Science.gov

Sample records for alga nannochloropsis sp

  1. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    PubMed

    Kilian, Oliver; Benemann, Christina S E; Niyogi, Krishna K; Vick, Bertrand

    2011-12-27

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology.

  2. Genomic insights from the oleaginous model alga Nannochloropsis gaditana

    PubMed Central

    Jinkerson, Robert E.; Radakovits, Randor; Posewitz, Matthew C.

    2013-01-01

    Nannochloropsis species have emerged as leading phototrophic microorganisms for the production of biofuels. Several isolates produce large quantities of triacylglycerols, grow rapidly, and can be cultivated at industrial scales. Recently, the mitochondrial, plastid and nuclear genomes of Nannochloropsis gaditana were sequenced. Genomic interrogation revealed several key features that likely facilitate the oleaginous phenotype observed in Nannochloropsis, including an over-representation of genes involved in lipid biosynthesis. Here we present additional analyses on gene orientation, vitamin B12 requiring enzymes, the acetyl-CoA metabolic node, and codon usage in N. gaditana. Nuclear genome transformation methods are established with exogenous DNA integration occurring via either random incorporation or by homologous recombination, making Nannochloropsis amenable to both forward and reverse genetic engineering. Completion of a draft genomic sequence, establishment of transformation techniques, and robust outdoor growth properties have positioned Nannochloropsis as a new model alga with significant potential for further development into an integrated photons-to-fuel production platform. PMID:22922732

  3. Cryopreservation of the unicellular marine alga, Nannochloropsis oculata.

    PubMed

    Poncet, Jean-Marc; Véron, Benoît

    2003-12-01

    In microalgal culture collections, as in many biological resource centres, cryoconservation is the most attractive method for the long-term, secure storage of living material. Nannochloropsis oculata, a marine unicellular alga, is of interest in the field of biotechnology due to its high lipid content. Of various cryoprotectants tested for their toxicity and for their ability to prevent cryoinjury, glycerol (final concentration 1.1 M) was the most efficient. When glycerol-treated cultures were submitted to a strictly regulated cooling rate (-3 degrees C min(-1)), they attained the control culture density within 13 d after thawing.

  4. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp.

    PubMed

    Recht, Lee; Zarka, Aliza; Boussiba, Sammy

    2012-06-01

    The aim of this research was to study the impact of nitrogen starvation on the production of two major secondary metabolites, fatty acids and carbohydrates, in two microalgae: Nannochloropsis sp. and Haematococcus pluvialis. The major response to nitrogen starvation in both algae occurred within the first 2 days, accompanied by a sharp reduction in chlorophyll content. However, the pattern of the response differed between the two microalgae. In H. pluvialis, the first response to nitrogen starvation was intensive production of carbohydrates, accumulating to up to 63% of dry weight by day 1; on day 2, the total carbohydrate content decreased and was partially degraded, possibly to support fatty acid synthesis. Under these conditions, H. pluvialis accumulated up to 35% total fatty acids in the biomass. In Nannochloropsis sp., the immediate and major response, which was maintained throughout the entire period of exposure to stress, was production of fatty acids, accumulating up to 50% of dry weight, while carbohydrate content in the biomass remained stable at 18%. In addition, we tested the effect of the lipid-synthesis inhibitor sesamol, known to inhibit malic enzyme, on the balance between total fatty acid and carbohydrate contents in H. pluvialis and Nannochloropsis sp. In both cultures, sesamol inhibited fatty acid accumulation, but the carbohydrate content was reduced as well, albeit to a lesser extent. These findings demonstrate the complexity of the stress-response and the potential link between fatty acid and carbohydrate synthesis.

  5. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    PubMed Central

    Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J.; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J.; Campbell, Michael S.; Cavalier, David; Childs, Kevin L.; Clark, Teresa J.; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L.; Sanjaya; Simpson, Jeffrey P.; TerBush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M.; Hegg, Eric L.; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K.; Ohlrogge, John; Osteryoung, Katherine W.; Shachar-Hill, Yair; Sears, Barbara B.; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  6. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    PubMed

    Vieler, Astrid; Wu, Guangxi; Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J; Campbell, Michael S; Cavalier, David; Childs, Kevin L; Clark, Teresa J; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L; Sanjaya; Simpson, Jeffrey P; Terbush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M; Hegg, Eric L; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K; Ohlrogge, John; Osteryoung, Katherine W; Shachar-Hill, Yair; Sears, Barbara B; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  7. Harvesting of the Microalga Nannochloropsis sp. by Bioflocculation with Mung Bean Protein Extract.

    PubMed

    Kandasamy, Ganesan; Shaleh, Sitti Raehanah Muhamad

    2016-12-12

    Harvesting microalgae from medium is a major challenge due to their small size and low concentrations. In an attempt to find a cost-effective and eco-friendly harvesting technique, mung bean (Vigna radiata) protein extract (MBPE) was used for flocculation of Nannochloropsis sp. The effects of parameters such as pH, flocculant dose, algae concentration, and mixing time were used to study the flocculation efficiency (FE) of MBPE. Optimum parameters of MBPE dosage of 20 mL L(-1) and a mixing rate of 300 rpm for 6 min achieved a FE of >92% after 2 h of settling time. MBPE-aggregated microlga flocs were characterized by microscopy. Zeta potential values decreased with increasing flocculant dose, and the values obtained were -6.93 ± 0.60, -5.36 ± 0.64, and -4.44 ± 0.22 for doses of 10, 20, and 30 mL L(-1), respectively. In conclusion, MBPE flocculants used in this study are safe, nontoxic, and pollution free, so they could be used for an effective, convenient, and rapid harvesting of microalgae in an eco-friendly approach. These methods are sustainable and could be applied in industrial scale for aquaculture nutrition.

  8. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils.

    PubMed

    Pan, Pan; Hu, Changwei; Yang, Wenyan; Li, Yuesong; Dong, Linlin; Zhu, Liangfang; Tong, Dongmei; Qing, Renwei; Fan, Yong

    2010-06-01

    Nannochloropsis sp. (a kind of green microalga) residue was pyrolyzed without catalyst or with different amount of HZSM-5 catalyst in a fixed bed reactor in nitrogen flow. The effects of pyrolysis parameters such as temperature and catalyst-to-material ratio on product yields were studied. The bio-oils obtained were analyzed by elemental, GC-MS and FTIR analysis. The results indicated that the bio-oils from catalytic pyrolysis of Nannochloropsis sp. residue (BOCP) had lower oxygen content (19.5 wt.%) and higher heating-value (32.7 MJ kg(-1)) than those obtained from direct pyrolysis (BODP) which had an oxygen content of 30.1 wt.% and heating-value of 24.6 MJ kg(-1). The BODP mainly consisted of long carbon chain compounds with various terminal groups (LCTG), while the BOCP mainly consisted of aromatic hydrocarbons. These properties of bio-oils demonstrated that the Nannochloropsis sp. residue can be used as a renewable energy resource and chemical feedstock.

  9. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake.

    PubMed

    Upadhyay, A K; Singh, N K; Singh, R; Rai, U N

    2016-02-01

    The present study was conducted to assess the responses of rice (Oryza sativa L. var. Triguna) by inoculating alga; Chlorella vulgaris and Nannochlropsis sp. supplemented with As(III) (50µM) under hydroponics condition. Results showed that reduced growth variables and protein content in rice plant caused by As toxicity were restored in the algae inoculated plants after 7d of treatment. The rice plant inoculated with Nannochloropsis sp. exhibited a better response in terms of increased root, shoot length and biomass than C. vulgaris under As(III) treatment. A significant reduction in cellular toxicity (thiobarbituric acid reactive substances) and antioxidant enzyme (SOD, APX and GR) activities were observed in algae inoculated rice plant under As(III) treatment in comparison to uninoculated rice. In addition, rice treated with As(III), accumulated 35.05mgkg(-1)dw arsenic in the root and 29.96mgkg(-1)dw in the shoot. However, lower accumulation was observed in As(III) treated rice inoculated with C. vulgaris (24.09mg kg(-1)dw) and Nannochloropsis sp. (20.66mgkg(-1)dw) in the roots, while in shoot, it was 20.10mgkg(-1)dw and 11.67mgkg(-1)dw, respectively. Results demonstrated that application of these algal inoculum ameliorates toxicity and improved tolerance in rice through reduced As uptake and modulating antioxidant enzymes. Thus, application of algae could provide a low-cost and eco-friendly mitigation approach to reduce accumulation of arsenic in edible part of rice as well as higher yield in the As contaminated agricultural field.

  10. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  11. Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2013-10-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s.

  12. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    PubMed

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis.

  13. Rapid induction of omega-3 fatty acids (EPA) in Nannochloropsis sp. by UV-C radiation.

    PubMed

    Sharma, Kalpesh; Schenk, Peer M

    2015-06-01

    Omega-3 fatty acids, such as eicosapentaenoic acid (EPA), provide substantial health benefits. As global fish stocks are declining and in some cases are contaminated with heavy metals, there is a need to find more sustainable land-based sources of these essential fatty acids. The oleaginous microalga Nannochloropsis sp. has been identified as a highly efficient producer of omega-3 fatty acids. In this study, we present a new process to rapidly induce biosynthesis of essential fatty acids, including EPA in Nannochloropsis sp. BR2. Short exposure to UV-C at a dose of 100 or 250 mJ/cm(2) led to a significant increase in total cellular lipid contents when compared to mock-treated controls. A low dosage of 100 mJ/cm(2) also led to a twofold increase in total EPA content within 24 h that constituted 30% of total fatty acids and up to 12% of total dry weight at higher dosages. UV-C radiation may find uses as an easily applicable external inducer for large-scale production of omega-3 production from microalgae.

  14. Differently Localized Lysophosphatidic Acid Acyltransferases Crucial for Triacylglycerol Biosynthesis in the Oleaginous Alga Nannochloropsis.

    PubMed

    Nobusawa, Takashi; Hori, Koichi; Mori, Hiroshi; Kurokawa, Ken; Ohta, Hiroyuki

    2017-02-20

    Production of renewable bioenergy will be necessary to meet rising global fossil fuel demands. Members of the marine microalgae genus Nannochloropsis produce large amounts of oils (triacylglycerols; TAGs), and this genus is regarded as one of the most promising for biodiesel production. Recent genome sequencing and transcriptomic studies on Nannochloropsis have provided a foundation for understanding its oleaginous trait, but the mechanism underlying oil accumulation remains to be clarified. Here we report Nannochloropsis knockout strains of four extraplastidic lysophosphatidic acid acyltransferases (LPAT1-4), which catalyze a major de novo biosynthetic step of TAGs and membrane lipids. We found that the four LPATs are differently involved in lipid metabolic flow in Nannochloropsis. Double knockouts among the LPATs revealed the pivotal LPATs for TAG biosynthesis, and localization analysis indicated that the stramenopile-specific LPATs (LPAT3 and LPAT4) associated with TAG synthesis reside at the perimeter of lipid droplets. However, no homologous region has been found with other lipid droplet-associated proteins. Lipid droplets are an organelle found in nearly all organisms, and recently they were shown to play important roles in cellular metabolism and signaling. Our results provide direct evidence for the importance of the perimeter of lipid droplet in TAG synthesis in addition to its known role in maintaining TAG stability, and these findings suggest that the oleaginous trait of Nannochloropsis is enabled by acquisition of LPATs at the perimeter of lipid droplets. This article is protected by copyright. All rights reserved.

  15. Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors.

    PubMed

    Richmond, A; Cheng-Wu, Z

    2001-02-23

    The relationships between areal (g m(-2) per day) and volumetric (g l(-1) per day) productivity of Nannochloropsis sp. as affected by the light-path (ranging from 1.3 to 17.0 cm) of a vertical flat plate glass photobioreactor were elucidated. In general, the shorter the length of the light-path (LP), the smaller the areal volume and the higher the volumetric productivity. The areal productivity in relation to the light-path, in contrast, yielded an optimum curve, the highest areal productivity was obtained in a 10 cm LP reactor, which is regarded, therefore, optimal for mass production of Nannochloropsis. An attempt was made to identify criteria by which to assess the efficiency of a photobioreactor in utilizing strong incident energy. Two basic factors which relate to reactor efficiency and its cost-effectiveness have been defined as (a) the total illuminated surface required to produce a set quantity of product and (b) culture volume required to produce that quantity. As a general guide line, the lower these values are, the more efficient and cost-effective the reactor would be. An interesting feature of this analysis rests with the fact that an open raceways is as effective in productivity per illuminated area as a flat-plate reactor with an optimal light path, both cultivation systems requiring ca. 85 m(2) of illuminated surface to produce 1 kg dry cell mass of Nannochloropsis sp. per day. The difference in light utilization efficiency between the two very different production systems involves three aspects - first, the open raceway requires ca. 6 times greater volume than the 10 cm flat plate reactor to produce the same quantity of cell-mass. Second, the total ground area (i.e. including the ground area between reactors) for the vertical flat plate reactor is less than one half of that occupied by an open raceway, indicating the former is more efficient, photosynthetically, compared with the latter. Finally, the harvested cell density is close to one order of

  16. Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction

    NASA Astrophysics Data System (ADS)

    Nafis, Ghazy Ammar; Mumpuni, Perwitasari Yekti; Indarto, Budiman, Arief

    2015-12-01

    Nowadays, energy is one of human basic needs. As the human population increased, energy consumption also increased. This condition causes energy depletion. In case of the situation, alternative energy is needed to replace existing energy. Microalgae is chosen to become one of renewable energy resource, especially biodiesel, because it contains high amount of lipid instead of other feedstock which usually used. Fortunately, Indonesia has large area of water and high intensity of sunlight so microalgae cultivation becomes easier. Nannochloropsis sp., one of microalgae species, becomes the main focus because of its high lipid content. Many ways to break the cell wall of microalgae so the lipid content inside the microalgae will be released, for example conventional extraction, ultrasonic wave extraction, pressing, and electrical method. The most effective way for extraction is electrical method such as pulsed electric field method (PEF). The principal work of this method is by draining the electrical current into parallel plate. Parallel plate will generate the electrical field to break microalgae cell wall and the lipid will be released. The aim of this work is to evaluate two-stage procedure for extraction of useful components from microalgae Nannochloropsis sp. The first stage of this procedure includes pre-treatment of microalgae by ethanol solvent extraction and the second stage applies the PEF extraction using a binary mixture of water and ethanol solvent. Ethanol is chosen as solvent because it's safer to be used and easier to be handled than other solvent. Some variables that used to study the most effective operation conditions are frequency and duty cycle for microalgae. The optimum condition based on this research are at frequency 1 Hz and duty cycle 13%.

  17. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana.

    PubMed

    Alboresi, Alessandro; Le Quiniou, Clotilde; Yadav, Sathish K N; Scholz, Martin; Meneghesso, Andrea; Gerotto, Caterina; Simionato, Diana; Hippler, Michael; Boekema, Egbert J; Croce, Roberta; Morosinotto, Tomas

    2017-01-01

    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained.

  18. Biogasification of Marine Algae: Nannochloropsis oculata and Botryococcus braunii (BRIEFING SLIDES)

    DTIC Science & Technology

    2010-06-01

    results. biomass to energy; biogasification; anaerobic digestion; gasification ; algae U U U SAR 30 Robert Diltz Reset 1 A schematic for taking the...Biological Engineers Conference, 9-12 June 2010, in Jupiter FL. Algae has the potential to be a useful source of biomass derived energy due to the high...transesterification of lipids to biodiesel or thermal gasification of the cells to produce synthesis gases. A new approach was identified to use algae in a

  19. Subcritical co-solvents extraction of lipid from wet microalgae pastes of Nannochloropsis sp

    PubMed Central

    Chen, Min; Liu, Tianzhong; Chen, Xiaolin; Chen, Lin; Zhang, Wei; Wang, Junfeng; Gao, Lili; Chen, Yu; Peng, Xiaowei

    2012-01-01

    In this paper subcritical co-solvents extraction (SCE) of algal lipid from wet pastes of Nannochloropsis sp. is examined. The influences of five operating parameters including the ratio between ethanol to hexane, the ratio of mixed solvents to algal biomass (dry weight), extraction temperature, pressure, and time were investigated. The determined optimum extraction conditions were 3:1 (hexane to ethanol ratio), 10:1 ratio (co-solvents to microalgae (dry weight) ratio), 90°C, 1.4 MPa, and 50 min, which could produce 88% recovery rate of the total lipids. In addition, electron micrographs of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were conducted to show that the algal cell presented shrunken, collapsed with some wrinkles and microholes after SCE extraction. The main composition of total lipids extracted under the optimum conditions was TAG which represented more than 80%. And the fatty acid profile of triglycerides revealed that C16:0 (35.67 ± 0.2%), C18:1 (26.84 ± 0.044%) and C16:1 (25.96 ± 0.011%) were dominant. Practical applications: The reported method could save energy consumption significantly through avoiding deep dewatering (for example drying). The composition of the extracted lipid is suitable for the production of high quality biodiesel. PMID:22745570

  20. A biorefinery from Nannochloropsis sp. microalga - energy and CO2 emission and economic analyses.

    PubMed

    Ferreira, Ana F; Ribeiro, Lauro A; Batista, Ana P; Marques, Paula A S S; Nobre, Beatriz P; Palavra, António M F; da Silva, Patrícia Pereira; Gouveia, Luísa; Silva, Carla

    2013-06-01

    Are microalgae a potential energy source for biofuel production? This paper presents the laboratory results from a Nannochloropsis sp. microalga biorefinery for the production of oil, high-value pigments, and biohydrogen (bioH2). The energy consumption and CO2 emissions involved in the whole process (microalgae cultivation, harvest, dewater, mill, extraction and leftover biomass fermentation) were evaluated. An economic evaluation was also performed. Oil was obtained by soxhlet (SE) and supercritical fluid extraction (SFE). The bioH2 was produced by fermentation of the leftover biomass. The oil production pathway by SE shows the lowest value of energy consumption, 177-245 MJ/MJ(prod), and CO2 emissions, 13-15 kgCO(2)/MJ(prod). Despite consuming and emitting c.a. 20% more than the SE pathway, the oil obtained by SFE, proved to be more economically viable, with a cost of 365€/kg(oil) produced and simultaneously extracting high-value pigments. The bioH2 as co-product may be advantageous in terms of product yield or profit.

  1. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta.

    PubMed

    Hsueh, H T; Li, W J; Chen, H H; Chu, H

    2009-04-02

    There is a great potential to assimilate CO(2) and produce bio-energy from cellular component by utilizing carbon fixation of photosynthetic microorganisms. Two different types of photosynthetic microorganisms were used in the present study. The strain Thermosynechococcus sp. CL-1 (TCL-1) was previously isolated from a hot spring while Nannochloropsis sp.Oculta (NAO) from sea water. Two types of inorganic carbon were used (gaseous CO(2) and dissolved inorganic carbon, DIC) with nitrate as N source under different temperature conditions. The Monod model was used to relate its growth rate and DIC concentration. Additionally, lipid and carbohydrate of cell component, which can be used as bio-energy precursors, as function of CO(2) and DIC concentrations is quantified. The growth rate of TCL-1 decreased as CO(2) concentrations increased from 10% to 40% due to low pH inhibition with the maximum value 2.7 d(-1) at 10% CO(2). As for NAO, the maximum growth rate of about 1.6 d(-1) was obtained at 5% and 8% CO(2) (pH between 5.5 and 7 at 30 degrees C). Regarding the cultivation of TCL-1 under various DIC concentrations, the maximum growth rate of TCL-1 was 3.5 d(-1) at the initial DIC 94.3 mM, pH 9.5 and 50 degrees C. The carbohydrate content of TCL-1 increased from 2.1% to 33% as DIC concentration increased from 4.7 to 94.3 mM. However, the 33% carbohydrate content at 94.3 mM DIC was much less than 61% at 10% CO(2). That may be due to the fact that the cultivation at 94.3 mM DIC can not supply adequate amounts of DIC to produce carbohydrate under N-limiting conditions. Conversely, enough amounts of DIC supplied from washing flue gas for cultivating TCL-1 would provide a higher performance of carbon bio-fixation and carbohydrate production.

  2. Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata--a candidate for biofuel production.

    PubMed

    Taylor, Rebecca L; Rand, Jonathan D; Caldwell, Gary S

    2012-12-01

    Marine microalgae represent a potentially valuable feedstock for biofuel production; however, large-scale production is not yet economically viable. Optimisation of productivity and lipid yields is required and the cost of biomass harvesting and dewatering must be significantly reduced. Microalgae produce a wide variety of biologically active metabolites, many of which are involved in inter- and intra-specific interactions (the so-called infochemicals). The majority of infochemicals remain unidentified or uncharacterised. Here, we apply known and candidate (undefined extracts) infochemicals as a potential means to manipulate the growth and lipid content of Nannochloropsis oculata-a prospective species for biofuel production. Five known infochemicals (β-cyclocitral, trans,trans-2,4-decadienal, hydrogen peroxide, norharman and tryptamine) and crude extracts prepared from Skeletonema marinoi and Dunaliella salina cultures at different growth stages were assayed for impacts on N. oculata over 24 h. The neutral lipid content of N. oculata increased significantly with exposure to three infochemicals (β-cyclocitral, decadienal and norharman); however the effective concentrations affected a significant decrease in growth. Exposure to particular crude extracts significantly increased both growth and neutral lipid levels. In addition, water-soluble extracts of senescent S. marinoi cultures induced a degree of flocculation in the N. oculata. These preliminary results indicate that artificial manipulation of N. oculata cultures by application of algae infochemicals could provide a valuable tool towards achieving economically viable large-scale algae biofuel production.

  3. Effects of different photoperiod and trophic conditions on biomass, protein and lipid production by the marine alga Nannochloropsis gaditana at optimal concentration of desalination concentrate.

    PubMed

    Matos, Ângelo Paggi; Cavanholi, Monnik Gandin; Moecke, Elisa Helena Siegel; Sant'Anna, Ernani Sebastião

    2017-01-01

    This study investigated the cultivation of the marine alga Nannochloropsis gaditana in a medium based on desalination concentrate (DC) with an optimal concentration of 75% DC, under three trophic conditions and four photoperiod schedules. N. gaditana produced a peak biomass concentration (1.25gL(-1)) under mixotrophic culture condition and a photoperiod of 16L:08D. N. gaditana cells compensate to different light-dark regimes producing different amounts of protein (17.9-44.8%). The intracellular lipid content in N. gaditana cells increased both under autotrophic conditions with a 16L:08D cycle (16.7%), and under mixotrophic conditions with a 08L:16D cycle (15.7%). In heterotrophic culture, N. gaditana cells were rich in polyunsaturated fatty acids (46.0%). This study demonstrates an alternative approach to enhancing intracellular lipid content of the marine alga N. gaditana by modifying the photoperiod, trophic conditions and stress-salinity-conductivity with the use of a DC-based medium.

  4. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects.

    PubMed

    García-Casal, Maria N; Ramírez, José; Leets, Irene; Pereira, Ana C; Quiroga, Maria F

    2009-01-01

    Marine algae are easily produced and are good sources of Fe. If this Fe is bioavailable, algae consumption could help to combat Fe deficiency and anaemia worldwide. The objective of the present study was to evaluate Fe bioavailability, polyphenol content and antioxidant capacity from three species of marine algae distributed worldwide. A total of eighty-three subjects received maize- or wheat-based meals containing marine algae (Ulva sp., Sargassum sp. and Porphyra sp.) in different proportions (2.5, 5.0 and 7.5 g) added to the water to prepare the dough. All meals administered contained radioactive Fe. Absorption was evaluated calculating radioactive Fe incorporation in subjects' blood. The three species of marine algae were analysed for polyphenol content and reducing power. Algae significantly increased Fe absorption in maize- or wheat-based meals, especially Sargassum sp., due to its high Fe content. Increases in absorption were dose-dependent and higher in wheat- than in maize-based meals. Total polyphenol content was 10.84, 18.43 and 80.39 gallic acid equivalents/g for Ulva sp., Porphyra sp. and Sargassum sp., respectively. The antioxidant capacity was also significantly higher in Sargassum sp. compared with the other two species analysed. Ulva sp., Sargassum sp. and Porphyra sp. are good sources of bioavailable Fe. Sargassum sp. resulted in the highest Fe intake due to its high Fe content, and a bread containing 7.5 g Sargassum sp. covers daily Fe needs. The high polyphenol content found in Sargassum sp. could be partly responsible for the antioxidant power reported here, and apparently did not affect Fe absorption.

  5. Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids.

    PubMed

    Solovchenko, Alexei; Khozin-Goldberg, Inna; Recht, Lee; Boussiba, Sammy

    2011-06-01

    In order to develop a practical approach for fast and non-destructive assay of total fatty acid (TFA) and pigments in the biomass of the marine microalga Nannochloropsis sp. changes in TFA, chlorophyll, and carotenoid contents were monitored in parallel with the cell suspension absorbance. The experiments were conducted with the cultures grown under normal (complete nutrient f/2 medium at 75 μmol PAR photons/(m(2) s)) or stressful (nitrogen-lacking media at 350 μmol PAR photons/(m(2) s)) conditions. The reliable measurement of the cell suspension absorbance using a spectrophotometer without integrating sphere was achieved by deposition of cells on glass-fiber filters in the chlorophyll content range of 3-13 mg/L. Under stressful conditions, a 30-50% decline in biomass and chlorophyll, retention of carotenoids and a build-up of TFA (15-45 % of dry weight) were recorded. Spectral regions sensitive to widely ranging changes in carotenoid-to-chlorophyll ratio and correlated changes of TFA content were revealed. Employing the tight inter-correlation of stress-induced changes in lipid metabolism and rearrangement of the pigment apparatus, the spectral indices were constructed for non-destructive assessment of carotenoid-to-chlorophyll ratio (range 0.3-0.6; root mean square error (RMSE) = 0.03; r (2) = 0.93) as well as TFA content of Nannochloropsis sp. biomass (range 5.0-45%; RMSE = 3.23 %; r (2) = 0.89) in the broad band 400-550 nm normalized to that in chlorophyll absorption band (centered at 678 nm). The findings are discussed in the context of real-time monitoring of the TFA accumulation by Nannochloropsis cultures under stressful conditions.

