set of inflorescences. Hand pollination of stigmas resulted in approximately 100-fold higher stigmatic pollen loads than wind-pollinated stigmas and produced exceptionally female-biased progenies (female frequency = 0.96). Our results are the first to demonstrate a functional relation between stigmatic pollen capture, seed set, and sex ratio and suggest that certation can contribute towards female-biased sex ratios in dioecious plants.

  19. Analysis of Flagellar Phosphoproteins from Chlamydomonas reinhardtii▿ †

    PubMed Central

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2009-01-01

    Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum. PMID:19429781

  20. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii.

    PubMed

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Llamas, Angel; Galvan, Aurora; Fernandez, Emilio

    2013-08-01

    Nitrate and ammonium are major inorganic nitrogen sources for plants and algae. These compounds are assimilated by means of finely regulated processes at transcriptional and post-translational levels. In Chlamydomonas, the expression of several genes involved in high-affinity ammonium (AMT1.1, AMT1.2) and nitrate transport (NRT2.1) as well as nitrate reduction (NIA1) are downregulated by ammonium through a nitric oxide (NO)-dependent mechanism. At the post-translational level, nitrate/nitrite uptake and nitrate reductase (NR) are also inhibited by ammonium, but the mechanisms implicated in this regulation are scarcely known. In this work, the effect of NO on nitrate assimilation and the high-affinity ammonium uptake was addressed. NO inhibited the high-affinity uptake of ammonium and nitrate/nitrite, as well as the NR activity, in a reversible form. In contrast, nitrite reductase and glutamine synthetase activities were not affected. The in vivo and in vitro studies suggested that NR enzyme is inhibited by NO in a mediated process that requires the cell integrity. These data highlight a role of NO in inorganic nitrogen assimilation and suggest that this signalling molecule is an important regulator for the first steps of the pathway.

  1. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  2. Gene Expression Profiling of Flagellar Disassembly in Chlamydomonas reinhardtii

    PubMed Central

    Chamberlain, Kara L.; Miller, Steven H.; Keller, Laura R.

    2008-01-01

    Flagella are sensory organelles that interact with the environment through signal transduction and gene expression networks. We used microarray profiling to examine gene regulation associated with flagellar length change in the green alga Chlamydomonas reinhardtii. Microarrays were probed with fluorescently labeled cDNAs synthesized from RNA extracted from cells before and during flagellar assembly or disassembly. Evaluation of the gene expression profiles identified >100 clones showing at least a twofold change in expression during flagellar length changes. Products of these genes are associated not only with flagellar structure and motility but also with other cellular responses, including signal transduction and metabolism. Expression of specific genes from each category was further characterized at higher resolution by using quantitative real-time PCR (qRT–PCR). Analysis and comparison of the gene expression profiles coupled to flagellar assembly and disassembly revealed that each process involves a new and uncharacterized whole-cell response to flagellar length changes. This analysis lays the groundwork for a more comprehensive understanding of the cellular and molecular networks regulating flagellar length changes. PMID:18493036

  3. Photosynthetic characteristics of a multicellular green alga Volvox carteri in response to external CO2 levels possibly regulated by CCM1/CIA5 ortholog.

    PubMed

    Yamano, Takashi; Fujita, Akimitsu; Fukuzawa, Hideya

    2011-09-01

    When CO(2) supply is limited, aquatic photosynthetic organisms induce a CO(2)-concentrating mechanism (CCM) and acclimate to the CO(2)-limiting environment. Although the CCM is well studied in unicellular green algae such as Chlamydomonas reinhardtii, physiological aspects of the CCM and its associated genes in multicellular algae are poorly understood. In this study, by measuring photosynthetic affinity for CO(2), we present physiological data in support of a CCM in a multicellular green alga, Volvox carteri. The low-CO(2)-grown Volvox cells showed much higher affinity for inorganic carbon compared with high-CO(2)-grown cells. Addition of ethoxyzolamide, a membrane-permeable carbonic anhydrase inhibitor, to the culture remarkably reduced the photosynthetic affinity of low-CO(2) grown Volvox cells, indicating that an intracellular carbonic anhydrase contributed to the Volvox CCM. We also isolated a gene encoding a protein orthologous to CCM1/CIA5, a master regulator of the CCM in Chlamydomonas, from Volvox carteri. Volvox CCM1 encoded a protein with 701 amino acid residues showing 51.1% sequence identity with Chlamydomonas CCM1. Comparison of Volvox and Chlamydomonas CCM1 revealed a highly conserved N-terminal region containing zinc-binding amino acid residues, putative nuclear localization and export signals, and a C-terminal region containing a putative LXXLL protein-protein interaction motif. Based on these results, we discuss the physiological and genetic aspects of the CCM in Chlamydomonas and Volvox.

  4. Expression of bkt and bch genes from Haematococcus pluvialis in transgenic Chlamydomonas.

    PubMed

    Zheng, KaiJing; Wang, ChaoGang; Xiao, Ming; Chen, Jun; Li, JianCheng; Hu, ZhangLi

    2014-10-01

    β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequences of bkt and bch were constructed and co-transformed into cell-wall-deficient Chlamydomonas reinhardtii CC-849. Transgenic algae were screened on TAP agar plates containing 10 μg mL(-1) Zeomycin. PCR-Southern analysis showed that bkt and bch were integrated into the genomes of C. reinhardtii. Transcripts of bkt and bch were further confirmed by RT-PCR-Southern analysis. Compared with the wild type, transgenic algae produced 29.04% and 30.27% more carotenoids and xanthophylls, respectively. Moreover, the transgenic algae could accumulate 34% more astaxanthin than wild type. These results indicate that foreign bkt and bch genes were successfully translated into β-carotene ketolase and β-carotene hydroxylase, which were responsible for catalyzing the biosynthesis of astaxanthin in transgenic algae.

  5. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.

    PubMed

    Cerff, Martin; Morweiser, Michael; Dillschneider, Robert; Michel, Aymeé; Menzel, Katharina; Posten, Clemens

    2012-08-01

    In this study, the focus is on magnetic separation of fresh water algae Chlamydomonas reinhardtii and Chlorella vulgaris as well as marine algae Phaeodactylum tricornutum and Nannochloropsis salina by means of silica-coated magnetic particles. Due to their small size and low biomass concentrations, harvesting algae by conventional methods is often inefficient and cost-consuming. Magnetic separation is a powerful tool to capture algae by adsorption to submicron-sized magnetic particles. Hereby, separation efficiency depends on parameters such as particle concentration, pH and medium composition. Separation efficiencies of >95% were obtained for all algae while maximum particle loads of 30 and 77 g/g were measured for C. reinhardtii and P. tricornutum at pH 8 and 12, respectively. This study highlights the potential of silica-coated magnetic particles for the removal of fresh water and marine algae by high gradient magnetic filtration and provides critical discussion on future improvements.

  6. Expression of human antibodies in eukaryotic micro-algae.

    PubMed

    Mayfield, Stephen P; Franklin, Scott E

    2005-03-07

    Protein based therapeutics have enjoyed great success over the past decade. Unfortunately, with this clinical success comes a heavy price tag, owing to the inherently high costs of capitalization and production using mammalian cell fermentation. To address this problem, we have begun developing a system for the expression of recombinant proteins in the unicellular eukaryotic green algae, Chlamydomonas reinhardtii, leading to the production of human IgA single chain antibodies. The expression of human monoclonal antibodies in C. reinhardtii offers an attractive alternative to traditional mammalian based expression systems for several reasons, including an ability to rapidly obtain stable plastid and nuclear transformants, coupled with inherently low costs of capitalization and production.

  7. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.

    PubMed

    Wang, Ye; Cheng, Zhen Zhen; Chen, Xi; Zheng, Qi; Yang, Zhi Min

    2015-11-01

    Excess copper (Cu) in environment affects the growth and metabolism of plants and green algae. However, the molecular mechanism for regulating plant tolerance to excess Cu is not fully understood. Here, we report a gene CrGNAT enconding an acetyltransferase in Chlamydomonas reinhardtii and identified its role in regulating tolerance to Cu toxicity. Expression of CrGNAT was significantly induced by 75-400μM Cu. The top induction occurred at 100μM. Transgenic algae overexpressing CrGNAT (35S::CrGNAT) in C. reinhardtii showed high tolerance to excess Cu, with improved cell population, chlorophyll accumulation and photosynthesis efficiency, but with low degree of oxidation with regard to reduced hydrogen peroxide, lipid peroxides and non-protein thiol compounds. In contrast, CrGNAT knock-down lines with antisense led to sensitivity to Cu stress. 35S::CrGNAT algae accumulated more Cu and other metals (Zn, Fe, Cu, Mn and Mg) than wild-type, whereas the CrGNAT down-regulated algae (35S::AntiCrGNAT) had moderate levels of Cu and Mn, but no effects on Zn, Fe and Mg accumulation as compared to wild-type. The elevated metal absorption in CrGNAT overexpression algae implies that the metals can be removed from water media. Quantitative RT-PCR analysis revealed that expression of two genes encoding N-lysine histone methyltransferases was repressed in 35S::CrGNAT algae, suggesting that CrGNAT-regulated algal tolerance to Cu toxicity is likely associated with histone methylation and chromatin remodeling. The present work provided an example a basis to develop techniques for environmental restoration of metal-contaminated aquatic ecosystems.

  8. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.

    PubMed

    Kosourov, Sergey; Patrusheva, Elena; Ghirardi, Maria L; Seibert, Michael; Tsygankov, Anatoly

    2007-03-10

    Continuous photoproduction of H(2) by the green alga, Chlamydomonas reinhardtii, is observed after incubating the cultures for about a day in the absence of sulfate and in the presence of acetate. Sulfur deprivation causes the partial and reversible inactivation of photosynthetic O(2) evolution in algae, resulting in the light-induced establishment of anaerobic conditions in sealed photobioreactors, expression of two [FeFe]-hydrogenases in the cells, and H(2) photoproduction for several days. We have previously demonstrated that sulfur-deprived algal cultures can produce H(2) gas in the absence of acetate, when appropriate experimental protocols were used (Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L., Seibert, M., 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31, 1574-1584). We now report the use of an automated photobioreactor system to compare the effects of photoautotrophic, photoheterotrophic and photomixotrophic growth conditions on the kinetic parameters associated with the adaptation of the algal cells to sulfur deprivation and H(2) photoproduction. This was done under the experimental conditions outlined in the above reference, including controlled pH. From this comparison we show that both acetate and CO(2) are required for the most rapid inactivation of photosystem II and the highest yield of H(2) gas production. Although, the presence of acetate in the system is not critical for the process, H(2) photoproduction under photoautotrophic conditions can be increased by optimizing the conditions for high starch accumulation. These results suggest ways of engineering algae to improve H(2) production, which in turn may have a positive impact on the economics of applied systems for H(2) production.

  9. Measurement of ethanol formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier Transform Infrared spectromicroscopy

    SciTech Connect

    Goff, Kira L.; Quaroni, Luca; Pedersen, Tor; Wilson, Kenneth E.

    2010-02-03

    We demonstrate the capability of Fourier-Transform Infra-Red (FITR) spectroscopy to detect metabolite formation by the unicellular algae Chlamydomonas reinhardtii in solution. We show that using a synchrotron source in the microscopy configuration provides a sufficient s/n ratio to detect small molecular species accumulating at a single cell, allowing an increased sensitivity relative to measurements of bulk cultures. The formation of small molecular species, including ethanol and at least one carbonyl containing compound, can be detected with a time resolution of the order of one minute.

  10. (Carbon and hydrogen metabolism of green algae in light and dark)

    SciTech Connect

    Not Available

    1990-01-01

    The focus of this project was the elucidation of anaerobic metabolism in ecuaryotic green algae, chlamydomonas reinhardii. Chlamydomonas is a versatile organism that can grow under disparate conditions such as fresh water lakes and sewage ponds. The cell an photoassimilate CO{sub 2} aerobically and anaerobically, the latter after adaptation'' to a hydrogen metabolism. It can recall the knallgas or oxyhydrogen reaction and utilize hydrogen the simplest of all reducing agents for the dark assimilation of CO{sub 2} by the photosynthetic carbon reduction cycle. The dark reduction with hydrogen lies on the border line between autotrophic and heterotrophic carbon assimilation. Both autotrophic and heterotrophic bacteria are known in which molecular hydrogen can replace either inorganic or organic hydrogen donors. Here the dark reduction of CO{sub 2} acquires a particular importance since it occurs in the same cell that carries on photoreduction and photosynthesis. We will demonstrate here that the alga chloroplast possesses a respiratory capacity. It seems likely that Chlamydomonas may have retained the chloroplastic respiratory pathway because of the selective advantage provided to the algae under a wide range of environmental conditions that the cells experience in nature. The ability to cycle electrons and poise the reduction level of the photosynthetic apparatus under aerobic and microaerobic conditions could allow more efficient CO{sub 2} fixation and enhanced growth under unfavorable conditions or survival under more severe conditions.

  11. Rapid construction and screening of artificial microRNA systems in Chlamydomonas reinhardtii.

    PubMed

    Hu, Jinlu; Deng, Xuan; Shao, Ning; Wang, Gaohong; Huang, Kaiyao

    2014-09-01

    The unicellular green algae Chlamydomonas reinhardtii is a classic model for the study of flagella/cilia and photosynthesis, and it has recently been exploited for producing biopharmaceuticals and biofuel. Due to the low frequency of homologous recombination, reverse genetic manipulation in Chlamydomonas relies mainly on miRNA- and siRNA-based knockdown methods. However, the difficulty in constructing artificial miRNA vectors, laborious screening of knockdown transformants, and undesired epigenetic silencing of exogenous miRNA constructs limit their application. We have established a one-step procedure to construct an artificial miRNA precursor by annealing eight oligonucleotides of approximately 40 nucleotides. In the final construct, the Gaussia princeps luciferase gene (G-Luc) is positioned between the promoter and the artificial miRNA precursor so that knockdown strains may quickly be screened by visualizing luciferase luminescence using a photon-counting camera. Furthermore, the luciferase activity of transformants correlates with the knockdown level of two test target proteins: the chloroplast protein VIPP1 (vesicle inducing protein in plastids 1) and the flagellar protein CDPK3 (calcium-dependent protein kinase 3). Adding an intron from RBCS2 (ribulose bisphosphate carboxylase/oxygenase small subunit 2) to the miRNA construct enhanced both the luciferase activity and the miRNA knockdown efficiency. A second miRNA vector incorporated the promoter of the nitrate reductase gene to allow inducible expression of the artificial miRNA. These vectors will facilitate application of the artificial miRNA and provide tools for studying the mechanism of epigenetics in Chlamydomonas, and may also be adapted for use in other model organisms.

  12. Green Algae as Model Organisms for Biological Fluid Dynamics.

    PubMed

    Goldstein, Raymond E

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  13. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  14. Green Algae as Model Organisms for Biological Fluid Dynamics*

    PubMed Central

    Goldstein, Raymond E.

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms. PMID:26594068

  15. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii

    PubMed Central

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio; de Montaigu, Amaury

    2016-01-01

    The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO. PMID:27149516

  16. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  17. HISN3 mediates adaptive response of Chlamydomonas reinhardtii to excess nickel.

    PubMed

    Zheng, Qi; Cheng, Zhen Zhen; Yang, Zhi Min

    2013-12-01

    Investigation of genes for heavy metal [e.g. nickel (Ni) and zinc (Zn)] absorption and detoxification in green algae is of great importance because some of the metals have become one of the major contaminants in the aquatic ecosystem. In plants, overload of heavy metals modifies many aspects of biological processes. However, the mechanisms by which heavy metals exert detrimental effects are not fully understood. The present study identified a biological role for HISN3 (the gene coding for phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide isomerase) in regulating the response of Chlamydomonas reinhardtii, a unicellular green alga, to Ni toxicity. In higher plants, HISN3 encodes an enzyme catalyzing the fourth step in the histidine biosynthesis pathway, but its functional importance is yet to be identified. Transgenic algae overexpressing HISN3 in C. reinhardtii showed high tolerance to excess Ni, with a 48.3-57.4% increase in cell population and moderate histidine accumulation compared with the wild type. HISN3 overexpression improved accumulation of Chl and photosynthesis efficiency, but suppressed Ni-induced generation of reactive oxygen species and lipid peroxides. Interestingly, more Ni and other metals [Zn, iron (Fe), copper (Cu), manganese (Mn) and magnesium (Mg)] were accumulated in HISN3-overexpressing cells than in the wild type. In contrast, RNA interference of HISN3 depressed Ni accumulation but caused cellular sensitivity to Ni. The elevated metal absorption in the HISN3-overexpressing algae implies that the metals can be removed from water media. Thus, our work presents an example for algae genetically designed to improve tolerance to metal toxicity and environmental restoration of metal-contaminated aquatic ecosystems.

  18. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.

    PubMed

    Kong, Qing-xue; Li, Ling; Martinez, Blanca; Chen, Paul; Ruan, Roger

    2010-01-01

    The objective of this research was to develop large-scale technologies to produce oil-rich algal biomass from wastewater. The experiments were conducted using Erlenmeyer flasks and biocoil photobioreactor. Chlamydomonas reinhardtii was grown in artificial media and wastewaters taken from three different stages of the treatment process, namely, influent, effluent, and centrate. Each of wastewaters contained different levels of nutrients. The specific growth rate of C. reinhardtii in different cultures was monitored over a period of 10 days. The biomass yield of microalgae and associated nitrogen and phosphorous removal were evaluated. Effects of CO(2) and pH on the growth were also studied. The level of nutrients greatly influenced algae growth. High levels of nutrients seem to inhibit algae growth in the beginning, but provided sustained growth to a high degree. The studies have shown that the optimal pH for C. reinhardtii is in the range of 7.5. An injection of air and a moderate amount of CO(2) promoted algae growth. However, too much CO(2) inhibited algae growth due to a significant decrease in pH. The experimental results showed that algal dry biomass yield reached a maximum of 2.0 g L(-1) day(-1) in the biocoil. The oil content of microalgae of C. reinhardtii was 25.25% (w/w) in dry biomass weight. In the biocoil, 55.8 mg nitrogen and 17.4 mg phosphorus per liter per day were effectively removed from the centrate wastewater. Ferric chloride was found to be an effective flocculent that helps the algae settle for easy harvest and separation from the culture media.

  19. Identical homologs of the Galanthus nivalis agglutinin in Zea mays and Fusarium verticillioides.

    PubMed

    Fouquaert, Elke; Peumans, Willy J; Gheysen, Godelieve; Van Damme, Els J M

    2011-01-01

    The structural domain corresponding to the Galanthus nivalis agglutinin (GNA) is a mannose-binding motif that was originally discovered in plants but according to recent data also occurs in other eukaryotes and prokaryotes. Transcriptome analyses revealed that Fusarium verticillioides expresses a protein (FvGLLc1) identical to a recently identified cytoplasmic/nuclear GNA-like lectin from maize (ZmGLLc). The FvGLLc1 and ZmGLLc gene sequences are nearly identical in the coding region as well as in the intron and the 5 and 3 prime untranslated regions. However, whereas the Fusarium genome contains only a single gene with an intron, both an intronless and an intron containing lectin gene can be amplified from maize DNA. Southern blot analysis confirmed the presence of this cytoplasmic GNA-like gene in the maize and rice genome. A comparative analysis of the products amplified by different PCRs using genomic DNA from Fusarium species and maize DNA samples from sterile as well as contaminated plant material strongly indicated that the GNA-like sequence found in maize grown under sterile conditions is not derived from a contaminating Fusarium species. Furthermore, using a PCR-based approach it could be demonstrated that this particular type of lectin occurs also in other plants from distant taxa and is markedly conserved.

  20. Concentrations of anticoagulant rodenticides in stoats Mustela erminea and weasels Mustela nivalis from Denmark.

    PubMed

    Elmeros, Morten; Christensen, Thomas Kjær; Lassen, Pia

    2011-05-15

    Anticoagulant rodenticides are widely used to control rodent populations but they also pose a risk of secondary poisoning in non-target predators. Studies on anticoagulant rodenticide exposure of non-target species have mainly reported on frequency of occurrence. They have rarely analyzed variations in residue concentrations. We examine the occurrence and concentrations of five anticoagulant rodenticides in liver tissue from 61 stoats (Mustela erminea) and 69 weasels (Mustela nivalis) from Denmark. Anticoagulant rodenticides were detected in 97% of stoats and 95% of weasels. 79% of the animals had detectable levels of more than one substance. Difenacoum had the highest prevalence (82% in stoats and 88% in weasels) but bromadiolone was detected in the highest concentrations in both stoat (1.290 μg/g ww) and weasel (1.610 μg/g ww). Anticoagulant rodenticide concentrations were highest during autumn and winter and varied with sampling method. Anticoagulant rodenticide concentrations were higher in stoats and weasels with unknown cause of death than in specimens killed by physical trauma. There was a negative correlation between anticoagulant rodenticide concentrations and body condition. Our results suggest that chemical rodent control in Denmark results in an extensive exposure of non-target species and may adversely affect the fitness of some stoats and weasels.

  1. Hormones and territorial behavior during breeding in snow buntings (Plectrophenax nivalis): an Arctic-breeding songbird.

    PubMed

    Romero, L M; Soma, K K; O'Reilly, K M; Suydam, R; Wingfield, J C

    1998-02-01

    We examined hormonal profiles and behavior associated with maintaining a single-purpose territory in an Arctic-breeding songbird-the snow bunting (Plectrophenax nivalis). Snow buntings differ from many other Arctic-breeding passerines by using nest cavities, an uncommon and defended resource, but not relying upon the surrounding territory for forage. Circulating levels of testosterone in males were high when territories were established and then decreased over the breeding season. LH secretion was enhanced in females while laying eggs, followed by detectable levels of estradiol during incubation. Both sexes showed equivalent corticosterone responses to the stress of being captured and held. Male snow buntings vigorously defended territories in response to a simulated territorial intrusion both when initiating breeding and when feeding young. Exogenous testosterone implants surprisingly inhibited physical aggression but enhanced singing when birds were feeding young, thus suggesting that song and physical aggression are mediated by different hormonal mechanisms at this time of year. Together, these results contrast with hormonal profiles and behavior in other Arctic-breeding passerines.

  2. Chlamydomonas as a model for biofuels and bio-products production.

    PubMed

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field.

  3. MEETING: Chlamydomonas Annotation Jamboree - October 2003

    SciTech Connect

    Grossman, Arthur R

    2007-04-13

    Shotgun sequencing of the nuclear genome of Chlamydomonas reinhardtii (Chlamydomonas throughout) was performed at an approximate 10X coverage by JGI. Roughly half of the genome is now contained on 26 scaffolds, all of which are at least 1.6 Mb, and the coverage of the genome is ~95%. There are now over 200,000 cDNA sequence reads that we have generated as part of the Chlamydomonas genome project (Grossman, 2003; Shrager et al., 2003; Grossman et al. 2007; Merchant et al., 2007); other sequences have also been generated by the Kasuza sequence group (Asamizu et al., 1999; Asamizu et al., 2000) or individual laboratories that have focused on specific genes. Shrager et al. (2003) placed the reads into distinct contigs (an assemblage of reads with overlapping nucleotide sequences), and contigs that group together as part of the same genes have been designated ACEs (assembly of contigs generated from EST information). All of the reads have also been mapped to the Chlamydomonas nuclear genome and the cDNAs and their corresponding genomic sequences have been reassembled, and the resulting assemblage is called an ACEG (an Assembly of contiguous EST sequences supported by genomic sequence) (Jain et al., 2007). Most of the unique genes or ACEGs are also represented by gene models that have been generated by the Joint Genome Institute (JGI, Walnut Creek, CA). These gene models have been placed onto the DNA scaffolds and are presented as a track on the Chlamydomonas genome browser associated with the genome portal (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html). Ultimately, the meeting grant awarded by DOE has helped enormously in the development of an annotation pipeline (a set of guidelines used in the annotation of genes) and resulted in high quality annotation of over 4,000 genes; the annotators were from both Europe and the USA. Some of the people who led the annotation initiative were Arthur Grossman, Olivier Vallon, and Sabeeha Merchant (with many individual

  4. Taxonomic revision of Chlamydomonas subg. Amphichloris (Volvocales, Chlorophyceae), with resurrection of the genus Dangeardinia and descriptions of Ixipapillifera gen. nov. and Rhysamphichloris gen. nov.

    PubMed

    Nakada, Takashi; Tomita, Masaru; Wu, Jiunn-Tzong; Nozaki, Hisayoshi

    2016-04-01

    Chlamydomonas (Cd.) is one of the largest but most polyphyletic genera of freshwater unicellular green algae. It consists of 400-600 morphological species and requires taxonomic revision. Toward reclassification, each morphologically defined classical subgenus (or subgroup) should be examined using culture strains. Chlamydomonas subg. Amphichloris is characterized by a central nucleus between two axial pyrenoids, however, the phylogenetic structure of this subgenus has yet to be examined using molecular data. Here, we examined 12 strains including six newly isolated strains, morphologically identified as Chlamydomonas subg. Amphichloris, using 18S rRNA gene phylogeny, light microscopy, and mitochondria fluorescent microscopy. Molecular phylogenetic analyses revealed three independent lineages of the subgenus, separated from the type species of Chlamydomonas, Cd. reinhardtii. These three lineages were further distinguished from each other by light and fluorescent microscopy-in particular by the morphology of the papillae, chloroplast surface, stigmata, and mitochondria-and are here assigned to three genera: Dangeardinia emend., Ixipapillifera gen. nov., and Rhysamphichloris gen. nov. Based on the molecular and morphological data, two to three species were recognized in each genus, including one new species, I. pauromitos. In addition, Cd. deasonii, which was previously assigned to subgroup "Pleiochloris," was included in the genus Ixipapillifera as I. deasonii comb. nov.

  5. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase[W

    PubMed Central

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C.; Grossman, Arthur R.

    2012-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism. PMID:22353371

  6. Photoinduced electric currents in carotenoid-deficient Chlamydomonas mutants reconstituted with retinal and its analogs.

    PubMed Central

    Sineshchekov, O A; Govorunova, E G; Dér, A; Keszthelyi, L; Nultsch, W

    1994-01-01

    Reconstitution of the photoelectric responses involved in photosensory transduction in "blind" cells of Chlamydomonas reinhardtii carotenoid-deficient mutants was studied by means of a recently developed population method. Both the photoreceptor current and the regenerative response can be restored by addition of all-trans-retinal, 9-demethyl-retinal, or dimethyl-octatrienal, while the retinal analogs prevented from 13-cis/trans isomerization, 13-demethyl-retinal and citral, are not effective. Fluence dependence, spectral sensitivity, and effect of hydroxylamine treatment on retinal-induced photoelectric responses are similar to those found earlier in green strains of Chlamydomonas, although an alternative mechanism of antenna directivity in white cells of reconstituted "blind" mutants (likely based on the focusing effect of the transparent cell bodies) leads to the reversed sign of phototaxis in mutant cells under the same conditions. The results obtained indicate that both photoreceptor current and regenerative response are initiated by the same or similar rhodopsins with arhaebacterial-like chromophore(s) and prove directly the earlier suggested identity of the photoreceptor pigment(s) involved in photomotile and photoelectric responses in flagellated algae. PMID:8075341

  7. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium.

    PubMed

    Lee, Do Yup; Park, Jeong-Jin; Barupal, Dinesh K; Fiehn, Oliver

    2012-10-01

    Drastic alterations in macronutrients are known to cause large changes in biochemistry and gene expression in the photosynthetic alga Chlamydomonas reinhardtii. However, metabolomic and proteomic responses to subtle reductions in macronutrients have not yet been studied. When ammonium levels were reduced by 25-100% compared with control cultures, ammonium uptake and growth rates were not affected at 25% or 50% nitrogen-reduction for 28 h. However, primary metabolism and enzyme expression showed remarkable changes at acute conditions (4 h and 10 h after ammonium reduction) compared with chronic conditions (18 h and 28 h time points). Responses of 145 identified metabolites were quantified using gas chromatography-time of flight mass spectrometry; 495 proteins (including 187 enzymes) were monitored using liquid chromatography-ion trap mass spectrometry with label-free spectral counting. Stress response and carbon assimilation processes (Calvin cycle, acetate uptake and chlorophyll biosynthesis) were altered first, in addition to increase in enzyme contents for lipid biosynthesis and accumulation of short chain free fatty acids. Nitrogen/carbon balance metabolism was found changed only under chronic conditions, for example in the citric acid cycle and amino acid metabolism. Metabolism in Chlamydomonas readily responds to total available media nitrogen with temporal increases in short-chain free fatty acids and turnover of internal proteins, long before nitrogen resources are depleted.

  8. Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis.

    PubMed

    Plecenikova, Andrea; Slaninova, Miroslava; Riha, Karel

    2014-01-01

    While the mechanisms governing DNA damage response and repair are fundamentally conserved, cross-kingdom comparisons indicate that they differ in many aspects due to differences in life-styles and developmental strategies. In photosynthetic organisms these differences have not been fully explored because gene-discovery approaches are mainly based on homology searches with known DDR/DNA repair proteins. Here we performed a forward genetic screen in the green algae Chlamydomonas reinhardtii to identify genes deficient in DDR/DNA repair. We isolated five insertional mutants that were sensitive to various genotoxic insults and two of them exhibited altered efficiency of transgene integration. To identify genomic regions disrupted in these mutants, we established a novel adaptor-ligation strategy for the efficient recovery of the insertion flanking sites. Four mutants harbored deletions that involved known DNA repair factors, DNA Pol zeta, DNA Pol theta, SAE2/COM1, and two neighbouring genes encoding ERCC1 and RAD17. Deletion in the last mutant spanned two Chlamydomonas-specific genes with unknown function, demonstrating the utility of this approach for discovering novel factors involved in genome maintenance.

  9. Experimental Genome-Wide Determination of RNA Polyadenylation in Chlamydomonas reinhardtii

    PubMed Central

    Bell, Stephen A.; Shen, Chi; Brown, Alishea; Hunt, Arthur G.

