Science.gov

Sample records for alga macrocystis pyrifera

  1. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  2. Light Energy Distribution in the Brown Alga Macrocystis pyrifera (Giant Kelp) 1

    PubMed Central

    Fork, David C.; Herbert, Stephen K.; Malkin, Shmuel

    1991-01-01

    The brown alga Macrocystis pyrifera (giant kelp) was studied by a combination of fluorescence spectroscopy at 77 kelvin, room temperature modulated fluorimetry, and photoacoustic techniques to determine how light energy is partitioned between photosystems I and II in states 1 and 2. Preillumination with farred light induced the high fluorescence state (state 1) as determined by fluorescence emission spectra measured at 77K and preillumination with green light produced a low fluorescence state (state 2). Upon transition from state 1 to state 2, there was an almost parallel decrease of all of the fluorescence bands at 693, 705, and 750 nanometers and not the expected decrease of fluorescence of photosystem II and increase of fluorescence in photosystem I. The momentary level of room temperature fluorescence (fluorescence in the steady state, Fs), as well as the fluorescence levels corresponding to all closed (Fm) or all open (Fo) reaction-center states were measured following the kinetics of the transition between states 1 and 2. Calculation of the distribution of light 2 (540 nanometers) between the two photosystems was done assuming both the `separate package' and `spill-over' models. Unlike green plants, red algae, and cyanobacteria, the changes here of the light distribution were rather small in Macrocystis so that there was approximately an even distribution of the photosystem II light at 540 nanometers to photosystem I and photosystem II in both states 1 and 2. Photoacoustic measurements confirmed the conclusions reached as a result of fluorescence measurements, i.e. an almost equal distribution of light-2 quanta to both photosystems in each state. This conclusion was reached by analyzing the enhancement phenomenon by light 2 of the energy storage measured in far red light. The effect of light 1 in decreasing the energy storage measured in light 2 is also consistent with this conclusion. The photoacoustic experiments showed that there was a significant energy

  3. Photosynthesis in protoplasts of Macrocystis pyrifera (Phaeophyta)

    SciTech Connect

    Davison, I.R. ); Polne-Fuller, M. )

    1990-06-01

    Photosynthetic rates measured in protoplasts isolated from the brown alga Macrocystis pyrifera (L.) Ag. were compared to those for intact tissue. Both {sup 14}C incorporation and O{sub 2} evolution gave similar rates of light-saturated protoplast photosynthesis (approximately 0.4 mmol{center dot}g chl a{sup {minus}1}{center dot}min{sup {minus}1}). Light saturated photosynthetic rates (P{sub max}) and light harvesting efficiencies ({alpha}) of protoplasts were approximately 40% those of intact tissue. In contrast, protoplasts had a greater substrate affinity for photosynthetic HCO{sub 3} uptake (lower K{sub 0.5}) than intact tissue (0.87 and 4.1 mMolar, respectively), presumably because of a reduction in the thickness of the unstirred boundary layer in the absence of the cell wall. Overall, the data suggest that protoplasts isolated from Macrocystis pyrifera are of value in the study of photosynthesis. However, experiments with intact tissue are necessary as controls to aid interpretation of protoplast data.

  4. Iron uptake and translocation by macrocystis pyrifera

    SciTech Connect

    Manley, S.L.

    1981-10-01

    Parameters of iron uptake have been determined for blade tissue of Macrocystis pyrifera (L.) C. Ag. These include the effects of iron concentration, light, various inhibitors, and blade type. All experiments were conducted in the defined artificial seawater Aquil. Iron uptake is light independent, energy dependent, and dependent on the reduction from Fe/sup 3+/ to Fe/sup 2+/. Iron is concentrated in the sieve tube exudate; exudate analysis revealed the presence of other micronutrients. Iron and other micronutrient translocation is discussed.

  5. Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera).

    PubMed

    Gomez, César G; Pérez Lambrecht, María V; Lozano, Jorge E; Rinaudo, Marguerite; Villar, Marcelo A

    2009-05-01

    In this work, three methods (ethanol, HCl, and CaCl(2) routes) of sodium alginate extraction-purification from brown seaweeds (Macrocystis pyrifera) were used in order to study the influence of process conditions on final properties of the polymer. In the CaCl(2) route, was found that the precipitation step in presence of calcium ions followed by proton-exchange in acid medium clearly gives alginates with the lowest molecular weight and poor mechanical properties. It is well known that the acid treatment degrade the ether bonds on the polymeric chain. Ethanol route displayed the best performance, where the highest yield and rheological properties were attained with the lowest number of steps. Although the polymer I.1 showed a molar mass and polydispersity index (M(w)/M(n)) similar to those of commercial sample, its mechanical properties were lower. This performance is related to the higher content of guluronic acid in the commercial alginate, which promotes a more successful calcium chelation. Moreover, the employment of pH 4 in the acid pre-treatment improved the yield of the ethanol route, avoiding the ether linkage hydrolysis. Therefore, samples I.2 and I.3 displayed a higher M(w) and a narrower distribution of molecular weights than commercial sample, which gave a higher viscosity and better viscoelastic properties.

  6. The Ecology of Microbial Communities Associated with Macrocystis pyrifera

    PubMed Central

    Michelou, Vanessa K.; Caporaso, J. Gregory; Knight, Rob; Palumbi, Stephen R.

    2013-01-01

    Kelp forests are characterized by high biodiversity and productivity, and the cycling of kelp-produced carbon is a vital process in this ecosystem. Although bacteria are assumed to play a major role in kelp forest carbon cycling, knowledge of the composition and diversity of these bacterial communities is lacking. Bacterial communities on the surface of Macrocystis pyrifera and adjacent seawater were sampled at the Hopkins Marine Station in Monterey Bay, CA, and further studied using 454-tag pyrosequencing of 16S RNA genes. Our results suggest that M. pyrifera-dominated kelp forests harbor distinct microbial communities that vary temporally. The distribution of sequence tags assigned to Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes differed between the surface of the kelp and the surrounding water. Several abundant Rhodobacteraceae, uncultivated Gammaproteobacteria and Bacteriodetes-associated tags displayed considerable temporal variation, often with similar trends in the seawater and the surface of the kelp. Bacterial community structure and membership correlated with the kelp surface serving as host, and varied over time. Several kelp-specific taxa were highly similar to other bacteria known to either prevent the colonization of eukaryotic larvae or exhibit antibacterial activities. Some of these kelp-specific bacterial associations might play an important role for M. pyrifera. This study provides the first assessment of the diversity and phylogenetic profile of the bacterial communities associated with M. pyrifera. PMID:23840715

  7. The Ecology of Microbial Communities Associated with Macrocystis pyrifera.

    PubMed

    Michelou, Vanessa K; Caporaso, J Gregory; Knight, Rob; Palumbi, Stephen R

    2013-01-01

    Kelp forests are characterized by high biodiversity and productivity, and the cycling of kelp-produced carbon is a vital process in this ecosystem. Although bacteria are assumed to play a major role in kelp forest carbon cycling, knowledge of the composition and diversity of these bacterial communities is lacking. Bacterial communities on the surface of Macrocystis pyrifera and adjacent seawater were sampled at the Hopkins Marine Station in Monterey Bay, CA, and further studied using 454-tag pyrosequencing of 16S RNA genes. Our results suggest that M. pyrifera-dominated kelp forests harbor distinct microbial communities that vary temporally. The distribution of sequence tags assigned to Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes differed between the surface of the kelp and the surrounding water. Several abundant Rhodobacteraceae, uncultivated Gammaproteobacteria and Bacteriodetes-associated tags displayed considerable temporal variation, often with similar trends in the seawater and the surface of the kelp. Bacterial community structure and membership correlated with the kelp surface serving as host, and varied over time. Several kelp-specific taxa were highly similar to other bacteria known to either prevent the colonization of eukaryotic larvae or exhibit antibacterial activities. Some of these kelp-specific bacterial associations might play an important role for M. pyrifera. This study provides the first assessment of the diversity and phylogenetic profile of the bacterial communities associated with M. pyrifera.

  8. Copper tolerance and distribution of epibiotic bacteria associated with giant kelp Macrocystis pyrifera in southern California.

    PubMed

    Busch, Julia; Nascimento, Juliana Ribeiro; Magalhães, Ana Carolina Rubem; Dutilh, Bas E; Dinsdale, Elizabeth

    2015-07-01

    Kelp forests in southern California are important ecosystems that provide habitat and nutrition to a multitude of species. Macrocystis pyrifera and other brown algae that dominate kelp forests, produce negatively charged polysaccharides on the cell surface, which have the ability to accumulate transition metals such as copper. Kelp forests near areas with high levels of boating and other industrial activities are exposed to increased amounts of these metals, leading to increased concentrations on the algal surface. The increased concentration of transition metals creates a harsh environment for colonizing microbes altering community structure. The impact of altered bacterial populations in the kelp forest have unknown consequences that could be harmful to the health of the ecosystem. In this study we describe the community of microorganisms associated with M. pyrifera, using a culture based approach, and their increasing tolerance to the transition metal, copper, across a gradient of human activity in southern California. The results support the hypothesis that M. pyrifera forms a distinct marine microhabitat and selects for species of bacteria that are rarer in the water column, and that copper-resistant isolates are selected for in locations with elevated exposure to transition metals associated with human activity.

  9. Transcriptomic analysis of metabolic function in the giant kelp, Macrocystis pyrifera, across depth and season

    PubMed Central

    Konotchick, Talina; Dupont, Christopher L; Valas, Ruben E; Badger, Jonathan H; Allen, Andrew E

    2013-01-01

    To increase knowledge of transcript diversity for the giant kelp, Macrocystis pyrifera, and assess gene expression across naturally occurring depth gradients in light, temperature and nutrients, we sequenced four cDNA libraries created from blades collected at the sea surface and at 18 m depth during the winter and summer. Comparative genomics cluster analyses revealed novel gene families (clusters) in existing brown alga expressed sequence tag data compared with other related algal groups, a pattern also seen with the addition of M. pyrifera sequences. Assembly of 228 Mbp of sequence generated c. 9000 isotigs and c. 12 000 open reading frames. Annotations were assigned using families of hidden Markov models for c. 11% of open reading frames; M. pyrifera had highest similarity to other members of the Phaeophyceae, namely Ectocarpus siliculosus and Laminaria digitata. Quantitative polymerase chain reaction of transcript targets verified depth-related differences in gene expression; stress response and light-harvesting transcripts, especially members of the LI818 (also known as LHCSR) family, showed high expression in the surface compared with 18 m depth, while some nitrogen acquisition transcripts (e.g. nitrite reductase) were upregulated at depth compared with the surface, supporting a conceptual biological model of depth-dependent physiology. PMID:23488966

  10. Transcriptomic analysis of metabolic function in the giant kelp, Macrocystis pyrifera, across depth and season.

    PubMed

    Konotchick, Talina; Dupont, Christopher L; Valas, Ruben E; Badger, Jonathan H; Allen, Andrew E

    2013-04-01

    To increase knowledge of transcript diversity for the giant kelp, Macrocystis pyrifera, and assess gene expression across naturally occurring depth gradients in light, temperature and nutrients, we sequenced four cDNA libraries created from blades collected at the sea surface and at 18 m depth during the winter and summer. Comparative genomics cluster analyses revealed novel gene families (clusters) in existing brown alga expressed sequence tag data compared with other related algal groups, a pattern also seen with the addition of M. pyrifera sequences. Assembly of 228 Mbp of sequence generated c. 9000 isotigs and c. 12,000 open reading frames. Annotations were assigned using families of hidden Markov models for c. 11% of open reading frames; M. pyrifera had highest similarity to other members of the Phaeophyceae, namely Ectocarpus siliculosus and Laminaria digitata. Quantitative polymerase chain reaction of transcript targets verified depth-related differences in gene expression; stress response and light-harvesting transcripts, especially members of the LI818 (also known as LHCSR) family, showed high expression in the surface compared with 18 m depth, while some nitrogen acquisition transcripts (e.g. nitrite reductase) were upregulated at depth compared with the surface, supporting a conceptual biological model of depth-dependent physiology. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Vertical distribution of Macrocystis pyrifera nutrient exposure in southern California

    NASA Astrophysics Data System (ADS)

    Konotchick, T.; Parnell, P. E.; Dayton, P. K.; Leichter, J. J.

    2012-06-01

    We examined water column temperature time series profiles for several years at two locations in a single kelp (Macrocystis pyrifera) forest to characterize the alongshore variability of the nutrient climate that giant kelp is exposed to and compare it to the response of giant kelp. The differences in nutrient climate are due to differential alongshore vertical variations in temperature, a well-established proxy of nitrate, due to the topographically induced internal wave dynamics within the kelp forest. We observed the greatest temperature variability during summer and most of this variability occurred near the surface. The 14.5 °C isotherm, indicating the presence of nitrate, ranged the entire vertical extent of the water column, and was shallowest during the winter and in the southern portion of the kelp forest. Predicted water column integrated nitrate varies from 0 μmol NO3-/m2 to 431 μmol NO3-/m2 yielding a time series daily average of 0.12 gN/m2day (North La Jolla) and 0.18 gN/m2day (South La Jolla). Redfield conversion of these values puts the time series daily average for carbon production (upper limit) between 0.8 and 1.2 gC/m2day for the north and south parts of the bed respectively, and shows considerable variation at several time scales. Giant kelp in the southern portion of the forest exhibited greater stipe densities (a proxy for kelp production) than individuals in the northern portion, corresponding with the alongshore nutrient climate variability. The depth of the nutricline varied by up to 10 m over time scales as short as hours. Variability was greatest at diurnal and semi-diurnal frequencies, with shallower water column depths showing greatest variability. These depth-specific variations in temperature and nutrient exposure may have biologically important consequences for M. pyrifera especially during low nutrient seasons.

  12. Purification of phlorotannins from Macrocystis pyrifera using macroporous resins.

    PubMed

    Leyton, A; Vergara-Salinas, J R; Pérez-Correa, J R; Lienqueo, M E

    2017-12-15

    Phlorotannins are secondary metabolites produced by brown seaweed, which are known for their nutraceutical and pharmacological properties. The aim of this work was to determine the type of macroporous resin and the conditions of operation that improve the purification of phlorotannins extracted from brown seaweed, Macrocystis pyrifera. For the purification of phlorotannins, six resins (HP-20, SP-850, XAD-7, XAD-16N, XAD-4 and XAD-2) were assessed. The kinetic adsorption allowed determination of an average adsorption time for the resins of 9h. The highest level of purification of phlorotannins was obtained with XAD-16N, 42%, with an adsorption capacity of 183±18mgPGE/g resin, and a desorption ratio of 38.2±7.7%. According to the adsorption isotherm the best temperature of operation was 25°C, and the model that best described the adsorption properties was the Freundlich model. The purification of phlorotannins might expand their use as a bioactive substance in the food, nutraceutical and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Zinc and cadmium biosorption by untreated and calcium-treated Macrocystis pyrifera in a batch system.

    PubMed

    Plaza Cazón, J; Bernardelli, C; Viera, M; Donati, E; Guibal, E

    2012-07-01

    Zinc and cadmium can be efficiently removed from solutions using the brown algae, Macrocystis pyrifera. Treatment with CaCl(2) allowed stabilization of the biosorbent. The maximum biosorption capacities in mono-component systems were 0.91 mmol g(-1) and 0.89 mmol g(-1) and the Langmuir affinity coefficients were 1.76 L mmol(-1) and 1.25 L mmol(-1) for Zn(II) and Cd(II), respectively. In two-component systems, Zn(II) and Cd(II) adsorption capacities were reduced by 50% and 40%, respectively and the biosorbent showed a preference for Cd(II) over Zn(II). HNO(3) (0.1M) and EDTA (0.1M) achieved 90-100% desorption of both ions from the loaded biomass. While HNO(3) preserved the biomass structure, EDTA destroyed it completely. Fourier transform infrared spectra identified the contribution of carboxylic, amine and sulfonate groups on Zn(II) and Cd(II) biosorption. These results showed that biosorption using M. pyrifera-treated biomass could be an affordable and simple process for cadmium and zinc removal from wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Comparative effects of oil dispersants to the early life stages of topsmelt (Atherinops affinis) and kelp (Macrocystis pyrifera)

    SciTech Connect

    Singer, M.M.; George, S.; Jacobson, S.; Lee, I.; Tjeerdema, R.S. ); Sowby, M.L. )

    1994-04-01

    The acute effects of two oilspill dispersants were compared using the early life stages of two common nearshore marine organisms: the topsmelt (Atherinops affinis), a common fish in bays and estuaries, and the giant kelp (Macrocystis pyrifera), a canopy-forming brown alga. Testing was done under closed, flow-through conditions, with spiked dispersant concentrations measured in real time using UV spectrophotometry. Both dispersants were composed of complex mixtures of anionic and non-ionic surfactants and solvents. Median-effect concentration data showed Atherinops tests to be more sensitive to both dispersants than Macrocystis tests, with values ranging from 48.2 to 72.9 ppm (LC50) and 73.0 to 79.4 ppm (IC50), respectively, for Nokomis[reg sign] 3, and from 43.7 to 45.8 ppm (LC50) and 73.0 to 95.9 ppm (IC50), respectively, for Slik-A-Way. Comparison of the present data with those previously compiled for the same products with two other species, the red abalone (Haliotis rufescens) and a mysid (Holmesimysis costata), showed fairly consistent interspecific patterns among three of the four species; Holmesimysis tests were seen to be least sensitive to Nokomis 3 and second most sensitive to Slik-A-Way. In addition, Slik-A-Way was more toxic to all species except Macrocystis.

  15. Abiotic influences on bicarbonate use in the giant kelp, Macrocystis pyrifera, in the Monterey Bay.

    PubMed

    Drobnitch, Sarah Tepler; Nickols, Kerry; Edwards, Matthew

    2017-02-01

    In the Monterey Bay region of central California, the giant kelp Macrocystis pyrifera experiences broad fluctuations in wave forces, temperature, light availability, nutrient availability, and seawater carbonate chemistry, all of which may impact their productivity. In particular, current velocities and light intensity may strongly regulate the supply and demand of inorganic carbon (Ci) as substrates for photosynthesis. Macrocystis pyrifera can acquire and utilize both CO2 and bicarbonate (HCO3(-) ) as Ci substrates for photosynthesis and growth. Given the variability in carbon delivery (due to current velocities and varying [DIC]) and demand (in the form of saturating irradiance), we hypothesized that the proportion of CO2 and bicarbonate utilized is not constant for M. pyrifera, but a variable function of their fluctuating environment. We further hypothesized that populations acclimated to different wave exposure and irradiance habitats would display different patterns of bicarbonate uptake. To test these hypotheses, we carried out oxygen evolution trials in the laboratory to measure the proportion of bicarbonate utilized by M. pyrifera via external CA under an orthogonal cross of velocity, irradiance, and acclimation treatments. Our Monterey Bay populations of M. pyrifera exhibited proportionally higher external bicarbonate utilization in high irradiance and high flow velocity conditions than in sub-saturating irradiance or low flow velocity conditions. However, there was no significant difference in proportional bicarbonate use between deep blades and canopy blades, nor between individuals from wave-exposed versus wave-protected sites. This study contributes a new field-oriented perspective on the abiotic controls of carbon utilization physiology in macroalgae. © 2016 Phycological Society of America.

  16. PHYSIOLOGICAL PERFORMANCE OF FLOATING GIANT KELP MACROCYSTIS PYRIFERA (PHAEOPHYCEAE): LATITUDINAL VARIABILITY IN THE EFFECTS OF TEMPERATURE AND GRAZING(1).

    PubMed

    Rothäusler, Eva; Gómez, Iván; Hinojosa, Iván A; Karsten, Ulf; Tala, Fadia; Thiel, Martin

    2011-04-01

    Rafts of Macrocystis pyrifera (L.) C. Agardh can act as an important dispersal vehicle for a multitude of organisms, but this mechanism requires prolonged persistence of floating kelps at the sea surface. When detached, kelps become transferred into higher temperature and irradiance regimes at the sea surface, which may negatively affect kelp physiology and thus their ability to persist for long periods after detachment. To examine the effect of water temperature and herbivory on the photosynthetic performance, pigment composition, carbonic anhydrase (CA) activity, and the nitrogen (N) and carbon (C) content of floating M. pyrifera, experiments were conducted at three sites (20° S, 30° S, 40° S) along the Chilean Pacific coast. Sporophytes of M. pyrifera were maintained at three different temperatures (ambient, ambient - 4°C, ambient + 4°C) and in presence or absence of the amphipod Peramphithoe femorata for 14 d. CA activity decreased at 20° S and 30° S, where water temperatures and irradiances were highest. At both sites, pigment contents were substantially lower in the experimental algae than in the initial algae, an effect that was enhanced by grazers. Floating kelps at 20° S could not withstand water temperatures >24°C and sank at day 5 of experimentation. Maximal quantum yield decreased at 20° S and 30° S but remained high at 40° S. It is concluded that environmental stress is low for kelps floating under moderate temperature and irradiance conditions (i.e., at 40° S), ensuring their physiological integrity at the sea surface and, consequently, a high dispersal potential for associated biota.

  17. Storm wave induced mortality of giant kelp, Macrocystis pyrifera, in Southern California

    NASA Astrophysics Data System (ADS)

    Seymour, R. J.; Tegner, M. J.; Dayton, P. K.; Parnell, P. E.

    1989-03-01

    The storm-related mortality rates of adult Macrocystis pyrifera in a Southern California giant kelp forest were determined over several winter storm seasons and compared with the hydrodynamic attributes of the most energetic storms. The data include stormy and relatively benign years and an exceptional storm which resulted in almost total destruction of a major Macrocystis forest. High orbital velocities (associated with large, high frequency waves), the presence of breaking waves, and entanglement by drifters were found to increase mortality through stipe breakage or holdfast failure. Longshore variability in wave intensity was found to affect kelp mortality rates. The data suggest that wave breaking may be an important factor in determining the inner boundary of the kelp bed.

  18. Nearshore Pelagic Microbial Community Abundance Affects Recruitment Success of Giant Kelp, Macrocystis pyrifera

    PubMed Central

    Morris, Megan M.; Haggerty, John M.; Papudeshi, Bhavya N.; Vega, Alejandro A.; Edwards, Matthew S.; Dinsdale, Elizabeth A.

    2016-01-01

    Marine microbes mediate key ecological processes in kelp forest ecosystems and interact with macroalgae. Pelagic and biofilm-associated microbes interact with macroalgal propagules at multiple stages of recruitment, yet these interactions have not been described for Macrocystis pyrifera. Here we investigate the influence of microbes from coastal environments on recruitment of giant kelp, M. pyrifera. Through repeated laboratory experiments, we tested the effects of altered pelagic microbial abundance on the settlement and development of the microscopic propagules of M. pyrifera during recruitment. M. pyrifera zoospores were reared in laboratory microcosms exposed to environmental microbial communities from seawater during the complete haploid stages of the kelp recruitment cycle, including zoospore release, followed by zoospore settlement, to gametophyte germination and development. We altered the microbial abundance states differentially in three independent experiments with repeated trials, where microbes were (a) present or absent in seawater, (b) altered in community composition, and (c) altered in abundance. Within the third experiment, we also tested the effect of nearshore versus offshore microbial communities on the macroalgal propagules. Distinct pelagic microbial communities were collected from two southern California temperate environments reflecting contrasting intensity of human influence, the nearshore Point Loma kelp forest and the offshore Santa Catalina Island kelp forest. The Point Loma kelp forest is a high impacted coastal region adjacent to the populous San Diego Bay; whereas the kelp forest at Catalina Island is a low impacted region of the Channel Islands, 40 km offshore the southern California coast, and is adjacent to a marine protected area. Kelp gametophytes reared with nearshore Point Loma microbes showed lower survival, growth, and deteriorated morphology compared to gametophytes with the offshore Catalina Island microbial community

  19. Nearshore Pelagic Microbial Community Abundance Affects Recruitment Success of Giant Kelp, Macrocystis pyrifera.

    PubMed

    Morris, Megan M; Haggerty, John M; Papudeshi, Bhavya N; Vega, Alejandro A; Edwards, Matthew S; Dinsdale, Elizabeth A

    2016-01-01

    Marine microbes mediate key ecological processes in kelp forest ecosystems and interact with macroalgae. Pelagic and biofilm-associated microbes interact with macroalgal propagules at multiple stages of recruitment, yet these interactions have not been described for Macrocystis pyrifera. Here we investigate the influence of microbes from coastal environments on recruitment of giant kelp, M. pyrifera. Through repeated laboratory experiments, we tested the effects of altered pelagic microbial abundance on the settlement and development of the microscopic propagules of M. pyrifera during recruitment. M. pyrifera zoospores were reared in laboratory microcosms exposed to environmental microbial communities from seawater during the complete haploid stages of the kelp recruitment cycle, including zoospore release, followed by zoospore settlement, to gametophyte germination and development. We altered the microbial abundance states differentially in three independent experiments with repeated trials, where microbes were (a) present or absent in seawater, (b) altered in community composition, and (c) altered in abundance. Within the third experiment, we also tested the effect of nearshore versus offshore microbial communities on the macroalgal propagules. Distinct pelagic microbial communities were collected from two southern California temperate environments reflecting contrasting intensity of human influence, the nearshore Point Loma kelp forest and the offshore Santa Catalina Island kelp forest. The Point Loma kelp forest is a high impacted coastal region adjacent to the populous San Diego Bay; whereas the kelp forest at Catalina Island is a low impacted region of the Channel Islands, 40 km offshore the southern California coast, and is adjacent to a marine protected area. Kelp gametophytes reared with nearshore Point Loma microbes showed lower survival, growth, and deteriorated morphology compared to gametophytes with the offshore Catalina Island microbial community

  20. Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight.

    PubMed

    Hobday

    2000-10-05

    Macrocystis pyrifera plants that detach from the substratum float to the surface and, if they do not become entangled or wash immediately to the shore, may drift at the surface for an unknown period of time. These rafts provide habitat for a variety of coastal and pelagic fauna. The distances dispersed and the period available for species to utilize these habitats, however, depend on the longevity of the raft and methods for determining the age of rafts are unknown. A method to age drifting M. pyrifera rafts based on a change in length of blades (BL) following detachment is validated here. This technique determines the period of time since detachment and not the actual age of the plant. In general, average BL decreases from initial attached values of 50-60 to about 0 cm, when rafts sink. The rate of aging, or deterioration of BL, is related to water temperature, and sets the period a raft stays afloat. Maximal estimates of ages of rafts were between 63 and 109 days, depending on the exact method used. Their lifetime will limit the distances dispersed by kelp rafts in Southern California, and this methodology will be useful for determining the temporal patterns of abundance of fauna associated with rafts.

  1. Biosorption of mercury by Macrocystis pyrifera and Undaria pinnatifida: influence of zinc, cadmium and nickel.

    PubMed

    Plaza, Josefina; Viera, Marisa; Donati, Edgardo; Guibal, Eric

    2011-01-01

    This study investigated the adsorption of Hg(II) on Macrocystis pyrifera and Undaria pinnatifida in monometallic system in the presence of Zn(II), Cd(II) and Ni(II). The two biosorbents reached the same maximum sorption capacity (q(m) = 0.8 mmol/g) for mercury. U. pinnatifida showed a greater affinity (given by the coefficient b of the Langmuir equation) for mercury compared to M. pyrifera (4.4 versus 2.7 L/mmol). Mercury uptake was significantly reduced (by more than 50%) in the presence of competitor heavy metals such as Zn(II), Cd(II) and Ni(II). Samples analysis using an environmental scanning electron microscopy equipped with an energy dispersive X-ray microanalysis showed that mercury was heterogeneously adsorbed on the surface of both biomaterials, while the other heavy metals were homogeneous distributed. The analysis of biosorbents by Fourier transform infrared spectrometry indicated that Hg(II) binding occurred on S = O (sulfonate) and N-H (amine) functional groups.

  2. Photosystem Stoichiometry and Excitation Distribution in Chloroplasts from Surface and Minus 20 Meter Blades of Macrocystis pyrifera, the Giant Kelp 1

    PubMed Central

    Smith, Barbara M.; Melis, Anastasios

    1987-01-01

    The photochemical apparatus organization in the thylakoid membrane of Macrocystis pyrifera, the giant kelp, was investigated. Chloroplasts were isolated from surface and minus 20 meter blades. Photosynthetic electron-transport complex quantitation revealed ratios of photosystem (PS) II/cytochrome b6-f/PSI = 1.8:3.3:1.0 in surface and 2.2:2.3:1.0 in minus 20 meter blades. The apparent photosynthetic unit size of chloroplasts from minus 20 meter blades (chlorophyll/P700 = 1485:1) was about 45% larger than that of surface blades (chlorophyll/P700 = 1025:1). The larger photosynthetic unit size of minus 20 meter blades is attributed to the substantially lower intensity of sunlight reaching the minus 20 meter habitat. In different chloroplast preparations, the effective absorption cross section of PSI and PSII to 670 nanometer light (chlorophyll a) and 481 nanometer light (chlorophyll c and fucoxanthin) was investigated. The results showed larger functional antenna size for PSII (about 90%) and for PSI (about 50%) in minus 20 meter than in surface blades. Moreover, the efficiency of utilization of 481 nanometer light by Macrocystis chloroplasts was equal to that of 670 nanometer light. It is concluded that the chlorophyll c-fucoxanthin complex in brown algae enables the highly efficient utilization of blue-green wavelengths of the nearshore marine environment and contributes to the dominance of M. pyrifera in this habitat. PMID:16665606

  3. The importance of progressive senescence in the biomass dynam of giant kelp (Macrocystis pyrifera).

    PubMed

    Rodriguez, Gabriel E; Rassweiler, Andrew; Reed, Daniel C; Holbrook, Sally J

    2013-08-01

    Temporal variation in primary producer biomass has profound effects on the structure and function of the surrounding ecological community. The giant kelp (Macrocystis pyrifera) exhibits strong intra-annual variation in biomass density, which is better explained by the demographic rates of fronds than by those of whole plants. To better understand the processes controlling the dynamics of giant kelp fronds we collected monthly time-series data of frond initiation and survival. These data were used to determine how frond loss and frond initiation rates were predicted by factors thought to affect the growth and survival of Macrocystis, including external environmental factors (i.e., wave height, day length, temperature, nutrient concentration, and neighborhood density) and intrinsic biological characteristics (i.e., frond age, plant size, and nutritional status). Our results revealed that frond dynamics were better explained by intrinsic biological processes rather than external environmental factors. A metric of frond age structure that incorporated progressive senescence was the best predictor of frond loss rate, accounting for 58% of the explained variation in frond loss. A similar analysis revealed that frond age structure was also the single best predictor of frond initiation rate, accounting for 46% of the explained variation. To further examine the importance of senescence in biomass dynamics, we used frond age-dependent mortality and frond initiation rates to predict biomass in subsequent months and found that the model explained 73% of the observed variation in biomass at our sites. Vegetation dynamics of many species including giant kelp are often considered largely in the context of external controls on resource availability and physical disturbance. Our results indicate that investigations of the processes controlling vegetation dynamics may benefit greatly from the inclusion of intrinsic biological factors such as age-dependent mortality and growth, which

  4. Assessing the low frequency acoustic characteristics of Macrocystis pyrifera, Egregia menziessi, and Laminaria solidungula.