  6. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.

    PubMed

    Wang, Xin; Sheng, Lili; Yang, Xiaoyi

    2017-04-01

    Microalgal components were isolated gradually to get lipid-rich, protein-rich and carbohydrate-rich components. The aim of this work was to study pyrolysis mechanism of microalgae by real isolated real algae components. Thermogrametric analysis (DTG) curve of microalgae was fitted by single pyrolysis curves of protein, lipid and carbohydrate except special zones, which likely affected by cell disruption and hydrolysis mass loss. Experimental microalgae liquefaction without water index N was 0.6776, 0.3861 and 0.2856 for isolated lipid, protein and carbohydrate. Pyrolysis pathways of lipid are decarboxylation, decarbonylation, fragmentation of glycerin moieties and steroid to form hydrocarbons, carboxylic acids and esters. Pyrolysis pathways of protein are decarboxylation, deamination, hydrocarbon residue fragmentation, dimerization and fragmentation of peptide bonds to form amide/amines/nitriles, esters, hydrocarbons and N-heterocyclic compounds, especially diketopiperazines (DKPs). Pyrolysis pathways of carbohydrate are dehydrated reactions and further fragmentation to form ketones and aldehyde, decomposition of lignin to form phenols, and fragmentation of lipopolysaccharides.

  7. Cultivation of Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae in Batch culture using Nile tilapia effluent.

    PubMed

    Guerrero-Cabrera, Luis; Rueda, José A; García-Lozano, Hiram; Navarro, A Karin

    2014-06-01

    Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae were cultured in three volumes of Tilapia Effluent Medium (TEM) in comparison with the Bold Basal Medium (BBM) (Nichols and Bold, 1965). Specific growth rate (μ'), biomass dry productivity (Q), volumetric productivity (Qv) as well as lipid and protein content were measured. Then, volumetric productivities for both lipids and proteins were calculated (QVL and QVP). In Scenedesmus sp., BBM produced higher μ' and Qv than TEM in 1.5L volume. Chlorella sp. showed a higher QVL for BBM than TEM. Any observed difference in protein or lipid productivities among volumes was in favor of a greater productivity for 1.5L volume. Even when TEM had a larger protein content in Chlorella sp. than BBM, QVP was not different. Current results imply that TEM can be used as an alternative growth medium for algae when using Batch cultures, yet productivity is reduced.

  8. The use of Design of Experiments and Response Surface Methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    Biodiesel produced from microalgal lipids is being considered as a potential source of renewable energy. However, a number of hurdles will have to be overcome if such a process is to become practical. One important factor is the volumetric production of biomass and lipid that can be achieved. The marine alga Nannochloropsis gaditana is under study since it is known to be highly oleaginous and has a number of other attractive properties. Factors that might be important in biomass and lipid production by this alga are light intensity, inoculum size and CO2. Here we have carried out for the first time a RSM-DOE study of the influence of these important culture variables and define conditions that maximize biomass production, lipid content (BODIPY® fluorescence) and total lipid production. Moreover, flow cytometry allowed the examination on a cellular level of changes that occur in cellular populations as they age and accumulate lipids.

  9. Synergistic effect of optimizing light-emitting diode illumination quality and intensity to manipulate composition of fatty acid methyl esters from Nannochloropsis sp.

    PubMed

    Teo, Chee Loong; Idris, Ani; Zain, Nor Azimah Mohd; Taisir, Mohamad

    2014-12-01

    In the study, the relationship between the quality and intensity of LED illumination with FAMEs produced were investigated. Nannochloropsis sp. was cultivated for 14 days under different intensities of 100, 150 and 200 μmol photons m(-2) s(-1) of red, blue and mixed red blue LED. The findings revealed that suitable combination of LED wavelengths and intensity; (red LED: 150, blue: 100 and mixed red blue: 200 μmol photons m(-2) s(-1)) produced maximum biomass growth and lipid content. It was observed that the quality and intensity of LED significantly influenced the composition of FAMEs. FAMEs produced under blue LED has high degree of unsaturation (DU) and low cetane number while those under red LED has low DU but higher CN. The combination of red blue LED has produced FAMEs with high ignition and lubricating property and also good oxidation stability indicated by the DU and CN values which lies midway between the red and blue.

  10. On-line modeling intracellular carbon and energy metabolism of Nannochloropsis sp. in nitrogen-repletion and nitrogen-limitation cultures.

    PubMed

    Zhang, Dongmei; Yan, Fei; Sun, Zhongliang; Zhang, Qinghua; Xue, Shengzhang; Cong, Wei

    2014-07-01

    In this study, a photobioreactor cultivation system and a calculation method for on-line monitoring of carbon and energy metabolism of microalgae were developed using Nannochloropsis sp. in nitrogen-repletion and nitrogen-limitation cultures. Only 30-60% of carbon fixed in Calvin cycle was used for biomass and the rest was lost in light respiration. The net fixed carbon was assumed to be incorporated into protein, lipids, carbohydrates, and nucleic acids, whose contents calculated on-line fitted well with the experimental measurements. Intracellular ATPs were quantitatively divided for biomass production and cell maintenance, and the result is in accordance with known reports. Due to light limitation induced by high cell concentration in batch cultures, the proportion of CO2 loss in light respiration and the proportion of energy for maintenance rapidly increased in culturing process. Nitrogen starvation reduced the light respiration, thus decreasing CO2 loss and maintenance energy, but no effect on ATP requirement for cell growth.

  11. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high.

  12. Rhodovulum algae sp. nov., isolated from an algal mat.

    PubMed

    Ramaprasad, E V V; Tushar, L; Dave, Bharti; Sasikala, Ch; Ramana, Ch V

    2016-09-01

    A reddish-brown-pigmented, phototrophic bacterium, designated strain JA877T, was isolated from a brown algae mat sample collected from Jalandhar beach, Gujarat, India. On the basis of the 16S rRNA gene sequence, strain JA877T belongs to the class Alphaproteobacteria and is closely related to the type strains Rhodovulum viride JA756T (99.0 %), Rhodovulum sulfidophilum Hansen W4T (98.9 %), Rhodovulumvisakhapatnamense JA181T (98.8 %),Rhodovulum kholense JA297T (97.5 %) and Rhodovulum salis JA746T (97.0). However, strain JA877T showed only 20-45 % relatedness with its phylogenetic neighbours and had a ∆Tm between 5.8 and 7.0 °C. The major respiratory quinone was ubiquinone-10 (Q10), and the polar lipid profile was composed of the major components phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, two unidentified sulfolipids and five unidentified lipids. The major fatty acids were C18 : 1ω5c, C18 : 1ω7c/C18 : 1ω6c, C16 : 0 and C18 : 0. The DNA G+C content was 64.5 mol%. On the basis of 16S rRNA gene sequence analysis, physiological data, and chemotaxonomic and molecular differences, strain JA877T is significantly different from other species of the genus Rhodovulum and represents a novel species, for which the name Rhodovulum algae sp. nov. is proposed. The type strain is JA877T (=LMG 29228T= KCTC 42963T).

  13. Sulfitobacter undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Won, Sung-Min; Park, Ji-Min; Yoon, Jung-Hoon

    2015-05-01

    A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and coccoid, ovoid or rod-shaped bacterial strain, W-BA2(T), was isolated from a brown algae reservoir in Wando of South Korea. Strain W-BA2(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of approximately 2.0-3.0% (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain W-BA2(T) fell within the clade comprising the type strains of species of the genus Sulfitobacter , clustering coherently with the type strains of Sulfitobacter donghicola and Sulfitobacter guttiformis showing sequence similarity values of 98.0-98.1%. Sequence similarities to the type strains of the other species of the genus Sulfitobacter were 96.0-97.4%. Strain W-BA2(T) contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain W-BA2(T) were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain W-BA2(T) was 55.0 mol% and its DNA-DNA relatedness values with the type strains of Sulfitobacter donghicola , Sulfitobacter guttiformis and Sulfitobacter mediterraneus were 16-23%. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain W-BA2(T) is separated from other species of the genus Sulfitobacter . On the basis of the data presented, strain W-BA2(T) is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter undariae sp. nov. is proposed. The type strain is W-BA2(T) ( = KCTC 42200(T) = NBRC 110523(T)).

  14. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae.

    PubMed

    Guo, Ling-Yun; Li, Dong-Qi; Sang, Jin; Chen, Guan-Jun; Du, Zong-Jun

    2016-01-27

    Novel agar-degrading, Gram-staining-negative, motile, heterotrophic, facultatively anaerobic and pale yellow-pigmented bacterial strains, designated Z1T and JL1, were isolated from marine algae Gelidium amansii (Lamouroux) and Gracilaria verrucosa, respectively. Growth of the isolates was optimal at 28-30 °C, pH 7.0-7.5 and 1-3% (w/v) NaCl. Both strains contained Q-8 as the sole respiratory quinone. The major cellular fatty acids in strain Z1T were C18:1 ω7c, C16:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The predominant polar lipids in strain Z1T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and aminolipid (AL). The genomic DNA G+C content of both strains was 45.1 mol%. Strains Z1T and JL1 were closely related, with 99.9% 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) value between strains Z1T and JL1 was 99.3%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains Z1T and JL1 form a distinct phyletic line within the class Gammaproteobacteria, with less than 92.3% similarity to their closest relatives. Based on data from the current polyphasic study, the isolates are proposed to belong to a new genus and species designated Marinagarivorans algicola gen. nov., sp. nov. The type strain of Marinagarivorans algicola is Z1T (=ATCC BAA-2617T=CICC 10859T).

  15. Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal.

    PubMed

    Liu, Hui; Lu, Qian; Wang, Qin; Liu, Wen; Wei, Qian; Ren, Hongyan; Ming, Caibing; Min, Min; Chen, Paul; Ruan, Roger

    2017-03-22

    Algae were able to grow healthy on bacteria-containing centrate wastewater in a pilot-scale bioreactor. The batch experiment indicated that the co-cultivation of algae and wastewater-borne bacteria improved the removal efficiencies of chemical oxygen demand and total phosphorus in centrate wastewater to 93.01% and 98.78%, respectively. A strain of beneficial aerobic bacteria, Acinetobacter sp., was isolated and its biochemical characteristics were explored. Synergistic cooperation was observed in the growth of algae and Acinetobacter sp. Removal efficiencies of some nutrients were improved significantly by the co-cultivation of algae and Acinetobacter sp. After treatment, residual nutrients in centrate wastewater reached the permissible discharge limit. The cooperation between algae and Acinetobacter sp. was in part attributed to the exchange of carbon dioxide and oxygen between the algae and bacteria. This synergetic relationship between algae and Acinetobacter sp. provided a promising way to treat the wastewater by improving the nutrients removal and biomass production.

  16. Lipid Production from Nannochloropsis

    PubMed Central

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-01-01

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed. PMID:27023568

  17. Algibacter undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Lee, Jung-Sook; Lee, Keun-chul; Yoon, Jung-Hoon

    2013-10-01

    A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY9(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY9(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WS-MY9(T) clustered with the type strain of Algibacter lectus with a bootstrap resampling value of 100 %. Strain WS-MY9(T) exhibited 16S rRNA gene sequence similarity values of 98.5 and 96.7 % to the type strains of A. lectus and Algibacter mikhailovii, respectively, and less than 96.1 % sequence similarity to other members of the family Flavobacteriaceae. Strain WS-MY9(T) contained MK-6 as the predominant menaquinone and anteiso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 as the major fatty acids. The major polar lipids of strain WS-MY9(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY9(T) was 35.0 mol% and its DNA-DNA relatedness value with A. lectus KCTC 12103(T) was 15 %. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY9(T) is separate from the two recognized species of the genus Algibacter. On the basis of the data presented, strain WS-MY9(T) represents a novel species of the genus Algibacter, for which the name Algibacter undariae sp. nov. is proposed. The type strain is WS-MY9(T) ( = KCTC 32259(T) = CCUG 63684(T)).

  18. Lacinutrix undariae sp. nov., isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Park, Ji-Min; Jung, Yong-Taek; Kang, Chul-Hyung; Yoon, Jung-Hoon

    2015-08-01

    A Gram-stain-negative, aerobic, non-flagellated, non-gliding and ovoid or rod-shaped bacterium, designated strain W-BA8T, was isolated from a brown algae reservoir on the South Sea, South Korea, and subjected to a polyphasic taxonomic approach. Strain W-BA8T grew optimally at 25 °C, at pH 7.0-7.5 and in the presence of 1.0-2.0% (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain W-BA8T clustered with the type strains of species of the genus Lacinutrix. Strain W-BA8T exhibited 16S rRNA gene sequence similarity values of 94.9-96.5% to the type strains of Lacinutrix species and of less than 95.8% to the type strains of other recognized species. Strain W-BA8T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH as major fatty acids. The polar lipid profile of strain W-BA8T contained phosphatidylethanolamine, two unidentified lipids and one unidentified glycolipid as major components. The DNA G+C content of strain W-BA8T was 35 mol%. Differential phenotypic properties, together with phylogenetic distinctiveness, revealed that strain W-BA8T is separated from other species of the genus Lacinutrix. On the basis of the data presented, strain W-BA8T is considered to represent a novel species of the genus Lacinutrix, for which the name Lacinutrix undariae sp. nov. is proposed. The type strain is W-BA8T ( = KCTC 42176T = CECT 8671T).

  19. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions.

    PubMed

    Liu, Junzhuo; Vyverman, Wim

    2015-03-01

    The N/P ratio of wastewater can vary greatly and directly affect algal growth and nutrient removal process. Three benthic filamentous algae species Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. were isolated from a periphyton bioreactor and cultured under laboratory conditions on varying N/P ratios to determine their ability to remove nitrate and phosphorus. The N/P ratio significantly influenced the algal growth and phosphorus uptake process. Appropriate N/P ratios for nitrogen and phosphorus removal were 5-15, 7-10 and 7-20 for Cladophora sp., Klebsormidium sp. and Pseudanabaena sp., respectively. Within these respective ranges, Cladophora sp. had the highest biomass production, while Pseudanabaena sp. had the highest nitrogen and phosphorus contents. This study indicated that Cladophora sp. had a high capacity of removing phosphorus from wastewaters of low N/P ratio, and Pseudanabaena sp. was highly suitable for removing nitrogen from wastewaters with high N/P ratio.

  20. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed Central

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  1. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  2. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp.

    PubMed

    Qi, Feng; Huang, Zhaobin; Lai, Qiliang; Li, Dengfeng; Shao, Zongze

    2016-04-20

    A novel bacterial strain SC2T was isolated from Ulva sp. a green marine algae. Strain SC2T was Gram-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2T can degrade skim milk, agar, soluble starch, Tween 20 and Tween 80. The optimal salinity and temperature of strain SC2T were 2% and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2T was affiliated to the genus Kordia, with highest sequence similarity to Kordia algicida OT-1T (97.23%), Kordia antarctica IMCC3317T (97.23%) and Kordia jejudonensis SSK3-3T (97.02%); other species of the genus Kordia shared 93.98%-95.78% sequence similarity. The ANI value and the DNA-DNA hybridization estimated value between strain SC2T and three type strains (K. algicida OT-1T, K. antarctica IMCC3317T and K. jejudonensis SSK3-3T) were found to be 79.4%-82.4% and 24.2%-27.0%, respectively. The predominant fatty acids (>5.0%) were C16:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, summed feature 3 (comprised C16:1 ω7c/C16:1 ω6c), summed feature 8 (comprised C18:1 ω7c/C18:1 ω6c) and summed feature 9 (comprised iso-C17:1 ω9c/C16:0 10-methyl). The respiratory quinone was Menaquinone-6 (MK-6). The polar lipid profile consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and one phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2T represents a novel species within the genus Kordia, for which the name Kordia ulvae sp. nov. is proposed, with the type strain SC2T (= KCTC 42872T = MCCC 1A01772T = LMG 29123T).

  3. Sorption of copper(II) ions in the biomass of alga Spirogyra sp.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2012-10-01

    Sorption of copper ions by the alga Spirogyra sp. was investigated to determine the influence of experimental conditions and the methods of sample preparation on the process. The experiments were carried out both under the static and the dynamic conditions. Kinetics and equilibrium parameters of the sorption were evaluated. In addition, the influence was studied of the algae preparation methods on the conductivity of demineralized water in which the algae samples were immersed. The static experiments showed that the sorption of Cu(2+) ions reached equilibrium in about 30 min, with approximately 90% of the ions adsorbed in the initial 15 min. The sorption capacity determined from the Langmuir isotherms appeared highly uncertain (SD=±0.027 mg/g dry mass or ±11%, for the live algae). Under static conditions, the slopes of the Langmuir isotherms depended on the ratio of the alga mass to the volume of solution. The conductometric measurements were proven to be a simple and fast way to evaluate the quality of algae used for the experiments.

  4. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  5. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption.

  6. Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand

    PubMed Central

    Nelson, Wendy A.

    2013-01-01

    Abstract A commonly found red alga of the upper intertidal zone of New Zealand rocky coasts is described for the first time as Pyropia plicata sp. nov. This species has been incorrectly known as Porphyra columbina Mont. (now Pyropia columbina (Mont.) W.A.Nelson) for many years. Pyropia plicata is widespread and common, and it is readily distinguished from other species of bladed Bangiales in New Zealand by its distinctive morphology, with pleated blades attached by a central rhizoidal holdfast. PMID:23794933

  7. Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand.

    PubMed

    Nelson, Wendy A

    2013-01-01

    A commonly found red alga of the upper intertidal zone of New Zealand rocky coasts is described for the first time as Pyropia plicata sp. nov. This species has been incorrectly known as Porphyra columbina Mont. (now Pyropia columbina (Mont.) W.A.Nelson) for many years. Pyropia plicata is widespread and common, and it is readily distinguished from other species of bladed Bangiales in New Zealand by its distinctive morphology, with pleated blades attached by a central rhizoidal holdfast.

  8. Performance assessment of biofuel production in an algae-based remediation system.

    PubMed

    Wuang, Shy Chyi; Luo, Yanpei Darren; Wang, Simai; Chua, Pei Qiang Danny; Tee, Pok Siang

    2016-03-10

    The production of biofuel from microalgae has been an area of great interest as microalgae have higher productivities than land plants, and certain species have high lipid constituents which are the major feedstock for biodiesel production. One way to enhance the economic feasibility of algal-based biofuel is to couple it with waste remediation. This study investigated the technical feasibility of cultivating Chlorella sp. and Nannochloropsis sp. with fish water for biofuel production. The remediation potential of Chlorella sp. was found to be higher but the lipid yield is lower, when compared to Nannochloropsis sp. Lipid productivities were found to be similar for both types of algae at 1.1-1.3mgL(-1)h(-1). The fatty acid profiles of the obtained lipids were found suitable for biofuel production, and the calorific values were high at 30-32MJ/kg. The results provide insights into lipid production in Chlorella sp. and Nannochloropsis sp., when coupled with waste remediation.

  9. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  10. Photochemical Performance of the Acidophilic Red Alga Cyanidium sp. in a pH Gradient

    NASA Astrophysics Data System (ADS)

    Kvíderová, Jana

    2012-06-01

    The acidophilic red alga Cyanidium sp. is one of the dominant mat-forming species in the highly acidic waters of Río Tinto, Spain. The culture of Cyanidium sp., isolated from a microbial mat sample collected at Río Tinto, was exposed to 9 different pH conditions in a gradient from 0.5 to 5 for 24 h and its physiological status evaluated by variable chlorophyll a fluorescence kinetics measurements. Maximum quantum yield was determined after 30 min, 1 h, 2 h, 4 h, 6 h and 24 h of exposure after 15 min dark adaptation. The effect of pH on photochemical activity of Cyanidium sp. was observable as early as 30 min after exposure and the pattern remained stable or with only minor modifications for 24 h. The optimum pH ranged from 1.5 to 2.5. A steep decrease of the photochemical activity was observed at pH below 1 even after 30 min of exposure. Although the alga had tolerated the exposure to pH = 1 for at least 6 h, longer (24 h) exposure resulted in reduction of the photochemical activity. At pH above 2.5, the decline was more moderate and its negative effect on photochemistry was less severe. According to the fluorescence measurements, the red alga Cyanidium sp. is well-adapted to prevailing pH at its original locality at Río Tinto, i.e. pH of 1 to 3. The short-term survival in pH < 1.5 may be adaptation to rare exposures to such low pH in the field. The tolerance of pH above 3 could be caused by adaptation to the microenvironment of the inner parts of microbial mats in which Cyanidium sp. usually dominates and where higher pH could occur due to photosynthetic oxygen production.

  11. Some Nutritional Characteristics of a Naturally Occurring Alga (Microcystis sp.) in a Guatemalan Lake

    PubMed Central

    de la Fuente, Gabriel; Flores, Antonio; Molina, Mario R.; Almengor, Leticia; Bressani, Ricardo

    1977-01-01

    The nutritional characteristics of an alga (Microcystis sp.) that occurs naturally in a Guatemalan lake were determined. The sun-dried material proved to have a high protein content (55.6%) and to be a possible good source of calcium and phosphorus (1, 169.1 and 633.4 mg/100 mg, respectively). Amino acid analysis showed that total sulfur amino acids were the most deficient ones, giving a protein score of 42 to the material. The in vitro protein digestibility of the material was 69.5%. Biological trials demonstrated that when the material was offered as the only protein source, very low consumption and a high mortality rate were obtained whether or not the diet was supplemented with 0.4% dl-methionine. However, when the material supplied 25% of the total protein of a corn-algae diet, the protein quality of the cereal was significantly improved (P < 0.05). PMID:16345191

  12. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore.

    PubMed

    Eliás, Marek; Nemcová, Yvonne; Skaloud, Pavel; Neustupa, Jirí; Kaufnerová, Veronika; Sejnohová, Lenka

    2010-05-01

    The algal flora of subaerial habitats in the tropics remains largely unexplored, despite the fact that it potentially encompasses a wealth of new evolutionary diversity. Here we present a detailed morphological and molecular characterization of an autosporic coccoid green alga isolated from decaying wood in a natural forest in Singapore. Depending on culture conditions, this alga formed globular to irregularly oval solitary cells. Autosporulation was the only mode of reproduction observed. The cell periphery was filled with numerous vacuoles, and a single parietal chloroplast contained a conspicuous pyrenoid surrounded by a bipartite starch envelope. The cell wall was composed of a thick inner layer and a thin trilaminar outer layer, and the cell surface was ornamented with a few delicate ribs. Phylogenetic analyses of 18S rRNA gene sequences placed our strain in the family Scenedesmaceae (Sphaeropleales, Chlorophyceae) as a strongly supported sister branch of the genus Desmodesmus. Analyses of an alternative phylogenetic marker widely used for the Scenedesmaceae, the ITS2 region, confirmed that the strain is distinct from any scenedesmacean alga sequenced to date, but is related to the genus Desmodesmus, despite lacking the defining phenotypic features of Desmodesmus (cell wall with four sporopolleninic layers ornamented with peculiar submicroscopic structures). Collectively, our results establish that we identified a novel, previously undocumented, evolutionary lineage of scenedesmacean algae necessitating its description as a new species in a new genus. We propose it be named Hylodesmus singaporensis gen. et sp. nov. A cryopreserved holotype specimen has been deposited into the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP C-H8001.

  13. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-12-24

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel.

  14. New α-glucosidase inhibitors from marine algae-derived Streptomyces sp. OUCMDZ-3434

    PubMed Central

    Chen, Zhengbo; Hao, Jiejie; Wang, Liping; Wang, Yi; Kong, Fandong; Zhu, Weiming

    2016-01-01

    Wailupemycins H (1) and I (2) with a new skeleton coupled two 6-(2-phenylnaphthalene-1-yl)pyrane-2-one nuclei to a –CH2– linkage were identified from the culture of Streptomyces sp. OUCMDZ-3434 associated with the marine algae, Enteromorpha prolifera. Compounds 1 and 2 are two new α-glucosidase inhibitors with the Ki/IC50 values of 16.8/19.7 and 6.0/8.3 μM, respectively. In addition, the absolute configurations of wailupemycins D (3) and E (4) are also resolved in this paper for the first time. PMID:26822662

  15. Cellular Fe-hydroxides and heavy metal sorption in Euglena sp. (algae): implications for biomineralization

    SciTech Connect

    Mann, H.; Beveridge, T.O. Fyfe, W.S.; Tazaki, K.

    1985-01-01

    STEM imagery and electron diffraction patterns of Euglena sp. reveal pronounced intra and cellular-membrane aggregates of Fe-hydroxides (some lepidocrocite), in natural communities from tailings waters, Elliott Lake, Ontario. Pure isolates of Euglena sp. contain 40-70% Fe by dry weight and in addition average Al 28,000 ppm, Sr 150, Ba 40, Zn 150, Mn 250, Ni 120, Pb 1600, Th 70, Cu 200 and U 180. In tailings waters, Fe solute concentrations average 560 ppm and U 50 ppb. Concentration factors for Fe, Ba, Zn, Mn, Ti, V, Ni, Pb, Cr, Ag, Co and Cu in algae referenced to average world river waters are greater than or equal to 10/sup 6/. These results endorse the premise that microorganisms mediate transfer of many solutes between the hydrosphere and sedimentary regime.

  16. Structural characteristics and biological activity of Fucoidans from the brown algae Alaria sp. and Saccharina japonica of different reproductive status.