    2016-01-01

    The polyadenylation of RNA is a near-universal feature of RNA metabolism in eukaryotes. This process has been studied in the model alga Chlamydomonas reinhardtii using low-throughput (gene-by-gene) and high-throughput (transcriptome sequencing) approaches that recovered poly(A)-containing sequence tags which revealed interesting features of this critical process in Chlamydomonas. In this study, RNA polyadenylation has been studied using the so-called Poly(A) Tag Sequencing (PAT-Seq) approach. Specifically, PAT-Seq was used to study poly(A) site choice in cultures grown in four different media types—Tris-Phosphate (TP), Tris-Phosphate-Acetate (TAP), High-Salt (HS), and High-Salt-Acetate (HAS). The results indicate that: 1. As reported before, the motif UGUAA is the primary, and perhaps sole, cis-element that guides mRNA polyadenylation in the nucleus; 2. The scope of alternative polyadenylation events with the potential to change the coding sequences of mRNAs is limited; 3. Changes in poly(A) site choice in cultures grown in the different media types are very few in number and do not affect protein-coding potential; 4. Organellar polyadenylation is considerable and affects primarily ribosomal RNAs in the chloroplast and mitochondria; and 5. Organellar RNA polyadenylation is a dynamic process that is affected by the different media types used for cell growth. PMID:26730730

  10. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Moellering, Eric R; Liu, Bensheng; Johnny, Cassandra; Fedewa, Marie; Sears, Barbara B; Kuo, Min-Hao; Benning, Christoph

    2012-11-01

    Following N deprivation, microalgae accumulate triacylglycerols (TAGs). To gain mechanistic insights into this phenomenon, we identified mutants with reduced TAG content following N deprivation in the model alga Chlamydomonas reinhardtii. In one of the mutants, the disruption of a galactoglycerolipid lipase-encoding gene, designated PLASTID GALACTOGLYCEROLIPID DEGRADATION1 (PGD1), was responsible for the primary phenotype: reduced TAG content, altered TAG composition, and reduced galactoglycerolipid turnover. The recombinant PGD1 protein, which was purified from Escherichia coli extracts, hydrolyzed monogalactosyldiacylglycerol into its lyso-lipid derivative. In vivo pulse-chase labeling identified galactoglycerolipid pools as a major source of fatty acids esterified in TAGs following N deprivation. Moreover, the fatty acid flux from plastid lipids to TAG was decreased in the pgd1 mutant. Apparently, de novo-synthesized fatty acids in Chlamydomonas reinhardtii are, at least partially, first incorporated into plastid lipids before they enter TAG synthesis. As a secondary effect, the pgd1 mutant exhibited a loss of viability following N deprivation, which could be avoided by blocking photosynthetic electron transport. Thus, the pgd1 mutant provides evidence for an important biological function of TAG synthesis following N deprivation, namely, relieving a detrimental overreduction of the photosynthetic electron transport chain.

  11. Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Kiess, Michael; Getzlaff, Rita; Wöstemeyer, Johannes; Frank, Ronald

    2010-09-01

    The cell wall of the unicellular green alga Chlamydomonas reinhardtii exclusively consists of hydroxyproline-containing glycoproteins. Protein chemical analysis of its polypeptide constituents was hindered by their cross-linking via peroxidase-catalysed intermolecular isodityrosine formation and transaminase-dependent processes. To overcome this problem, we have identified putative soluble precursors using polyclonal antibodies raised against deglycosylation products of the highly purified insoluble wall fraction and analysed their amino acid sequence. The occurrence of the corresponding polypeptide in the insoluble glycoprotein framework was finally probed by epitope mapping of the polyclonal antibodies using overlapping scan peptides which, together, cover the whole amino acid sequence of the putative precursor. As a control, peptide fragments released from the insoluble wall fraction by trypsin treatment were analysed by mass spectroscopy. By this approach, the heterodimeric, chaotrope-soluble glycoprotein GP3 proved to be a constituent of the insoluble extracellular matrix of Chlamydomonas reinhardtii. Furthermore, we have shown that the polypeptide backbones of both GP3 subunits are encoded by the same gene and differ by a C-terminal truncation in the case of GP3A.

  12. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii.

    PubMed

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-Ryool

    2016-06-13

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including "safe harboring" techniques shown in other organisms.

  13. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii

    PubMed Central

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-ryool

    2016-01-01

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including “safe harboring” techniques shown in other organisms. PMID:27291619

  14. Spontaneous Dominant Mutations in Chlamydomonas Highlight Ongoing Evolution by Gene Diversification

    PubMed Central

    Boulouis, Alix; Drapier, Dominique; Razafimanantsoa, Hélène; Wostrikoff, Katia; Tourasse, Nicolas J.; Pascal, Kevin; Girard-Bascou, Jacqueline; Vallon, Olivier; Wollman, Francis-André; Choquet, Yves

    2015-01-01

    We characterized two spontaneous and dominant nuclear mutations in the unicellular alga Chlamydomonas reinhardtii, ncc1 and ncc2 (for nuclear control of chloroplast gene expression), which affect two octotricopeptide repeat (OPR) proteins encoded in a cluster of paralogous genes on chromosome 15. Both mutations cause a single amino acid substitution in one OPR repeat. As a result, the mutated NCC1 and NCC2 proteins now recognize new targets that we identified in the coding sequences of the chloroplast atpA and petA genes, respectively. Interaction of the mutated proteins with these targets leads to transcript degradation; however, in contrast to the ncc1 mutation, the ncc2 mutation requires on-going translation to promote the decay of the petA mRNA. Thus, these mutants reveal a mechanism by which nuclear factors act on chloroplast mRNAs in Chlamydomonas. They illustrate how diversifying selection can allow cells to adapt the nuclear control of organelle gene expression to environmental changes. We discuss these data in the wider context of the evolution of regulation by helical repeat proteins. PMID:25804537

  15. Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii.

    PubMed

    Chang, Christopher H; King, Paul W; Ghirardi, Maria L; Kim, Kwiseon

    2007-11-01

    The [FeFe] hydrogenases HydA1 and HydA2 in the green alga Chlamydomonas reinhardtii catalyze the final reaction in a remarkable metabolic pathway allowing this photosynthetic organism to produce H(2) from water in the chloroplast. A [2Fe-2S] ferredoxin is a critical branch point in electron flow from Photosystem I toward a variety of metabolic fates, including proton reduction by hydrogenases. To better understand the binding determinants involved in ferredoxin:hydrogenase interactions, we have modeled Chlamydomonas PetF1 and HydA2 based on amino-acid sequence homology, and produced two promising electron-transfer model complexes by computational docking. To characterize these models, quantitative free energy calculations at atomic resolution were carried out, and detailed analysis of the interprotein interactions undertaken. The protein complex model we propose for ferredoxin:HydA2 interaction is energetically favored over the alternative candidate by 20 kcal/mol. This proposed model of the electron-transfer complex between PetF1 and HydA2 permits a more detailed view of the molecular events leading up to H(2) evolution, and suggests potential mutagenic strategies to modulate electron flow to HydA2.

  16. High-Throughput Robotically Assisted Isolation of Temperature-sensitive Lethal Mutants in Chlamydomonas reinhardtii

    PubMed Central

    Breker, Michal; Lieberman, Kristi; Tulin, Frej; Cross, Frederick R.

    2016-01-01

    Systematic identification and characterization of genetic perturbations have proven useful to decipher gene function and cellular pathways. However, the conventional approaches of permanent gene deletion cannot be applied to essential genes. We have pioneered a unique collection of ~70 temperature-sensitive (ts) lethal mutants for studying cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii1. These mutations identify essential genes, and the ts alleles can be conditionally inactivated by temperature shift, providing valuable tools to identify and analyze essential functions. Mutant collections are much more valuable if they are close to comprehensive, since scattershot collections can miss important components. However, this requires the efficient collection of a large number of mutants, especially in a wide-target screen. Here, we describe a robotics-based pipeline for generating ts lethal mutants and analyzing their phenotype in Chlamydomonas. This technique can be applied to any microorganism that grows on agar. We have collected over 3000 ts mutants, probably including mutations in most or all cell-essential pathways, including about 200 new candidate cell cycle mutations. Subsequent molecular and cellular characterization of these mutants should provide new insights in plant cell biology; a comprehensive mutant collection is an essential prerequisite to ensure coverage of a broad range of biological pathways. These methods are integrated with downstream genetics and bioinformatics procedures for efficient mapping and identification of the causative mutations that are beyond the scope of this manuscript. PMID:28060315

  17. Membrane-associated polypeptides induced in Chlamydomonas by limiting CO sub 2 concentrations

    SciTech Connect

    Spalding, M.H.; Jeffrey, M. )

    1989-01-01

    Chlamydomonas reinhardtii and other unicellular green algae have a high apparent affinity for CO{sub 2}, little O{sub 2} inhibition of photosynthesis, and reduced photorespiration. These characteristics result from operation of a CO{sub 2}-concentrating system. The CO{sub 2}-concentrating system involves active inorganic carbon transport and is under environmental control. Cells grown at limiting CO{sub 2} concentrations have inorganic carbon transport activity, but cells grown at 5% CO{sub 2} do not. Four membrane-associated polypeptides (M{sub r}, 19, 21, 35, and 36 kilodaltons) have been identified which either appear or increase in abundance during adaptation to limiting CO{sub 2} concentrations. The appearance of two of the polypeptides occurs over roughly the same time course as the appearance of the CO{sub 2}-concentrating system activity in response to CO{sub 2} limitation.

  18. Ethanol stimulates phospholipid turnover and inositol 1,4,5-trisphosphate production in Chlamydomonas eugametos gametes.

    PubMed

    Musgrave, A; Kuin, H; Jongen, M; de Wildt, P; Schuring, F; Klerk, H; van den Ende, H

    1992-02-01

    Alcohols induce mating-structure activation in Chlamydomonas eugametos gametes. From the effect of ethanol on the (32)P-labelling of polyphosphoinositides, we conclude that the synthesis of these lipids is stimulated. Biologically inactive concentrations of ethanol (<6%) had no effect on synthesis, but 6-8% ethanol stimulated synthesis for upto 60 min. The (32)P incorporated into polyphosphoinositides and phosphatidic acid during ethanol treatment was readily chased out when 1 mM unlabelled Na3PO4 was added. Using a binding assay for inositol 1,4,5-trisphosphate, we show that the production of this phospholipid constituent is dramatically increased after ethanol treatment. This effect, coupled to a rise in intracellular calcium concentration, could explain gamete activation. The significance of these results in explaining other ethanol-induced phenomena in algae is discussed.

  19. [LIGHT-DEPENDENT SYNTHESIS OF CELL MEMBRANES IN THE Brc-1 MUTANT OF CHLAMYDOMONAS REINHARDTII].

    PubMed

    Semenova, G A; Chekunova, E M; Ladygin, V G

    2015-01-01

    The structural organization of cells of the Brc-1 mutant of the unicellular green algae Chlamydomonas reinhardtii grown in the light and in the dark has been studied. The Brc-1 mutant contains the brc-1 mutation in the nucleus gene LTS3. In the light, all membrane structures in mutant cells form normally and are well developed. In the dark under heterotrophic conditions, the mutant cells grew and divided well, however, all its cell membranes: plasmalemma, tonoplast, mitochondrial membranes, membranes of the nucleus shell and chloroplast, thylakoids, and the membranes of dictiosomes of the Golgi apparatus were not detected. In the dark under heterotrophic conditions, mutant cells well grow and divide. It were shown that a short-term (1-10 min) exposure of Brc-1 mutant cells to light leads to the restoration of all above-mentioned membrane structures. Possible reasons for the alterations of membrane structures are discussed.

  20. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas.

    PubMed Central

    Cerutti, H; Johnson, A M; Gillham, N W; Boynton, J E

    1997-01-01

    The unstable expression of introduced genes poses a serious problem for the application of transgenic technology in plants. In transformants of the unicellular green alga Chlamydomonas reinhardtii, expression of a eubacterial aadA gene, conferring spectinomycin resistance, is transcriptionally suppressed by a reversible epigenetic mechanism(s). Variations in the size and frequency of colonies surviving on different concentrations of spectinomycin as well as the levels of transcriptional activity of the introduced transgene(s) suggest the existence of intermediate expression states in genetically identical cells. Gene silencing does not correlate with methylation of the integrated DNA and does not involve large alterations in its chromatin structure, as revealed by digestion with restriction endonucleases and DNase I. Transgene repression is enhanced by lower temperatures, similar to position effect variegation in Drosophila. By analogy to epigenetic phenomena in several eukaryotes, our results suggest a possible role for (hetero)chromatic chromosomal domains in transcriptional inactivation. PMID:9212467

  1. Molecular characterization of a zygote wall protein: an extensin-like molecule in Chlamydomonas reinhardtii.

    PubMed Central

    Woessner, J P; Goodenough, U W

    1989-01-01

    The green alga Chlamydomonas reinhardtii elaborates two biochemically and morphologically distinct cell walls during its life cycle: one surrounds the vegetative and gametic cell and the other encompasses the zygote. Hydroxyproline-rich glycoproteins (HRGPs) constitute a major component of both walls. We describe the isolation and characterization of a zygote-specific gene encoding a wall HRGP. The derived amino acid sequence of this algal HRGP is similar to those of higher plant extensins, rich in proline and serine residues and possessing repeating amino acid motifs, notably X(Pro)3 and (Ser-Pro)n. Antiserum against this zygote wall protein detected common epitopes in several other zygote polypeptides, at least one of which is also encoded by a zygote-specific gene. We conclude that there is one set of HRGP wall genes expressed only in zygotes and another set that is specific to vegetative and gametic cells. PMID:2535530

  2. Chlamydomonas swims with two "gears" in a eukaryotic version of run-and-tumble locomotion.

    PubMed

    Polin, Marco; Tuval, Idan; Drescher, Knut; Gollub, J P; Goldstein, Raymond E

    2009-07-24

    The coordination of eukaryotic flagella is essential for many of the most basic processes of life (motility, sensing, and development), yet its emergence and regulation and its connection to locomotion are poorly understood. Previous studies show that the unicellular alga Chlamydomonas, widely regarded as an ideal system in which to study flagellar biology, swims forward by the synchronous action of its two flagella. Using high-speed imaging over long intervals, we found a richer behavior: A cell swimming in the dark stochastically switches between synchronous and asynchronous flagellar beating. Three-dimensional tracking shows that these regimes lead, respectively, to nearly straight swimming and to abrupt large reorientations, which yield a eukaryotic version of the "run-and-tumble" motion of peritrichously flagellated bacteria.

  3. Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins

    PubMed Central

    Droghetti, Enrica; Tundo, Grazia R.; Sanz-Luque, Emanuel; Polticelli, Fabio; Visca, Paolo; Smulevich, Giulietta; Ascenzi, Paolo; Coletta, Massimo

    2015-01-01

    The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2− binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2− concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2−binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles. PMID:25993270

  4. Nuclear transformation of Chlamydomonas reinhardtii with silicon carbide fibers

    SciTech Connect

    Dunahay, T.G. )

    1992-01-01

    Efficient nuclear transformation of cell wall-deficient strains of the green alga Chlamydomonas reinhardtii can be accomplished by vortexing the cells in the presence of glass beads and polyethylene glycol (Kindle 1990 PNAS 87:1228). Intact (walled) cells can also be transformed using this protocol, but at very low efficiencies. Two recent reports have described the use of silicon carbide fibers to mediate DNA entry into plant suspension cells (Kaeppler et al. 1990 Plant Cell Rep. 9:414; Asano et al. 1991 Plant Sci. 79:247). The author has found that nuclear transformation efficiencies of walled cells of C. reinhardtii can be increased 3 to 10 fold by vortexing the cells in the presence of silicon carbide fibers and PEG. Using a modification of the glass bead transformation procedure, the wild-type nitrate reductase structural gene was used to complement a NR-deficient mutant of C. reinhardtii, nit-1-305. The transformation efficiency increased with longer vortexing times, although the absolute number of transformants varied between experiments, ranging from 10 to 40 transformants per 10[sup 7] cells. In contrast to vortexing with glass beads, cell viability was very high, with greater than 80% cell survival even after vortexing for 10 minutes. Neither cell death nor transformation efficiency increased when cell wall-deficient mutants (cw15 nit-1-305) were used as compared to intact cells. Experiments are in progress to test the applicability of silicon carbide-mediated transformation to other algal strains for which cell wall mutants or protoplasting procedures are unavailabile.

  5. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  6. Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas[OPEN

    PubMed Central

    Evans, Bradley S.; Li, Jia; Liu, Yu; Diamond, Spencer

    2016-01-01

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of Rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas reinhardtii using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8. Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively overaccumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation. PMID:27600537

  7. Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas.

    PubMed

    Couso, Inmaculada; Evans, Bradley; Li, Jia; Liu, Yu; Ma, Fangfang; Diamond, Spencer; Allen, Doug K; Umen, James G

    2016-09-06

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8. Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively over-accumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation.

  8. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.

    PubMed

    Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning

    2017-01-01

    Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future.

  9. The energy cost of voluntary running in the weasel Mustela nivalis.

    PubMed

    Chappell, Mark A; Szafrańska, Paulina A; Zub, Karol; Konarzewski, Marek

    2013-02-15

    The small size and elongate shape of weasels (Mustela nivalis) probably evolved to facilitate movement within the burrow systems of prey species, but result in high energy costs of thermoregulation. In this study we measured metabolic rates of weasels during voluntary locomotion to determine whether energy costs of transport are also high in these unusually shaped mammals. In addition, we measured the lower and upper limits of aerobic metabolism [resting metabolic rate (RMR) and maximal oxygen consumption in forced exercise (V(O(2),max))], and used the wide size range of adult weasels to investigate the intraspecific scaling of energy metabolism. Finally, we combined measurements of energy use during running with radiotracking and doubly labeled water data from free-living weasels to estimate the importance of locomotor costs in daily energy budgets. We found that weasels have higher than predicted costs of running, largely because of an elevated intercept of the speed versus metabolic rate relationship. Running costs were strongly affected by the approximately fourfold range of body size in adults. As reported in other studies, the RMR of weasels was considerably higher than predicted from body mass. Maximal oxygen consumption was also higher than predicted, but factorial aerobic scope (V(O(2),max)/RMR) was within the normal range for mammals. Intraspecific mass scaling of RMR and V(O(2),max) did not differ from typical interspecific mammalian allometries. In wild weasels, locomotor costs comprised roughly 5% of daily energy expenditures; this low value was primarily a result of short travel times and distances.

  10. Seasonal variation of resting metabolic rate and body mass in free-living weasels Mustela nivalis.

    PubMed

    Szafrańska, Paulina A; Zub, Karol; Konarzewski, Marek

    2013-01-01

    Metabolic rates and body mass of mammals vary seasonally along with ambient temperatures and food availability. At the population level, seasonal changes in metabolic rate and mass can be due to selective mortality or emigration of individuals whose metabolic rate or mass differs from the average for the population. Alternatively, the metabolic rates of individuals can change seasonally, such that the population average increases or decreases due to shifts in the physiology of the overall population. The latter implies that individuals respond in a similar manner to changing seasonal conditions. We studied seasonal changes in body mass (BM) and resting metabolic rate (RMR) in free-ranging male weasels (Mustela nivalis) to test the consistency of these traits in individuals caught in different seasons of the year. At the population level, BM was remarkably stable across the seasons (F(3, 124)=0.25, P=0.9). In contrast, BM- corrected RMR varied significantly between seasons and was the lowest in winter (F(3, 135)=9.13, P<0.0001). We demonstrated that individual weasels were consistent in how their BM and RMR deviated from the seasonal means for the population (intraclass correlation, τ=0.78 and 0.33, respectively). This variation among individuals explained ~76% and 27% of the total variation of BM and basal metabolic rate, respectively. Hence, the relatively constant BM at the population level across seasons is due to a relative constancy of BM in individuals. Our study is one of relatively few research projects that demonstrate that seasonal changes in RMR observed in the wild population are in part due to a consistency in individual responses to changing environmental conditions.

  11. Orientation of snow buntings (Plectrophenax nivalis) close to the magnetic north pole

    PubMed

    Sandberg; BACkman; Ottosson

    1998-05-21

    Orientation experiments were performed with first-year snow buntings (Plectrophenax nivalis) during their autumn migration in a natural near-vertical geomagnetic field approximately 400 km away from the magnetic north pole. Migratory orientation of snow buntings was recorded using two different techniques: orientation cage tests and free-flight release experiments. Experiments were performed under clear skies, as well as under natural and simulated complete overcast. Several experimental manipulations were performed including an artificial shift of the E-vector direction of polarized light, depolarization of incoming light and a 4 h slow clock-shift experiment. The amount of stored fat proved to be decisive for the directional selections of the buntings. Fat individuals generally chose southerly mean directions, whereas lean birds selected northerly headings. These directional selections seemed to be independent of experimental manipulations of the buntings' access to visual cues even in the local near-vertical magnetic field. Under clear skies, the buntings failed to respond to either a deflection of the E-vector direction of polarized light or an experimental depolarization of incoming skylight. When tested under natural as well as simulated overcast, the buntings were still able to select a meaningful mean direction according to their fat status. Similarly, the free-flight release test under complete overcast resulted in a well-defined southsoutheast direction, possibly influenced by the prevailing light northwest wind. Clock-shift experiments did not yield a conclusive result, but the failure of these birds to take off during the subsequent free-flight release test may indicate some unspecified confusion effect of the treatment.

  12. Efficient H2 production via Chlamydomonas reinhardtii.

    PubMed

    Esquível, Maria G; Amaro, Helena M; Pinto, Teresa S; Fevereiro, Pedro S; Malcata, F Xavier

    2011-12-01

    Molecular hydrogen (H(2)) obtained from biological sources provides an alternative to bulk chemical processes that is moving towards large-scale, economical generation of clean fuel for automotive engines. This opinion article examines recent improvements in H(2) production by wild and mutant strains of Chlamydomonas reinhardtii - the green microalga currently considered the best eukaryotic H(2) producer. Here, we review various aspects of genetic and metabolic engineering of C. reinhardtii, as well as of process engineering. Additionally, we lay out possible scenarios that would lead to more efficient research approaches in the near future, as part of a consistent strategy for sustainable biohydrogen supply.

  13. Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5- bisphosphate carboxylase small subunit of Chlamydomonas

    PubMed Central

    1985-01-01

    The precursor of the ribulose-1,5-bisphosphate carboxylase small subunit and other proteins from Chlamydomonas reinhardtii are efficiently transported into chloroplasts isolated from spinach and pea. Thus, similar determinants specify precursor-chloroplast interactions in the alga and vascular plants. Removal of all or part of its transit sequence was found to block import of the algal small subunit into isolated chloroplasts. Comparison of available sequences revealed a nine amino acid segment conserved in the transit sequences of all small subunit precursors. A protease in the vascular plant chloroplasts recognized this region in the Chlamydomonas precursor and produced an intermediate form of the small subunit. We propose that processing of the small subunit precursor involves at least two proteolytic events; only one of these has been evolutionarily conserved. PMID:3965471

  14. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    PubMed

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage.

  15. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  16. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002

    SciTech Connect

    Therien, Jesse B.; Zadvornyy, Oleg A.; Posewitz, Matthew C.; Bryant, Donald A.; Peters, John W.

    2014-10-18

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. We demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC7002.

  17. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity.

    PubMed

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I L

    2015-10-01

    The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the herbicides paraquat and diuron, suggesting that the fast physiological and biochemical defence mechanisms that conferred tolerance of algae towards higher UVR levels were related to singlet oxygen defence. The presented study suggests that knowledge of the molecular toxicity mechanisms of chemicals, rather than their general physiological target, is needed in order to predict co-tolerance between environmental and chemical stressors.

  18. [An experiment with Chlamydomonas reinhardtii on the Kosmos-2044 biosatellite].

    PubMed

    Gavrilova, O V; Gabova, A V; Goriainova, L N; Filatova, E V

    1992-01-01

    Space experiment with Chlamydomonas reinhardtii demonstrated that the microgravity effects were noted in Chlamydomonas at both cellular and population levels: in space the cell size is increased, stage of active growth of the culture is extended, it contains the juvenile vegetative motile cells in greater quantities. Ultrastructural analysis indicated that in microgravity the changes in shape, structure and distribution of intracellular organelles and in volume ratio of organelles and cytoplasma are absent. Chlamydomonas data are in line with the results of the Infusoria and Chlorella experiments.

  19. Paternal inheritance of mitochondria in Chlamydomonas.

    PubMed

    Nakamura, Soichi

    2010-03-01

    To analyze mitochondrial DNA (mtDNA)inheritance, differences in mtDNA between Chlamydomonas reinhardtii and Chlamydomonas smithii, respiration deficiency and antibiotic resistance were used to distinguish mtDNA origins. The analyses indicated paternal inheritance. However, these experiments raised questions regarding whether paternal inheritance occurred normally.Mitochondrial nucleoids were observed in living zygotes from mating until 3 days after mating and then until progeny formation. However, selective disappearance of nucleoids was not observed. Subsequently, experimental serial backcrosses between the two strains demonstrated strict paternal inheritance. The fate of mt+ and mt- mtDNA was followed using the differences in mtDNA between the two strains. The slow elimination of mt+ mtDNA through zygote maturation in darkness was observed, and later the disappearance of mt+ mtDNA was observed at the beginning of meiosis. To explain the different fates of mtDNA, methylation status was investigated; however, no methylation was detected. Variously constructed diploid cells showed biparental inheritance. Thus, when the mating process occurs normally, paternal inheritance occurs. Mutations disrupting mtDNA inheritance have not yet been isolated. Mutations that disrupt maternal inheritance of chloroplast DNA (cpDNA) do not disrupt inheritance of mtDNA. The genes responsible for mtDNA inheritance are different from those of chloroplasts.

  20. The Role of Glycerol and Inorganic Ions in Osmoregulatory Responses of the Euryhaline Flagellate Chlamydomonas pulsatilla Wollenweber 1

    PubMed Central

    Ahmad, Iftikhar; Hellebust, Johan A.

    1986-01-01

    The green euryhaline flagellate Chlamydomonas pulsatilla Wollenweber, isolated from a coastal marine environment, was grown exponentially over the salinity range of 10 to 200% artificial seawater (ASW). The cellular volume and aqueous space of the alga, measured by [14C] mannitol and 3H2O tracer analyses of centrifuged cell pellets, ranged between 2.3 and 3.1 picoliters and between 1.5 and 2.1 picoliters, respectively. The nonaqueous space determined in those analyses (28-35%) was consistent with the cell composition of the alga. The glycerol content of the alga increased almost linearly with increasing salinity; its contribution to intracellular osmolality at 200% ASW was about 57%. The contribution of amino acids and soluble carbohydrates to the cell osmotic balance was small. Intracellular ion concentrations determined by analyzing centrifuged cell pellets of known [14C]mannitol space by atomic absorption spectrophotometry, and by neutron activation analyses of washed cells were similar. At 10% ASW, potassium and magnesium were the major cations, and chloride and phosphate were the major anions. The sodium and chloride content of the alga increased with increasing salinity; at 200% ASW the intracellular concentration of both sodium and chloride was about 400 millimolar. The intracellular osmolality (πint) matched closely the external osmolality (πext) over the entire salinity range except at 10% ASW where πint exceeded πext by 120 to 270 milliosmoles per kilogram H2O. PMID:16665042

  1. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants.

  2. Specialized or opportunistic-how does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats?

    PubMed

    Ehl, Stefan; Dalstein, Vivian; Tull, Fabienne; Gros, Patrick; Schmitt, Thomas

    2016-09-15

    High mountain ecosystems are a challenge for the survival of animal and plant species, which have to evolve specific adaptations to cope with the prevailing extreme conditions. The strategies to survive may reach from opportunistic to highly adapted traits. One species successfully surviving under these conditions is the here studied butterfly Erebia nivalis. In a mark-release-recapture study performed in the Hohe Tauern National Park (Austria) from 22 July to 26 August 2013, we marked 1386 individuals and recaptured 342 of these. For each capture event, we recorded the exact point of capture and various other traits (wing conditions, behavior, nectar sources). The population showed a partial protandrous demography with the minority of males emerging prior to the females, but the majority being synchronized with them. Males and females differed significantly in their behavior with males being more flight active and females nectaring and resting more. Both sexes showed preferences for the same plant species as nectar sources, but this specialization apparently is the result of a rapid individual adaptation to the locally available flowers. Estimates of the realized dispersal distances predicted a comparatively high amount of long-distance flights, especially for females. Therefore, the adaptation of Erebia nivalis to the unpredictable high mountain conditions might be a mixture of opportunism and specialized traits.

  3. Analysis of an essential carotenogenic enzyme: ζ-carotene desaturase from unicellular Alga Dunaliella salina.

    PubMed

    Ye, Zhi-Wei; Jiang, Jian-Guo

    2010-11-10

    The green alga Dunaliella has become a valuable model organism for understanding the interesting mechanism of massive carotenoid accumulation. Previously, DNA sequences of several carotenogenic enzymes were obtained from Dunaliella. In this study, the cDNA of zds was isolated from Dunaliella salina using a polymerase chain reaction approach. The full-length cDNA sequence was 2178 base pairs (bp) containing a 1731 bp putative open reading frame which coded a 576 amino acid deduced polypeptide whose molecular weight was 63.9 kDa computationally. A complete homologous search displayed that the nucleotide and putative protein sequence have sequence identities of 69% and 66% with those of green alga Chlamydomonas reinhardtii, respectively. It was predicted that this ζ-carotene desaturase (Zds) may be located in the chloroplast of D. salina. Phylogenetic analysis demonstrated that the D. salina Zds had a closer relationship with the Zds of algae and higher plants than with those of other species.

  4. Algae after dark: mechanisms to cope with anoxic/hypoxic conditions.

    PubMed

    Yang, Wenqiang; Catalanotti, Claudia; Wittkopp, Tyler M; Posewitz, Matthew C; Grossman, Arthur R

    2015-05-01

    Chlamydomonas reinhardtii is a unicellular, soil-dwelling (and aquatic) green alga that has significant metabolic flexibility for balancing redox equivalents and generating ATP when it experiences hypoxic/anoxic conditions. The diversity of pathways available to ferment sugars is often revealed in mutants in which the activities of specific branches of fermentative metabolism have been eliminated; compensatory pathways that have little activity in parental strains under standard laboratory fermentative conditions are often activated. The ways in which these pathways are regulated and integrated have not been extensively explored. In this review, we primarily discuss the intricacies of dark anoxic metabolism in Chlamydomonas, but also discuss aspects of dark oxic metabolism, the utilization of acetate, and the relatively uncharacterized but critical interactions that link chloroplastic and mitochondrial metabolic networks.

  5. International Conference on the Cell and Molecular Biology of Chlamydomonas

    SciTech Connect

    Dr. Stephen Miller

    2010-06-10

    The 2010 Conference on the Cell and Molecular Biology of Chlamydomonas was held June 6-10 near Boston, MA, and attracted a record 273 participants, 146 from US labs, 10 from Canada, and the remainder from 18 other countries. The single-celled algal protist Chlamydomonas is a key research organism for many investigators, including those who study photosynthesis, cell motility, adaptation to environmental stresses, the evolution of multicellularity, and the production of biofuels. Chlamydomonas researchers gather every two years at a research conference to exchange methods, develop collaborative efforts, disseminate recent findings, and plan large-scale studies to improve the usefulness of this unique research organism. This conference provides the only opportunity for Chlamydomonas scientists who work on different research problems to meet face to face, and greatly speeds progress in their respective fields. An important function of these Chlamydomonas conferences is to promote and showcase the work of younger scientists, and to attract new investigators into the Chlamydomonas community. DOE award SC0004085 was used to offset the travel and registration costs for 18 young investigators, 9 of whom were women, including one African American. Most of these scientists would not have been able to attend the conference without DOE support. A total of 208 research presentations were made at the meeting, 80 talks (63 presented by students, postdocs, and pre-tenured faculty) and 128 posters. Cell motility and biofuels/metabolism were the best-represented research areas, with a total of 77 presentations. This fact underscores the growing importance of Chlamydomonas as a research and production tool in the rapidly expanding world of biofuels research. A total of 28 talks and posters were presented on the topics of photosynthesis and stress responses, which were among the next best-represented research areas. As at several recent Chlamydomonas meetings, important advances were

  6. Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle.