    PubMed

    Wilson, Christopher J; Wilson, Preston S; Dunton, Kenneth H

    2013-06-01

    The acoustic properties of kelp forests are not well known, but are of interest for the development of environmental remote sensing applications. This study examined the low-frequency (0.2-4.5 kHz) acoustic properties of three species of kelp (Macrocystis pyrifera, Egregia menziessi, and Laminaria solidungula) using a one-dimensional acoustic resonator. Acoustic observations and measurements of kelp morphology were then used to test the validity of Wood's multi-phase medium model in describing the acoustic behavior of the kelp. For Macrocystis and Egregia, the two species of kelp possessing pneumatocysts, the change in sound speed was highly dependent on the volume of free air contained in the kelp. The volume of air alone, however, was unable to predict the effective sound speed of the multi-phase medium using a simple two-phase (air + water) form of Wood's model. A separate implementation of this model (frond + water) successfully yielded the acoustic compressibility of the frond structure for each species (Macrocystis = 1.39 ± 0.82 × 10(-8) Pa(-1); Egregia = 2.59 ± 5.75 × 10(-9) Pa(-1); Laminaria = 8.65 ± 8.22 × 10(-9) Pa(-1)). This investigation demonstrates that the acoustic characteristics of kelp are species-specific, biomass-dependent, and differ between species with and without pneumatocyst structures.

  5. Effects of produced water discharges on the colonization potential of Macrocystis pyrifera spores

    SciTech Connect

    Lewis, R.J. ); Reed, D.C. )

    1993-06-01

    Point sources of pollution (e.g. industrial outfalls) may produce ecological impacts at distant locations if pollutants affect dispersive propagules. The authors used laboratory experiments to determine how exposure to produced water (PW; aqueous fraction of petroleum production that is typically discharged into coastal waters) in the water column influences the colonization potential of giant kelp (Macrocystis pyrifera) spores on the bottom. Spores were maintained in suspension in 18 L containers and exposed to one of five concentrations of PW (0 to 10%) for varying amounts of time. Spore swimming generally decreased with increasing PW concentration and exposure duration, with the specific pattern of decrease differing between experimental trials done at different dates. The effect of exposure duration in the water column on the ability of swimming spores to attach to plastic dishes placed the bottom varied with PW concentration. Spores placed in 1 and 10% PW showed a steady decline in their ability to attach with increased exposure; lower concentrations of PW had no such effects. The proportion of spores that germinated after attachment varied tremendously with exposure duration and date of experimental trial. A low proportion of spores that settled during the first 12 h germinated, indicative of a short period of precompetency. Surprisingly, water column exposure to high concentrations of PW during the first 12 h reduced this precompetent period and greatly improved germination success. The magnitude of this enhancement, however, varied among dates. Delayed expression of PW effects were not observed in developing gametophytes; survival of individuals that successfully germinated and gamete production was not affected by previous exposure to PW as a spore.

  6. Trophic versus structural effects of a marine foundation species, giant kelp (Macrocystis pyrifera).

    PubMed

    Miller, Robert J; Page, Henry M; Reed, Daniel C

    2015-12-01

    Foundation species create milieus in which ecosystems evolve, altering species abundances and distribution often to a dramatic degree. Although much descriptive work supports their importance, there remains little definitive information on the mechanisms by which foundation species alter their environment. These mechanisms fall into two basic categories: provision of food or other materials, and modification of the physical environment. Here, we manipulated the abundance of a marine foundation species, the giant kelp Macrocystis pyrifera, in 40 × 40-m plots at Mohawk Reef off Santa Barbara, California and found that its biomass had a strong positive effect on the abundance of bottom-dwelling sessile invertebrates. We examined the carbon (C) stable isotope values of seven species of sessile invertebrates in the treatment plots to test the hypothesis that this positive effect resulted from a nutritional supplement of small suspended particles of kelp detritus, as many studies have posited. We found no evidence from stable isotope analyses to support the hypothesis that kelp detritus is an important food source for sessile suspension-feeding invertebrates. The isotope composition of invertebrates varied with species and season, but was not affected by kelp biomass, with the exception of two species: the tunicate Styela montereyensis, which exhibited a slight enrichment in C stable isotope composition with increasing kelp biomass, and the hydroid Aglaophenia sp., which showed the opposite effect. These results suggest that modification of the physical habitat, rather than nutritional subsidy by kelp detritus, likely accounts for increased abundance of sessile invertebrates within giant kelp forests.

  7. Effects of sporophyll storage on giant kelp Macrocystis pyrifera (Agardh) bioassay

    SciTech Connect

    Gully, J.R.; Bottomley, J.P.; Baird, R.B.

    1999-07-01

    The giant kelp Macrocystis pyrifera (Agardh) is a US Environmental Protection Agency (US EPA)-approved west coast marine species for chronic toxicity monitoring and compliance in the National Pollution Discharge Elimination System (NPDES). The protocol allows field-collected sporophylls to be stored for up to 24 h at 9 to 12 C prior to use. However, the effects of sporophyll storage on the bioassay results have not been fully investigated, particularly with kelp collected from beds south of Point Conception, CA, USA. Therefore, 13 matched-pair reference toxicant bioassays using fresh and stored sporophylls collected from a subtidal kelp bed near Laguna Beach, CA, USA, were performed and compared. The results indicate that a lower percentage of spores germinate and the germ tube lengths are reduced when stored sporophylls are used. The intratest precision of the germination endpoint decreased as evidenced by significant increases in the percent minimum significant difference (%MSD) statistic. The intertest precision also decreased in the germination endpoint as demonstrated by significant increases in the coefficient of variation (CV) values at four effect levels. Conversely, a significant reduction in the CVs was observed in the germ tube length data, possibly as a consequence of the decrease in germ tube length associated with storage. Finally, significant decreases in mean effect concentrations in the germination endpoint in tests using stored sporophylls indicated that storage increased the sensitivity of the spores to the toxic effects of CuCl{sub 2}. The toxicological sensitivity and intratest precision of the germ tube length endpoint were not significantly affected by storage of the sporophylls. The effects of sporophyll storage resulted in a high frequency of invalid tests, lower statistical power, less effective quality assurance standards, and apparent bias in the observed toxicity of CuCl{sub 2}.

  8. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera.

    PubMed

    Fernández, Pamela A; Roleda, Michael Y; Hurd, Catriona L

    2015-06-01

    Under ocean acidification (OA), the 200 % increase in CO2(aq) and the reduction of pH by 0.3-0.4 units are predicted to affect the carbon physiology and growth of macroalgae. Here we examined how the physiology of the giant kelp Macrocystis pyrifera is affected by elevated pCO2/low pH. Growth and photosynthetic rates, external and internal carbonic anhydrase (CA) activity, HCO3 (-) versus CO2 use were determined over a 7-day incubation at ambient pCO2 400 µatm/pH 8.00 and a future OA treatment of pCO2 1200 µatm/pH 7.59. Neither the photosynthetic nor growth rates were changed by elevated CO2 supply in the OA treatment. These results were explained by the greater use of HCO3 (-) compared to CO2 as an inorganic carbon (Ci) source to support photosynthesis. Macrocystis is a mixed HCO3 (-) and CO2 user that exhibits two effective mechanisms for HCO3 (-) utilization; as predicted for species that possess carbon-concentrating mechanisms (CCMs), photosynthesis was not substantially affected by elevated pCO2. The internal CA activity was also unaffected by OA, and it remained high and active throughout the experiment; this suggests that HCO3 (-) uptake via an anion exchange protein was not affected by OA. Our results suggest that photosynthetic Ci uptake and growth of Macrocystis will not be affected by elevated pCO2/low pH predicted for the future, but the combined effects with other environmental factors like temperature and nutrient availability could change the physiological response of Macrocystis to OA. Therefore, further studies will be important to elucidate how this species might respond to the global environmental change predicted for the ocean.

  9. Canopy-forming kelps as California's coastal dosimeter: 131I from damaged Japanese reactor measured in Macrocystis pyrifera.

    PubMed

    Manley, Steven L; Lowe, Christopher G

    2012-04-03

    The Fukushima Daiichi Nuclear Plant, damaged by an earthquake and tsunami on March 11, 2011 released large amounts of (131)I into the atmosphere, which was assimilated into canopy blades of Macrocystis pyrifera sampled from coastal California. The specific activity calculated to the estimated date of deposition/assimilation ranged from 0.6 to 2.5 Bq gdwt(-1), levels greater than those measured from kelps from Japan and Canada prior to the release. These (131)I levels represent a significant input into the kelp forest ecosystem. Canopy-forming kelps are a natural coastal dosimeter that can measure the exposure of the coastal environment to (131)I and perhaps other radioisotopes released from nuclear accidents. An organizational mechanism should be in place to ensure that they are sampled immediately and continuously after such releases.

  10. Short- and long-term acclimation patterns of the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) along a depth gradient.

    PubMed

    Koch, Kristina; Thiel, Martin; Hagen, Wilhelm; Graeve, Martin; Gómez, Iván; Jofre, David; Hofmann, Laurie C; Tala, Fadia; Bischof, Kai

    2016-04-01

    The giant kelp, Macrocystis pyrifera, is exposed to highly variable irradiance and temperature regimes across its geographic and vertical depth gradients. The objective of this study was to extend our understanding of algal acclimation strategies on different temporal scales to those varying abiotic conditions at various water depths. Different acclimation strategies to various water depths (0.2 and 4 m) between different sampling times (Jan/Feb and Aug/Sept 2012; long-term acclimation) and more rapid adjustments to different depths (0.2, 2 and 4 m; short-term acclimation) during 14 d of transplantation were found. Adjustments of variable Chl a fluorescence, pigment composition (Chl c, fucoxanthin), and the de-epoxidation state of the xanthophyll cycle pigments were responsible for the development of different physiological states with respect to various solar radiation and temperature climates. Interestingly, the results indicated that phlorotannins are important during long-term acclimation while antioxidants have a crucial role during short-term acclimation. Furthermore, the results suggested that modifications in total lipids and fatty acid compositions apparently also might play a role in depth acclimation. In Aug/Sept (austral winter), M. pyrifera responded to the transplantation from 4 m to 0.2 m depth with a rise in the degree of saturation and a switch from shorter- to longer-chain fatty acids. These changes seem to be essential for the readjustment of thylakoid membranes and might, thus, facilitate efficient photosynthesis under changing irradiances and temperatures. Further experiments are needed to disentangle the relative contribution of solar radiation, temperature and also other abiotic parameters in the observed physiological changes.

  11. Persistence and transport of fauna on drifting kelp (Macrocystis pyrifera (L.) C. Agardh) rafts in the Southern California Bight.

    PubMed

    Hobday

    2000-10-05

    Drifting rafts of Macrocystis pyrifera may connect isolated kelp forests in the Southern California Bight. To determine which species might utilize this dispersal mechanism, faunal samples from natural drifting rafts and attached M. pyrifera plants were collected during five cruises between March 1995 and December 1997. These rafts, which can be considered as floating islands, were aged and the macroinvertebrate assemblage enumerated. There was no significant relationship between raft age and species richness, or between species richness and distance offshore, which contrasts with predictions based on island biogeography. Species richness, however, was related to raft weight. Patterns of species presence and density were investigated relative to raft age for the species most frequently associated with rafts. Only one species, the isopod Idotea resecata, was found on all sampled rafts. Some species increased in frequency with raft age and others decreased, but only one relationship, a decline in the frequency of the anemone Epiactis prolifera with raft age was significant. When species density was examined over all cruises, only I. resecata had a significant change in density (an increase) with raft age, but additional significant relationships were found when species density patterns were considered by cruise. The results of all the tests were combined to provide a measure of "raft success". Nine of the most frequent 19 species had a positive score, indicating a favorable response to rafting, seven were unaffected, and two species had negative responses to rafting. Extinction times were calculated using species abundance and raft age relationships. Two species (E. prolifera and Paracerceis cordata), were predicted to persist on rafts for only about 100 days, which is the maximum estimated raft lifetime. All other species were predicted to persist for longer periods if the rafts floated longer. Kelp fauna that begin rafting appear to be largely unaffected by rafting

  12. Giant kelp vegetative propagation: Adventitious holdfast elements rejuvenate senescent individuals of the Macrocystis pyrifera "integrifolia" ecomorph.

    PubMed

    Murúa, Pedro; Müller, Dieter G; Patiño, David J; Westermeier, Renato

    2016-11-22

    Recent findings on holdfast development in the giant kelp highlighted its key importance for Macrocystis vegetative propagation. We report here for the first time the development of adventitious holdfasts from Macrocystis stipes. Swellings emerge spontaneously from different areas of the stipes, especially in senescent or creeping individuals. After being manually fastened to solid substrata, these swellings elongated into haptera, which became strongly attached after 1 month. Within 4 months, new thalli increased in size and vitality, and developed reproductive fronds. Our results suggest the usage of these structures for auxiliary attachment techniques. These could act as a backup, when primary holdfasts are weak, and thus improve the survival rate of the giant kelp in natural beds.

  13. A field investigation into the effects of a kelp forest (Macrocystis pyrifera) on coastal hydrodynamics and transport

    NASA Astrophysics Data System (ADS)

    Rosman, Johanna H.; Koseff, Jeffrey R.; Monismith, Stephen G.; Grover, Jamie

    2007-02-01

    Macrocystis pyrifera (Giant Kelp) forests form important habitats in temperate coastal regions. Hydrodynamics control the transport of nutrients, food particles, larvae and spores at scales ranging from boundary layers around individual blades to entire kelp forests. Our measurements include vertical profiles of current and temperature, and concurrent wave measurements, at a number of different locations in and around a kelp forest at Santa Cruz, California. We find that flow at the site is dominated by variations at diurnal and semidiurnal frequencies. A vertically sheared across-shore flow, consistent with flow driven by an across-shore density gradient, is thought to be important for exchange between the kelp forest and the surrounding coastal ocean. Within the kelp forest, currents are reduced by a factor that correlates with surface canopy coverage, higher frequency internal waves are damped, and onshore transport due to waves (Stokes drift) is estimated to be similar in magnitude to that due to currents. Richardson numbers within the kelp forest are higher than those outside the kelp forest and indicate that the water column within the kelp forest is usually stable to turbulence generation by mean velocity shear.

  14. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida.

    PubMed

    Leal, Pablo P; Hurd, Catriona L; Fernández, Pamela A; Roleda, Michael Y

    2017-02-06

    The absorption of anthropogenic CO2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south-eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pHT 7.20, extreme OA predicted for 2300; pHT 7.65, OA predicted for 2100; pHT 8.01, ambient pH; and pHT 8.40, pre-industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pHT (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pHT (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased towards females under all pHT treatments, except for U. pinnatifida at pHT 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pHT treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA. This article is protected by copyright. All rights reserved.

  15. Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia

    2017-05-01

    Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.

  16. Seawater pH, and not inorganic nitrogen source, affects pH at the blade surface of Macrocystis pyrifera: implications for responses of the giant kelp to future oceanic conditions.

    PubMed

    Fernández, Pamela A; Roleda, Michael Y; Leal, Pablo P; Hurd, Catriona L

    2017-01-01

    Ocean acidification (OA), the ongoing decline in seawater pH, is predicted to have wide-ranging effects on marine organisms and ecosystems. For seaweeds, the pH at the thallus surface, within the diffusion boundary layer (DBL), is one of the factors controlling their response to OA. Surface pH is controlled by both the pH of the bulk seawater and by the seaweeds' metabolism: photosynthesis and respiration increase and decrease pH within the DBL (pHDBL ), respectively. However, other metabolic processes, especially the uptake of inorganic nitrogen (Ni ; NO3(-) and NH4(+) ) may also affect the pHDBL . Using Macrocystis pyrifera, we hypothesized that (1) NO3(-) uptake will increase the pHDBL , whereas NH4(+) uptake will decrease it, (2) if NO3(-) is cotransported with H(+) , increases in pHDBL would be greater under an OA treatment (pH = 7.65) than under an ambient treatment (pH = 8.00), and (3) decreases in pHDBL will be smaller at pH 7.65 than at pH 8.00, as higher external [H(+) ] might affect the strength of the diffusion gradient. Overall, Ni source did not affect the pHDBL . However, increases in pHDBL were greater at pH 7.65 than at pH 8.00. CO2 uptake was higher at pH 7.65 than at pH 8.00, whereas HCO3(-) uptake was unaffected by pH. Photosynthesis and respiration control pHDBL rather than Ni uptake. We suggest that under future OA, Macrocystis pyrifera will metabolically modify its surface microenvironment such that the physiological processes of photosynthesis and Ni uptake will not be affected by a reduced pH. © 2016 Scandinavian Plant Physiology Society.

  17. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  18. Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines.

    PubMed

    Soedjak, H S; Butler, A

    1990-08-28

    Vanadium bromoperoxidase (V-BrPO) has been isolated and purified from the marine brown algae Fucus distichus and Macrocystis pyrifera. V-BrPO catalyzes the oxidation of bromide by hydrogen peroxide, resulting in the bromination of certain organic acceptors or the formation of dioxygen. V-BrPO from F. distichus and M. pyrifera have subunit molecular weights of 65,000 and 74,000, respectively, and specific activities of 1580 units/mg (pH 6.5) and 1730 units/mg (pH 6) for the bromination of monochlorodimedone, respectively. As isolated, the enzymes contain a substoichiometric vanadium/subunit ratio; the vanadium content and specific activity are increased by addition of vanadate. V-BrPO (F. distichus, M. pyrifera, and Ascophyllum nodosum) also catalyzes the oxidation of bromide using peracetic acid. In the absence of an organic acceptor, a mixture of oxidized bromine species (e.g., hypobromous acid, bromine, and tribromide) is formed. Bromamine derivatives are formed from the corresponding amines, while 5-bromocytosine is formed from cytosine. In all cases, the rate of the V-BrPO-catalyzed reaction is much faster than that of the uncatalyzed oxidation of bromide by peracetic acid, at pH 8.5, 1 mM bromide, and 2 mM peracetic acid. In contrast to hydrogen peroxide, V-BrPO does not catalyze formation of dioxygen from peracetic acid in either the presence or absence of bromide. V-BrPO also uses phenylperacetic acid, m-chloroperoxybenzoic acid, and p-nitroperoxybenzoic acid to catalyze the oxidation of bromide; dioxygen is not formed with these peracids. V-BrPO does not catalyze bromide oxidation or dioxygen formation with the alkyl peroxides ethyl hydroperoxide, tert-butyl hydroperoxide, and cuminyl hydroperoxide.

  19. Fish assemblages in Macrocystis and Nereocystis kelp forests off Central California

    USGS Publications Warehouse

    Bodkin, James L.

    1986-01-01

    The abundance and species composition of conspicuous fishes were compared within two canopy forming kelp forests (giant kelp, Macrocystis pyrifera, and bull kelp, Nereocystis luetkeana) in Central California. The primary investigative method was a subtidal belt transect, in which visual observation was used. The species composition of fish assemblages in the two canopy types was similar. Densities of fish were generally greater in Macrocystis than in Nereocystis forests. The major difference was the density of midwater species of the genus Sebastes. The blue rockfish, Sebastes mystinus, was the numerically dominant species in both canopy types. Estimates of the biomass of fish were about 2.4 times greater in Macrocystis beds than in Nereocystis beds.

  20. Nuclear DNA level and life cycle of kelps: Evidence for sex-specific polyteny in Macrocystis (Laminariales, Phaeophyceae).

    PubMed

    Müller, Dieter G; Maier, Ingo; Marie, Dominique; Westermeier, Renato

    2016-04-01

    Giant kelp, Macrocystis pyrifera (Linnaeus) C. Agardh, is the subject of intense breeding studies for marine biomass production and conservation of natural resources. In this context, six gametophyte pairs and a sporophyte offspring of Macrocystis from South America were analyzed by flow cytometry. Minimum relative DNA content per cell (1C) was found in five males. Unexpectedly, nuclei of all female gametophytes contained approximately double the DNA content (2C) of males; the male gametophyte from one locality also contained 2C, likely a spontaneous natural diploid variant. The results illustrate a sex-specific difference in nuclear DNA content among Macrocystis gametophytes, with the chromosomes of the females in a polytenic condition. This correlates with significantly larger cell sizes in female gametophytes compared to males and resource allocation in oogamous reproduction. The results provide key information for the interpretation of DNA measurements in kelp life cycle stages and prompt further research on the regulation of the cell cycle, metabolic activity, sex determination, and sporophyte development.

  1. Morphogenetic aspects in Macrocystis development

    SciTech Connect

    Arzee, T.; Polne, M.; Neushul, M.; Gibor, A.

    1985-09-01

    Differential growth of the giant kelp Macrocystic pyrifera, was observed in frond meristems and in young sporophytes at their primary-blade stage. Autoradiographs of plants pulse-labeled with /sup 14/C showed both that the carbon was taken up and translocated and that the fixed carbon was diluted in regions of vigorous meristematic growth. Both labeling experiments and studies of changes in size and location of holes punched in the blades illustrated a pattern of basipetal maturation and determine growth. Size and distribution of mucilage ducts, as seen in cleared whole mounts of primary blades, point to a basipetal pattern of differentiation as well. Alginase activity was relatively high in young pneumatocysts and may be involved in growth of the pneumatocyst and development of the medulla. Frond tips collected from various depths were morphologically different and maintained these differences in their growth potential, even under greenhouse conditions.

  2. Total ammoniacal nitrogen biofiltration of wastewaters from aquaculture systems using Macrocystis spp.

    PubMed

    Bravo, R; Segovia, E; Guerrero, L; Montalvo, S; Barahona, A; Borja, R

    2013-01-01

    The results of total ammoniacal nitrogen (NH(3) + NH(4) (+)) removal in aquaculture systems using two experimental sets, aquatic seedlings produced in laboratory controlled conditions and wild seaweed (Macrocystis spp.) in reproductive state, are shown in this work. Biofiltration assays were carried out using a load of total ammoniacal nitrogen (TAN) of 1 mg/L. Absorption rates were measured taking into account a previous surface characterization, which gave values of 44 ± 14 cm(2)/g and 18 ± 6 cm(2)/g for aquatic seedlings and wild algae, respectively. The following parameters were measured during the experimental runs: temperature, pH, O(2), illuminance or light intensity, salinity and total solids. TAN removals of 61% and 70% were achieved for the seedlings and Macrocystis spp., respectively, after 17 h of treatment. The TAN absorption results were expressed as a function of surface and mass achieving the following values: 3.0 nmol N cm(-2) h(-1) and 111 nmol N g(-1) h(-1) for the seedlings, and 6.9 nmol N cm(-2) h(-1) and 122.4 nmol N g(-1) h(-1) for the macroalgae. In the light of these biofiltration processes, the initial TAN concentration decreased by 90% for the seedlings and wild algae over approximately 110 and 41 h, respectively. In addition, TAN removals achieved with Macrocystis spp. were always higher than those obtained with aquatic seedlings for the same operating periods.

  3. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  4. Chemical Characterization and Determination of the Anti-Oxidant Capacity of Two Brown Algae with Respect to Sampling Season and Morphological Structures Using Infrared Spectroscopy and Multivariate Analyses.

    PubMed

    Beratto, Angelo; Agurto, Cristian; Freer, Juanita; Peña-Farfal, Carlos; Troncoso, Nicolás; Agurto, Andrés; Castillo, Rosario Del P

    2017-10-01

    Brown algae biomass has been shown to be a highly important industrial source for the production of alginates and different nutraceutical products. The characterization of this biomass is necessary in order to allocate its use to specific applications according to the chemical and biological characteristics of this highly variable resource. The methods commonly used for algae characterization require a long time for the analysis and rigorous pretreatments of samples. In this work, nondestructive and fast analyses of different morphological structures from Lessonia spicata and Macrocystis pyrifera, which were collected during different seasons, were performed using Fourier transform infrared (FT-IR) techniques in combination with chemometric methods. Mid-infrared (IR) and near-infrared (NIR) spectral ranges were tested to evaluate the spectral differences between the species, seasons, and morphological structures of algae using a principal component analysis (PCA). Quantitative analyses of the polyphenol and alginate contents and the anti-oxidant capacity of the samples were performed using partial least squares (PLS) with both spectral ranges in order to build a predictive model for the rapid quantification of these parameters with industrial purposes. The PCA mainly showed differences in the samples based on seasonal sampling, where changes were observed in the bands corresponding to polysaccharides, proteins, and lipids. The obtained PLS models had high correlation coefficients (r) for the polyphenol content and anti-oxidant capacity (r > 0.9) and lower values for the alginate determination (0.7 < r < 0.8). Fourier transform infrared-based techniques were suitable tools for the rapid characterization of algae biomass, in which high variability in the samples was incorporated for the qualitative and quantitative analyses, and have the potential to be used on an industrial scale.

  5. Long Distance Transport in Macrocystis integrifolia

    PubMed Central

    Schmitz, Klaus; Srivastava, Lalit M.

    1979-01-01

    Discs from mature regions of Macrocystis blades picked up significantly more [32P]phosphate from the ambient medium than similar discs from young meristematic regions, and this uptake was higher in light than in darkness. Double-labeling experiments with NaH14CO3 and [32P]phosphate, using intact fronds as well as cut frond segments, indicated that 32P was translocated from mature blades to sink regions at velocities of 25 to 45 centimeters per hour, velocities comparable to 14C translocation velocity in the same material. There was a slight delay in transport of 32P which may be due to a delay in loading or to a high metabolism of 32P in the transporting channels. Histoautoradiography of stipe segments in the translocation pathway indicated that transport of label occurred in the peripheral parts of medulla. An analysis of 32P-labeled compounds in the fed blade and in the sieve tube sap, collected from basal cut ends of stipes, indicated major differences in labeling patterns. In the blade, a high proportion of 32P was recovered as inorganic phosphate and relatively small amounts were found in hexose mono- and diphosphates, UDPG and ATP. In the sieve tube sap, however, only a small amount of 32P was present as inorganic phosphate, a large proportion was found in hexose mono- and diphosphates, and appreciable amounts were present in ATP and UDPG. Images PMID:16660847

  6. Effects of five southern California macroalgal diets on consumption, growth, and gonad weight, in the purple sea urchin Strongylocentrotus purpuratus.

    PubMed

    Foster, Matthew C; Byrnes, Jarrett E K; Reed, Daniel C

    2015-01-01

    Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time, and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus)) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight, while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis, at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests that the availability of the former could could sustain growth and reproduction of purple sea urchins during times of low Macrocystis abundance as is common following

  7. Effects of five southern California macroalgal diets on consumption, growth, and gonad weight, in the purple sea urchin Strongylocentrotus purpuratus

    PubMed Central

    Byrnes, Jarrett E.K.; Reed, Daniel C.

    2015-01-01

    Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time, and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus)) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight, while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis, at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests that the availability of the former could could sustain growth and reproduction of purple sea urchins during times of low Macrocystis abundance as is common following

  8. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  9. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  10. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  11. Algae Resources

    SciTech Connect

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  12. Convergent evolution of vascular optimization in kelp (Laminariales).

    PubMed

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  13. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  14. Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotus rufescens Swainson

    USGS Publications Warehouse

    Winter, Frank C.; Estes, James A.

    1992-01-01

    The effects of polyphenolic compounds from brown algae on grazing and growth rate of the California red abalone Haliotis rufescens Swainson were examined. Abalone consumed three phenolic-poor algal species, Laminaria sinclarii (Harvey) Farlow, Macrocystis pyrifera Agardh, and Nereocystis luetkeana Postels et Ruprecht (mean phenolic content = 0.52% dry mass), at a greater rate than two phenolic-rich species, Dictyoneurum californicum Ruprecht and Cystoseira osmundacea Agardh (mean phenolic content = 4.60% dry mass). This inverse relationship between phenolic content and consumption rate also existed after the algae were macerated and the liquid portion of the blended slurry incorporated in agar discs. However, the correlation between grazing rate and phenolic content imprpve d in this latter experiment, thus suggesting that abalone grazing was deterred significantly by the morphology of L. sinclarii and, to a lesser extent, of M. pyrifera. Polyphenolics extracted from D. californicum reduced abalone grazing rates by 90% when incorporated into agar discs at a concentration of 6 mg·ml−1. Although abalone were unable to maintain body mass when fed ad libitum on macerated M. pyrifera incorporated into agar discs, polyphenolics from D. californicum further inhibited shell growth when added to the discs at 5 mg·ml−1. The abalone ate less of the phenol-containing discs than of the discs lacking phenolics. Our results support findings of several prior studies that polyphenolic compounds from brown algae deter grazing by coastal zone herbivores in the northeast Pacific Ocean.

  15. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  16. Contrasting effects of giant kelp on dynamics of surfperch populations.