    PubMed

    Vishchuk, Olesya S; Tarbeeva, Dariya V; Ermakova, Svetlana P; Zvyagintseva, Tatyana N

    2012-04-01

    Structural characteristics and the antitumor activity of fucoidans isolated from vegetative and reproductive tissue of the brown algae Alaria sp. and Saccharina japonica were studied. The reproductive status of the brown algae affected the yield of fucoidans and their structural characteristics. The fucoidan yield was 5.7% (w/w on the basis of the dried algae weight) for fertile and 3.8% for sterile Alaria sp. and 1.42 and 0.71% for fertile and sterile S. japonica, respectively. The fucoidans from fertile Alaria sp. and S. japonica had a slightly higher degree of sulfation and a somewhat more homogeneous monosaccharide composition, with predominate amounts of fucose and galactose, than those isolated from sterile algae tissue. The fucoidans from both the sterile and fertile brown algae tissue tested possessed selective cytotoxicity towards human breast cancer (T-47D) and melanoma (RPMI-7951) cell lines, but not to normal mouse epidermal cells (JB6 Cl41), and effectively inhibited the proliferation and colony formation of the breast cancer and melanoma cell lines. The fucoidans from reproductive tissue of brown algae possessed higher antitumor activity than those from vegetative plants.

  17. Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp.

    PubMed

    Cáceres, Tanya; Megharaj, Mallavarapu; Naidu, Ravi

    2008-07-15

    The acute toxicity of an organophosphorous pesticide, fenamiphos and its metabolites, fenamiphos sulfoxide (FSO), fenamiphos sulfone (FSO(2)), fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO(2)P), to the aquatic alga Pseudokirchneriella subcapitata and the terrestrial alga Chlorococcum sp. was studied. The toxicity followed the order: fenamiphos phenol>fenamiphos sulfone phenol>fenamiphos sulfoxide phenol>fenamiphos. The oxidation products of fenamiphos, FSO and FSO(2) were not toxic to the algal species up to 100 mg L(-1). Both algae were able to transform fenamiphos, FSO and FSO(2), while the phenols were found to be stable in the incubation media. Bioaccumulation of both fenamiphos and its metabolites was observed in the case of Chlorococcum sp. while only metabolites were accumulated in P. subcapitata. This study demonstrates that (i) the hydrolysis products of fenamiphos, FSOP and FSO(2)P are more toxic to both fresh water and soil algae than their parent chemicals, (ii) further fenamiphos can be transformed and bioconcentrated by these algae. Therefore, contamination of natural environments such as waterbodies with fenamiphos or its metabolites can have adverse impacts on the food chain and associated biota (especially to the primary consumers such as Daphnia) since algae are the primary producers located at the base of the food chain. Further, the finding that the fenamiphos phenols are more toxic to algae highlights the need to consider the transformation products in ecological risk assessment of fenamiphos.

  18. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae

    PubMed Central

    Ji, Shi-Qi; Wang, Bing; Lu, Ming

    2015-01-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2T. Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing d-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD+, and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. PMID:26590273

  19. Accumulation of heavy metals (Cu, Cr, Pb and Cd) in freshwater micro algae (Chlorella sp.).

    PubMed

    Kumar, Rajesh M; Frankilin, J; Raj, Samuel Paul

    2013-07-01

    Some selected micro algae were used for the removal of heavy metals from wastewater. In this present investigation, Chlorella sp was studied for accumulation of heavy metals, namely copper, chromium, lead and cadmium. The salts containing heavy metals were dissolved in Blue Green 11 medium at different concentrations in a glass jar of 10 litre capacity each and subsequently they were bubbled with air for 12 days at a temperature of 33 degrees C and light intensity of 2200 lux. The removal rates of heavy metals were recorded for every 4 days during the experimental period. Chlorella sp. removed 37%, 43% and 67% of copper after 4, 8, 12 days respectively. The percentage removal of chromium was 34%, 43% and 50% respectively at 4, 8, and 12 days. Lead removal rates of Chlorella sp were 56% after 4 days, 69% after 8 days and 77% after 12 days. The reduction of cadmium in the culture medium after 12 days was 93%. From the present investigation, it is concluded that heavy metal removal ability of Chlorella sp. can be exploited for metal detoxification and environmental clean up.

  20. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  1. Sphacelaria lacustris sp. nov. , a freshwater brown alga from Lake Michigan

    SciTech Connect

    Schloesser, R.E.; Blum, J.L.

    1980-06-01

    The growth, reproduction and ultrasturcture of a new freshwater phaeophyte, Sphacelaria lacustris sp. nov., are described. The plant occurs as a minute calcified thallus at 5 to 15 m depth along the western shoreline of Lake Michigan. Both freshly collected and laboratory grown plants show apical growth of erect and basal filaments, intermittent longitudinal divisions in filament segments, vegetative reproduction by propagules, numerous parietal chloroplasts and an absence of pyrenoids, characteristics of Sphacelaria. This material is separated from the only other freshwater species in the genus (S. fluviatilis Jao) at least by differences in longitudinal septation, in branching, in its propagules and in general aspect. Between this plant and marine brown algae there are essential similarities of ultrastructure of cell wall and pores, chloroplasts, mitochondria, nucleus and the production/excretion of physodes.

  2. Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae.

    PubMed

    Ivanova, Elena P; Alexeeva, Yulia V; Flavier, Sébastien; Wright, Jonathan P; Zhukova, Natalia V; Gorshkova, Natalia M; Mikhailov, Valery V; Nicolau, Dan V; Christen, Richard

    2004-05-01

    Four light-yellow-pigmented, Gram-negative, short-rod-shaped, non-motile isolates were obtained from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The isolates studied were chemo-organotrophic, alkalitolerant and mesophilic. Polar lipids were analysed and phosphatidylethanolamine was the only phospholipid identified. The predominant cellular fatty acids were 15 : 0, i15 : 0, ai15 : 0, i15 : 1 and 15 : 1(n-6). The DNA G+C contents of the four strains were 34.0-34.4 mol%. The level of DNA relatedness of the four isolates was conspecific (88-98 %), indicating that they belong to the same species. The 16S rDNA sequence of strain KMM 3553(T) was determined. Phylogenetic analysis revealed that KMM 3553(T) formed a distinct phyletic line in the phylum Bacteroidetes, class Flavobacteria in the family Flavobacteriaceae and that, phylogenetically, this strain could be placed almost equidistant from the genera Gelidibacter and Psychroserpens (16S rRNA gene sequence similarities of 94 %). On the basis of significant differences in phenotypic and chemotaxonomic characteristics, it is suggested that the isolates represent a novel species in a new genus; the name Formosa algae gen. nov., sp. nov. is proposed. The type strain is KMM 3553(T) (=CIP 107684(T)).

  3. Photosynthetic unit size, carotenoids, and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga.

    PubMed

    Withers, N W; Alberte, R S; Lewin, R A; Thornber, J P; Britton, G; Goodwin, T W

    1978-05-01

    Six samples of the prokaryotic, unicellular algae Prochloron sp., which occur in association with didemnid ascidians, were collected from various localities in the tropical Pacific Ocean, and their pigments and chlorophyll-protein complexes were identified and characterized. No phycobilin pigments were detected in any of the species. Chlorophylls a and b were present in ratios of a/b = 4.4-6.9. The major carotenoids were beta-carotene (70%) and zeaxanthin (20%). Minor carotenoids of one isolate were identified as echinenone, cryptoxanthin, isocryptoxanthin, mutachrome, and trihydroxy-beta-carotene; no epsilon-ring carotenoids were found in any sample. Except for the absence of glycosidic carotenoids, the overall pigment composition is typical of cyanobacteria. A chlorophyll a/b-protein complex was present in Prochloron; it was electrophoretically and spectrally indistinguishable from the light-harvesting chlorophyll a/b-protein of higher plants and green algae. It accounted for 26% (compared to approximately 50% in green plants) of the total chlorophyll; 17% was associated with a P700-chlorophyll a-protein. The photosynthetic unit size of 240 +/- 10 chlorophylls per P700 in Prochloron was about half that of eukaryotic green plants. A model is proposed for the in vivo organization of chlorophyll in Prochloron.

  4. Formosa undariae sp. nov., isolated from a reservoir containing the brown algae Undaria pinnatifida.

    PubMed

    Park, Sooyeon; Lee, Jung-Sook; Lee, Keun-Chul; Yoon, Jung-Hoon

    2013-11-01

    A strain of Gram-staining-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacteria, designated WS-MY3(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY3(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0-3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY3(T) fell within the cluster comprising the type strains of species of the genus Formosa, clustering coherently with the type strains of Formosa agariphila and Formosa algae. It exhibited 16S rRNA gene sequence similarity values of 98.7, 97.9 and 96.8 % to the type strains of F. agariphila, F. algae and Formosa spongicola, respectively. Strain WS-MY3(T) contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C16 : 0 3-OH, iso-C15 : 1 G and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The major polar lipids of strain WS-MY3(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY3(T) was 37.3 mol% and its DNA-DNA relatedness values with F. agariphila KCTC 12365(T) and F. algae KCTC 12364(T) were 23 % and 17 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY3(T) is separate from the three recognized species of the genus Formosa. On the basis of the data presented, strain WS-MY3(T) is considered to represent a novel species of the genus Formosa, for which the name Formosa undariae sp. nov. is proposed. The type strain is WS-MY3(T) ( = KCTC 32328(T) = CECT 8286(T)).

  5. Lacinutrix gracilariae sp. nov., a bacterium isolated from the surface of a marine red alga Gracilaria sp.

    PubMed

    Huang, Zhaobin; Li, Guizhen; Lai, Qiliang; Gu, Li; Shao, Zongze

    2015-11-09

    A Gram-negative, aerobic, non-flagellated, rod-shaped bacterium, designated as strain Lxc1T, was isolated from the surface of a marine red alga, Gracilaria sp., which was collected from the coastal regions in Jinjiang, Fujian Province, China. The colony of the strain was orange-yellow, circular and smooth. The 16S rRNA gene of Lxc1T had maximum sequence similarity with Lacinutrix himadriensis E4-9aT (97.1%), followed by L. jangbogonensis PAMC 27137T, L. copepodicola DJ3T, L. algicola AKS293T, and L. mariniflava AKS 432T (similarities <96.4%). Phylogenetic analysis showed strain Lxc1T formed a tight cluster with L. himadriensis E4-9aT and L. copepodicola DJ3T, but represented a novel lineage belonging to the genus Lacinutrix. The predominant fatty acids were iso-C15:1 G (18.3%), iso-C15:0 (16.7%), iso-C17:0-3OH (10.6%), and iso-C15:0-3OH (8.6%). Menaquinone-6 (MK-6) was the only respiratory quinone present. The DNA G+C content of Lxc1T was 31.7 mol%. Combining the results above, it was ascertained that the strain Lxc1T represented a novel species of the genus Lacinutrix, for which the name Lacinutrix gracilariae sp. nov. is proposed. The type strain is Lxc1T (=MCCC 1A01567T=KCTC 42808T).

  6. Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium Microcystis aeruginosa.

    PubMed

    Zhang, Xue; Hu, Hong-Ying; Men, Yu-Jie; Yang, Jia; Christoffersen, Kirsten

    2009-07-01

    Microcystis aeruginosa has quickly risen in infamy as one of the most universal and toxic bloom-forming cyanobacteria. Here we presented a species of golden alga (Poterioochromonas sp. strain ZX1), which can feed on toxic M. aeruginosa without any adverse effects from the cyanotoxins. Using flow cytometry, the ingestion and maximal digestion rates were estimated to be 0.2 approximately 1.2 and 0.2 M. aeruginosa cells (ZX1 cell)(-1)h(-1), respectively. M. aeruginosa in densities below 10(7)cells mL(-1) could be grazed down by ZX1, but no significant decrease was observed when the initial density was 3.2 x 10(7)cells mL(-1). ZX1 grazing was a little influenced by the light intensity (0.5 approximately 2500l x) and initial pH of the medium (pH=5.0 approximately 9.5). ZX1 could not survive in continuous darkness for longer than 10 days. The pH value was adjusted to 8 by ZX1 while to 10 by M. aeruginosa. This study may shed light on understanding the ecological interactions between M. aeruginosa and mixotrophic Poterioochromonas sp. in aquatic ecosystems.

  7. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C.

    PubMed

    Kim, Eun Jae; Jung, Woongsic; Lim, Suyoun; Kim, Sanghee; Han, Se Jong; Choi, Han-Gu

    2016-01-01

    Biodiesel produced from microalgae is a promising source of alternative energy. In winter, however, outdoor mass cultivation for biodiesel production is hampered by poor growth. Here, we report that Arctic Chlamydomonas sp. KNM0029C exhibits optimal growth at 4 °C and reaches densities up to 1.4 × 10(7) cells mL(-1). Lipid body formation in the alga was visualized through BODIPY 505/515 staining and fluorescence microscopy. The fatty acid methyl ester (FAME) production level of KNM0029C was 178.6 mg L(-1) culture and 2.3-fold higher than that of C. reinhardtii CC-125 at 4 °C. Analysis of the FAME content showed a predominance of polyunsaturated fatty acids such as C16:3, C18:2, C18:3, and C20:2. C18:3 fatty acids comprised the largest fraction (20.7%), and the content of polyunsaturated fatty acids (39.6%) was higher than that of saturated fatty acids (6.8%) at 4 °C. These results indicate that Chlamydomonas sp. KNM0029C, as a psychrophilic microalga, might represent a favorable source for biodiesel production in cold environments.

  8. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2013-09-01

    The effect of UV radiation on the accumulation of novel mycosporine-like amino acids (MAAs) along with their photoprotective function was investigated in the green alga Tetraspora sp. CU2551. No UV-absorbing compound was detected in this organism growing under normal light condition while two MAAs with absorption maxima at 324 nm and 322 nm were found to be accumulated after UV irradiation. The effects of UV exposure time with different cut-off filter foils namely 295 (PAR + UV-A + UV-B), 320 (PAR + UV-A) and 395 nm (PAR only) were studied on induction of the synthesis of these MAAs. Concentration of MAAs was found to increase with increase in exposure time under UV radiation. Furthermore, the antioxidant and photoprotective action of these MAAs was also investigated. The role of MAAs in diminishing the UV-induced production of ROS in vivo was also demonstrated using the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and results obtained supported the results of DPPH free radical scavenging assay. The MAAs also exhibited efficient photoprotective ability on Escherichia coli cells against UV-B stress. Thus, the MAAs in Tetraspora sp. CU2551 may act as efficient antioxidants as well as UV-sunscreen. This is the first report for the UV-induced synthesis and co-accumulation of these MAAs and their photoprotective actions in Tetraspora sp. which is a member of the class Chlorophyceae. Moreover, UV-induced accumulation as well as photoprotective function of these compounds may facilitate this chlorophyte to perform important ecological functions in harsh environmental conditions with high UV-B fluxes in their brightly lit habitats.

  9. Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis.

    PubMed

    Taleb, A; Pruvost, J; Legrand, J; Marec, H; Le-Gouic, B; Mirabella, B; Legeret, B; Bouvet, S; Peltier, G; Li-Beisson, Y; Taha, S; Takache, H

    2015-02-01

    Nannochloropsis has emerged as a promising alga for biodiesel production. However, the genus consists of 6 species and hundreds of strains making strain selection a challenge. Furthermore, oil productivity is instrumental to economic viability of any algal strain for industrial production, which is dependent on growth rate and oil content. In most cases, these two parameters have been studied independently. Thus, the goal of this study is to provide a combined method for evaluating strain performance in specially designed photobioreactors together with an in-depth lipidomic analyses. The nine strains of Nannochloropsis tested showed considerable variations in productivity and lipidomics highlighting the importance of strain selection. Finally, Nannochloropsis gaditana CCMP527 and Nannochloropsis salina CCMP537 emerged as the two most promising strains, with an oil content of 37 and 27 dry wt% after 11-day nitrogen starvation, respectively, resulting in TAG productivity of 13×10(-3) and 18×10(-3) kg m(-3) d(-1), respectively.

  10. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes

    PubMed Central

    2014-01-01

    Background Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. Results The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Conclusions Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina. PMID:24646409

  11. Structure and Biological Evaluation of Novel Cytotoxic Sterol Glycosides from the Marine Red Alga Peyssonnelia sp.

    PubMed Central

    Lin, An-Shen; Engel, Sebastian; Smith, Benjamin A.; Fairchild, Craig R.; Aalbersberg, William; Hay, Mark E.; Kubanek, Julia

    2010-01-01

    Bioactivity-guided fractionation of the extract from a Fijian red alga Peyssonnelia sp. led to the isolation of two novel sterol glycosides 19-O-β-d-glucopyranosyl-19-hydroxy-cholest-4-en-3-one (1) and 19-O-β-d-N-acetyl-2-aminoglucopyranosyl-19-hydroxy-cholest-4-en-3-one (2), and two known alkaloids indole-3-carboxaldehyde (3) and 3-(hydroxyacetyl)indole (4). Their structures were characterized by 1D and 2D NMR and mass spectral analysis. The sterol glycosides inhibited cancer cell growth with mean IC50 values (for 11 human cancer cell lines) of 1.63 and 1.41 µM for 1 and 2, respectively. The most sensitive cancer cell lines were MDA-MB-468 (breast) and A549 (lung), with IC50s in of 0.71–0.97 µM for 1 and 2. Modification of the sterol glycoside structures revealed that the α,β-unsaturated ketone at C-3 and oxygenation at C-19 of 1 and 2 are crucial for anticancer activity, whereas the glucosidic group was not essential but contributed to enhanced activity against the most sensitive cell lines. PMID:21036050

  12. Prosthecobacter algae sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Lee, Jangho; Park, Banghyo; Woo, Sung-Geun; Lee, Juyoun; Park, Joonhong

    2014-02-01

    A Gram-stain-negative, fusiform-shaped, facultatively anaerobic bacterial strain, designated EBTL04(T), was isolated from activated sludge using algal metabolites and taxonomically characterized through polyphasic investigation. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain EBTL04(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is closely related to Prosthecobacter dejongeii DSM 12251(T) (98.6 % sequence similarity), Prosthecobacter fusiformis ATCC 25309(T) (97.9 %), Prosthecobacter debontii DSM 14044(T) (97.5%), Prosthecobacter vanneervenii DSM 12252(T) (94.7%) and Prosthecobacter fluviatilis KCTC 22182(T) (93.7%). The G+C content of the genomic DNA of strain EBTL04(T) was 62.7 mol%. The menaquinone MK-6 was detected as the predominant quinone. Strain EBTL04(T) contained phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine as major polar lipids. A fatty acid profile with C(16 : 1)ω5c, iso-C(14 : 0), C(16 : 0), anteiso-C(15 : 0) and C(14 : 0) as the major components supported the classification of strain EBTL04(T) in the genus Prosthecobacter. Based on several phenotypic, genotypic and chemotaxonomic features, strain EBTL04(T) was clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL04(T) should be considered to represent a novel species of the genus Prosthecobacter, for which the name Prosthecobacter algae sp. nov. is proposed. The type strain is EBTL04(T) ( = KCTC 23681(T) = JCM 18053(T)).

  13. First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures

    PubMed Central

    Zhang, Bangzhou; Yang, Luxi; Zhang, Huajun; Zhang, Jingyan; Li, Yi; Zheng, Wei; Tian, Yun; Liu, Jingwen; Zheng, Tianling

    2014-01-01

    Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4–5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant. PMID:24599263

  14. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  15. The Green Tetrahymena utriculariae n. sp. (Ciliophora, Oligohymenophorea) with Its Endosymbiotic Algae (Micractinium sp.), Living in Traps of a Carnivorous Aquatic Plant.

    PubMed

    Pitsch, Gianna; Adamec, Lubomír; Dirren, Sebastian; Nitsche, Frank; Šimek, Karel; Sirová, Dagmara; Posch, Thomas

    2016-09-10

    The genus Tetrahymena (Ciliophora, Oligohymenophorea) probably represents the best studied ciliate genus. At present, more than forty species have been described. All are colorless, i.e. they do not harbor symbiotic algae, and as aerobes they need at least microaerobic habitats. Here, we present the morphological and molecular description of the first green representative, Tetrahymena utriculariae n. sp., living in symbiosis with endosymbiotic algae identified as Micractinium sp. (Chlorophyta). The full life cycle of the ciliate species is documented, including trophonts and theronts, conjugating cells, resting cysts and dividers. This species has been discovered in an exotic habitat, namely in traps of the carnivorous aquatic plant Utricularia reflexa (originating from Okavango Delta, Botswana). Green ciliates live as commensals of the plant in this anoxic habitat. Ciliates are bacterivorous, however, symbiosis with algae is needed to satisfy cell metabolism but also to gain oxygen from symbionts. When ciliates are cultivated outside their natural habitat under aerobic conditions and fed with saturating bacterial food, they gradually become aposymbiotic. Based on phylogenetic analyses of 18S rRNA and mitochondrial cox1 genes T. utriculariae forms a sister group to Tetrahymena thermophila.

  16. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.

    PubMed

    Kim, Ji-Young; Yoo, Han-Su; Lee, Dong-Heon; Park, So-Hyun; Kim, Young-Ju; Oh, Duck-Chul

    2016-06-01

    A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T).

  17. Algibacter wandonensis sp. nov., isolated from sediment around a brown algae (Undaria pinnatifida) reservoir.

    PubMed

    Yoon, Jung-Hoon; Park, Sooyeon

    2013-12-01

    A Gram-stain-negative, non-flagellated, rod-shaped bacterial strain able to move by gliding, designated WS-MY22(T), was isolated from sediment around a brown algae reservoir located on Wando in South Korea. It grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY22(T) clustered coherently with the type strains of Algibacter lectus and Algibacter undariae. It exhibited sequence similarity of 99.4 and 98.9 % to the type strains of A. lectus and A. undariae, respectively, and of 95.1-96.6 % to those of the other species of the genus Algibacter. Strain WS-MY22(T) contained MK-6 as the predominant menaquinone and iso-C15 : 1 G and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids of strain WS-MY22(T) were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain WS-MY22(T) was 35.8 mol% and its DNA-DNA relatedness with A. lectus KCTC 12103(T) and A. undariae WS-MY9(T) was 31 and 19 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY22(T) is separate from other species of the genus Algibacter. On the basis of the data presented, strain WS-MY22(T) is considered to represent a novel species of the genus Algibacter, for which the name Algibacter wandonensis sp. nov. is proposed. The type strain is WS-MY22(T) ( = KCTC 32381(T) = CECT 8301(T)).

  18. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava.

    PubMed

    Kim, Ji-Young; Park, So-Hyun; Seo, Ga-Young; Kim, Young-Ju; Oh, Duck-Chul

    2015-09-01

    A novel bacterial strain, designated EC29(T), was isolated from the brown alga Ecklonia cava collected on Jeju Island, Republic of Korea. Cells of strain EC29(T) were Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Growth was observed at 10-30 °C (optimum, 20-25 °C), at pH 6.0-9.5 (optimum, pH 7.5) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the genus Winogradskyella. Strain EC29(T) exhibited the highest 16S rRNA gene sequence similarities, of 96.5-97.8%, to the type strains of Winogradskyella pulchriflava EM106(T), Winogradskyella echinorum KMM 6211(T) and Winogradskyella ulvae KMM 6390(T). Strain EC29(T) exhibited < 27% DNA-DNA relatedness with Winogradskyella pulchriflava EM106(T) and Winogradskyella echinorum KMM 6211(T). The predominant fatty acids of strain EC29(T) were iso-C15 : 0, iso-C15 : 1 G, C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 31.1 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Based on a polyphasic study, strain EC29(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella eckloniae sp. nov. is proposed. The type strain is EC29(T) ( = KCTC 32172(T) = JCM 18703(T)).

  19. Sulfitobacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis.

    PubMed

    Fukui, Youhei; Abe, Mahiko; Kobayashi, Masahiro; Shimada, Yushi; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2014-02-01

    Gram-stain-negative, aerobic, halophilic bacteria, designated SCM-1(T), LCM10-1 and CTBL-B-147, were isolated from modified half-strength SWM-III medium, PES medium and thalli after laboratory cultivation of a red alga, Porphyra yezoensis. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were affiliated to the genus Sulfitobacter of the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the new isolates with the closest related species, Sulfitobacter mediterraneus CH-B427(T), was 98.8%. The DNA G+C contents of the new isolates were in the range of 61.4-62.3 mol%. DNA-DNA relatedness values of strain SCM-1(T) with other type strains of the genus Sulfitobacter were less than 15.9%. The new isolates contained Q-10 as the predominant ubiquinone, phosphatidylcholine, phosphatidylglycerol, an unidentified amino lipid and an unidentified lipid as the main polar lipids, and C(18 : 1)ω7c, C(19 : 1)ω7c and C(16 : 0) as the major fatty acids (>10% of the total). Strain SCM-1(T) could be differentiated from Sulfitobacter mediterraneus JCM 21792(T) by 35 morphological and phenotypic characteristics. On the basis of the phylogenetic, genetic and phenotypic properties of the new isolates, the name Sulfitobacter porphyrae sp. nov. is proposed, with strain SCM-1(T) ( = LMG 27110(T) = NBRC 109054(T)) as the type strain.

  20. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava.

    PubMed

    Park, So-Hyun; Kim, Ji-Young; Kim, Young-Ju; Heo, Moon-Soo

    2015-11-01

    A bacterial strain, designated EC11(T) was isolated from brown alga Ecklonia cava collected from Jeju Island, Korea. EC11(T) was identified as a Gram-negative, rod-shaped and yellow-pigmented bacterial strain. The strain EC11(T) grew over a temperature range of 10 °C to 30 °C (optimally at 25 °C), and a pH range of 6.0-10.5 (optimally at pH 7.5). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EC11(T) belongs to the genus Flavobacterium. Strain EC11(T) shared close similarity with Flavobacterium jumunjinense HME7102(T) (96.4%), Flavobacterium dongtanense LW30(T) (95.8%), Flavobacterium haoranii LQY-7(T) (95.3%), and Flavobacterium urocaniciphilum (95.1%). The major fatty acids (> 5%) were iso-C17:0 3-OH (22.4%), iso-C15:0 3-OH (19.0%), C15:0 (12.4%), summed feature 3 (comprising C16:1 ω7c/ C16:1 ω6c; 9.78%), iso-C15:1 G (9.6%), and iso-C16:0 3-OH (9.0%). The DNA G+C content was 28.1 mol% and the strain contained MK-6 as the predominant menaquinone. The major polar lipids were phosphatidylethanolamine, two unknown aminolipids and three unknown polar lipids. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain EC11T represents a novel species of the Flavobacterium genus, for which the name Flavobacterium jejuensis sp. nov. is proposed. The type strain of F. jejuensis is EC11(T) (=KCTC 42149(T) = JCM 30735(T)).