    PubMed

    Lopez, David; Hamaji, Takashi; Kropat, Janette; De Hoff, Peter; Morselli, Marco; Rubbi, Liudmilla; Fitz-Gibbon, Sorel; Gallaher, Sean D; Merchant, Sabeeha S; Umen, James; Pellegrini, Matteo

    2015-12-01

    The green alga Chlamydomonas reinhardtii undergoes gametogenesis and mating upon nitrogen starvation. While the steps involved in its sexual reproductive cycle have been extensively characterized, the genome-wide transcriptional and epigenetic changes underlying different life cycle stages have yet to be fully described. Here, we performed transcriptome and methylome sequencing to quantify expression and DNA methylation from vegetative and gametic cells of each mating type and from zygotes. We identified 361 gametic genes with mating type-specific expression patterns and 627 genes that are specifically induced in zygotes; furthermore, these sex-related gene sets were enriched for secretory pathway and alga-specific genes. We also examined the C. reinhardtii nuclear methylation map with base-level resolution at different life cycle stages. Despite having low global levels of nuclear methylation, we detected 23 hypermethylated loci in gene-poor, repeat-rich regions. We observed mating type-specific differences in chloroplast DNA methylation levels in plus versus minus mating type gametes followed by chloroplast DNA hypermethylation in zygotes. Lastly, we examined the expression of candidate DNA methyltransferases and found three, DMT1a, DMT1b, and DMT4, that are differentially expressed during the life cycle and are candidate DNA methylases. The expression and methylation data we present provide insight into cell type-specific transcriptional and epigenetic programs during key stages of the C. reinhardtii life cycle.

  7. Methanol-Promoted Lipid Remodelling during Cooling Sustains Cryopreservation Survival of Chlamydomonas reinhardtii

    PubMed Central

    Yang, Duanpeng; Li, Weiqi

    2016-01-01

    Cryogenic treatments and cryoprotective agents (CPAs) determine the survival rate of organisms that undergo cryopreservation, but their mechanisms of operation have not yet been characterised adequately. In particular, the way in which membrane lipids respond to cryogenic treatments and CPAs is unknown. We developed comparative profiles of the changes in membrane lipids among cryogenic treatments and between the CPAs dimethyl sulfoxide (DMSO) and methanol (MeOH) for the green alga Chlamydomonas reinhardtii. We found that freezing in liquid nitrogen led to a dramatic degradation of lipids, and that thawing at warm temperature (35°C) induced lipid remodelling. DMSO did not protect membranes, but MeOH significantly attenuated lipid degradation. The presence of MeOH during cooling (from 25°C to −55°C at a rate of 1°C/min) sustained the lipid composition to the extent that membrane integrity was maintained; this phenomenon accounts for successful cryopreservation. An increase in monogalactosyldiacylglycerol and a decrease in diacylglycerol were the major changes in lipid composition associated with survival rate, but there was no transformation between these lipid classes. Phospholipase D-mediated phosphatidic acid was not involved in freezing-induced lipid metabolism in C. reinhardtii. Lipid unsaturation changed, and the patterns of change depended on the cryogenic treatment. Our results provide new insights into the cryopreservation of, and the lipid metabolism in, algae. PMID:26731741

  8. The Regulation of Photosynthetic Structure and Function during Nitrogen Deprivation in Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Juergens, Matthew T.; Deshpande, Rahul R.; Lucker, Ben F.; Park, Jeong-Jin; Wang, Hongxia; Gargouri, Mahmoud; Holguin, F. Omar; Disbrow, Bradley; Schaub, Tanner; Skepper, Jeremy N.; Kramer, David M.; Gang, David R.; Hicks, Leslie M.; Shachar-Hill, Yair

    2015-01-01

    The accumulation of carbon storage compounds by many unicellular algae after nutrient deprivation occurs despite declines in their photosynthetic apparatus. To understand the regulation and roles of photosynthesis during this potentially bioenergetically valuable process, we analyzed photosynthetic structure and function after nitrogen deprivation in the model alga Chlamydomonas reinhardtii. Transcriptomic, proteomic, metabolite, and lipid profiling and microscopic time course data were combined with multiple measures of photosynthetic function. Levels of transcripts and proteins of photosystems I and II and most antenna genes fell with differing trajectories; thylakoid membrane lipid levels decreased, while their proportions remained similar and thylakoid membrane organization appeared to be preserved. Cellular chlorophyll (Chl) content decreased more than 2-fold within 24 h, and we conclude from transcript protein and 13C labeling rates that Chl synthesis was down-regulated both pre- and posttranslationally and that Chl levels fell because of a rapid cessation in synthesis and dilution by cellular growth rather than because of degradation. Photosynthetically driven oxygen production and the efficiency of photosystem II as well as P700+ reduction and electrochromic shift kinetics all decreased over the time course, without evidence of substantial energy overflow. The results also indicate that linear electron flow fell approximately 15% more than cyclic flow over the first 24 h. Comparing Calvin-Benson cycle transcript and enzyme levels with changes in photosynthetic 13CO2 incorporation rates also pointed to a coordinated multilevel down-regulation of photosynthetic fluxes during starch synthesis before the induction of high triacylglycerol accumulation rates. PMID:25489023

  9. Method to assemble and integrate biochemical pathways into the chloroplast genome of Chlamydomonas reinhardtii.

    PubMed

    Noor-Mohammadi, Samaneh; Pourmir, Azadeh; Johannes, Tyler W

    2012-11-01

    Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. Here, we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast genome of the microalgal species Chlamydomonas reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated region selection when constructing a target pathway. This new method represents a useful genetic tool in the construction and integration of complex biochemical pathways into the chloroplast genome of microalgae and should aid current efforts to engineer algae for biofuels production and other desirable natural products.

  10. High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii.

    PubMed

    Nama, Srilatha; Madireddi, Sai Kiran; Devadasu, Elsin Raju; Subramanyam, Rajagopal

    2015-11-01

    The green alga Chlamydomonas (C.) reinhardtii is used as a model organism to understand the efficiency of photosynthesis along with the organization and protein profile of photosynthetic apparatus under various intensities of high light exposure for 1h. Chlorophyll (Chl) a fluorescence induction, OJIPSMT transient was decreased with increase in light intensity indicating the reduction in photochemical efficiency. Further, circular dichroism studies of isolated thylakoids from high light exposed cells showed considerable change in the pigment-pigment interactions and pigment-proteins interactions. Furthermore, the organization of supercomplexes from thylakoids is studied, in which, one of the hetero-trimer of light harvesting complex (LHC) II is affected significantly in comparison to other complexes of LHC's monomers. Also, other supercomplexes, photosystem (PS)II reaction center dimer and PSI complexes are reduced. Additionally, immunoblot analysis of thylakoid proteins revealed that PSII core proteins D1 and D2 were significantly decreased during high light treatment. Similarly, the PSI core proteins PsaC, PsaD and PsaG were drastically changed. Further, the LHC antenna proteins of PSI and PSII were differentially affected. From our results it is clear that LHCs are damaged significantly, consequently the excitation energy is not efficiently transferred to the reaction center. Thus, the photochemical energy transfer from PSII to PSI is reduced. The inference of the study deciphers the structural and functional changes driven by light may therefore provide plants/alga to regulate the light harvesting capacity in excess light conditions.

  11. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics

    PubMed Central

    Rasala, Beth A

    2011-01-01

    Microalgae are a diverse group of eukaryotic photosynthetic microorganisms. While microalgae play a crucial role in global carbon fixation and oxygen evolution, these organisms have recently gained much attention for their potential role in biotechnological and industrial applications, such as the production of biofuels. We investigated the potential of the microalga Chlamydomonas reinhardtii to be a platform for the production of human therapeutic proteins. C. reinhardtii is a unicellular freshwater green alga that has served as a popular model alga for physiological, molecular, biochemical and genetic studies. As such, the molecular toolkit for this microorganism is highly developed, including well-established methods for genetic transformation and recombinant gene expression. We transformed the chloroplast genome of C. reinhardtii with seven unrelated genes encoding for current or potential human therapeutic proteins and found that four of these genes supported protein accumulation to levels that are sufficient for commercial production. Furthermore, the algal-produced proteins were bioactive. Thus, the microalga C. reinhardtii has the potential to be a robust platform for human therapeutic protein production. PMID:21636988

  12. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii.

    PubMed

    Mittag, Maria; Wagner, Volker

    2003-05-01

    The green unicellular alga Chlamydomonas reinhardtii, also called 'green yeast', emerged in the past years as a model organism for specific scientific questions such as chloroplast biogenesis and function, the composition of the flagella including its basal apparatus, or the mechanism of the circadian clock. Sequencing of its chloroplast and mitochondrial genomes have already been completed and a first draft of its nuclear genome has also been released recently. In C. reinhardtii several circadian rhythms are physiologically well characterized, and one of them has even been shown to operate in outer space. Circadian expression patterns of nuclear and plastid genes have been studied. The mode of regulation of these genes occurs at the transcriptional level, although there is also evidence for posttranscriptional control. A clock-controlled, phylogenetically conserved RNA-binding protein was characterized in this alga, which interacts with several mRNAs that all contain a common cis-acting motif. Its function within the circadian system is currently under investigation. This review summarizes the current state of the knowledge about the circadian system in C. reinhardtii and points out its potential for future studies.

  13. Metabolic control of urea catabolism in Chlamydomonas reinhardi and Chlorella pyrenoidosa.

    PubMed Central

    Hodson, R C; Williams, S K; Davidson, W R

    1975-01-01

    In the unicellular green alga Chlamydomonas reinhardi (strain y-1), synthesis of the enzymes required for urea hydrolysis is under substrate induction control by urea and under end product repression control by ammonia. Hydrolysis of urea if effected by the sequential action of the discrete enzymes urea carboxylase and allophanate lyase, collectively called urea amidolyase. The carboxylase converts urea to allophanate in a reaction requiring biotin, adenosine 5'-triphosphate, and Mg2+. The lyase hydrolzyes allophanate to ammonium ions and bicarbonate. Neither activity is present in more than trace amounts when cultures are grown with ammonia or urea plus ammonia, or when they are starved for nitrogen for 8 h. Urea in the absence of ammonia induces both activities 10 to 100 times the basal levels. Addition of ammonia to an induced culture causes complete cessation of carboxylase accumulation and an 80% depression of lyase accumulation. Ammonia does not reduce urea uptake by repressed cells, so it does not prevent induction by the mechanism of inducer exclusion. The unicellular green alga Chlorella pyrenoidosa (strain 3 Emerson) also has discrete carboxylase and lyase enzymes, but only the carboxylase exhibits metabolic control. PMID:1116994

  14. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  15. Structure of GUN4 from Chlamydomonas reinhardtii.

    PubMed

    Tarahi Tabrizi, Shabnam; Langley, David B; Harrop, Stephen J; Duff, Anthony P; Willows, Robert D

    2015-08-01

    The genomes uncoupled 4 (GUN4) protein stimulates chlorophyll biosynthesis by increasing the activity of Mg-chelatase, the enzyme that inserts magnesium into protoporphyrin IX (PPIX) in the chlorophyll biosynthesis pathway. One of the roles of GUN4 is in binding PPIX and Mg-PPIX. In eukaryotes, GUN4 also participates in plastid-to-nucleus signalling, although the mechanism for this is unclear. Here, the first crystal structure of a eukaryotic GUN4, from Chlamydomonas reinhardtii, is presented. The structure is in broad agreement with those of previously solved cyanobacterial structures. Most interestingly, conformational divergence is restricted to several loops which cover the porphyrin-binding cleft. The conformational dynamics suggested by this ensemble of structures lend support to the understanding of how GUN4 binds PPIX or Mg-PPIX.

  16. Micro-algae come of age as a platform for recombinant protein production.

    PubMed

    Specht, Elizabeth; Miyake-Stoner, Shigeki; Mayfield, Stephen

    2010-10-01

    A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.

  17. Bioaccumulation and catabolism of prometryne in green algae.

    PubMed

    Jin, Zhen Peng; Luo, Kai; Zhang, Shuang; Zheng, Qi; Yang, Hong

    2012-04-01

    Investigation on organic xenobiotics bioaccumulation/biodegradation in green algae is of great importance from environmental point of view because widespread distribution of these compounds in agricultural areas has become one of the major problems in aquatic ecosystem. Also, new technology needs to be developed for environmental detection and re-usage of the compounds as bioresources. Prometryne as a herbicide is widely used for killing annual grasses in China and other developing countries. However, overuse of the pesticide results in high risks to contamination to aquatic environments. In this study, we focused on analysis of bioaccumulation and degradation of prometryne in Chlamydomonas reinhardtii, a green alga, along with its adaptive response to prometryne toxicity. C. reinhardtii treated with prometryne at 2.5-12.5 μg L(-1) for 4 d or 7.5 μg L(-1) for 1-6 d accumulated a large quantity of prometryne, with more than 2 mg kg(-1) fresh weight in cells exposed to 10 μg L(-1) prometryne. Moreover, it showed a great ability to degrade simultaneously the cell-accumulated prometryne. Such uptake and catabolism of prometryne led to the rapid removal of prometryne from media. Physiological and molecular analysis revealed that toxicology was associated with accumulation of prometryne in the cells. The biological processes of degradation can be interpreted as an internal tolerance mechanism. These results suggest that the green alga is useful in bioremediation of prometryne-contaminated aquatic ecosystems.

  18. An exogenous chloroplast genome for complex sequence manipulation in algae

    PubMed Central

    O'Neill, Bryan M.; Mikkelson, Kari L.; Gutierrez, Noel M.; Cunningham, Jennifer L.; Wolff, Kari L.; Szyjka, Shawn J.; Yohn, Christopher B.; Redding, Kevin E.; Mendez, Michael J.

    2012-01-01

    We demonstrate a system for cloning and modifying the chloroplast genome from the green alga, Chlamydomonas reinhardtii. Through extensive use of sequence stabilization strategies, the ex vivo genome is assembled in yeast from a collection of overlapping fragments. The assembled genome is then moved into bacteria for large-scale preparations and transformed into C. reinhardtii cells. This system also allows for the generation of simultaneous, systematic and complex genetic modifications at multiple loci in vivo. We use this system to substitute genes encoding core subunits of the photosynthetic apparatus with orthologs from a related alga, Scenedesmus obliquus. Once transformed into algae, the substituted genome recombines with the endogenous genome, resulting in a hybrid plastome comprising modifications in disparate loci. The in vivo function of the genomes described herein demonstrates that simultaneous engineering of multiple sites within the chloroplast genome is now possible. This work represents the first steps toward a novel approach for creating genetic diversity in any or all regions of a chloroplast genome. PMID:22116061

  19. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii*

    PubMed Central

    Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.

    2013-01-01

    Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652

  20. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii

    PubMed Central

    Kropat, Janette; Hong-Hermesdorf, Anne; Casero, David; Ent, Petr; Castruita, Madeli; Pellegrini, Matteo; Merchant, Sabeeha S.; Malasarn, Davin

    2011-01-01

    Summary Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner’s supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni2+-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni2+ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation, and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient-deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology. PMID:21309872

  1. How Chlamydomonas keeps track of the light once it has reached the right phototactic orientation.

    PubMed Central

    Schaller, K; David, R; Uhl, R

    1997-01-01

    By using a real-time assay that allows measurement of the phototactic orientation of the unicellular alga Chlamydomonas with millisecond time resolution, it can be shown that single photons not only induce transient direction changes but that fluence rates as low as 1 photon cell(-1) s(-1) can already lead to a persistent orientation. Orientation is a binary variable, i.e., in a partially oriented population some organisms are fully oriented while the rest are still at random. Action spectra reveal that the response to a pulsed stimulus follows the Dartnall-nomogram for a rhodopsin while the response to a persistent stimulus falls off more rapidly toward the red end of the spectrum. Thus light of 540 nm, for which chlamy-rhodopsin is equally sensitive as for 440-nm light, induces no measurable persistent orientation while 440-nm light does. A model is presented which explains not only this behavior, but also how Chlamydomonas can track the light direction and switches between a positive and negative phototaxis. According to the model the ability to detect the direction of light, to make the right turn and to stay oriented, is a direct consequence of the helical path of the organism, the orientation of its eyespot relative to the helix-axis, and the special shielding properties of eyespot and cell body. The model places particular emphasis on the fact that prolonged swimming into the correct direction not only requires making a correct turn initially, but also avoiding further turns once the right direction has been reached. Images FIGURE 1 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 PMID:9284323

  2. Analytical approaches to photobiological hydrogen production in unicellular green algae.

    PubMed

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    Several species of unicellular green algae, such as the model green microalga Chlamydomonas reinhardtii, can operate under either aerobic photosynthesis or anaerobic metabolism conditions. A particularly interesting metabolic condition is that of "anaerobic oxygenic photosynthesis", whereby photosynthetically generated oxygen is consumed by the cell's own respiration, causing anaerobiosis in the culture in the light, and induction of the cellular "hydrogen metabolism" process. The latter entails an alternative photosynthetic electron transport pathway, through the oxygen-sensitive FeFe-hydrogenase, leading to the light-dependent generation of molecular hydrogen in the chloroplast. The FeFe-hydrogenase is coupled to the reducing site of photosystem-I via ferredoxin and is employed as an electron-pressure valve, through which electrons are dissipated, thus permitting a sustained electron transport in the thylakoid membrane of photosynthesis. This hydrogen gas generating process in the cells offers testimony to the unique photosynthetic metabolism that can be found in many species of green microalgae. Moreover, it has attracted interest by the biotechnology and bioenergy sectors, as it promises utilization of green microalgae and the process of photosynthesis in renewable energy production. This article provides an overview of the principles of photobiological hydrogen production in microalgae and addresses in detail the process of induction and analysis of the hydrogen metabolism in the cells. Furthermore, methods are discussed by which the interaction of photosynthesis, respiration, cellular metabolism, and H(2) production in Chlamydomonas can be monitored and regulated.

  3. The Antarctic Psychrophile Chlamydomonas sp. UWO 241 Preferentially Phosphorylates a Photosystem I-Cytochrome b6/f Supercomplex.

    PubMed

    Szyszka-Mroz, Beth; Pittock, Paula; Ivanov, Alexander G; Lajoie, Gilles; Hüner, Norman P A

    2015-09-01

    Chlamydomonas sp. UWO 241 (UWO 241) is a psychrophilic green alga isolated from Antarctica. A unique characteristic of this algal strain is its inability to undergo state transitions coupled with the absence of photosystem II (PSII) light-harvesting complex protein phosphorylation. We show that UWO 241 preferentially phosphorylates specific polypeptides associated with an approximately 1,000-kD pigment-protein supercomplex that contains components of both photosystem I (PSI) and the cytochrome b₆/f (Cyt b₆/f) complex. Liquid chromatography nano-tandem mass spectrometry was used to identify three major phosphorylated proteins associated with this PSI-Cyt b₆/f supercomplex, two 17-kD PSII subunit P-like proteins and a 70-kD ATP-dependent zinc metalloprotease, FtsH. The PSII subunit P-like protein sequence exhibited 70.6% similarity to the authentic PSII subunit P protein associated with the oxygen-evolving complex of PSII in Chlamydomonas reinhardtii. Tyrosine-146 was identified as a unique phosphorylation site on the UWO 241 PSII subunit P-like polypeptide. Assessment of PSI cyclic electron transport by in vivo P700 photooxidation and the dark relaxation kinetics of P700(+) indicated that UWO 241 exhibited PSI cyclic electron transport rates that were 3 times faster and more sensitive to antimycin A than the mesophile control, Chlamydomonas raudensis SAG 49.72. The stability of the PSI-Cyt b₆/f supercomplex was dependent upon the phosphorylation status of the PsbP-like protein and the zinc metalloprotease FtsH as well as the presence of high salt. We suggest that adaptation of UWO 241 to its unique low-temperature and high-salt environment favors the phosphorylation of a PSI-Cyt b₆/f supercomplex to regulate PSI cyclic electron transport rather than the regulation of state transitions through the phosphorylation of PSII light-harvesting complex proteins.

  4. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas.

    PubMed

    Kinoshita, Ayumi; Niwa, Yoshimi; Onai, Kiyoshi; Yamano, Takashi; Fukuzawa, Hideya; Ishiura, Masahiro; Matsuo, Takuya

    2017-03-01

    The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas.

  5. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism.

    PubMed

    Nguyen, Hoa M; Baudet, Mathieu; Cuiné, Stéphan; Adriano, Jean-Marc; Barthe, Damien; Billon, Emmanuelle; Bruley, Christophe; Beisson, Fred; Peltier, Gilles; Ferro, Myriam; Li-Beisson, Yonghua

    2011-11-01

    Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥ 2 peptides) identified by LC-MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl-lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol-3-phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.

  6. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas

    PubMed Central

    Kinoshita, Ayumi; Niwa, Yoshimi; Onai, Kiyoshi; Fukuzawa, Hideya; Ishiura, Masahiro

    2017-01-01

    The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas. PMID:28333924

  7. The small domain of cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 modulates the apparent molecular mass and decreases the accumulation of cytochrome f in the mesophile Chlamydomonas reinhardtii.

    PubMed

    Gudynaite-Savitch, Loreta; Loiselay, Christelle; Savitch, Leonid V; Simmonds, John; Kohalmi, Susanne E; Choquet, Yves; Hüner, Norman P A

    2007-10-01

    Cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 has a lower thermostability of its c-type heme and an apparent molecular mass that is 7 kDa lower than that of the model mesophilic green alga Chlamydomonas reinhardtii. We combined chloroplast transformation, site-directed mutagensis, and the creation of chimeric fusion constructs to assess the contribution of specific domains and (or) amino acids residues to the structure, stability, and accumulation of cytochrome f, as well as its function in photosynthetic intersystem electron transport. We demonstrate that differences in the amino acid sequence of the small domain and specific charged amino acids in the large domain of cytochrome f alter the physical properties of this protein but do not affect either the thermostability of the c-type heme, the apparent half-life of cytochrome f in the presence of the chloroplastic protein synthesis inhibitor chloramphenicol, or the capacity for photosynthetic intersystem electron transport, measured as e-/P700. However, pulse-labeling with [14C]acetate, combined with immunoblotting, indicated that the negative autoregulation of cytochrome f accumulation observed in mesophilic C. reinhardtii transformed with chimeric constructs from the psychrophile was likely the result of the defective association of the chimeric forms of cytochrome f with the other subunits of the cytochrome b6/f complex native to the C. reinhardtii wild type. These results are discussed in terms of the unique fatty acid composition of the thylakoid membranes of C. raudensis UWO 241 adapted to cold environments.

  8. Enhanced genetic tools for engineering multigene traits into green algae.

    PubMed

    Rasala, Beth A; Chao, Syh-Shiuan; Pier, Matthew; Barrera, Daniel J; Mayfield, Stephen P

    2014-01-01

    Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes within a single cell. Here we validate a set of genetic tools that enable protein targeting to distinct subcellular locations, and present two complementary methods for multigene engineering in the eukaryotic green microalga Chlamydomonas reinhardtii. The tools described here will enable advanced metabolic and genetic engineering to promote microalgae biotechnology and product commercialization.

  9. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae.

    PubMed

    Nakazawa, A; Nishii, I

    2012-01-01

    A number of volvocalean green algae species were subjected to a two-step cryopreservation protocol with various cryoprotectants. Potential cryoprotectants were methanol (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N-methylformamide, and hydroxyacetone (HA). We confirmed prior reports that MeOH was effective for cryopreserving Chlamydomonas, but did not work well for larger volvocaleans such as Volvox. In contrast, DMF and HA were effective for both unicellular and multicellular representatives. When we used a cold-inducible transposon to probe Southern blots of Volvox DNA samples taken before and after storage for one month in LN, we could detect no differences, indicating that the genome had remained relatively stable and that the transposon had not been induced by the cryopreservation procedure. We believe these methods will facilitate long-term storage of several volvocine algal species, including Volvox strains harboring transposon-induced mutations of developmental interest.

  10. Multiple stressor effects of predation by rotifers and herbicide pollution on different Chlamydomonas strains and potential impacts on population dynamics.

    PubMed

    Fischer, Beat B; Roffler, Severin; Eggen, Rik I L

    2012-12-01

    Environmental factors can interact with the effects of chemical pollutants on natural systems by inducing multiple stressor effects in individual organisms as well as by altering selection pressure on tolerant strains in heterogeneous populations. Predation is a stressful environmental factor relevant for many species. Therefore, the impact of predation by the rotifer Brachionus calyciflorus on tolerance of eight genetically different strains of the green alga Chlamydomonas reinhardtii to simultaneous exposure to each of the three herbicides (diuron, paraquat, and S-metolachlor) was tested. Interactions of combined stressors were analyzed based on the independent action model; additive, synergistic, and antagonistic effects of the combined exposure could be detected depending on the herbicide and strain tested. If cultures were acclimated (pre-exposed) to one stressor, tolerance to the second stressor could be increased. This indicates that physiological changes can induce cotolerance of predation-exposed algae to herbicides and of herbicide-treated algae to predation depending on the combination of stressors. The strain-specific differences in multiple stressor effects also changed the correlation of strains' tolerances to individual stressors determined during combined and single-stressor exposure. Changes in cotolerance to stressors affect selection pressure and population dynamics during long-term exposure. This shows that predation stress can have adverse effects on the toxicity of chemical pollutants to microalgae on the organism and population levels.

  11. Control of Autophagy in Chlamydomonas Is Mediated through Redox-Dependent Inactivation of the ATG4 Protease.

    PubMed

    Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2016-12-01

    Autophagy is a major catabolic pathway by which eukaryotic cells deliver unnecessary or damaged cytoplasmic material to the vacuole for its degradation and recycling in order to maintain cellular homeostasis. Control of autophagy has been associated with the production of reactive oxygen species in several organisms, including plants and algae, but the precise regulatory molecular mechanisms remain unclear. Here, we show that the ATG4 protease, an essential protein for autophagosome biogenesis, plays a central role for the redox regulation of autophagy in the model green alga Chlamydomonas reinhardtii Our results indicate that the activity of C. reinhardtii ATG4 is regulated by the formation of a single disulfide bond with a low redox potential that can be efficiently reduced by the NADPH/thioredoxin system. Moreover, we found that treatment of C. reinhardtii cells with norflurazon, an inhibitor of carotenoid biosynthesis that generates reactive oxygen species and triggers autophagy in this alga, promotes the oxidation and aggregation of ATG4. We propose that the activity of the ATG4 protease is finely regulated by the intracellular redox state, and it is inhibited under stress conditions to ensure lipidation of ATG8 and thus autophagy progression in C. reinhardtii.

  12. Three Acyltransferases and Nitrogen-responsive Regulator Are Implicated in Nitrogen Starvation-induced Triacylglycerol Accumulation in Chlamydomonas*

    PubMed Central

    Boyle, Nanette R.; Page, Mark Dudley; Liu, Bensheng; Blaby, Ian K.; Casero, David; Kropat, Janette; Cokus, Shawn J.; Hong-Hermesdorf, Anne; Shaw, Johnathan; Karpowicz, Steven J.; Gallaher, Sean D.; Johnson, Shannon; Benning, Christoph; Pellegrini, Matteo; Grossman, Arthur; Merchant, Sabeeha S.

    2012-01-01

    Algae have recently gained attention as a potential source for biodiesel; however, much is still unknown about the biological triggers that cause the production of triacylglycerols. We used RNA-Seq as a tool for discovering genes responsible for triacylglycerol (TAG) production in Chlamydomonas and for the regulatory components that activate the pathway. Three genes encoding acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. DGAT1 and DGTT1 also show increased mRNA abundance in other TAG-accumulating conditions (minus sulfur, minus phosphorus, minus zinc, and minus iron). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared with the parent strain, CC-4425, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analyses suggest than a SQUAMOSA promoter-binding protein domain transcription factor, whose mRNA increases precede that of lipid biosynthesis genes like DGAT1, is a candidate regulator of the nitrogen deficiency responses. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared with the parental strain in nitrogen-starvation conditions and is unaffected by other nutrient stresses, suggesting the specificity of this regulator for nitrogen-deprivation conditions. PMID:22403401

  13. Efficient Heterologous Transformation of Chlamydomonas reinhardtii npq2 Mutant with the Zeaxanthin Epoxidase Gene Isolated and Characterized from Chlorella zofingiensis

    PubMed Central

    Couso, Inmaculada; Cordero, Baldo F.; Vargas, María Ángeles; Rodríguez, Herminia

    2012-01-01

    In the violaxanthin cycle, the violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the inter-conversion between violaxanthin and zeaxanthin in both plants and green algae. The zeaxanthin epoxidase gene from the green microalga Chlorella zofingiensis (Czzep) has been isolated. This gene encodes a polypeptide of 596 amino acids. A single copy of Czzep has been found in the C. zofingiensis genome by Southern blot analysis. qPCR analysis has shown that transcript levels of Czzep were increased after zeaxanthin formation under high light conditions. The functionality of Czzep gene by heterologous genetic complementation in the Chlamydomonas mutant npq2, which lacks zeaxanthin epoxidase (ZEP) activity and accumulates zeaxanthin in all conditions, was analyzed. The Czzep gene was adequately inserted in the pSI105 vector and expressed in npq2. The positive transformants were able to efficiently convert zeaxanthin into violaxanthin, as well as to restore their maximum quantum efficiency of the PSII (Fv/Fm). These results show that Chlamydomonas can be an efficient tool for heterologous expression and metabolic engineering for biotechnological applications. PMID:23118714

  14. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Gang, Spencer S.; Blum, Sean R.; Ivanova, Nina; Yue, Rebecca; Grossman, Arthur R.

    2016-01-01

    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids. PMID:26764374

  15. Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii.

    PubMed

    Bravo, Andrea Garcia; Le Faucheur, Séverine; Monperrus, Mathilde; Amouroux, David; Slaveykova, Vera I

    2014-09-01

    The present study demonstrates that species-specific isotope tracing is an useful tool to precisely measure Hg accumulation and transformations capabilities of living organisms at concentrations naturally encountered in the environment. To that end, a phytoplanktonic green alga Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) was exposed to mixtures of (199)-isotopically enriched inorganic mercury ((199)IHg) and of (201)-isotopically enriched monomethylmercury ((201)CH3Hg) at a concentration range between less than 1 pM to 4 nM. Additionally, one exposure concentration of both mercury species was also studied separately to evaluate possible interactive effects. No difference in the intracellular contents was observed for algae exposed to (199)IHg and (201)CH3Hg alone or in their mixture, suggesting similar accumulation capacity for both species at the studied concentrations. Demethylation of (201)CH3Hg was observed at the highest exposure concentrations, whereas no methylation was detected.