    PubMed

    Schmitt, Russell J; Holbrook, Sally J

    1990-10-01

    The effect of giant kelp, Macrocystis pyrifera, on the population dynamics of two temperate reef fishes, striped surfperch (Embiotoca lateralis) and black surfperch (E. jacksoni), was examined. Based on an understanding of how particular reef resources influence abundances of the surfperch and of the effect of giant kelp on those resources, we anticipated that Macrocystis would adversely affect populations of striped surfperch but would enhance those of black surfperch. The natural establishment of giant kelp at sites at Santa Cruz Island, California, resulted in the predicted dynamical responses of surfperch. Abundances of striped surfperch declined rapidly when and where dense forests of giant kelp appeared, but showed little change where Macrocystis was continuously absent over the 8 y period of study. Abundances of adult black surperch, which increased following the appearance of giant kelp, were lagged by >1 y because the dynamical response involved enhanced local recruitment. No change in abundance of black surfperch populations was evident at areas without giant kelp.The mechanism by which giant kelp altered the dynamics of the surfperch involved modification of the assemblage of understory algae used by surfperch as foraging microhabitat. Foliose algae (including Gelidium robustum) were much reduced and turf was greatly enhanced following the appearance of Macrocystis; these two benthic substrata are the favored foraging microhabitat for striped surfperch and black surfperch respectively. Populations of both surfperch species tracked temporal changes in the local availability of their favored foraging microhabitat. Thus, while neither species used Macrocystis directly, temporal and spatial variation in giant kelp indirectly influenced the dynamics of these fishes by altering their foraging base. These results indicate that the dynamics of striped surfperch and black surfperch were governed to a large degree by density-dependent consumer

  17. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  18. Blue-green algae

    MedlinePlus

    ... conditions, cancer, fatty liver disease, hepatitis C, and arsenic poisoning. Blue-green algae are applied inside the mouth ... people with insulin resistance due to HIV medication. Arsenic poisoning. Early research shows that taking 250 mg of ...

  19. Anticoagulant effect of marine algae.

    PubMed

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Effects of experimental overgrowth on survival and change in the turf assemblage of a giant kelp forest

    USGS Publications Warehouse

    Miles, A.K.; Meslow, E.C.

    1990-01-01

    Crustose coralline algae were the prevalent cover among sessile organisms that paved or grew near the substratum, and also the most commonly overgrown species in a giant kelp Macrocystis pyrifera (L.) C.A. Agardh forest located off San Nicolas Island, California. Giant kelp was the largest and most conspicuous species that overgrew large patches of the substrata; overgrowth among turf organisms also appeared common. To determine the effects of giant kelp holdfasts on crustose coralline algae and other turf organisms,'artificial holdfasts' were placed on 0.125-m2 plots for 5, 8 and 12 months. In these treatments, 50?57% of the crustose coralline algae survived. Because these algae also recruited while covered, the total cover (survivorship plus recruitment) differed by only 7?26% from that sampled at the start of the study. The decline of these algae in control plots was similar to that in the treatment plots mostly because of overgrowth by sessile invertebrates. Bryozoans increased markedly on the control plots, whereas 0?12% survived in the treatment plots. Bryozoans and sponges also recruited under the artificial holdfasts. Some arborescent turf algae survived in the 5- and 8-month treatments; articulated coralline algae survived better than did foliose algae. High survival recruitment of crustose coralline algae while overgrown contributed to their prevalence in benthic communities.

  1. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  2. Kelp forest monitoring 1994 annual report. Channel Islands National Park. Final report

    SciTech Connect

    Kushner, D.; Lerma, D.; Richards, D.

    1994-12-31

    The 1994 results of the Channel Islands Natonal Park Kelp Forest Monitoring Project are described in this report. Population dynamics of 68 taxa or categories of algae, fish, and invertebrates were measured at 16 permanent sites around the five islands within the park. Survey techniques utilized SCUBA and surface-supplied-air, and included quadrants, band transects, random point contacts, fish transects, video transects, size frequency measurements, artificial recruitment modules, and species list surveys. Temperature data was collected using temperature loggers deployed at each of the sixteen sites. Size frequency measurements were taken from artificial recruitment modules at ten sites. In 1994, 13 sites had giant kelp, Macrocystis pyrifera, forests, one site was dominated by the aggregating red sea cucumber, Pachythyone rubra, one site was dominated by red sea urchins, Strongylocentrotus francisanus, and another by purple sea urchins, S. purpuratus. Wasting disease was observed in sea stars and wasting syndrome was apparent in sea urchins.

  3. Air-sea CO2 exchange from kelp forests (Macrocystis) in San Diego, Southern California - CO2 flux measurements by the boat based eddy covariance technique -

    NASA Astrophysics Data System (ADS)

    Ikawa, H.; Oechel, W. C.

    2011-12-01

    The California Bight near San Diego in Southern California is characterized by extensive kelp forests (Macrocystis). To quantify air-sea CO2 exchange (CO2 flux) on the kelp forest, we set up an eddy covariance system on a boat together with a gyro sensor for the motion correction. We also measured pCO2 and estimated CO2 flux by using the bulk method. The measurements were taken on May 19th (15-17 PST), December 9th (12-16 PST) and December 23rd (13-16 PST) in 2009 over the kelp forest (N32.6°, W 117.2°) near Point Loma, San Diego. Both CO2 flux measured by the eddy covariance system and estimated by the bulk method showed a consistent sink of CO2. However, there were some discrepancies between the two methods in the flux estimation. The lowest dpCO2 (pCO2 - atmospheric CO2) of -152 ppm with the highest wind speed was observed on May 19th resulting in the highest CO2 sink of -0.26 gCm-2day-1 estimated by the bulk method. On the other hand, the eddy covariance technique recorded the highest CO2 sink of -1.34 gCm-2day-1 on December 9th, although dpCO2 of -50.6 ppm recorded on December 9th was higher than that on May 19th. CO2 flux calculated by the bulk method was overall smaller than CO2 flux measured by the eddy covariance technique. The discrepancy in between the two methods was relatively less on May 19th when higher wind speeds were observed compared to the other two cruises.

  4. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  5. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  6. Cellular Auxin Transport in Algae

    PubMed Central

    Zhang, Suyun; van Duijn, Bert

    2014-01-01

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies. PMID:27135491

  7. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-27

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies.

  8. Ecology of Harmful Algae

    NASA Astrophysics Data System (ADS)

    Roelke, Daniel L.

    2007-07-01

    Edna Graneli and Jefferson T. Turner, Editors;Ecological Studies Series, Vol. 189; Springer; ISBN 3540322094; 413 pp.; 2006; $195 Harmful algal blooms (HABs) affect commercially and recreationally important species, human health, and ecosystem functioning. Hallmark events are the visually stunning blooms where waters are discolored and filled with ichthyotoxin-producing algae that lead to large fish kills. Of most concern, however, are HABs that pose a threat to human health. For example, some phycotoxins bioaccumulate in the guts and tissues of commercially and recreationally important species that when consumed by humans, may result in nausea, paralysis, memory loss, and even death. In addition to the deleterious impacts of phycotoxins, HABs can be problematic in other ways. For example, the decay of blooms often leads to low dissolved oxygen in subsurface waters. Blooms also reduce light penetration into the water column. Both processes disrupt ecosystems and in some cases have completely destroyed benthic communities.

  9. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  10. [From algae to "functional foods"].

    PubMed

    Vadalà, M; Palmieri, B

    2015-01-01

    In the recent years, a growing interest for nutraceutical algae (tablets, capsules, drops) has been developed, due to their effective health benefits, as a potential alternative to the classic drugs. This review explores the use of cyanobacterium Spirulina, the microalgae Chlorella, Dunaliella, Haematococcus, and the macroalgae Klamath, Ascophyllum, Lithothamnion, Chondrus, Hundaria, Glacilaria, Laminaria, Asparagopsis, Eisenia, Sargassum as nutraceuticals and dietary supplements, in terms of production, nutritional components and evidence-based health benefits. Thus, our specific goals are: 1) Overview of the algae species currently used in nutraceuticals; 2) Description of their characteristics, action mechanisms, and possible side effects; 3) Perspective of specific algae clinical investigations development.

  11. Neuroprotective effects of marine algae.

    PubMed

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection.

  12. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  13. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  14. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  15. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  16. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  17. Untangling Genomes of Novel Planctomycetal and Verrucomicrobial Species from Monterey Bay Kelp Forest Metagenomes by Refined Binning.

    PubMed

    Vollmers, John; Frentrup, Martinique; Rast, Patrick; Jogler, Christian; Kaster, Anne-Kristin

    2017-01-01

    The kelp forest of the Pacific temperate rocky marine coastline of Monterey Bay in California is a dominant habitat for large brown macro-algae in the order of Laminariales. It is probably one of the most species-rich, structurally complex and productive ecosystems in temperate waters and well-studied in terms of trophic ecology. However, still little is known about the microorganisms thriving in this habitat. A growing body of evidence suggests that bacteria associated with macro-algae represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological purposes. Those microorganisms are most likely attracted by algae through secretion of specific carbohydrates and proteins that trigger them to attach to the algal surface and to form biofilms. The algae might then employ those bacteria as biofouling control, using their antimicrobial secondary metabolites to defeat other bacteria or eukaryotes. We here analyzed biofilm samples from the brown macro-algae Macrocystis pyrifera sampled in November 2014 in the kelp forest of Monterey Bay by a metagenomic shotgun and amplicon sequencing approach, focusing on Planctomycetes and Verrucomicrobia from the PVC superphylum. Although not very abundant, we were able to find novel Planctomycetal and Verrucomicrobial species by an innovative binning approach. All identified species harbor secondary metabolite related gene clusters, contributing to our hypothesis that through inter-species interaction, microorganisms might have a substantial effect on kelp forest wellbeing and/or disease-development.

  18. Untangling Genomes of Novel Planctomycetal and Verrucomicrobial Species from Monterey Bay Kelp Forest Metagenomes by Refined Binning

    PubMed Central

    Vollmers, John; Frentrup, Martinique; Rast, Patrick; Jogler, Christian; Kaster, Anne-Kristin

    2017-01-01

    The kelp forest of the Pacific temperate rocky marine coastline of Monterey Bay in California is a dominant habitat for large brown macro-algae in the order of Laminariales. It is probably one of the most species-rich, structurally complex and productive ecosystems in temperate waters and well-studied in terms of trophic ecology. However, still little is known about the microorganisms thriving in this habitat. A growing body of evidence suggests that bacteria associated with macro-algae represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological purposes. Those microorganisms are most likely attracted by algae through secretion of specific carbohydrates and proteins that trigger them to attach to the algal surface and to form biofilms. The algae might then employ those bacteria as biofouling control, using their antimicrobial secondary metabolites to defeat other bacteria or eukaryotes. We here analyzed biofilm samples from the brown macro-algae Macrocystis pyrifera sampled in November 2014 in the kelp forest of Monterey Bay by a metagenomic shotgun and amplicon sequencing approach, focusing on Planctomycetes and Verrucomicrobia from the PVC superphylum. Although not very abundant, we were able to find novel Planctomycetal and Verrucomicrobial species by an innovative binning approach. All identified species harbor secondary metabolite related gene clusters, contributing to our hypothesis that through inter-species interaction, microorganisms might have a substantial effect on kelp forest wellbeing and/or disease-development. PMID:28424662

  19. Production of bromoform and dibromomethane by Giant Kelp: Factors affecting release and comparison to anthropogenic bromine sources

    USGS Publications Warehouse

    Goodwin, K.D.; North, W.J.; Lidstrom, M.E.

    1998-01-01

    Macrocystis pyrifera (Giant Kelp), a dominant macroalgal species in southern California, produced 171 ng per g fresh wt (gfwt) per day of CHBr3 and 48 ng gfwt-1 d-1 of CH2Br2 during laboratory incubations of whole blades. Comparable rates were measured during in situ incubations of intact fronds. Release of CHBr3 and CH2Br2 by M. pyrifera was affected by light and algal photosynthetic activity, suggesting that environmental factors influencing kelp physiology can affect halomethane release to the atmosphere. Data from H2O2 additions suggest that brominated methane production during darkness is limited by bromide oxidant supply. A bromine budget constructed for a region of southern California indicated that bromine emitted from the use of CH3Br as a fumigant (1 x 108 g Br yr-1) dominates macroalgal sources (3 x 106 g Br yr-1). Global projections, however, suggest that combined emissions of marine algae (including microalgae) contribute substantial amounts of bromine to the global cycle, perhaps on the same order of magnitude as anthropogenic sources.

  20. Bioassay development using early life stages of the marine macroalga, Ecklonia radiata

    SciTech Connect

    Bidwell, J.R.; Wheeler, K.D.; Roper, J.; Burridge, T.R.

    1995-12-31

    A lack of standard toxicity test methods for species native to Australia has stimulated research to overcome this deficiency. In the present work, germination inhibition was utilized as an endpoint in 48h bioassays with the marine macroalga Ecklonia radiata. E radiata is often a dominant member of temperate subtidal communities in Australia and other parts of the southern hemisphere. The alga fills an ecological niche similar to that of Macrocystis pyrifera, the giant kelp which occurs in the northern hemisphere. In an adaptation of test methods used for M. pyrifera, release of E. radiata zoospores was induced in the laboratory. Settled spores were then exposed to toxicants for 48 h and germination success was determined by scoring the spores for the development of a germination tube. At 20 C, EC{sub 50} values ranging between 53.4 and 77.4 mg/L were generated in tests with hexavalent chromium (potassium chromate). The EC{sub 50} for copper (cupric chloride) was 0.53 mg/L. Sensitivity of E. radiata to metals such as copper may have significance toward assessing the environmental impacts of some antifoulant coatings used on seagoing vessels. In future studies, growth of zoospore germination tubes and comparative sensitivity of different E. radiata populations will be examined.

  1. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  2. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  3. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  4. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  5. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  6. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  7. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  8. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  9. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  10. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  11. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  12. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  13. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  14. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  15. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  16. Algae -- a poor man's HAART?

    PubMed

    Teas, Jane; Hebert, James R; Fitton, J Helen; Zimba, Paul V

    2004-01-01

    Drawing inferences from epidemiologic studies of HIV/AIDS and in vivo and in vitro HIV inhibition by algae, we propose algal consumption as one unifying characteristic of countries with anomalously low rates. HIV/AIDS incidence and prevalence in Eastern Asia ( approximately 1/10000 adults in Japan and Korea), compared to Africa ( approximately 1/10 adults), strongly suggest that differences in IV drug use and sexual behavior are insufficient to explain the 1000-fold variation. Even in Africa, AIDS/HIV rates vary. Chad has consistently reported low rates of HIV/AIDS (2-4/100). Possibly not coincidentally, most people in Japan and Korea eat seaweed daily and the Kanemba, one of the major tribal groups in Chad, eat a blue green alga (Spirulina) daily. Average daily algae consumption in Asia and Africa ranges between 1 and 2 tablespoons (3-13 g). Regular consumption of dietary algae might help prevent HIV infection and suppress viral load among those infected.

  17. Direct and indirect effects of giant kelp determine benthic community structure and dynamics.

    PubMed

    Arkema, Katie K; Reed, Daniel C; Schroeter, Stephen C

    2009-11-01

    Indirect facilitation can occur when a species positively affects another via the suppression of a shared competitor. In giant kelp forests, shade from the canopy of the giant kelp, Macrocystis pyrifera, negatively affects understory algae, which compete with sessile invertebrates for space. This raises the possibility that giant kelp indirectly facilitates sessile invertebrates, via suppression of understory algae. We evaluated the effect of giant kelp on the relative abundance of algae and invertebrates by experimentally manipulating kelp abundance on large artificial reefs located off San Clemente, California, USA. The experiments revealed a negative effect of giant kelp on both light availability and understory algal abundance and a positive effect on the abundance of sessile invertebrates, which was consistent with an indirect effect mediated by shade from the kelp canopy. The importance of these processes to temporal variability in benthic community structure was evaluated at 16 locations on natural reefs off Santa Barbara, California, over an eight-year period. Interannual variability in the abundance of understory algae and in the abundance of sessile invertebrates was significantly and positively related to interannual variability in the abundance of giant kelp. Analysis of these observational data using Structural Equation Modeling (SEM) indicated that the magnitude of the indirect effect of giant kelp on invertebrates was six times larger than the direct effect on invertebrates. Results suggest that the dynamics of this system are driven by variability in the abundance of a single structure-forming species that has indirect positive, as well as direct negative, effects on associated species.

  18. Mathematics in Marine Botany: Examples of the Modelling Process. Part II: Continuous Models.

    ERIC Educational Resources Information Center

    Nyman, Melvin A.; Brown, Murray T.

    1996-01-01

    Describes some continuous models for growth of the seaweed Macrocystis pyrifera. Uses observed growth rates over several months to derive first-order differential equations as models for growth rates of individual fronds. The nature of the solutions is analyzed and comparison between these theoretical results and documented characteristics of…

  19. Mathematics in Marine Botany: Examples of the Modelling Process. Part II: Continuous Models.

    ERIC Educational Resources Information Center

    Nyman, Melvin A.; Brown, Murray T.

    1996-01-01

    Describes some continuous models for growth of the seaweed Macrocystis pyrifera. Uses observed growth rates over several months to derive first-order differential equations as models for growth rates of individual fronds. The nature of the solutions is analyzed and comparison between these theoretical results and documented characteristics of…

  20. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  1. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  2. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  3. Algae control for hydrogeneration canals

    SciTech Connect

    Grahovac, P.

    1997-02-16

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to assess and develop control practices for nuisance algae growth in power canal that delivers water to hydro-generation facilities. This growth results in expenditures related not only to lost generation but also labor and materials costs associated with implementing remediation procedures. On an industry-wide basis these costs associated with nuisance algal growth are estimated to be several million dollars per year.

  4. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  5. Parasites in algae mass culture.

    PubMed

    Carney, Laura T; Lane, Todd W

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  6. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  7. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.

  8. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  9. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  10. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  11. Photobioreactors for mass cultivation of algae.

    PubMed

    Ugwu, C U; Aoyagi, H; Uchiyama, H

    2008-07-01

    Algae have attracted much interest for production of foods, bioactive compounds and also for their usefulness in cleaning the environment. In order to grow and tap the potentials of algae, efficient photobioreactors are required. Although a good number of photobioreactors have been proposed, only a few of them can be practically used for mass production of algae. One of the major factors that limits their practical application in algal mass cultures is mass transfer. Thus, a thorough understanding of mass transfer rates in photobioreactors is necessary for efficient operation of mass algal cultures. In this review article, various photobioreactors that are very promising for mass production of algae are discussed.

  12. ["Depilation" by micro-algae?].

    PubMed

    Ditrich, H

    1996-01-01

    Itching, reddening and depilation of body hairs was reported by swimmers in the Attersee-lake in Austria. Initially, an environmental crime was suspected. However, further investigations showed that a biological cause was probably responsible for these symptoms. The accrustations found on body hairs turned out in the scanning electron microscope to be dried mucus containing numerous diatoms. The prevailing micro-algae were identified as Cyclotella comensis. Thus, although the phenomenon had a natural, harmless cause, it may happen again given the appropriate environmental conditions.

  13. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  14. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  15. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  16. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  17. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  18. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  19. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  20. Regulation of Oil Biosynthesis in Algae

    DTIC Science & Technology

    2008-06-25

    genes and mutants are currently under investigation for their potential roles in oil biosynthesis in microalgae . 15. SUBJECT TERMS Target genes for oil ...engineering, transcriptional profile comparison, lipid mutants, microalgae oil biosynthesis, enzymes involved in oil body formation in micro algae 16...addressed by exploring oil (triacylglycerol) biosynthesis in microalgae . Many algae including Chlamydomonas accumulate triacylglycerols when cultures

  1. Potential biomedical applications of marine algae.

    PubMed

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  4. The ice nucleation activity of extremophilic algae.

    PubMed

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.

  5. Advances in genetic engineering of marine algae.

    PubMed

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.

  6. Streptophyte algae and the origin of embryophytes.

    PubMed

    Becker, Burkhard; Marin, Birger

    2009-05-01

    Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major

  7. Streptophyte algae and the origin of embryophytes

    PubMed Central

    Becker, Burkhard; Marin, Birger

    2009-01-01

    Background Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Recent Progress Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. Conclusions The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater

  8. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  9. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  10. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  11. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  12. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  13. Method and apparatus for processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  14. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  15. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  16. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  17. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  18. Pyogenic Flexor Tenosynovitis Caused by Shewanella algae.

    PubMed

    Fluke, Erin C; Carayannopoulos, Nikoletta L; Lindsey, Ronald W

    2016-07-01

    Pyogenic flexor tenosynovitis is an orthopedic emergency most commonly caused by Staphylococcus aureus and streptococci and occasionally, when associated with water exposure, Mycobacterium marinum. Shewanella algae, a gram-negative bacillus found in warm saltwater environments, has infrequently been reported to cause serious soft tissue infections and necrosis. In this case, S. algae caused complicated flexor tenosynovitis requiring open surgical irrigation and debridement. Flexor tenosynovitis caused by S. algae rapidly presented with all 4 Kanavel cardinal signs as well as subcutaneous purulence, ischemia, and necrosis, thus meeting the requirements for Pang et al group III classification of worst prognosis. Because of its rarity and virulence, S. algae should always be considered in cases of flexor tenosynovitis associated with traumatic water exposure to treat and minimize morbidity appropriately.

  19. The Alga Ochromonas danica Produces Bromosulfolipids.

    PubMed

    White, Alexander R; Duggan, Brendan M; Tsai, Shiou-Chuan; Vanderwal, Christopher D

    2016-03-04

    Many halogenases interchangeably incorporate chlorine and bromine into organic molecules. On the basis of an unsubstantiated report that the alga Ochromonas danica, a prodigious producer of chlorosulfolipids, was able to produce bromosulfolipids, we have investigated the promiscuity of its halogenases toward bromine incorporation. We have found that bromosulfolipids are produced with the exact positional and stereochemical selectivity as in the chlorosulfolipid danicalipin A when this alga is grown under modified conditions containing excess bromide ion.

  20. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  1. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  2. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  3. Carotenoids in Algae: Distributions, Biosyntheses and Functions

    PubMed Central

    Takaichi, Shinichi

    2011-01-01

    For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized. PMID:21747749

  4. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  5. Antioxidant activity of Hawaiian marine algae.

    PubMed

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J; Tabandera, Nicole K; Wright, Patrick R; Wright, Anthony D

    2012-02-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  6. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  7. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  8. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  9. [Algae removal of high algae raw water by coagulation enhanced by ozonation].

    PubMed

    Liu, Hai-Long; Yang, Dong; Zhao, Zhi-Yong; Li, Zheng-Jian; Cheng, Fang-Qin

    2009-07-15

    Apparent molecular weight distribution (AMWD) and resin fractionation were used to characterize organic matters of the raw water. Removal of algae, change and removal of dissolved organic carbon (DOC), disinfection by products (DBPs) control during the preozonation enhanced coagulation treatments in the jar-scale and pilot-scale experiment were studied. Algae activity (AA) was measured and used to elucidate the mechanisms of algae removal by above treatments. Results show that algae removal can be improved distinctively by proper preozonation, as the ozone dose 1.0 mg x L(-1), for instance. Algae removal could be increased from 55%-85% by traditional coagulation to 95% by enhanced coagulation after preozonation; and the best removal achieved 99.3% with ozone 1.0 mg x L(-1) and PACl 3.0 mg x L(-1); the residual THMFP (Trihalomethanes formation potential) was lowered from 117 microg x L(-1) by traditional coagulation to 46 microg x L(-1). But higher dose of ozone (as > or = 2.0 mg x L(-1)) impairs organic matter removal, although it decreases algae activity further. Significant differences were found in algae removal by AA detection between ozonation and traditional coagulation. Traditional coagulation had little effect on AA no matter the different PAC1 doses; while AA decreased clearly after ozonation. AA was lowered below 12 under 0.5-2.0 mg x L(-1) ozonation; and it kept decreasing with increase of ozone dosage. During the following coagulation, coagulant or some of its hydrolysised components enhanced the AA decrease by ozonation. Compared to the method of normal microscopy counting, AA test expresses the influence of algae living state by water treatment processes more clearly; which would provide treatment process designer with more distinct information about algae removal mechanisms and how to arrange the treatment processes to improve algae removal.

  10. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  11. Phospholipids of New Zealand Edible Brown Algae.

    PubMed

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of (31)P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  12. Effect of ferrate on green algae removal.

    PubMed

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-08-05

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  13. Oil from algae; salvation from peak oil?

    PubMed

    Rhodes, Christopher J

    2009-01-01

    A review is presented of the use of algae principally to produce biodiesel fuel, as a replacement for conventional fuel derived from petroleum. The imperative for such a strategy is that cheap supplies of crude oil will begin to wane within a decade and land-based crops cannot provide more than a small amount of the fuel the world currently uses, even if food production were allowed to be severely compromised. For comparison, if one tonne of biodiesel might be produced say, from rape-seed per hectare, that same area of land might ideally yield 100 tonnes of biodiesel grown from algae. Placed into perspective, the entire world annual petroleum demand which is now provided for by 31 billion barrels of crude oil might instead be met from algae grown on an area equivalent to 4% of that of the United States. As an additional benefit, in contrast to growing crops it is not necessary to use arable land, since pond-systems might be placed anywhere, even in deserts, and since algae grow well on saline water or wastewaters, no additional burden is imposed on freshwater-a significant advantage, as water shortages threaten. Algae offer the further promise that they might provide future food supplies, beyond what can be offered by land-based agriculture to a rising global population.

  14. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  15. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature.

  17. [Functional components in fish and algae oils].

    PubMed

    Conchillo, A; Valencia, I; Puente, A; Ansorena, D; Astiasarán, I

    2006-01-01

    An important area of the development of new functional foods is facussed on finding or applying food components which favour achieving a healthier lipid profile in the organism. The objective of this work was to carry out the characterisation of the lipid fraction of two oils, fish oil and algae oil, to evaluate their potential use as functional ingredients, in relation to the high molecular weight fatty acid content and the presence of sterols and other components of the unsaponificable fraction. Both oils showed a lipid fraction rich in high molecular weight polyunsaturated omega-3 fatty acids, containing a 33.75% in the fish oil and a 43.97% in the algae oil. Eicosapentaenoic acid was the major fatty acid in fish oil, whereas docosahexaenoic was the most abundant fatty acid in algae oil. The omega-6/omega-3 ratio was lower than 0.4 in both oils. In the unsaponificable fraction, algae oil had a Mold lower cholesterol content and a higher proportion of squalene than fish oil. The phytosterol content was significantly higher in the algae oil.

  18. Snow algae-microbe-mineral interactions and implications for snow algae growth

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.; Harrold, Z.; Hausrath, E.; Garcia, A. H.; Murray, A. E.; Raymond, J. A.; Bartlett, C. L.

    2016-12-01

    Snow algae, which can reach densities of millions of cells per mL [1], can accelerate the melting of snow and ice fields by significantly lowering their albedo [2-4]. Studies have even suggested the effect of snow algae on albedo should be considered in quantitative albedo models. One of the factors controlling snow algae growth is nutrient availability. Previous observations of minerals and microbes attached to the cell walls of snow algae, and the preferential growth of snow algae in dusty snow, have suggested that snow algae-microbe-mineral interactions may help snow algae meet their trace nutrient needs. Understanding how snow algae are able to reach such high concentrations in a low nutrient snow environment is critical for predicting the extent to which snow algae blooms can impact snow albedo, snow and ice melt rate, and global climate change. We use synchrotron X-ray fluorescence (XRF), X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) to study the interactions between snow algae, microbes and minerals in both field and laboratory samples. Field samples were collected from Mt. Anderson Ridge, CA, and prepared using a Percoll density separation technique to isolate algae cells from bulk dust. Cell and mineral fractions were analyzed using synchrotron micro-XRF, micro-XRD and XANES. Results show the presence of ferric material similar to ferrihydrite surrounding snow alga. Growth experiments of xenic Chloromonas brevispina cultures incubated with Fe-bearing minerals, including nontronite, goethite, pyrite and olivine, suggest Fe-bearing minerals can support snow algae growth. Synchrotron XRF, XRD and XANES analyses of Cr. brevispinaalgae cell communities indicate the formation of cell-associated Fe-bearing mineral phases not present in the unreacted minerals. The sample preparation and synchrotron techniques described herein provide an approach for investigating a wide range of microbe-mineral interactions and their impacts on microbial

  19. Genome of the red alga Porphyridium purpureum

    PubMed Central

    Bhattacharya, Debashish; Price, Dana C.; Xin Chan, Cheong; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P. M.; Cecilia Arias, Maria; Henrissat, Bernard; Coutinho, Pedro M.; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life. PMID:23770768

  20. Genome of the red alga Porphyridium purpureum.

    PubMed

    Bhattacharya, Debashish; Price, Dana C; Chan, Cheong Xin; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P M; Arias, Maria Cecilia; Henrissat, Bernard; Coutinho, Pedro M; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.

  1. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  2. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2016-07-12

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  3. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  4. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  5. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  6. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  7. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  8. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  9. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  10. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  11. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  12. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  13. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  14. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution.

  15. Neonatal sepsis caused by Shewanella algae: A case report.

    PubMed

    Charles, Marie Victor Pravin; Srirangaraj, Sreenivasan; Kali, Arunava

    2015-01-01

    Sepsis remains a leading cause of mortality among neonates, especially in developing countries. Most cases of neonatal sepsis are attributed to Escherichia coli and other members of the Enterobacteriaceae family. Shewanella algae (S. algae) is a gram-negative saprophytic bacillus, commonly associated with the marine environment, which has been isolated from humans. Early onset neonatal sepsis caused by S. algae is uncommon. We report a case of S. algae blood stream infection in a newborn with early onset neonatal sepsis.

  16. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  17. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  18. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  19. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  20. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  1. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  2. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  3. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  4. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  5. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  6. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth), molasses, cornsteep liquor, and a maximum of 0.3 percent ethoxyquin. The algae cells are produced by... the tolerance limitation for ethoxyquin in animal feed prescribed in § 573.380 of this chapter. (c...