  1. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  2. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts.

    PubMed

    Margulis, L; Hinkle, G; McKhann, H; Moynihan, B

    1988-09-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  3. Tetraflagellochloris mauritanica gen. et sp. nov. (Chlorophyceae), a New Flagellated Alga from the Mauritanian Desert: Morphology, Ultrastructure, and Phylogenetic Framing.

    PubMed

    Barsanti, Laura; Frassanito, Anna Maria; Passarelli, Vincenzo; Evangelista, Valtere; Etebari, Maryam; Paccagnini, Eugenio; Lupetti, Pietro; Lenzi, Paola; Verni, Franco; Gualtieri, Paolo

    2013-02-01

    Morphological, ultrastructural, and molecular-sequence data were used to assess the phylogenetic position of a tetraflagellate green alga isolated from soil samples of a saline dry basin near F'derick, Mauritania. This alga can grow as individual cells or form non-coenobial colonies of up to 12 individuals. It has a parietal chloroplast with an embedded pyrenoid covered by a starch sheath and traversed by single parallel thylakoids, and an eyespot located in a parietal position opposite to the flagellar insertion. Lipid vacuoles are present in the cytoplasm. Microspectroscopy indicated the presence of chlorophylls a and b, with lutein as the major carotenoid in the chloroplast, while the eyespot spectrum has a shape typical of green-algal eyespots. The cell has four flagella, two of them long and two considerably shorter. Sequence data from the 18S rRNA gene and ITS2 were obtained and compared with published sequences for green algae. Results from morphological and ultrastructural examinations and sequence analysis support the placement of this alga in the Chlorophyceae, as Tetraflagellochloris mauritanica L. Barsanti et A. Barsanti, gen. et sp. nov.

  4. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs.

    PubMed

    Hirooka, Shunsuke; Miyagishima, Shin-Ya

    2016-01-01

    Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is currently limited because of contamination by undesirable organisms. To overcome this issue, one strategy is to combine acidophilic algae and acidic drainage in which other organisms are unable to thrive. Here, we tested waters from sulfuric acidic hot springs (Tamagawa, pH 1.15 and Tsukahara, pH 1.14) in Japan for the cultivation of the red alga Galdieria sulphuraria 074G and the green alga Pseudochlorella sp. YKT1. Both of these spring waters are rich in phosphate (0.043 and 0.145 mM, respectively) compared to other environmental freshwater sources. Neither alga grew in the spring water but they grew very well when the waters were supplemented with an inorganic nitrogen source. The algal yields were ∼2.73 g dry weight/L for G. sulphuraria and ∼2.49 g dry weight/L for P. sp. YKT1, which were comparable to those in an autotrophic synthetic medium. P. sp. YKT1 grew in the spring waters supplemented either of NH4(+), NO3(-) or urea, while G. sulphuraria grew only when NH4(+) was supplemented. For P. sp. YKT1, the spring water was adjusted to pH 2.0, while for G. sulphuraria, no pH adjustment was required. In both cases, no additional pH-buffering compound was required. The phycocyanin of the thermophilic G. sulphuraria is known to be more thermostable than that from the Spirulina platensis currently used in phycocyanin production for commercial use. The phycocyanin content in G. sulphuraria in the Tsukahara water supplemented with NH4(+) was 107.42 ± 1.81 μg/mg dry weight, which is comparable to the level in S. platensis (148.3 μg/mg dry weight). P. sp. YKT1 cells in the

  5. Cultivation of Acidophilic Algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in Media Derived from Acidic Hot Springs

    PubMed Central

    Hirooka, Shunsuke; Miyagishima, Shin-ya

    2016-01-01

    Microalgae possess a high potential for producing pigments, antioxidants, and lipophilic compounds for industrial applications. However, the cultivation of microalgae comes at a high cost. To reduce the cost, changes from a closed bioreactor to open pond system and from a synthetic medium to environmental or wastewater-based medium are being sought. However, the use of open pond systems is currently limited because of contamination by undesirable organisms. To overcome this issue, one strategy is to combine acidophilic algae and acidic drainage in which other organisms are unable to thrive. Here, we tested waters from sulfuric acidic hot springs (Tamagawa, pH 1.15 and Tsukahara, pH 1.14) in Japan for the cultivation of the red alga Galdieria sulphuraria 074G and the green alga Pseudochlorella sp. YKT1. Both of these spring waters are rich in phosphate (0.043 and 0.145 mM, respectively) compared to other environmental freshwater sources. Neither alga grew in the spring water but they grew very well when the waters were supplemented with an inorganic nitrogen source. The algal yields were ∼2.73 g dry weight/L for G. sulphuraria and ∼2.49 g dry weight/L for P. sp. YKT1, which were comparable to those in an autotrophic synthetic medium. P. sp. YKT1 grew in the spring waters supplemented either of NH4+, NO3- or urea, while G. sulphuraria grew only when NH4+ was supplemented. For P. sp. YKT1, the spring water was adjusted to pH 2.0, while for G. sulphuraria, no pH adjustment was required. In both cases, no additional pH-buffering compound was required. The phycocyanin of the thermophilic G. sulphuraria is known to be more thermostable than that from the Spirulina platensis currently used in phycocyanin production for commercial use. The phycocyanin content in G. sulphuraria in the Tsukahara water supplemented with NH4+ was 107.42 ± 1.81 μg/mg dry weight, which is comparable to the level in S. platensis (148.3 μg/mg dry weight). P. sp. YKT1 cells in the Tamagawa

  6. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion.

    PubMed

    Chen, Lin; Liu, Tianzhong; Zhang, Wei; Chen, Xiaolin; Wang, Junfeng

    2012-05-01

    The effect of storage temperature and time on lipid composition of Scenedesmus sp. was studied. When stored at 4°C or higher, the free fatty acid content in the wet biomass increased from a trace to 62.0% by day 4. Using two-step catalytic conversion, algae oil with a high free fatty acid content was converted to biodiesel by pre-esterification and transesterification. The conversion rate of triacylglycerols reached 100% under the methanol to oil molar ratio of 12:1 during catalysis with 2% potassium hydroxide at 65°C for 30 min. This process was scaled up to produce biodiesel from Scenedesmus sp. and Nannochloropsis sp. oil. The crude biodiesel was purified using bleaching earth. Except for moisture content, the biodiesel conformed to Chinese National Standards.

  7. Biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. in fixed-bed column.

    PubMed

    Esmaeili, Akbar; Soufi, Samira; Rustaiyan, Abdolhossein; Safaiyan, Shila; Mirian, Simin; Fallahe, Gila; Moazami, Nasrin

    2007-11-01

    The biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. were investigated in a fixed-bed column (temperature = 30 degrees C; different pH). Langmuir and Freundlich sorption models were used to represent the equilibrium data. The maximum Cu2+ uptake was obtained at pH 4 and the optimum Co2+ and Ni2+ uptake were at pH 7. Different dosage of biosorbent did not have an effect on the results, but the 3.5 and 5 g of biosorbent were shown higher uptake. The metal removal rates were rapid, with about 80% of the total adsorption tacking place within 40 min.

  8. Winogradskyella undariae sp. nov., a member of the family Flavobacteriaceae isolated from a brown algae reservoir.

    PubMed

    Park, Sooyeon; Yoon, Jung-Hoon

    2013-11-01

    A novel bacterial strain, designated WS-MY5(T), capable of degrading a variety of polysaccharides was isolated from a brown algae (Undaria pinnatifida) reservoir at Wando in the South Sea, South Korea. Strain WS-MY5(T) was found to grow optimally at 30 °C, at pH 7.0-7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WS-MY5(T) falls within the clade comprising Winogradskyella species, clustering with the type strains of Winogradskyella pacifica, Winogradskyella arenosi, Winogradskyella rapida and Winogradskyella thalassocola, with which it exhibited 16S rRNA gene sequence similarity values of 97.3-98.8 %. It exhibited sequence similarity values of 93.0-96.2 % to the type strains of the other recognized Winogradskyella species. Strain WS-MY5(T) was found to contain MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH and iso-C15:1 G as the major fatty acids. The major polar lipids of strain WS-MY5(T) were identified as phosphatidylethanolamine, two unidentified lipids and two unidentified aminolipids. The DNA G+C content of strain WS-MY5(T) was determined to be 33.2 mol% and its DNA-DNA relatedness values with the type strains of W. pacifica, W. arenosi, W. rapida and W. thalassocola were in the range 16-28 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, enabled strain WS-MY5(T) to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain WS-MY5(T) is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella undariae sp. nov. is proposed. The type strain is WS-MY5(T) (=KCTC 32261(T)=CCUG 63832(T)).

  9. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi.

    PubMed

    Lee, Seung Hyeon; Park, Moon Su; Jung, Ji Young; Jeon, Che Ok

    2012-05-01

    A Gram-staining-positive, non-motile and non-spore-forming lactic acid bacterium, designated strain M2(T), was isolated from fermented brown algae (Undaria pinnatifida) kimchi in South Korea. Cells of the isolate were facultatively anaerobic ovoids and showed catalase- and oxidase-negative reactions. Growth of strain M2(T) was observed at 4-35 °C and at pH 5.0-9.0. The G+C content of the genomic DNA was 42.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M2(T) belonged to the genus Leuconostoc and was most closely related to Leuconostoc inhae IH003(T), Leuconostoc kimchii IH25(T), Leuconostoc gasicomitatum LMG 18811(T), Leuconostoc gelidum DSM 5578(T), Leuconostoc palmae TMW2.694(T) and Leuconostoc holzapfelii BFE 7000(T) with 98.9 %, 98.8 %, 98.8 %, 98.7 %, 98.5 % and 98.2 % sequence similarity, respectively. DNA-DNA hybridization values between strain M2(T) and Leuconostoc inhae KACC 12281(T), Leuconostoc kimchii IH25(T), Leuconostoc gelidum KACC 12256(T), Leuconostoc gasicomitatum KACC 13854(T), Leuconostoc palmae DSM 21144(T) and Leuconostoc holzapfelii DSM 21478(T) were 13.8±3.2 %, 14.3±3.4 %, 9.9±1.0 %, 13.2±0.8 %, 22.4±4.9 % and 16.2±4.6 %, respectively, which allowed differentiation of strain M2(T) from the closely related species of the genus Leuconostoc. On the basis of phenotypic and molecular properties, strain M2(T) represents a novel species in the genus Leuconostoc, for which the name Leuconostoc miyukkimchii sp. nov. is proposed. The type strain is M2(T) ( = KACC 15353(T)  = JCM 17445(T)).

  10. First record of the insect pathogenic alga Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) infection in larvae and pupae of Rhizophagusgrandis Gyll. (Coleoptera, Rhizophaginae) from Turkey.

    PubMed

    Yaman, Mustafa; Radek, Renate; Aydin, Ciçek; Tosun, Onur; Ertürk, Omer

    2009-10-01

    The predator beetle Rhizophagus grandis Gyll. (Coleoptera, Rhizophaginae) is one of the most important biological control agents, mass-bred and used to suppress populations of an important pest: the great spruce bark beetle, Dendroctonus micans. The achlorophyllous alga Helicosporidium sp. was first discovered in the pest. Later it was also found in the predator, but only in the adults. In this study, the pathogenic alga Helicosporidium sp. was discovered in larvae and early pupae of R. grandis for the first time. The morphological characteristics of the pathogenic alga were revealed by light and electron microscopy. Infection rates of Helicosporidium sp. in the larvae and pupae of R. grandis were 23.5% and 6.25%, respectively.

  11. Formosa haliotis sp. nov., a brown-alga-degrading bacterium isolated from the gut of the abalone Haliotis gigantea.

    PubMed

    Tanaka, Reiji; Cleenwerck, Ilse; Mizutani, Yukino; Iehata, Shunpei; Shibata, Toshiyuki; Miyake, Hideo; Mori, Tetsushi; Tamaru, Yutaka; Ueda, Mitsuyoshi; Bossier, Peter; Vandamme, Peter

    2015-12-01

    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).

  12. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga.

    PubMed

    Nedashkovskaya, Olga I; Balabanova, Larissa A; Zhukova, Natalia V; Kim, So-Jeong; Bakunina, Irina Y; Rhee, Sung-Keun

    2014-10-01

    A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130(T), that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618(T) and Flavobacterium ponti CCUG 58402(T), and 95.3-92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130(T) were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130(T) (=KCTC 32467(T) = KMM 6686(T)).

  13. Host age and pathogen dosage impact cyst morphogenesis in the invertebrate pathogenic alga Helicosporidium sp. (Chlorophyta: Trebouxiophyceae).

    PubMed

    Denton, John S S; Lietze, Verena-Ulrike; Boucias, Drion G

    2009-09-01

    Helicosporidium sp. is a pathogenic alga that replicates in the hemolymph of various invertebrate hosts. Morphogenesis of the infectious life stage, the cyst, occurs in the infected host, but to date cannot be induced in vitro. Using larvae of the heterologous host Helicoverpa zea, we examined potential factors influencing pathogenicity and in vivo cyst production of the alga and the impact of infection on host survival. Factors tested were cyst dosage administered per os (ranging from 10(2) to 10(5) cysts per larva) and host age at exposure (third, fourth, and fifth larval instar). Cyst production occurred between 7 and 13days after treatment, regardless of host age at treatment. Increasing dosage increased both percent infection and mortality, but cyst production did not track the total infection response. Increasing host age at exposure mitigated dosage effects on infection and mortality and also elevated cyst production in later-treated larvae. Only the highest dosage produced a significant decrease in the overall time to death. Moderate cyst dosages and later host ages were most effective at regenerating Helicosporidium cysts.

  14. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    PubMed

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  15. Epiphytic Terrestrial Algae (Trebouxia sp.) as a Biomarker Using the Free-Air-Carbon Dioxide-Enrichment (FACE) System.

    PubMed

    Ismail, Asmida; Marzuki, Sarah Diyana; Mohd Yusof, Nordiana Bakti; Buyong, Faeiza; Mohd Said, Mohd Nizam; Sigh, Harinder Rai; Zulkifli, Amyrul Rafiq

    2017-03-07

    The increasing concentration of CO₂ in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how increased CO₂ in the atmosphere will affect algal density with minimal adjustment on its natural ecosystem, and the suitability of the algae to be considered as a biomarker, has been conducted. The current work was conducted in the Free-Air-Carbon Dioxide-Enrichment (FACE) system located in Universiti Kebangsaan Malaysia, Bangi, Malaysia. CO₂ was injected through special valves located along the ring surrounding specimen trees where 10 × 10 cm quadrats were placed. A total of 16 quadrats were randomly placed on the bark of 16 trees located inside the FACE system. This system will allow data collection on the effect of increased CO₂ without interfering or changing other parameters of the surrounding environment such as the wind speed, wind direction, humidity, and temperature. The initial density Trebouxia sp. was pre-determined on 1 March 2015, and the final density was taken slightly over a year later, on 15 March 2016. The exposure period of 380 days shed some light in understanding the effect of CO₂ on these non-complex, short life cycle lower plants. The results from this research work showed that the density of algae is significantly higher after 380 days exposure to the CO₂-enriched environment, at 408.5 ± 38.5 × 10⁴ cells/cm², compared to the control site at 176.5 ± 6.9 × 10⁴ cells/cm² (independent t-test, p < 0.001). The distance between the trees and the injector valves is negatively correlated. Quadrats located in the center of the circular ring recorded lower algal density compared to the ones closer to the CO₂ injector. Quadrat 16, which was nearing the end of the CO₂ valve injector, showed an exceptionally high algal density-2-fold higher

  16. Epiphytic Terrestrial Algae (Trebouxia sp.) as a Biomarker Using the Free-Air-Carbon Dioxide-Enrichment (FACE) System

    PubMed Central

    Ismail, Asmida; Marzuki, Sarah Diyana; Mohd Yusof, Nordiana Bakti; Buyong, Faeiza; Mohd Said, Mohd Nizam; Sigh, Harinder Rai; Zulkifli, Amyrul Rafiq

    2017-01-01

    The increasing concentration of CO2 in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how increased CO2 in the atmosphere will affect algal density with minimal adjustment on its natural ecosystem, and the suitability of the algae to be considered as a biomarker, has been conducted. The current work was conducted in the Free-Air-Carbon Dioxide-Enrichment (FACE) system located in Universiti Kebangsaan Malaysia, Bangi, Malaysia. CO2 was injected through special valves located along the ring surrounding specimen trees where 10 × 10 cm quadrats were placed. A total of 16 quadrats were randomly placed on the bark of 16 trees located inside the FACE system. This system will allow data collection on the effect of increased CO2 without interfering or changing other parameters of the surrounding environment such as the wind speed, wind direction, humidity, and temperature. The initial density Trebouxia sp. was pre-determined on 1 March 2015, and the final density was taken slightly over a year later, on 15 March 2016. The exposure period of 380 days shed some light in understanding the effect of CO2 on these non-complex, short life cycle lower plants. The results from this research work showed that the density of algae is significantly higher after 380 days exposure to the CO2-enriched environment, at 408.5 ± 38.5 × 104 cells/cm2, compared to the control site at 176.5 ± 6.9 × 104 cells/cm2 (independent t-test, p < 0.001). The distance between the trees and the injector valves is negatively correlated. Quadrats located in the center of the circular ring recorded lower algal density compared to the ones closer to the CO2 injector. Quadrat 16, which was nearing the end of the CO2 valve injector, showed an exceptionally high algal density—2-fold higher than the average

  17. Bromophycoic acids: Bioactive natural products from a Fijian red alga Callophycus sp

    PubMed Central

    Teasdale, Margaret E.; Shearer, Tonya L.; Engel, Sebastian; Alexander, Troy S.; Fairchild, Craig R.; Prudhomme, Jacques; Torres, Manuel; Le Roch, Karine; Aalbersberg, William; Hay, Mark E.

    2012-01-01

    Bioassay-guided fractionation of extracts from a Fijian red alga in the genus Callophycus resulted in the isolation of five new compounds of the diterpene-benzoate class. Bromophycoic acids A-E (1–5) were characterized by NMR and mass spectroscopic analyses and represent two novel carbon skeletons, one with an unusual proposed biosynthesis. These compounds display a range of activities against human tumor cell lines, malarial parasite, and bacterial pathogens including low micromolar suppression of MRSA and VREF. PMID:22920243

  18. Distribution and occurrence of the insect pathogenic alga Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) in the predator beetle Rhizophagus grandis G: yll. (Coleoptera: Rhizophagidae)-rearing laboratories.

    PubMed

    Yaman, M; Tosun, O; Aydın, C; Ertürk, O

    2011-01-01

    The distribution and occurrence of the insect pathogenic algae Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) in the predator beetle Rhizophagus grandis (Coleoptera: Rhizophagidae)-rearing laboratories were studied and reported here for the first time. The insect pathogenic alga Helicosporidium sp. infection was observed in all R. grandis-rearing laboratories. The infection rate reached more than 20% which is significant among the samples in some R. grandis-rearing laboratories. The infection rates of the examined beetles showed noticeable differences between localities and years. There was no significant difference in the infection levels of male and female beetles. These results showed that Helicosporidium sp. is one of the factors that decrease efficiency of the R. grandis-rearing laboratories.

  19. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    PubMed Central

    Safafar, Hamed; Hass, Michael Z.; Møller, Per; Holdt, Susan L.; Jacobsen, Charlotte

    2016-01-01

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry. PMID:27483291

  20. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.

    PubMed

    Safafar, Hamed; Hass, Michael Z; Møller, Per; Holdt, Susan L; Jacobsen, Charlotte

    2016-07-29

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry.

  1. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881

    PubMed Central

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction. PMID:26849226

  2. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    PubMed

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  3. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881.

    PubMed

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction.

  4. Microbial utilization of aqueous co-products from hydrothermal liquefaction of microalgae Nannochloropsis oculata.

    PubMed

    Nelson, Michael; Zhu, Lian; Thiel, Anne; Wu, Yan; Guan, Mary; Minty, Jeremy; Wang, Henry Y; Lin, Xiaoxia Nina

    2013-05-01

    Hydrothermal liquefaction of algae biomass is a promising technology for the production of sustainable biofuels, but the non-oil, aqueous co-product of the process has only been examined to a limited extent. The aqueous phase from liquefaction of the alga Nannochloropsis oculata (AqAl) was used to make growth media for model heterotrophic microorganisms Escherichia coli, Pseudomonas putida, and Saccharomyces cerevisiae. Growth rates, yields, and carbon/nitrogen/phosphorus uptake were measured. E. coli and P. putida could grow using AqAl as the sole C, N, and P source in media containing 10 vol.%-40 vol.% AqAl with the best growth occurring at 20 vol.%. S. cerevisiae could grow under these conditions only if the media were supplemented with glucose. The results indicate that in a biorefinery utilizing algae liquefaction, the aqueous co-product may be recycled via microbial cultures with significantly less dilution than previously published methods.

  5. Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica.

    PubMed

    Tschermak-Woess, E; Friedmann, E I

    1984-01-01

    Hemichloris antarctica gen. et sp. nov. (Oocystaceae, Chlorococcales) is characterized by a single, articulated, pyrenoid-less, thick saucer-shaped chloroplast, which generally fills less than half of the cell periphery. Multiplication is only by autospores. The species is psychrophilic and is damaged at temperatures above 20 degree C. Hemichloris antarctica is a member of the cryptoendolithic microbial community living in porous sandstone rocks of the Antarctica cold desert. It inhabits the zone below that of cryptoendolithic lichens and survives at extremely low light intensities. In the natural habitat, morphology is somewhat different from that in culture, as chloroplasts are smaller and without articulation, and the cells develop a gelatinous sheath.

  6. The mechanism of the acclimation of Nannochloropsis oceanica to freshwater deduced from its transcriptome profiles

    NASA Astrophysics Data System (ADS)

    Guo, Li; Yang, Guanpin

    2015-10-01

    In this study, we compared the transcriptomes of Nannochloropsis oceanica cultured in f/2 medium prepared with sea-water and freshwater, respectively, aiming to understand the acclimation mechanism of this alga to freshwater. Differentially expressed genes were mainly assigned to the degradation of cell components, ion transportation, and ribosomal biogenesis. These findings indicate that the algal cells degrade its components (mainly amino acids and fatty acids) to yield excessive energy (ATP) to maintain cellular ion (mainly K+ and Ca2+) homeostasis, while the depletion of amino acids and ATP, and the reduction of ribosomes attenuate the protein translation and finally slow down the cell growth.

  7. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla.

    PubMed

    Yoon, Jaewoo; Oku, Naoya; Kasai, Hiroaki

    2015-06-01

    A Gram-negative, strictly aerobic, beige-pigmented, non-motile, rod-shaped bacterial strain designated N5DB13-4(T) was isolated from the red alga Gracilaria vermiculophylla (Rhodophyta) collected at Sodegaura Beach, Chiba, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed highest sequence similarity (97.3 %) to Wenyingzhuangia heitensis H-MN17(T). The hybridization values for DNA-DNA relatedness between the strains N5DB13-4(T) and W. heitensis H-MN17(T) were 34.1 ± 3.5 %, which is below the threshold accepted for the phylogenetic definition of a novel prokaryotic species. The DNA G+C content of strain N5DB13-4(T) was determined to be 31.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids and four unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia gracilariae sp. nov. is proposed. The type strain of W. gracilariae sp. nov. is N5DB13-4(T) (=KCTC 42246 (T)=NBRC 110602(T)).

  8. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis.

    PubMed

    Fukui, Youhei; Abe, Mahiko; Kobayashi, Masahiro; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2013-01-01

    Three Gram-negative, stalked, motile bacteria, designated 0C-2-2(T), 0C-17 and LNM-3, were isolated from the red alga Porphyra yezoensis. 16S rRNA gene sequence analysis revealed that the three novel strains belonged to the family Hyphomonadaceae, and were closely related to Litorimonas taeanensis G5(T) (96.5 % 16S rRNA gene sequence similarity) and Hellea balneolensis 26III/A02/215(T) (94.3 %). The DNA G+C contents of the novel isolates (58.5-60.2 mol%) were clearly distinguished from those of L. taeanensis G5(T) (47.1 mol%) and H. balneolensis DSM 19091(T) (47.9 mol%). The G+C content of L. taeanensis G5(T) obtained in this study was quite different from a previous report (63.6 mol%). DNA-DNA hybridization experiments showed that the novel strains constituted a single species. Eleven phenotypic features of the three isolates differed from those of both related genera. The predominant respiratory quinone was ubiquinone-10 and the major fatty acid was C(18 : 1)ω7c. On the basis of this polyphasic taxonomic analysis, the novel strains represent a novel genus and species, for which the name Algimonas porphyrae gen. nov., sp. nov. is proposed. The type strain of Algimonas porphyrae is 0C-2-2(T) (= LMG 26424(T) = NBRC 108216(T)).

  9. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum 'Verrucomicrobia', and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae.