  16. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  17. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers-Possibilities for Detecting Carotenoids of Psychrophiles on Mars?

    PubMed

    Jehlička, Jan; Culka, Adam; Nedbalová, Linda

    2016-12-01

    We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars. Key Words: Snow algae-Chloromonas nivalis-Chlamydomonas nivalis-On-site field detection-Raman spectroscopy-Astaxanthin. Astrobiology 16, 913-924.

  18. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division.

    PubMed

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley Jsc; Umen, James G

    2016-03-25

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a 'counting' mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control.

  19. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading.

    PubMed

    Pan, Junmin; Snell, William J

    2005-09-01

    Almost all eukaryotic cells form cilia/flagella, maintain them at their genetically specified lengths, and shorten them. Here, we define the cellular mechanisms that bring about shortening of flagella prior to meiotic cell division and in response to environmental cues in the biflagellated green alga Chlamydomonas. We show that the flagellar shortening pathway is distinct from the one that enforces transient shortening essential for length control. During flagellar shortening, disassembly of the axoneme is stimulated over the basal rate, and the rate of entry into flagella of intraflagellar transport (IFT) particles is increased. Moreover, the particles entering the disassembling flagella lack cargo. Thus, flagellar shortening depends on the interplay between dynamic properties of the axoneme and the IFT machinery; a cell triggered to shorten its flagellum activates disassembly of the axoneme and stimulates entry into the flagellum of IFT particles possessing empty cargo binding sites available to retrieve the disassembled components.

  20. A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii.

    PubMed Central

    Ferris, P J; Woessner, J P; Goodenough, U W

    1996-01-01

    Sexual fusion between plus and minus gametes of the unicellular green alga Chlamydomonas reinhardtii entails adhesion between plus-specific and minus-specific "fringe" proteins displayed on the plasma membrane of gametic mating structures. We report the identification of the gene (fus1) encoding the plus fringe glycoprotein, which resides in a unique domain of the mating-type plus (mt+) locus, and which was identified by transposon insertions in three fusion-defective mutant strains. Transformation with fus1+ restores fringe and fusion competence to these mutants and to the pseudo-plus mutant imp11 mt-, defective in minus differentiation. The fus1 gene is remarkable in lacking the codon bias found in all other nuclear genes of C. reinhardtii. Images PMID:8856667

  1. Study of the effect of reducing conditions on the initial chlorophyll fluorescence rise in the green microalgae Chlamydomonas reinhardtii.

    PubMed

    Antal, T K; Kolacheva, A; Maslakov, A; Riznichenko, G Yu; Krendeleva, T E; Rubin, A B

    2013-03-01

    Incubation of Chlamydomonas reinhardtii cells under nutrient deficiency results in the faster initial rise in the light-induced chlorophyll fluorescence kinetic curve. We showed that short-term anaerobic incubation of algal cells altered initial fluorescence in a way similar to nutrient starvation, suggesting an important role of the plastoquinones redox state in the observed effect. Bi-component analysis of highly resolved initial fluorescence rise kinetics in sulfur- or oxygen-depleted C. reinhardtii cells suggested that one of the mechanisms underlying the observed phenomenon involves primary closure (photochemical inactivation via Qa reduction) of β-type PSII as compared to α-PSII. Moreover, results of modeling of the fluorescence curve brought us to the conclusion that accumulation of closed centers in α-PSII supercomplexes may also cause a faster initial fluorescence rise. The observed correlations between nutrient supply rate and initial fluorescence rise pattern in green algae can serve to characterize culture nutritional status in vivo.

  2. Repression of Essential Chloroplast Genes Reveals New Signaling Pathways and Regulatory Feedback Loops in Chlamydomonas[W

    PubMed Central

    Ramundo, Silvia; Rahire, Michèle; Schaad, Olivier; Rochaix, Jean-David

    2013-01-01

    Although reverse genetics has been used to elucidate the function of numerous chloroplast proteins, the characterization of essential plastid genes and their role in chloroplast biogenesis and cell survival has not yet been achieved. Therefore, we developed a robust repressible chloroplast gene expression system in the unicellular alga Chlamydomonas reinhardtii based mainly on a vitamin-repressible riboswitch, and we used this system to study the role of two essential chloroplast genes: ribosomal protein S12 (rps12), encoding a plastid ribosomal protein, and rpoA, encoding the α-subunit of chloroplast bacterial-like RNA polymerase. Repression of either of these two genes leads to the arrest of cell growth, and it induces a response that involves changes in expression of nuclear genes implicated in chloroplast biogenesis, protein turnover, and stress. This response also leads to the overaccumulation of several plastid transcripts and reveals the existence of multiple negative regulatory feedback loops in the chloroplast gene circuitry. PMID:23292734

  3. Retinal Chromophore Structure and Schiff Base Interactions in Red-Shifted Channelrhodopsin-1 from Chlamydomonas augustae

    PubMed Central

    2015-01-01

    Channelrhodopsins (ChRs), which form a distinct branch of the microbial rhodopsin family, control phototaxis in green algae. Because ChRs can be expressed and function in neuronal membranes as light-gated cation channels, they have rapidly become an important optogenetic tool in neurobiology. While channelrhodopsin-2 from the unicellular alga Chlamydomonas reinhardtii (CrChR2) is the most commonly used and extensively studied optogenetic ChR, little is known about the properties of the diverse group of other ChRs. In this study, near-infrared confocal resonance Raman spectroscopy along with hydrogen–deuterium exchange and site-directed mutagenesis were used to study the structure of red-shifted ChR1 from Chlamydomonas augustae (CaChR1). These measurements reveal that (i) CaChR1 has an all-trans-retinal structure similar to those of the light-driven proton pump bacteriorhodopsin (BR) and sensory rhodopsin II but different from that of the mixed retinal composition of CrChR2, (ii) lowering the pH from 7 to 2 or substituting neutral residues for Glu169 or Asp299 does not significantly shift the ethylenic stretch frequency more than 1–2 cm–1 in contrast to BR in which a downshift of 7–9 cm–1 occurs reflecting neutralization of the Asp85 counterion, and (iii) the CaChR1 protonated Schiff base (SB) has stronger hydrogen bonding than BR. A model is proposed to explain these results whereby at pH 7 the predominant counterion to the SB is Asp299 (the homologue to Asp212 in BR) while Glu169 (the homologue to Asp85 in BR) exists in a neutral state. We observe an unusual constancy of the resonance Raman spectra over the broad range from pH 9 to 2 and discuss its implications. These results are in accord with recent visible absorption and current measurements of CaChR1 [Sineshchekov, O. A., et al. (2013) Intramolecular proton transfer in channelrhodopsins. Biophys. J. 104, 807–817; Li, H., et al. (2014) Role of a helix B lysine residue in the photoactive site in

  4. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants.

    PubMed

    Terashima, Mia; Freeman, Elizabeth S; Jinkerson, Robert E; Jonikas, Martin C

    2015-01-01

    There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes.

  5. Patching Holes in the Chlamydomonas Genome

    PubMed Central

    Tulin, Frej; Cross, Frederick R.

    2016-01-01

    The Chlamydomonas genome has been sequenced, assembled, and annotated to produce a rich resource for genetics and molecular biology in this well-studied model organism. However, the current reference genome contains ∼1000 blocks of unknown sequence (‘N-islands’), which are frequently placed in introns of annotated gene models. We developed a strategy to search for previously unknown exons hidden within such blocks, and determine the sequence, and exon/intron boundaries, of such exons. These methods are based on assembly and alignment of short cDNA and genomic DNA reads, completely independent of prior reference assembly or annotation. Our evidence indicates that a substantial proportion of the annotated intronic N-islands contain hidden exons. For most of these, our algorithm recovers full exonic sequence with associated splice junctions and exon-adjacent intronic sequence. These new exons represent de novo sequence generally present nowhere in the assembled genome, and the added sequence improves evolutionary conservation of the predicted encoded peptides. PMID:27175017

  6. Recording and analyzing IFT in Chlamydomonas flagella.

    PubMed

    Dentler, William; Vanderwaal, Kristyn; Porter, Mary E

    2009-01-01

    The transport of materials to and from the cell body and tips of eukaryotic flagella and cilia is carried out by a process called intraflagellar transport, or IFT. This process is essential for the assembly and maintenance of cilia and flagella: in the absence of IFT, cilia cannot assemble and, if IFT is arrested in ciliated cells, the cilia disassemble. The major IFT complex proteins and the major motor proteins, kinesin-2 and osm-3 (which transport particles from the cell body to ciliary tips) and cytoplasmic dynein 1b (which transports particles from ciliary tips to the cell body) have been identified. However, we have little understanding of the structure of the IFT particles, the cargo that these particles carry, how cargo is loaded and unloaded from the particles, or how the motor proteins are regulated. The focus of this chapter is to provide methods to observe and quantify the movements of IFT particles in Chlamydomonas flagella. IFT movements can be visualized in paralyzed or partially arrested flagella using either differential interference contrast (IFT) microscopy or, in cells with fluorescently tagged IFT components, with fluorescence microscopy. Methods for recording IFT movements and analyzing movements using kymograms are described.

  7. Studies on flagellar shortening in Chlamydomonas reinhardtii

    SciTech Connect

    Cherniack, J.

    1985-01-01

    Flagellar shortening of Chlamydomonas reinhardtii was promoted by sodium chloride, pyrophosphate (sodium, potassium and ammonium salts), EDTA and EGTA, succinate, citrate and oxalate (sodium salts), caffeine and aminophylline. Removal of calcium from the medium potentiated the effects of these agents in inducing shortening. Investigations of the release of phosphorylated compounds to the medium during pyrophosphate-induced flagellar shortening of cells pre-labelled with /sup 32/P, revealed an as yet unidentified /sup 32/P-labelled compound with distinct chromatographic properties. Chromatography and electrophoresis indicates that it is a small, highly polar molecule with a high charge to mass ratio, containing thermo- and acid-labile phosphate linkages. Investigations showed of the release of /sup 35/S-labelled protein to the medium from cells pre-labelled with /sup 35/S-sulfate showed that flagellated cells released two prominent polypeptides which comigrated with ..cap alpha..- and ..beta..-flagellar tubulin on SDS polyacrylamide gel electrophoresis, while deflagellated cells did not.

  8. Drosophila roadblock and Chlamydomonas Lc7

    PubMed Central

    Bowman, Aaron B.; Patel-King, Ramila S.; Benashski, Sharon E.; McCaffery, J. Michael; Goldstein, Lawrence S.B.; King, Stephen M.

    1999-01-01

    Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits diverse defects in intracellular transport including axonal transport and mitosis. These defects include intra-axonal accumulations of cargoes, severe axonal degeneration, and aberrant chromosome segregation. The gene identified by robl encodes a 97–amino acid polypeptide that is 57% identical (70% similar) to the 105–amino acid Chlamydomonas outer arm dynein–associated protein LC7, also reported here. Both robl and LC7 have homology to several other genes from fruit fly, nematode, and mammals, but not Saccharomyces cerevisiae. Furthermore, we demonstrate that members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. We propose that roadblock/LC7 family members may modulate specific dynein functions. PMID:10402468

  9. Radial spoke proteins of Chlamydomonas flagella

    PubMed Central

    Yang, Pinfen; Diener, Dennis R.; Yang, Chun; Kohno, Takahiro; Pazour, Gregory J.; Dienes, Jennifer M.; Agrin, Nathan S.; King, Stephen M.; Sale, Winfield S.; Kamiya, Ritsu; Rosenbaum, Joel L.; Witman, George B.

    2007-01-01

    Summary The radial spoke is a ubiquitous component of ‘9+2’ cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes. PMID:16507594

  10. Genetic tools and techniques for Chlamydomonas reinhardtii.

    PubMed

    Mussgnug, Jan H

    2015-07-01

    The development of tools has always been a major driving force for the advancement of science. Optical microscopes were the first instruments that allowed discovery and descriptive studies of the subcellular features of microorganisms. Although optical and electron microscopes remained at the forefront of microbiological research tools since their inventions, the advent of molecular genetics brought about questions which had to be addressed with new "genetic tools". The unicellular green microalgal genus Chlamydomonas, especially the most prominent species C. reinhardtii, has become a frequently used model organism for many diverse fields of research and molecular genetic analyses of C. reinhardtii, as well as the available genetic tools and techniques, have become increasingly sophisticated throughout the last decades. The aim of this review is to provide an overview of the molecular key features of C. reinhardtii and summarize the progress related to the development of tools and techniques for genetic engineering of this organism, from pioneering DNA transformation experiments to state-of-the-art techniques for targeted nuclear genome editing and high-throughput screening approaches.

  11. Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii

    PubMed Central

    Yamano, Takashi; Sato, Emi; Iguchi, Hiro; Fukuda, Yuri; Fukuzawa, Hideya

    2015-01-01

    The supply of inorganic carbon (Ci; CO2 and HCO3–) is an environmental rate-limiting factor in aquatic photosynthetic organisms. To overcome the difficulty in acquiring Ci in limiting-CO2 conditions, an active Ci uptake system called the CO2-concentrating mechanism (CCM) is induced to increase CO2 concentrations in the chloroplast stroma. An ATP-binding cassette transporter, HLA3, and a formate/nitrite transporter homolog, LCIA, are reported to be associated with HCO3– uptake [Wang and Spalding (2014) Plant Physiol 166(4):2040–2050]. However, direct evidence of the route of HCO3– uptake from the outside of cells to the chloroplast stroma remains elusive owing to a lack of information on HLA3 localization and comparative analyses of the contribution of HLA3 and LCIA to the CCM. In this study, we revealed that HLA3 and LCIA are localized to the plasma membrane and chloroplast envelope, respectively. Insertion mutants of HLA3 and/or LCIA showed decreased Ci affinities/accumulation, especially in alkaline conditions where HCO3– is the predominant form of Ci. HLA3 and LCIA formed protein complexes independently, and the absence of LCIA decreased HLA3 mRNA accumulation, suggesting the presence of unidentified retrograde signals from the chloroplast to the nucleus to maintain HLA3 mRNA expression. Furthermore, although single overexpression of HLA3 or LCIA in high CO2 conditions did not affect Ci affinity, simultaneous overexpression of HLA3 with LCIA significantly increased Ci affinity/accumulation. These results highlight the HLA3/LCIA-driven cooperative uptake of HCO3– and a key role of LCIA in the maintenance of HLA3 stability as well as Ci affinity/accumulation in the CCM. PMID:26015566

  12. Swapped green algal promoters: aphVIII-based gene constructs with Chlamydomonas flanking sequences work as dominant selectable markers in Volvox and vice versa.

    PubMed

    Hallmann, A; Wodniok, S

    2006-06-01

    Production of transgenic organisms is a well-established, versatile course of action in molecular biology. Genetic engineering often requires heterologous, dominant antibiotic resistance genes that have been used as selectable markers in many species. However, as heterologous 5' and 3' flanking sequences often result in very low expression rates, endogenous flanking sequences, especially promoters, are mostly required and are easily obtained in model organisms, but it is much more complicated and time-consuming to get appropriate sequences from less common organisms. In this paper, we show that aminoglycoside 3'-phosphotransferase gene (aphVIII) based constructs with 3' and 5' untranslated flanking sequences (including promoters) from the multicellular green alga Volvox work in the unicellular green alga Chlamydomonas and flanking sequences from Chlamydomonas work in Volvox, at least if a low expression rate is compensated by an enforced high gene dosage. This strategy might be useful for all investigators that intend to transform species in which genomic sequences are not available, but sequences from related organisms exist.

  13. The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching.

    PubMed

    Bonente, Giulia; Passarini, Francesca; Cazzaniga, Stefano; Mancone, Carmine; Buia, Maria Cristina; Tripodi, Marco; Bassi, Roberto; Caffarri, Stefano

    2008-01-01

    To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function.

  14. Filling Knowledge Gaps in Biological Networks: integrating global approaches to understand H2 metabolism in Chlamydomonas reinhardtii - Final Report

    SciTech Connect

    Posewitz, Matthew C

    2011-06-30

    The green alga Chlamydomonas reinhardtii (Chlamydomonas) has numerous genes encoding enzymes that function in fermentative pathways. Among these genes, are the [FeFe]-hydrogenases, pyruvate formate lyase, pyruvate ferredoxin oxidoreductase, acetate kinase, and phosphotransacetylase. We have systematically undertaken a series of targeted mutagenesis approaches to disrupt each of these key genes and omics techniques to characterize alterations in metabolic flux. Funds from DE-FG02-07ER64423 were specifically leveraged to generate mutants with disruptions in the genes encoding the [FeFe]-hydrogenases HYDA1 and HYDA2, pyruvate formate lyase (PFL1), and in bifunctional alcohol/aldehyde alcohol dehydrogenase (ADH1). Additionally funds were used to conduct global transcript profiling experiments of wildtype Chlamydomonas cells, as well as of the hydEF-1 mutant, which is unable to make H2 due to a lesion in the [FeFe]-hydrogenase biosynthetic pathway. In the wildtype cells, formate, acetate and ethanol are the dominant fermentation products with traces of CO2 and H2 also being produced. In the hydEF-1 mutant, succinate production is increased to offset the loss of protons as a terminal electron acceptor. In the pfl-1 mutant, lactate offsets the loss of formate production, and in the adh1-1 mutant glycerol is made instead of ethanol. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars, and a decline in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant performs a complete rerouting of the glycolytic carbon to lactate and glycerol. Lastly, transcriptome data have been analysed for both the wildtype and hydEF-1, that correlate with our

  15. Comparative phylogeography between the ermine Mustela erminea and the least weasel M. nivalis of Palaearctic and Nearctic regions, based on analysis of mitochondrial DNA control region sequences.

    PubMed

    Kurose, Naoko; Abramov, Alexei V; Masuda, Ryuichi

    2005-10-01

    Phylogeography of the ermine Mustela erminea and the least weasel M. nivalis from Palaearctic and Nearctic regions were investigated based on mitochondrial DNA control region sequences. Mustela erminea exhibited a very low level of genetic variation, and geographic structures among populations were unclear. This may indicate that M. erminea recently reoccupied a wide territory in Eurasia following the last glacial retreat. In comparison with M. erminea, genetic variations within and among populations of M. nivalis were much greater. Molecular phylogenetic relationships showed that two lineages of M. nivalis occurred in the Holarctic region: one spread from the Eurasian region to North America, and the other occurred in south-eastern Europe, the Caucasus and Central Asia. The results suggest either mitochondrial DNA introgression among populations of south-eastern Europe, the Caucasus and Central Asia, or ancestral polymorphisms remaining in those populations. Contrastive phylogeographic patterns between the two mustelid species could reflect differences of their migration histories in Eurasia after the last glacial age.

  16. Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta

    PubMed Central

    Newton, Rosemary J.; Hay, Fiona R.; Ellis, Richard H.

    2013-01-01

    Background and Aims Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Methods Phenology, seed mass, moisture content and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and under several temperature regimes after shedding. Key Results Seeds were shed at high moisture content (>59 %) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20 °C in G. nivalis and 15 °C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48 %, respectively, after 700 d. Conclusions Seeds of G. nivalis and N. pseudonarcissus were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal. PMID:23478943

  17. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    NASA Astrophysics Data System (ADS)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  18. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii.

    PubMed

    Wang, Ning-Xin; Huang, Bin; Xu, Shen; Wei, Zhong-Bo; Miao, Ai-Jun; Ji, Rong; Yang, Liu-Yan

    2014-12-01

    We studied arsenite (iAs(III)) accumulation, oxidation, and toxicity in the freshwater green alga Chlamydomonas reinhardtii under nutrient-enriched (+NP), phosphorus-limited (-P), and nitrogen-limited (-N) conditions. The -P alga (55.1 μM) had a Michaelis constant (Kd) for uptake approximately one tenth of the +NP (419 μM) and -N (501 μM) cells, indicating iAs(III) uptake inhibition by extracellular phosphate. This conclusion was supported by the hyperbolic reduction in iAs(III) uptake rate (V) from 9.2 to 0.8 μmol/g-dw/h when the extracellular phosphate concentration went up from 0 to 250 μM. The maximal iAs(III) uptake rate (Vmax) of the -N alga (24.3 μmol/g-dw/h) was twice as much as that of the +NP (12 μmol/g-dw/h) and -P (8.1 μmol/g-dw/h) cells. It implies that more arsenic transporters were synthesized under the -N condition. Once accumulated, iAs(III) was oxidized and a higher proportion of arsenate (iAs(V)) was observed at lower [As]dis or under nutrient-limited conditions. Nevertheless, iAs(III) oxidation mainly occurred outside the cells with the extent of oxidation reciprocal to [As]dis. Based on the logistic modeling of the concentration-response curves in the +NP, -P, and -N toxicity tests, iAs(III) had an [As]dis-based EC50 of 1763, 13.1, and 1208 μM and an intracellular arsenic concentration based EC50 of 35.6, 28.8, and 195 μmol/g-dw, respectively. Higher iAs(III) toxicity to the -P cells occured because of their increased iAs(III) accumulation, whereas the underlying mechanisms why the -N alga was more tolerant need to be further revealed. Overall, both N and P had remarkable effects on the behavior and effects of iAs(III), which cannot be disregarded in the biogeochemical cycling research of arsenic.

  19. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri.

    PubMed

    Prochnik, Simon E; Umen, James; Nedelcu, Aurora M; Hallmann, Armin; Miller, Stephen M; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V; Schmitt, Rüdiger; Kirk, David; Rokhsar, Daniel S

    2010-07-09

    The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its approximately 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  20. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains.

    PubMed

    Lee, Soojin; Oh, Younghoon; Kim, Donghyun; Kwon, Doyeon; Lee, Choulgyun; Lee, Jinwon

    2011-07-01

    Marine algae, which make up about 80% of the world's living organisms, contain many energy sources, such as sugars and lipids. Therefore, the possibility of utilizing structural carbohydrates from marine algae for bioethanol production has been studied. In order to obtain monosaccharides, Undaria pinnatifida, Chlorella vulgaris, and Chlamydomonas reinhardtii were used for the saccharification experiments. The pretreatment was carried out by dilute acid hydrolysis and enzymatic treatment. To find the optimal conditions, experiments were performed at several temperatures, acid concentrations, pH conditions and durations. To test bioethanol production, several ethanolic E. coli W3110 strains, which were developed previously, were used. The maximum yield of bioethanol, 0.4 g ethanol/g biomass, was achieved with pretreated C. vulgaris and E. coli SJL2526, derived from wild-type E. coli W3110 and which includes the adhB, pdc, galP, and glk genes.

  1. L,L-Diaminopimelate Aminotransferase from Chlamydomonas reinhardtii: A Target for Algaecide Development

    PubMed Central

    Dobson, Renwick C. J.; Girón, Irma; Hudson, André O.

    2011-01-01

    In some bacterial species and photosynthetic cohorts, including algae, the enzyme l,l-diaminopimelate aminotransferase (DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA) to l,l-diaminopimelate (l,l-DAP), in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL). The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and l,l-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid l-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides. PMID:21633707

  2. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    PubMed

    Dobson, Renwick C J; Girón, Irma; Hudson, André O

    2011-01-01

    In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA) to L,L-diaminopimelate (L,L-DAP), in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL). The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  3. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.

    PubMed

    Hemschemeier, Anja; Fouchard, Swanny; Cournac, Laurent; Peltier, Gilles; Happe, Thomas

    2008-01-01

    The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H2 producers. Two of the still most disputed questions regarding H2 generation by C. reinhardtii concern the electron source for H2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulosebisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H2-production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H2 also in the presence of sulfur, H2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype. The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H2 evolution.

  4. Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii

    SciTech Connect

    Kourosh Salehi-Ashtiani; Jason A. Papin

    2012-01-13

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and

  5. The Fox1 Ferroxidase of Chlamydomonas reinhardtii: A New Multicopper Oxidase Structural Paradigm

    PubMed Central

    Terzulli, Alaina J.; Kosman, Daniel J.

    2009-01-01

    Multicopper oxidases (MCO) contain at least four copper atoms arrayed in three distinct ligand fields supported by two canonical structural features: 1) multiples of the cupredoxin fold; and 2) four unique sequence elements that include the 10 histidine and one cysteine ligands to the four copper atoms. Ferroxidases are a sub-family of MCO proteins that contain residues supporting a specific reactivity towards ferrous iron; these MCOs play a vital role in iron metabolism in bacteria, algae, fungi and mammals. In contrast to the fungal ferroxidases, e.g. Fet3p from Saccharomyces cerevisiae, the mammalian ceruloplasmin (Cp) is twice as large (six versus three cupredoxin domains) and contains three type 1, or “blue” copper sites. Chlamydomonas reinhardtii expresses a putative ferroxidase, Fox1, which has sequence similarity to human Cp (hCp). Eschewing the standard sequence-based modeling paradigm, a function-based model of the Fox1 protein has been constructed which replicates hCp's six Cu-site ligand arrays with an overall root mean square deviation of 1.4 Å. Analysis of this model has led also to assignment of motifs in Fox1 that are unique to ferroxidases, the strongest evidence to date that the well-characterized fungal high-affinity iron uptake system is essential to iron homeostasis in green algae. The model of Fox1 also establishes a sub-family of MCO proteins with a non-canonical Cu-ligand organization. These diverse structures suggest alternate mechanisms for intramolecular electron transfer and require a new trajectory for the evolution of the MCO superfamily. PMID:19023602

  6. MicroRNAs modulate adaption to multiple abiotic stresses in Chlamydomonas reinhardtii

    PubMed Central

    Gao, Xiang; Zhang, Fengge; Hu, Jinlu; Cai, Wenkai; Shan, Ge; Dai, Dongsheng; Huang, Kaiyao; Wang, Gaohong

    2016-01-01

    MicroRNAs play an important role in abiotic stress responses in higher plants and animals, but their role in stress adaptation in algae remains unknown. In this study, the expression of identified and putative miRNAs in Chlamydomonas reinhardtii was assessed using quantitative polymerase chain reaction; some of the miRNAs (Cre-miR906-3p) were up-regulated, whereas others (Cre-miR910) were down-regulated when the species was subjected to multiple abiotic stresses. With degradome sequencing data, we also identified ATP4 (the d-subunit of ATP synthase) and NCR2 (NADPH: cytochrome P450 reductase) as one of the several targets of Cre-miR906-3p and Cre-miR910, respectively. Q-PCR data indicated that ATP4, which was expressed inversely in relation to Cre-miR906-3p under stress conditions. Overexpressing of Cre-miR906-3p enhanced resistance to multiple stresses; conversely, overexpressing of ATP4 produced the opposite effect. These data of Q-PCR, degradome sequencing and adaptation of overexpressing lines indicated that Cre-miR906-3p and its target ATP4 were a part of the same pathway for stress adaptation. We found that Cre-miR910 and its target NCR2 were also a part of this pathway. Overexpressing of Cre-miR910 decreased, whereas that of NCR2 increased the adaption to multiple stresses. Our findings suggest that the two classes of miRNAs synergistically mediate stress adaptation in algae. PMID:27910907

  7. Independent Control of the Static and Dynamic Components of the Chlamydomonas Flagellar Beat.

    PubMed

    Geyer, Veikko F; Sartori, Pablo; Friedrich, Benjamin M; Jülicher, Frank; Howard, Jonathon

    2016-04-25

    When the green alga Chlamydomonas reinhardtii swims, it uses the breaststroke beat of its two flagella to pull itself forward [1]. The flagellar waveform can be decomposed into a static component, corresponding to an asymmetric time-averaged shape, and a dynamic component, corresponding to the time-varying wave [2]. Extreme lightening conditions photoshock the cell, converting the breaststroke beat into a symmetric sperm-like beat, which causes a reversal of the direction of swimming [3]. Waveform conversion is achieved by a reduction in magnitude of the static component, whereas the dynamic component remains unchanged [2]. The coupling between static and dynamic components, however, is poorly understood, and it is not known whether the static component requires the dynamic component or whether it can exist independently. We used isolated and reactivated axonemes [4] to investigate the relation between the two beat components. We discovered that, when reactivated in the presence of low ATP concentrations, axonemes displayed the static beat component in absence of the dynamic component. Furthermore, we found that the amplitudes of the two components depend on ATP in qualitatively different ways. These results show that the decomposition into static and dynamic components is not just a mathematical concept but that the two components can independently control different aspects of cell motility: the static component controls swimming direction, whereas the dynamic component provides propulsion.

  8. An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii.

    PubMed

    Xu, Feifei; Wu, Xiaoan; Jiang, Lin-Hua; Zhao, Hucheng; Pan, Junmin

    2016-08-01

    Fresh water protozoa and algae face hypotonic challenges in their living environment. Many of them employ a contractile vacuole system to uptake excessive water from the cytoplasm and expel it to the environment to achieve cellular homeostasis. K(+), a major osmolyte in contractile vacuole, is predicted to create higher osmolarity for water influx. Molecular mechanisms for K(+) permeation through the plasma membrane have been well studied. However, how K(+) permeates organelles such as the contractile vacuole is not clear. Here, we show that the six-transmembrane K(+) channel KCN11 in Chlamydomonas is exclusively localized to contractile vacuole. Ectopic expression of KCN11 in HEK293T cells results in voltage-gated K(+) channel activity. Disruption of the gene or mutation of key residues for K(+) permeability of the channel leads to dysfunction of cell osmoregulation in very hypotonic conditions. The contractile cycle is inhibited in the mutant cells with a slower rate of contractile vacuole swelling, leading to cell death. These data demonstrate a new role for six-transmembrane K(+) channels in contractile vacuole functioning and provide further insights into osmoregulation mediated by the contractile vacuole.

  9. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    PubMed

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  10. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    PubMed Central

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  11. Temperature-Sensitive, Photosynthesis-Deficient Mutants of Chlamydomonas reinhardtii1

    PubMed Central

    Spreitzer, Robert J.; Al-Abed, Souhail R.; Huether, Michael J.