  7. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    PubMed

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  8. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  9. Selenium accumulation and metabolism in algae.

    PubMed

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Research for Developing Renewable Biofuels from Algae

    SciTech Connect

    Black, Paul N.

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  11. [Allelopathic effect of artemisinin on green algae].

    PubMed

    Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo; Li, Long-Yun

    2013-05-01

    To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.

  12. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  13. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  14. Pheromone signaling during sexual reproduction in algae.

    PubMed

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  15. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  16. Sterol chemotaxonomy of marine pelagophyte algae.

    PubMed

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  17. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  18. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice.

  19. Polyamine biosynthetic diversity in plants and algae.

    PubMed

    Fuell, Christine; Elliott, Katherine A; Hanfrey, Colin C; Franceschetti, Marina; Michael, Anthony J

    2010-07-01

    Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.

  20. Washington State University Algae Biofuels Research

    SciTech Connect

    chen, Shulin; McCormick, Margaret; Sutterlin, Rusty

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  1. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD... coastal waters. The material is dried and ground or chopped for use in food. (b) The ingredient meets the...

  2. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD... chopped for use in food. (b) The ingredient meets the specifications for kelp in the Food Chemicals Codex...

  3. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.

  4. Blade life span, structural investment, and nutrient allocation in giant kelp.

    PubMed

    Rodriguez, Gabriel E; Reed, Daniel C; Holbrook, Sally J

    2016-10-01

    The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.

  5. Micronutrients and kelp cultures: Evidence for cobalt and manganese deficiency in Southern California deep seawater

    USGS Publications Warehouse

    Kuwabara, J.S.

    1982-01-01

    It has been suggested that naturally occurring copper and zinc concentrations in deep seawater are toxic to marine organisms when the free ion forms are overabundant. The effects of micronutrients on the growth of gametophytes of the ecologically and commercially significant giant kelp (Macrocystis pyrifera) were studied in defined media. The results indicate that toxic copper and zinc ion concentrations as well as cobalt and manganese deficiencies may be among the factors controlling the growth of marine organisms in nature. Copyright ?? 1982 AAAS.

  6. Characterization of Light and Nitrogen Regulated Gene Expression Pathways in Marine Diatoms

    DTIC Science & Technology

    1992-12-31

    harvesting capacity of marine diatoms and play a central role in the coupling of carbon and nitrogen metabolism in these cells. To characterize the... kelp Macrocystis pyrifera, although homologous sequences were identified in Arabidopsis thaliana genomic DNA under these conditions. These results...period, thereby leading to enhancement of light- harvesting efficiency in low light conditions. Isolation of FCP cDNA sequences from night and day samples

  7. Micronutrients and kelp cultures: evidence for cobalt and manganese deficiency in southern California deep seawater

    SciTech Connect

    Kuwabara, J.S.

    1982-06-11

    It has been suggested that naturally occurring copper and zinc concentrations in deep seawater are toxic to marine organisms when the free ion forms are overabundant. The effects of micronutrients in the growth of gametophytes of the ecologically and commercially significant giant kelp (Macrocystis pyrifera) were studied in defined media. The results indicate that toxic copper and zinc ion concentrations as well as cobalt and manganese deficiencies may be among the factors controlling the growth of marine organisms in nature.

  8. Uric acid deposits in symbiotic marine algae.

    PubMed

    Clode, Peta L; Saunders, Martin; Maker, Garth; Ludwig, Martha; Atkins, Craig A

    2009-02-01

    The symbiosis between cnidarians and dinoflagellate algae is not understood at the cell or molecular level, yet this relationship is responsible for the formation of thousands of square kilometres of coral reefs. We have investigated the nature of crystalline material prominent within marine algal symbionts of Aiptasia sp. anemones. This material, which has historically been considered to be calcium oxalate, is shown to be uric acid. We demonstrate that these abundant uric acid stores can be mobilized rapidly, thereby allowing the algal symbionts to flourish in an otherwise N-poor environment. This is the first report of uric acid accumulation by symbiotic marine algae. These data provide new insight and considerations for understanding the physiological basis of algal symbioses, and represent a new and previously unconsidered aspect of N metabolism in cnidarian, and a variety of other, marine symbioses.

  9. Hydrogen production by photosynthetic green algae.

    PubMed

    Ghirardi, Maria L

    2006-08-01

    Oxygenic photosynthetic organisms such as cyanobacteria, green algae and diatoms are capable of absorbing light and storing up to 10-13% of its energy into the H-H bond of hydrogen gas. This process, which takes advantage of the photosynthetic apparatus of these organisms to convert sunlight into chemical energy, could conceivably be harnessed for production of significant amounts of energy from a renewable resource, water. The harnessed energy could then be coupled to a fuel cell for electricity generation and recycling of water molecules. In this review, current biochemical understanding of this reaction in green algae, and some of the major challenges facing the development of future commercial algal photobiological systems for H2 production have been discussed.

  10. Engineering algae for biohydrogen and biofuel production.

    PubMed

    Beer, Laura L; Boyd, Eric S; Peters, John W; Posewitz, Matthew C

    2009-06-01

    There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.

  11. Algae columns with anodic stripping voltammetric detection

    SciTech Connect

    Kubiak, W.W.; Wang, J.; Darnall, D.

    1989-03-01

    The use of silica-immobilized algal cells for on-line column separation in conjunction with continuous monitoring of trace metals is described. Algae-silica preparations are highly suitable for flow analysis as they couple the unique reactivity patterns and high binding capacity of algal biomass with the hydrodynamic and mechanical features of porous silica. Such advantages are illustrated by using on-line anodic stripping voltammetry and the alga Chlorella pyrenidosa. Selective and exhaustive removal of interfering constituents circumvents common problems such as overlapping peaks and intermetallic effects. Effects of flow rate, pH, operation time, and other variables are reported. The system is characterized by high durability, simplicity, and economy and offers an attractive alternative to prevalent columns used for flow analysis.

  12. Biofuels from algae: challenges and potential.

    PubMed

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2010-09-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.

  13. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  14. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  15. Sequestration of CO2 by halotolerant algae

    PubMed Central

    2014-01-01

    The potential of halotolerant algae isolated from natural resources was used to study CO2 fixation and algal lipid production. Biological fixation of CO2 in photobioreactor in presence of salinity is exploited. The CO2 concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO2 removal. PMID:24847439

  16. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  17. Algae as reservoirs for coral pathogens.

    PubMed

    Sweet, Michael J; Bythell, John C; Nugues, Maggy M

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  18. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  19. Fermentation metabolism and its evolution in algae

    PubMed Central

    Catalanotti, Claudia; Yang, Wenqiang; Posewitz, Matthew C.; Grossman, Arthur R.

    2013-01-01

    Fermentation or anoxic metabolism allows unicellular organisms to colonize environments that become anoxic. Free-living unicellular algae capable of a photoautotrophic lifestyle can also use a range of metabolic circuitry associated with different branches of fermentation metabolism. While algae that perform mixed-acid fermentation are widespread, the use of anaerobic respiration is more typical of eukaryotic heterotrophs. The occurrence of a core set of fermentation pathways among the algae provides insights into the evolutionary origins of these pathways, which were likely derived from a common ancestral eukaryote. Based on genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism has been examined in more detail in Chlamydomonas reinhardtii (Chlamydomonas) than in any other photosynthetic protist. This green alga is metabolically flexible and can sustain energy generation and maintain cellular redox balance under a variety of different environmental conditions. Fermentation metabolism in Chlamydomonas appears to be highly controlled, and the flexible use of the different branches of fermentation metabolism has been demonstrated in studies of various metabolic mutants. Additionally, when Chlamydomonas ferments polysaccharides, it has the ability to eliminate part of the reductant (to sustain glycolysis) through the production of H2, a molecule that can be developed as a source of renewable energy. To date, little is known about the specific role(s) of the different branches of fermentation metabolism, how photosynthetic eukaryotes sense changes in environmental O2 levels, and the mechanisms involved in controlling these responses, at both the transcriptional and post-transcriptional levels. In this review, we focus on fermentation metabolism in Chlamydomonas and other protists, with only a brief discussion of plant fermentation when relevant, since it is thoroughly discussed in other articles in this volume. PMID:23734158

  20. Studies on Polyethers Produced by Red Algae

    PubMed Central

    Cen-Pacheco, Francisco; Nordström, Laurette; Souto, María Luisa; Martín, Manuel Norte; Fernández, José Javier; Daranas, Antonio Hernández

    2010-01-01

    Two novel squalene-derived triterpenes, spirodehydrovenustatriol (3) and 14-keto-dehydrothyrsiferol (4) were isolated from the red alga Laurencia viridis, together with two new and unusual C17 terpenoids, adejen A (5) and B (6). These truncated structures possess structural similarities with other known squalene metabolites and their biogenetic origin has been proposed on the basis of an oxidative process of the squalene skeleton. All the structures were elucidated by extensive use of 2D NMR spectroscopic methods. PMID:20479973

  1. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  2. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  3. Algae: America’s Pathway to Independence

    DTIC Science & Technology

    2007-03-30

    Bioenergy, Biofuel, Energy Policy CLASSIFICATION: Unclassified The United States is dependent on foreign oil to meet 63% of its petroleum demand...source of bioenergy. ALGAE: AMERICA’S PATHWAY TO INDEPENDENCE Ensuring a secure supply of energy is a strategic challenge for...150 years,6 the U.S. will be competing with other nations to procure the 2 finite commodity. The Department of Energy (DOE) estimates that by the

  4. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops.

  5. Electro-coagulation-flotation process for algae removal.

    PubMed

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  6. Functional properties of carotenoids originating from algae.

    PubMed

    Christaki, Efterpi; Bonos, Eleftherios; Giannenas, Ilias; Florou-Paneri, Panagiota

    2013-01-15

    Carotenoids are isoprenoid molecules which are synthesised de novo by photosynthetic plants, fungi and algae and are responsible for the orange, yellow and some red colours of various fruits and vegetables. Carotenoids are lipophilic compounds, some of which act as provitamins A. These compounds can be divided into xanthophylls and carotenes. Many macroalgae and microalgae are rich in carotenoids, where these compounds aid in the absorption of sunlight. Industrially, these carotenoids are used as food pigments (in dairy products, beverages, etc.), as feed additives, in cosmetics and in pharmaceuticals, especially nowadays when there is an increasing demand by consumers for natural products. Production of carotenoids from algae has many advantages compared to other sources; for example, their production is cheap, easy and environmentally friendly; their extraction is easier, with higher yields, and there is no lack of raw materials or limited seasonal variation. Recently, there has been considerable interest in dietary carotenoids with respect to their antioxidant properties and their ability to reduce the incidence of some chronic diseases where free radicals are involved. Possibly, carotenoids protect cells from oxidative stress by quenching singlet oxygen damage with various mechanisms. Therefore, carotenoids derived from algae could be a leading natural resource in the research for potential functional ingredients. Copyright © 2012 Society of Chemical Industry.

  7. Cytoplasmic inheritance of organelles in brown algae.

    PubMed

    Motomura, Taizo; Nagasato, Chikako; Kimura, Kei

    2010-03-01

    Brown algae, together with diatoms and chrysophytes, are a member of the heterokonts. They have either a characteristic life cycle of diplohaplontic alternation of gametophytic and sporophytic generations that are isomorphic or heteromorphic, or a diplontic life cycle. Isogamy, anisogamy and oogamy have been recognized as the mode of sexual reproduction. Brown algae are the characteristic group having elaborated multicellular organization within the heterokonts. In this study, cytoplasmic inheritance of chloroplasts, mitochondria and centrioles was examined, with special focus on sexual reproduction and subsequent zygote development. In oogamy, chloroplasts and mitochondria are inherited maternally. In isogamy, chloroplasts in sporophyte cells are inherited biparentally (maternal or paternal); however, mitochondria (or mitochondrial DNA) derived from the female gamete only remained during zygote development after fertilization. Centrioles in zygotes are definitely derived from the male gamete, irrespective of the sexual reproduction pattern. Female centrioles in zygotes are selectively broken down within 1-2 h after fertilization. The remaining male centrioles play a crucial role as a part of the centrosome for microtubule organization, mitosis, determination of the cytokinetic plane and cytokinesis, as well as for maintaining multicellularity and regular morphogenesis in brown algae.

  8. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  9. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  10. Deoxyribonucleotide biosynthesis in synchronous algae cells.

    PubMed

    Feller, W; Schimpff-Weiland, G; Follmann, H

    1980-09-01

    Synchronous cells of the green alga, Scenedesmus obliquus, cultured in a 14-h/10-h light/dark regime, contain a peak of ribonucleoside-diphosphate reductase activity and maximum deoxyribonucleoside 5'-triphosphate concentrations at the 12th hour of the cell cycle, coinciding with DNA synthesis and preceding the formation of eight daughter cells. The intracellular dTTP pool reaches 4.5 pmol and the other pools 2-3 pmol/10(6) cells. Algal reductase activity is sensitive to cycloheximide, but not to lincomycin. These correlations demonstrate the functioning of the NDP leads to dNDP leads to dNTP pathway of DNA precursor biosynthesis in plant cells. In the presence of 20 micrograms 5-fluorodeoxyuridine/ml, an inhibitor of thymidylate synthesis, the dTTP pool is rapidly depleted and DNA synthesis ceases. 5-Fluorouracil and methotrexate produce similar effects. At the same time the ribonucleotide reductase activity and also the dATP pool are greatly increased, especially when fluorodeoxyuridine treatment is combined with continued illumination of the algae. In contrast, arabinosylcytosine, an inhibitor of DNA replication, has no effect on ribonucleotide reduction. The control of de novo enzyme synthesis in the eucaryotic algae therefore appears to depend on the presence of dTTP (or a related nucleotide), but not directly coupled to DNA synthesis. This interdependence resembles the situation observed in HeLa cells, while it may differ in detail from control mechanisms of ribonucleotide reductase studied in bacteria.

  11. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  12. Regulating cellular trace metal economy in algae

    DOE PAGES

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2017-06-30

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  13. Regulating cellular trace metal economy in algae.

    PubMed

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2017-10-01

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. Starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. In this review, we focus on recent progress made toward understanding the pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. New experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Pharmacology and toxicology of Spirulina alga].

    PubMed

    Chamorro, G; Salazar, M; Favila, L; Bourges, H

    1996-01-01

    Spirulina, a unicellular filamentous blue-green alga has been consumed by man since ancient times in Mexico and central Africa. It is currently grown in many countries by synthetic methods. Initially the interest in Spirulina was on its nutritive value: it was found almost equal to other plant proteins. More recently, some preclinical testing suggests it has several therapeutic properties such as hypocholesterolemic, immunological, antiviral and antimutagenic. This has led to more detailed evaluations such as nucleic acid content and presence of toxic metals, biogenic toxins and organic chemicals: they have shown absence or presence at tolerable levels according to the recommendations of international regulatory agencies. In animal experiments for acute, subchronic and chronic toxicity, reproduction, mutagenicity, and teratogenicity the algae did not cause body or organ toxicity. In all instances, the Spirulina administered to the animals were at much higher amounts than those expected for human consumption. On the other hand there is scant information of the effects of the algae in humans. This area needs more research.

  15. Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords

    NASA Astrophysics Data System (ADS)

    Hinojosa, Iván A.; Rivadeneira, Marcelo M.; Thiel, Martin

    2011-03-01

    Floating objects are suggested to be the principal vector for the transport and dispersal of marine invertebrates with direct development as well as catalysts for carbon and nutrient recycling in accumulation areas. The first step in identifying the ecological relevance of floating objects in a specific area is to identify their spatio-temporal distribution. We evaluated the composition, abundance, distribution, and temporal variability of floating objects along the continental coast of central-southern Chile (33-42°S) and the Patagonian fjords (42-50°S) using ship surveys conducted in austral winter (July/August) and spring (November) of the years 2002-2005 and 2008. Potential sources of floating items were identified with the aid of publicly available databases and scientific reports. We found three main types of floating objects, namely floating marine debris (mainly plastic objects and Styrofoam), wood (trunks and branches), and floating kelps ( Macrocystis pyrifera and Durvillaea antarctica). Floating marine debris were abundant along most of the examined transects, with markedly lower abundances toward the southern fjord areas. Floating marine debris abundances generally corresponded to the distribution of human activities, and were highest in the Interior Sea of Chiloé, where aquaculture activities are intense. Floating wood appeared sporadically in the study area, often close to the main rivers. In accordance with seasonal river run-off, wood was more abundant along the continental coast in winter (rainy season) and in the Patagonian fjords during the spring surveys (snow melt). Densities of the two floating kelp species were similar along the continental coast, without a clear seasonal pattern. M. pyrifera densities increased towards the south, peaking in the Patagonian fjords, where it was dominant over D. antarctica. Densities of M. pyrifera in the Patagonian fjords were highest in spring. Correlation analyses between the abundances of floating

  16. Hydrogenases in green algae: do they save the algae's life and solve our energy problems?

    PubMed

    Happe, Thomas; Hemschemeier, Anja; Winkler, Martin; Kaminski, Annette

    2002-06-01

    Green algae are the only known eukaryotes with both oxygenic photosynthesis and a hydrogen metabolism. Recent physiological and genetic discoveries indicate a close connection between these metabolic pathways. The anaerobically inducible hydA genes of algae encode a special type of highly active [Fe]-hydrogenase. Electrons from reducing equivalents generated during fermentation enter the photosynthetic electron transport chain via the plastoquinone pool. They are transferred to the hydrogenase by photosystem I and ferredoxin. Thus, the [Fe]-hydrogenase is an electron 'valve' that enables the algae to survive under anaerobic conditions. During sulfur deprivation, illuminated algal cultures evolve large quantities of hydrogen gas, and this promises to be an alternative future energy source.

  17. Algae to Economically Viable Low-Carbon-Footprint Oil.

    PubMed

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  18. Exploring the potential of algae/bacteria interactions.

    PubMed

    Kouzuma, Atsushi; Watanabe, Kazuya

    2015-06-01

    Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Global dynamics of zooplankton and harmful algae in flowing habitats

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Wang, Feng-Bin; Zhao, Xiao-Qiang

    This paper is devoted to the study of two advection-dispersion-reaction models arising from the dynamics of harmful algae and zooplankton in flowing-water habitats where a main channel is coupled to a hydraulic storage zone, representing an ensemble of fringing coves on the shoreline. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we establish a threshold type result on the global attractivity in terms of the basic reproduction ratio for algae. For the model with zooplankton that eat the algae and are inhibited by the toxin produced by algae, we show that there exists a coexistence steady state and the zooplankton is uniformly persistent provided that two basic reproduction ratios for algae and zooplankton are greater than unity.

  20. Microplate technique for determining accumulation of metals by algae

    SciTech Connect

    Hassett, J.M.; Jennett, J.C.; Smith, J.E.

    1981-05-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than did blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.

  1. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  2. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2016-07-12

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  3. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  4. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  5. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  6. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  7. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1990-05-01

    division Cyanophyta , commonly called blue -green algae cr cyanobacteria . Although cyanobacteria are found in almost any environment ranging from hot...p ecst Available Copy ~’ COPy Ni AD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS:’ I ISOLATION AND CHARACTERIZATION < DTIC ANNUAL/FINAL...AA I 78 11. TITLE (In•.ju . ’,curry Ci.si fication) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolatior and CharacteriZation 12. PERSONAL

  8. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1989-01-15

    exclusively caused by strains of species that are members of the L division Cyanophyta , commonly called blue -green algae or cyanobacteria . Although...0 0 Lfl (NAD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS: ISOLATION AND CHARACTERIZATION ANNCUAL REPORT Wayne W. Carmichael Sarojini Bose...Frederick, Maryland 21701-5012 62770A 6277GA871 AA 378 11 TITLE &who* Secwn~y C11mrfaon) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolation

  9. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  10. Acetone, butanol, and ethanol production from wastewater algae.

    PubMed

    Ellis, Joshua T; Hengge, Neal N; Sims, Ronald C; Miller, Charles D

    2012-05-01

    Acetone, butanol, and ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4 using wastewater algae biomass as a carbon source was demonstrated. Algae from the Logan City Wastewater Lagoon system grow naturally at high rates providing an abundant source of renewable algal biomass. Batch fermentations were performed with 10% algae as feedstock. Fermentation of acid/base pretreated algae produced 2.74 g/L of total ABE, as compared with 7.27 g/L from pretreated algae supplemented with 1% glucose. Additionally, 9.74 g/L of total ABE was produced when xylanase and cellulase enzymes were supplemented to the pretreated algae media. The 1% glucose supplement increased total ABE production approximately 160%, while supplementing with enzymes resulted in a 250% increase in total ABE production when compared to production from pretreated algae with no supplementation of extraneous sugar and enzymes. Additionally, supplementation of enzymes produced the highest total ABE production yield of 0.311 g/g and volumetric productivity of 0.102 g/Lh. The use of non-pretreated algae produced 0.73 g/L of total ABE. The ability to engineer novel methods to produce these high value products from an abundant and renewable feedstock such as algae could have significant implications in stimulating domestic energy economies.

  11. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  12. Method and apparatus for lysing and processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  13. Application of synthetic biology in cyanobacteria and algae.

    PubMed

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO(2) and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.

  14. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses.

  15. Chloroplast division checkpoint in eukaryotic algae

    PubMed Central

    Sumiya, Nobuko; Fujiwara, Takayuki; Era, Atsuko; Miyagishima, Shin-ya

    2016-01-01

    Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase–specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle. PMID:27837024

  16. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  17. Pheromones in marine algae: A technical approach

    NASA Astrophysics Data System (ADS)

    Gassmann, G.; Müller, D. G.; Fritz, P.

    1995-03-01

    It is now well known that many marine organisms use low-molecular volatile substances as signals, in order to coordinate activities between different individuals. The study of such pheromones requires the isolation and enrichment of the secretions from undisturbed living cells or organisms over extended periods of time. The Grob-Hersch extraction device, which we describe here, avoids adverse factors for the biological materials such as strong water currents, rising gas bubbles or chemical solvents. Furthermore, the formation of sea-water spray is greatly reduced. The application of this technique for the isolation of pheromones of marine algae and animals is described.

  18. Biodiesel from algae: challenges and prospects.

    PubMed

    Scott, Stuart A; Davey, Matthew P; Dennis, John S; Horst, Irmtraud; Howe, Christopher J; Lea-Smith, David J; Smith, Alison G

    2010-06-01

    Microalgae offer great potential for exploitation, including the production of biodiesel, but the process is still some way from being carbon neutral or commercially viable. Part of the problem is that there is little established background knowledge in the area. We should look both to achieve incremental steps and to increase our fundamental understanding of algae to identify potential paradigm shifts. In doing this, integration of biology and engineering will be essential. In this review we present an overview of a potential algal biofuel pipeline, and focus on recent work that tackles optimization of algal biomass production and the content of fuel molecules within the algal cell.

  19. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated.

  20. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  1. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  2. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  3. Algae-based oral recombinant vaccines.

    PubMed

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  4. Sterols from the Green Alga Ulva australis.

    PubMed

    Li, Guo-Liang; Guo, Wei-Jie; Wang, Guang-Bao; Wang, Rong-Rong; Hou, Yu-Xue; Liu, Kun; Liu, Yang; Wang, Wei

    2017-09-28

    Three new sterols, (24R)-5,28-stigmastadiene-3β,24-diol-7-one (1), (24S)-5,28-stigmastadiene-3β,24-diol-7-one (2), and 24R and 24S-vinylcholesta-3β,5α,6β,24-tetraol (3), together with three known sterols (4-6) were isolated from the green alga Ulva australis. The structures of the new compounds (1-3) were elucidated through 1D and 2D nuclear magnetic resonance spectroscopy as well as mass spectrometry. Compounds 4-6 were identified as isofucoterol (4), 24R,28S and 24S,28R-epoxy-24-ethylcholesterol (5), and (24S)-stigmastadiene-3β,24-diol (6) on the basis of spectroscopic data analyses and comparison with those reported in the literature. Compounds 4-6 were isolated from U. australis for the first time. These compounds, together with the previously isolated secondary metabolites of this alga, were investigated for their inhibitory effects on human recombinant aldose reductase in vitro. Of the compounds, 24R,28S and 24S,28R-epoxy-24-ethylcholesterol (5), 1-O-palmitoyl-3-O-(6'-sulfo-α-d-quinovopyranosyl) glycerol, (2S)-1-O-palmitoyl-3-O-[α-d-galactopyranosyl(1→2)β-d-galactopyranosyl] glycerol, 4-hydroxybenzoic acid, 4-hydroxyphenylacetic acid, and 8-hydroxy-(6E)-octenoic acid weakly inhibited the enzyme, while the three new sterols, 1-3, were almost inactive.

  5. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  6. Morphogenesis in giant-celled algae.

    PubMed

    Mine, Ichiro; Menzel, Diedrik; Okuda, Kazuo

    2008-01-01

    The giant-celled algae, which consist of cells reaching millimeters in size, some even centimeters, exhibit unique cell architecture and physiological characteristics. Their cells display a variety of morphogenetic phenomena, that is, growth, division, differentiation, and reproductive cell formation, as well as wound-healing responses. Studies using immunofluorescence microscopy and pharmacological approaches have shown that microtubules and/or actin filaments are involved in many of these events through the generation of intracellular movement of cell components or entire protoplasmic contents and the spatial control of cell activities in specific areas of the giant cells. A number of environmental factors including physical stimuli, such as light and gravity, invoke localized but also generalized cellular reactions. These have been extensively investigated to understand the regulation of morphogenesis, in particular addressing cytoskeletal and endomembrane dynamics, electrophysiological elements affecting ion fluxes, and the synthesis and mechanical properties of the cell wall. Some of the regulatory pathways involve signal transduction and hormonal control, as in other organisms. The giant unicellular green alga Acetabularia, which has proven its usefulness as an experimental model in early amputation/grafting experiments, will potentially once again serve as a useful model organism for studying the role of gene expression in orchestrating cellular morphogenesis.

  7. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppM (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppM NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppM NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx. 4.2 was not appreciably affected by 15.0 ppM of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  8. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppm (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppm NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppm NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx 4.2 was not appreciably affected by 15.0 ppm of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  9. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  10. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  11. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    USDA-ARS?s Scientific Manuscript database

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  12. Shewanella algae Peritonitis in Patients on Peritoneal Dialysis.

    PubMed

    Shanmuganathan, Malini; Goh, Bak Leong; Lim, Christopher; NorFadhlina, Zakaria; Fairol, Ibrahim

    Patients with peritonitis present with abdominal pain, diarrhea, fever, and turbid peritoneal dialysis (PD) fluid. Shewanella algae peritonitis has not yet been reported in PD patients in the literature. We present the first 2 cases of Shewanella algae peritonitis in PD patients. Mupirocin cream is applied on the exit site as prophylactic antibiotic therapy. Copyright © 2016 International Society for Peritoneal Dialysis.

  13. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  14. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study.

  15. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term.

  16. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    SciTech Connect

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium as a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.

  17. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter.

  18. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.

    PubMed

    Ozkan, Altan; Kinney, Kerry; Katz, Lynn; Berberoglu, Halil

    2012-06-01

    This paper reports the construction and performance of an algae biofilm photobioreactor that offers a significant reduction of the energy and water requirements of cultivation. The green alga Botryococcus braunii was cultivated as a biofilm. The system achieved a direct biomass harvest concentration of 96.4 kg/m(3) with a total lipid content 26.8% by dry weight and a productivity of 0.71 g/m(2) day, representing a light to biomass energy conversion efficiency of 2.02%. Moreover, it reduced the volume of water required to cultivate a kilogram of algal biomass by 45% and reduced the dewatering energy requirement by 99.7% compared to open ponds. Finally, the net energy ratio of the cultivation was 6.00 including dewatering. The current issues of this novel photobioreactor are also identified to further improve the system productivity and scaleup.

  19. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  20. High-fidelity phototaxis in biflagellate algae

    NASA Astrophysics Data System (ADS)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  1. Chloroplast Phylogenomic Inference of Green Algae Relationships.

    PubMed

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-02-05

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences.

  2. An algae-covered alligator rests warily

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  3. Gas Exchange with Mass Cultures of Algae

    PubMed Central

    Hannan, P. J.; Patouillet, Constance

    1963-01-01

    Comparisons of oxygen production and carbon dioxide absorption by an algal gas exchanger were made over a 3-month period. The data do not represent a continuous test, but they do represent results obtained when identical light intensities, CO2 supply rates, and dilution rates with fresh culture medium had been used for more than 1 day. Steady-state conditions were thus assured, and the agreement in the data was excellent. Under the same experimental conditions, the unit was operated continuously for a 5-day period, and the daily variability in this test was less than in the results obtained from month to month. The variation between the average O2 production during the 5-day test and the average of the tests over a several-month period was less than 3%. It is concluded, therefore, that the reliability of the algae in producing oxygen is sufficient to warrant their use in either submarine or space ship use. PMID:14063790

  4. Swimming like algae: biomimetic soft artificial cilia

    PubMed Central

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond E.

    2013-01-01

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia. PMID:23097503

  5. Random flow induced by swimming algae

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Rushkin, Ilia; Goldstein, Raymond

    2010-11-01

    In this work we studied the random flow induced in a fluid by the motion of a dilute suspension of the swimming algae Volvox carteri. The fluid velocity in the suspension is a superposition of the flow fields set up by the individual organisms, which in turn have multipole contributions that decay as inverse powers of distance from the organism. Here we show that the conditions under which the central limit theorem guarantees a Gaussian probability distribution function of velocity fluctuations are satisfied when the leading force singularity is a Stokeslet. Deviations from Gaussianity are shown to arise from near-field effects. Comparison is made with the statistical properties of abiotic sedimenting suspensions. The experimental results are supplemented by extensive numerical studies.

  6. Swimming like algae: biomimetic soft artificial cilia.

    PubMed

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond

    2013-01-06

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia.