    PubMed

    Yoon, Jaewoo; Matsuo, Yoshihide; Adachi, Kyoko; Nozawa, Midori; Matsuda, Satoru; Kasai, Hiroaki; Yokota, Akira

    2008-04-01

    Ten pale-pink- and pale-yellow-pigmented, Gram-negative, non-motile, rod-shaped, chemoheterotrophic bacteria designated strains YM20-087T, YM21-151, MN1-741T, YM27-120T, YM26-010T, YM24-184, YM20-122, A4T-83T, A5J-41-2T and A5J-40 were isolated from various marine environments and were subjected to a polyphasic taxonomic investigation. Phylogenetic analyses based on 16S rRNA gene sequences indicated that these isolates belonged to the phylum 'Verrucomicrobia' (subdivision 1) and represented three independent lineages that were distinct from species of genera of the family Verrucomicrobiaceae with validly published names. The cell-wall peptidoglycan of these strains contained muramic acid and meso-diaminopimelic acid. Strains MN1-741T, YM27-120T, YM26-010T, YM24-184 and YM20-122 produced pinkish carotenoid pigments. On the basis of polyphasic taxonomic evidence, it was concluded that these strains should be classified within three new genera, Persicirhabdus gen. nov. (with one species, the type species Persicirhabdus sediminis sp. nov.), Roseibacillus gen. nov. (with three species; type species Roseibacillus ishigakijimensis sp. nov.) and Luteolibacter gen. nov. (with two species; type species Luteolibacter pohnpeiensis sp. nov.), of the family Verrucomicrobiaceae within the phylum 'Verrucomicrobia'. The names Persicirhabdus sediminis gen. nov., sp. nov. (type strain YM20-087T =MBIC08313T =KCTC 22039T), Roseibacillus ishigakijimensis gen. nov., sp. nov. (type strain MN1-741T =MBIC08315T =KCTC 12986T), Roseibacillus ponti sp. nov. (type strain YM27-120T =MBIC08316T =KCTC 12987T), Roseibacillus persicicus sp. nov. (type strain YM26-010T =MBIC08317T =KCTC 12988T), Luteolibacter pohnpeiensis gen. nov., sp. nov. (type strain A4T-83T =MBIC08322T =KCTC 22041T) and Luteolibacter algae sp. nov. (type strain A5J-41-2T =MBIC08320T =KCTC 22040T) are therefore proposed. Emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family

  10. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions.

    PubMed

    Toor, Saqib S; Reddy, Harvind; Deng, Shuguang; Hoffmann, Jessica; Spangsmark, Dorte; Madsen, Linda B; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-03-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins.

  11. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp.

    PubMed

    Lee, Choon-Geun; Kang, Do-Hyung; Lee, Dong-Bog; Lee, Hyeon-Yong

    2013-11-01

    The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for

  12. [Carotenogenesis of five strains of the algae Dunaliella sp. (Chlorophyceae) isolated from Venezuelan hypersaline lagoons].

    PubMed

    Guevara, Miguel; Lodeiros, César; Gómez, Olga; Lemus, Nathalie; Núñez, Paulino; Romero, Lolymar; Vásquez, Aléikar; Rosales, Néstor

    2005-01-01

    We evaluated discontinuous cultures (Algal medium at 0.5 mM of NaNO3, and 27% NaCI) of five strains of Dunaliella sp. isolated from Venezuelan hypersaline lagoons (Araya, Coche, Peonia, Cumaraguas. and Boca Chica) and one strain from a reference collection (Dunaliella salina, LB1644). Cultures were maintained to 25+/-1 degrees C, with constant aeration, photoperiod 12:12, and two light intensities (195 and 390 microE.m(-2).s(-1)) during 30 days. Cell count was recorded on a daily basis using a Neubaüer camera. Totals of chlorophyll a and carotenoids were measured at the end of the experiment. The largest cellular densities were measured during the smallest light intensities. The strain with the largest cellular density was isolated from Boca Chica (8 xl0(6) and 2.5 xl0(6) cel.ml(-1) a 390 and 195microE.m(-2).s(-1), respectively). The increment of light intensity produced a significant reduction of growth rates in all strains. Totals of carotenoids by volume were as large as 390 microE.m(-2).s(-1). Strains LB 1644, from Coche and Araya were those that produced the largest amount of carotenoids (38.4; 32.8 and 21.0 microg.ml(-1), respectively). Differences total carotenoids by cell between treatments were significant. The largest concentration was 390 microE.m(-2).s(-1). The strains LB 1644 and Coche produced the highest values of carotenes (137.14 and 106.06 pg.cel(-1), respectively). Differences in the relation carotenoid:chlorophyll a between the strains at various light intensities was significant. Strains LB1644 presented the largest value of the relation carotenoids:chlorophyll a (20:1) at 195 microE.m(-2).s(-1). No significant differences were detected in the strain Coche (15:1). All the other strains showed relations lower than one. Our results suggest that the strains of Coche and Araya show potential to be used in the biotechnology of carotenoids production.

  13. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis.

    PubMed

    Mishima, T; Murata, J; Toyoshima, M; Fujii, H; Nakajima, M; Hayashi, T; Kato, T; Saiki, I

    1998-08-01

    We have investigated the effect of calcium spirulan (Ca-SP) isolated from a blue-green alga, Spirulina platensis, which is a sulfated polysaccharide chelating calcium and mainly composed of rhamnose, on invasion of B16-BL6 melanoma, Colon 26 M3.1 carcinoma and HT-1080 fibrosarcoma cells through reconstituted basement membrane (Matrigel). Ca-SP significantly inhibited the invasion of these tumor cells through Matrigel/fibronectin-coated filters. Ca-SP also inhibited the haptotactic migration of tumor cells to laminin, but it had no effect on that to fibronectin. Ca-SP prevented the adhesion of B16-BL6 cells to Matrigel and laminin substrates but did not affect the adhesion to fibronectin. The pretreatment of tumor cells with Ca-SP inhibited the adhesion to laminin, while the pretreatment of laminin substrates did not. Ca-SP had no effect on the production and activation of type IV collagenase in gelatin zymography. In contrast, Ca-SP significantly inhibited degradation of heparan sulfate by purified heparanase. The experimental lung metastasis was significantly reduced by co-injection of B16-BL6 cells with Ca-SP. Seven intermittent i.v. injections of 100 microg of Ca-SP caused a marked decrease of lung tumor colonization of B16-BL6 cells in a spontaneous lung metastasis model. These results suggest that Ca-SP, a novel sulfated polysaccharide, could reduce the lung metastasis of B16-BL6 melanoma cells, by inhibiting the tumor invasion of basement membrane probably through the prevention of the adhesion and migration of tumor cells to laminin substrate and of the heparanase activity.

  14. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    PubMed

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  15. The plastoquinone pool of Nannochloropsis oceanica is not completely reduced during bright light pulses.

    PubMed

    Røkke, Gunvor; Melø, Thor Bernt; Hohmann-Marriott, Martin Frank

    2017-01-01

    The lipid-producing model alga Nannochloropsis oceanica has a distinct photosynthetic machinery. This organism possesses chlorophyll a as its only chlorophyll species, and has a high ratio of PSI to PSII. This high ratio of PSI to PSII may affect the redox state of the plastoquinone pool during exposure to light, and consequently may play a role in activating photoprotection mechanisms. We utilized pulse-amplitude modulated fluorometry to investigate the redox state of the plastoquinone pool during and after bright light pulses. Our data indicate that even very intense (5910 μmol photons s-1m-2 of blue light having a wavelength of 440 nm) light pulses of 0.8 second duration are not sufficient to completely reduce the plastoquinone pool in Nannochloropsis. In order to achieve extensive reduction of the plastoquinone pool by bright light pulses, anaerobic conditions or an inhibitor of the photosynthetic electron transport chain has to be utilized. The implication of this finding for the application of the widely used saturating pulse method in algae is discussed.

  16. Toxic potential of iron oxide, CdS/Ag₂S composite, CdS and Ag₂S NPs on a fresh water alga Mougeotia sp.

    PubMed

    Jagadeesh, E; Khan, Behlol; Chandran, Preethy; Khan, S Sudheer

    2015-01-01

    Nanoparticles (NPs) are being used in many industries ranging from medical, textile, automobile, consumer products, etc. This may increase the probability of their (NPs) release into the environment and fresh water ecosystems. The present study focuses on testing the potential effect of iron oxide, nanocomposite of cadmium sulfide and silver sulfide, cadmium sulfide and silver sulfide nanoparticles (NPs) on a fresh water alga Mougeotia sp. as the model organism. The alga was treated with different concentrations of NPs (0.1-25 mg/L). The NPs exposure caused lipid peroxidation and ROS production, and suppressed the antioxidant defense system such as catalase, glutathione reductase, and superoxide dismutase. Adsorption of NPs on algal surface and membrane damage were confirmed through microscopic evaluation and increase in protein content in extracellular medium. The present investigation pointed out the ecological implications of NPs. The study warrants the need for regulatory agencies to monitor and regulate the use of NPs.

  17. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  18. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.).

    PubMed

    Weller, D; Doemel, W; Brock, T D

    1975-06-20

    Photosynthesis in a Phormidium species which forms dense conical-shaped structures in thermal springs is strongly inhibited by aeration but is stimulated by sulfide and other agents (cysteine, thioglycolate, sulfite) which lower the oxidation-reduction potential. The compact structures which this alga forms in nature may restrict oxygen penetration from the enviroment so that the anaerobic or microaerophilic conditions necessary ofr photosynthesis can develop. The alga may be defective in a regulatory mechanism that controls the reoxidation of reduced pyridine nucleotides formed during photosynthesis. It is suggested that other mat-forming and benthic blue-green algae may also prefer anaerobib conditions for growth and photosynthesis.

  19. Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii.

    PubMed

    Jones, Katy J; Moore, Karen; Sambles, Christine; Love, John; Studholme, David J; Aves, Stephen J

    2016-01-14

    A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe.

  20. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  1. Algibacter miyuki sp. nov., a member of the family Flavobacteriaceae isolated from leachate of a brown algae reservoir.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Yoon, Jung-Hoon

    2013-08-01

    A Gram-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacterial strain, designated WS-MY6(T), was isolated from a brown algae reservoir in South Korea. Strain WS-MY6(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain WS-MY6(T) clustered with the type strains of Algibacter lectus and 'Algibacter undariae', showing 16S rRNA gene sequence similarity values of 98.1 and 98.4 %, respectively. It exhibited sequence similarities of 95.4-96.7 % to the type strains of the other Algibacter species, Pontirhabdus pectinovorans and Marinivirga aestuarii, whose reclassification into the genus Algibacter has been recently proposed. Strain WS-MY6(T) contained MK-6 as the predominant menaquinone and iso-C15:1 G, anteiso-C15:0 and iso-C17:0 3-OH as the major fatty acids. It contained phosphatidylethanolamine and two unidentified lipids as the major polar lipids. The DNA G + C content of strain WS-MY6(T) was 35.3 mol% and its DNA-DNA relatedness values with A. lectus KCTC 12103(T) and 'A. undariae' WS-MY9(T) was 21 and 13 %, respectively. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain WS-MY6(T) is separate from existing Algibacter species. On the basis of the data presented, strain WS-MY6(T) is considered to represent a novel species of the genus Algibacter, for which the name Algibacter miyuki sp. nov. is proposed. The type strain is WS-MY6(T) (=KCTC 32382(T) =CECT 8300(T)).

  2. Algimonas ampicilliniresistens sp. nov., isolated from the red alga Porphyra yezoensis, and emended description of the genus Algimonas.

    PubMed

    Fukui, Youhei; Kobayashi, Masahiro; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2013-12-01

    Three strains (14A-2-7(T), 14A-3-1 and 14A-3) of Gram-stain-negative, prosthecate, motile bacteria were isolated from an algal medium supplemented with 10 mg ampicillin l(-1) (w/v), in which the red alga Porphyra yezoensis had been cultured. Based on the 16S rRNA gene sequence analysis, the three isolates formed a cluster with the genus Algimonas of the family Hyphomonadaceae. The sequences of the three isolates had high similarity with those of Algimonas porphyrae 0C-2-2(T) (97.6 % similarity) and Litorimonas taeanensis G5(T) (95.6 % similarity). The DNA G+C contents of the three isolates ranged from 54.3 to 55.0 mol%, which were more similar to that of A. porphyrae 0C-2-2(T) (58.5 mol%) than to that of L. taeanensis G5(T) (47.1 mol%). The DNA-DNA relatedness showed that the three isolates were representatives of the same species (88.1-94.0 % relatedness) and that strain 14A-2-7(T) was a representative of a different species from A. porphyrae 0C-2-2(T) and L. taeanensis G5(T) (1.2-8.6 % relatedness). The phenotypic characteristics of strain 14A-2-7(T) differed by 20 results and 30 results from A. porphyrae 0C-2-2(T) and L. taeanensis G5(T), respectively. The three isolates contained ubiquinone-10 as the predominant quinone and C18 : 1ω7c as the major fatty acid. Based on the polyphasic taxonomic analysis, the three isolates represent a novel species of the genus Algimonas, for which the name Algimonas ampicilliniresistens sp. nov. is proposed. The type strain is 14A-2-7(T) ( = LMG 26421(T) = NBRC 108219(T)). An emended description of the genus Algimonas is also proposed.

  3. Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii

    PubMed Central

    Jones, Katy J.; Moore, Karen; Love, John

    2016-01-01

    A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe. PMID:26769927

  4. Effect of phosphorus fluctuation caused by river water dilution in eutrophic lake on competition between blue-green alga Microcystis aeruginosa and diatom Cyclotella sp.

    PubMed

    Amano, Yoshimasa; Sakai, Yusuke; Sekiya, Takumi; Takeya, Kimitaka; Taki, Kazuo; Machida, Motoi

    2010-01-01

    Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North-chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.

  5. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry.

    PubMed

    Polishchuk, Anna; Valev, Dimitar; Tarvainen, Marko; Mishra, Sujata; Kinnunen, Viljami; Antal, Taras; Yang, Baoru; Rintala, Jukka; Tyystjärvi, Esa

    2015-10-01

    The eicosapentaenoic acid (EPA) containing marine microalga Nannochloropsis oculata was grown in an effluent from anaerobic digestion of excess activated sludge from a wastewater treatment plant serving a combination of a pulp and a paper mill and a municipality (digester effluent, DE), mixed with the effluent of the same wastewater treatment plant. The maximum specific growth rate and photosynthesis of N. oculata were similar in the DE medium and in artificial sea water medium (ASW) but after 7 days, algae grown in the DE medium contained seven times more triacylglycerols (TAGs) per cell than cells grown in ASW, indicating mild stress in the DE medium. However, the volumetric rate of EPA production was similar in the ASW and DE media. The results suggest that N. oculata could be used to produce EPA, utilizing the nutrients available after anaerobic digestion of excess activated sludge of a pulp and paper mill.

  6. Acidophilic Green Alga Pseudochlorella sp. YKT1 Accumulates High Amount of Lipid Droplets under a Nitrogen-Depleted Condition at a Low-pH

    PubMed Central

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0–5.0 and a temperature 20–25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  7. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    PubMed

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions.

  8. The effects of irradiance levels and spectral composition on mating strategies in the snow alga, Chloromonas sp.-D, from the Tughill Plateau, New York State

    NASA Astrophysics Data System (ADS)

    Hoham, Ronald W.; Schlag, Erin M.; Kang, Jennifer Y.; Hasselwander, Andrew J.; Behrstock, Alissa F.; Blackburn, Ian R.; Johnson, Rurik C.; Roemer, Stephen C.

    1998-07-01

    Studies have related changes in snow albedo to snow crystal structure and to the presence of surface debris (i.e. pine needles), but there has been less attention given to the existence of algae in snow. An increase in the number of snow algae could also decrease albedo and increase snowmelt rates. The primary purpose of this paper is to document how solar irradiance serves to control the developing stages of algae in snow. Snow algae do not appear near the surface until there is meltwater in the snowpack. Low levels of solar irradiance penetrate through the snowpack and germinate snow algal resting stages that lie underneath, and snow algal growth is enhanced by available gases and nutrients. Flagellate cells swim through the snowpack in the meltwater around the snow crystals, and cells are positioned according to irradiance and spectral differences. In this study, Chloromonas sp.-D strains 582C and 582D, isolated from the upper 20 cm of snowpacks in the Tughill Plateau, Whetstone Gulf State Park, NY, were used to investigate mating strategies under different irradiance levels and spectral compositions in the laboratory, and the irradiance levels used in the experiments correlated with those recorded from the upper 20 cm of snow. Using similar irradiance levels, blue light regimes produced more matings than green and red light regimes. There were no trends in mating when comparing green and red light regimes. When red light regimes of higher photon irradiance (85 mol m-2 s-1) were compared with those of blue light regimes of lower irradiance (30 mol m-2 s-1), more mating occurred under red light. A photon irradiance of 95 mol m-2 s-1 [photosynthetically active radiation (PAR) of 400-700 nm] produced the most mating under both wide-spectrum (WS) and cool-white (CW) regimes, but more mating occurred under CW in all irradiances tested. Mating pairs of three types were observed: oblong-oblong (o-o), oblong-sphere (o-s) and sphere-sphere (s-s). Cell packs that produced

  9. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    PubMed

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse.

  10. Use of biofuel by-product from the green algae Desmochloris sp. and diatom Nanofrustulum sp. meal in diets for nile tilapia Oreochromis niloticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algal by-product meals from the Hawaiian biofuels industry were evaluated as protein ingredients in diets for juveniles of Nile tilapia (Oreochromis niloticus). Four experimental diets were formulated to contain 40% protein and were made with fish meal, soybean meal, whole diatom (Nanofrustulum sp.)...

  11. Modelling and Optimization of Nannochloropsis and Chlorella Growth for Various Locations and Seasons

    NASA Astrophysics Data System (ADS)

    Gharagozloo, P. E.

    2014-12-01

    Efficient production of algal biofuels could reduce dependence on foreign oil providing domestic renewable energy. Algae-based biofuels are attractive for their large oil yield potential despite decreased land use and natural-resource requirements compared to terrestrial energy crops. Important factors controlling algal-lipid productivity include temperature, nutrient availability, salinity, pH, and the light-to-biomass conversion rate. Computational approaches allow for inexpensive predictions of algae-growth kinetics for various bioreactor sizes and geometries without multiple, expensive measurement systems. In this work, we parameterize our physics-based computational algae growth model for the marine Nannochloropsis oceanica and freshwater Chlorella species. We then compare modelling results with experiments conducted in identical raceway ponds at six geographical locations in the United States (Hawaii, California, Arizona, Ohio, Georgia, and Florida) and three seasons through the Algae Testbed Public Private Partnership - Unified Field Studies. Results show that the computational model effectively predicts algae growth in systems across varying environments and identifies the causes for reductions in algal productivities. The model is then used to identify improvements to the cultivation system to produce higher biomass yields. This model could be used to study the effects of scale-up including the effects of predation, depth-decay of light (light extinction), and optimized nutrient and CO2 delivery. As more multifactorial data are accumulated for a variety of algal strains, the model could be used to select appropriate algal species for various geographic and climatic locations and seasons. Applying the model facilitates optimization of pond designs based on location and season.

  12. Long-term experiment on physiological responses to synergetic effects of ocean acidification and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L.

    PubMed

    Xu, Dong; Wang, Yitao; Fan, Xiao; Wang, Dongsheng; Ye, Naihao; Zhang, Xiaowen; Mou, Shanli; Guan, Zheng; Zhuang, Zhimeng

    2014-07-15

    Studies on ocean acidification have mostly been based on short-term experiments of low latitude with few investigations of the long-term influence on sea ice communities. Here, the combined effects of ocean acidification and photoperiod on the physiological response of the Antarctic sea ice microalgae Chlamydomonas sp. ICE-L were examined. There was a general increase in growth, PSII photosynthetic parameters, and N and P uptake in continuous light, compared to those exposed to regular dark and light cycles. Elevated pCO2 showed no consistent effect on growth rate (p=0.8) and N uptake (p=0.38) during exponential phrase, depending on the photoperiod but had a positive effect on PSII photosynthetic capacity and P uptake. Continuous dark reduced growth, photosynthesis, and nutrient uptake. Moreover, intracellular lipid, mainly in the form of PUFA, was consumed at 80% and 63% in low and high pCO2 in darkness. However, long-term culture under high pCO2 gave a more significant inhibition of growth and Fv/Fm to high light stress. In summary, ocean acidification may have significant effects on Chlamydomonas sp. ICE-L survival in polar winter. The current study contributes to an understanding of how a sea ice algae-based community may respond to global climate change at high latitudes.

  13. Azotobacter vinelandii siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032.

    PubMed

    Villa, Juan A; Ray, Erin E; Barney, Brett M

    2014-02-01

    Microalgae are viewed as a potential future agricultural and biofuel feedstock and also provide an ideal biological means of carbon sequestration based on rapid growth rates and high biomass yields. Any potential improvement using high-yield microalgae to fix carbon will require additional fertilizer inputs to provide the necessary nitrogen required for protein and nucleotide biosynthesis. The free-living diazotroph Azotobacter vinelandii can fix nitrogen under aerobic conditions in the presence of reduced carbon sources such as sucrose or glycerol and is also known to produce a variety of siderophores to scavenge different metals from the environment. In this study, we identified two strains of green algae, Neochloris oleoabundans and Scenedesmus sp. BA032, that are able to utilize the A. vinelandii siderophore azotobactin as a source of nitrogen to support growth. When grown in a co-culture, S. sp. BA032 and N. oleoabundans obtained the nitrogen required for growth through the association with A. vinelandii. These results, indicating a commensalistic relationship, provide a proof of concept for developing a mutualistic or symbiotic relationship between these two species using siderophores as a nitrogen shuttle and might further indicate an additional fate of siderophores in the environment.

  14. Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues.

    PubMed

    Kinnunen, H V; Koskinen, P E P; Rintala, J

    2014-03-01

    This paper studies methane production using a marine microalga, Nannochloropsis sp. residue from biodiesel production. Residue cake from Nannochloropsis, oils wet-extracted, had a methane potential of 482LCH4kg(-1) volatile solids (VS) in batch assays. However, when dry-extracted, the methane potential of residue cake was only 194LCH4kg(-1) VS. In semi-continuous reactor trials with dry-extracted residue cake, a thermophilic reactor produced 48% higher methane yield (220LCH4kg(-1)VS) than a mesophilic reactor (149LCH4kg(-1)VS). The thermophilic reactor was apparently inhibited due to ammonia with organic loading rate (OLR) of 2kgVSm(-3)d(-1) (hydraulic retention time (HRT) 46d), whereas the mesophilic reactor performed with OLR of 3kgVSm(-3)d(-1) (HRT 30d). Algal salt content did not inhibit digestion. Additional methane (18-33% of primary digester yield) was produced during 100d post-digestion.

  15. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    PubMed Central

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  16. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.

    PubMed

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-04-04

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used "dynamic" metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel.

  17. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf.

    PubMed

    Hume, B C C; D'Angelo, C; Smith, E G; Stevens, J R; Burt, J; Wiedenmann, J

    2015-02-27

    Coral reefs are in rapid decline on a global scale due to human activities and a changing climate. Shallow water reefs depend on the obligatory symbiosis between the habitat forming coral host and its algal symbiont from the genus Symbiodinium (zooxanthellae). This association is highly sensitive to thermal perturbations and temperatures as little as 1°C above the average summer maxima can cause the breakdown of this symbiosis, termed coral bleaching. Predicting the capacity of corals to survive the expected increase in seawater temperatures depends strongly on our understanding of the thermal tolerance of the symbiotic algae. Here we use molecular phylogenetic analysis of four genetic markers to describe Symbiodinium thermophilum, sp. nov. from the Persian/Arabian Gulf, a thermally tolerant coral symbiont. Phylogenetic inference using the non-coding region of the chloroplast psbA gene resolves S. thermophilum as a monophyletic lineage with large genetic distances from any other ITS2 C3 type found outside the Gulf. Through the characterisation of Symbiodinium associations of 6 species (5 genera) of Gulf corals, we demonstrate that S. thermophilum is the prevalent symbiont all year round in the world's hottest sea, the southern Persian/Arabian Gulf.

  18. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  19. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4

    PubMed Central

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-01-01

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used “dynamic” metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel. PMID:28374798

  20. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf

    PubMed Central

    Hume, B. C. C.; D'Angelo, C.; Smith, E. G.; Stevens, J. R.; Burt, J.; Wiedenmann, J.

    2015-01-01

    Coral reefs are in rapid decline on a global scale due to human activities and a changing climate. Shallow water reefs depend on the obligatory symbiosis between the habitat forming coral host and its algal symbiont from the genus Symbiodinium (zooxanthellae). This association is highly sensitive to thermal perturbations and temperatures as little as 1°C above the average summer maxima can cause the breakdown of this symbiosis, termed coral bleaching. Predicting the capacity of corals to survive the expected increase in seawater temperatures depends strongly on our understanding of the thermal tolerance of the symbiotic algae. Here we use molecular phylogenetic analysis of four genetic markers to describe Symbiodinium thermophilum, sp. nov. from the Persian/Arabian Gulf, a thermally tolerant coral symbiont. Phylogenetic inference using the non-coding region of the chloroplast psbA gene resolves S. thermophilum as a monophyletic lineage with large genetic distances from any other ITS2 C3 type found outside the Gulf. Through the characterisation of Symbiodinium associations of 6 species (5 genera) of Gulf corals, we demonstrate that S. thermophilum is the prevalent symbiont all year round in the world's hottest sea, the southern Persian/Arabian Gulf. PMID:25720577

  1. Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study.

    PubMed

    Bína, David; Gardian, Zdenko; Herbstová, Miroslava; Litvín, Radek

    2017-03-01

    Photosystem I (PSI) is a multi-subunit integral pigment-protein complex that performs light-driven electron transfer from plastocyanin to ferredoxin in the thylakoid membrane of oxygenic photoautotrophs. In order to achieve the optimal photosynthetic performance under ambient irradiance, the absorption cross section of PSI is extended by means of peripheral antenna complexes. In eukaryotes, this role is played mostly by the pigment-protein complexes of the LHC family. The structure of the PSI-antenna supercomplexes has been relatively well understood in organisms harboring the primary plastid: red algae, green algae and plants. The secondary endosymbiotic algae, despite their major ecological importance, have so far received less attention. Here we report a detailed structural analysis of the antenna-PSI association in the stramenopile alga Nannochloropsis oceanica (Eustigmatophyceae). Several types of PSI-antenna assemblies are identified allowing for identification of antenna docking sites on the PSI core. Instances of departure of the stramenopile system from the red algal model of PSI-Lhcr structure are recorded, and evolutionary implications of these observations are discussed.

  2. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  3. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species.