    1988-01-01

    Mutants of the unicellular, green alga Chlamydomonas reinhardtii were recovered by screening for the absence of photoautotrophic growth at 35°C. Whereas nonconditional mutants required acetate for growth at both 25 and 35°C, the conditional mutants have normal photoautotrophic growth at 25°C. The conditional mutants consisted of two classes: (a) Temperature-sensitive mutants died under all growth conditions at 35°C, but (b) temperature-sensitive, acetate-requiring mutants were capable of heterotrophic growth at 35°C when supplied with acetate in the dark. The majority of mutants within the latter of these two classes had defects in photosynthetic functions. These defects included altered pigmentation, reduced whole-chain electron-transport activity, reduced ribulosebis-phosphate carboxylase activity, or pleiotropic alterations in a number of these photosynthetic components. Both nuclear and chloroplast mutants were identified, and a correlation between light-sensitive and photosynthesis-deficient phenotypes was observed. PMID:16665986

  12. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation

    PubMed Central

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  13. A small multifunctional pentatricopeptide repeat protein in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Jalal, Abdullah; Schwarz, Christian; Schmitz-Linneweber, Christian; Vallon, Olivier; Nickelsen, Jörg; Bohne, Alexandra-Viola

    2015-03-01

    Organellar biogenesis is mainly regulated by nucleus-encoded factors, which act on various steps of gene expression including RNA editing, processing, splicing, stabilization, and translation initiation. Among these regulatory factors, pentatricopeptide repeat (PPR) proteins form the largest family of RNA binding proteins, with hundreds of members in flowering plants. In striking contrast, the genome of the unicellular green alga Chlamydomonas reinhardtii encodes only 14 such proteins. In this study, we analyzed PPR7, the smallest and most highly expressed PPR protein in C. reinhardtii. Green fluorescent protein-based localization and gel-filtration analysis revealed that PPR7 forms a part of a high-molecular-weight ribonucleoprotein complex in the chloroplast stroma. RIP-chip analysis of PPR7-bound RNAs demonstrated that the protein associates with a diverse set of chloroplast transcripts in vivo, i.e. rrnS, psbH, rpoC2, rbcL, atpA, cemA-atpH, tscA, and atpI-psaJ. Furthermore, the investigation of PPR7 RNAi strains revealed that depletion of PPR7 results in a light-sensitive phenotype, accompanied by altered levels of its target RNAs that are compatible with the defects in their maturation or stabilization. PPR7 is thus an unusual type of small multifunctional PPR protein, which interacts, probably in conjunction with other RNA binding proteins, with numerous target RNAs to promote a variety of post-transcriptional events.

  14. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii

    PubMed Central

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-01-01

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation. DOI: http://dx.doi.org/10.7554/eLife.02286.001 PMID:24859755

  15. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii.

    PubMed

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-05-23

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001.

  16. Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization

    PubMed Central

    Mittelmeier, Telsa M.; Boyd, Joseph S.; Lamb, Mary Rose

    2011-01-01

    The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells. PMID:21555459

  17. The Awesome Power of Dikaryons for Studying Flagella and Basal Bodies in Chlamydomonas reinhardtii

    PubMed Central

    Dutcher, Susan K.

    2014-01-01

    Cilia/flagella and basal bodies/centrioles play key roles in human health and homeostasis. Among the organisms used to study these microtubule-based organelles, the green alga Chlamydomonas reinhardtii has several advantages. One is the existence of a temporary phase of the life cycle, termed the dikaryon. These cells are formed during mating when the cells fuse and the behavior of flagella from two genetically distinguishable parents can be observed. During this stage, the cytoplasms mix allowing for a defect in the flagella of one parent to be rescued by proteins from the other parent. This offers the unique advantage of adding back wild-type gene product or labeled protein at endogenous levels that can used to monitor various flagellar and basal body phenotypes. Mutants that show rescue and ones that fail to show rescue are both informative about the nature of the flagella and basal body defects. When rescue occurs, it can be used to determine the mutant gene product and to follow the temporal and spatial patterns of flagellar assembly. This review describes many examples of insights into basal body and flagellar proteins’ function and assembly that have been discovered using dikaryons and discusses the potential for further analyses. PMID:24272949

  18. Dichromate effect on energy dissipation of photosystem II and photosystem I in Chlamydomonas reinhardtii.

    PubMed

    Perreault, François; Ait Ali, Nadia; Saison, Cyril; Popovic, Radovan; Juneau, Philippe

    2009-07-17

    In this study, we investigated the energy dissipation processes via photosystem II and photosystem I activity in green alga Chlamydomonas reinhardtii exposed to dichromate inhibitory effect. Quantum yield of photosystem II and also photosystem I were highly decreased by dichromate effect. Such inhibition by dichromate induced strong quenching effect on rapid OJIP fluorescence transients, indicating deterioration of photosystem II electron transport via plastoquinone pool toward photosystem I. The decrease of energy dissipation dependent on electron transport of photosystem II and photosystem I by dichromate effect was associated with strong increase of non-photochemical energy dissipation processes. By showing strong effect of dichromate on acceptor side of photosystem I, we indicated that dichromate inhibitory effect was not associated only with PSII electron transport. Here, we found that energy dissipation via photosystem I was limited by its electron acceptor side. By the analysis of P700 oxido-reduction state with methylviolagen as an exogenous PSI electron transport mediator, we showed that PSI electron transport discrepancy induced by dichromate effect was also caused by inhibitory effect located beyond photosystem I. Therefore, these results demonstrated that dichromate has different sites of inhibition which are associated with photosystem II, photosystem I and electron transport sink beyond photosystems.

  19. Adaptation of Chlamydomonas reinhardtii high-CO sub 2 -requiring mutants to limiting CO sub 2

    SciTech Connect

    Suzuki, K.; Spalding, M.H. )

    1989-07-01

    Photosynthetic characteristics of four high-CO{sub 2}-requiring mutants of Chlamydomonas reinhardtii were compared to those of wild type before and after a 24-hour exposure to limiting CO{sub 2} concentrations. The four mutants represent two loci involved in the CO{sub 2}-concentrating system of this unicellular alga. All mutants had a lower photosynthetic affinity for inorganic carbon than did the wild type when grown at an elevated CO{sub 2} concentration, indicating that the genetic lesion in each is expressed even at elevated CO{sub 2} concentrations. Wild type and all four mutants exhibited adaptive responses to limiting CO{sub 2} characteristic of the induction of the CO{sub 2}-concentrating system, resulting in an increased affinity for inorganic carbon only in wild type. Although other components of the CO{sub 2}-concentrating system were induced in these mutants, the defective component in each was sufficient to prevent any increase in the affinity for inorganic carbon. It was concluded that the genes corresponding to the ca-1 and pmp-1 loci exhibit at least partially constitutive expression and that all components of the CO{sub 2}-concentrating system may be required to significantly affect the photosynthetic affinity for inorganic carbon.

  20. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.

    PubMed

    Wei, Lanzhen; Yi, Jing; Wang, Lianjun; Huang, Tingting; Gao, Fudan; Wang, Quanxi; Ma, Weimin

    2017-01-07

    Chlamydomonas reinhardtii is a unicellular green alga that can use light energy to produce H2 from H2O in the background of NaHSO3 treatment. However, the role of light intensity in such H2 production remains elusive. Here, light intensity significantly affected the yield of H2 production in NaHSO3-treated C. reinhardtii, which was consistent with its effects on the content of O2 and the expression and activity of hydrogenase. Further, NaHSO3 was found to be able to remove O2 via a reaction of bisulfite with superoxide anion produced at the acceptor side of PSI, and light intensity affected the reaction rate significantly. Accordingly, high light and strong light but not low light can create an anaerobic environment, which is important to activate hydrogenase and produce H2 Based on the above results, we conclude that light intensity plays an important role in removing O2 and consequently activating hydrogenase and producing H2 in NaHSO3-treated C. reinhardtii.

  1. Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241.

    PubMed

    Pocock, Tessa; Vetterli, Adrien; Falk, Stefan

    2011-01-01

    Life in extreme environments poses unique challenges to photosynthetic organisms. The ability for an extremophilic green alga and its genetic and mesophilic equivalent to acclimate to changes in their environment was examined to determine the extent of their phenotypic plasticities. The Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241 (UWO) was isolated from an ice-covered lake in Antarctica, whereas its mesophilic counterpart C. raudensis Ettl. SAG 49.72 (SAG) was isolated from a meadow pool in the Czech Republic. The effects of changes in temperature and salinity on growth, morphology, and photochemistry were examined in the two strains. Differential acclimative responses were observed in UWO which include a wider salinity range for growth, and broader temperature- and salt-induced fluctuations in F(v)/F(m), relative to SAG. Furthermore, the redox state of the photosynthetic electron transport chain, measured as 1-q(P), was modulated in the extremophile whereas this was not observed in the mesophile. Interestingly, it is shown for the first time that SAG is similar to UWO in that it is unable to undergo state transitions. The different natural histories of these two strains exert different evolutionary pressures and, consequently, different abilities for acclimation, an important component of phenotypic plasticity. In contrast to SAG, UWO relied on a redox sensing and signalling system under the growth conditions used in this study. It is proposed that growth and adaptation of UWO under a stressful and extreme environment poises this extremophile for better success under changing environmental conditions.

  2. Application of Phosphoproteomics to Find Targets of Casein Kinase 1 in the Flagellum of Chlamydomonas

    PubMed Central

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2012-01-01

    The green biflagellate alga Chlamydomonas reinhardtii serves as model for studying structural and functional features of flagella. The axoneme of C. reinhardtii anchors a network of kinases and phosphatases that control motility. One of them, Casein Kinase 1 (CK1), is known to phosphorylate the Inner Dynein Arm I1 Intermediate Chain 138 (IC138), thereby regulating motility. CK1 is also involved in regulating the circadian rhythm of phototaxis and is relevant for the formation of flagella. By a comparative phosphoproteome approach, we determined phosphoproteins in the flagellum that are targets of CK1. Thereby, we applied the specific CK1 inhibitor CKI-7 that causes significant changes in the flagellum phosphoproteome and reduces the swimming velocity of the cells. In the CKI-7-treated cells, 14 phosphoproteins were missing compared to the phosphoproteome of untreated cells, including IC138, and four additional phosphoproteins had a reduced number of phosphorylation sites. Notably, inhibition of CK1 causes also novel phosphorylation events, indicating that it is part of a kinase network. Among them, Glycogen Synthase Kinase 3 is of special interest, because it is involved in the phosphorylation of key clock components in flies and mammals and in parallel plays an important role in the regulation of assembly in the flagellum. PMID:23316220

  3. Application of phosphoproteomics to find targets of casein kinase 1 in the flagellum of chlamydomonas.

    PubMed

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2012-01-01

    The green biflagellate alga Chlamydomonas reinhardtii serves as model for studying structural and functional features of flagella. The axoneme of C. reinhardtii anchors a network of kinases and phosphatases that control motility. One of them, Casein Kinase 1 (CK1), is known to phosphorylate the Inner Dynein Arm I1 Intermediate Chain 138 (IC138), thereby regulating motility. CK1 is also involved in regulating the circadian rhythm of phototaxis and is relevant for the formation of flagella. By a comparative phosphoproteome approach, we determined phosphoproteins in the flagellum that are targets of CK1. Thereby, we applied the specific CK1 inhibitor CKI-7 that causes significant changes in the flagellum phosphoproteome and reduces the swimming velocity of the cells. In the CKI-7-treated cells, 14 phosphoproteins were missing compared to the phosphoproteome of untreated cells, including IC138, and four additional phosphoproteins had a reduced number of phosphorylation sites. Notably, inhibition of CK1 causes also novel phosphorylation events, indicating that it is part of a kinase network. Among them, Glycogen Synthase Kinase 3 is of special interest, because it is involved in the phosphorylation of key clock components in flies and mammals and in parallel plays an important role in the regulation of assembly in the flagellum.

  4. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii.

    PubMed

    Moellering, Eric R; Benning, Christoph

    2010-01-01

    Eukaryotic cells store oils in the chemical form of triacylglycerols in distinct organelles, often called lipid droplets. These dynamic storage compartments have been intensely studied in the context of human health and also in plants as a source of vegetable oils for human consumption and for chemical or biofuel feedstocks. Many microalgae accumulate oils, particularly under conditions limiting to growth, and thus have gained renewed attention as a potentially sustainable feedstock for biofuel production. However, little is currently known at the cellular or molecular levels with regard to oil accumulation in microalgae, and the structural proteins and enzymes involved in the biogenesis, maintenance, and degradation of algal oil storage compartments are not well studied. Focusing on the model green alga Chlamydomonas reinhardtii, the accumulation of triacylglycerols and the formation of lipid droplets during nitrogen deprivation were investigated. Mass spectrometry identified 259 proteins in a lipid droplet-enriched fraction, among them a major protein, tentatively designated major lipid droplet protein (MLDP). This protein is specific to the green algal lineage of photosynthetic organisms. Repression of MLDP gene expression using an RNA interference approach led to increased lipid droplet size, but no change in triacylglycerol content or metabolism was observed.

  5. High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants.

    PubMed

    Xie, Bo; Stessman, Dan; Hart, Jason H; Dong, Haili; Wang, Yingjun; Wright, David A; Nikolau, Basil J; Spalding, Martin H; Halverson, Larry J

    2014-09-01

    The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low-lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence-activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high-lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid-induction periods.

  6. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii

    PubMed Central

    Ueki, Noriko; Ide, Takahiro; Mochiji, Shota; Kobayashi, Yuki; Tokutsu, Ryutaro; Ohnishi, Norikazu; Yamaguchi, Katsushi; Shigenobu, Shuji; Tanaka, Kan; Minagawa, Jun; Hisabori, Toru; Hirono, Masafumi; Wakabayashi, Ken-ichi

    2016-01-01

    The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Most lts1-211 cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype of lts1-211 is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign. PMID:27122315

  7. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    SciTech Connect

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-12-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another.

  8. The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii.

    PubMed

    Dutcher, Susan K

    2014-02-01

    Cilia/flagella and basal bodies/centrioles play key roles in human health and homeostasis. Among the organisms used to study these microtubule-based organelles, the green alga Chlamydomonas reinhardtii has several advantages. One is the existence of a temporary phase of the life cycle, termed the dikaryon. These cells are formed during mating when the cells fuse and the behavior of flagella from two genetically distinguishable parents can be observed. During this stage, the cytoplasms mix allowing for a defect in the flagella of one parent to be rescued by proteins from the other parent. This offers the unique advantage of adding back wild-type gene product or labeled protein at endogenous levels that can used to monitor various flagellar and basal body phenotypes. Mutants that show rescue and ones that fail to show rescue are both informative about the nature of the flagella and basal body defects. When rescue occurs, it can be used to determine the mutant gene product and to follow the temporal and spatial patterns of flagellar assembly. This review describes many examples of insights into basal body and flagellar proteins' function and assembly that have been discovered using dikaryons and discusses the potential for further analyses.

  9. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii.

    PubMed

    Zuo, Zhaojiang; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2012-02-01

    Acetic acid widely spreads in atmosphere, aquatic ecosystems containing residues and anoxic soil. It can inhibit aquatic plant germination and growth, and even cause programmed cell death (PCD) of yeast. In the present study, biochemical and physiological responses of the model unicellular green algae Chlamydomonas reinhardtii were examined after acetic acid stress. H(2)O(2) burst was found in C. reinhardtii after acetic acid stress at pH 5.0 for 10 min. The photosynthetic pigments were degraded, gross photosynthesis and respiration were disappeared gradually, and DNA fragmentation was also detected. Those results indicated that C. reinhardtii cells underwent a PCD but not a necrotic, accidental cell death event. It was noticed that C. reinhardtii cells in PCD released abundant volatile organic compounds (VOCs) upon acetic acid stress. Therefore, we analyzed the VOCs and tested their effects on other normal cells. The treatment of C. reinhardtii cultures with VOCs reduced the cell density and increased antioxidant enzyme activity. Therefore, a function of VOCs as infochemicals involved in cell-to-cell communication at the conditions of applied stress is suggested.

  10. Two equilibration pools of chlorophylls in the Photosystem I core antenna of Chlamydomonas reinhardtii.

    PubMed

    Gibasiewicz, Krzysztof; Ramesh, V M; Lin, Su; Redding, Kevin; Woodbury, Neal W; Webber, Andrew N

    2007-04-01

    Femtosecond transient absorption spectroscopy was applied for a comparative study of excitation decay in several different Photosystem I (PSI) core preparations from the green alga Chlamydomonas reinhardtii. For PSI cores with a fully interconnected network of chlorophylls, the excitation energy was equilibrated over a pool of chlorophylls absorbing at approximately 683 nm, independent of excitation wavelength [Gibasiewicz et al. J Phys Chem B 105:11498-11506, 2001; J Phys Chem B 106:6322-6330, 2002]. In preparations with impaired connectivity between chlorophylls, we have found that the spectrum of chlorophylls connected to the reaction center (i.e., with approximately 20 ps decay time) over which the excitation is equilibrated becomes excitation-wavelength-dependent. Excitation at 670 nm is finally equilibrated over chlorophylls absorbing at approximately 675 nm, whereas excitation at 695 nm or 700 nm is equilibrated over chlorophylls absorbing at approximately 683 nm. This indicates that in the vicinity of the reaction center there are two spectrally different and spatially separated pools of chlorophylls that are equally capable of effective excitation energy transfer to the reaction center. We propose that they are related to the two groups of central PSI core chlorophylls lying on the opposite sides of reaction center.

  11. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii

    PubMed Central

    Olson, Adam C.; Carter, Clay J.

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways. PMID:26930496

  12. Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp. PCC 6803

    PubMed Central

    Hung, Chun-Hsien; Endo, Kaichiro; Kobayashi, Koichi; Nakamura, Yuki; Wada, Hajime

    2015-01-01

    Phosphatidylglycerol (PG) is an indispensable phospholipid class with photosynthetic function in plants and cyanobacteria. However, its biosynthesis in eukaryotic green microalgae is poorly studied. Here, we report the isolation and characterization of two homologs (CrPGP1 and CrPGP2) of phosphatidylglycerophosphate synthase (PGPS), the rate-limiting enzyme in PG biosynthesis, in Chlamydomonas reinhardtii. Heterologous complementation of Synechocystis sp. PCC 6803 pgsA mutant by CrPGP1 and CrPGP2 rescued the PG-dependent growth phenotype, but the PG level and its fatty acid composition were not fully rescued in the complemented strains. As well, oxygen evolution activity was not fully recovered, although electron transport activity of photosystem II was restored to the wild-type level. Gene expression study of CrPGP1 and CrPGP2 in nutrient-starved C. reinhardtii showed differential response to phosphorus and nitrogen deficiency. Taken together, these results highlight the distinct and overlapping function of PGPS in cyanobacteria and eukaryotic algae. PMID:26379630

  13. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  14. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater.

    PubMed

    Kothari, Richa; Prasad, Ravindra; Kumar, Virendra; Singh, D P

    2013-09-01

    This study involves a process of phyco-remediation of dairy industry wastewater by algal strain Chlamydomonas polypyrenoideum. The results of selected algal strain indicated that dairy industry wastewater was good nutrient supplement for algal growth in comparable with BG-11 growth medium. Alga grown on dairy industry wastewater reduced the pollution load of nitrate (90%), nitrite (74%), phosphate (70%), chloride (61%), fluoride (58%), and ammonia (90%) on 10th day of its growth as compared to that of uninoculated wastewater. The lipid content of algal biomass grown on dairy wastewater on 10th day (1.6g) and 15th day (1.2 g) of batch experiment was found to be higher than the lipid content of algal biomass grown in BG-11 growth medium on 10th day (1.27 g) and 15th day (1.0 g) of batch experiment. The results on FTIR analysis of the extracted bio-oil through transesterification reaction was comparable with bio-oil obtained from other sources.

  15. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter.

    PubMed

    Nishio, Koichi; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-04-01

    Biological energy-conversion systems are attractive in terms of their self-organizing and self-sustaining properties and are expected to be applied towards environmentally friendly bioenergy processes. Recent studies have demonstrated that sustainable light/electricity-conversion systems, termed microbial solar cells (MSCs), can be constructed using naturally occurring microbial communities. To better understand the energy-conversion mechanisms in microbial communities, the present study attempted to construct model MSCs comprised of defined cocultures of a green alga, Chlamydomonas reinhardtii, and an iron-reducing bacterium, Geobacter sulfurreducens, and examined their metabolism and interactions in MSCs. When MSC bioreactors were inoculated with these microbes and irradiated on a 12-h light/dark cycle, periodic current was generated in the dark with energy-conversion efficiencies of 0.1%. Metabolite analyses revealed that G. sulfurreducens generated current by oxidizing formate that was produced by C. reinhardtii in the dark. These results demonstrate that the light/electricity conversion occurs via syntrophic interactions between phototrophs and electricity-generating bacteria. Based on the results and data in literatures, it is estimated that the excretion of organics by the phototroph was the bottleneck step in the syntrophic light/electricity conversion. We also discuss differences between natural-community and defined-coculture MSCs.

  16. Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts1[OPEN

    PubMed Central

    Odahara, Masaki; Kobayashi, Yusuke; Shikanai, Toshiharu; Nishimura, Yoshiki

    2016-01-01

    The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. Here, overexpression and knockdown analysis of cpRECA in the green alga Chlamydomonas reinhardtii revealed that cpRECA was involved in cp nucleoid dynamics as well as having a role in maintaining cp genome integrity. Overexpression of cpRECA tagged with yellow fluorescent protein or hemagglutinin resulted in the formation of giant filamentous structures that colocalized exclusively to chloroplast DNA and cpRECA localized to cp nucleoids in a heterogenous manner. Knockdown of cpRECA led to a significant reduction in cp nucleoid number that was accompanied by nucleoid enlargement. This phenotype resembled those of gyrase inhibitor-treated cells and monokaryotic chloroplast mutant cells and suggested that cpRECA was involved in organizing cp nucleoid dynamics. The cp genome also was destabilized by induced recombination between short dispersed repeats in cpRECA-knockdown cells and gyrase inhibitor-treated cells. Taken together, these results suggest that cpRECA and gyrase are both involved in nucleoid dynamics and the maintenance of genome integrity and that the mechanisms underlying these processes may be intimately related in C. reinhardtii cps. PMID:27756821

  17. Improved automated monitoring and new analysis algorithm for circadian phototaxis rhythms in Chlamydomonas

    PubMed Central

    Gaskill, Christa; Forbes-Stovall, Jennifer; Kessler, Bruce; Young, Mike; Rinehart, Claire A.; Jacobshagen, Sigrid

    2010-01-01

    Automated monitoring of circadian rhythms is an efficient way of gaining insight into oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light beam through a culture at regular intervals and determining the decrease in light transmittance due to the accumulation of cells in the beam. In this study, the monitoring process was optimized by constructing a new computer-controlled measuring machine that limits the test beam to wavelengths reported to be specific for phototaxis and by choosing an algal strain, which does not need background illumination between test light cycles for proper expression of the rhythm. As a result, period and phase of the rhythm are now unaffected by the time a culture is placed into the machine. Analysis of the rhythm data was also optimized through a new algorithm, whose robustness was demonstrated using virtual rhythms with various noises. The algorithm differs in particular from other reported algorithms by maximizing the fit of the data to a sinusoidal curve that dampens exponentially. The algorithm was also used to confirm the reproducibility of rhythm monitoring by the machine. Machine and algorithm can now be used for a multitude of circadian clock studies that require unambiguous period and phase determinations such as light pulse experiments to identify the photoreceptor(s) that reset the circadian clock in C. reinhardtii. PMID:20116270

  18. Comparative study of phototactic and photophobic receptor chromophore properties in Chlamydomonas reinhardtii.

    PubMed Central

    Zacks, D N; Derguini, F; Nakanishi, K; Spudich, J L

    1993-01-01

    The motile, unicellular, eukaryotic alga Chlamydomonas reinhardtii exhibits two distinct behavioral reactions to light stimuli, phototaxis and the photophobic response. Both are mediated by retinal-containing receptors. This paper focuses on a direct comparison of the two photoresponses and the chromophore requirements for their photoreceptor(s). Using computerized motion analysis assays for phototaxis and photophobic responses by the same populations of cells, we measured the ability of various isomers and analogues of retinal to reconstitute photobehavior in the pigment-deficient mutant FN68. The results indicate that photophobic and phototaxis responses each require chromophores with an all-trans polyene chain configuration, planar ionone ring/polyene chain conformation, and the ability to isomerize around the retinal C13-C14 double bond. One difference between the two behaviors is that the photophobic response becomes highly desensitized after light stimuli to which the phototaxis response does not become desensitized, indicating the existence of at least one distinct step in the photophobic response pathway. A second difference is that the retinal regeneration of the photophobic response but not of phototaxis is inhibited by a 5-membered ring 13-trans-locked analogue. While showing close similarity in the chromophore structural requirements of the two behaviors, the results indicate that differences exist between the two responses at the level of their photoreceptor proteins and/or in their transduction processes. Images FIGURE 2 PMID:8369455

  19. Fitness effects of new mutations in Chlamydomonas reinhardtii across two stress gradients.

    PubMed

    Kraemer, S A; Morgan, A D; Ness, R W; Keightley, P D; Colegrave, N

    2016-03-01

    Most spontaneous mutations affecting fitness are likely to be deleterious, but the strength of selection acting on them might be impacted by environmental stress. Such stress-dependent selection could expose hidden genetic variation, which in turn might increase the adaptive potential of stressed populations. On the other hand, this variation might represent a genetic load and thus lead to population extinction under stress. Previous studies to determine the link between stress and mutational effects on fitness, however, have produced inconsistent results. Here, we determined the net change in fitness in 29 genotypes of the green algae Chlamydomonas reinhardtii that accumulated mutations in the near absence of selection for approximately 1000 generations across two stress gradients, increasing NaCl and decreasing phosphate. We found mutational effects to be magnified under extremely stressful conditions, but such effects were specific both to the type of stress and to the genetic background. The detection of stress-dependent fitness effects of mutations depended on accurately scaling relative fitness measures by generation times, thus offering an explanation for the inconsistencies among previous studies.

  20. Characterization of the EYE2 gene required for eyespot assembly in Chlamydomonas reinhardtii.

    PubMed Central

    Roberts, D G; Lamb, M R; Dieckmann, C L

    2001-01-01

    The unicellular biflagellate green alga Chlamydomonas reinhardtii can perceive light and respond by altering its swimming behavior. The eyespot is a specialized structure for sensing light, which is assembled de novo at every cell division from components located in two different cellular compartments. Photoreceptors and associated signal transduction components are localized in a discrete patch of the plasma membrane. This patch is tightly packed against an underlying sandwich of chloroplast membranes and carotenoid-filled lipid granules, which aids the cell in distinguishing light direction. In a prior screen for mutant strains with eyespot defects, the EYE2 locus was defined by the single eye2-1 allele. The mutant strain has no eyespot by light microscopy and has no organized carotenoid granule layers as judged by electron microscopy. Here we demonstrate that the eye2-1 mutant is capable of responding to light, although the strain is far less sensitive than wild type to low light intensities and orients imprecisely. Therefore, pigment granule layer assembly in the chloroplast is not required for photoreceptor localization in the plasma membrane. A plasmid-insertion mutagenesis screen yielded the eye2-2 allele, which allowed the isolation and characterization of the EYE2 gene. The EYE2 protein is a member of the thioredoxin superfamily. Site-directed mutagenesis of the active site cysteines demonstrated that EYE2 function in eyespot assembly is redox independent, similar to the auxiliary functions of other thioredoxin family members in protein folding and complex assembly. PMID:11454753

  1. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii.

    PubMed

    Perrineau, Marie-Mathilde; Zelzion, Ehud; Gross, Jeferson; Price, Dana C; Boyd, Jeffrey; Bhattacharya, Debashish

    2014-06-01

    Understanding the genetic underpinnings of adaptive traits in microalgae is important for the study of evolution and for applied uses. We used long-term selection under a regime of serial transfers with haploid populations of the green alga Chlamydomonas reinhardtii raised in liquid TAP medium containing 200 mM NaCl. After 1255 generations, evolved salt (ES) populations could grow as rapidly in high salt medium as progenitor cells (progenitor light [PL]). Transcriptome data were analysed to elucidate the basis of salt tolerance in ES cells when compared with PL cells and to cells incubated for 48 h in high salt medium (progenitor salt [PS], the short-term acclimation response). These data demonstrate that evolved and short-term acclimation responses to salt stress differ fundamentally from each other. Progenitor salt cells exhibit well-known responses to salt stress such as reduction in photosynthesis, upregulation of glycerophospholipid signaling, and upregulation of the transcription and translation machinery. In contrast, ES cells show downregulation of genes involved in the stress response and in transcription/translation. Our results suggest that gene-rich mixotrophic lineages such as C. reinhardtii may be able to adapt rapidly to abiotic stress engendered either by a rapidly changing climate or physical vicariance events that isolate populations in stressful environments.

  2. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey.

    PubMed

    Zaffagnini, Mirko; Bedhomme, Mariette; Groni, Hayam; Marchand, Christophe H; Puppo, Carine; Gontero, Brigitte; Cassier-Chauvat, Corinne; Decottignies, Paulette; Lemaire, Stéphane D

    2012-02-01

    Protein glutathionylation is a redox post-translational modification occurring under oxidative stress conditions and playing a major role in cell regulation and signaling. This modification has been mainly studied in nonphotosynthetic organisms, whereas much less is known in photosynthetic organisms despite their important exposure to oxidative stress caused by changes in environmental conditions. We report a large scale proteomic analysis using biotinylated glutathione and streptavidin affinity chromatography that allowed identification of 225 glutathionylated proteins in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. Moreover, 56 sites of glutathionylation were also identified after peptide affinity purification and tandem mass spectrometry. The targets identified belong to a wide range of biological processes and pathways, among which the Calvin-Benson cycle appears to be a major target. The glutathionylation of four enzymes of this cycle, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, ribose-5-phosphate isomerase, and phosphoglycerate kinase was confirmed by Western blot and activity measurements. The results suggest that glutathionylation could constitute a major mechanism of regulation of the Calvin-Benson cycle under oxidative stress conditions.

  3. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  4. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism.

  5. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    SciTech Connect

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  6. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.

    PubMed

    Beel, Benedikt; Prager, Katja; Spexard, Meike; Sasso, Severin; Weiss, Daniel; Müller, Nico; Heinnickel, Mark; Dewez, David; Ikoma, Danielle; Grossman, Arthur R; Kottke, Tilman; Mittag, Maria

    2012-07-01

    Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light-activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities.

  7. Regulation of Oil Biosynthesis in Algae

    DTIC Science & Technology

    2011-03-14

    transportation fuels can potentially be addressed by exploring oil (triacylglycerol) biosynthesis in microalgae . Many microalgae , including Chlamydomonas...biosynthesis in microalgae have not been studied at the molecular level. Chlamydomonas is being used as a microalgal model to identify genes and regulatory...of this phenomenon will shed light on the physiological significance of oil production in microalgae . A first paper describing this interesting

  8. Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms.

    PubMed

    Meuser, Jonathan E; Ananyev, Gennady; Wittig, Lauren E; Kosourov, Sergey; Ghirardi, Maria L; Seibert, Michael; Dismukes, G Charles; Posewitz, Matthew C

    2009-06-01

    Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H(2) during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H(2) under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H(2) photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia.

  9. Phenotypic Diversity of Hydrogen Production in Chlorophycean Algae Reflects Distinct Anaerobic Metabolisms

    SciTech Connect

    Meuser, J. E.; Ananyev, G.; Wittig, L. E.; Kosourov, S.; Ghirardi, M. L.; Seibert, M.; Dismukes, G. C.; Posewitz, M. C.