  7. The globins of cyanobacteria and algae.

    PubMed

    Johnson, Eric A; Lecomte, Juliette T J

    2013-01-01

    Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.

  8. Chloroplast Phylogenomic Inference of Green Algae Relationships

    PubMed Central

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-01-01

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences. PMID:26846729

  9. Growth optimization of algae for biodiesel production.

    PubMed

    Csavina, J L; Stuart, B J; Riefler, R Guy; Vis, M L

    2011-08-01

    Algae are favourable as a biofuel source because of the potential high oil content and fast generation of biomass. However, one of the challenges for this technology is achieving high oil content while maintaining exponential or high growth of the organism. Introducing a two-stage reactor to optimize both growth and oil content of the algae could be a solution to this hurdle. The aim of this study was to determine the reactor design parameters of the first-stage reactor, which would optimize growth of two algal strains, Oocystis sp. and Amphora sp. Growth kinetics were monitored by in vivo fluorescence and correlated to dry mass for both cultures under several environmental conditions during exponential growth. Temperatures of 25 and 30°C and light intensities of 150 and 80 μmol m(-2) s(-1) provided the most robust growth for Oocystis sp. and Amphora sp., respectively. Both strains showed optimized growth at a light : dark cycle of 16 : 08. At these conditions, the doubling rate for Oocystis sp. was 0·333 d(-1) and for Amphora sp. was 0·179 d(-1) . For both cultures, growth rate was more dependent on light : dark cycle and temperature than light intensity. Both strains grew slower in this work than data reported in the literature, however agitation and air/CO(2) sparging were not incorporated in the system under study. The highest doubling rate for Amphora sp. was observed near the maximum tolerable temperature, and it is suggested to grow this strain at 30°C for a consistent high growth rate. Optimized growth conditions were determined for two lipid producing strains identified in the Aquatic Species Program summary report. An optimized, first-stage growth reactor operating at these conditions would thus offer the maximum productivity for an algal biomass feed stream into a lipid-optimized second-stage reactor. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. [Numerical simulation on hydrodynamic character for algae growth].

    PubMed

    Wang, Hua; Pang, Yong

    2008-04-01

    In order to quantificationally study the direct effects of hydrodynamic condition on the growth of algae, the Microcystis aeruginosa was chosen to carry through the disturbance-experiment. By keeping the same value of illumination, temperature and nutrition and changing the rotate speed of oscillator, the growing processes of algae under different disturbance intensities were researched. The hydraulic parameter was presented to amend the formula for the growth of algae. Take Neijiang as an example. A 2-D unsteady model for algae growth was established to forecast the scope of water blooms in Neijiang. It is found that the growth of algae is obviously influenced by hydrodynamic condition, and a condign low velocity is beneficial for its growth while both the quiescence condition and high velocity will restrain its growth rate. After the close of the water gate in Leading Channel, the velocity in Neijiang will be decreased, which accelerated the growth rate of algae, and the area of water blooms will be increased to 2.5 km2 which is about 36.8 percent of the total water surface area of Neijiang. Under the quiescent condition and the improved hydrodynamic condition, the growth rate of algae will be effectively controlled and the area of water blooms will be reduced to 0.78 km2 and 0.18 km2 respectively.

  11. Biomass of algae growth on natural water medium.

    PubMed

    Ramaraj, Rameshprabu; Tsai, David Dah-Wei; Chen, Paris Honglay

    2015-01-01

    Algae are the dominant primary producers in aquatic ecosystems. Since algae are highly varied group organisms, which have important functions in ecosystem, and their biomass is an essential biological resource. Currently, algae have been applied increasingly to diverse range of biomass applications. Therefore, this study was aimed to investigate the ecological algae features of microalgal production by natural medium, ecological function by lab scale of the symbiotic reactor which is imitated nature ecosystem, and atmospheric CO2 absorption that was related the algal growth of biomass to understand algae in natural water body better. Consequently, this study took advantages of using the unsupplemented freshwater natural medium to produce microalgae. Algal biomass by direct measurement of total suspended solids (TSS) and volatile suspended solids (VSS) resulted as 0.14g/L and 0.08g/L respectively. The biomass measurements of TSS and VSS are the sensible biomass index for algae production. The laboratory results obtained in the present study proved the production of algae by the natural water medium is potentially feasible.

  12. Algae biomass cultivation in nitrogen rich biogas digestate.

    PubMed

    Krustok, I; Diaz, J G; Odlare, M; Nehrenheim, E

    2015-01-01

    Because microalgae are known for quick biomass growth and nutrient uptake, there has been much interest in their use in research on wastewater treatment methods. While many studies have concentrated on the algal treatment of wastewaters with low to medium ammonium concentrations, there are several liquid waste streams with high ammonium concentrations that microalgae could potentially treat. The aim of this paper was to test ammonium tolerance of the indigenous algae community of Lake Mälaren and to use this mixed consortia of algae to remove nutrients from biogas digestate. Algae from Lake Mälaren were cultivated in Jaworski's Medium containing a range of ammonium concentrations and the resulting algal growth was determined. The algae were able to grow at NH4-N concentrations of up to 200 mg L(-1) after which there was significant inhibition. To test the effectiveness of the lake water algae on the treatment of biogas digestate, different pre-cultivation set-ups and biogas digestate concentrations were tested. It was determined that mixing pre-cultivated suspension algae with 25% of biogas digestate by volume, resulting in an ammonium concentration of around 300 mg L(-1), produced the highest algal growth. The algae were effective in removing 72.8±2.2% of NH4-N and 41.4±41.4% of PO4-P.

  13. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  14. Shewanella algae: a rare cause of necrotizing fasciitis.

    PubMed

    Ananth, Aditi L; Nassiri, Naiem; Pamoukian, Vicken N

    2014-06-01

    The genus Shewanella consists of motile, gram-negative, facultative anaerobes found in marine environments. Shewanella putrefaciens and Shewanella algae are the two species with documented pathogenicity in human beings. Most documented cases of S. algae infection worldwide have been reported in the context of bacteremia, cellulitis, and acute exacerbations of chronic otitis media in predisposed individuals. We report a rare case of necrotizing soft tissue infection by S. algae in an immunocompetent individual. The infection followed exposure to S. algae in contaminated water in New York City, New York. We reviewed the English-language literature on similar cases of soft tissue infection using PubMed. Search terms included "Shewanella algae" and "Shewanella putrefaciens" in conjunction with "necrotizing" and "infection." Cognizant that this search method may not have yielded early (pre-1985) reports about Shewanella because of changes in classification and nomenclature, we also searched for "Pseudomonas putrefaciens." After prompt surgical debridement and culture-directed antibiotic therapy, the patient recovered from his infection without the need for re-intervention. This case may reflect the geographic spread and emergence of S. algae infection in the United States. Clinicians should be aware of the virulence of S. algae and potential for the rapid clinical deterioration of persons it infects even among immunocompetent individuals.

  15. [Seasonal variation characteristics of algae biomass in Chaohu Lake].

    PubMed

    Jiang, Xia; Wang, Shu-Hang; Zhong, Li-Xiang; Jin, Xiang-Can; Sun, Shi-Qun

    2010-09-01

    The biomass and distribution of algae community in Chaohu Lake were investigated in 2008. At the same time, the seasonal variations of algae translocation between the sediment and overlying water were also quantitative studied by self-made "algae up/down trap". Chaohu Lake was dominated by Cyanobacteria all the year, and dominant Cyanobacteria species changed in different seasons. In spring, Anabaena was the dominant species, and Microcystis was the subdominant species; In the whole summer and autumn, the dominant species is Microcystis. Algae biomass increased significantly from May and the maximum appeared in August, was 146.37 mg x m(-3) with Chl-a. The value of algae biomass were 9.75-16.24 mg x kg(-1) in the surface sediments, and the minimum appeared in Summer, then the algae biomass increased gradually with the maximum value in winter. Translocation process between the sediment and the overlying water occurred throughout the study period. The recruitment rates increased at first with the maximum rates in early August, was 0.036 8 mg x (m2 x d) (-1), and then had a downward tendency. However the sedimentation rates increased slowly firstly with the maximum rate in early September, then it decreased sharply, was 0.032 1 mg x (m2 x d)(-1). Multiple stepwise regression showed that temperature was the most significant factor for the algae biomass in Chaohu Lake, Total nitrogen (TN) and Total phosphorus(TP) are sub-important factors.

  16. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  17. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOEpatents

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  18. Preliminary survey of fungistatic properties of marine algae.

    PubMed

    WELCH, A M

    1962-01-01

    Welch, Ann Marie (U. S. Veterans Administration Hospital, Durham, N. C.). Preliminary survey of fungistatic properties of marine algae. J. Bacteriol. 83:97-99. 1962-Homogenized preparations of 35 marine algae were tested for inhibitory activity against 6 pathogenic or opportunistically pathogenic fungi with saturated filter-paper discs on seeded Sabouraud agar plates; 11 of these preparations produced wide zones of inhibition against 1 or more test organisms, and at least 4 of the 11 are considered to be worthy of further study. The results indicated that further search should be made for antifungal substances from marine algae.

  19. Ca2+ and Calmodulin Dynamics during Photopolarization in Fucus serratus Zygotes.

    PubMed Central

    Love, J.; Brownlee, C.; Trewavas, A. J.

    1997-01-01

    The role of Ca2+ in zygote polarization in fucoid algae (Fucus, Ascophyllum, and Pelvetia species) zygote polarization is controversial. Using a local source of Fucus serratus, we established that zygotes form a polar axis relative to unilateral light (photopolarization) between 8 and 14 h after fertilization (AF), and become committed to this polarity at approximately 15 to 18 h AF. We investigated the role of Ca2+, calmodulin, and actin during photopolarization by simultaneously exposing F. serratus zygotes to polarizing light and various inhibitors. Neither removal of Ca2+ from the culture medium or high concentrations of EGTA and LaCl3 had any effect on photopolarization. Bepridil, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester, nifedipine, and verapamil, all of which block intracellular Ca2 release, reduced photopolarization from 75 to 30%. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-L-naphthalenesulfonamide and trifluoperazine inhibited photopolarization in all zygotes, whereas N-(6-aminohexyl)-L-naphthalenesulfonamide had no effect. Cytochalasin B, cytochalasin D, and latrunculin B, all of which inhibit actin polymerization, had no effect on photopolarization, but arrested polar axis fixation. The role of calmodulin during polarization was investigated further. Calmodulin mRNA from the closely related brown alga Macrocystis pyrifera was cloned and the protein was expressed in bacteria. Photopolarization was enhanced following microinjections of this recombinant calmodulin into developing zygotes. Confocal imaging of fluorescein isothiocyanate-labeled recombinant calmodulin in photopolarized zygotes showed a homogenous signal distribution at 13 h AF, which localized to the presumptive rhizoid site at 15 h AF. PMID:12223805

  20. The plastid genome of the red alga Laurencia.

    PubMed

    Verbruggen, Heroen; Costa, Joana F

    2015-06-01

    We present the 174,935 nt long plastid genome of the red alga Laurencia sp. JFC0032. It is the third plastid genome characterized for the largest order of red algae (Ceramiales). The circular-mapping plastid genome is small compared to most florideophyte red algae, and our comparisons show a trend toward smaller plastid genome sizes in the family Rhodomelaceae, independent from a similar trend in Cyanidiophyceae. The Laurencia genome is densely packed with 200 annotated protein-coding genes (188 widely conserved, 3 open reading frames shared with other red algae and 9 hypothetical coding regions). It has 29 tRNAs, a single-copy ribosomal RNA cistron, a tmRNA, and the RNase P RNA. © 2015 Phycological Society of America.

  1. The role of algae in agriculture: a mathematical study.

    PubMed

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  2. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  3. Bicarbonate produced from carbon capture for algae culture.

    PubMed

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system.

  4. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  5. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  6. Lab on a chip technologies for algae detection: a review.

    PubMed

    Schaap, Allison; Rohrlack, Thomas; Bellouard, Yves

    2012-08-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae detection and monitoring. We start with an overview of the detection methods currently used for algae monitoring, followed by a review of lab on a chip devices for algae detection and classification, and then discuss a case study based on our own research activities. We conclude with a discussion on future challenges and motivations for algae-oriented lab on a chip technologies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  8. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  9. Harmful algae blooms removal from fresh water with modified vermiculite.

    PubMed

    Miao, Chunguang; Tang, Yi; Zhang, Hong; Wu, Zhengyan; Wang, Xiangqin

    2014-01-01

    Vermiculite and vermiculite modified with hydrochloric acid were investigated to evaluate their flocculation efficiencies in freshwater containing harmful algae blooms (HABs) (Microcystis aeruginosa). Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, converted fluorescence microscope, plasma-atomic emission spectrometry, and Zetasizer were used to study the flocculation mechanism of modified vermiculite. It was found that the vermiculite modified with hydrochloric acid could coagulate algae cells through charge neutralization, chemical bridging, and netting effect. The experimental results show that the efficiency of flocculation can be notably improved by modified vermiculite. Ninety-eight per cent of algae cells in algae solution could be removed within 10 min after the addition ofmodified vermiculite clay. The method that removal of HABs with modified vermiculite is economical with high efficiency, and more research is needed to assess their ecological impacts before using in practical application.

  10. [Parameter determination of algae growth based on ecological tank experiment].

    PubMed

    Pang, Yong; Ding, Ling; Gao, Guang

    2005-05-01

    A dynamic simulation experiment of algae in an ecological tank was performed at the Taihu Laboratory for Lake Ecosystem Research. During the experiment, water from Taihu Lake was infused into the ecological tank and samples were taken continually to observe algae growth under varying conditions, such as temperature, sunlight and nutrients. Based on the experiment, an algae growth model, considering nitrogen and phosphorus cycle, was developed by using the advanced PHREEQC model. After that, a detailed calibration and validation of parameters in the model were done on the basis of experimental results. The least square method was used to determine the optimal set of parameters. The calculated values of algae and nutrient concentrations show fairly satisfying fittness with measured data.

  11. Effects of pulp mill chlorate on Baltic Sea algae.

    PubMed

    Rosemarin, A; Lehtinen, K J; Notini, M; Mattson, J

    1994-01-01

    The long-term effects of pulp mill chlorate on different algal species of the Baltic Sea were studied in land-based model ecosystems simulating the littoral zone. Brown algae (Phaeophyta) exhibited an extraordinarily high sensitivity to chlorate and pulp mill effluents containing chlorate. All brown algal species ceased growth or showed major signs of toxicity at all concentrations tested, down to microgram per litre levels. EC50 levels for growth of Fucus vesiculosus were about 80-100 microg ClO3- litre(-1). Blue-green algae (Cyanophyta) were not deleteriously affected nor were green algae (Chlorophyta). The perennial and annual species of red algae (Rhodophyta) were also unaffected by the effluents. Diatoms did not show any sensitivity and phytoplankton (fresh- and brackish water) were particularly insensitive. A phanerogam, Zostera marina was also unaffected by the treatments.

  12. Exploration of the gasification of Spirulina algae in supercritical water.

    PubMed

    Miller, Andrew; Hendry, Doug; Wilkinson, Nikolas; Venkitasamy, Chandrasekar; Jacoby, William

    2012-09-01

    This study presents non-catalytic gasification of Spirulina algae in supercritical water using a plug flow reactor and a mechanism for feeding solid carbon streams into high pressure (>25 MPa) environments. A 2(III)(3-1) factorial experimental design explored the effect of concentration, temperature, and residence time on gasification reactions. A positive displacement pump fed algae slurries into the reactor at a temperature range of 550-600°C, and residence times between 4 and 9s. The results indicate that algae gasify efficiently in supercritical water, highlighting the potential for a high throughput process. Additional experiments determined Arrhenius parameters of Spirulina algae. This study also presents a model of the gasification reaction using the estimated activation energy (108 kJ/mol) and other Arrhenius parameters at plug flow conditions. The maximum rate of gasification under the conditions studied of 53 g/Ls is much higher than previously reported.

  13. Potential pharmacological applications of polyphenolic derivatives from marine brown algae.

    PubMed

    Thomas, Noel Vinay; Kim, Se-Kwon

    2011-11-01

    Recently, the isolation and characterization of the biologically active components from seaweeds have gained much attention from various research groups across the world. The marine algae have been studied for biologically active components and phlorotannins are one among them. Among marine algae, brown algal species such as Ecklonia cava, Eisenia arborea, Ecklonia stolinifera and Eisenia bicyclis have been studied for their potential biological activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their potentiality as antioxidant, anti-inflammatory, antidiabetic, antitumor, antihypertensive, anti-allergic, hyaluronidase enzyme inhibition and in matrix metalloproteinases (MMPs) inhibition activity. In this review, we have made an attempt to discuss the potential biological activities of phlorotannins from marine brown algae and their possible candidature in the pharmaceutical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Marine algae: natural product source for gastrointestinal cancer treatment.

    PubMed

    Kim, Se-Kwon; Karagozlu, Mustafa Zafer

    2011-01-01

    Among marine organisms, marine algae are rich sources of structurally diverse bioactive compounds with various biological activities. In order to survive in a highly competitive environment, freshwater or marine algae have to develop defense strategies that result in a tremendous diversity of compounds from different metabolic pathways. Recently, their importance as a source of novel bioactive substances is growing rapidly and many reports have been published about isolated compounds from algae with biological activities. Many researchers reported anticancer activity of the compounds isolated from marine algae. Gastrointestinal tract cancer is one of the most frequent death causes of cancer in men and women. Especially stomach cancer and colon cancer are the second and third common cancer type in the world after lung cancer. Hence investigation of bioactive compounds against gastrointestinal cancer cells has recently become an important field for researchers. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  16. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  17. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  18. [Study on the sorption of 4-octylphenol by freshwater algae].

    PubMed

    Peng, Zhang-e; Yang, Hai-zhen; Wang, Bei-bei; Deng, Nan-sheng

    2009-12-01

    The sorption of 4-octylphenol (4-OP) by two freshwater algae was investigated. Results showed that the sorption of 4-octylphenol by algae was obvious and quick, where 20% of initial 4-OP (2 mg/L) was accumulated by Chlorella vulgaris (CV) and 46% initial 4-OP (2 mg/L) was accumulated by Anabaena cylindrical (AC) after 5 min incubation. The sorption got equilibrium at 1 h after incubation. Langmuir sorption model was good appropriate type for this sorption. The effect of pH value on CV sorption was obvious than that on AC sorption. The sorption capacity of the biomass of two algae increased with the decrease of pH value. The analyzing of interaction between algae and 4-octylphenol was performed by fluorescence spectrum. Results showed that the algae could weaker the fluorescence spectrum intensity of 4-octylphenol and result in red shift of the maximum absorbance wavelength of mixture solution. Based on the results, it was speculated that algae bound with the contamination could use the near UV region of solar radiation and induced the contamination degradation.

  19. Modelling the effect of fluctuating herbicide concentrations on algae growth.

    PubMed

    Copin, Pierre-Jean; Coutu, Sylvain; Chèvre, Nathalie

    2015-03-01

    Herbicide concentrations fluctuate widely in watercourses after crop applications and rain events. The level of concentrations in pulses can exceed the water chronic quality criteria. In the present study, we proposed modelling the effects of successive pulse exposure on algae. The deterministic model proposed is based on two parameters: (i) the typical growth rate of the algae, obtained by monitoring growth rates of several successive batch cultures in growth media, characterizing both the growth of the control and during the recovery periods; (ii) the growth rate of the algae exposed to pulses, determined from a dose-response curve obtained with a standard toxicity test. We focused on the herbicide isoproturon and on the freshwater alga Scenedesmus vacuolatus, and we validated the model prediction based on effect measured during five sequential pulse exposures in laboratory. The comparison between the laboratory and the modelled effects illustrated that the results yielded were consistent, making the model suitable for effect prediction of the herbicide photosystem II inhibitor isoproturon on the alga S. vacuolatus. More generally, modelling showed that both pulse duration and level of concentration play a crucial role. The application of the model to a real case demonstrated that both the highest peaks and the low peaks with a long duration affect principally the cell density inhibition of the alga S. vacuolatus. It is therefore essential to detect these characteristic pulses when monitoring of herbicide concentrations are conducted in rivers.

  20. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  1. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  2. Radionuclides and trace metals in eastern Mediterranean Sea algae.

    PubMed

    Al-Masri, M S; Mamish, S; Budier, Y

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that (137)Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg(-1) dry weight) while the levels of naturally occurring radionuclides, such as (210)Po and (210)Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg(-1) dry weight) for (210)Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate (210)Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br.

  3. Inhibition of green algae growth by corrole-based photosensitizers.

    PubMed

    Pohl, J; Saltsman, I; Mahammed, A; Gross, Z; Röder, B

    2015-02-01

    This study was performed to examine the potential of photodynamic inactivation for growth inhibition of green algae through generation of singlet oxygen. Two cationic and two anionic corroles were investigated according to their photoinhibitive effect on two strains of green algae using visible light for photoexcitation. The development of biomass over the experimental period of 18 days was followed using absorptive properties of the algae samples. The anionic photosensitizers showed no significant phototoxicity, whereas the cationic photosensitizers caused a drastic reduction of biomass on a short time scale and also displayed long-term inhibition of algae growth. In general, it was proven that photodynamic inactivation of green algae is possible. Concluding from the results of this study, cationic photosensitizers are favourable for this task, while anionic photosensitizers are not suited. Phototrophic biofilms are an important factor in biofouling and biodeterioration of building materials, causing great damage to historic and contemporary constructions. Growth inhibition of phototrophic organisms using photodynamic inactivation could pose an alternative to the use of biocides. To this end, successful application of this approach on green algae is a vital step in the development of suitable photosensitizers. © 2014 The Society for Applied Microbiology.

  4. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-03

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.

  5. Study on algae removal by immobilized biosystem on sponge

    NASA Astrophysics Data System (ADS)

    Pei, Haiyan; Hu, Wenrong

    2006-10-01

    In this study, sponges were used to immobilize domesticated sludge microbes in a limited space, forming an immobilized biosystem capable of algae and microcystins removal. The removal effects on algae, microcystins and UV260 of this biosystem and the mechanism of algae removal were studied. The results showed that active sludge from sewage treatment plants was able to remove algae from a eutrophic lake’s water after 7 d of domestication. The removal efficiency for algae, organic matter and microcystins increased when the domesticated sludge was immobilized on sponges. When the hydraulic retention time (HRT) was 5h, the removal rates of algae, microcystins and UV260 were 90%, 94.17% and 84%, respectively. The immobilized biosystem consisted mostly of bacteria, the Ciliata and Sarcodina protozoans and the Rotifer metazoans. Algal decomposition by zoogloea bacteria and preying by microcreatures were the two main modes of algal removal, which occurred in two steps: first, absorption by the zoogloea; second, decomposition by the zoogloea bacteria and the predacity of the microcreatures.

  6. Phosphorus-limited growth of a green alga and a blue-green alga

    SciTech Connect

    Lang, D.S.; Brown, E.J.

    1981-12-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).

  7. Phosphorus-Limited Growth of a Green Alga and a Blue-Green Alga

    PubMed Central

    Lang, Douglas S.; Brown, Edward J.

    1981-01-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nägeli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nägeli than in S. quadricauda. Synechococcus Nägeli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). PMID:16345896

  8. AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome

    PubMed Central

    2011-01-01

    Background Microalgae have the potential to deliver biofuels without the associated competition for land resources. In order to realise the rates and titres necessary for commercial production, however, system-level metabolic engineering will be required. Genome scale metabolic reconstructions have revolutionized microbial metabolic engineering and are used routinely for in silico analysis and design. While genome scale metabolic reconstructions have been developed for many prokaryotes and model eukaryotes, the application to less well characterized eukaryotes such as algae is challenging not at least due to a lack of compartmentalization data. Results We have developed a genome-scale metabolic network model (named AlgaGEM) covering the metabolism for a compartmentalized algae cell based on the Chlamydomonas reinhardtii genome. AlgaGEM is a comprehensive literature-based genome scale metabolic reconstruction that accounts for the functions of 866 unique ORFs, 1862 metabolites, 2249 gene-enzyme-reaction-association entries, and 1725 unique reactions. The reconstruction was compartmentalized into the cytoplasm, mitochondrion, plastid and microbody using available data for algae complemented with compartmentalisation data for Arabidopsis thaliana. AlgaGEM describes a functional primary metabolism of Chlamydomonas and significantly predicts distinct algal behaviours such as the catabolism or secretion rather than recycling of phosphoglycolate in photorespiration. AlgaGEM was validated through the simulation of growth and algae metabolic functions inferred from literature. Using efficient resource utilisation as the optimality criterion, AlgaGEM predicted observed metabolic effects under autotrophic, heterotrophic and mixotrophic conditions. AlgaGEM predicts increased hydrogen production when cyclic electron flow is disrupted as seen in a high producing mutant derived from mutational studies. The model also predicted the physiological pathway for H2 production and

  9. Detection of Cyanotoxins in Algae Dietary Supplements

    PubMed Central

    Roy-Lachapelle, Audrey; Solliec, Morgan; Bouchard, Maryse F.; Sauvé, Sébastien

    2017-01-01

    Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer’s awareness on the potential risks associated with the consumption of these supplements. PMID:28245621

  10. News about cryptochrome photoreceptors in algae

    PubMed Central

    Beel, Benedikt; Müller, Nico; Kottke, Tilman; Mittag, Maria

    2013-01-01

    Cryptochromes (CRYs) are flavoproteins that are known as blue light photoreceptors in many organisms. Recently, genome sequences from a variety of algae became available. Functional characterizations of animal-like CRYs from Oestreococcus tauri, Chlamydomonas reinhardtii and Phaeodactylum tricornutum highlighted novel functions and properties. As arising from studies in fungi, certain algal CRYs of the “cryptochrome photolyase family” (PtCPF1, OtCPF1) have dual or even triple functions. They are involved in blue light perception and/or in the circadian clock and are able to repair DNA damages. On the other hand, the animal-like aCRY from C. reinhardtii is not only acting as sensory blue light- but also as sensory red light receptor thus expanding our current view of flavoproteins in general and CRYs in particular. The observed broad spectral response points to the neutral radical state of flavin, which is assumed to be the dark form in aCRY in contrast to the plant CRYs. PMID:23154511

  11. News about cryptochrome photoreceptors in algae.

    PubMed

    Beel, Benedikt; Müller, Nico; Kottke, Tilman; Mittag, Maria

    2013-02-01

    Cryptochromes (CRYs) are flavoproteins that are known as blue light photoreceptors in many organisms. Recently, genome sequences from a variety of algae became available. Functional characterizations of animal-like CRYs from Oestreococcus tauri, Chlamydomonas reinhardtii and Phaeodactylum tricornutum highlighted novel functions and properties. As arising from studies in fungi, certain algal CRYs of the "cryptochrome photolyase family" (PtCPF1, OtCPF1) have dual or even triple functions. They are involved in blue light perception and/or in the circadian clock and are able to repair DNA damages. On the other hand, the animal-like aCRY from C. reinhardtii is not only acting as sensory blue light- but also as sensory red light receptor thus expanding our current view of flavoproteins in general and CRYs in particular. The observed broad spectral response points to the neutral radical state of flavin, which is assumed to be the dark form in aCRY in contrast to the plant CRYs.

  12. Coccolithophorid algae culture in closed photobioreactors.

    PubMed

    Moheimani, Navid R; Isdepsky, Andreas; Lisec, Jan; Raes, Eric; Borowitzka, Michael A

    2011-09-01

    The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L(-1) day(-1) respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20-25% of dry weight) and calcium carbonate (11-12% of dry weight) contents were also the highest of all species tested.

  13. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  14. Detection of Cyanotoxins in Algae Dietary Supplements.

    PubMed

    Roy-Lachapelle, Audrey; Solliec, Morgan; Bouchard, Maryse F; Sauvé, Sébastien

    2017-02-25

    Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer's awareness on the potential risks associated with the consumption of these supplements.

  15. Is the Future Really in Algae?

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  16. Two-step evolution of endosymbiosis between hydra and algae.

    PubMed

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  17. Plasticity predicts evolution in a marine alga

    PubMed Central

    Schaum, C. Elisa; Collins, Sinéad

    2014-01-01

    Under global change, populations have four possible responses: ‘migrate, acclimate, adapt or die’ (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167–178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298–230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells. PMID:25209938

  18. Plasticity predicts evolution in a marine alga.

    PubMed

    Schaum, C Elisa; Collins, Sinéad

    2014-10-22

    Under global change, populations have four possible responses: 'migrate, acclimate, adapt or die' (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167-178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298-230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells.

  19. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    SciTech Connect

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  20. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    NASA Astrophysics Data System (ADS)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  1. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    PubMed Central

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  2. Development and characteristics of an adhesion bioassay for ectocarpoid algae.

    PubMed

    Evariste, Emmanuelle; Gachon, Claire M M; Callow, Maureen E; Callow, James A

    2012-01-01

    Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.

  3. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  4. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  5. Application of algae-biosensor for environmental monitoring.

    PubMed

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-01-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor.

  6. Visualization of oxygen distribution patterns caused by coral and algae

    PubMed Central

    Smith, Jennifer E.; Abieri, Maria L.; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L- 1) and daylight (97.9 ± 27.5 µmol O2 L- 1) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones. PMID:23882443

  7. Evolution of reproductive development in the volvocine algae.

    PubMed

    Hallmann, Armin

    2011-06-01

    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed. © The Author(s) 2010. This article is published with open access at Springerlink.com

  8. Hydra viridis: transfer of metabolites between Hydra and symbiotic algae.

    PubMed

    Thorington, G; Margulis, L

    1981-02-01

    "Back transfer" of metabolites from food to endosymbiotic algae in the digestive cells of Hydra viridis was demonstrated. Brine shrimp nauplii labeled with tritiated precursors of protein and nucleic acids (DNA and RNA) were fed to light and dark grown hydras. The fate of the label after a single feeding with radioactive material in hydra and algal fractions was followed by scintillation counting and autoradiographic techniques. Labeled thymidine was incorporated into DNA in both light- and dark-grown hydras. Although the symbiosis persists indefinitely in hydras in darkness (7-10 days) the number of algae per cell is reduced. Tritiated orotic acid and tritiated uridine, RNA precursors, were incorporated into peptides and proteins, and to a lesser extent into simple sugars, oligosaccharides, and oligonucleotides in hydra and algal fractions. Thus the metabolites of the brine shrimp food are available to both partners. A decrease over time in label introduced as 3H-orotic acid and 3H-uridine and incorporated into hydra RNA is compensated for by an increase in label in the algae, implying competition for constant quantities of metabolites from the single feeding. Although food availability, light, number of algae per cell, and other factors influence the quantity and rate of nutrient transfer between the partners, in both light and dark grown hydras the amount of "back transfer" of metabolites to the symbiotic algae is impressive.