    PubMed

    Fukui, Youhei; Abe, Mahiko; Kobayashi, Masahiro; Saito, Hiroaki; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2013-05-01

    Three Gram-negative, non-motile, strictly aerobic strains, designated LNM-20(T), LCM-1 and LAM-13, were isolated from thalli of the marine red alga Porphyra yezoensis. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates were associated with the genus Polaribacter in the family Flavobacteriaceae and were most closely related to Polaribacter dokdonensis DSW-5(T) (96.2 % 16S rRNA gene sequence similarity) and Polaribacter gangjinensis K17-16(T) (95.0 %). The DNA G+C content of the isolates was 28.6-29.2 mol%. DNA-DNA hybridization analysis showed that the isolates belonged to a single species distinct from both of their closest relatives. The only isoprenoid quinone detected was menaquinone-6. The main polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids. The major fatty acids were iso-C15 : 0, iso-C15 : 1ω10c and iso-C15 : 0 3-OH. The phenotypic features of strain LNM-20(T) differed from those of their closest relatives in several regards (colony colour, growth with 1 % NaCl and on TSA plus 2.5 % NaCl, hydrolysis of Tweens 40 and 80, and oxidization of five carbon compounds). On the basis of phylogenetic, chemotaxonomic and phenotypic analysis, the isolates represent a novel species in the genus Polaribacter, for which the name Polaribacter porphyrae sp. nov. is proposed. The type strain is LNM-20(T) ( = LMG 26671(T)  = NBRC 108759(T)). Emended descriptions of the genus Polaribacter and P. dokdonensis and P. gangjinensis are also proposed.

  4. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.

    PubMed

    Ma, Yubin; Wang, Zhiyao; Yu, Changjiang; Yin, Yehu; Zhou, Gongke

    2014-09-01

    Nannochloropsis have attracted sustained interest from algal biodiesel researchers due to their high biomass accumulation rate and high lipid content. There are six recognized species in the Nannochloropsis genus that are phylogenetically divided into Nannochloropsis gaditana, Nannochloropsis salina, Nannochloropsis granulata, Nannochloropsis limnetica, Nannochloropsis oceanica and Nannochloropsis oculata. In this study, the potential of 9 Nannochloropsis species from the 6 genus for biodiesel production was evaluated by determining their growth rate, biomass accumulation, lipid productivity, lipid composition, fatty acid profiles and biodiesel properties. The results showed that the best strain was N. oceanica IMET1, with lipid productivity of 158.76 ± 13.83 mg L(-1)day(-1), TAG production of 1.67 ± 0.20 g/L, favorable fatty acid profiles of C16-C18 (56.62 ± 1.96%) as well as suitable biodiesel properties of higher cetane number (54.61 ± 0.25), lower iodine number (104.85 ± 2.80 g I2/100g) and relative low cloud point (3.45 ± 0.50°C). N. oceanica IMET1 could be consider as valuable feedstock for microalgal biodiesel production.

  5. Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179.

    PubMed

    Lin, Qiang; Gu, Na; Li, Gang; Lin, Junda; Huang, Liangmin; Tan, LingLing

    2012-05-01

    This investigation examined the effects of the inorganic carbon concentration (4, 0.8 and 0 g/L NaHCO(3)) on the carbon formation, nitrate utilization, growth and fatty acids compositions of Nannochloropsis oculata. The dissolved inorganic carbon (DIC) concentration in the three treatments decreased sharply during the first 6 days, and the percentage of dissolved organic carbon (DOC) (% of total organic carbon (TOC)) decreased with the depletion of the DIC. The NO(3)(-) assimilation of the algae was correlated with the DIC concentration. The algae in the highest DIC treatment had the highest specific grow rate (0.0843 d(-1)) (P<0.0001), and their biomass and fatty acid methyl esters (FAME) productivity were 84.00 and 9.69 mg/L/d, respectively (P<0.0001). Contents of C16 and C18 series (% of FAME) were high and the C16:0 increased with the decrease of C18:1 during the cultivation. The iodine value (IV) of the algae was low at the low DIC media.

  6. Roseitalea porphyridii gen. nov., sp. nov., isolated from a red alga and reclassification of Hoeflea suaedae (Chung et al., 2013) as Pseudohoeflea suaedae gen. nov., comb. nov.

    PubMed

    Hyeon, Jong Woo; Jeong, Sang Eun; Baek, Kyunghwa; Jeon, Che Ok

    2016-11-02

    A Gram-staining-negative, strictly aerobic bacterial strain, designated MA7-20T, was isolated from a marine alga, Porphyridium marinum, in Korea. Cells showing oxidase-positive and catalase-positive activities were motile rods with bipolar flagella. Growth of strain MA7-20T was observed at 15-45 C (optimum, 30-37 C), at pH 6.0-10.5 (optimum, pH 7.0-8.0) and in the presence of 0-7 % (w/v) NaCl (optimum, 2-3 %). Strain MA7-20T contained summed feature 8 (comprising C18:1 ω7c/C18:1 ω6c) and 11-methyl-C18:1 ω7c and C18:0 as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyl-N-methylethanolamine. The G+C content of the genomic DNA was 61.5 mol%. Strain MA7-20T was most closely related to Hoeflea suaedae YC6898T, Oricola cellulosilytica CC-AMH-OT and Nitratireductor basaltis J3T with 96.0 %, 95.8 % and 95.8 % 16S rRNA gene sequence similarities, respectively, but the strain formed a distinct phylogenetic lineage from them within the family Phyllobacteriaceae with a low bootstrap value. H. suaedae also formed a clearly distinct phylogenetic lineage from other members of the genus Hoeflea and closely related genera. On the basis of phenotypic, chemotaxonomic and molecular properties, strain MA7-20T represents a novel genus of the family Phyllobacteriaceae, for which the name Roseitalea porphyridii gen. nov., sp. nov. is proposed. The type strain is MA7-20T (=KACC 18807T =JCM 31538T). In addition, H. suaedae is also reclassified as Pseudohoeflea suaedae gen. nov., comb. nov. (type strain YC6898T =KACC 14911T =NBRC 107700T).

  7. Granulosicoccus undariae sp. nov., a member of the family Granulosicoccaceae isolated from a brown algae reservoir and emended description of the genus Granulosicoccus.

    PubMed

    Park, Sooyeon; Jung, Yong-Taek; Won, Sung-Min; Park, Ja-Min; Yoon, Jung-Hoon

    2014-11-01

    A Gram-stain-negative, aerobic, non-flagellated and coccoid bacterial strain, W-BA3(T), which was isolated from a brown algae reservoir in Wando of South Korea, was characterized taxonomically. Strain W-BA3(T) was found to grow optimally at 30 °C, at pH 7.0-8.0 and in presence of 2.0 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain W-BA3(T) clustered with the type strains of Granulosicoccus antarcticus and Granulosicoccus coccoides, with which it exhibited sequence similarity values of 98.4-99.3 %. Sequence similarity values of strain W-BA3(T) to the type strains of the other recognized species were less than 90.2 %. Strain W-BA3(T) was found to contain Q-8 as the predominant ubiquinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C18:1 ω7c and C16:0 as the major fatty acids. The major polar lipids of strain W-BA3(T), which were identified as phosphatidylethanolamine and phosphatidylglycerol, were similar to those of the type strains of G. antarcticus and G. coccoides. The DNA G+C content of strain W-BA3(T) was 56.0 mol % and its mean DNA-DNA relatedness values with the type strains of G. coccoides and G. antarcticus were 27 and 17 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain W-BA3(T) is separated from the two Granulosicoccus species. On the basis of the data presented, strain W-BA3(T) is considered to represent a novel species of the genus Granulosicoccus, for which the name Granulosicoccus undariae sp. nov. is proposed. The type strain is W-BA3(T) (=KCTC 42134(T) = NBRC 110411(T)). An emended description of the genus Granulosicoccus is also proposed.

  8. Catenovulum maritimus sp. nov., a novel agarolytic gammaproteobacterium isolated from the marine alga Porphyra yezoensis Ueda (AST58-103), and emended description of the genus Catenovulum.

    PubMed

    Li, Dong-Qi; Zhou, Yan-Xia; Liu, Tao; Chen, Guan-Jun; Du, Zong-Jun

    2015-08-01

    A novel agarolytic, Gram-stain negative, heterotrophic, facultatively anaerobic and pale-white pigmented bacterial strain, designated Q1(T), was isolated from the marine alga Porphyra yezoensis Ueda (AST58-103) collected from the coastal area of Weihai, China. The cells are motile by means of peritrichous flagella. The isolate requires NaCl for growth, while seawater is not necessary, and growth occurs optimally at about 30-33 °C, in 1-3 % (w/v) NaCl and at pH 7-7.5. Strain Q1(T) shows oxidase-positive and catalase-negative activities, and possesses the ability to hydrolyse starch and alginate, but not cellulose, gelatin, urea or Tween-80. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain Q1(T) is affiliated with the family Alteromonadaceae within the class Gammaproteobacteria. The isolate, strain Q1(T), is most closely related to Catenovulum agarivorans YM01(T) (94.85 %), with less than 91.2 % sequence similarity to other close relatives with validly published names. The draft genome sequence of strain Q1(T) consists of 62 contigs (>200 bp) of 4,548,270 bp. The genomes of Q1(T) and YM01(T) have an ANI value of 70.7 %, and the POCP value between the two genomes is 64.4 %. The genomic DNA G+C content of strain Q1(T) is 37.9 mol% as calculated from the draft genome sequence. The main isoprenoid quinone is ubiquinone-8. The predominant cellular fatty acids are summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), C16:0 and C18:1 ω7c. The major polar lipids are phosphatidylethanolamine and phosphatidylglycerol. Based on data from a polyphasic chemotaxonomic, physiological and biochemical study, strain Q1(T) should be classified as a novel species of the genus Catenovulum, for which the name Catenovulum maritimus sp. nov. is proposed. The type strain is Q1(T) (=CICC 10836(T)=DSM 28813(T)).

  9. A Comparative Analysis of Mitochondrial Genomes in Eustigmatophyte Algae

    PubMed Central

    Ševčíková, Tereza; Klimeš, Vladimír; Zbránková, Veronika; Strnad, Hynek; Hroudová, Miluše; Vlček, Čestmír; Eliáš, Marek

    2016-01-01

    Eustigmatophyceae (Ochrophyta, Stramenopiles) is a small algal group with species of the genus Nannochloropsis being its best studied representatives. Nuclear and organellar genomes have been recently sequenced for several Nannochloropsis spp., but phylogenetically wider genomic studies are missing for eustigmatophytes. We sequenced mitochondrial genomes (mitogenomes) of three species representing most major eustigmatophyte lineages, Monodopsis sp. MarTras21, Vischeria sp. CAUP Q 202 and Trachydiscus minutus, and carried out their comparative analysis in the context of available data from Nannochloropsis and other stramenopiles, revealing a number of noticeable findings. First, mitogenomes of most eustigmatophytes are highly collinear and similar in the gene content, but extensive rearrangements and loss of three otherwise ubiquitous genes happened in the Vischeria lineage; this correlates with an accelerated evolution of mitochondrial gene sequences in this lineage. Second, eustigmatophytes appear to be the only ochrophyte group with the Atp1 protein encoded by the mitogenome. Third, eustigmatophyte mitogenomes uniquely share a truncated nad11 gene encoding only the C-terminal part of the Nad11 protein, while the N-terminal part is encoded by a separate gene in the nuclear genome. Fourth, UGA as a termination codon and the cognate release factor mRF2 were lost from mitochondria independently by the Nannochloropsis and T. minutus lineages. Finally, the rps3 gene in the mitogenome of Vischeria sp. is interrupted by the UAG codon, but the genome includes a gene for an unusual tRNA with an extended anticodon loop that we speculate may serve as a suppressor tRNA to properly decode the rps3 gene. PMID:26872774

  10. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  11. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  12. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.

    PubMed

    Cerff, Martin; Morweiser, Michael; Dillschneider, Robert; Michel, Aymeé; Menzel, Katharina; Posten, Clemens

    2012-08-01

    In this study, the focus is on magnetic separation of fresh water algae Chlamydomonas reinhardtii and Chlorella vulgaris as well as marine algae Phaeodactylum tricornutum and Nannochloropsis salina by means of silica-coated magnetic particles. Due to their small size and low biomass concentrations, harvesting algae by conventional methods is often inefficient and cost-consuming. Magnetic separation is a powerful tool to capture algae by adsorption to submicron-sized magnetic particles. Hereby, separation efficiency depends on parameters such as particle concentration, pH and medium composition. Separation efficiencies of >95% were obtained for all algae while maximum particle loads of 30 and 77 g/g were measured for C. reinhardtii and P. tricornutum at pH 8 and 12, respectively. This study highlights the potential of silica-coated magnetic particles for the removal of fresh water and marine algae by high gradient magnetic filtration and provides critical discussion on future improvements.

  13. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  14. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  15. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  16. Lipidomic analysis can distinguish between two morphologically similar strains of Nannochloropsis oceanica.

    PubMed

    Li, Shuang; Xu, Jilin; Jiang, Ying; Zhou, Chengxu; Yu, Xuejun; Zhong, Yingying; Chen, Juanjuan; Yan, Xiaojun

    2015-04-01

    The two morphologically similar microalgae NMBluh014 and NMBluh-X belong to two different strains of Nannochloropsis oceanica. They possess obviously different feeding effects on bivalves, but are indistinguishable by 18S rRNA and morphological features. In this work, lipidomic analysis followed by principal component analysis and orthogonal projections to latent structures discriminant analysis provided a clear distinction between these strains. Metabolites that definitively contribute to the classification were selected as potential biomarkers. The most important difference in polar lipids were sulfoquinovosyldiacylglycerol (containing 18:1/16:0 and 18:3/16:0) and monogalactosyldiacylglycerol (containing 18:3/16:3 and 20:5/14:0), which were detected only in NMBluh-X. Additionally, an exhaustive qualitative and quantitative profiling of the neutral lipid triacylglycerol (TAG) in the two strains was carried out. The predominant species of TAG containing 16:1/16:1/16:1 acyl groups was detected only in NMBluh-X with a content of ~93.67 ± 11.85 nmol · mg(-1) dry algae at the onset of stationary phase. Meanwhile, TAG containing 16:0/16:0/16:0 was the main TAG in NMBluh014 with a content of 40.25 ± 3.92 nmol · mg(-1) . These results provided the most straightforward evidence for differentiating the two species. The metabolomic profiling indicated that NMBluh-X underwent significant chemical and physiological changes during the growth process, whereas NMBluh014 did not show such noticeable time-dependent metabolite change. This study is the first using Ultra Performance Liquid Chromatography coupled with Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS) for lipidomic profiling with multivariate statistical analysis to explore lipidomic differences of plesiomorphous microalgae. Our results demonstrate that lipidomic profiling is a valid chemotaxonomic tool in the study of microalgal systematics.

  17. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.

    PubMed

    Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka

    2016-08-01

    CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.

  18. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    PubMed

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae.

  19. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    DTIC Science & Technology

    2012-11-15

    Assembly size 28.7 Mbp G+ C content 53.8% Protein coding genes 11,973 Average gene size 1,547 bp Average exons per gene 2.7 Average introns per gene 1.7...the heterokonts. A search of CCMP1779 genome identified 42 genes from 15 CAZy families that are predicted to encode glycosyltransferases (GT) and 44...Family N. oceanica C . reinhardtii A. thaliana H. sapiens C . elegans S. cerevisiae ABI3VP1 1 59 AP2-EREBP* 6 11 160 ARR-B 1 15 bHLH 6 4 160 154 50 7 BSD 1

  20. Algae Resources

    SciTech Connect

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  1. Medium recycling for Nannochloropsis gaditana cultures for aquaculture.

    PubMed

    González-López, C V; Cerón-García, M C; Fernández-Sevilla, J M; González-Céspedes, A M; Camacho-Rodríguez, J; Molina-Grima, E

    2013-02-01

    Nannochloropsis gaditana is a good producer of proteins and valuable fatty acids for aquaculture. Recycling of culture medium is interesting for microalgae commercial production as it cuts costs and prevents environmental contamination. The recycled medium must be sterilized to prevent the buildup of unwanted metabolites and microorganisms. We tested several sterilization methods: filtration, ozonation, chlorination, addition of hydrogen peroxide and heating. Results showed that the most successful method is ozonation lowering the bacterial load to 1.910(3)CFUs/mL, which is 1000-fold and 10-fold lower than the supernatant obtained after harvesting and the initial filtered medium, respectively. Continuous cultures of N. gaditana were grown using this recirculated supernatant. A maximum biomass productivity of 0.8 g/L/d composed of ∼50% proteins and 40% lipids with more than 3%d.w. EPA was obtained making this biomass very interesting for aquaculture.

  2. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae.

    PubMed

    Sanchez-Silva, L; López-González, D; Garcia-Minguillan, A M; Valverde, J L

    2013-02-01

    Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae (NG microalgae) were investigated by thermogravimetric analysis (TGA). NG microalgae pyrolysis and combustion could be divided into three main stages: dehydration, proteins and polysaccharides degradation and char decomposition. The effects of the initial sample mass, particle size and gas flow on the pyrolysis and combustion processes were studied. In addition, gasification operation conditions such as temperature, initial sample mass, particle size, sweep gas flow and steam concentration, were experimentally evaluated. The evolved gases were analyzed online using mass spectroscopy (MS). In pyrolysis and combustion processes, most of the gas products were generated at the second degradation step. N-compounds evolution was associated with the degradation of proteins. Furthermore, SO(2) release from combustion could be related to sulphated polysaccharides decomposition. The main products detected during gasification were CO(2), CO, H(2), indicating that oxidation reactions, water gas and water gas shift reactions, were predominant.

  3. Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

    PubMed Central

    Sforza, Eleonora; Simionato, Diana; Giacometti, Giorgio Mario; Bertucco, Alberto; Morosinotto, Tomas

    2012-01-01

    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently. PMID:22745696

  4. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors.

    PubMed

    Sforza, Eleonora; Simionato, Diana; Giacometti, Giorgio Mario; Bertucco, Alberto; Morosinotto, Tomas

    2012-01-01

    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.

  5. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source.

    PubMed

    Davis, Ryan W; Siccardi, Anthony J; Huysman, Nathan D; Wyatt, Nicholas B; Hewson, John C; Lane, Todd W

    2015-12-01

    The suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ∼20±4gAFDW/m(2)/day). Analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.

  6. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source

    SciTech Connect

    Davis, Ryan W.; Siccardi, Anthony J.; Huysman, Nathan D.; Wyatt, Nicholas B.; Hewson, John C.; Lane, Todd W.

    2015-09-26

    In this paper, the suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20 ± 4 g AFDW/m2/day). Finally, analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.

  7. Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica

    USGS Publications Warehouse

    Morgan-Kiss, R. M.; Ivanov, A.G.; Modla, S.; Czymmek, K.; Huner, N.P.A.; Priscu, J.C.; Lisle, J.T.; Hanson, T.E.

    2008-01-01

    Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the 'photopsychrophiles') in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10??C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes. ?? 2008 Springer.

  8. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.

    PubMed

    da Silva Vaz, Bruna; Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and developing new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p < 0.01) than did Spirulina sp. LEB 18. The values for the CO2 biofixation rates and the kinetic parameters of Spirulina and Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source.

  9. Longitudinal Analysis of Microbiota in Microalga Nannochloropsis salina Cultures.

    PubMed

    Geng, Haifeng; Sale, Kenneth L; Tran-Gyamfi, Mary Bao; Lane, Todd W; Yu, Eizadora T

    2016-07-01

    Large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded with the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.

  10. Longitudinal analysis of microbiota in microalga Nannochloropsis salina cultures

    DOE PAGES

    Geng, Haifeng; Sale, Kenneth L.; Tran-Gyamfi, Mary Bao; ...

    2016-03-08

    Here, large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded withmore » the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.« less

  11. Diel oscillation in the optical activity of carotenoids in the absorption spectrum of Nannochloropsis.

    PubMed

    Possa, Gabriela C; Santana, Hugo; Brasil, Bruno S A F; Roncaratti, Luiz F

    2017-03-01

    In this paper we show that the absorption spectrum of the microalgae Nannochloropsis oceanica exhibits changes in response to the modulation of incident light. A model was used to analyze the contribution of different active pigments to the total absorption in the photosynthetically active radiation region and suggested consistent diel oscillations in the optical activity of carotenoids.

  12. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  13. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    PubMed Central

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  14. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1.

    PubMed

    Wang, Hui; Laughinghouse, Haywood D; Anderson, Matthew A; Chen, Feng; Willliams, Ernest; Place, Allen R; Zmora, Odi; Zohar, Yonathan; Zheng, Tianling; Hill, Russell T

    2012-03-01

    Increasing petroleum costs and climate change have resulted in microalgae receiving attention as potential biofuel producers. Little information is available on the diversity and functions of bacterial communities associated with biofuel-producing algae. A potential biofuel-producing microalgal strain, Nannochloropsis oceanica IMET1, was grown in Permian groundwater. Changes in the bacterial community structure at three temperatures were monitored by two culture-independent methods, and culturable bacteria were characterized. After 9 days of incubation, N. oceanica IMET1 began to aggregate and precipitate in cultures grown at 30°C, whereas cells remained uniformly distributed at 15°C and 25°C. The bacterial communities in cultures at 30°C changed markedly. Some bacteria isolated only at 30°C were tested for their potential for aggregating microalgae. A novel bacterium designated HW001 showed a remarkable ability to aggregate N. oceanica IMET1, causing microalgal cells to aggregate after 3 days of incubation, while the total lipid content of the microalgal cells was not affected. Direct interaction of HW001 and N. oceanica is necessary for aggregation. HW001 can also aggregate the microalgae N. oceanica CT-1, Tetraselmis suecica, and T. chuii as well as the cyanobacterium Synechococcus WH8007. 16S rRNA gene sequence comparisons indicated the great novelty of this strain, which exhibited only 89% sequence similarity with any previously cultured bacteria. Specific primers targeted to HW001 revealed that the strain originated from the Permian groundwater. This study of the bacterial communities associated with potential biofuel-producing microalgae addresses a little-investigated area of microalgal biofuel research and provides a novel approach to harvest biofuel-producing microalgae by using the novel bacterium strain HW001.

  15. Novel Bacterial Isolate from Permian Groundwater, Capable of Aggregating Potential Biofuel-Producing Microalga Nannochloropsis oceanica IMET1

    PubMed Central

    Wang, Hui; Laughinghouse, Haywood D.; Anderson, Matthew A.; Chen, Feng; Willliams, Ernest; Place, Allen R.; Zmora, Odi; Zohar, Yonathan

    2012-01-01

    Increasing petroleum costs and climate change have resulted in microalgae receiving attention as potential biofuel producers. Little information is available on the diversity and functions of bacterial communities associated with biofuel-producing algae. A potential biofuel-producing microalgal strain, Nannochloropsis oceanica IMET1, was grown in Permian groundwater. Changes in the bacterial community structure at three temperatures were monitored by two culture-independent methods, and culturable bacteria were characterized. After 9 days of incubation, N. oceanica IMET1 began to aggregate and precipitate in cultures grown at 30°C, whereas cells remained uniformly distributed at 15°C and 25°C. The bacterial communities in cultures at 30°C changed markedly. Some bacteria isolated only at 30°C were tested for their potential for aggregating microalgae. A novel bacterium designated HW001 showed a remarkable ability to aggregate N. oceanica IMET1, causing microalgal cells to aggregate after 3 days of incubation, while the total lipid content of the microalgal cells was not affected. Direct interaction of HW001 and N. oceanica is necessary for aggregation. HW001 can also aggregate the microalgae N. oceanica CT-1, Tetraselmis suecica, and T. chuii as well as the cyanobacterium Synechococcus WH8007. 16S rRNA gene sequence comparisons indicated the great novelty of this strain, which exhibited only 89% sequence similarity with any previously cultured bacteria. Specific primers targeted to HW001 revealed that the strain originated from the Permian groundwater. This study of the bacterial communities associated with potential biofuel-producing microalgae addresses a little-investigated area of microalgal biofuel research and provides a novel approach to harvest biofuel-producing microalgae by using the novel bacterium strain HW001. PMID:22194289

  16. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.

    PubMed

    Radakovits, Randor; Jinkerson, Robert E; Fuerstenberg, Susan I; Tae, Hongseok; Settlage, Robert E; Boore, Jeffrey L; Posewitz, Matthew C

    2012-02-21

    The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.

  17. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  18. Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis.

    PubMed

    Shimakawa, Ginga; Akimoto, Seiji; Ueno, Yoshifumi; Wada, Ayumi; Shaku, Keiichiro; Takahashi, Yuichiro; Miyake, Chikahiro

    2016-12-01

    Some cyanobacteria, but not all, experience an induction of alternative electron flow (AEF) during CO2-limited photosynthesis. For example, Synechocystis sp. PCC 6803 (S. 6803) exhibits AEF, but Synechococcus elongatus sp. PCC 7942 does not. This difference is due to the presence of flavodiiron 2 and 4 proteins (FLV2/4) in S. 6803, which catalyze electron donation to O2. In this study, we observed a low-[CO2] induced AEF in the marine cyanobacterium Synechococcus sp. PCC 7002 that lacks FLV2/4. The AEF shows high affinity for O2, compared with AEF mediated by FLV2/4 in S. 6803, and can proceed under extreme low [O2] (about a few µM O2). Further, the transition from CO2-saturated to CO2-limited photosynthesis leads a preferential excitation of PSI to PSII and increased non-photochemical quenching of chlorophyll fluorescence. We found that the model green alga Chlamydomonas reinhardtii also has an O2-dependent AEF showing the same affinity for O2 as that in S. 7002. These data represent the diverse molecular mechanisms to drive AEF in cyanobacteria and green algae. In this paper, we further discuss the diversity, the evolution, and the physiological function of strategy to CO2-limitation in cyanobacterial and green algal photosynthesis.

  19. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  20. A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp.