    2009-01-01

    Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H{sub 2} during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H{sub 2} under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H2 photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia.

  10. Solar-driven hydrogen production in green algae.

    PubMed

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept.

  11. Phylogeography of the weasel (Mustela nivalis) in the western-Palaearctic region: combined effects of glacial events and human movements.

    PubMed

    Lebarbenchon, C; Poitevin, F; Arnal, V; Montgelard, C

    2010-11-01

    The Iberian, Italian or Balkan peninsulas have been considered as refugia for numerous mammalian species in response to Quaternary climatic fluctuations in Europe. In addition to this 'southerly refugial model', northern refugia have also been described notably for generalist and cold-tolerant species. Here, we investigated the phylogeographic pattern of the weasel (Mustela nivalis) to assess the impact of Quaternary glaciations on the genetic structure, number and location of refugia as well as to determine the impact of human movements on the colonization of Mediterranean islands. We sequenced 1690 bp from the mitochondrial control region and cytochrome b for 88 weasels distributed throughout the western-Palaearctic region, including five Mediterranean islands. Phylogenetic analyses of combined genes produced a clear phylogeographic pattern with two main lineages. The first lineage included all of the western-continental samples (from Spain to Finland) and shows low levels of genetic structure. Demographic analysis highlighted several characteristics of an expanding group, dated approximately at 116 kiloyears (kyr; Riss glaciation). The genetic pattern suggested a northeastern-European origin from which colonization of southwestern Europe took place. The second lineage was divided into five subgroups and indicated a common origin of insular and Moroccan samples from eastern Europe. Eastern-continental weasels did not exhibit signs of sudden expansion, suggesting stable population size during the last ice ages. The time of expansion of Sicilian and Corsican populations was dated around 10 kyr ago, which supports the hypothesis of an early human intervention in the colonization of Mediterranean islands.

  12. Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii.

    PubMed

    Li, Hui; Wang, Yuting; Chen, Meirong; Xiao, Peng; Hu, Changxing; Zeng, Zhiyong; Wang, Chaogang; Wang, Jiangxin; Hu, Zhangli

    2016-09-23

    Microalgae are regarded as the most promising biofuel candidates and extensive metabolic engineering were conducted but very few improvements were achieved. Long non-coding RNA (lncRNA) investigation and manipulation may provide new insights for this issue. LncRNAs refer to transcripts that are longer than 200 nucleotides, do not encode proteins but play important roles in eukaryotic gene regulation. However, no information of potential lncRNAs has been reported in eukaryotic alga. Recently, we performed RNA sequencing in Chlamydomonas reinhardtii, and obtained totally 3,574 putative lncRNAs. 1440 were considered as high-confidence lncRNAs, including 936 large intergenic, 310 intronic and 194 anti-sense lncRNAs. The average transcript length, ORF length and numbers of exons for lncRNAs are much less than for genes in this green alga. In contrast with human lncRNAs of which more than 98% are spliced, the percentage in C. reinhardtii is only 48.1%. In addition, we identified 367 lncRNAs responsive to sulfur deprivation, including 36 photosynthesis-related lncRNAs. This is the first time that lncRNAs were explored in the unicellular model organism C. reinhardtii. The lncRNA data could also provide new insights into C. reinhardtii hydrogen production under sulfur deprivation.

  13. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells

    PubMed Central

    Dinc, Emine; Tian, Lijin; Roy, Laura M.; Roth, Robyn; Goodenough, Ursula; Croce, Roberta

    2016-01-01

    To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed. PMID:27335457

  14. Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii

    PubMed Central

    Li, Hui; Wang, Yuting; Chen, Meirong; Xiao, Peng; Hu, Changxing; Zeng, Zhiyong; Wang, Chaogang; Wang, Jiangxin; Hu, Zhangli

    2016-01-01

    Microalgae are regarded as the most promising biofuel candidates and extensive metabolic engineering were conducted but very few improvements were achieved. Long non-coding RNA (lncRNA) investigation and manipulation may provide new insights for this issue. LncRNAs refer to transcripts that are longer than 200 nucleotides, do not encode proteins but play important roles in eukaryotic gene regulation. However, no information of potential lncRNAs has been reported in eukaryotic alga. Recently, we performed RNA sequencing in Chlamydomonas reinhardtii, and obtained totally 3,574 putative lncRNAs. 1440 were considered as high-confidence lncRNAs, including 936 large intergenic, 310 intronic and 194 anti-sense lncRNAs. The average transcript length, ORF length and numbers of exons for lncRNAs are much less than for genes in this green alga. In contrast with human lncRNAs of which more than 98% are spliced, the percentage in C. reinhardtii is only 48.1%. In addition, we identified 367 lncRNAs responsive to sulfur deprivation, including 36 photosynthesis-related lncRNAs. This is the first time that lncRNAs were explored in the unicellular model organism C. reinhardtii. The lncRNA data could also provide new insights into C. reinhardtii hydrogen production under sulfur deprivation. PMID:27659799

  15. A Transient Receptor Potential Ion Channel in Chlamydomonas Shares Key Features with Sensory Transduction-Associated TRP Channels in Mammals

    PubMed Central

    Arias-Darraz, Luis; Cabezas, Deny; Colenso, Charlotte K.; Alegría-Arcos, Melissa; Bravo-Moraga, Felipe; Varas-Concha, Ignacio; Almonacid, Daniel E.; Madrid, Rodolfo; Brauchi, Sebastian

    2015-01-01

    Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes. PMID:25595824

  16. Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila.

    PubMed

    Olsson, Sanna; Puente-Sánchez, Fernando; Gómez, Manuel J; Aguilera, Angeles

    2015-05-01

    High concentrations of heavy metals are typical of acidic environments. Therefore, studies on acidophilic organisms in their natural environments improve our understanding on the evolution of heavy metal tolerance and detoxification in plants. Here we sequenced the transcriptome of the extremophilic microalga Chlamydomonas acidophila cultivated in control conditions and with 500 μM of copper for 24 h. High-throughput 454 sequencing was followed by de novo transcriptome assembly. The reference transcriptome was annotated and genes related to heavy metal tolerance and abiotic stress were identified. Analyses of differentially expressed transcripts were used to detect genes involved in metabolic pathways related to abiotic stress tolerance, focusing on effects caused by increased levels of copper. Both transcriptomic data and observations from PAM fluorometry analysis suggested that the photosynthetic activity of C. acidophila is not adversely affected by addition of high amounts of copper. Up-regulated transcripts include several transcripts related to photosynthesis and carbohydrate metabolism, transcripts coding for general stress response, and a transcript annotated as homologous to the oil-body-associated protein HOGP coding gene. The first de novo assembly of C. acidophila significantly increases transcriptomic data available on extremophiles and green algae and thus provides an important reference for further molecular genetic studies. The differences between differentially expressed transcripts detected in our study suggest that the response to heavy metal exposure in C. acidophila is different from other studied green algae.

  17. Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium.

    PubMed

    Spijkerman, Elly; Barua, Deepak; Gerloff-Elias, Antje; Kern, Jürgen; Gaedke, Ursula; Heckathorn, Scott A

    2007-07-01

    Chlamydomonas acidophila faces high heavy-metal concentrations in acidic mining lakes, where it is a dominant phytoplankton species. To investigate the importance of metals to C. acidophila in these lakes, we examined the response of growth, photosynthesis, cell structure, heat-shock protein (Hsp) accumulation, and metal adsorption after incubation in metal-rich lake water and artificial growth medium enriched with metals (Fe, Zn). Incubation in both metal-rich lake water and medium caused large decreases in photosystem II function (though no differences among lakes), but no decrease in growth rate (except for medium + Fe). Concentrations of small Hsps were higher in algae incubated in metal-rich lake-water than in metal-enriched medium, whereas Hsp60 and Hsp70A were either less or equally expressed. Cellular Zn and Fe contents were lower, and metals adsorbed to the cell surface were higher, in lake-water-incubated algae than in medium-grown cells. The results indicate that high Zn or Fe levels are likely not the main or only contributor to the low primary production in mining lakes, and multiple adaptations of C. acidophila (e.g., high Hsp levels, decreased metal accumulation) increase its tolerance to metals and permit survival under such adverse environmental conditions. Supposedly, the main stress factor present in the lake water is an interaction between low P and high Fe concentrations.

  18. Proteomic Analysis of the Eyespot of Chlamydomonas reinhardtii Provides Novel Insights into Its Components and Tactic Movements[W

    PubMed Central

    Schmidt, Melanie; Geßner, Gunther; Luff, Matthias; Heiland, Ines; Wagner, Volker; Kaminski, Marc; Geimer, Stefan; Eitzinger, Nicole; Reißenweber, Tobias; Voytsekh, Olga; Fiedler, Monika; Mittag, Maria; Kreimer, Georg

    2006-01-01

    Flagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. To further understand the molecular organization of the eyespot apparatus and the phototactic movement that is controlled by light and the circadian clock, a detailed understanding of all components of the eyespot apparatus is needed. We developed a procedure to purify the eyespot apparatus from the green model alga Chlamydomonas reinhardtii. Its proteomic analysis resulted in the identification of 202 different proteins with at least two different peptides (984 in total). These data provide new insights into structural components of the eyespot apparatus, photoreceptors, retina(l)-related proteins, members of putative signaling pathways for phototaxis and chemotaxis, and metabolic pathways within an algal visual system. In addition, we have performed a functional analysis of one of the identified putative components of the phototactic signaling pathway, casein kinase 1 (CK1). CK1 is also present in the flagella and thus is a promising candidate for controlling behavioral responses to light. We demonstrate that silencing CK1 by RNA interference reduces its level in both flagella and eyespot. In addition, we show that silencing of CK1 results in severe disturbances in hatching, flagellum formation, and circadian control of phototaxis. PMID:16798888

  19. Omics in Chlamydomonas for Biofuel Production.

    PubMed

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels.

  20. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.

    PubMed

    Wang, Ning-Xin; Li, Yan; Deng, Xi-Hai; Miao, Ai-Jun; Ji, Rong; Yang, Liu-Yan

    2013-05-01

    In the present study, the toxicity and bioaccumulation kinetics of arsenate in two green algae Chlamydomonas reinhardtii and Scenedesmus obliquus under phosphate-enriched (+P) and limited (-P) conditions were investigated. P-limitation was found to aggravate arsenate toxicity and S. obliquus was more tolerant than C. reinhardtii. Such phosphate-condition-dependent or algal-species-specific toxicity difference was narrowed when the relative inhibition of cell growth was plotted against intracellular arsenate content instead of its extracellular concentration. The discrepance was further reduced when the intracellular ratio of arsenic to phosphorus was applied. It suggests that both arsenate bioaccumulation and intracellular phosphorus played an important role in arsenate toxicity. On the other hand, arsenate uptake was induced by P-limitation and its variation with ambient arsenate concentration could be well fitted to the Michaelis-Menten model. Arsenate transporters of S. obliquus were found to have a higher affinity but lower capacity than those of C. reinhardtii, which explains its better regulation of arsenate accumulation than the latter species in the toxicity experiment. Further, arsenate depuration was facilitated and more was transformed to arsenite in C. reinhardtii or under -P condition. Intracellular proportion of arsenite was also increased after the algae were transferred from the long-term uptake media to a relatively clean solution in the efflux experiment. Both phenomena imply that algae especially the sensitive species could make physiological adjustments to alleviate the adverse effects of arsenate. Overall, our findings will facilitate the application of algae in arsenate remediation.

  1. Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants.

    PubMed

    Otto, Benjamin; Beuchel, Carl; Liers, Christiane; Reisser, Werner; Harms, Hauke; Schlosser, Dietmar

    2015-06-01

    In order to explore the abundance and potential environmental functions of green algal laccases, we screened various algae for extracellular laccase-like activities, characterized basic features of these activities in selected species and exemplarily studied the transformation of environmental pollutants and complex natural compounds by the laccase of Tetracystis aeria. Oxidation of the classical laccase substrate ABTS was found to be widespread in chlorophycean algae. The oxidation activity detected in members of the 'Scenedesmus' clade was caused by an unknown thermostable low-molecular-mass compound. In contrast, species of the Moewusinia, including Chlamydomonas moewusii and T. aeria, excreted putative 'true' laccases. Phenolic substrates were oxidized by these enzymes optimally at neutral to alkaline pH. The Tetracystis laccase efficiently transformed bisphenol A, 17α-ethinylestradiol, nonylphenol and triclosan in the presence of ABTS as redox mediator, while anthracene, veratrylalcohol and adlerol were not attacked. Lignosulfonate and humic acid underwent slight (de)polymerization reactions in the presence of the laccase and mediator(s), probably involving the oxidation of phenolic constituents. Possible natural functions of the enzymes, such as the synthesis of complex polymers or detoxification processes, may assist the survival of the algae in adverse environments. In contaminated surface waters, laccase-producing green algae might contribute to the environmental breakdown of phenolic pollutants.

  2. Habitat requirements of weasels Mustela nivalis constrain their impact on prey populations in complex ecosystems of the temperate zone.

    PubMed

    Zub, K; Sönnichsen, L; Szafrańska, P A

    2008-10-01

    Differences in habitat use by prey and predator may lead to a shift of occupied niches and affect dynamics of their populations. The weasel Mustela nivalis specializes in hunting rodents, therefore habitat preferences of this predator may have important consequences for the population dynamics of its prey. We investigated habitat selection by weasels in the Białowieza Forest in different seasons at the landscape and local scales, and evaluated possible consequences for the population dynamics of their prey. At the landscape scale, weasels preferred open habitats (both dry and wet) and avoided forest. In open areas they selected habitats with higher prey abundance, except during the low-density phase of the vole cycle, when the distribution of these predators was more uniform. Also in winter, the distribution of weasels at the landscape scale was proportional to available resources. In summer, within open dry and wet habitats, weasels preferred areas characterised by dense vegetation, but avoided poor plant cover. In winter, weasels used wet open areas proportionally to availability of habitats when hunting, but in contrast to summer, they rested only in habitats characterized by a lower water level, which offered better thermal conditions. At the local scale, the abundance of voles was a less important factor affecting the distribution of these predators. Although we were not able to provide direct evidence for the existence of refuges for voles, our results show that they may be located within habitat patches, where availability of dense plant cover and physiological constraints limit the activity of weasels. Our results indicate that in complex ecosystems of the temperate zone, characterized by a mosaic pattern of vegetation types and habitat specific dynamics of rodents, impact of weasels on prey populations might be limited.

  3. Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel Mustela nivalis.

    PubMed

    Zub, Karol; Piertney, Stuart; Szafrańska, Paulina A; Konarzewski, Marek

    2012-03-01

    Body mass (BM) and resting metabolic rates (RMR) are two inexorably linked traits strongly related to mammalian life histories. Yet, there have been no studies attempting to estimate heritable variation and covariation of BM and RMR in natural populations. We used a marker-based approach to construct a pedigree and then the 'animal model' to estimate narrow sense heritability (h(2) ) of these traits in a free-living population of weasels Mustela nivalis--a small carnivore characterised by a wide range of BM and extremely high RMR. The most important factors affecting BM of weasels were sex and habitat type, whereas RMR was significantly affected only by seasonal variation of this trait. All environmental factors had only small effect on estimates of additive genetic variance of both BM and RMR. The amount of additive genetic variance associated with BM and estimates of heritability were high and significant in males (h(2)  = 0.61), but low and not significant in females (h(2 ) =( ) 0.32), probably due to small sample size for the latter sex. The results from the two-trait model revealed significant phenotypic (r(P)  = 0.62) and genetic correlation (r(A)  = 0.89) between BM and whole body RMR. The estimate of heritability of whole body RMR (0.54) and BM corrected RMR (0.45) were lower than estimates of heritability for BM. Both phenotypic and genetic correlations between BM corrected RMR and BM had negative signals (r(P)  = -0.42 and r(A)  = -0.58). Our results indicate that total energy expenditures of individuals can quickly evolve through concerted changes in BM and RMR.

  4. Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria1

    PubMed Central

    Teplitski, Max; Chen, Hancai; Rajamani, Sathish; Gao, Mengsheng; Merighi, Massimo; Sayre, Richard T.; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

    2004-01-01

    The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-l-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria. PMID:14671013

  5. Hemin and Magnesium-Protoporphyrin IX Induce Global Changes in Gene Expression in Chlamydomonas reinhardtii[C][W

    PubMed Central

    Voß, Björn; Meinecke, Linda; Kurz, Thorsten; Al-Babili, Salim; Beck, Christoph F.; Hess, Wolfgang R.

    2011-01-01

    Retrograde signaling is a pathway of communication from mitochondria and plastids to the nucleus in the context of cell differentiation, development, and stress response. In Chlamydomonas reinhardtii, the tetrapyrroles magnesium-protoporphyrin IX and heme are only synthesized within the chloroplast, and they have been implicated in the retrograde control of nuclear gene expression in this unicellular green alga. Feeding the two tetrapyrroles to Chlamydomonas cultures was previously shown to transiently induce five nuclear genes, three of which encode the heat shock proteins HSP70A, HSP70B, and HSP70E. In contrast, controversial results exist on the possible role of magnesium-protoporphyrin IX in the repression of genes for light-harvesting proteins in higher plants, raising the question of how important this mode of regulation is. Here, we used genome-wide transcriptional profiling to measure the global impact of these tetrapyrroles on gene regulation and the scope of the response. We identified almost 1,000 genes whose expression level changed transiently but significantly. Among them were only a few genes for photosynthetic proteins but several encoding enzymes of the tricarboxylic acid cycle, heme-binding proteins, stress-response proteins, as well as proteins involved in protein folding and degradation. More than 50% of the latter class of genes was also regulated by heat shock. The observed drastic fold changes at the RNA level did not correlate with similar changes in protein concentrations under the tested experimental conditions. Phylogenetic profiling revealed that genes of putative endosymbiontic origin are not overrepresented among the responding genes. This and the transient nature of changes in gene expression suggest a signaling role of both tetrapyrroles as secondary messengers for adaptive responses affecting the entire cell and not only organellar proteins. PMID:21148414

  6. Differential Replication of Two Chloroplast Genome Forms in Heteroplasmic Chlamydomonas reinhardtii Gametes Contributes to Alternative Inheritance Patterns

    PubMed Central

    Nishimura, Yoshiki; Stern, David B.

    2010-01-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS−. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only ∼25% of tetrads, whereas the PS− genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS− genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS− genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies. PMID:20519744

  7. Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns.

    PubMed

    Nishimura, Yoshiki; Stern, David B

    2010-08-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS-. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only approximately 25% of tetrads, whereas the PS- genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS- genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS- genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies.

  8. Oleosin of Subcellular Lipid Droplets Evolved in Green Algae1[W][OA

    PubMed Central

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L.; Huang, Anthony H.C.

    2013-01-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants. PMID:23391579

  9. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-08

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  10. Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L.

    PubMed

    Mou, Shanli; Zhang, Xiaowen; Ye, Naihao; Dong, Meitao; Liang, Chengwei; Liang, Qiang; Miao, Jinlai; Xu, Dong; Zheng, Zhou

    2012-03-01

    Light-harvesting complexes (LHCs) play essential roles in light capture and photoprotection. Although the functional diversity of individual LHCs in many plants has been well described, knowledge regarding the extent of this family in the majority of green algal groups is still limited. In this study, two different LhcSR genes, LhcSR1 and LhcSR2 from Chlamydomonas sp. ICE-L, were cloned from the total cDNA and characterized in response to high light (HL), low light (LL), UV-B radiation and high salinity. The lower F (v)/F (m) as well as the associated induction of non-photochemical quenching (NPQ), observed under those conditions, indicated that Chlamydomonas sp. ICE-L was under stress. Under HL stress, the expression of LhcSR1 and LhcSR2 increased rapidly from 0.5 h HL and reached a maximum after 3 h. In LL, LhcSR2 expression was up-regulated during the first 0.5 h after which it decreased, while the expression of LhcSR1 decreased gradually from the beginning of the experiment. In addition, the transcript levels of LhcSR1 and LhcSR2 increased under UV-B radiation and high salinity. These results showed that both genes were inducible and up-regulated under stress conditions. A higher NPQ was accompanied by the up-regulated LhcSR genes, suggesting that LhcSR plays a role in thermal energy dissipation. Overall, the results presented here suggest that LhcSR1 and LhcSR2 play a primary role in photoprotection in Chlamydomonas sp. ICE-L under stress conditions and provide an important basis for investigation of the adaptation mechanism of LhcSR in Antarctic green algae.

  11. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.

    PubMed

    Msanne, Joseph; Xu, Di; Konda, Anji Reddy; Casas-Mollano, J Armando; Awada, Tala; Cahoon, Edgar B; Cerutti, Heriberto

    2012-03-01

    Microalgae are emerging as suitable feedstocks for renewable biofuel production. Characterizing the metabolic pathways involved in the biosynthesis of energy-rich compounds, such as lipids and carbohydrates, and the environmental factors influencing their accumulation is necessary to realize the full potential of these organisms as energy resources. The model green alga Chlamydomonas reinhardtii accumulates significant amounts of triacylglycerols (TAGs) under nitrogen starvation or salt stress in medium containing acetate. However, since cultivation of microalgae for biofuel production may need to rely on sunlight as the main source of energy for biomass synthesis, metabolic and gene expression changes occurring in Chlamydomonas and Coccomyxa subjected to nitrogen deprivation were examined under strictly photoautotrophic conditions. Interestingly, nutrient depletion triggered a similar pattern of early synthesis of starch followed by substantial TAG accumulation in both of these fairly divergent green microalgae. A marked decrease in chlorophyll and protein contents was also observed, including reduction in ribosomal polypeptides and some key enzymes for CO₂ assimilation like ribulose-1,5-bisphosphate carboxylase/oxygenase. These results suggest that turnover of nitrogen-rich compounds such as proteins may provide carbon/energy for TAG biosynthesis in the nutrient deprived cells. In Chlamydomonas, several genes coding for diacylglycerol:acyl-CoA acyltransferases, catalyzing the acylation of diacylglycerol to TAG, displayed increased transcript abundance under nitrogen depletion but, counterintuitively, genes encoding enzymes for de novo fatty acid synthesis, such as 3-ketoacyl-ACP synthase I, were down-regulated. Understanding the interdependence of these anabolic and catabolic processes and their regulation may allow the engineering of algal strains with improved capacity to convert their biomass into useful biofuel precursors.

  12. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  13. THB1 regulates nitrate reductase activity and THB1 and THB2 transcription differentially respond to NO and the nitrate/ammonium balance in Chlamydomonas

    PubMed Central

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio

    2015-01-01

    Nitric oxide (NO) has emerged as an important regulator of the nitrogen assimilation pathway in plants. Nevertheless, this free radical is a double-edged sword for cells due to its high reactivity and toxicity. Hemoglobins, which belong to a vast and ancestral family of proteins present in all kingdoms of life, have arisen as important NO scavengers, through their NO dioxygenase (NOD) activity. The green alga Chlamydomonas reinhardtii has 12 hemoglobins (THB1–12) belonging to the truncated hemoglobins family. THB1 and THB2 are regulated by the nitrogen source and respond differentially to NO and the nitrate/ammonium balance. THB1 expression is upregulated by NO in contrast to THB2, which is downregulated. THB1 has NOD activity and thus a role in nitrate assimilation. In fact, THB1 is upregulated by nitrate and is under the control of NIT2, the major transcription factor in nitrate assimilation. In Chlamydomonas, it has been reported that nitrate reductase (NR) has a redox regulation and is inhibited by NO through an unknown mechanism. Now, a model in which THB1 interacts with NR is proposed for its regulation. THB1 takes electrons from NR redirecting them to NO dioxygenation. Thus, when cells are assimilating nitrate and NO appears (i.e. as a consequence of nitrite accumulation), THB1 has a double role: 1) to scavenge NO avoiding its toxic effects and 2) to control the nitrate reduction activity. PMID:26252500

  14. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation–inducible promoter

    PubMed Central

    Iwai, Masako; Ikeda, Keiko; Shimojima, Mie; Ohta, Hiroyuki

    2014-01-01

    When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)- and phosphorus (P)-starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic-growth-phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation-dependent overexpressor of a Chlamydomonas type-2 diacylglycerol acyl-CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up-regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation–inducible promoter. PMID:24909748

  15. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter.

    PubMed

    Iwai, Masako; Ikeda, Keiko; Shimojima, Mie; Ohta, Hiroyuki

    2014-08-01

    When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)- and phosphorus (P)-starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic-growth-phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation-dependent overexpressor of a Chlamydomonas type-2 diacylglycerol acyl-CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up-regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation-inducible promoter.

  16. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas.

    PubMed

    Liu, Yanjie; Misamore, Michael J; Snell, William J

    2010-05-01

    The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism.

  17. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas

    PubMed Central

    Liu, Yanjie; Misamore, Michael J.; Snell, William J.

    2010-01-01

    The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism. PMID:20335357

  18. Loss-of-Function Mutations in the Human Ortholog of Chlamydomonas reinhardtii ODA7 Disrupt Dynein Arm Assembly and Cause Primary Ciliary Dyskinesia

    PubMed Central

    Duquesnoy, Philippe; Escudier, Estelle; Vincensini, Laetitia; Freshour, Judy; Bridoux, Anne-Marie; Coste, André; Deschildre, Antoine; de Blic, Jacques; Legendre, Marie; Montantin, Guy; Tenreiro, Henrique; Vojtek, Anne-Marie; Loussert, Céline; Clément, Annick; Escalier, Denise; Bastin, Philippe; Mitchell, David R.; Amselem, Serge

    2009-01-01

    Cilia and flagella are evolutionarily conserved structures that play various physiological roles in diverse cell types. Defects in motile cilia result in primary ciliary dyskinesia (PCD), the most prominent ciliopathy, characterized by the association of respiratory symptoms, male infertility, and, in nearly 50% of cases, situs inversus. So far, most identified disease-causing mutations involve genes encoding various ciliary components, such those belonging to the dynein arms that are essential for ciliary motion. Following a candidate-gene approach based on data from a mutant strain of the biflagellated alga Chlamydomonas reinhardtii carrying an ODA7 defect, we identified four families with a PCD phenotype characterized by the absence of both dynein arms and loss-of-function mutations in the human orthologous gene called LRRC50. Functional analyses performed in Chlamydomonas reinhardtii and in another flagellated protist, Trypanosoma brucei, support a key role for LRRC50, a member of the leucine-rich-repeat superfamily, in cytoplasmic preassembly of dynein arms. PMID:19944405

  19. Expression Analysis of Genes Associated with the Induction of the Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii1[W][OA

    PubMed Central

    Yamano, Takashi; Miura, Kenji; Fukuzawa, Hideya

    2008-01-01

    Acclimation to varying CO2 concentrations and light intensities is associated with the monitoring of environmental changes by controlling genetic and physiological responses through CO2 and light signal transduction. While CO2 and light signals are indispensable for photosynthesis, and these environmental factors have been proposed as strongly associated with each other, studies linking these components are largely limited to work on higher plants. In this study, we examined the physiological characteristics of a green alga, Chlamydomonas reinhardtii, exposed to various light intensities or CO2 concentrations. Acclimation to CO2-limiting conditions by Chlamydomonas requires the induction of a carbon-concentrating mechanism (CCM) to allow the uptake of inorganic carbon (Ci) and increase the affinity for Ci. We revealed that the induction of the CCM is not solely dependent on absolute environmental Ci concentrations but is also affected by light intensity. Using a cDNA array containing 10,368 expressed sequence tags, we also obtained global expression profiles related to the physiological responses. The induction of several CCM-associated genes was strongly affected by high light as well as CO2 concentrations. We identified novel candidates for Ci transporters and CO2-responsive regulatory factors whose expression levels were significantly increased during the induction of the CCM. PMID:18322145

  20. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5'-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii.

    PubMed

    Emonds-Alt, Barbara; Coosemans, Nadine; Gerards, Thomas; Remacle, Claire; Cardol, Pierre

    2017-01-01

    Phylloquinone (PhQ), or vitamin K1 , is an essential electron carrier (A1 ) in photosystem I (PSI). In the green alga Chlamydomonas reinhardtii, which is a model organism for the study of photosynthesis, a detailed characterization of the pathway is missing with only one mutant deficient for MEND having been analyzed. We took advantage of the fact that a double reduction of plastoquinone occurs in anoxia in the A1 site in the mend mutant, interrupting photosynthetic electron transfer, to isolate four new phylloquinone-deficient mutants impaired in MENA, MENB, MENC (PHYLLO) and MENE. Compared with the wild type and complemented strains for MENB and MENE, the four men mutants grow slowly in low light and are sensitive to high light. When grown in low light they show a reduced photosynthetic electron transfer due to a specific decrease of PSI. Upon exposure to high light for a few hours, PSI becomes almost completely inactive, which leads in turn to lack of phototrophic growth. Loss of PhQ also fully prevents reactivation of photosynthesis after dark anoxia acclimation. In silico analyses allowed us to propose a PhQ biosynthesis pathway in Chlamydomonas that involves 11 enzymatic steps from chorismate located in the chloroplast and in the peroxisome.

  1. Nucleotide diversity of the colorless green alga Polytomella parva (Chlorophyceae, Chlorophyta): high for the mitochondrial telomeres, surprisingly low everywhere else.

    PubMed

    Smith, David Roy; Lee, Robert W

    2011-01-01

    Silent-site nucleotide diversity data (π(silent)) can provide insights into the forces driving genome evolution. Here we present π(silent) statistics for the mitochondrial and nuclear DNAs of Polytomella parva, a nonphotosynthetic green alga with a highly reduced, linear fragmented mitochondrial genome. We show that this species harbors very little genetic diversity, with the exception of the mitochondrial telomeres, which have an excess of polymorphic sites. These data are compared with previously published π(silent) values from the mitochondrial and nuclear genomes of the model species Chlamydomonas reinhardtii and Volvox carteri, which are close relatives of P. parva, and are used to understand the modes and tempos of genome evolution within green algae.

  2. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  3. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  4. Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell.

    PubMed

    Bono, Michael S; Ahner, Beth A; Kirby, Brian J

    2013-09-01

    In this study, dielectric characterization of algae cell suspensions was used to detect lipid accumulation due to nitrogen starvation. Wild-type Chlamydomonas reinhardtii (CC-125) was cultivated in replete and nitrogen-limited conditions in order to achieve a range of lipid contents, as confirmed by Nile Red fluorescence measurements. A vector network analyzer was used to measure the dielectric scattering parameters of a coaxial region of concentrated cell suspension. The critical frequency fc of the normalized transmission coefficient |S21(*)| decreased with increasing lipid content but did not change with cell concentration. These observations were consistent with a decrease in cytoplasmic conductivity due to lipid accumulation in the preliminary transmission line model. This dielectric sensitivity to lipid content will facilitate the development of a rapid, noninvasive method for algal lipid measurement that could be implemented in industrial settings without the need for specialized staff and analytical facilities.