  9. Ocean acidification weakens the structural integrity of coralline algae.

    PubMed

    Ragazzola, Federica; Foster, Laura C; Form, Armin; Anderson, Philip S L; Hansteen, Thor H; Fietzke, Jan

    2012-09-01

    The uptake of anthropogenic emission of carbon dioxide is resulting in a lowering of the carbonate saturation state and a drop in ocean pH. Understanding how marine calcifying organisms such as coralline algae may acclimatize to ocean acidification is important to understand their survival over the coming century. We present the first long-term perturbation experiment on the cold-water coralline algae, which are important marine calcifiers in the benthic ecosystems particularly at the higher latitudes. Lithothamnion glaciale, after three months incubation, continued to calcify even in undersaturated conditions with a significant trend towards lower growth rates with increasing pCO2 . However, the major changes in the ultra-structure occur by 589 μatm (i.e. in saturated waters). Finite element models of the algae grown at these heightened levels show an increase in the total strain energy of nearly an order of magnitude and an uneven distribution of the stress inside the skeleton when subjected to similar loads as algae grown at ambient levels. This weakening of the structure is likely to reduce the ability of the alga to resist boring by predators and wave energy with severe consequences to the benthic community structure in the immediate future (50 years). © 2012 Blackwell Publishing Ltd.

  10. Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics.

    PubMed

    Holt, H M; Gahrn-Hansen, B; Bruun, B

    2005-05-01

    The occurrence of the two Shewanella species found in clinical specimens, Shewanella algae and Shewanella putrefaciens, correlates with the temperature and salinity of seawater. This means that Shewanella infections occur in warm climates or during especially warm summers in temperate climates. The infections described most commonly involve ears, skin and soft tissue, with or without bacteraemia. Primary bacteraemia with a fulminant course is also seen in immunocompromised patients. Important differential characteristics between the two species include the ability of S. algae to produce mucoid colonies with beta-haemolysis on sheep blood agar, to grow at 42 degrees C and in NaCl 6% w/v, and to reduce nitrite, and an inability to produce acid from maltose, all of which are in contrast to the characteristics of S. putrefaciens. Automated identification systems fail to differentiate between S. algae and S. putrefaciens, as S. algae is not included in the databases of these systems. Presumably for this reason, most Shewanella infections reported during recent years have been attributed to S. putrefaciens. However, when extensive phenotypic characterisation is performed, most human infections are seen to be caused by S. algae. As the two species seem to have different pathogenic potential for humans, correct identification is important, and this is possible in routine clinical microbiology laboratories.

  11. Visualization of oxygen distribution patterns caused by coral and algae.

    PubMed

    Haas, Andreas F; Gregg, Allison K; Smith, Jennifer E; Abieri, Maria L; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  12. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    PubMed

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. AlgaePath: comprehensive analysis of metabolic pathways using transcript abundance data from next-generation sequencing in green algae.

    PubMed

    Zheng, Han-Qin; Chiang-Hsieh, Yi-Fan; Chien, Chia-Hung; Hsu, Bo-Kai Justin; Liu, Tsung-Lin; Chen, Ching-Nen Nathan; Chang, Wen-Chi

    2014-03-14

    Algae are important non-vascular plants that have many research applications, including high species diversity, biofuel sources, and adsorption of heavy metals and, following processing, are used as ingredients in health supplements. The increasing availability of next-generation sequencing (NGS) data for algae genomes and transcriptomes has made the development of an integrated resource for retrieving gene expression data and metabolic pathway essential for functional analysis and systems biology. In a currently available resource, gene expression profiles and biological pathways are displayed separately, making it impossible to easily search current databases to identify the cellular response mechanisms. Therefore, in this work the novel AlgaePath database was developed to retrieve transcript abundance profiles efficiently under various conditions in numerous metabolic pathways. AlgaePath is a web-based database that integrates gene information, biological pathways, and NGS datasets for the green algae Chlamydomonas reinhardtii and Neodesmus sp. UTEX 2219-4. Users can search this database to identify transcript abundance profiles and pathway information using five query pages (Gene Search, Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-expression Analysis). The transcript abundance data of 45 and four samples from C. reinhardtii and Neodesmus sp. UTEX 2219-4, respectively, can be obtained directly on pathway maps. Genes that are differentially expressed between two conditions can be identified using Folds Search. The Gene Group Analysis page includes a pathway enrichment analysis, and can be used to easily compare the transcript abundance profiles of functionally related genes on a map. Finally, the Co-expression Analysis page can be used to search for co-expressed transcripts of a target gene. The results of the searches will provide a valuable reference for designing further experiments and for elucidating critical

  14. [Nutritive value of the spirulina algae (Spirulina maxima)].

    PubMed

    Tejada de Hernández, I; Shimada, A S

    1978-06-01

    Nine experiments were conducted, five of them in vivo to determine the limiting amino acids and digestibility of spiruline algae for the rat, and four in vitro to determine the digestibility of the product in pepsin and ruminal liquid. None of the amino acids studied (lysine, methionine, histidine) added alone or in combination to 10% protein (either crude or true) diets provided exclusively by spiruline, seems to be limiting although the results could be masked by the low palatability and acceptability of the product by the rats. The apparent digestibility of the algae was 67.4%. For the in vitro tests, the algae were subjected to several physical or chemical treatments, and the digestibility of the resulting product determined by four different techniques. In no case did the tested treatments have any effect on its digestibility.

  15. Benefits of using algae as natural sources of functional ingredients.

    PubMed

    Ibañez, Elena; Cifuentes, Alejandro

    2013-03-15

    Algae have been suggested as a potential source of bioactive compounds to be used in the food and pharmaceutical industries. With the strong development of functional foods as a method to improve or maintain health, the exploration of new compounds with real health effects is now an intense field of research. The potential use of algae as source of functional food ingredients, such as lipids, proteins, polysaccharides, phenolics, carotenoids, etc., is presented, together with the different possibilities of improving valuable metabolites production either using the tools and the knowledge provided by marine biotechnology or improving the different factors involved in the production on a large scale of such metabolites. The bio-refinery concept is also presented as a way to improve the efficient use of algae biomass while favouring process sustainability. © 2013 Society of Chemical Industry.

  16. Algae from the arid southwestern United States: an annotated bibliography

    SciTech Connect

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  17. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  18. An updated comprehensive techno-economic analysis of algae biodiesel.

    PubMed

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality.

  19. Potential anti-inflammatory natural products from marine algae.

    PubMed

    Fernando, I P Shanura; Nah, Jae-Woon; Jeon, You-Jin

    2016-12-01

    Inflammatory diseases have become one of the leading causes of health issue throughout the world, having a considerable influence on healthcare costs. With the emerging developments in natural product, synthetic and combinatorial chemistry, a notable success has been achieved in discovering natural products and their synthetic structural analogs with anti-inflammatory activity. However, many of these therapeutics have indicated detrimental side effects upon prolonged usage. Marine algae have been identified as an underexplored reservoir of unique anti-inflammatory compounds. These include polyphenols, sulfated polysaccharides, terpenes, fatty acids, proteins and several other bioactives. Consumption of these marine algae could provide defense against the pathophysiology of many chronic inflammatory diseases. With further investigation, algal anti-inflammatory phytochemicals have the potential to be used as therapeutics or in the synthesis of structural analogs with profound anti-inflammatory activity with reduced side effects. The current review summarizes the latest knowledge about the potential anti-inflammatory compounds discovered from marine algae.

  20. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-12-24

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel.

  1. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    NASA Astrophysics Data System (ADS)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  2. Enhanced lipid extraction from algae using free nitrous acid pretreatment.

    PubMed

    Bai, Xue; Naghdi, Forough Ghasemi; Ye, Liu; Lant, Paul; Pratt, Steven

    2014-05-01

    Lipid extraction has been identified as a major bottleneck for large-scale algal biodiesel production. In this work free nitrous acid (FNA) is presented as an effective and low cost pretreatment to enhance lipid recovery from algae. Two batch tests, with a range of FNA additions, were conducted to disrupt algal cells prior to lipid extraction by organic solvents. Total accessible lipid content was quantified by the Bligh and Dyer method, and was found to increase with pretreatment time (up to 48 h) and FNA concentration (up to 2.19 mg HNO2-N/L). Hexane extraction was used to study industrially accessible lipids. The mass transfer coefficient (k) for lipid extraction using hexane from algae treated with 2.19 mg HNO2-N/L FNA was found to be dramatically higher than for extraction from untreated algae. Consistent with extraction results, cell disruption analysis indicated the disruption of the cell membrane barrier.

  3. The evolution of photosynthesis in chromist algae through serial endosymbioses

    PubMed Central

    Stiller, John W.; Schreiber, John; Yue, Jipei; Guo, Hui; Ding, Qin; Huang, Jinling

    2014-01-01

    Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity. PMID:25493338

  4. Extremophilic micro-algae and their potential contribution in biotechnology.

    PubMed

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized.

  5. [Sedimentary Phosphorus Forms Under Disturbances and Algae in Taihu Lake].

    PubMed

    Chen, Jun; Li, Da-peng; Zhu, Pei-ying; Huang, Yong; Wang, Ren

    2015-12-01

    Sedimentary phosphorus forms were investigated to clarify the release of sedimentary phosphorus forms under the repeated disturbance with the addition of algae at different initial concentrations. The sediments and overlying water were taken from the Meiliang Bay in Taihu Lake. The results showed that the concentrations of NH₄ Cl-P and Res-P decreased, while the content of Fe/Al-P and Ca-P increased without disturbance. In addition, the Ca-P increased with the increase of the initial concentration of algae and the net increase of Ca-P increased by 48% (30 µg · L⁻¹), 66% (60 µg · L⁻¹), 74% (120 µg · L⁻¹), respectively. However, under the disturbance, the NH₄Cl-P and Res-P were significantly reduced, the Fe/Al-P increased significantly. The percentage of Fe/Al-P to Tot-P was up to 66. 2% (average of the 3 experiments with the addition of algae of 30 µg · L⁻¹, 60 µg · L⁻¹ and 120 µg L-¹), it was higher than the value (53.%, average of the 3 experiments) without the disturbance. Moreover, under the disturbance, the percentage of Ca-P to Tot-P was 24.1% (average of the 3 experiments with the addition of algae of 30 µg · L⁻¹, 60 µg⁻¹ and 120 µg · L⁻¹) and it was slightly lower than that (33.0%, average of the 3 experiments) without the disturbance. It is suggested that the coexistence of disturbance and algae facilitated the formation of Fe/Al-P, but the algae accelerated the formation of Ca-P without disturbance.

  6. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants.

  7. Aragonitic Pennsylvanian phylloid algae from New Mexico: The missing link

    SciTech Connect

    Kirkland, B.L.; Moore, C.H. Jr. ); Dickson, J.A.D. )

    1991-03-01

    Remarkably well-preserved codiacean algae (Eugonophyllum and Anchicodium) retaining original aragonite are present in the Virgilian Holder Formation, Sacramento Mountains, south-central New Mexico. The algae are preserved in a 20-cm-thick packstone between two thick (> 5m) shale beds. Aragonite is preserved as a felt-like mesh of needles in the algal skeletons, in the shell fragments of molluscs, in the walls of sponges, and in botryoidal and isopachous marine cements. The aragonite is confirmed by X-ray diffraction, by visual inspection of pristine aragonite needles with SEM, and by a high content of Sr as revealed by microprobe analysis. The average Sr content of the algae (9,091 ppm, n = 21) is comparable to modern codiaceans. Preservation of internal structure in Eugonophyllum was previously unknown. The medullary (interior) region of the Eugonophyllum thallus is composed of an aragonite felt punctuated by small (20 {mu}m diameter), parallel utricles. As in modern codiaceans, the utricles in the cortical (exterior) region of the thallus increase in diameter and their bulbous tips coalesce to form the outer cortex of the plant. This occurrence provides a key piece of evidence in support of hypotheses concerning the nature and origin of phylloid algal bioherms. Because the internal structure of most fossil phylloid algae is replaced by sparry mosaic calcite, taxonomic classification has been difficult even at the fundamental level of division (phylum). The authors discovery confirms that at least some ancient phylloid algae resembled the modern green algae Halimeda or Udotea, and lends credibility to the suggestion that ancient phylloid algal mounds are analogous to modern Halimeda mounds of the South Pacific.

  8. Heavy metals in marine algae of the Kuwait coast

    SciTech Connect

    Buo-Olayan, A.H.; Subrahmanyam, M.N.V.

    1996-12-31

    Marine algae are considered as important primary producers in the coastal region. Several marine algal species are being considered as raw material for various economically important products and this has resulted in their increasing demand. Marine algal species also have been suggested to be the indicators of pollution. Keeping in view the importance of marine algal species for direct or indirect human and cattle consumption, it is necessary to monitor the bioaccumulation of certain elements in these species. This study was aimed at establishing the concentration levels of trace metals in marine algae of the Kuwait coast. 26 refs., 1 fig., 3 tabs.

  9. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  10. Brominated anisoles and cresols in the red alga Polysiphonia sphaerocarpa.

    PubMed

    Flodin, C; Whitfield, F B

    2000-01-01

    The red marine alga Polysiphonia sphaerocarpa was extracted by a simultaneous steam distillation-solvent extraction technique and several brominated compounds were identified by gas chromatography-mass spectrometry. The compounds detected were 2,4-dibromoanisole, 2,4,6-tribromoanisole, 3-bromocresol, 3,5-dibromocresol, 3-bromo-4-hydroxybenzaldehyde, 3,5-dibromo-4-hydroxybenzaldehyde, 2-bromophenol, 4-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol and 2,4,6-tribromophenol. This is the first time brominated anisoles and cresols have been detected in marine algae.

  11. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Image and Video Library

    1990-12-10

    STS035-81-040 (2-10 Dec 1990) --- Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  12. Homogeneity of Danish environmental and clinical isolates of Shewanella algae.

    PubMed

    Vogel, B F; Holt, H M; Gerner-Smidt, P; Bundvad, A; Sogaard, P; Gram, L

    2000-01-01

    Danish isolates of Shewanella algae constituted by whole-cell protein profiling a very homogeneous group, and no clear distinction was seen between strains from the marine environment and strains of clinical origin. Although variation between all strains was observed by ribotyping and random amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection.

  13. Antimicrobial effect of phlorotannins from marine brown algae.

    PubMed

    Eom, Sung-Hwan; Kim, Young-Mog; Kim, Se-Kwon

    2012-09-01

    Marine organisms exhibit a rich chemical content that possess unique structural features as compared to terrestrial metabolites. Among marine resources, marine algae are a rich source of chemically diverse compounds with the possibility of their potential use as a novel class of artificial food ingredients and antimicrobial agents. The objective of this brief review is to identify new candidate drugs for antimicrobial activity against food-borne pathogenic bacteria. Bioactive compounds derived from brown algae are discussed, namely phlorotannins, that have anti-microbial effects and therefore may be useful to explore as potential antimicrobial agents for the food and pharmaceutical industries. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Algae as promising organisms for environment and health

    PubMed Central

    2011-01-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  15. [Effectiveness and characteristics of treating algae-laden raw water by stocking silver carp].

    PubMed

    Fan, Zhen-Qiang; Cui, Fu-Yi; Ma, Hua; He, Wen-Jie; Yin, Pei-Jun

    2008-03-01

    To reduce the negative effect of algae on conventional water treatment, a full-scale research of removing algae from algae-laden raw water by stocking filter-feeding silver carp was processed. After the pretreatment in a presedimentation tank with silver carp, the concentration of phytoplankton, the biomass of cyanobacteria and Microsystis flos-aquae in algae-laden raw water with Microsystis flos-aquae its dominant species decreased 61.8%, 76.1% and 78.2% respectively. This effective decrease of algae load on conventional process created favorable conditions for water treatment. Analysis indicates that food habit of silver carp and algae size are two causes of different removal efficiency between cyanobacteria and green algae. The results show that biomanipulation of silver carp is applicable for treating algae-laden raw water in which colonial cyanobacteria is dominant.

  16. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  17. Where Have All the Algae Gone, or, How Many Kingdoms Are There?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    1995-01-01

    Examined 10 introductory college-level, general biology survey textbooks for the coverage of algae to assess the efficacy of coverage. Describes a proposal of seven kingdoms and discusses the disposition of algae among five of these kingdoms. Contends that textbooks should highlight the concept of algae across the five kingdoms. Contains 59…

  18. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  19. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    DTIC Science & Technology

    2012-07-10

    Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices Key...Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices 5a. CONTRACT NUMBER...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This is the report of a project to use photosynthetic antenna pigment complexes from algae and plants as

  20. Critical conditions for ferric chloride-induced flocculation of freshwater algae.

    PubMed

    Wyatt, Nicholas B; Gloe, Lindsey M; Brady, Patrick V; Hewson, John C; Grillet, Anne M; Hankins, Matthew G; Pohl, Phillip I

    2012-02-01

    The effects of algae concentration, ferric chloride dose, and pH on the flocculation efficiency of the freshwater algae Chlorella zofingiensis can be understood by considering the nature of the electrostatic charges on the algae and precipitate surfaces. Two critical conditions are identified which, when met, result in flocculation efficiencies in excess of 90% for freshwater algae. First, a minimum concentration of ferric chloride is required to overcome the electrostatic stabilization of the algae and promote bridging of algae cells by hydroxide precipitates. At low algae concentrations, the minimum amount of ferric chloride required increases linearly with algae concentration, characteristic of flocculation primarily through electrostatic bridging by hydroxide precipitates. At higher algae concentrations, the minimum required concentration of ferric chloride for flocculation is independent of algae concentration, suggesting a change in the primary flocculation mechanism from bridging to sweep flocculation. Second, the algae must have a negative surface charge. Experiments and surface complexation modeling show that the surface charge of C. zofingiensis is negative above a pH of 4.0 ± 0.3 which agrees well with the minimum pH required for effective flocculation. These critical flocculation criteria can be extended to other freshwater algae to design effective flocculation systems.

  1. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  2. Where Have All the Algae Gone, or, How Many Kingdoms Are There?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    1995-01-01

    Examined 10 introductory college-level, general biology survey textbooks for the coverage of algae to assess the efficacy of coverage. Describes a proposal of seven kingdoms and discusses the disposition of algae among five of these kingdoms. Contends that textbooks should highlight the concept of algae across the five kingdoms. Contains 59…

  3. Modeling and Control of Algae Harvesting, Dewatering and Drying (HDD) Systems

    DTIC Science & Technology

    2012-05-01

    MODELING AND CONTROL OF ALGAE HARVESTING, DEWATERING AND DRYING (HDD) SYSTEMS by FENGMING LI Submitted in partial fulfillment of the...Modeling and Control of Algae Harvesting, Dewatering and Drying (HDD) Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ALTERNATIVE ENERGY .................................................................................................................. 3 1.3 ALGAE OIL

  4. A simple classification of the volvocine algae by formal languages.

    PubMed

    Yoshida, Hiroshi; Yokomori, Takashi; Suyama, Akira

    2005-11-01

    There are several explanations of why certain primitive multicellular organisms aggregate in particular forms and why their constituent cells cooperate with one another to a particular degree. Utilizing the framework of formal language theory, we have derived one possible simple classification of the volvocine algae-one of the primitive multicells-for some forms of aggregation and some degrees of cooperation among cells. The volvocine algae range from the unicellular Chlamydomonas to the multicellular Volvox globator, which has thousands of cells. The classification we use in this paper is based on the complexity of Parikh sets of families on Chomsky hierarchy in formal language theory. We show that an alga with almost no space closed to the environment, e.g., Gonium pectorale, can be characterized by PsFIN, one with a closed space and no cooperation, e.g., Eudorina elegans, by PsCF, and one with a closed space and cooperation, e.g., Volvox globator, by PslambdauSC. This classification should provide new insights into the necessity for specific forms and degrees of cooperation in the volvocine algae.

  5. Study of ecotoxicity of silver nanoparticles using algae

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.; Abramenko, N. B.

    2016-11-01

    Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.

  6. Decreased abundance of crustose coralline algae due to ocean acidification

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  7. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    PubMed Central

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  8. Optimization of light use efficiency for biofuel production in algae.

    PubMed

    Simionato, Diana; Basso, Stefania; Giacometti, Giorgio M; Morosinotto, Tomas

    2013-12-01

    A major challenge for next decades is development of competitive renewable energy sources, highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among different possibilities, which are currently under investigation, there is the exploitation of unicellular algae for production of biofuels and biodiesel in particular. Some algae species have the ability of accumulating large amount of lipids within their cells which can be exploited as feedstock for the production of biodiesel. Strong research efforts are however still needed to fulfill this potential and optimize cultivation systems and biomass harvesting. Light provides the energy supporting algae growth and available radiation must be exploited with the highest possible efficiency to optimize productivity and make microalgae large scale cultivation energetically and economically sustainable. Investigation of the molecular bases influencing light use efficiency is thus seminal for the success of this biotechnology. In this work factors influencing light use efficiency in algal biomass production are reviewed, focusing on how algae genetic engineering and control of light environment within photobioreactors can improve the productivity of large scale cultivation systems.

  9. Basis for the Resistance of Several Algae to Microbial Decomposition

    PubMed Central

    Gunnison, Douglas; Alexander, Martin

    1975-01-01

    The basis for the resistance of certain algae to microbial decomposition in natural waters was investigated using Pediastrum duplex, Staurastrum sp., and Fischerella muscicola as test organisms. Enzyme preparations previously found to convert susceptible algae into spheroplasts had no such effect on the resistant species, although glucose and galacturonic acid were released from P. duplex walls. Little protein or lipid but considerable carbohydrate was found in the walls of the refractory organisms, but resistance was not correlated with the presence of a unique sugar monomer. A substance present in Staurastrum sp. walls was characterized as lignin or lignin-like on the basis of its extraction characteristics, infrared spectrum, pyrolysis pattern, and content of an aromatic building block. Sporopollenin was found in P. duplex, and cellulose in Staurastrum sp. Cell walls of the algae were fractionated, and the fractions least susceptible to microbial degradation were the sporopollenin of P. duplex, the polyaromatic component of Staurastrum sp., and two F. muscicola fractions containing several sugar monomers. The sporopollenin content of P. duplex, the content of lignin or a related constituent of Staurastrum sp., and the resistance of the algae to microbial attack increased with age. It is suggested that resistance results from the presence of sporopollenin in P. duplex, a lignin-like material in Staurastrum sp., and possibly heteropolysaccharides in F. muscicola. PMID:808166

  10. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  11. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    PubMed

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage.

  12. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption.

  13. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  14. Settlement of marine periphytic algae in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Nayar, S.; Goh, B. P. L.; Chou, L. M.

    2005-08-01

    This note describes settlement studies of marine periphytic algae on glass substrata in a tropical estuary in Singapore. The rates of production in terms of 14C radiotracer uptake, biomass in terms of chlorophyll a, community structure and cell abundance were measured from the settled periphytic algae at various depths in the water column and compared with the prevailing hydrographical conditions. Relatively higher periphytic algal settlement was observed at 1 m depth, even though it was not statistically different from other depths. Diatoms such as Skeletonema costatum and Thalassiosira rotula dominated the assemblage, together with the marine cyanobacteria Synechococcus sp. The three settlement parameters viz., periphytic algal production, chlorophyll a and cell counts showed significant differences between the days of settlement, with no significant differences observed for different depths. The periphytic algal community in this study comprised 30 microalgal species, dominated by diatoms (78%), followed by cyanobacteria (19% - primarily Synechococcus sp.), green flagellates (1%), dinoflagellates (1%) and other forms accounting for the remaining 1% of the total cell counts. Correlation studies and principal component analysis (PCA) revealed significant influence of silicate concentrations in the water column with the settlement of periphytic algae in this estuary. Though photoinhibited at the surface, photosynthetically available radiation did not seem to influence the overall settlement of periphytic algae. Diatoms and Synechococcus in the periphytic algal community were influenced by water temperature, PAR, pH and dissolved oxygen as seen in the PCA plots.

  15. Ecological assessments with algae: a review and synthesis.

    PubMed

    Stevenson, Jan

    2014-06-01

    Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site-specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional-scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management.

  16. [Use of blue-green algae for biogas production].

    PubMed

    Shmandiĭ, B M; Nikiforov, V V; Alferov, V P; Kharlamova, E V; Pronin, V A

    2010-01-01

    Perspectives for nature protection and energy-saving, by using blue-green algae, are discussed. Utilization of their phyto biomass for biogas manufacture will lead to the environmental normalization of the Transdniestria and allow one to have about 19,000,000 m3 of methane only from the water area of only one Kremenchug water basin each vegetative period (70 days).

  17. [Infectious cellulitis and Shewanella alga septicemia in an immunocompetent patient].

    PubMed

    Clément, L-F; Gallet, C; Perron, J; Lesueur, A

    2004-12-01

    Shewanella alga is a Gram-negative bacilla often found in water or soil. Clinical infections in humans are rare, with serious infections described generally in immunocompromised hosts. A 66 year-old man with a heel wound had developed, after numerous sea baths in the Atlantic ocean (Oleron island, France), an infectious cellulitis of the leg with Shewanella alga septicemia. Despite the absence of immunodeficiency in this patient, infectious cellulitis and septicemia occurred via a wound to the skin and contact with sea water. Healing was seen after treatment with cefotaxime, ciprofoxacin and gentamicin IV, relayed with ciprofloxacin and erythromycin. Shewanella alga was also susceptible to ticarcillin, piperacillin and ceftazidime but was resistant to ampicillin, amoxicilline-clavulanate, colistin, cyclines, fosfomycin and cefsulodin. No immunological anomaly was found. We report a case of infectious cellulitis with Shewanella alga septicemia. This has not previously been described in an immunocompetent patient. Antibiotic therapy must be longer than usual treatment for streptococcal erysipelas and first-line antibiotherapy with ampicillin alone may not be sufficient.

  18. Survey of Hydrogenase Activity in Algae: Final Report

    SciTech Connect

    Brand, J. J.

    1982-04-01

    The capacity for hydrogen gas production was examined in nearly 100 strains of Eukaryotic algae. Each strain was assessed for rate of H2 production in darkness, at compensating light intensity and at saturating Tight intensity. Maximum H2 yield on illumination and sensitivity to molecular oxygen were also measured.

  19. Carbon Partitioning in Green Algae (Chlorophyta) and the Enolase Enzyme

    PubMed Central

    Polle, Jürgen E. W.; Neofotis, Peter; Huang, Andy; Chang, William; Sury, Kiran; Wiech, Eliza M.

    2014-01-01

    The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae. PMID:25093929

  20. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-05-01

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt(+)) and mating type minus (mt(-)), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt(+) and mt(-) mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  1. Lysis of Blue-Green Algae by Myxobacter

    PubMed Central

    Shilo, Miriam

    1970-01-01

    Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine ∼70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter. Images PMID:4990764

  2. Carbon partitioning in green algae (chlorophyta) and the enolase enzyme.

    PubMed

    Polle, Jürgen E W; Neofotis, Peter; Huang, Andy; Chang, William; Sury, Kiran; Wiech, Eliza M

    2014-08-04

    The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  3. Intracellular invasion of green algae in a salamander host

    PubMed Central

    Kerney, Ryan; Kim, Eunsoo; Hangarter, Roger P.; Heiss, Aaron A.; Bishop, Cory D.; Hall, Brian K.

    2011-01-01

    The association between embryos of the spotted salamander (Ambystoma maculatum) and green algae (“Oophila amblystomatis” Lamber ex Printz) has been considered an ectosymbiotic mutualism. We show here, however, that this symbiosis is more intimate than previously reported. A combination of imaging and algal 18S rDNA amplification reveals algal invasion of embryonic salamander tissues and cells during development. Algal cells are detectable from embryonic and larval Stages 26–44 through chlorophyll autofluorescence and algal 18S rDNA amplification. Algal cell ultrastructure indicates both degradation and putative encystment during the process of tissue and cellular invasion. Fewer algal cells were detected in later-stage larvae through FISH, suggesting that the decline in autofluorescent cells is primarily due to algal cell death within the host. However, early embryonic egg capsules also contained encysted algal cells on the inner capsule wall, and algal 18S rDNA was amplified from adult reproductive tracts, consistent with oviductal transmission of algae from one salamander generation to the next. The invasion of algae into salamander host tissues and cells represents a unique association between a vertebrate and a eukaryotic alga, with implications for research into cell–cell recognition, possible exchange of metabolites or DNA, and potential congruence between host and symbiont population structures. PMID:21464324

  4. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  5. Biodegradation of phenols by the alga Ochromonas danica.