    PubMed

    Hietala, David C; Faeth, Julia L; Savage, Phillip E

    2016-08-01

    Hydrothermal liquefaction (HTL) is a technology for converting algal biomass into biocrude oil and high-value products. To elucidate the underlying kinetics for this process, we conducted isothermal and non-isothermal reactions over a broad range of holding times (10s-60min), temperatures (100-400°C), and average heating rates (110-350°Cmin(-1)). Biocrude reached high yields (⩾37wt%) within 2min for heat-source set-point temperatures of 350°C or higher. We developed a microalgal HTL kinetic model valid from 10s to 60min, including significantly shorter timescales (10s-10min) than any previous model. The model predicts that up to 46wt% biocrude yields are achievable at 400°C and 1min, reaffirming the utility of short holding times and "fast" HTL. We highlight potential trade-offs between maximizing biocrude quantity and facilitating aqueous phase recovery, which may improve biocrude quality.

  1. Supercritical water gasification of microalga Nannochloropsis over supported Ni and Ru catalysts

    NASA Astrophysics Data System (ADS)

    Wijenayake, A. G. B. S. P.; Hassan, M.; Komiyama, M.

    2016-11-01

    Supercritical water gasification (SCWG) of a marine microalga Nannochloropsis was performed in the presence and the absence of supported Ru and Ni catalysts at 385 °C and 26 MPa using a batch reactor. The product gas of the non-catalytic reaction mainly comprised of CO2 while that of catalytic reaction produced CH4, CO2, H2 and some C2-C4 compounds. The addition of catalysts enhanced the decomposition and conversion (water-gas shift and methanation) reactions, consequently increasing the total gasification efficiency up to 92% for 60 min reaction time. Between the supported Ru and Ni catalysts, Ru resulted in higher gasification efficiency than Ni. Catalyst deactivation during SCWG of Nannochloropsis was also examined.

  2. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  3. High iron content and bioavailability in humans from four species of marine algae.

    PubMed

    García-Casal, Maria N; Pereira, Ana C; Leets, Irene; Ramírez, José; Quiroga, Maria F

    2007-12-01

    Searching for economical, nonconventional sources of iron is important in underdeveloped countries to combat iron deficiency and anemia. Our objective was to study iron, vitamin C, and phytic acid composition and also iron bioavailability from 4 species of marine algae included in a rice-based meal. Marine algae (Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp) were analyzed for monthly variations in iron and for ascorbic acid and phytic acid concentrations. A total of 96 subjects received rice-based meals containing the 4 species of marine algae in different proportions, raw or cooked. All meals contained radioactive iron. Absorption was evaluated by calculating the radioactive iron incorporation in subjects' blood. Iron concentrations in algae were high and varied widely, depending on the species and time of year. The highest iron concentrations were found in Sargassum (157 mg/100 g) and Gracilariopsis (196 mg/100 g). Phytates were not detected in the algae and ascorbic acid concentration fluctuated between 38 microg/g dry weight (Ulva) and 362 microg/g dry weight (Sargassum). Algae significantly increased iron absorption in rice-based meals. Cooking did not affect iron absorption compared with raw algae. Results indicate that Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp are good sources of ascorbic acid and bioavailable iron. The percentage of iron absorption was similar among all algae tested, although Sargassum sp resulted in the highest iron intake. Based on these results, and on the high reproduction rates of algae during certain seasons, promoting algae consumption in some countries could help to improve iron nutrition.

  4. Comparative study of tissue deposition of omega-3 fatty acids from polar-lipid rich oil of the microalgae Nannochloropsis oculata with krill oil in rats.

    PubMed

    Kagan, Michael L; Levy, Aharon; Leikin-Frenkel, Alicia

    2015-01-01

    Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) exert health benefits which are dependent upon their incorporation into blood, cells and tissues. Plasma and tissue deposition of LC n-3 PUFA from oils extracted from the micro-algae Nannochloropsis oculata and from krill were compared in rats. The algal oil provides eicosapentaenoic acid (EPA) partly conjugated (15%) to phospholipids and glycolipids but no docosahexaenoic acid (DHA), whereas krill oil provides both EPA and DHA conjugated in part (40%) to phospholipids. Rats fed a standard diet received either krill oil or polar-lipid rich algal oil by gavage daily for 7 days (5 ml oil per kg body weight each day). Fatty acid concentrations were analyzed in plasma, brain and liver, and two adipose depots since these represent transport, functional and storage pools of fatty acids, respectively. When measuring total LC n-3 PUFA (sum of EPA, docosapentaenoic acid (DPA) and DHA), there was no statistically significant difference between the algal oil and krill oil for plasma, brain, liver and gonadal adipose tissue. Concentrations of LC n-3 PUFA were higher in the retroperitoneal adipose tissue from the algal oil group. Tissue uptake of LC n-3 PUFA from an algal oil containing 15% polar lipids (glycolipids and phospholipids) was found to be equivalent to krill oil containing 40% phospholipids. This may be due to glycolipids forming smaller micelles during ingestive hydrolysis than phospholipids. Ingestion of fatty acids with glycolipids may improve bioavailability, but this needs to be further explored.

  5. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management

    SciTech Connect

    Crowe, Braden J.; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jonathan M.; Chavis, Aaron R.; Kyndt, John; Kacira, Murat; Ogden, Kimberly L.; Huesemann, Michael H.

    2012-10-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L ARID (Algae Raceway Integrated Design) pond. The ARID culture system utilizes a series of 8 to 20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to -9 °C, the water temperature was 18 °C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 - 25 % and 5 - 15 %, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acid comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 vs 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.34 vs. 3.47 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.

  6. Unlocking nature's treasure-chest: screening for oleaginous algae.

    PubMed

    Slocombe, Stephen P; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N; Black, Kenneth D; Stanley, Michele S; Day, John G

    2015-07-23

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for "health-foods" and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation.

  7. Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass

    SciTech Connect

    Kastner, James; Mani, Sudhagar; Das, K. C.; Hilten, Roger; Jena, Umakanta

    2014-11-30

    A two-stage hydrothermal liquefaction (HTL) process was developed to 1) reduce nitrogen levels in algal oil, 2) generate a nitrogen rich stream with limited inhibitors for recycle and algae cultivation, and 3) improve downstream catalytic hydrodenitrogenation and hydrodeoxygenation of the algal oil to refinery intermediates. In the first stage, low temperature HTL was conducted at 125, 175, and 225°C at holding times ranging from 1 to 30 min (time at reaction temperature). A consortium of three algal strains, namely Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga were used to grow and harvest biomass in a raceway system – this consortium is called the UGA Raceway strain throughout the report. Subsequent analysis of the final harvested product indicated that only two strains predominated in the final harvest - Chlorella sorokiniana and Scenedesmus bijuga. Two additional strains representing a high protein (Spirulina platensis) and high lipid algae (Nannochloropsis) strains were also used in this study. These strains were purchased from suppliers. S. platensis biomass was provided by Earthrise Nutritionals LLC (Calipatria, CA) in dry powder form with defined properties, and was stored in airtight packages at 4°C prior to use. A Nannochloropsis paste from Reed Mariculture was purchased and used in the two-stage HTL/HDO experiments. The solids and liquids from this low temperature HTL pretreatment step were separated and analyzed, leading to the following conclusions. Overall, these results indicate that low temperature HTL (200-250°C) at short residence times (5-15 min) can be used to lyse algae cells and remove/separate protein and nitrogen before subsequent higher temperature HTL (for lipid and other polymer hydrolysis) and HDO. The significant reduction in nitrogen when coupled with low protein/high lipid algae cultivation methods at scale could significantly improve downstream catalytic HDO results. However, significant barriers and

  8. Basis for the Resistance of Several Algae to Microbial Decomposition

    PubMed Central

    Gunnison, Douglas; Alexander, Martin

    1975-01-01

    The basis for the resistance of certain algae to microbial decomposition in natural waters was investigated using Pediastrum duplex, Staurastrum sp., and Fischerella muscicola as test organisms. Enzyme preparations previously found to convert susceptible algae into spheroplasts had no such effect on the resistant species, although glucose and galacturonic acid were released from P. duplex walls. Little protein or lipid but considerable carbohydrate was found in the walls of the refractory organisms, but resistance was not correlated with the presence of a unique sugar monomer. A substance present in Staurastrum sp. walls was characterized as lignin or lignin-like on the basis of its extraction characteristics, infrared spectrum, pyrolysis pattern, and content of an aromatic building block. Sporopollenin was found in P. duplex, and cellulose in Staurastrum sp. Cell walls of the algae were fractionated, and the fractions least susceptible to microbial degradation were the sporopollenin of P. duplex, the polyaromatic component of Staurastrum sp., and two F. muscicola fractions containing several sugar monomers. The sporopollenin content of P. duplex, the content of lignin or a related constituent of Staurastrum sp., and the resistance of the algae to microbial attack increased with age. It is suggested that resistance results from the presence of sporopollenin in P. duplex, a lignin-like material in Staurastrum sp., and possibly heteropolysaccharides in F. muscicola. PMID:808166

  9. Cloning and phylogenetic analysis of a fatty acid elongase gene from Nannochloropsis oculata CS179

    NASA Astrophysics Data System (ADS)

    Pan, Kehou; Ma, Xiaolei; Yu, Jianzhong; Zhu, Baohua; Yang, Guanpin

    2009-12-01

    Nannochloropsis oculata CS179, a unicellular marine microalga, is rich in long-chain polyunsaturated fatty acids (LCPUFAs). Elongase and desaturase play a key role in the biosynthesis of PUFAs. A new elongase gene, which encodes 322 amino acids, was identified via RT-PCR and 5' and 3' RACE. The sequence of the elongase gene was blast-searched in the NCBI GenBank and showed a similarity to those of the cryptosporidium. But the NJ-tree revealed that the N. oculata CS179 elongase clustered with those of the microalgae Phaeodactylum tricornutum, Ostreococcus tauri and Thalassiosira pseudonana.

  10. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  11. Ultrasonic disruption of algae cells

    NASA Astrophysics Data System (ADS)

    King, P. M.; Nowotarski, K.; Joyce, E. M.; Mason, T. J.

    2012-05-01

    During last decade there has been increasing interest in the production of sustainable fuels from microalgae (R.H. Wijffels and M.J. Barbosa, 2010; Singh et al 2011; D.H. Lee 2011). The aim of this project was to determine if algal cells can be ultrasonically disrupted to release lipids for biofuel production. Ultrasonic disruption of two unicellular algal species: Dunnaliella salina and Nannochloropsis oculata was investigated using a 20 kHz probe. Haemocytometer, optical density, UV-Vis, fluoro-spectrophotometer and confocal microscopy results demonstrated complete cell destruction of Dunaliella salina within 16 minutes of sonication. Results obtained for Nannochloropsis oculata differed in that ultrasound dispersed clumped cells with little or no cell disruption, as observed by haemocytometer and confocal microscopy analysis. However, UV-Visible and fluoro-spectrophotometer analysis indicated chlorophyll release following sonication, suggesting some cell disruption had occurred.

  12. Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis

    PubMed Central

    Hu, Jianqiang; Wang, Dongmei; Li, Jing; Jing, Gongchao; Ning, Kang; Xu, Jian

    2014-01-01

    Nannochloropsis spp. are a group of oleaginous microalgae that harbor an expanded array of lipid-synthesis related genes, yet how they are transcriptionally regulated remains unknown. Here a phylogenomic approach was employed to identify and functionally annotate the transcriptional factors (TFs) and TF binding-sites (TFBSs) in N. oceanica IMET1. Among 36 microalgae and higher plants genomes, a two-fold reduction in the number of TF families plus a seven-fold decrease of average family-size in Nannochloropsis, Rhodophyta and Chlorophyta were observed. The degree of similarity in TF-family profiles is indicative of the phylogenetic relationship among the species, suggesting co-evolution of TF-family profiles and species. Furthermore, comparative analysis of six Nannochloropsis genomes revealed 68 “most-conserved” TFBS motifs, with 11 of which predicted to be related to lipid accumulation or photosynthesis. Mapping the IMET1 TFs and TFBS motifs to the reference plant TF-“TFBS motif” relationships in TRANSFAC enabled the prediction of 78 TF-“TFBS motif” interaction pairs, which consisted of 34 TFs (with 11 TFs potentially involved in the TAG biosynthesis pathway), 30 TFBS motifs and 2,368 regulatory connections between TFs and target genes. Our results form the basis of further experiments to validate and engineer the regulatory network of Nannochloropsis spp. for enhanced biofuel production. PMID:24965723

  13. Omega-3 fatty acid obtained from Nannochloropsis oceanica cultures grown under low urea protect against Abeta-induced neural damage.

    PubMed

    Lai, Ying-Jang

    2015-05-01

    Amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD). Moreover, it has been reported that oxidative stress is involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Recently, docosahexaenoic acid (DHA; C22:6) and eicosapentaenoic acid (EPA; C20:5n-3) have been reported to protect against AD. However, these omega-3 fatty acids are frequently obtained from fish oil and may contain heavy metals. In this study, we utilized Nannochloropsis oceanica to produce omega-3 fatty acid. We observed that when urea levels (nitrogen source) were lowered from 2 to 0.2 g/L in Nannochloropsis oceanica cultures, EPA production increased. Moreover, EPA in Nannochloropsis oceanica effectively promoted antioxidant activity to counter the Abeta-induced oxidative stress in Neuro-2A cells. These results indicate that Nannochloropsis oceanica may be potentially used as a therapeutic agent or as a functional food that promotes protection against AD.

  14. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii

    PubMed Central

    Iwai, Masako; Hori, Koichi; Sasaki-Sekimoto, Yuko; Shimojima, Mie; Ohta, Hiroyuki

    2015-01-01

    Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation–dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances TAG accumulation in C. reinhardtii cells. As a result, the content of C18:1 fatty acid, a preferred substrate of CrDGTT4, is increased in TAGs. Here we isolated genes encoding SQD2 from strain NIES-2145 of the eustigmatophyte Nannochloropsis and showed that their expression, like that in C. reinhardtii, was up-regulated during P starvation. To enhance oil accumulation under P starvation, we transformed pCrSQD2-CrDGTT4 into Nannochloropsis strain NIES-2145. The transformants had a fatty acid composition that was more similar to that of C. reinhardtii, which resulted in enhanced TAG accumulation and higher 18:1(9) content. The results indicated that the P starvation–inducible promoter of C. reinhardtii was able to drive expression of the CrDGTT4 gene in Nannochloropsis strain NIES-2145 under P starvation. We conclude that the heterologous CrSQD2 promoter is effective in manipulating TAG synthesis in Nannochloropsis during P starvation. PMID:26441858

  15. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors

    PubMed Central

    Wijffels, René H.; Bolla, Sylvie; Kiron, Viswanath

    2017-01-01

    Nannochloropsis is an industrially-promising microalga that may be cultivated for alternative sources of nutrition due to its high productivity, protein content and lipid composition. We studied the growth and biochemical profile of Nannochloropsis 211/78 (CCAP) in optimized flat-plate photobioreactors. Eighteen cultivations were performed at two nutrient concentrations. The fatty acid, protein content and calorific values were analyzed after 8, 12 and 16 days. Neutral lipids were separated and the changes in fatty acids in triglycerides (TAGs) during nutrient depletion were recorded. The maximum cell density reached 4.7 g∙L-1 and the maximum productivity was 0.51 g∙L-1∙d-1. During nutrient-replete conditions, eicosapentaneoic acid (EPA) and total protein concentrations measured 4.2–4.9% and 50–55% of the dry mass, respectively. Nutrient starvation induced the accumulation of fatty acids up to 28.3% of the cell dry weight, largely due to the incorporation of C16:0 and C16:1n-7 fatty acyl chains into neutral lipids. During nutrient starvation the total EPA content did not detectibly change, but up to 37% was transferred from polar membrane lipids to the neutral lipid fraction. PMID:28103296

  16. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica.

    PubMed

    Li, Da-Wei; Cen, Shi-Ying; Liu, Yu-Hong; Balamurugan, Srinivasan; Zheng, Xin-Yan; Alimujiang, Adili; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2016-07-10

    Oleaginous microalgae have received a considerable attention as potential biofuel feedstock. However, lack of industry-suitable strain with lipid rich biomass limits its commercial applications. Targeted engineering of lipogenic pathways represents a promising strategy to enhance the efficacy of microalgal oil production. In this study, a type 2 diacylglycerol acyltransferase (DGAT), a rate-limiting enzyme in triacylglycerol (TAG) biosynthesis, was identified and overexpressed in heterokont oleaginous microalga Nannochloropsis oceanica for the first time. Overexpression of DGAT2 in Nannochloropsis increased the relative transcript abundance by 3.48-fold in engineered microalgae cells. TAG biosynthesis was subsequently accelerated by DGAT2 overexpression and neutral lipid content was significantly elevated by 69% in engineered microalgae. The fatty acid profile determined by GC-MS revealed that fatty acid composition was altered in engineered microalgae. Saturated fatty acids and polyunsaturated fatty acids were found to be increased whereas monounsaturated fatty acids content decreased. Furthermore, DGAT2 overexpression did not show negative impact on algal growth parameters. The present investigation showed that the identified DGAT2 would be a potential candidate for enhancing TAG biosynthesis and might facilitate the development of promising oleaginous strains with industrial potential.

  17. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9.

    PubMed

    Wang, Qintao; Lu, Yandu; Xin, Yi; Wei, Li; Huang, Shi; Xu, Jian

    2016-12-01

    Microalgae are promising feedstock for biofuels yet mechanistic probing of their cellular network and industrial strain development have been hindered by lack of genome-editing tools. Nannochloropsis spp. are emerging model microalgae for scalable oil production and carbon sequestration. Here we established a CRISPR/Cas9-based precise genome-editing approach for the industrial oleaginous microalga Nannochloropsis oceanica, using nitrate reductase (NR; g7988) as example. A new screening procedure that compares between restriction enzyme-digested nested PCR (nPCR) products derived from enzyme-digested and not-digested genomic DNA of transformant pools was developed to quickly, yet reliably, detect genome-engineered mutants. Deep sequencing of nPCR products directly amplified from pooled genomic DNA revealed over an 1% proportion of 5-bp deletion mutants and a lower frequency of 12-bp deletion mutants, with both types of editing precisely located at the targeted site. The isolated mutants, in which precise deletion of five bases caused a frameshift in NR translation, grow normally under NH4 Cl but fail to grow under NaNO3 , and thus represent a valuable chassis strain for transgenic-strain development. This demonstration of CRISPR/Cas9-based genome editing in industrial microalgae opens many doors for microalgae-based biotechnological applications.

  18. Exploration on Bioflocculation of Nannochloropsis oculata Using Response Surface Methodology for Biodiesel Production

    PubMed Central

    Surendhiran, Duraiarasan; Vijay, Mani

    2014-01-01

    Harvesting of algal biomass in biodiesel production involves high energy input and cost incurred process. In order to overcome these problems, bioflocculation process was employed and the efficiency of this process was further improved by the addition of a cationic inducer. In this work marine Bacillus subtilis was used for bioflocculation of Nannochloropsis oculata and ZnCl2 as cationic inducer. This study worked under the principle of divalent cationic bridging (DCB) theory. Under temperature stress and high pH, the bacterium produced exopolysaccharide that bound with microalga Nannochloropsis oculata and flocculated them. A maximum efficiency of 95.43% was observed with the optimised RSM parameters—temperature 30.78°C, pH 10.8, flocculation time 6.7 h, bioflocculant size 0.38 mL, and cationic inducer concentration 0.035 mM. The present investigation focused on the cost effective harvesting of microalga on a larger scale for biodiesel production than using toxic, ecofriendly chemical flocculants. PMID:24683320

  19. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors.

    PubMed

    Hulatt, Chris J; Wijffels, René H; Bolla, Sylvie; Kiron, Viswanath

    2017-01-01

    Nannochloropsis is an industrially-promising microalga that may be cultivated for alternative sources of nutrition due to its high productivity, protein content and lipid composition. We studied the growth and biochemical profile of Nannochloropsis 211/78 (CCAP) in optimized flat-plate photobioreactors. Eighteen cultivations were performed at two nutrient concentrations. The fatty acid, protein content and calorific values were analyzed after 8, 12 and 16 days. Neutral lipids were separated and the changes in fatty acids in triglycerides (TAGs) during nutrient depletion were recorded. The maximum cell density reached 4.7 g∙L-1 and the maximum productivity was 0.51 g∙L-1∙d-1. During nutrient-replete conditions, eicosapentaneoic acid (EPA) and total protein concentrations measured 4.2-4.9% and 50-55% of the dry mass, respectively. Nutrient starvation induced the accumulation of fatty acids up to 28.3% of the cell dry weight, largely due to the incorporation of C16:0 and C16:1n-7 fatty acyl chains into neutral lipids. During nutrient starvation the total EPA content did not detectibly change, but up to 37% was transferred from polar membrane lipids to the neutral lipid fraction.

  20. Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles1[OPEN

    PubMed Central

    Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric

    2016-01-01

    The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. PMID:27325666

  1. [Bacterial communities of brown and red algae from Peter the Great Bay, the Sea of Japan].

    PubMed

    Beleneva, I A; Zhukova, N V

    2006-01-01

    The structure of microbial communities of brown algae, red algae, and of the red alga Gracilaria verrucosa, healthy and affected with rotten thallus, were comparatively investigated; 61 strains of heterotrophic bacteria were isolated and characterized. Most of them were identified to the genus level, some Vibrio spp., to the species level according to their phenotypic properties and the fatty acid composition of cellular lipids. The composition of the microflora of two species of brown algae was different. In Chordaria flagelliformis, Pseudomonas spp. prevailed, and in Desmarestia viridis, Bacillus spp. The composition of the microflora of two red algae, G. verrucosa and Camphylaephora hyphaeoides, differed mainly in the ratio of prevailing groups of bacteria. The most abundant were bacteria of the CFB cluster and pseudoalteromonads. In addition, the following bacteria were found on the surface of the algae: Sulfitobacter spp., Halomonas spp., Acinetobacter sp., Planococcus sp., Arthrobacter sp., and Agromyces sp. From tissues of the affected G. verrucosa, only vibrios were isolated, both agarolytic and nonagarolytic. The existence of specific bacterial communities characteristic of different species of algae is suggested and the relation of Vibrio sp. to the pathological process in the tissues of G. verrucosa is supposed.

  2. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    SciTech Connect

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jon; Chavis, Aaron; Kyndt, John; Kacira, Murat; Ogden, Kim L.; Huesemann, Michael

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.

  3. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    DOE PAGES

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; ...

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superiormore » temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  4. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.

    PubMed

    Du, Zhi-Yan; Benning, Christoph

    2016-01-01

    Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis.

  5. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase.

  6. Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation.

    PubMed

    Kim, Chul Woong; Sung, Min-Gyu; Nam, Kibok; Moon, Myounghoon; Kwon, Jong-Hee; Yang, Ji-Won

    2014-05-01

    Although nitrogen starvation is frequently used to increase lipid contents in microalgae, it has a negative effect on cellular growth. Since light supply is essential for photosynthetic organisms, the effects of cultivation under monochromatic illumination on the growth and lipid contents of Nannochloropsis gaditana were assessed. Continuous cultivation under blue and red light conditions improved the productivity and physical properties for biodiesel from this microalga. FAME yield was twofold higher under red light than under normal white light (21.12% vs 11.35%), with no significant difference in growth rates. Blue and red light increased photosynthetic oxygen evolution, carbon fixation and nutrient uptake. In total, more significant physiological changes were observed under red than under blue light. These results show that red light illumination may be useful for enhancing lipid production by N. gaditana, with the increased photosynthetic reducing equivalents induced by red light which could be deposited as lipids and carbohydrates.

  7. Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana.

    PubMed

    Sung, Min-Gyu; Lee, Bongsoo; Kim, Chul Woong; Nam, Kibok; Chang, Yong Keun

    2017-04-01

    In the present study, a novel process-based cultivation system was designed to improve lipid productivity of Nannochloropsis gaditana, an oleaginous microalga that has high potential for biofuel production. Specifically, four flat-panel photobioreactors were connected in series, and this system was subjected to continuous chemostat cultivation by feeding fresh medium to the first reactor at dilution rates of 0.028 and 0.056day(-1), which were determined based on Monod kinetics. The results show that the serially connected photobioreactor system achieved 20.0% higher biomass productivity and 46.1% higher fatty acid methyl ester (FAME) productivity than a conventional single photobioreactor with equivalent dilution rate. These results suggest that a process-based approach using serially connected photobioreactors for microalgal cultivation can improve the productivity of lipids that can be used for biofuel production.

  8. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    PubMed Central

    Beacham, T.A.; Macia, V. Mora; Rooks, P.; White, D.A.; Ali, S.T.

    2015-01-01

    Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed. PMID:26753128

  9. Detoxification of ammonium to Nannochloropsis oculata and enhancement of lipid production by mixotrophic growth with acetate.

    PubMed

    Lin, Weitie; Li, Pengfei; Liao, Zipeng; Luo, Jianfei

    2017-03-01

    In this study, the toxicity of ammonium was removed in the microalga Nannochloropsis oculata by using acetate as a carbon source. Algal biomass and lipid production were significantly enhanced when N. oculata was grew on 0.5-50mM of ammonium and 16-64mM of acetate in mixotrophic conditions. When grown mixotrophically on 1mM of ammonium and 32mM of acetate, the biomass and lipid production reached 543mg/L and 279mg/L respectively, which were 1.5 and 9.4times higher than the levels generated when grown autotrophically on nitrate. This suggests that mixotrophic growth with acetate can be a useful method to enhance microalgal lipid production.

  10. Cloning and characterization of a delta-6 desaturase encoding gene from Nannochloropsis oculata

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Yu, Jianzhong; Zhu, Baohua; Pan, Kehou; Pan, Jin; Yang, Guanpin

    2011-03-01

    A gene ( NANOC-D6D) encoding a desaturase that removes two hydrogen atoms from fatty acids at delta 6 position was isolated from a cDNA library of Nannochloropsis oculata (Droop) D. J. Hibberd (Eustigmatophyceae). The unicellular marine microalga N. oculata synthesizes rich long chain polyunsaturated fatty acids (LCPUFAs), including eicosapentaenoic acid (20:5n-3, EPA). The deduced protein contains 474 amino acids that fold into 4 trans-membrane domains. The neighbor-joining phylogenetic tree indicates that NANOC-D6D is phylogenetically close to the delta-6 fatty acid desaturase of marine microalgae such as Glossomastix chrysoplasta, Thalassiosira pseudonana, and Phaeodactylum tricornutum. The gene was expressed in Saccharomyces cerevisiae INVScl to verify the substrate specificity of NANOC-D6D. Our results suggest that the recombinant NANOC-D6D simultaneously desaturates linoleic acid (LA) and α-linolenic acid (ALA).