  5. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-27

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies.

  6. Analysis of a family of ypt genes and their products from Chlamydomonas reinhardtii.

    PubMed

    Dietmaier, W; Fabry, S; Huber, H; Schmitt, R

    1995-05-26

    Small G-proteins encoded by the ras-like ypt genes are ubiquitous in eukaryotic cells. They have been shown to play an essential role in membrane vesicle transport. We have isolated four ypt genes, yptC1, yptC4, yptC5 and yptC6, from Chlamydomonas reinhardtii (Cr) genomic and cDNA libraries. Three of them, yptC1, yptC4 and yptC5, are close homologues of ypt genes previously found in the multicellular alga Volvox carteri (Vc), the fourth, yptC6, is new. Each yptC gene is present as a single copy in the genome. Comparisons of genomic and cDNA sequences revealed that the coding regions are interrupted by five (yptC5), six (yptC6), seven (yptC4) and eight (yptC1) introns, respectively. Cr ypt genes and the closely related Vc ypt genes have identical exon-intron structures, but the corresponding intron sequences are completely different. Polyadenylation is signalled by UAUAA, UGUAG and UGUAA. The deduced amino acid (aa) sequence of YptC6 exhibited 79% identity with HRab2; YptC1, YptC4 and YptC5 exhibited over 90% identity with their Vc homologues. Primary structures of the 9-aa 'effector domain' and the contiguous 'helix3-loop7' motif (approx. 30 aa) are 'diagnostic' features for functional assignment. Recombinant YptC proteins, overproduced in Escherichia coli and purified to near homogeneity, displayed strong and specific binding of GTP, but not of GMP or ATP. The four Cr Ypt proteins showed immunochemical cross reactions to their Vc counterparts. Moreover, Western blots demonstrated at least six types of Ypt in both Cr and Vc, suggesting that these Ypt are used for household functions responsible for vesicle transport rather than for cellular differentiation.

  7. Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii

    PubMed Central

    Liu, Cuimin; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large subunits (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8 core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution. PMID:26305355

  8. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE PAGES

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; ...

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  9. Heavy Metal-Activated Synthesis of Peptides in Chlamydomonas reinhardtii 1

    PubMed Central

    Howe, Gregg; Merchant, Sabeeha

    1992-01-01

    In this study, we have addressed the capacity of the green alga Chlamydomonas reinhardtii to produce metal-binding peptides in response to stress induced by the heavy metals Cd2+, Hg2+, and Ag+. Cells cultured in the presence of sublethal concentrations of Cd2+ synthesized and accumulated oligopeptides consisting solely of glutamic acid, cysteine, and glycine in an average ratio of 3:3:1. Cadmium-induced peptides were isolated in their native form as higher molecular weight peptide-metal complexes with an apparent molecular weight of approximately 6.5 × 103. The isolated complex bound cadmium (as evidenced by absorption spectroscopy) and sequestered (with a stoichiometry of 0.7 moles of cadmium per mole of cysteine) up to 70% of the total cadmium found in extracts of cadmium-treated cells. In Hg2+-treated cells, the principal thiol-containing compound induced by Hg2+ ions was glutathione. It is possible that glutathione functions in plant cells (as it does in animal cells) to detoxify heavy metals. Cells treated with Ag+ ions also synthesized a sulfur-containing component with a charge to mass ratio similar to Cd2+-induced peptides. But, in contrast to the results obtained using Cd2+ as an inducer, these molecules did not accumulate to significant levels in Ag+-treated cells. The presence of physiological concentrations of Cu2+ in the growth medium blocked the synthesis of the Ag+-inducible component(s) and rendered cells resistant to the toxic effects of Ag+, suggesting competition between Cu2+ and Ag+ ions, possibly at the level of metal uptake. ImagesFigure 2Figure 6Figure 7Figure 8Figure 9Figure 11 PMID:16668603

  10. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity.

    PubMed

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2014-03-01

    Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu-Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1mM sulphate. The maximum EC50 value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1mM. An increase in the sulphate concentration, in deficient environments, could alleviate the toxic effect of this metal; however, a relative excess is also negative. The results obtained showed a substrate inhibition for this nutrient. An uncompetitive model for sulphate was chosen to establish the mathematical model that links both factors.

  11. Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii.

    PubMed

    Ibáñez-Salazar, Alejandro; Rosales-Mendoza, Sergio; Rocha-Uribe, Alejandro; Ramírez-Alonso, Jocelín Itzel; Lara-Hernández, Ignacio; Hernández-Torres, Araceli; Paz-Maldonado, Luz María Teresita; Silva-Ramírez, Ana Sonia; Bañuelos-Hernández, Bernardo; Martínez-Salgado, José Luis; Soria-Guerra, Ruth Elena

    2014-08-20

    The high demand for less polluting, newer, and cheaper fuel resources has increased the search of the most innovative options for the production of the so-called biofuels. Chlamydomonas reinhardtii is a photosynthetic unicellular algae with multiple biotechnological advantages such as easy handling in the laboratory, a simple scale-up to industrial levels, as well as a feasible genetic modification at nuclear and chloroplast levels. Besides, its fatty acids can be used to produce biofuels. Previous studies in plants have found that the over expression of DOF-type transcription factor genes increases the synthesis and the accumulation of total lipids in seeds. In this context, the over-expression of a DOF-type transcription factor in C. reinhardtii was applied as approach to increase the amount of lipids. The results indicate higher amounts (around 2-fold) of total lipids, which are mainly fatty acids, in the genetically C. reinhardtii modified strains when compared with the non-genetically modified strain. In order to elucidate the possible function of the introduced Dof-type transcription factor, we performed a transcription profile of 8 genes involved in fatty acid biosynthesis and 6 genes involved in glycerolipid biosynthesis, by quantitative real time (qRT-PCR). Differential expression profile was observed, which can explain the increase in lipid accumulation. However, these strains did not show notable changes in the fatty acid profile. This work represents an early effort in generating a strategy to increase fatty acids production in C. reinhardtii and their use in biofuel synthesis.

  12. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    SciTech Connect

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; Imam, Saheed; Carter, Warren; Bilgin, Damla D.; Yohn, Christopher B.; Turkarslan, Serdar; Reiss, David J.; Orellana, Monica V.; Price, Nathan D.; Baliga, Nitin S.

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation

  13. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.

    PubMed

    Roach, Thomas; Sedoud, Arezki; Krieger-Liszkay, Anja

    2013-10-01

    Chlamydomonas reinhardtii is a photoautotrophic green alga, which can be grown mixotrophically in acetate-supplemented media (Tris-acetate-phosphate). We show that acetate has a direct effect on photosystem II (PSII). As a consequence, Tris-acetate-phosphate-grown mixotrophic C. reinhardtii cultures are less susceptible to photoinhibition than photoautotrophic cultures when subjected to high light. Spin-trapping electron paramagnetic resonance spectroscopy showed that thylakoids from mixotrophic C. reinhardtii produced less (1)O2 than those from photoautotrophic cultures. The same was observed in vivo by measuring DanePy oxalate fluorescence quenching. Photoinhibition can be induced by the production of (1)O2 originating from charge recombination events in photosystem II, which are governed by the midpoint potentials (Em) of the quinone electron acceptors. Thermoluminescence indicated that the Em of the primary quinone acceptor (QA/QA(-)) of mixotrophic cells was stabilised while the Em of the secondary quinone acceptor (QB/QB(-)) was destabilised, therefore favouring direct non-radiative charge recombination events that do not lead to (1)O2 production. Acetate treatment of photosystem II-enriched membrane fragments from spinach led to the same thermoluminescence shifts as observed in C. reinhardtii, showing that acetate exhibits a direct effect on photosystem II independent from the metabolic state of a cell. A change in the environment of the non-heme iron of acetate-treated photosystem II particles was detected by low temperature electron paramagnetic resonance spectroscopy. We hypothesise that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition.

  14. A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii.

    PubMed

    Morales-Sánchez, Daniela; Kim, Yeongho; Terng, Ee Leng; Peterson, Laura; Cerutti, Heriberto

    2017-03-08

    Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes. This article is protected by copyright. All rights reserved.

  15. Genome-wide analysis of tandem repeats in plants and green algae.

    PubMed

    Zhao, Zhixin; Guo, Cheng; Sutharzan, Sreeskandarajan; Li, Pei; Echt, Craig S; Zhang, Jie; Liang, Chun

    2014-01-10

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5'-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae (C. reinhardtii and Volvox carteri) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron-exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5' and 3' ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae.

  16. Assimilation efficiency of organic contaminants from algae by the zebra mussel, Dreissena polymorpha

    SciTech Connect

    Goldenstein, T.A.; Bruner, K.A.; Fisher, S.W.; Landrum, P.F.

    1995-12-31

    A high percent of hydrophobic contaminants in the Great Lakes are particulate bound. Due to large populations and its high filtering capacity, the zebra mussel, Dreissena polymorpha, has the potential to re-direct contaminants from the water column by removal of contaminated particles, including algae. Throughout a season, zebra mussels feed on a variety of algal species. To determine if there are algal species differences in assimilation efficiency of contaminants, the percent assimilation efficiency (%AE) of three PCB congeners and DDE from three algae species were investigated using pulse-chase methodology. Results suggest no species difference in %AE for hexachlorobiphenyl (HCBP) from the algae Chlorella vulgaris and Chlamydomonas rheinhardtii. The mean %AE of HCBP from C. vulgaris was 60.9 (SE = {+-} 4.1), as compared to 68.6 (SE = {+-} 2.9) from C. rheinhardtii. Results from additional compounds and algal species will be discussed. The results of this study will allow them to refine the mechanism of contaminant uptake in aquatic filter feeders and assess the effect of zebra mussels on contaminant cycling in the Great lakes.

  17. Salicylhydroxamic acid (SHAM) inhibition of the DIC-pump in unicellular algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1989-04-01

    SHAM at 1 or 2 mM inhibits dissolved inorganic carbon (DIC) concentrating mechanisms in unicellular green algae as measured by photosynthetic oxygen evolution or by {sup 14}C-inorganic carbon uptake (using silicone oil centrifugation techniques). This inhibition was reversed by high levels of DIC whereby the cells do not require the concentrating mechanism. SHAM inhibited the DIC-pump, which uses external CO{sub 2}, in three species of algae, Dunaliella tertiolecta, Chlamydomonas reinhardtii, and Scenedesmus obliquus when adapted to low CO{sub 2} and assayed around neutral pH. Scenedesmus adapted to air at pH 9.0 to use external HCO{sub 3}{sup {minus}} were not affected by SHAM. It is important to establish low optimum concentrations of SHAM, which varied with the algal species. The mechanism of SHAM inhibition of the CO{sub 2} concentrating process is unknown. SHAM inhibits alternative respiration in these algae, but SHAM may also inhibit other reactions involving H{sup +} gradients or transporters associated with the DIC-pump.

  18. Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.

    PubMed Central

    Ebnet, E; Fischer, M; Deininger, W; Hegemann, P

    1999-01-01

    Somatic cells of the multicellular alga Volvox carteri contain a visual rhodopsin that controls the organism's phototactic behavior via two independent photoreceptor currents. Here, we report the identification of an opsinlike gene, designated as volvoxopsin (vop). The encoded protein exhibits homologies to the opsin of the unicellular alga Chlamydomonas reinhardtii (chlamyopsin) and to the entire animal opsin family, thus providing new perspectives on opsin evolution. Volvoxopsin accumulates within the eyes of somatic cells. However, the vop transcript is detectable only in the reproductive eyeless gonidia and embryos. vop mRNA levels increase 400-fold during embryogenesis, when embryos develop in darkness, whereas the vop transcript does not accumulate when embryos develop in the light. An antisense transformant, T3, was generated. This transformant produces 10 times less volvoxopsin than does the wild type. In T3, the vop transcript is virtually absent, whereas the antisense transcript is predominant and light regulated. It follows that vop expression is under light-dependent transcriptional control but that volvoxopsin itself is not the regulatory photoreceptor. Transformant T3 is phototactic, but its phototactic sensitivity is reduced 10-fold relative to the parental wild-type strain HK10. Thus, we offer definitive genetic evidence that a rhodopsin serves as the photoreceptor for phototaxis in a green alga. PMID:10449581

  19. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    SciTech Connect

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora; Hallmann, Armin; Miller, Stephen M.; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K.; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A.; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Schmitt, Rudiger; Kirk, David; Rokhsar, Daniel S.

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  20. Isolation and characterization of a Chlamydomonas L-asparaginase.

    PubMed Central

    Paul, J H

    1982-01-01

    An L-asparaginase (EC 3.5.1.1) specific for L-asparagine has been purified from a marine Chlamydomonas species, the first such enzyme to be purified from a microalga. The purified enzyme (mol.wt. 275 000) possessed a Km for asparagine of 1.34 x 10(-4) M and showed limited antitumour activity in an antilymphoma assay in vivo. Properties of the enzyme are contrasted with those of asparaginases from prokaryotic and eukaryotic sources. Images Fig. 1. PMID:6896642

  1. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  2. Accumulation of Ferrous Iron in Chlamydomonas reinhardtii. Influence of CO2 and Anaerobic Induction of the Reversible Hydrogenase1

    PubMed Central

    Semin, Boris K.; Davletshina, Lira N.; Novakova, Alla A.; Kiseleva, Tat'yana Y.; Lanchinskaya, Victoriya Y.; Aleksandrov, Anatolii Y.; Seifulina, Nora; Ivanov, Il'ya I.; Seibert, Michael; Rubin, Andrei B.

    2003-01-01

    The green alga, Chlamydomonas reinhardtii, can photoproduce molecular H2 via ferredoxin and the reversible [Fe]hydrogenase enzyme under anaerobic conditions. Recently, a novel approach for sustained H2 gas photoproduction was discovered in cell cultures subjected to S-deprived conditions (A. Melis, L. Zhang, M. Forestier, M.L. Ghirardi, M. Seibert [2000] Plant Physiol 122: 127–135). The close relationship between S and Fe in the H2-production process is of interest because Fe-S clusters are constituents of both ferredoxin and hydrogenase. In this study, we used Mössbauer spectroscopy to examine both the uptake of Fe by the alga at different CO2 concentrations during growth and the influence of anaerobiosis on the accumulation of Fe. Algal cells grown in media with 57Fe(III) at elevated (3%, v/v) CO2 concentration exhibit elevated levels of Fe and have two comparable pools of the ion: (a) Fe(III) with Mössbauer parameters of quadrupole splitting = 0.65 mm s−1 and isomeric shift = 0.46 mm s−1 and (b) Fe(II) with quadrupole splitting = 3.1 mm s−1 and isomeric shift = 1.36 mm s−1. Disruption of the cells and use of the specific Fe chelator, bathophenanthroline, have demonstrated that the Fe(II) pool is located inside the cell. The amount of Fe(III) in the cells increases with the age of the algal culture, whereas the amount of Fe(II) remains constant on a chlorophyll basis. Growing the algae under atmospheric CO2 (limiting) conditions, compared with 3% (v/v) CO2, resulted in a decrease in the intracellular Fe(II) content by a factor of 3. Incubating C. reinhardtii cells, grown at atmospheric CO2 for 3 h in the dark under anaerobic conditions, not only induced hydrogenase activity but also increased the Fe(II) content in the cells up to the saturation level observed in cells grown aerobically at high CO2. This result is novel and suggests a correlation between the amount of Fe(II) cations stored in the cells, the CO2 concentration, and anaerobiosis. A

  3. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    NASA Astrophysics Data System (ADS)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  4. Accumulation of ferrous iron in Chlamydomonas reinhardtii. Influence of CO2 and anaerobic induction of the reversible hydrogenase.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Novakova, Alla A; Kiseleva, Tat'yana Y; Lanchinskaya, Victoriya Y; Aleksandrov, Anatolii Y; Seifulina, Nora; Ivanov, Il'ya I; Seibert, Michael; Rubin, Andrei B

    2003-04-01

    The green alga, Chlamydomonas reinhardtii, can photoproduce molecular H(2) via ferredoxin and the reversible [Fe]hydrogenase enzyme under anaerobic conditions. Recently, a novel approach for sustained H(2) gas photoproduction was discovered in cell cultures subjected to S-deprived conditions (A. Melis, L. Zhang, M. Forestier, M.L. Ghirardi, M. Seibert [2000] Plant Physiol 122: 127-135). The close relationship between S and Fe in the H(2)-production process is of interest because Fe-S clusters are constituents of both ferredoxin and hydrogenase. In this study, we used Mössbauer spectroscopy to examine both the uptake of Fe by the alga at different CO(2) concentrations during growth and the influence of anaerobiosis on the accumulation of Fe. Algal cells grown in media with (57)Fe(III) at elevated (3%, v/v) CO(2) concentration exhibit elevated levels of Fe and have two comparable pools of the ion: (a) Fe(III) with Mössbauer parameters of quadrupole splitting = 0.65 mm s(-1) and isomeric shift = 0.46 mm s(-1) and (b) Fe(II) with quadrupole splitting = 3.1 mm s(-1) and isomeric shift = 1.36 mm s(-1). Disruption of the cells and use of the specific Fe chelator, bathophenanthroline, have demonstrated that the Fe(II) pool is located inside the cell. The amount of Fe(III) in the cells increases with the age of the algal culture, whereas the amount of Fe(II) remains constant on a chlorophyll basis. Growing the algae under atmospheric CO(2) (limiting) conditions, compared with 3% (v/v) CO(2), resulted in a decrease in the intracellular Fe(II) content by a factor of 3. Incubating C. reinhardtii cells, grown at atmospheric CO(2) for 3 h in the dark under anaerobic conditions, not only induced hydrogenase activity but also increased the Fe(II) content in the cells up to the saturation level observed in cells grown aerobically at high CO(2). This result is novel and suggests a correlation between the amount of Fe(II) cations stored in the cells, the CO(2) concentration, and

  5. The family of DOF transcription factors: from green unicellular algae to vascular plants.

    PubMed

    Moreno-Risueno, Miguel Angel; Martínez, Manuel; Vicente-Carbajosa, Jesús; Carbonero, Pilar

    2007-04-01

    This article deals with the origin and evolution of the DOF transcription factor family through a phylogenetic analysis of those DOF sequences identified from a variety of representative organisms from different taxonomic groups: the green unicellular alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the fern Selaginella moellendorffii, the gymnosperm Pinus taeda, the dicotyledoneous Arabidopsis thaliana and the monocotyledoneous angiosperms Oryza sativa and Hordeum vulgare. In barley, we have identified 26 different DOF genes by sequence analyses of clones isolated from the screening of genomic libraries and of ESTs, whereas a single DOF gene was identified by bioinformatics searches in the Chlamydomonas genome. The phylogenetic analysis groups all these genes into six major clusters of orthologs originated from a primary basal grade. Our results suggest that duplications of an ancestral DOF, probably formed in the photosynthetic eukaryotic ancestor, followed by subsequent neo-, sub-functionalization and pseudogenization processes would have triggered the expansion of the DOF family. Loss, acquisition and shuffling of conserved motifs among the new DOFs likely underlie the mechanism of formation of the distinct subfamilies.

  6. Horizontal Gene Transfer of Phytochelatin Synthases from Bacteria to Extremophilic Green Algae.

    PubMed

    Olsson, Sanna; Penacho, Vanessa; Puente-Sánchez, Fernando; Díaz, Silvia; Gonzalez-Pastor, José Eduardo; Aguilera, Angeles

    2017-01-01

    Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication.

  7. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.

    PubMed

    Du, Zhi-Yan; Benning, Christoph

    2016-01-01

    Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis.

  8. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  9. Methane production from glycolate excreting algae as a new concept in the production of biofuels.

    PubMed

    Günther, Anja; Jakob, Torsten; Goss, Reimund; König, Swetlana; Spindler, Daniel; Räbiger, Norbert; John, Saskia; Heithoff, Susanne; Fresewinkel, Mark; Posten, Clemens; Wilhelm, Christian

    2012-10-01

    It is the aim of the present work to introduce a new concept for methane production by the interaction of a glycolate-excreting alga (Chlamydomonas reinhardtii) and methanogenic microbes operating in separate compartments within one photobioreactor. This approach requires a minimum number of metabolic steps to convert light energy to methane thereby reducing the energetic and financial costs of biomass formation, harvest and refinement. In this feasibility study it is shown that the physiological limitations for sustained glycolate production can be circumvented by the use of C. reinhardtii mutants whose carbon concentrating mechanisms or glycolate dehydrogenase are suppressed. The results also demonstrate that methanogenic microbes are able to thrive on glycolate as single carbon source for a long time period, delivering biogas composed of CO(2)/methane with only very minor contamination.

  10. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors.

    PubMed

    Bonente, Giulia; Formighieri, Cinzia; Mantelli, Manuela; Catalanotti, Claudia; Giuliano, Giovanni; Morosinotto, Tomas; Bassi, Roberto

    2011-09-01

    Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H(2)) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H(2) productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H(2) production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1-State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the

  11. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  12. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  13. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  14. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii.

    PubMed

    Chapman, Stephen P; Paget, Caroline M; Johnson, Giles N; Schwartz, Jean-Marc

    2015-01-01

    Cells of the green alga Chlamydomonas reinhardtii cultured in the presence of acetate perform mixotrophic growth, involving both photosynthesis and organic carbon assimilation. Under such conditions, cells exhibit a reduced capacity for photosynthesis but a higher growth rate, compared to phototrophic cultures. Better understanding of the down regulation of photosynthesis would enable more efficient conversion of carbon into valuable products like biofuels. In this study, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used with a genome scale model of C. reinhardtii to examine changes in intracellular flux distribution in order to explain their changing physiology. Additionally, a reaction essentiality analysis was performed to identify which reaction subsets are essential for a given growth condition. Our results suggest that exogenous acetate feeds into a modified tricarboxylic acid (TCA) cycle, which bypasses the CO2 evolution steps, explaining increases in biomass, consistent with experimental data. In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions. Importantly, acetate addition leads to an increased flux through cyclic electron flow (CEF), but results in a repression of CO2 fixation via Rubisco, explaining the down regulation of photosynthesis. However, although CEF enhances growth on acetate, it is not essential-impairment of CEF results in alternative metabolic pathways being increased. We have demonstrated how the reactions of photosynthesis interconnect with carbon metabolism on a global scale, and how systems approaches play a viable tool in understanding complex relationships at the scale of the organism.

  15. Crystallization and preliminary X-ray diffraction analysis of l,l-diaminopimelate aminotransferase (DapL) from Chlamydomonas reinhardtii

    PubMed Central

    Hudson, André O.; Girón, Irma; Dobson, Renwick C. J.

    2011-01-01

    In the anabolic synthesis of diaminopimelate and lysine in plants and in some bacteria, the enzyme l,l-diaminopimelate aminotransferase (DapL; EC 2.6.1.83) catalyzes the conversion of tetrahydrodipicolinic acid (THDPA) to l,l-diaminopimelate, bypassing the DapD, DapC and DapE enzymatic steps in the bacterial acyl pathways. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DapL from the alga Chlamydomonas reinhardtii are presented. Protein crystals were grown in conditions containing 25%(w/v) PEG 3350 and 200 mM lithium sulfate and initially diffracted to ∼1.35 Å resolution. They belonged to space group P212121, with unit-cell parameters a = 58.9, b = 91.8, c = 162.9 Å. The data were processed to 1.55 Å resolution with an R merge of 0.081, an R p.i.m. of 0.044, an R r.i.m of 0.093 and a V M of 2.28 Å3 Da−1. PMID:21206046

  16. Crystallization and preliminary X-ray diffraction analysis of L,L-diaminopimelate aminotransferase (DapL) from Chlamydomonas reinhardtii.

    PubMed

    Hudson, André O; Girón, Irma; Dobson, Renwick C J

    2011-01-01

    In the anabolic synthesis of diaminopimelate and lysine in plants and in some bacteria, the enzyme L,L-diaminopimelate aminotransferase (DapL; EC 2.6.1.83) catalyzes the conversion of tetrahydrodipicolinic acid (THDPA) to L,L-diaminopimelate, bypassing the DapD, DapC and DapE enzymatic steps in the bacterial acyl pathways. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DapL from the alga Chlamydomonas reinhardtii are presented. Protein crystals were grown in conditions containing 25% (w/v) PEG 3350 and 200 mM lithium sulfate and initially diffracted to ∼1.35 Å resolution. They belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=58.9, b=91.8, c=162.9 Å. The data were processed to 1.55 Å resolution with an Rmerge of 0.081, an Rp.i.m. of 0.044, an Rr.i.m of 0.093 and a VM of 2.28 Å3 Da(-1).

  17. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    PubMed

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed.

  18. Gametogenesis in the Chlamydomonas reinhardtii minus mating type is controlled by two genes, MID and MTD1.

    PubMed

    Lin, Huawen; Goodenough, Ursula W

    2007-06-01

    In the unicellular algae Chlamydomonas reinhardtii, the plus and minus mating types are controlled by a complex locus, MT, where the dominant MID gene in the MT(-) locus has been shown to be necessary for expression of minus-specific gamete-specific genes in response to nitrogen depletion. We report studies on MID expression patterns during gametogenesis and on a second gene unique to the MT(-) locus, MTD1. Vegetative cells express basal levels of MID. An early activation of MID transcription after nitrogen removal, and its sequence similarity to plant RWP-RK proteins involved in nitrogen-responsive processes, suggest that Mid conformation/activity may be nitrogen sensitive. A second stage of MID upregulation correlates with the acquisition of mating ability in minus gametes. Knockdown of MTD1 by RNAi in minus strains results in a failure to differentiate into gametes of either mating type after nitrogen deprivation. We propose that intermediate Mid levels are sufficient to activate MTD1 transcription and to repress plus gamete-specific genes and that MTD1 expression in turn allows the threshold-level MID expression needed to turn on minus gamete-specific genes. We further propose that an MTD1-equivalent system, utilizing at least one gene product encoded in the MT(+) locus, is operant during plus gametogenesis.

  19. Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas.

    PubMed

    Meijer, Harold J G; van Himbergen, John A J; Musgrave, Alan; Munnik, Teun

    2017-03-01

    Osmotic stress rapidly activates several phospholipid signalling pathways in the unicellular alga Chlamydomonas. In this report, we have studied the effects of salt-acclimation on growth and phospholipid signalling. Growing cells on media containing 100 mM NaCl increased their salt-tolerance but did not affect the overall phospholipid content, except that levels of phosphatidylinositol phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] were reduced by one-third. When these NaCl-acclimated cells were treated with increasing concentrations of salt, the same lipid signalling pathways as in non-acclimated cells were activated. This was witnessed as increases in phosphatidic acid (PA), lyso-phosphatidic acid (L-PA), diacylglycerol pyrophosphate (DGPP), PI(4,5)P2 and its isomer PI(3,5)P2. However, all dose-dependent responses were shifted to higher osmotic-stress levels, and the responses were lower than in non-acclimated cells. When NaCl-acclimated cells were treated with other osmotica, such as KCl and sucrose, the same effects were found, illustrating that they were due to hyperosmotic rather than hyperionic acclimation. The results indicate that acclimation to moderate salt stress modifies stress perception and the activation of several downstream pathways.

  20. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii

    PubMed Central

    Chapman, Stephen P.; Paget, Caroline M.; Johnson, Giles N.; Schwartz, Jean-Marc

    2015-01-01

    Cells of the green alga Chlamydomonas reinhardtii cultured in the presence of acetate perform mixotrophic growth, involving both photosynthesis and organic carbon assimilation. Under such conditions, cells exhibit a reduced capacity for photosynthesis but a higher growth rate, compared to phototrophic cultures. Better understanding of the down regulation of photosynthesis would enable more efficient conversion of carbon into valuable products like biofuels. In this study, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used with a genome scale model of C. reinhardtii to examine changes in intracellular flux distribution in order to explain their changing physiology. Additionally, a reaction essentiality analysis was performed to identify which reaction subsets are essential for a given growth condition. Our results suggest that exogenous acetate feeds into a modified tricarboxylic acid (TCA) cycle, which bypasses the CO2 evolution steps, explaining increases in biomass, consistent with experimental data. In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions. Importantly, acetate addition leads to an increased flux through cyclic electron flow (CEF), but results in a repression of CO2 fixation via Rubisco, explaining the down regulation of photosynthesis. However, although CEF enhances growth on acetate, it is not essential—impairment of CEF results in alternative metabolic pathways being increased. We have demonstrated how the reactions of photosynthesis interconnect with carbon metabolism on a global scale, and how systems approaches play a viable tool in understanding complex relationships at the scale of the organism. PMID:26175742

  1. LHCSR3 affects de-coupling and re-coupling of LHCII to PSII during state transitions in Chlamydomonas reinhardtii

    PubMed Central

    Roach, Thomas; Na, Chae Sun

    2017-01-01

    Photosynthetic organisms have to tolerate rapid changes in light intensity, which is facilitated by non-photochemical quenching (NPQ) and involves modification of energy transfer from light-harvesting complexes (LHC) to the photosystem reaction centres. NPQ includes dissipating excess light energy to heat (qE) and the reversible coupling of LHCII to photosystems (state transitions/qT), which are considered separate NPQ mechanisms. In the model alga Chlamydomonas reinhardtii the LHCSR3 protein has a well characterised role in qE. Here, it is shown in the npq4 mutant, deficient in LHCSR3, that energy coupling to photosystem II (PSII) more akin to qT is also disrupted, but no major differences in LHC phosphorylation or LHC compositions were found in comparison to wild-type cells. The qT of wild-type cells possessed two kinetically distinguishable phases, with LHCSR3 participating in the more rapid (<2 min) phase. This LHCSR3-mediated qT was sensitive to physiological levels of H2O2, which accelerated qE induction, revealing a way that may help C. reinhardtii tolerate a sudden increase in light intensity. Overall, a clear mechanistic overlap between qE and qT is shown. PMID:28233792

  2. Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast.

    PubMed

    Zedler, Julie A Z; Gangl, Doris; Guerra, Tiago; Santos, Edgar; Verdelho, Vitor V; Robinson, Colin

    2016-08-01

    Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes.

  3. Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii.

    PubMed

    Asamizu, E; Miura, K; Kucho, K; Inoue, Y; Fukuzawa, H; Ohyama, K; Nakamura, Y; Tabata, S

    2000-10-31

    To characterize genes whose expression is induced in carbon-stress conditions, 12,969 and 13,450 5'-end expressed sequence tags (ESTs) were generated from cells grown in low-CO2 and high-CO2 conditions of the unicellular green alga, Chlamydomonas reinhardtii. These ESTs were clustered into 4436 and 3566 non-redundant EST groups, respectively. Comparison of their sequences with those of 3433 non-redundant ESTs previously generated from the cells under the standard growth condition indicated that 2665 and 1879 EST groups occurred only in the low-CO2 and high-CO2 populations, respectively. It was also noted that 96.2% and 96.0% of the cDNA species respectively obtained from the low-CO2 and high-CO2 conditions had no similar EST sequence deposited in the public databases. The EST species identified only in the low-CO2 treated cells included genes previously reported to be expressed specifically in low-CO2 acclimatized cells, suggesting that the ESTs generated in this study will be a useful source for analysis of genes related to carbon-stress acclimatization. The sequence information and search results of each clone will appear at the web site: http://www.kazusa.or.jp/en/plant/chlamy/EST/.