    PubMed Central

    Semple, K T; Cain, R B

    1996-01-01

    The eukaryotic alga Ochromonas danica, a nutritionally versatile, mixotrophic chrysophyte, grew on phenol as the sole carbon source in axenic culture and removed the phenol carbon from the growth medium. Respirometric studies confirmed that the enzymes involved in phenol catabolism were inducible and that the alga oxidized phenol; the amount of oxygen consumed per mole of oxidized substrate was approximately 65% of the theoretical value. [U-14C]phenol was completely mineralized, with 65% of the 14C label appearing as 14CO2, approximately 15% remaining in the aqueous medium, and the rest accounted for in the biomass. Analysis of the biomass showed that 14C label had been incorporated into the protein, nucleic acid, and lipid fractions; phenol carbon is thus unequivocally assimilated by the alga. Phenol-grown cultures of O. danica converted phenols to the corresponding catechols, which were further metabolized by the meta-cleavage pathway. This surprising result was rigorously confirmed by taking the working stock culture through a variety of procedures to check that it was axenic and repeating the experiments with algal extracts. This is, as far as is known, the first definitive identification of the meta-cleavage pathway for aromatic ring degradation in a eukaryotic alga, though its incidence in other eukaryotes has been (infrequently) suggested. PMID:8919787

  6. A review of heavy metal adsorption by marine algae

    NASA Astrophysics Data System (ADS)

    Jin-Fen, Pan; Rong-Gen, Lin; Li, Ma

    2000-09-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  7. FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE

    PubMed Central

    Bouck, G. Benjamin

    1965-01-01

    The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells. PMID:5865936

  8. MicroRNAs in a multicellular green alga Volvox carteri.

    PubMed

    Li, Jingrui; Wu, Yang; Qi, Yijun

    2014-01-01

    microRNAs (miRNAs) have emerged as key components in the eukaryotic gene regulatory network. We and others have previously identified many miRNAs in a unicellular green alga, Chlamydomonas reinhardtii. To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage, we examined small RNAs in Volvox carteri, a multicellular species in the same family with Chlamydomonas reinhardtii. We identified 174 miRNAs in Volvox, with many of them being highly enriched in gonidia or somatic cells. The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo, suggesting that miRNAs play regulatory roles in the biology of green algae. Our catalog of miRNAs and their targets provides a resource for further studies on the evolution, biological functions, and genomic properties of miRNAs in green algae.

  9. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  10. Effect of tetramethyl lead on freshwater green algae.

    PubMed

    Silverberg, B A; Wong, P T; Chau, Y K

    1977-01-01

    The toxicity of tetramethyl lead (Me4Pb) towards freshwater algae was studied by bubbling biologically generated Me4Pb from one flask containing 5 mg of Pb 1-1 as Me3PbOAc into the culture medium in another flask where a test alga Scenedesmus quadricauda was grown. As Me4Pb is not soluble in water and is volatile, the exposure of an alga to this lead compound was only momentary. It was estimated that less than 0.5 mg of Pb(Me4Pb) had passed through the culture medium. The primary productivity and cell growth (determined by dry weight), however, decreased by 85% and 32% respectively, as compared with the controls without exposure to Me4Pb. Furthermore, cells exposed to Me4Pb tended to clump together and striking alterations in cell fine-structure were observed. An electron microscopic analysis by an energy dispersive spectrometer revealed that Pb ions had penetrated the cell and were deposited within concretion bodies. Similar results were obtained with the green algae Ankistrodesmus falcatus and Chlorella pyrenoidosa.

  11. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  12. Rainfall changes affect the algae dominance in tank bromeliad ecosystems.

    PubMed

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T H M

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors.

  13. Recovery of dairy manure nutrients by benthic freshwater algae.

    PubMed

    Wilkie, Ann C; Mulbry, Walter W

    2002-08-01

    Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.

  14. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.

  15. FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE

    PubMed Central

    Gaffron, Hans; Rubin, Jack

    1942-01-01

    1.. After 2 hours of fermentation in nitrogen the metabolism of those algae which were found capable of photoreduction with hydrogen changes in such a way that molecular hydrogen is released from the cell in addition to carbon dioxide. 2. The amount of hydrogen formed anaerobically in the dark depends on the amount of some unknown reserve substance in the cell. More hydrogen is formed in presence of added glucose, but no proportionality has been found between the amount of substrate added and that of hydrogen formed. This is probably due to the fact that two types of fermentation reactions exist, with little or no connection between them. Whereas mainly unknown organic acids are formed during the autofermentation, the addition of glucose causes a considerable increase in the production of lactic acid. 3. Algae which have been fermenting for several hours in the dark produce upon illumination free hydrogen at several times the rate observed in the dark, provided carbon dioxide is absent. 4. Certain concentrations of dinitrophenol strongly inhibit the evolution of hydrogen in the dark. Fermentation then continues mainly as a reaction leading to lactic acid. In such poisoned algae the photochemical liberation of hydrogen still continues. 5. If the algae are poisoned with dinitrophenol the presence of carbon dioxide will not interfere with the photochemical evolution of hydrogen. 6. The amount of hydrogen released in this new photochemical reaction depends on the presence of an unknown hydrogen donor in the cell; it can be increased by the addition of glucose but not in proportion to the amount added. 7. The results obtained allow for a more correct explanation of the anaerobic induction period previously described for Scenedesmus and similar algae. The possibility of a photochemical evolution of hydrogen had not been taken into account in the earlier experiments. 8. The origin of the hydrogen released under the influence of light is discussed. PMID:19873339

  16. Studies on the hormonal relationships of algae in pure culture : I. The effect of indole-3-acetic acid on the growth of blue-green and green algae.

    PubMed

    Ahmad, M R; Winter, A

    1968-09-01

    Indole-3-acetic acid (IAA) stimulated the growth (increase in dry weight) of the blue-green algae Anacystis nidulans, Chlorogloea fritschii, Phormidium foveolarum, Nostoc muscorum, Anabaena cylindrica, and Tolypothrix tenuis and the green algae Chlorella pyrenoidosa, Ankistrodesmus falcatus and Scenedesmus obliquus growing under as sterile conditions as possible. The optimum concentration varied from species to species; in the blue-green algae it ranged from 10(-5) to 10(-9) M and in the green algae it was 10(-3) M. These results are discussed in the light of present studies in this field.

  17. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris.

    PubMed

    Deng, Lin; Wang, Hongli; Deng, Nansheng

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (lambda = 365 nm, 250 W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0 mg L(-1) and initial algae concentration ranged from ABS(algae) (the absorbency of algae) = 0.025 to ABS(algae) = 0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250 W metal halide lamps was V0 = kC(0)(0.1718)A(algae)(0.5235) (C0 was initial concentration of Cr(VI); A(algae) was initial concentration of algae) under the condition of pH 4.

  18. Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis.

    PubMed

    Greff, Stéphane; Zubia, Mayalen; Genta-Jouve, Grégory; Massi, Lionel; Perez, Thierry; Thomas, Olivier P

    2014-05-23

    The red alga Asparagopsis taxiformis (Rhodophyta, Bonnemaisoniaceae) has been shown to produce a large diversity of halogenated volatile organic compounds, with one to four carbons. As the distribution of this alga may expand worldwide, we implemented a research program that aims to understand the functions of its specialized metabolome in marine ecosystems. Phytochemical investigations performed on A. taxiformis gametophyte stages from the Indian Ocean revealed two new highly brominated cyclopentenones named mahorone (1) and 5-bromomahorone (2). They are the first examples of natural 2,3-dibromocyclopentenone derivatives. Their structure elucidation was achieved using spectrometric methods including NMR and MS. A standardized ecotoxicological assay was used as an assessment of their role in the environment, revealing high toxicities for both compounds (EC50 0.16 μM for 1 and 2). Additionally, both compounds were evaluated in antibacterial, antifungal, and cytotoxicity assays. Compounds 1 and 2 exhibit mild antibacterial activities against the human pathogen Acinetobacter baumannii.

  19. Biosorption of lead and nickel by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B. . Dept. of Chemical Engineering)

    1994-05-01

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.

  20. Biosorption of Lead from Wastewater Using Fresh Water Algae Chlorella.

    PubMed

    Kanchana, S; Jeyanthi, J

    2014-04-01

    The potential use of fresh water algae Chlorella to sorb lead ions from wastewater was evaluated in this study. Fourier transform infra-red analysis of algal species revealed the presence of amino, carboxylic, hydroxyl and carbonyl groups, which were responsible for biosorption of lead ions. Batch sorption experiments were performed to determine the effects of contact time, biosorbent dosage and pH on the adsorption of Pb2+ ions. The optimum conditions of biosorbent dosage, pH and contact time were found to be l0 g/L, 5 and 100 min respectively. The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The adsorption of lead ions on the algae Chlorella fitted well with Freundlich isotherm with a very high correlation coefficient.

  1. Marine polysaccharides from algae with potential biomedical applications.

    PubMed

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-15

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  2. A New Noncalcified Dasycladalean Alga from the Silurian of Wisconsin

    USGS Publications Warehouse

    LoDuca, S.T.; Kluessendorf, Joanne; Mikulic, Donald G.

    2003-01-01

    Noncalcified thalli, consisting of a narrow main axis with numerous branched hairlike laterals in whorls and a subapical array of undivided clavate laterals, from the Silurian (Llandovery) Brandon Bridge Formation of southeastern Wisconsin, constitute the basis for a new genus and species of dasycladalean alga, Heterocladus waukeshaensis. A relationship within the family Triploporellaceae is indicated by the whorled arrangement of the laterals and the absence of gametophores on mature specimens. A compilation of occurrence data suggests that noncalcified dasyclads, as a whole, were more abundant and diverse during the Ordovician and Silurian than at any other time in their history. The heterocladous thallus architecture of this alga adds to a wide range of morphological variation documented among Ordovician and Silurian dasyclads, the sum of which indicates that Dasycladales underwent a significant evolutionary radiation during the early Paleozoic.

  3. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  4. Bioremoval of toxic elements with aquatic plants and algae

    SciTech Connect

    Wang, T.C.; Ramesh, G.; Weissman, J.C.; Varadarajan, R.; Benemann, J.R.

    1995-12-31

    Aquatic plants were screened to evaluate their ability to adsorb dissolved metals. The plants screened included those that are naturally immobilized (attached algae and rooted plants) and those that could be easily separated from suspension (filamentous microalgae, macroalgae, and floating plants). Two plants were observed to have high adsorption capabilities for cadmium (Cd) and zinc (Zn) removal: one blue green filamentous alga of the genus Phormidium and one aquatic rooted plant, water milfoil (Myriophyllum spicatum). These plants could also reduce the residual metal concentration to 0.1 mg/L or less. Both plants also exhibited high specific adsorption for other metals (Pb, Ni, and Cu) both individually and in combination. Metal concentrations were analyzed with an atomic absorption spectrophotometer (AAS).

  5. Green Algae as Model Organisms for Biological Fluid Dynamics*

    PubMed Central

    Goldstein, Raymond E.

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms. PMID:26594068

  6. Plant algae method for arsenic removal from arsenic contaminated groundwater.

    PubMed

    de la Paix, Mupenzi Jean; Lanhai, Li; de Dieu, Habumugisha Jean; John, Maina Nyongesah

    2012-01-01

    Field studies were carried out in Urumqi River Basin in Northwest China. The study focused on experimentation on a plant algae method that was tested by taking various water chemistries into consideration. The results from a greenhouse experiment evaluated for four doses of P (0, 100, 200, and 300 μmol/L) using two ferns (30 and 60 day old) on 15 L of contaminated groundwater per plant revealed that the biomass of 30-day old ferns gained was higher than 60-day fern. As solution-P increased from 0 to 450 μmol/L, Phosphorus concentration in the fronds increased from 1.9 to 3.9 mg/kg and 1.95 to 4.0 mg/kg for 30-d and 60-d ferns respectively. This study showed that the plant algae method may be a good solution to maximize arsenic uptake in the short term under normal climatic conditions.

  7. Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics.

    PubMed

    Khani, Mohammad Hassan

    2011-11-01

    Kinetic, thermodynamic, and equilibrium isotherms of the biosorption of uranium ions onto Padina sp., a brown algae biomass, in a batch system have been studied. The kinetic data were found to follow the pseudo-second-order model. Intraparticle diffusion is not the sole rate-controlling factor. The equilibrium experimental results were analyzed in terms of Langmuir isotherm depending with temperature. Equilibrium data fitted very well to the Langmuir model. The maximum uptakes estimated by using the Langmuir model were 434.8, 416.7, 400.0, and 370.4 mg/g at 10°C, 20°C, 30°C, and 40°C, respectively. Gibbs free energy was spontaneous for all interactions, and the adsorption process exhibited exothermic enthalpy values. Padina sp. algae were shown to be a favorable biosorbent for uranium removal from aqueous solutions.

  8. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  9. Production of phthalate esters by nuisance freshwater algae and cyanobacteria.

    PubMed

    Babu, Bakthavachalam; Wu, Jiunn-Tzong

    2010-10-01

    Phthalate esters are widely distributed pollutants which originate from synthetic plasticizer and are known to act as toxicants as well as environmental pheromones in the aquatic ecosystems. From investigating sixteen species of freshwater algae and cyanobacteria we revealed that some of them were capable of producing either di(n-butyl)phthalate (DBP) or mono(2-ethylhexyl)phthalate (MEHP) or both. These phthalate esters would be released into the environment under stress conditions. The incubation of the cells in culture medium containing NaH(13)CO(3) confirmed that both phthalates were de novo synthesized by the studied cells. This study suggested that the nuisance freshwater micro-algae and cyanobacteria growing in eutrophic waters might affect the aquatic ecosystem via the production of these phthalate esters.

  10. Characterization of phosphoethanolamine-N-methyltransferases in green algae.

    PubMed

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Nakamura, Yuki; Sato, Naoki

    2017-06-17

    Phosphatidylcholine (PtdCho) is a common and abundant phospholipid in most eukaryotic organisms. Although it has been known that the model green alga Chlamydomonas reinhardtii lacks PtdCho, we recently detected PtdCho in four Chlamydomonas species. Homology search of draft genomic sequences of the four PtdCho-containing algae suggested existence of phosphoethanolamine-N-methyltransferase (PEAMT) in C. applanata and C. asymmetrica, which is the key enzyme in PtdCho biosynthesis in land plants. Here we analyzed the putative genes encoding PEAMT in C. applanata and C. asymmetrica, named CapPEAMT and CasPEAMT, respectively. In vitro assays with recombinant CapPEAMT and CasPEAMT indicated that they have the methylation activity for phosphoethanolamine, but not the methylation activity for phosphomonomethylethanolamine, in contrast with land plant PEAMTs, that possess the three successive methylation activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sodium, potassium-atpases in algae and oomycetes.

    PubMed

    Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

    2005-08-01

    We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.

  12. Green Algae as Model Organisms for Biological Fluid Dynamics.

    PubMed

    Goldstein, Raymond E

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  13. Proton channels in algae: reasons to be excited.

    PubMed

    Taylor, Alison R; Brownlee, Colin; Wheeler, Glen L

    2012-11-01

    A fundamental requirement of all eukaryotes is the ability to translocate protons across membranes. This is critical in bioenergetics, for compartmentalized metabolism, and to regulate intracellular pH (pH(i)) within a range that is compatible with cellular metabolism. Plants, animals, and algae utilize specialized transport machinery for membrane energization and pH homeostasis that reflects the prevailing ionic conditions in which they evolved. The recent characterization of H(+)-permeable channels in marine and freshwater algae has led to the discovery of novel functions for these transport proteins in both cellular pH homeostasis and sensory biology. Here we review the potential implications for understanding the origins and evolution of membrane excitability and the phytoplankton-based marine ecosystem responses to ocean acidification.

  14. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  15. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

    PubMed Central

    Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian; Glöckner, Frank Oliver; Lucas, Judith; Wichels, Antje; Gerdts, Gunnar; Wiltshire, Karen H; Amann, Rudolf I

    2016-01-01

    A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI: http://dx.doi.org/10.7554/eLife.11888.001 PMID:27054497

  16. A preliminary study on automated freshwater algae recognition and classification system

    PubMed Central

    2012-01-01

    Background Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap. Results The development of the automated freshwater algae detection system involved image preprocessing, segmentation, feature extraction and classification by using Artificial neural networks (ANN). Image preprocessing was used to improve contrast and remove noise. Image segmentation using canny edge detection algorithm was then carried out on binary image to detect the algae and its boundaries. Feature extraction process was applied to extract specific feature parameters from algae image to obtain some shape and texture features of selected algae such as shape, area, perimeter, minor and major axes, and finally Fourier spectrum with principal component analysis (PCA) was applied to extract some of algae feature texture. Artificial neural network (ANN) is used to classify algae images based on the extracted features. Feed-forward multilayer perceptron network was initialized with back propagation error algorithm, and trained with extracted database features of algae image samples. System's accuracy rate was obtained by comparing the results between the manual and automated classifying methods. The developed system was able to identify 93 images of selected freshwater algae genera from a total of 100 tested images which yielded accuracy rate of 93%. Conclusions This study

  17. A preliminary study on automated freshwater algae recognition and classification system.

    PubMed

    Mosleh, Mogeeb A A; Manssor, Hayat; Malek, Sorayya; Milow, Pozi; Salleh, Aishah

    2012-01-01

    Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap. The development of the automated freshwater algae detection system involved image preprocessing, segmentation, feature extraction and classification by using Artificial neural networks (ANN). Image preprocessing was used to improve contrast and remove noise. Image segmentation using canny edge detection algorithm was then carried out on binary image to detect the algae and its boundaries. Feature extraction process was applied to extract specific feature parameters from algae image to obtain some shape and texture features of selected algae such as shape, area, perimeter, minor and major axes, and finally Fourier spectrum with principal component analysis (PCA) was applied to extract some of algae feature texture. Artificial neural network (ANN) is used to classify algae images based on the extracted features. Feed-forward multilayer perceptron network was initialized with back propagation error algorithm, and trained with extracted database features of algae image samples. System's accuracy rate was obtained by comparing the results between the manual and automated classifying methods. The developed system was able to identify 93 images of selected freshwater algae genera from a total of 100 tested images which yielded accuracy rate of 93%. This study demonstrated application of automated

  18. Effects of kelp forest removal on associated fish assemblages in central California

    USGS Publications Warehouse

    Bodkin, James L.

    1988-01-01

    Visual surveys along subtidal belt transects were used to compare fish assemblages on an experimental and a control site before and after the removal of a canopy-forming kelp forest. The giant kelp Macrocystis pyrifera (L.) C.A. Agardh was removed at the holdfast from approximately equals 1 ha of high relief structurally complex rock substratum. The abundance of seven species of fish, of which five were considered midwater species, significantly declined after the kelp was removed. Results indicate that the presence of a giant kelp forest may increase the abundance and species diversity of the fish assemblages over a high relief rocky reef in central California, U.S.A.

  19. Marine biomass program: anaerobic digestion systems development and stability study. Final report 1 Feb-31 Dec 82

    SciTech Connect

    Fannin, K.F.; Srivastava, V.J.; Mensinger, J.D.; Chynoweth, D.P.

    1983-07-01

    Marine biomass represents a significant potential worldwide energy resource that can be converted to methane by anaerobic digestion. Through efficient biomass production, harvesting, and conversion techniques, competitive methane gas costs are achievable. The objective of this research project is to develop and define an anaerobic digestion process for producing methane from giant brown kelp (Macrocystis pyrifera). Kelp continues to show superior performance as a feedstock for gas production when compared with other particulate biomass feedstocks. Further work on upflow solids reactors and two-phase reactor systems is expected to improve gas cost estimates over those made using other state-of-the-art reactors.

  20. Effect of a kelp forest on coastal currents

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Winant, Clinton D.

    1983-05-01

    Ocean currents supply a kelp ecosystem with nutrients, planktonic food, and larvae. We have found that these currents in a kelp forest (Macrocystis pyrifera) are slower than currents outside. At the Pt. Loma, San Diego, California, site that we studied, current velocities were about a third of those outside. A comparison of frequency spectra shows that semi-diurnal frequencies are preferentially passed by the kelp. This effect of a kelp forest on the currents that nurture it is similar to that of a terrestrial forest on local winds.

  1. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  2. Genome Annotation and Transcriptomics of Oil-Producing Algae

    DTIC Science & Technology

    2015-03-16

    diatoms ). We had proposed to use whole transcriptome analyses to detail the changes in gene expression that occur during N-starvation induced TAG...Abstract Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some diatoms ...triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some diatoms ). In the absence of such essential nutrients

  3. Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium).

    PubMed

    Hagedorn, M; Carter, V L; Leong, J C; Kleinhans, F W

    2010-04-01

    Coral throughout the world are under threat. To save coral via cryopreservation methods, the Symbiodinium algae that live within many coral cells must also be considered. Coral juvenile must often take up these important cells from their surrounding water and when adult coral bleach, they lose their endosymbiotic algae and will die if they are not regained. The focus of this paper was to understand some of the cryo-physiology of the endosymbiotic algae, Symbiodinium, living within three species of Hawaiian coral, Fungia scutaria, Porites compressa and Pocillopora damicornis in Kaneohe Bay, Hawaii. Although cryopreservation of algae is common, the successful cryopreservation of these important coral endosymbionts is not common, and these species are often maintained in live serial cultures within stock centers worldwide. Freshly-extracted Symbiodinium were exposed to cryobiologically appropriate physiological stresses and their viability assessed with a Pulse Amplitude Fluorometer. Stresses included sensitivity to chilling temperatures, osmotic stress, and toxic effects of various concentrations and types of cryoprotectants (i.e., dimethyl sulfoxide, propylene glycol, glycerol and methanol). To determine the water and cryoprotectant permeabilities of Symbiodinium, uptake of radio-labeled glycerol and heavy water (D(2)O) were measured. The three different Symbiodinium subtypes studied demonstrated remarkable similarities in their morphology, sensitivity to cryoprotectants and permeability characteristics; however, they differed greatly in their sensitivity to hypo- and hyposmotic challenges and sensitivity to chilling, suggesting that standard slow freezing cryopreservation may not work well for all Symbiodinium. An appendix describes our H(2)O:D(2)O water exchange experiments and compares the diffusionally determined permeability with the two parameter model osmotic permeability. Published by Elsevier Inc.

  4. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  5. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    DTIC Science & Technology

    1977-05-01

    UNICELLULAR ALGAE FOR EVALUATION First Annual Report OF POTENTIAL AQUATIC CONTAMINANTS 1 Sep - 31 May 76 6. PERFORMING ORG. REPORT NUMBER ANNUAL...p’dioctyldephrylamine RJ-5 Phenyl-a-napthylamine Lubrication Additives Unsymmetrical Dimethylhydrazine Hydrazine Symmetrical Dimethylhydrazine [continusd on .bnckj 20...Force Contract AF33615-76-C-5005. Work under this portion of the contract covers the period September 1 , 1975 to May 31, 1976. The project is

  6. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    PubMed Central

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  7. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  8. Algae (Microcystis and Scenedesmus) absorption spectra and its application on Chlorophyll a retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Di; Chen, Maosi; Wang, Qiao; Gao, Wei

    2013-12-01

    Blue algae and green algae are the dominant phytoplankton groups that contribute to the eutrophication and the water bloom in inland water of China. The absorption coefficients (spectra) of the algae, which do not change with its intrinsic optical characteristics and the observation geometry, are strictly additive quantities. The characteristics of the absorption spectra of the two algae are presented. The pure blue algae and the pure green algae cultured in the laboratory environment are diluted and mixed at ten volume ratios. The Quantitative Filter Technique was applied to measure their absorption spectra. The "hot-ethanol extraction" method was chosen to calculate their concentration of Chlorophyll a. The retrieval algorithm developed in this study extracts the mapping information between each individual alga and their Chlorophyll a concentration via Continuous Wavelet Transform, and retrieves the Chlorophyll a concentration of each alga in their mixture using a trust region optimizer. The results show that the retrieved and the measured Chlorophyll a concentrations of the blue algae and the green algae components in the ten mixture match well with the average relative error of 5.55%.

  9. Coralline red algae as high-resolution climate recorders

    NASA Astrophysics Data System (ADS)

    Halfar, J.; Steneck, R. S.; Joachimski, M.; Kronz, A.; Wanamaker, A. D., Jr.

    2008-06-01

    Most high-resolution, proxy-based paleoclimate research hasconcentrated on tropical oceans, while mid- and high-latitudemarine regions have received less attention, despite their importancein the global climate system. At present, sclerochronologicalanalyses of bivalve mollusks supply the bulk of annual- to subannual-resolutionextratropical marine climate data, even though interpretationis complicated by a slowdown of growth with increasing shellage. Hence, in order to address the need for additional high-resolutionproxy climate data from extratropical regions, we conductedthe first year-long in situ field calibration of the corallinered alga Clathromorphum compactum in the Gulf of Maine, UnitedStates. Coralline red algae are widely distributed in coastalregions worldwide, and individual calcified plants can livecontinuously for several centuries in temperate and subarcticoceans. Stable oxygen isotopes extracted at subannual resolutionfrom growth increments of monitored specimens of C. compactumrelate well to in situ-measured sea-surface temperaturesduring the May to December calcification period, highlightingthe suitability of coralline red algae as an extratropical climatearchive. Furthermore, there is a strong correlation betweena 30 yr {sigma}18O record of C. compactum and an instrumental sea-surfacetemperature record (r = -0.58, p = 0.0008) and a proxyreconstruction derived from the bivalve Arctica islandica collectedin the central Gulf of Maine (r = 0.54, p = 0.002).

  10. Boron-containing organic pigments from a Jurassic red alga

    PubMed Central

    Wolkenstein, Klaus; Gross, Jürgen H.; Falk, Heinz

    2010-01-01

    Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae. PMID:20974956

  11. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P.; Kaňa, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  12. Partitioning of monomethylmercury between freshwater algae and water.

    PubMed

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  13. Uptake and distribution of technetium in several marine algae

    SciTech Connect

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO/sup -//sub 4/ and the remainder is bound to small molecules. 8 references, 5 figures, 1 table.

  14. Towards tradable permits for filamentous green algae pollution.

    PubMed

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Presence of state transitions in the cryptophyte alga Guillardia theta.

    PubMed

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P; Kaňa, Radek; Funk, Christiane

    2015-10-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.

  16. Enzyme-Enhanced Extraction of Antioxidant Ingredients from Algae.

    PubMed

    Adalbjörnsson, Björn V; Jónsdóttir, Rósa

    2015-01-01

    Marine algae are not only a rich source of dietary fibre, proteins, vitamins, and minerals, but also contain a great variety of secondary metabolites with diverse biological activities. Marine macroalgae are a rich source of various natural antioxidants such as polyphenols, especially phlorotannins (made of polyphloroglucinol units) derived from brown algae, which play an important role in preventing lipid peroxidation. In recent years, a number of potent antioxidant compounds have been isolated and identified from different types of edible seaweeds. Extraction methods commonly used for the isolation of antioxidants are based on conventional water or organic solvent extractions. However, recent advances have shown that enzymatic hydrolysis can achieve higher yield of bioactive compounds from algae. Here we describe a method based on enzymatic hydrolysis which both increases yield and decreases cost associated with organic solvents. This method achieves cell wall disruption and breakdown of internal storage components for more effective release of intracellular bioactive compounds. In addition, hydrolysis of proteins produces peptides which may have antioxidant properties, thus enhancing the bioactivity of the algal extract. The method described can be used for production of extracts from red and brown macroalgal species.

  17. [Quantitative remote sensing retrieval for algae in inland waters].

    PubMed

    Song, Yu; Song, Xiao-Dong; Jiang, Hong; Guo, Zhao-Bing; Guo, Qing-Hai

    2010-04-01

    Chlorophyll is a very important indictor for the eutrophication status of lake water body. Using remotely sensed data to achieve real-time dynamic monitoring of the spatial distribution of chlorophyll has great importance. This paper aims to find the best band for the hyperspectral ratio model of chlorophyll-a, and take advantage of this model to implement remote sensing retrieval of algae in Taihu Lake. By the analysis of the spectral reflectance and water quality sampling data of the surface water body, the regression model between the ratio of reflectance and chlorophyll-a was built, and it was showed that the ratio model between the wavelengths around 700 and 625 nm had a relatively high coefficient value of determination (R2), while the ratio model constructed with 710 nm and visible wavelengths showed a descended R2 following with the increment of the visible wavelengths. Combined with in-situ water samplings analysis and spectral reflectance measurement, the results showed that it's possible to retrieve algae water body using the MODIS green index (GI). The spatial distributions of chlorophyll-a and algae in Taihu Lake were extracted successfully using MODIS data with the algorithm developed in this paper.

  18. Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae

    PubMed Central

    Sorek, Michal; Yacobi, Yosef Z.; Roopin, Modi; Berman-Frank, Ilana; Levy, Oren

    2013-01-01

    Biological clocks are self-sustained endogenous timers that enable organisms (from cyanobacteria to humans) to anticipate daily environmental rhythms, and adjust their physiology and behaviour accordingly. Symbiotic corals play a central role in the creation of biologically rich ecosystems based on mutualistic symbioses between the invertebrate coral and dinoflagellate protists from the genus Symbiodinium. In this study, we experimentally establish that Symbiodinium photosynthesis, both as a free-living unicellular algae and as part of the symbiotic association with the coral Stylophora pistillata, is ‘wired’ to the circadian clock mechanism with a ‘free-run’ cycle close to 24 h. Associated photosynthetic pigments also showed rhythmicity under light/dark conditions and under constant light conditions, while the expression of the oxygen-evolving enhancer 1 gene (within photosystem II) coincided with photosynthetically evolved oxygen in Symbiodinium cultures. Thus, circadian regulation of the Symbiodinium photosynthesis is, however, complicated as being linked to the coral/host that have probably profound physiochemical influence on the intracellular environment. The temporal patterns of photosynthesis demonstrated here highlight the physiological complexity and interdependence of the algae circadian clock associated in this symbiosis and the plasticity of algae regulatory mechanisms downstream of the circadian clock. PMID:23554392

  19. Microwave-enhanced pyrolysis of natural algae from water blooms.

    PubMed

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time.

  20. Extraction, Purification, and NMR Analysis of Terpenes from Brown Algae.

    PubMed

    Gaysinski, Marc; Ortalo-Magné, Annick; Thomas, Olivier P; Culioli, Gérald

    2015-01-01

    Algal terpenes constitute a wide and well-documented group of marine natural products with structures differing from their terrestrial plant biosynthetic analogues. Amongst macroalgae, brown seaweeds are considered as one of the richest source of biologically and ecologically relevant terpenoids. These metabolites, mostly encountered in algae of the class Phaeophyceae, are mainly diterpenes and meroditerpenes (metabolites of mixed biogenesis characterized by a toluquinol or a toluquinone nucleus linked to a diterpene moiety).In this chapter, we describe analytical processes commonly employed for the isolation and structural characterization of the main terpenoid constituents obtained from organic extracts of brown algae. The successive steps include (1) extraction of lipidic content from algal samples; (2) purification of terpenes by column chromatography and semi-preparative high-performance liquid chromatography; and (3) structure elucidation of the isolated terpenes by means of 1D and 2D nuclear magnetic resonance (NMR). More precisely, we propose a representative methodology which allows the isolation and structural determination of the monocyclic meroditerpene methoxybifurcarenone (MBFC) from the Mediterranean brown alga Cystoseira amentacea var. stricta. This methodology has a large field of applications and can then be extended to terpenes isolated from other species of the family Sargassaceae.

  1. Bioaccumulation and toxicity of phenanthrene applied to different freshwater algae

    SciTech Connect

    Hailing-Sorensen, B.; Nyholm, N.; Rucker, N.; Peterson, H.

    1994-12-31

    Phenanthrene, a polycyclic aromatic hydrocarbon of medium lipophilicity (log K{sub ow} = 4.46) was chosen as a model compound for investigating mechanisms of bioaccumulation of hydrophobic chemicals in microalgae and relations between expressed toxicity and bioaccumulation. {sup 14}C labelled phenanthrene was used for easy quantification of its phase distribution. Results obtained with the green algae Selenastrum capricornutum and Scenedesmus armatus will be presented together with additional results from planned experiments with diatoms and cyanobacteria and interpreted considering cell size and lipid content of the different algae, For the same species bioconcentration factors (BCFs) were influenced to some extent by nutritional status and were slightly higher for unwashed cells than for washed cells. Much surprisingly, however, BCFs increased strongly with decreasing cell concentration. With chemostat grown nutrient deficient and washed Selenastrum cells, for example, the following BCF figures (mg phenanthrene/mg dry weight) were found: 3.8{center_dot}10{sup 4} 1.7{center_dot}10{sup 5} and 1.6{center_dot}10{sup 6}. Sorption of phenanthrene onto algae was rapid. Similar results have been reported in the literature for other compounds. The toxicity of phenanthrene increased with decreasing algal cell concentration probably as a result of increasing BCF`S. Toxicity experiments comprised both short term {sup 14}C assimilation assays and growth tests, and the phase distribution of phenanthrene was accounted for.

  2. Multi-centennial reconstruction of Aleutian climate from coralline algae

    NASA Astrophysics Data System (ADS)

    Williams, B.; Halfar, J.; DeLong, K. L.; Smith, E.; Steneck, R.; Lebednik, P.; Jacob, D. E.; Fietzke, J.; Moore, K.

    2015-12-01

    Long-lived encrusting coralline algae yield robust reconstructions of mid-to-high latitude environmental change from their annually-banded high-magnesium calcite skeleton. The magnesium to calcium ratio measured in their skeleton reflects ambient seawater temperature at the time of formation. Thus, reconstructions from these algae are important to understanding the role of natural modes of climate variability versus that of external carbon dioxide in controlling climate in data sparse regions such as the northern North Pacific Ocean/southern Bering Sea. Here, we reconstruct regional seawater temperature from the skeletons of nine algae specimens from two islands in the Aleutian Archipelago. We find that seawater temperature increased ~1.4°C degrees over the past 350 years. The detrended seawater reconstruction correlates with storminess because storms moving across the North Pacific Ocean bring warmer water to the archipelago. Comparison of the algal seawater temperature reconstruction with instrumental and terrestrial proxy reconstructions reveals that atmospheric teleconnections to North America via the North Pacific storm tracks are not robust before the 20th century. This indicates that North Pacific climate processes inferred from the instrumental records should be cautiously extrapolated when describing earlier non-analogous climates or future climate change.

  3. Unveiling privacy: advances in microtomography of coralline algae.

    PubMed

    Torrano-Silva, Beatriz N; Ferreira, Simone Gomes; Oliveira, Mariana C

    2015-05-01

    Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (μCT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths.

  4. Exploitation of marine algae: biogenic compounds for potential antifouling applications.

    PubMed

    Bhadury, Punyasloke; Wright, Phillip C

    2004-08-01

    Marine algae are one of the largest producers of biomass in the marine environment. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. These active metabolites, also known as biogenic compounds, produced by several species of marine macro- and micro-algae, have antibacterial, antialgal, antimacrofouling and antifungal properties, which are effective in the prevention of biofouling, and have other likely uses, e.g. in therapeutics. The isolated substances with potent antifouling activity belong to groups of fatty acids, lipopeptides, amides, alkaloids, terpenoids, lactones, pyrroles and steroids. These biogenic compounds have the potential to be produced commercially using metabolic engineering techniques. Therefore, isolation of biogenic compounds and determination of their structure could provide leads for future development of, for example, environmentally friendly antifouling paints. This paper mainly discusses the successes of such research, and the future applications in the context of understanding the systems biology of micro-algae and cyanobacteria.

  5. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  6. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    PubMed

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments.

  7. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

  8. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    PubMed

    Zhang, Lei; Wang, Xumin; Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  9. Controlling harmful algae blooms using aluminum-modified clay.

    PubMed

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Multicellularity in green algae: upsizing in a walled complex.

    PubMed

    Domozych, David S; Domozych, Catherine E

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.

  11. Sulfated phenolic acids from Dasycladales siphonous green algae.

    PubMed

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense. Copyright © 2015. Published by Elsevier Ltd.

  12. An exogenous chloroplast genome for complex sequence manipulation in algae

    PubMed Central

    O'Neill, Bryan M.; Mikkelson, Kari L.; Gutierrez, Noel M.; Cunningham, Jennifer L.; Wolff, Kari L.; Szyjka, Shawn J.; Yohn, Christopher B.; Redding, Kevin E.; Mendez, Michael J.

    2012-01-01

    We demonstrate a system for cloning and modifying the chloroplast genome from the green alga, Chlamydomonas reinhardtii. Through extensive use of sequence stabilization strategies, the ex vivo genome is assembled in yeast from a collection of overlapping fragments. The assembled genome is then moved into bacteria for large-scale preparations and transformed into C. reinhardtii cells. This system also allows for the generation of simultaneous, systematic and complex genetic modifications at multiple loci in vivo. We use this system to substitute genes encoding core subunits of the photosynthetic apparatus with orthologs from a related alga, Scenedesmus obliquus. Once transformed into algae, the substituted genome recombines with the endogenous genome, resulting in a hybrid plastome comprising modifications in disparate loci. The in vivo function of the genomes described herein demonstrates that simultaneous engineering of multiple sites within the chloroplast genome is now possible. This work represents the first steps toward a novel approach for creating genetic diversity in any or all regions of a chloroplast genome. PMID:22116061

  13. Treatment efficacy of algae-based sewage treatment plants.

    PubMed

    Mahapatra, Durga Madhab; Chanakya, H N; Ramachandra, T V

    2013-09-01

    Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates.

  14. Origins of multicellular complexity: Volvox and the volvocine algae.

    PubMed

    Herron, Matthew D

    2016-03-01

    The collection of evolutionary transformations known as the 'major transitions' or 'transitions in individuality' resulted in changes in the units of evolution and in the hierarchical structure of cellular life. Volvox and related algae have become an important model system for the major transition from unicellular to multicellular life, which touches on several fundamental questions in evolutionary biology. The Third International Volvox Conference was held at the University of Cambridge in August 2015 to discuss recent advances in the biology and evolution of this group of algae. Here, I highlight the benefits of integrating phylogenetic comparative methods and experimental evolution with detailed studies of developmental genetics in a model system with substantial genetic and genomic resources. I summarize recent research on Volvox and its relatives and comment on its implications for the genomic changes underlying major evolutionary transitions, evolution and development of complex traits, evolution of sex and sexes, evolution of cellular differentiation and the biophysics of motility. Finally, I outline challenges and suggest future directions for research into the biology and evolution of the volvocine algae.

  15. Cytotoxicity of Algae Extracts on Normal and Malignant Cells

    PubMed Central

    Bechelli, Jeremy; Coppage, Myra; Rosell, Karen; Liesveld, Jane

    2011-01-01

    Algae preparations are commonly used in alternative medicine. We examined the effects of algae extracts on normal hematopoietic cells and leukemia cells. Ethanol extracts were prepared of Dunaliella salina (Dun), Astaxanthin (Ast), Spirulina platensis (Spir), and Aphanizomenon flos-aquae (AFA). Cell viability effects were completed by Annexin staining. Ast and AFA inhibited HL-60 and MV-4-11 whereas Dun and Spir had no effect. Primary AML blasts demonstrated increased apoptosis in AFA. Primary CLL cells showed apoptosis at 24 hours after exposure to Dun, Ast, Spir, and AFA. High AFA concentrations decreased viability of normal marrow cells. Normal CD34+ viability was inhibited by Dun. Dun and AFA inhibited BFU-E, but all extracts inhibited CFU-GM. Cell-cycle analysis of AML cell lines showed G0/G1 arrest in the presence of AFA. These data suggest that algae extracts may inhibit AML cell lines and leukemia blasts, but they may also have potential inhibitory effects on normal hematopoiesis. PMID:23213541

  16. Phycobilisome Heterogeneity in the Red Alga Porphyra umbilicalis1

    PubMed Central

    Algarra, Patricia; Thomas, Jean-Claude; Mousseau, Anne

    1990-01-01

    Phycobilisomes were isolated from Rhodophyceae brought from the field (Porphyra umbilicalis) or grown in culture under laboratory conditions (Antithamnion glanduliferum). In P. umbilicalis two kinds of well-coupled (ellipsoidal and hemidiscoidal) phycobilisomes were detected, in contrast to A. glanduliferum cultured algae in which only one kind of well-coupled, ellipsoidaltype phycobilisome appeared. The new phycobilisome-type particle detected in P. umbilicalis is characterized by an impoverishment in R-phycoerythrin and by sedimentation at lower density. The comparison between both phycobilisomes of P. umbilicalis allows determination of the presence of one colorless linker polypeptide (30 kilodaltons) associated with R-phycocyanin and allophycocyanin and two (40 and 38 kilodaltons) associated to R-phycoerythrin. The percentage of linker polypeptides associated with this pigment is low in the new phycobilisome-like particle detected. This suggests that part of the R-phycoerythrin is less strongly bound to the phycobilisome than the other pigments. This feature could probably explain the existence of two kinds of phycobilisomes as intermediary steps of phycobilisome organization in algae exposed to rapid changes in environmental factors. In contrast, algae growing in culture and adapted to specific conditions do not present intermediary organization steps. Polypeptide composition and identification are given for this phycobilisome-like particle. Images Figure 4 Figure 5 PMID:16667317

  17. Bioaccumulation and catabolism of prometryne in green algae.

    PubMed

    Jin, Zhen Peng; Luo, Kai; Zhang, Shuang; Zheng, Qi; Yang, Hong

    2012-04-01

    Investigation on organic xenobiotics bioaccumulation/biodegradation in green algae is of great importance from environmental point of view because widespread distribution of these compounds in agricultural areas has become one of the major problems in aquatic ecosystem. Also, new technology needs to be developed for environmental detection and re-usage of the compounds as bioresources. Prometryne as a herbicide is widely used for killing annual grasses in China and other developing countries. However, overuse of the pesticide results in high risks to contamination to aquatic environments. In this study, we focused on analysis of bioaccumulation and degradation of prometryne in Chlamydomonas reinhardtii, a green alga, along with its adaptive response to prometryne toxicity. C. reinhardtii treated with prometryne at 2.5-12.5 μg L(-1) for 4 d or 7.5 μg L(-1) for 1-6 d accumulated a large quantity of prometryne, with more than 2 mg kg(-1) fresh weight in cells exposed to 10 μg L(-1) prometryne. Moreover, it showed a great ability to degrade simultaneously the cell-accumulated prometryne. Such uptake and catabolism of prometryne led to the rapid removal of prometryne from media. Physiological and molecular analysis revealed that toxicology was associated with accumulation of prometryne in the cells. The biological processes of degradation can be interpreted as an internal tolerance mechanism. These results suggest that the green alga is useful in bioremediation of prometryne-contaminated aquatic ecosystems.

  18. Multicellularity in green algae: upsizing in a walled complex

    PubMed Central

    Domozych, David S.; Domozych, Catherine E.

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In “ulvophytes,” uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  19. Cytotoxicity of algae extracts on normal and malignant cells.

    PubMed

    Bechelli, Jeremy; Coppage, Myra; Rosell, Karen; Liesveld, Jane

    2011-01-01

    Algae preparations are commonly used in alternative medicine. We examined the effects of algae extracts on normal hematopoietic cells and leukemia cells. Ethanol extracts were prepared of Dunaliella salina (Dun), Astaxanthin (Ast), Spirulina platensis (Spir), and Aphanizomenon flos-aquae (AFA). Cell viability effects were completed by Annexin staining. Ast and AFA inhibited HL-60 and MV-4-11 whereas Dun and Spir had no effect. Primary AML blasts demonstrated increased apoptosis in AFA. Primary CLL cells showed apoptosis at 24 hours after exposure to Dun, Ast, Spir, and AFA. High AFA concentrations decreased viability of normal marrow cells. Normal CD34+ viability was inhibited by Dun. Dun and AFA inhibited BFU-E, but all extracts inhibited CFU-GM. Cell-cycle analysis of AML cell lines showed G0/G1 arrest in the presence of AFA. These data suggest that algae extracts may inhibit AML cell lines and leukemia blasts, but they may also have potential inhibitory effects on normal hematopoiesis.

  20. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

    PubMed Central

    Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  1. Food preference, food quality and diets of three herbivorous gastropods (Trochidae: Tegula) in a temperate kelp forest habitat.

    PubMed

    Watanabe, J M

    1984-04-01

    The relationship between food preference and food quality (i.e. a food's contribution to growth and reproductive development) was examined in the laboratory for 3 species of herbivorous kelp forest gastropods (Tegula). The preference hierarchies of the 3 Tegula for 6 common algal species are the same: giant kelp (Macrocystis) is the most preferred food and brown algae are consumed at higher rates than red algae. Despite their strong preference for Macrocystis, the 3 species had significantly greater growth and/or reproductive development on a mixed-algae diet than on either brown or red algae alone. Laboratory preferences of the snails did not correspond closely with caloric content, estimated availability or quality of the algal species used in this study. However, the 3 Tegula are subject to strong benthic predation and Macrocystis provides an important spatial refuge in nature. The potential role of non-nutritional factors such as predator avoidance on the formation of food preferences is discussed.

  2. Capture of algae promotes growth and propagation in aquatic Utricularia.

    PubMed

    Koller-Peroutka, Marianne; Lendl, Thomas; Watzka, Margarete; Adlassnig, Wolfram

    2015-02-01

    Some carnivorous plants trap not only small animals but also algae and pollen grains. However, it remains unclear if these trapped particles are useless bycatch or whether they provide nutrients for the plant. The present study examines this question in Utricularia, which forms the largest and most widely spread genus of carnivorous plants, and which captures prey by means of sophisticated suction traps. Utricularia plants of three different species (U. australis, U. vulgaris and U. minor) were collected in eight different water bodies including peat bogs, lakes and artificial ponds in three regions of Austria. The prey spectrum of each population was analysed qualitatively and quantitatively, and correlated with data on growth and propagation, C/N ratio and δ(15)N. More than 50 % of the prey of the Utricularia populations investigated consisted of algae and pollen, and U. vulgaris in particular was found to capture large amounts of gymnosperm pollen. The capture of algae and pollen grains was strongly correlated with most growth parameters, including weight, length, budding and elongation of internodes. The C/N ratio, however, was less well correlated. Other prey, such as moss leaflets, fungal hyphae and mineral particles, were negatively correlated with most growth parameters. δ(15)N was positively correlated with prey capture, but in situations where algae were the main prey objects it was found that the standard formula for calculation of prey-derived N was no longer applicable. The mass capture of immotile particles confirms the ecological importance of autonomous firing of the traps. Although the C/N ratio was little influenced by algae, they clearly provide other nutrients, possibly including phosphorus and trace elements. By contrast, mosses, fungi and mineral particles appear to be useless bycatch. Correlations with chemical parameters indicate that Utricularia benefits from nutrient-rich waters by uptake of inorganic nutrients from the water, by the

  3. Capture of algae promotes growth and propagation in aquatic Utricularia

    PubMed Central

    Koller-Peroutka, Marianne; Lendl, Thomas; Watzka, Margarete; Adlassnig, Wolfram

    2015-01-01

    Background and Aims Some carnivorous plants trap not only small animals but also algae and pollen grains. However, it remains unclear if these trapped particles are useless bycatch or whether they provide nutrients for the plant. The present study examines this question in Utricularia, which forms the largest and most widely spread genus of carnivorous plants, and which captures prey by means of sophisticated suction traps. Methods Utricularia plants of three different species (U. australis, U. vulgaris and U. minor) were collected in eight different water bodies including peat bogs, lakes and artificial ponds in three regions of Austria. The prey spectrum of each population was analysed qualitatively and quantitatively, and correlated with data on growth and propagation, C/N ratio and δ15N. Key Results More than 50 % of the prey of the Utricularia populations investigated consisted of algae and pollen, and U. vulgaris in particular was found to capture large amounts of gymnosperm pollen. The capture of algae and pollen grains was strongly correlated with most growth parameters, including weight, length, budding and elongation of internodes. The C/N ratio, however, was less well correlated. Other prey, such as moss leaflets, fungal hyphae and mineral particles, were negatively correlated with most growth parameters. δ15N was positively correlated with prey capture, but in situations where algae were the main prey objects it was found that the standard formula for calculation of prey-derived N was no longer applicable. Conclusions The mass capture of immotile particles confirms the ecological importance of autonomous firing of the traps. Although the C/N ratio was little influenced by algae, they clearly provide other nutrients, possibly including phosphorus and trace elements. By contrast, mosses, fungi and mineral particles appear to be useless bycatch. Correlations with chemical parameters indicate that Utricularia benefits from nutrient-rich waters by uptake

  4. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi.

    PubMed

    Trevors, J T; Stratton, G W; Gadd, G M

    1986-06-01

    Cadmium is an important environmental pollutant and a potent toxicant to bacteria, algae, and fungi. Mechanisms of Cd toxicity and resistance are variable, depending on the organism. It is very clear that the form of the metal and the environment it is studied in, play an important role in how Cd exerts its effect and how the organism(s) responds. A wide range of Cd concentrations have been used to designate resistance in organisms. To date, no concentration has been specified that is applicable to all species studied under standardized conditions. Cadmium exerts its toxic effect(s) over a wide range of concentrations. In most cases, algae and cyanobacteria are the most sensitive organisms, whereas bacteria and fungi appear to be more resistant. In some bacteria, plasmid-encoded resistance can lead to reduced Cd2+ uptake. However, some Gram-negative bacteria without plasmids are just as resistant to Cd as are bacteria containing plasmids encoding for Cd resistance. According to Silver and Misra (1984), there is no evidence for enzymatic or chemical transformations associated with Cd resistance. Insufficient information is available on the genetics of Cd uptake and resistance in cyanobacteria and algae. Mechanisms remain largely unknown at this point in time. Cadmium is toxic to these organisms, causing severe inhibition of such physiological processes as growth, photosynthesis, and nitrogen fixation at concentrations less than 2 ppm, and often in the ppb range (Tables 2 and 3). Cadmium also causes pronounced morphological aberrations in these organisms, which are probably related to deleterious effects on cell division. This may be direct or indirect, as a result of Cd effects on protein synthesis and cellular organelles such as mitochondria and chloroplasts. Cadmium is accumulated internally in algae (Table 4) as a result of a two-phase uptake process. The first phase involves a rapid physicochemical adsorption of Cd onto cell wall binding sites, which are

  5. Sludge-grown algae for culturing aquatic organisms: Part II. Sludge-grown algae as feeds for aquatic organisms

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Hung, K. M.; Chiu, S. T.

    1996-05-01

    This project investigated the feasibility of using sewage sludge to culture microalgae ( Chlorella-HKBU) and their subsequent usage as feeds for rearing different organisms. Part II of the project evaluated the results of applying the sludge-grown algae to feed Oreochromis mossambicus (fish), Macrobrachium hainenese (shrimp), and Moina macrocopa (cladocera). In general, the yields of the cultivated organisms were unsatisfactory when they were fed the sludge-grown algae directly. The body weights of O. mossambicus and M. macrocopa dropped 21% and 37%, respectively, although there was a slight increase (4.4%) in M. hainenese. However, when feeding the algal-fed cladocerans to fish and shrimp, the body weights of the fish and shrimp were increased 7% and 11% accordingly. Protein contents of the cultivated organisms were comparable to the control diet, although they contained a rather high amount of heavy metals. When comparing absolute heavy metal contents in the cultivated organisms, the following order was observed: alga > cladocera > shrimp, fish > sludge extracts. Bioelimination of heavy metals may account for the decreasing heavy metal concentrations in higher trophic organisms.

  6. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    PubMed Central

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  7. Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment.

    PubMed

    Peng, Shanshan; Colosi, Lisa M

    2016-01-01

    Water resource recovery facilities (WRRFs) are asked to improve both energy efficiency and nutrient removal efficacy. Integration of algaculture offers several potential synergies that could address these goals, including an opportunity to leverage anaerobic digestion at WRRFs. In this study, bench-scale experiments are used to measure methane yield during co-digestion of Scenedesmus dimorphus or mixed WRRF-grown algae with WRRF biosolids. The results indicate that normalized methane yield decreases with increasing algae content in a manner than can be reasonably well fit using linear regression (R(2) = 67%). It is thus possible to predict methane yield for any mixture of algae and biosolids based on the methane yield of the biosolids alone. Using revised methane yields, the energy return on investment of a typical WRRF increases from 0.53 (without algae) to 0.66 (with algae). Thus, algae-based wastewater treatment may hold promise for improving WRRF energy efficiency without compromising effluent quality.

  8. [Study on the degradation and transformation of nonylphenol in water containing algae].

    PubMed

    Peng, Zhang-E; Feng, Jin-Mei; He, Shu-Ying; Wu, Feng

    2012-10-01

    The photodegradation of nonylphenol induced by two common freshwater algae was investigated. The mechanism of nonylphenol photodegradation induced by algae was analyzed. The synergistic induction of nonylphenol degradation by algae and substances in water such as humic acid and ferric ions was also investigated. Results showed that the algae could induce the photodegradation of nonylphenol. The degradation of nonylphenol in water in the presence of algae, humic acid and ferric ions was obvious and the efficiency of degradation could reach 58% after 4 h illumination. Based on the results, it was speculated that the algae, humic acid and ferric ions system could produce more active oxygen after illumination, which could promote the photodegradation of the organic contaminants in water.

  9. [Effects of nitrogen source and aeration mode on algae growth in freshwater].

    PubMed

    Liu, Chun-Guang; Jin, Xiang-Can; Sun, Ling; Sun, Hong-Wen; Zhu, Lin; Yu, Yang; Dai, Shu-Gui; Zhuang, Yuan-Yi

    2006-01-01

    Aquarium microcosms were used to study the effects of nitrogen source and aeration mode on the growth and species changes of algae in freshwater. Nitrate nitrogen(NO3(-) -N) and ammonia nitrogen(NH4(+) -N) were used as nitrogen sources. For each nitrogen source, four modes of aeration were selected, including control, continuous aeration, aeration during the day, and aeration at night. In the early stage of the experiment, algae in the NH4(+) -N treatment experiment grew well. In the later stage, algae in the NO3(-) -N treatment experiment grew better. For different aeration modes, continuous aeration show varied effects on algae growth in the two nitrogen source treatments. Day-only aeration had little effect on algae growth. Night-only aeration inhibited algae growth considerably. In NH(+) -N treatments, cyanophyta became dominant species easily. In contrast, chlorophyta dominated in NO3(-) -N treatments.

  10. Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage.

    PubMed

    Miao, Hengfeng; Lu, Minfeng; Zhao, Mingxing; Huang, Zhenxing; Ren, Hongyan; Yan, Qun; Ruan, Wenquan

    2013-12-01

    Taihu blue algae after different storage time from 0 to 60 d were anaerobic fermented to evaluate their digestibility and process stability. Results showed that anaerobic digestion (AD) of blue algae under 15 d natural storage led to the highest CH4 production of 287.6 mL g(-1) VS at inoculum substrate ratio 2.0, demonstrating 36.69% improvement comparing with that from fresh algae. Storage of blue algae led to cell death, microcystins (MCs) release and VS reduction by spontaneous fermentation. However, it also played an important role in removing algal cell wall barrier, pre-hydrolysis and pre-acidification, leading to the improvement in CH4 yield. Closer examination of volatile fatty acids (VFA) variation, VS removal rates and key enzymes change during AD proved short storage time (≤ 15 d) of blue algae had higher efficiencies in biodegradation and methanation. Furthermore, AD presented significant biodegradation potential for MCs released from Taihu blue algae.

  11. Green algae and the origins of multicellularity in the plant kingdom.

    PubMed

    Umen, James G

    2014-10-16

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. AlgaeSim: a model for integrated algal biofuel production and wastewater treatment.

    PubMed

    Drexler, Ivy L C; Joustra, Caryssa; Prieto, Ana; Bair, Robert; Yeh, Daniel H

    2014-02-01

    AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification).

  13. Microcontact imprinting of algae for biofuel systems: the effects of the polymer concentration.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Lai, Ming-Yuan; Shih, Ching-Ping; Lin, Hung-Yin

    2014-11-25

    Microcontact imprinting of cells often involves the deposition of a polymer solution onto a monolayer cell stamp, followed by solvent evaporation. Thus, the concentration of the polymer may play an important role in the final morphology and efficacy of the imprinted film. In this work, various concentrations of poly(ethylene-co-vinyl alcohol) (EVAL) were dissolved in dimethyl sulfoxide (DMSO) for the microcontact imprinting of algae on an electrode. Scanning electron microscopy and fluorescence spectrometry were used to characterize the surface morphology and recognition capacity of algae to the algae-imprinted cavities. The readsorption of algae onto algae-imprinted EVAL thin films was quantified to obtain the EVAL concentration that maximized algal binding. Finally, the power and current density of an algal biofuel cell with the algae-imprinted EVAL-coated electrode were measured and found to be approximately double those of such a cell with a Pt/indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) electrode.

  14. Biogasification of Marine Algae: Nannochloropsis oculata and Botryococcus braunii (BRIEFING SLIDES)

    DTIC Science & Technology

    2010-06-01

    results. biomass to energy; biogasification; anaerobic digestion; gasification ; algae U U U SAR 30 Robert Diltz Reset 1 A schematic for taking the...Biological Engineers Conference, 9-12 June 2010, in Jupiter FL. Algae has the potential to be a useful source of biomass derived energy due to the high...transesterification of lipids to biodiesel or thermal gasification of the cells to produce synthesis gases. A new approach was identified to use algae in a

  15. Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae

    DTIC Science & Technology

    2012-09-10

    species they are not readily available for algae that are being identified as potential biofuel production strains . Our work was focused on developing...the genetic tools required to enable green algae to become efficient biofuel production strains . Being able to efficiently apply genetic...transformation techniques to green algae species will allow us to generate strains that contain ideal traits for maximally efficient fuel production, and will

  16. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  17. Kinetics and equilibrium properties of the biosorption of Cu2+ by algae.

    PubMed

    Wang, Qiong; Peckenham, John; Pinto, Jamie; Patterson, Howard

    2012-11-01

    The purpose of this study was to examine the kinetics and equilibrium properties of freshwater algae with Cu(2+). This was a model system to explore using algae as biosensors for water quality. Methods included making luminescence measurements (fluorescence) and copper ion-selective electrode (CuISE) measurements vs. time to obtain kinetic data. Results were analyzed using a pseudo-first-order model to calculate the rate constants of Cu(2+) uptake by algae: k (p(Cu-algae)) = 0.0025 ± 0.0006 s(-1) by CuISE and k (p(Cu-algae)) = 0.0034 ± 0.0011 s(-1) by luminescence. The binding constant of Cu-algae, K (Cu-algae), was 1.62 ± 0.07 × 10(7) M(-1). Fluorescence results analyzed using the Stern-Volmer relationship indicate that algae have two types of binding sites of which only one appears to affect quenching. The fluorescence-based method was found to be able to detect the reaction of algae with Cu(2+) quickly and at a detection limit of 0.1 mg L(-1).

  18. How-to-Do-It: Diatoms: The Ignored Alga in High School Biology.

    ERIC Educational Resources Information Center

    Hungerford, James J.

    1988-01-01

    Provides historical background, descriptions, uses and basis for identification of diatoms. Explains collection, dry-mount cleaning, and preparation procedures of the algae. Cites additional resources. (RT)

  19. How-to-Do-It: Diatoms: The Ignored Alga in High School Biology.

    ERIC Educational Resources Information Center

    Hungerford, James J.

    1988-01-01

    Provides historical background, descriptions, uses and basis for identification of diatoms. Explains collection, dry-mount cleaning, and preparation procedures of the algae. Cites additional resources. (RT)

  20. Biodiversity of algae and protozoa in a natural waste stabilization pond: a field study.

    PubMed

    Tharavathi, N C; Hosetti, B B

    2003-04-01

    A field study was carried out on the biodiversity of protozoa and algae from a natural waste stabilization pond during November, 1996 to April, 1997. The raw waste and pond samples were analysed for physico-chemical and biological parameters. High dissolved oxygen (DO) coinciding with phytoplankton peak was recorded. The algae--Chlorella vulgaris, Scenedesmus acuminatus, Oscillatoria brevis and Nostoc piscinale and Protozoa--Paramecium caudatum, Acanthamoeba sp., Bodo saltans and Oikomonas termo were obvious as dominant species, whereas algae Ochromonas pyriformis and Synura uvella and protozoa, Didinium masutum and Stentor coerulus were noted as rare species. Totally 71 species of algae and 13 species of protozoa were identified.