  4. State Transitions in Chlamydomonas reinhardtii. The Role of the Mehler Reaction in State 2-to-State 1 Transition1

    PubMed Central

    Forti, Giorgio; Caldiroli, Giovanni

    2005-01-01

    The light intensity-dependent transition to state 1 of dark-adapted anaerobic state 2 Chlamydomonas reinhardtii cells is stimulated by oxygen and by other electron acceptors for photosystem I, such as oxaloacetate and methylviologen. This suggests that the transition to state 1 requires the oxidation of the intersystem chain by photosystem I photochemistry. On the other hand, the mere oxidation in the dark of the chain—by addition of O2—leads only to a slow and incomplete transition. The light-driven stimulation by O2 of the state 1 transition is saturated at an O2 concentration of 15 to 20 μm, definitely higher than that of respiration. We suggest that this may represent the affinity for oxygen of the Mehler reaction, a conclusion that is confirmed by the observations that mitochondrial respiration is apparently not involved in modulating state 2-to-state 1 transition. The catalysis of the state 2-to-state 1 transition upon illumination of anaerobically adapted algae might represent, therefore, a relevant physiological role of this process in C. reinhardtii. PMID:15591440

  5. Expression of a clostridial [FeFe]-hydrogenase in Chlamydomonas reinhardtii prolongs photo-production of hydrogen from water splitting

    DOE PAGES

    Noone, Seth; Ratcliff, Kathleen; Davis, ReAnna; ...

    2016-12-24

    The high oxygen (O2) sensitivity of green algal [FeFe]-hydrogenases is a significant limitation for the sustained production of hydrogen gas (H2) from photosynthetic water splitting. To address this limitation we replaced the native [FeFe]-hydrogenases with a more O2-tolerant clostridial [FeFe]-hydrogenase CaI in Chlamydomonas reinhardtii strain D66ΔHYD (hydA1–hydA2–) that contains insertionally inactivated [FeFe]-hydrogenases genes. Expression and translocation of CaI in D66ΔHYD led to the recovery of H2 photoproduction at ~ 20% of the rates of the wild-type parent strain D66. We show for the first time that a bacterial [FeFe]-hydrogenase can be expressed, localized and matured to a catalytically active formmore » that couples to photosynthetic electron transport in the green alga C. reinhardtii. The lower rates of O2 inactivation of CaI led to more sustained H2 photoproduction when cultures were challenged with O2 or kept under prolonged illumination at solar intensities. Lastly, these results provide new insights into the requisites for attaining photobiological H2 production from water splitting using a more O2-tolerant hydrogenase.« less

  6. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    PubMed Central

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  7. Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1990-03-01

    Rates of photosynthetic O{sub 2} evolution, for measuring K{sub 0.5}(CO{sub 2} + HCO{sub 3}{sup {minus}}) at pH 7, upon addition of 50 micromolar HCO{sub 3}{sup {minus}} to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K{sub i}(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO{sub 2} uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O{sub 2} evolution dependent on low levels of dissolved inorganic carbon (50 micromolar NaHCO{sub 3}), and the rate of {sup 14}CO{sub 2} fixation with 100 micromolar ({sup 14}C)HCO{sub 3}{sup {minus}}. Salicylhydroxamic acid inhibition of O{sub 2} evolution and {sup 14}CO{sub 2}-fixation was reversed by higher levels of NaHCO{sub 3}. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO{sub 2} accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

  8. Linkage Group Xix of Chlamydomonas Reinhardtii Has a Linear Map

    PubMed Central

    Holmes, J. A.; Johnson, D. E.; Dutcher, S. K.

    1993-01-01

    Linkage group XIX (or the UNI linkage group) of Chlamydomonas reinhardtii has been reported to show a circular meiotic recombination map. A circular map predicts the existence of strong chiasma and chromatid interference, which would lead to an excess number of two-strand double crossovers during meiosis. We have tested this prediction in multipoint crosses. Our results are consistent with a linear linkage group that shows positive chiasma interference and no chromatid interference. Chiasma interference occurs both within arms and across the centromere. Of the original loci that contributed to the circular map, we find that two map to other linkage groups and a third cannot be retested because the mutant strain that defined it has been lost. A second reported unusual property for linkage group XIX was the increase in meiotic recombination with increases in temperature during a period that precedes the onset of meiosis. Although we observed changes in recombination frequencies in some intervals on linkage group XIX in crosses to CC-1952, and in strains heterozygous for the mutation ger1 at 16°, we also show that our strains do not exhibit the previously observed patterns of temperature-sensitive recombination for two different pairs of loci on linkage group XIX. We conclude that linkage group XIX has a linear genetic map that is not significantly different from other Chlamydomonas linkage groups. PMID:8462847

  9. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    PubMed

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.

  10. Identification of Global Ferredoxin Interaction Networks in Chlamydomonas reinhardtii*

    PubMed Central

    Peden, Erin A.; Boehm, Marko; Mulder, David W.; Davis, ReAnna; Old, William M.; King, Paul W.; Ghirardi, Maria L.; Dubini, Alexandra

    2013-01-01

    Ferredoxins (FDXs) can distribute electrons originating from photosynthetic water oxidation, fermentation, and other reductant-generating pathways to specific redox enzymes in different organisms. The six FDXs identified in Chlamydomonas reinhardtii are not fully characterized in terms of their biological function. In this report, we present data from the following: (a) yeast two-hybrid screens, identifying interaction partners for each Chlamydomonas FDX; (b) pairwise yeast two-hybrid assays measuring FDX interactions with proteins from selected biochemical pathways; (c) affinity pulldown assays that, in some cases, confirm and even expand the interaction network for FDX1 and FDX2; and (d) in vitro NADP+ reduction and H2 photo-production assays mediated by each FDX that verify their role in these two pathways. Our results demonstrate new potential roles for FDX1 in redox metabolism and carbohydrate and fatty acid biosynthesis, for FDX2 in anaerobic metabolism, and possibly in state transition. Our data also suggest that FDX3 is involved in nitrogen assimilation, FDX4 in glycolysis and response to reactive oxygen species, and FDX5 in hydrogenase maturation. Finally, we provide experimental evidence that FDX1 serves as the primary electron donor to two important biological pathways, NADPH and H2 photo-production, whereas FDX2 is capable of driving these reactions at less than half the rate observed for FDX1. PMID:24100040

  11. Flagellated algae protein evolution suggests the prevalence of lineage-specific rules governing evolutionary rates of eukaryotic proteins.

    PubMed

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics that are intermediate between yeasts and mammals. Using partial correlation analyses on the evolution of 6,921 orthologous proteins from Chlamydomonas reinhardtii and Volvox carteri, we examined factors influencing evolutionary rates of proteins in flagellated algae. Previous studies have shown that mRNA abundance and gene compactness are strong determinants for protein evolutionary rates in yeasts and mammals, respectively. We show that both factors also influence algae protein evolution with mRNA abundance having a larger impact than gene compactness on the rates of algae protein evolution. More importantly, among all the factors examined, coding sequence (CDS) length has the strongest (positive) correlation with protein evolutionary rates. This correlation between CDS length and the rates of protein evolution is not due to alignment-related issues or domain density. These results suggest no simple and universal rules governing protein evolutionary rates across different eukaryotic lineages. Instead, gene properties influence the rate of protein evolution in a lineage-specific manner.

  12. Trends of lead and zinc in resident and transplanted Flavocetraria nivalis lichens near a former lead-zinc mine in West Greenland.

    PubMed

    Søndergaard, Jens; Johansen, Poul; Asmund, Gert; Rigét, Frank

    2011-09-01

    This study investigated spatial and temporal trends of lead (Pb) and zinc (Zn) in resident and transplanted Flavocetraria nivalis lichens near the former Black Angel Mine in Maarmorilik, West Greenland. The objectives of the study were to evaluate resident and transplanted lichens for monitoring dust contamination and investigate trends in mine-related dust contamination near the mine. The mine operated between 1973 and 1990 and lichens were regularly sampled between 1986 and 2009. When the mine operated, elevated concentrations of Pb, Zn and other elements were observed in resident lichens up to 35 km from Maarmorilik. In the period after mine closure, Pb and Zn concentrations in resident lichens decreased with 1-11% and 0-6% per year, respectively. From 1996 to 2009, lichens were transplanted into the study area from an uncontaminated site and collected the following year. After 1 year, transplanted lichens showed elevated concentrations of Pb and Zn but contained consistently less Pb and Zn compared to resident lichens (24±23% and 63±37%, respectively). During the most recent sampling in 2009, transplanted lichens still showed significantly elevated Pb concentrations (up to a factor 270) within a distance of 20 km from Maarmorilik. Zinc concentrations were only significantly elevated at sites within 5 km from the mine. Time-series regression analyses showed no significant decreases in Pb and Zn in transplanted lichens at any of the sites during the period 1996-2009. In conclusion, our study showed that resident F. nivalis lichens could not be used to evaluate the recent annual dust contamination in Maarmorilik. Lichen transplants, however, were considered adequate for assessing spatial and temporal trends in Pb and Zn contamination from recently deposited dust. The continuous dispersal of contaminated dust in Maarmorilik almost 20 years after mine closure reveals a slow recovery from mining contamination in this arctic area.

  13. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  14. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  15. Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta).

    PubMed

    Rodríguez-Salinas, Elizabeth; Riveros-Rosas, Héctor; Li, Zhongkui; Fucíková, Karolina; Brand, Jerry J; Lewis, Louise A; González-Halphen, Diego

    2012-07-01

    In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.

  16. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae

    NASA Astrophysics Data System (ADS)

    Cardinale, Bradley J.; Bier, Raven; Kwan, Courtney

    2012-08-01

    We examined how TiO2 nanoparticles ( nTiO2) impact the growth and metabolism of three species of freshwater green algae ( Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO2 (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration ( R). Population growth rates were consistently reduced by nTiO2, with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO2 reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO2 stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO2 had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO2 may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO2 has potential to alter important community and ecosystem properties of freshwater habitats.

  17. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    PubMed Central

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  18. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants.

    PubMed

    Dent, Rachel M; Sharifi, Marina N; Malnoë, Alizée; Haglund, Cat; Calderon, Robert H; Wakao, Setsuko; Niyogi, Krishna K

    2015-04-01

    Chlamydomonas reinhardtii is a unicellular green alga that is a key model organism in the study of photosynthesis and oxidative stress. Here we describe the large-scale generation of a population of insertional mutants that have been screened for phenotypes related to photosynthesis and the isolation of 459 flanking sequence tags from 439 mutants. Recent phylogenomic analysis has identified a core set of genes, named GreenCut2, that are conserved in green algae and plants. Many of these genes are likely to be central to the process of photosynthesis, and they are over-represented by sixfold among the screened insertional mutants, with insertion events isolated in or adjacent to 68 of 597 GreenCut2 genes. This enrichment thus provides experimental support for functional assignments based on previous bioinformatic analysis. To illustrate one of the uses of the population, a candidate gene approach based on genome position of the flanking sequence of the insertional mutant CAL027_01_20 was used to identify the molecular basis of the classical C. reinhardtii mutation ac17. These mutations were shown to affect the gene PDH2, which encodes a subunit of the plastid pyruvate dehydrogenase complex. The mutants and associated flanking sequence data described here are publicly available to the research community, and they represent one of the largest phenotyped collections of algal insertional mutants to date.

  19. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase.

    PubMed

    Vidal-Meireles, André; Neupert, Juliane; Zsigmond, Laura; Rosado-Souza, Laise; Kovács, László; Nagy, Valéria; Galambos, Anikó; Fernie, Alisdair R; Bock, Ralph; Tóth, Szilvia Z

    2017-04-01

    Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and (1) O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.

  20. Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity.

    PubMed

    Li, Xiaobo; Benning, Christoph; Kuo, Min-Hao

    2012-12-01

    When deprived of nitrogen (N), the photosynthetic microalga Chlamydomonas reinhardtii accumulates large quantities of triacylglycerols (TAGs), making it a promising source of biofuel. Prominent transcriptional changes associated with the conditions leading to TAG accumulation have been found, suggesting that the key enzymes for TAG metabolism might be among those that fluctuate in their expression during TAG synthesis and breakdown. Using a Saccharomyces cerevisiae lipase null mutant strain for functional complementation, we identified the CrLIP1 gene from Chlamydomonas based on its ability to suppress the lipase deficiency-related phenotypes of the yeast mutant. In Chlamydomonas, an inverse correlation was found between the CrLIP1 transcript level and TAG abundance when Chlamydomonas cultures were reversibly deprived of N. The CrLIP1 protein expressed and purified from Escherichia coli exhibited lipolytic activity against diacylglycerol (DAG) and polar lipids. The lipase domain of CrLIP1 is most similar to two human DAG lipases, DAGLα and DAGLβ. The involvement of CrLIP1 in Chlamydomonas TAG hydrolysis was corroborated by reducing the abundance of the CrLIP1 transcript with an artificial micro-RNA, which resulted in an apparent delay in TAG lipolysis when N was resupplied. Together, these data suggest that CrLIP1 facilitates TAG turnover in Chlamydomonas primarily by degrading the DAG presumably generated from TAG hydrolysis.

  1. Ammonium removal from anaerobically treated effluent by Chlamydomonas acidophila.

    PubMed

    Escudero, Ania; Blanco, Fernando; Lacalle, Arrate; Pinto, Miriam

    2014-02-01

    Several batch culture studies were carried out to evaluate an anaerobically treated effluent as a low-cost growth medium for the microalga Chlamydomonas acidophila and to study the effectiveness of the microalga in removing NH4-N from the effluent. An initial decrease in the effluent pH to 3 was required for adequate growth of C. acidophila and removal of NH4-N. Growth of the microalgae was inhibited at high light intensity (224μmolphotonsm(-2)s(-1) at the surface of the vessels). However, the growth was not greatly affected by the high solid content and turbidity of the effluent. The microalga was able to grow in media containing NH4-N at concentrations of up to 1000mgL(-1) (50% of effluent) and to remove 88mg of NH4-NL(-1) in 10days. C. acidophila therefore appears a promising agent for the removal of NH4-N from anaerobically treated effluents.

  2. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production.

    PubMed

    Choi, Seung Phill; Nguyen, Minh Thu; Sim, Sang Jun

    2010-07-01

    The production of ethanol from feedstock other than agriculture materials has been promoted in recent years. Some microalgae can accumulate a high starch content (about 44% of dry base) via photosynthesis. Algal biomass, Chlamydomonas reinhardtii UTEX 90, was converted into a suitable fermentable feedstock by two commercial hydrolytic enzymes. The results showed that almost all starch was released and converted into glucose without steps for the cell wall disruption. Various conditions in the liquefaction and saccharification processes, such as enzyme concentration, pH, temperature, and residence time, have been investigated to obtain an optimum combination using the orthogonal analysis. As a result, approximately 235 mg of ethanol was produced from 1.0 g of algal biomass by a separate hydrolysis and fermentation (SHF) method. The main advantages of this process include the low cost of chemicals, short residence time, and simple equipment system, all of which promote its large-scale application.

  3. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii.

    PubMed

    Gille, Andrea; Trautmann, Andreas; Posten, Clemens; Briviba, Karlis

    2015-08-01

    Microalgae can contribute to a balanced diet because of their composition. Beside numerous essential nutrients, carotenoids are in the focus for food applications. The bioavailability of carotenoids from photoautotrophic-cultivated Chlorella vulgaris (C. vulgaris) and Chlamydomonas reinhardtii (C. reinhardtii) was compared. An in vitro digestion model was used to investigate carotenoid bioaccessibility. Furthermore, the effect of sonication on bioaccessibility was assessed. Lutein was the main carotenoid in both species. C. reinhardtii showed higher amounts of lutein and β-carotene than C. vulgaris. In contrast to C. reinhardtii, no β-carotene and only 7% of lutein were bioaccessible in nonsonicated C. vulgaris. Sonication increased the bioaccessibility of carotenoids from C. vulgaris to a level comparable with C. reinhardtii (β-carotene: ≥ 10%; lutein: ≥ 15%). Thus, C. reinhardtii represents a good carotenoid source for potential use in foods without processing, while the application of processing methods, like sonication, is necessary for C. vulgaris.

  4. Antiphase synchronization in a flagellar-dominance mutant of Chlamydomonas.

    PubMed

    Leptos, Kyriacos C; Wan, Kirsty Y; Polin, Marco; Tuval, Idan; Pesci, Adriana I; Goldstein, Raymond E

    2013-10-11

    Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report the discovery that ptx1, a flagellar-dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. High-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wild-type. Possible mechanisms underlying these observations are discussed.

  5. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Miller, Michelle L; Granas, David M; Dutcher, Susan K

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.

  6. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  7. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  8. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host

    PubMed Central

    Scaife, Mark A; Nguyen, Ginnie TDT; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-01-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. Significance Statement Chlamydomonas reinhardtii offers potential as a host for the production of high value compounds for industrial biotechnology. Synthetic biology provides a mechanism to generate generic, well characterised tools for application in the rational genetic manipulation of organisms: if synthetic biology principles were adopted for manipulation of C. reinhardtii, development of this microalga as an industrial biotechnology platform would be expedited. PMID:25641561

  9. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P

    2015-01-13

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery of proteins/peptides, especially gut active proteins, without purification is disclosed.

  10. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  11. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  12. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  13. Effects of free Cu{sup 2+} and Zn{sup 2+} ions on growth and metal accumulation in freshwater algae

    SciTech Connect

    Knauer, K.; Behra, R.; Sigg, L.

    1997-02-01

    Five species of unicellular green algae were exposed to a broad range of Cu{sup 2+} and Zn{sup 2+} concentrations to examine the relationship between the free Cu{sup 2+} and Zn{sup 2+} ion concentrations and algal growth at metal concentrations relevant for freshwater phytoplankton. The authors estimated extra- and intracellular metal concentrations and characterized the adsorption of copper and zinc on algal surfaces. The optimal growth rate of Scenedesmus subspicatus occurred in a broad range of Cu{sup 2+} and Zn{sup 2+} concentrations (from 10{sup {minus}15} to 10{sup {minus}7} and from 10{sup {minus}12} to 10{sup {minus}55} M, respectively). Chlamydomonas reinhardtii reacted more sensitively toward copper, optimal growth was achieved only at a pCu (= {minus}log[Cu{sup 2+}]) around 11, whereas growth was optimal over about three orders of magnitude of the free Cu{sup 2+} concentration (from 10{sup {minus}13} to 10{sup {minus}10} M). Chlamydomonas cultures isolated from Lake Constance tolerated Cu{sup 2+} concentrations over seven orders of magnitude (pCu = 7 to 14). The growth of algae showed a high tolerance toward high intracellular copper and zinc concentrations. This suggests that the cells may immobilize the metals intracellularly. The affinity of copper for algal surfaces is higher than that of zinc in the experimental concentration range: adsorption constants log K{sub Cu} (11.06) > log K{sub Zn} (6.49) (pH = 7.9). These freshwater algae tolerate higher Cu{sup 2+} and Zn{sup 2+} concentrations than marine algal species. In comparison to the lake data, the results obtained from the culture algae indicate a possible role for copper as a limiting factor for certain algal species in eutrophic lakes.

  14. Cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241: structure, sequence, and complementation in the mesophile, Chlamydomonas reinhardtii.

    PubMed

    Gudynaite-Savitch, Loreta; Gretes, Michael; Morgan-Kiss, Rachael M; Savitch, Leonid V; Simmonds, John; Kohalmi, Susanne E; Hüner, Norman P A

    2006-04-01

    Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii DeltapetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii DeltapetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of C. reinhardtii wild type. However, the C. reinhardtii petA transformants accumulated lower levels of cytochrome b ( 6 ) /f complexes and exhibited lower light saturated rates of O(2) evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability to adaptation to cold environments.

  15. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  16. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  17. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  18. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  19. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  20. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  1. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia...

  2. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  3. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  4. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  5. Regulation of Oil Biosynthesis in Algae

    DTIC Science & Technology

    2014-10-06

    synthesize starch but accumulates TAGs transiently during the day, it appears that its primary metabolism is optimized for the production of TAGs...7    system-wide analysis of N-deprivation induced modifications in a starch -less mutant of Chlamydomonas (Blaby et al., 2013). Publications

  6. Algae -- a poor man's HAART?

    PubMed

    Teas, Jane; Hebert, James R; Fitton, J Helen; Zimba, Paul V

    2004-01-01

    Drawing inferences from epidemiologic studies of HIV/AIDS and in vivo and in vitro HIV inhibition by algae, we propose algal consumption as one unifying characteristic of countries with anomalously low rates. HIV/AIDS incidence and prevalence in Eastern Asia ( approximately 1/10000 adults in Japan and Korea), compared to Africa ( approximately 1/10 adults), strongly suggest that differences in IV drug use and sexual behavior are insufficient to explain the 1000-fold variation. Even in Africa, AIDS/HIV rates vary. Chad has consistently reported low rates of HIV/AIDS (2-4/100). Possibly not coincidentally, most people in Japan and Korea eat seaweed daily and the Kanemba, one of the major tribal groups in Chad, eat a blue green alga (Spirulina) daily. Average daily algae consumption in Asia and Africa ranges between 1 and 2 tablespoons (3-13 g). Regular consumption of dietary algae might help prevent HIV infection and suppress viral load among those infected.

  7. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  8. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  9. Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri

    PubMed Central

    Nematollahi, Ghazaleh; Kianianmomeni, Arash; Hallmann, Armin

    2006-01-01

    Background The multicellular alga Volvox carteri possesses only two cell types: mortal, motile somatic cells and potentially immortal, immotile reproductive cells. It is therefore an attractive model system for studying how cell-autonomous cytodifferentiation is programmed within a genome. Moreover, there are ongoing genome projects both in Volvox carteri and in the closely related unicellular alga Chlamydomonas reinhardtii. However, gene sequencing is only the beginning. To identify cell-type specific expression and to determine relative expression rates, we evaluate the potential of real-time RT-PCR for quantifying gene transcript levels. Results Here we analyze a diversified pool of 39 target genes by real-time RT-PCR for each cell type. This gene pool contains previously known genes with unknown localization of cellular expression, 28 novel genes which are described in this study for the first time, and a few known, cell-type specific genes as a control. The respective gene products are, for instance, part of photosynthesis, cellular regulation, stress response, or transport processes. We provide expression data for all these genes. Conclusion The results show that quantitative real-time RT-PCR is a favorable approach to analyze cell-type specific gene expression in Volvox, which can be extended to a much larger number of genes or to developmental or metabolic mutants. Our expression data also provide a basis for a detailed analysis of individual, previously unknown, cell-type specifically expressed genes. PMID:17184518

  10. Enhanced accumulation of PCB congeners by Baltic Sea blue mussels, Mytilus edulis, with increased algae enrichment

    SciTech Connect

    Gilek, M.; Bjoerk, M.; Broman, D.; Kautsky, N.; Naef, C.

    1996-09-01

    The objective of this study was to examine if natural variations in the quantity of phytoplankton-derived particulate and dissolved organic carbon influences the accumulation of polychlorinated biphenyls (PCBs) in the tissues of Baltic Sea blue mussels (Mytilus edulis L.). In a laboratory flow-through experiment the authors exposed M. edulis to the technical PCB mixture Aroclor{reg_sign} 1248 for 21 d at three different enrichments of the unicellular green algae Chlamydomonas sp., 0.10, 0.16, and 0.32 mg particulate organic carbon (POC)/L. Tissue and water concentrations were determined for seven PCB congeners and 21-d bioaccumulation factors were calculated against total water concentrations. Contrary to what would be expected, an increase in algae enrichment from 0.10 to 0.32 mg POC/L resulted in an enhanced PCB accumulation by a factor of approx. 2. This increase in PCB accumulation was more pronounced for PCB congeners with lower hydrophobicity. These observations have implications for the design of laboratory accumulation studies and potentially for PCB accumulation and cycling in field populations of suspension-feeding mussels in response to changes in eutrophication status.

  11. Characterization of a heat-shock-inducible hsp70 gene of the green alga Volvox carteri.

    PubMed

    Cheng, Qian; Hallmann, Armin; Edwards, Lisseth; Miller, Stephen M

    2006-04-12

    The green alga Volvox carteri possesses several thousand cells, but just two cell types: large reproductive cells called gonidia, and small, biflagellate somatic cells. Gonidia are derived from large precursor cells that are created during embryogenesis by asymmetric cell divisions. The J domain protein GlsA (Gonidialess A) is required for these asymmetric divisions and is believed to function with an Hsp70 partner. As a first step toward identifying this partner, we cloned and characterized V. carteri hsp70A, which is orthologous to HSP70A of the related alga Chlamydomonas reinhardtii. Like HSP70A, V. carteri hsp70A contains multiple heat shock elements (HSEs) and is highly inducible by heat shock. Consistent with these properties, Volvox transformants that harbor a glsA antisense transgene that is driven by an hsp70A promoter fragment express Gls phenotypes that are temperature-dependent. hsp70A appears to be the only gene in the genome that encodes a cytoplasmic Hsp70, so we conclude that Hsp70A is clearly the best candidate to be the chaperone that participates with GlsA in asymmetric cell division.

  12. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas E.; Berberoğlu, Halil

    2011-12-01

    This paper reports a numerical study coupling light transfer with photosynthetic rate models to determine the size and microorganism concentration of photobioreactors based on the pigmentation of algae to achieve maximum productivity. The wild strain Chlamydomonas reinhardtii and its transformant tla1 with 63% lower pigmentation are used as exemplary algae. First, empirical models of the specific photosynthetic rates were obtained from experimental data as a function of local irradiance using inverse methods. Then, these models were coupled with the radiative transfer equation (RTE) to predict both the local and total photosynthetic rates in a planar photobioreactor (PBR). The optical thickness was identified as the proper scaling parameter. The results indicated that under full sunlight corresponding to about 400 W/m2 photosynthetically active irradiation, enhancement of PBR productivity up to 30% was possible with tla1. Moreover, under similar irradiation, optical thicknesses above 169 and 275 for the wild strain and tla1, respectively, did not further enhance PBR productivity. Based on these results guidelines are provided for maximizing PBR productivity from a light transport perspective.

  13. Lévy fluctuations and mixing in dilute suspensions of algae and bacteria.

    PubMed

    Zaid, Irwin M; Dunkel, Jörn; Yeomans, Julia M

    2011-09-07

    Swimming micro-organisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by the fact that the algae induce a fluid flow that may occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quantitative theory of enhanced mixing in dilute active suspensions, however, is lacking at present. In particular, it is unclear how non-Gaussian signatures in the tracers' position distribution are linked to the self-propulsion mechanism of a micro-organism. Here, we develop a systematic theoretical description of anomalous tracer diffusion in active suspensions, based on a simplified tracer-swimmer interaction model that captures the typical distance scaling of a microswimmer's flow field. We show that the experimentally observed non-Gaussian tails are generic and arise owing to a combination of truncated Lévy statistics for the velocity field and algebraically decaying time correlations in the fluid. Our analytical considerations are illustrated through extensive simulations, implemented on graphics processing units to achieve the large sample sizes required for analysing the tails of the tracer distributions.

  14. Lévy fluctuations and mixing in dilute suspensions of algae and bacteria

    PubMed Central

    Zaid, Irwin M.; Dunkel, Jörn; Yeomans, Julia M.

    2011-01-01

    Swimming micro-organisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by the fact that the algae induce a fluid flow that may occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quantitative theory of enhanced mixing in dilute active suspensions, however, is lacking at present. In particular, it is unclear how non-Gaussian signatures in the tracers' position distribution are linked to the self-propulsion mechanism of a micro-organism. Here, we develop a systematic theoretical description of anomalous tracer diffusion in active suspensions, based on a simplified tracer-swimmer interaction model that captures the typical distance scaling of a microswimmer's flow field. We show that the experimentally observed non-Gaussian tails are generic and arise owing to a combination of truncated Lévy statistics for the velocity field and algebraically decaying time correlations in the fluid. Our analytical considerations are illustrated through extensive simulations, implemented on graphics processing units to achieve the large sample sizes required for analysing the tails of the tracer distributions. PMID:21345857

  15. An automated GCxGC-TOF-MS protocol for batch-wise extraction and alignment of mass isotopomer matrixes from differential 13C-labelling experiments: a case study for photoautotrophic-mixotrophic grown Chlamydomonas reinhardtii cells.

    PubMed

    Kempa, Stefan; Hummel, Jan; Schwemmer, Thorsten; Pietzke, Matthias; Strehmel, Nadine; Wienkoop, Stefanie; Kopka, Joachim; Weckwerth, Wolfram

    2009-02-01

    Two dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOF-MS) is a promising technique to overcome limits of complex metabolome analysis using one dimensional GC-TOF-MS. Especially at the stage of data export and data mining, however, convenient procedures to cope with the complexity of GCxGC-TOF-MS data are still in development. Here, we present a high sample throughput protocol exploiting first and second retention index for spectral library search and subsequent construction of a high dimensional data matrix useful for statistical analysis. The method was applied to the analysis of (13)C-labelling experiments in the unicellular green alga Chlamydomonas reinhardtii. We developed a rapid sampling and extraction procedure for Chlamydomonas reinhardtii laboratory strain (CC503), a cell wall deficient mutant. By testing all published quenching protocols we observed dramatic metabolite leakage rates for certain metabolites. To circumvent metabolite leakage, samples were directly quenched and analyzed without separation of the medium. The growth medium was adapted to this rapid sampling protocol to avoid interference with GCxGC-TOF-MS analysis. To analyse batches of samples a new software tool, MetMax, was implemented which extracts the isotopomer matrix from stable isotope labelling experiments together with the first and second retention index (RI1 and RI2). To exploit RI1 and RI2 for metabolite identification we used the Golm metabolome database (GMD [1] with RI1/RI2-reference spectra and new search algorithms. Using those techniques we analysed the dynamics of (13)CO(2) and (13)C-acetate uptake in Chlamydomonas reinhardtii cells in two different steady states namely photoautotroph and mixotroph growth conditions.

  16. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae

    PubMed Central

    Mori, Natsumi; Moriyama, Takashi; Toyoshima, Masakazu; Sato, Naoki

    2016-01-01

    Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid

  17. Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry.

    PubMed

    Mahan, C A; Majidi, V; Holcombe, J A

    1989-03-15

    Three freshwater heat-killed, lyophilized blue-green algae strains have been characterized as to their ability to accumulate heavy metals with a focus on the utilization of these algae as an analytical preconcentration technique. This study examines the metal uptake in several multicomponent mixtures by using inductively coupled plasma optical emission spectrometry (ICP-OES). Six milligrams of a pure strain of