  11. Purification of triacylglycerols for biodiesel production from Nannochloropsis microalgae by membrane technology.

    PubMed

    Giorno, Filomena; Mazzei, Rosalinda; Giorno, Lidietta

    2013-07-01

    Triacylglycerols recovery from wet microalgae is a key aspect of biodiesel production, because of the energetic balance gained from avoiding biomass drying. In order to isolate TAG from Nannochloropsis cells, the possibility to concentrate biomass and to recover TAG in a single step by membrane process was studied. Different polymeric membranes were selected and screened on the basis of adsorption test and permeation flux. Results showed that membrane of regenerated cellulose (RC) with nominal molecular weight cutoff of 100 kDa and 30 kDa gave the best performance. Indeed, permeate flux was stable during ultrafiltration experiment in concentration mode and no severe fouling/cake deposition was observed. Both membranes allowed to recover permeates with high content of triacylglicerols. However, a more purity of the triacylglicerols from the other co-products was only obtained with the 30 kDa RC membrane because the retention of the unwanted proteins was in the range of 89%.

  12. Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources

    NASA Astrophysics Data System (ADS)

    Wei, Likun; Huang, Xuxiong; Huang, Zhengzheng

    2014-09-01

    Microalgae Tetraselmis subcordiformis and Nannochloropsis oculata were cultured at 15, 20, 25, 30, and 35°C and their properties as potential biofuel resources were examined. The results indicate that T. subcordiformis and N. oculata grew best at 20°C and 25°C and yielded the highest total lipids at 20°C and 30°C, respectively. With increased temperature, neutral lipid and polyunsaturated fatty acids (FAs) decreased while saturated FAs increased, accompanied by increased monounsaturated FAs (MUFAs) in T. subcordiformis and decreased MUFAs in N. oculata; meanwhile, the predicted cetane number of FA methyl esters increased from 45.3 to 47.6 in T. subcordiformis and from 52.3 to 60.3 in N. oculata. Therefore, optimizing culture temperatures is important for improving microalgal biodiesel production.

  13. Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources

    NASA Astrophysics Data System (ADS)

    Wei, Likun; Huang, Xuxiong; Huang, Zhengzheng

    2015-01-01

    Microalgae Tetraselmis subcordiformis and Nannochloropsis oculata were cultured at 15, 20, 25, 30, and 35°C and their properties as potential biofuel resources were examined. The results indicate that T. subcordiformis and N. oculata grew best at 20°C and 25°C and yielded the highest total lipids at 20°C and 30°C, respectively. With increased temperature, neutral lipid and polyunsaturated fatty acids (FAs) decreased while saturated FAs increased, accompanied by increased monounsaturated FAs (MUFAs) in T. subcordiformis and decreased MUFAs in N. oculata; meanwhile, the predicted cetane number of FA methyl esters increased from 45.3 to 47.6 in T. subcordiformis and from 52.3 to 60.3 in N. oculata. Therefore, optimizing culture temperatures is important for improving microalgal biodiesel production.

  14. RNAi-based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica.

    PubMed

    Wei, Li; Xin, Yi; Wang, Qintao; Yang, Juan; Hu, Hanhua; Xu, Jian

    2017-03-01

    Microalgae are promising feedstock for renewable fuels such as biodiesel, yet development of industrial oleaginous strains has been hindered by the paucity and inefficiency of reverse genetics tools. Here we established an efficient RNAi-based targeted gene-knockdown method for Nannochloropsis spp., which are emerging model organisms for industrial microalgal oil production. The method achieved a 40-80% success rate in Nannochloropsis oceanica strain IMET1. When transcript level of one carbonic anhydrase (CA) was inhibited by 62-83% via RNAi, mutant cells exhibited photosynthetic oxygen evolution (POE) rates that were 68-100% higher than wild-type (WT) at pH 6.0, equivalent to WT at pH 8.2, yet 39-45% lower than WT at pH 9.0. Moreover, the mutant POE rates were negatively correlated with the increase of culture pH, an exact opposite of WT. Thus, a dynamic carbon concentration mechanism (CCM) that is highly sensitive to pH homeostasis was revealed, where the CA inhibition likely partially abrogated the mechanism that normally deactivates CCM under a high level of dissolved CO2 . Extension of the method to another sequenced N. oceanica strain of CCMP 1779 demonstrated comparable performance. Finally, McrBC-PCR followed by bisulfite sequencing revealed that the gene knockdown is mediated by the CG, CHG and CHH types of DNA methylation at the coding region of the targeted gene. The efficiency, robustness and general applicability of this reverse genetics approach suggested the possibility of large-scale RNAi-based gene function screening in industrial microalgae.

  15. Visualization of oxygen distribution patterns caused by coral and algae.

    PubMed

    Haas, Andreas F; Gregg, Allison K; Smith, Jennifer E; Abieri, Maria L; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  16. The Effect of Diel Temperature and Light Cycles on the Growth of Nannochloropsis oculata in a Photobioreactor Matrix

    PubMed Central

    Radford, Dale T.; Szabó, Milán; Lilley, Ross McC; Larkum, Anthony W. D.; Franklin, Jim B.; Kramer, David M.; Blackburn, Susan I.; Raven, John A.; Schliep, Martin; Ralph, Peter J.

    2014-01-01

    A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20°C versus a 15°C to 25°C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 µmol photons m−2 s−1. No differences in algal growth (Chlorophyll a) were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production. PMID:24465862

  17. [Ecological characteristic of benthic epipelic algae and the characteristic of water environment quality in heavily polluted river in city].

    PubMed

    Zhao, Zhen-hua; Ruan, Xiao-hong; Xing, Ya-nan; Ni, Li-xiao; Gao, Li-cun

    2009-12-01

    The water quality and algae community of Nanyuan Water System in the old city area of Suzhou were monitored for a year. Results showed that the water pollution in the studied area was mainly related to nitrogen (NH4+ -N and TN). Sometimes, they even exceeded the Environmental Quality Standards for Surface Water (GB 3838-2002, PRC) more than 5 times. 34 species of benthic epipelic algae were observed by microscope, and the species amount of diatom algae, green algae and blue algae are more than others. Their abundance and biomass are far higher than that of the pelagic algae in the same sites,and reach 2 145.5 x 10(4) cells/mL and 3.524 mg/mL,respectively. The dominant species of benthic epipelic algae in Nanyuan's water system are diatom algae and blue algae, most of which belong to the heterotrophic type or bi-trophic type algae, the typical genera include: Oscillaria amphibian (affiliated to Cyanophyta), Cyclotella sp., Melosira sp., Stephanodiscus hantzschii, Navicula sp., Nitzschia sp., Gomphonema (affiliated to Bacillariophyta) and so on. And their distribution of species and abundance are very nonuniform in different reach of heavily polluted city river, which relates to the pollutant characteristics of the river. The seasonal variety trend of the abundance for benthic algae showed that:summer > autumn > spring > winter, and that of biomass for benthic algae showed that: the biomass in winter is the most of four seasons and change extent of the biomass is not obvious in spring, summer and autumn. The research results can provide reference for the ecology restoration of city heavily polluted river.

  18. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  19. Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications.

    PubMed

    Mahltig, B; Soltmann, U; Haase, H

    2013-03-01

    Nanometer sized metal particles are used in many applications as antimicrobial materials. However in public discussion nanoparticular materials are a matter of concern due to potential health risks. Hence there is a certain demand for alternative antimicrobial acting materials. For this, the aim of this work is to realize an antimicrobial active material based on the release of metal ions from a natural depot. By this, the use of elemental metal particles or metal oxide particles in nanometer or micrometer scale is avoided. As natural depot four different algae materials (gained from Ascophyllum nodosum, Fucus vesicolosus, Spirulina platensis and Nannochloropsis) are used and loaded by bioabsorption with metal ions Ag(+), Cu(2+) and Zn(2+). The amount of metal bound by biosorption differs strongly in the range of 0.8 to 5.4 mg/g and depends on type of investigated algae material and type of metal ion. For most samples a smaller release of biosorbed Ag(+) and Cu(2+) is observed compared to a strong release of Zn(2+). The antibacterial activity of the prepared composites is investigated with Escherichia coli. Algae material without biosorbed metal has only a small effect on E. coli. Also by modification of algae with Zn(2+) only a small antibacterial property can be observed. Only with biosorption of Ag(+), the algae materials gain a strong bactericidal effect, even in case of a small amount of released silver ions. These silver modified algae materials can be used as highly effective bactericidal composites which may be used in future applications for the production of antimicrobial textiles, papers or polymer materials.

  20. SOME FACTORS IN THE COMPETITION OR ANTAGONISM AMONG BACTERIA, ALGAE, AND AQUATIC WEEDS.

    PubMed

    Filzgerald, G P

    1969-12-01

    Field observations of changes in the populations of aquatic weeds and phytoplankton have confirmed that aquatic weeds have antagonistic activity toward phytoplankton. Nutritional studies in the laboratory indicate that cultures of the aquatic weeds, Myriophyllum sp., Ceratophyllum sp., and duckweed (Lemma minor L.); liquid cultures of barley (Hordeum vulgare L., Dickson variety); and cultures of the filamentous green algae, Cladophora sp. and Pithophora oedogonium (Mont.) Withrock, will remain relatively free of epiphytes or competing phytoplankton if the cultures are nitrogen-limited. Field observations of Cladophora sp. have confirmed that the growth of epiphytes on the Cladophora is related to conditions of surplus available nitrogen compounds. It is proposed that this antagonistic activity may be due to a "nitrogen sink" effect in which the aquatic weeds or filamentous green algae prevent the growth of contaminating algae by competition for the limited nitrogen compounds available. However, the presence of bacteria-sized organisms which have selective toxicity to certain algae indicates that perhaps multiple factors exist. Discussed are the ecological implications of associations of certain algae with bacteria that have selective toxicities for other species of algae under certain environmental conditions such as nitrogen-limited growth.

  1. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  2. Unlocking nature’s treasure-chest: screening for oleaginous algae

    PubMed Central

    Slocombe, Stephen P.; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J.; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N.; Black, Kenneth D.; Stanley, Michele S.; Day, John G.

    2015-01-01

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for “health-foods” and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation. PMID:26202369

  3. Effects of CO₂ Concentration and pH on Mixotrophic Growth of Nannochloropsis oculata.

    PubMed

    Razzak, Shaikh A; Ilyas, Muhammad; Ali, Saad Aldin M; Hossain, Mohammad M

    2015-07-01

    This communication reports an experimental investigation of integrated CO2 bio-conversion, wastewater treatment, and biomass production by microalgae cultivation. In this regard, the effects of CO2 concentrations on mixotrophic growth kinetics of a microalgae strain (Nannochloropsis oculata) are conducted in a semi-batch photobioreactor. The concentration of CO2 in the feed stream is varied from 4 to 12 mol% by adjusting CO2-to-air ratio. The variation of pH of the synthetic wastewater culture media and nutrient uptake by the microalgae are also monitored. The experimental evaluation shows that 8 % CO2 gives the highest growth rate of N. oculata with a productivity of 0.088 g L(-1) day(-1). Under the studied conditions, the pH value of the culture media between 5.5 and 6.5 is favorable for the growth of N. oculata in mixotrophic condition. Among the nutrients available in the culture media, percentage of ammonia removal is found to be the highest (98.9 %) as compared that of other compounds such as nitrate (88.2 %) and phosphate (18.9 %). The thermochemical characteristics of the cultivated microalgae are assessed by thermogravimetric analysis in presence of air. The produced microalgae is thermally stable up to 200 °C. Following that, the microalgae biomass is sharply decomposed within 600 °C.

  4. A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture.

    PubMed

    Camacho-Rodríguez, J; Cerón-García, M C; González-López, C V; Fernández-Sevilla, J M; Contreras-Gómez, A; Molina-Grima, E

    2013-09-01

    Nannochloropsis gaditana is a microalga with a high nutritional value and a protein and polyunsaturated fatty acid (PUFA) content that makes it interesting as a feed in aquaculture. To maximize its productivity and nutritional value in large-scale culture, a well-known commercial medium was optimized to the most favorable nutrient level using commercial fertilizers. Optimal growth conditions were obtained in the alternative fertilizer-based medium at a nitrogen concentration of 11.3 mM, a phosphorus concentration of 0.16 mM, and a micronutrient concentration of 30 μL L(-1). This alternative medium allowed to obtain a biomass concentration similar to that achieved when using the commercial formula but with a reduction in Cu, Fe, and Mo content of 71%, 89%, and 99%, respectively. A maximum biomass productivity of 0.51 g L(-1) d(-1) was obtained. The eicosapentaenoic acid and protein contents of the biomass were 2.84% and 44% of dry weight, respectively.

  5. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    SciTech Connect

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.; Hook, Paul W.; Crowe, Braden J.; Huesemann, Michael H.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase in TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.

  6. Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata.

    PubMed

    Olofsson, Martin; Lamela, Teresa; Nilsson, Emmelie; Bergé, Jean-Pascal; del Pino, Victória; Uronen, Pauliina; Legrand, Catherine

    2014-03-31

    Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L⁻¹ day⁻¹) compared to N-sufficiency (0.11 g L⁻¹ day⁻¹). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.

  7. Combined Effects of Nitrogen Concentration and Seasonal Changes on the Production of Lipids in Nannochloropsis oculata

    PubMed Central

    Olofsson, Martin; Lamela, Teresa; Nilsson, Emmelie; Bergé, Jean-Pascal; del Pino, Victória; Uronen, Pauliina; Legrand, Catherine

    2014-01-01

    Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material. PMID:24691025

  8. Choreography of Transcriptomes and Lipidomes of Nannochloropsis Reveals the Mechanisms of Oil Synthesis in Microalgae.

    PubMed

    Li, Jing; Han, Danxiang; Wang, Dongmei; Ning, Kang; Jia, Jing; Wei, Li; Jing, Xiaoyan; Huang, Shi; Chen, Jie; Li, Yantao; Hu, Qiang; Xu, Jian

    2014-04-01

    To reveal the molecular mechanisms of oleaginousness in microalgae, transcriptomic and lipidomic dynamics of the oleaginous microalga Nannochloropsis oceanica IMET1 under nitrogen-replete (N+) and N-depleted (N-) conditions were simultaneously tracked. At the transcript level, enhanced triacylglycerol (TAG) synthesis under N- conditions primarily involved upregulation of seven putative diacylglycerol acyltransferase (DGAT) genes and downregulation of six other DGAT genes, with a simultaneous elevation of the other Kennedy pathway genes. Under N- conditions, despite downregulation of most de novo fatty acid synthesis genes, the pathways that shunt carbon precursors from protein and carbohydrate metabolic pathways into glycerolipid synthesis were stimulated at the transcript level. In particular, the genes involved in supplying carbon precursors and energy for de novo fatty acid synthesis, including those encoding components of the pyruvate dehydrogenase complex (PDHC), glycolysis, and PDHC bypass, and suites of specific transporters, were substantially upregulated under N- conditions, resulting in increased overall TAG production. Moreover, genes involved in the citric acid cycle and β-oxidation in mitochondria were greatly enhanced to utilize the carbon skeletons derived from membrane lipids and proteins to produce additional TAG or its precursors. This temporal and spatial regulation model of oil accumulation in microalgae provides a basis for improving our understanding of TAG synthesis in microalgae and will also enable more rational genetic engineering of TAG production.

  9. The influence of cultivation period on growth and biodiesel properties of microalga Nannochloropsis gaditana 1049.

    PubMed

    Hu, Qunju; Xiang, Wenzhou; Dai, Shikun; Li, Tao; Yang, Fangfang; Jia, Qikun; Wang, Guanghua; Wu, Hualian

    2015-09-01

    This work reported for the first time the detailed impacts of cultivation period on growth dynamics and biochemical composition of a microalga strain Nannochloropsis gaditana 1049. The results shown either the biomass accumulation, lipid content, neutral lipid content, monounsaturated fatty acids composition or the favorable fatty acid profile of C16-C18 increased along with the cultivation period extension, but the lipid productivity displayed a decrease since cultured for 16 days, with the highest value reached 289.51 ± 16.34 mg L(-1) d(-1). Biodiesel properties of this microalga also changed with the cultivation period extension, with average unsaturated degree decreased from 1.24 ± 0.03 to 0.59 ± 0.02, cloud point increased from 3.39 ± 0.40 °C to 12.14 ± 0.32 °C, cetane number increased from 54.59 ± 0.20 to 58.96 ± 0.16 and iodine number reduced sharply from 105.15 ± 2.24 gI2/100g to 56.44 ± 1.76 gI2/100g, which all satisfied the specifications of biodiesel standard.

  10. The utilization of natural soda resource of Ordos in the cultivation of Nannochloropsis oceanica.

    PubMed

    Pan, Yanfei; Yang, Haibo; Meng, Yingying; Liu, Jiao; Shen, Peili; Wu, Peichun; Cao, Xupeng; Xue, Song

    2016-01-01

    Nannochloropsis oceanica is famous for its strong environmental adaptability and oil-richness, especially high eicosapentaenoic acid (EPA) content. In this report, the possibility and cultivation parameters for N. oceanica using natural crude soda were testified and compared with seawater culture. To keep a suitable salinity range, different ratio of sea salt addition into soda lake water were used and the growth, lipid content, Fv/Fm and fatty acids profiling were inspected with nitrogen repletion or depletion. The results showed the best performance were achieved while 18g/L (salinity 25‰) sea salt was added into crude soda solution. The μmax and EPA content in fatty acids were 0.72/0.42 and 36%/23% in 500mL/100L bioreactor cultivations respectively, which maintained a relative high productivity to other reports. By comparing the growth and operations with Spirulina production, the feasibility of N. Oceanica in Ordos was proved on both technical and economical point of view.

  11. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch.

  12. Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Pan, Kehou; Zhang, Lin; Zhu, Baohua; Yang, Guanpin; Zhang, Xiangyang

    2016-04-01

    The gene ble from Streptoalloteichus hindustanus is widely used as a selective antibiotic marker. It can control the phleomycin resistance, and significantly increase the tolerance of hosts to zeocin. The unicellular marine microalga Nannochloropsis oculata is extremely sensitive to zeocin. We selected ble as the selective marker for the genetic transformation of N. oculata. After the algal cells at a density of 2×107 cells mL-1 was digested with 4% hemicellulase and 2% driselase for 1 h, the protoplasts accounted for 90% of the total. The ble was placed at the downstream of promoter HSP70A-RUBS2 isolated from Chlamydomonas reinhardtii, yielding a recombinant expression construct pMS188. The construct was transferred into the protoplasts through electroporation (1 kV, 15 μS). The transformed protoplasts were cultured in fresh f/2 liquid medium, and selected on solid f/2 medium supplemented with 500 ng mL-1 zeocin. The PCR result proved that ble existed in the transformants. Three transformants had been cultured for at least 5 generations without losing ble. Southern blotting analysis showed that the ble has been integrated into the genome of N. oculata. The ble will serve as a new dominant selective marker in genetic engineering N. oculata.

  13. Brown algae (Phaeophyta) for monitoring heavy metals at the Sudanese Red Sea coast

    NASA Astrophysics Data System (ADS)

    Ali, Abuagla Y. A.; Idris, Abubakr M.; Ebrahim, Ammar M.; Eltayeb, Mohmaed A. H.

    2017-02-01

    This study aimed at monitoring some heavy metals at the Sudanese Red Sea coast using Brown algae (Phaeophyta) as biomonitor. The total contents of heavy metals in four species (Turbinaria sp., Sargassum sp., Cystoseira sp. and Padina sp.) as well as seawater were examined. Twenty-six algae samples were collected from seven locations. The ranges of concentrations (µg/g, dry wt.) of heavy metals in algae were 4.95-16.95 for Cr, 2.93-257.32 for Mn, 1.35-7.43 for Ni, 0.83-14.10 for Cu, 4.13-19.13 for Zn, 0.03-0.15 for Cd and 0.45-2.18 for Pb. The ranges of the pH and the salinity of seawater from the same locations were 8.11-8.82 and 38.00-41.00 PSU, respectively. The ranges of concentrations (µg/L) of heavy metals in seawater were 7.00-11.00 for Cr, 2.90-10.20 for Mn, 6.70-10.10 for Ni, 1.70-5.00 for Cu, 0.94-5.70 for Zn, 0.09-0.14 for Cd and 0.93-1.80 for Pb. No significant correlations between metal concentrations in algae and seawater were observed. Some locations in the study area recorded relatively high levels of heavy metals in algae indicating possible contribution from manmade activities. Cr recorded higher levels in the study area than those in other coastal areas in the word. Padina sp. and Cystoseira sp. were better bioindicator than Turbinaria sp., Sargassum sp. for their high metal uptake.

  14. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.

    PubMed

    Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E

    2016-02-29

    The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO3(S); however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca(2+) onto the cell surface which provides nucleation sites for CaCO3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO3(S). Removal of algae in the presence of Ca(2+) and Mg(2+) required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca(2+) concentration can be optimized for algae removal via coagulation-sedimentation.

  15. Freshwater algae competition and correlation between their growth and microcystin production.

    PubMed

    Álvarez, Xana; Valero, Enrique; Cancela, Ángeles; Sánchez, Ángel

    2016-11-01

    There are some different freshwater algae in Eutrophic reservoirs which bloom with specific environmental conditions, and some of them are cyanobacteria. In this investigation, we have cultivated microalgae present in natural water samples from a eutrophic reservoir. Variations in temperature and light were evaluated, as well as the competition among different green algae and cyanobacteria. There were three different freshwater algae growing together, Scenedesmus sp., Kirchneriella sp. and Microcystis aeruginosa, this cyanobacterium was the algae that reached the highest development and growth during the culture. While the algae grew, the concentration of toxin (microcystin-LR) increased until it reached the highest levels at 570 μg g(-1). Blooms occurred at temperatures of 28 ± 1.5 °C and light cycles of longer hours of light than dark. This took place during the summer months, from June to September (in the study area). At temperatures below 18 °C, algae did not grow. Blooms were reproduced to a laboratory scale in different conditions in order to understand the development of freshwater algae, as well as to help decision-making about water supply from that reservoir.

  16. Giant viruses infecting algae.

    PubMed

    Van Etten, J L; Meints, R H

    1999-01-01

    Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.

  17. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  18. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-27

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies.

  19. Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production.

    PubMed

    Kim, Bora; Chang, Yong Keun; Lee, Jae W

    2017-02-16

    In situ transesterification of wet microalgae is a promising, simplified alternative biodiesel production process that replaces multiple operations of cell drying, extraction, and transesterification reaction. This study addresses enhanced biodiesel production from Nannochloropsis gaditana at elevated temperatures. Compared with the previously reported in situ transesterification process of conducting the reaction at a temperature ranging from 95 to 125 °C, the present work employs higher temperatures of at least 150 °C. This relatively harsh condition allows much less acid catalyst with or without co-solvent to be used during this single extraction-conversion process. Without any co-solvent, 0.58% (v/v) of H2SO4 in the reaction medium can achieve 90 wt% of the total lipid conversion to biodiesel at 170 °C when the moisture content of wet algal paste is 80 wt%. Here, the effects of temperature, acid catalyst, and co-solvent on the FAEE yield and specification were scrutinized, and the reaction kinetic was investigated to understand the solvothermal in situ transesterification reaction at the high temperature. Having a biphasic system (water/chloroform) during the reaction also helped to meet biodiesel quality standard EN 14214, as Na(+), K(+), Ca(2+), Mg(2+) cations and phosphorus were detected only below 5 ppm. With highlights on the economic feasibility, wet in situ transesterification at the high temperature can contribute to sustainable production of biodiesel from microalgae by reducing the chemical input and relieve the burden of extensive post purification process, therefore a step towards green process.

  20. Longitudinal analysis of microbiota in microalga Nannochloropsis salina cultures

    SciTech Connect

    Geng, Haifeng; Sale, Kenneth L.; Tran-Gyamfi, Mary Bao; Lane, Todd W.; Yu, Eizadora T.

    2016-03-08

    Here, large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded with the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.

  1. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  2. Ruminant Nutrition Symposium: The utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets.

    PubMed

    Lodge-Ivey, S L; Tracey, L N; Salazar, A

    2014-04-01

    Two experiments were conducted to determine the influence of lipid extracted algae (LEA) on OM digestibility, N flow, and rumen fermentation. Six samples of LEA were evaluated representing 2 genus of microalgae (Nannochloropsis spp. [n = 3] or Chlorella spp. [n = 3]). Four dual-flow continuous flow fermenters (2,700 mL) were used in a Latin square design to evaluate LEA in forage or concentrate diets compared with soybean meal. Temperature (39 °C), pH, solid (5%/h) and liquid (10%/h) dilution rates, and feed schedule were maintained constant for all experiments. Each experimental period consisted of 6-d adaptation and 4-d sampling periods. There were 7 treatments consisting of 6 different samples of LEA and a soybean meal control (SOY). Diets for Exp.1 were formulated to be 13.0% CP (DM basis) using either soybean meal or LEA and met or exceeded the requirements of a nonpregnant and nonlactating beef cow (450 kg). The forage portion consisted of sorghum-sudan hay (6.4% CP and 46.2% TDN, DM basis) and alfalfa (26.1% CP and 82.3% TDN, DM basis). Concentrate diets used in Exp. 2 met or exceeded the nutrient requirements of a (400 kg) growing steer and contained 85% fine ground corn and included 7% (DM basis) soybean meal or LEA. Data were analyzed as mixed model considering the effect of each LEA compared with soybean meal. Orthogonal contrasts were used to determine the overall effect of LEA genus vs. SOY. True OM digestibility were not influenced by LEA addition to forage diets (P ≥ 0.08) but increased with Chlorella LEA addition to concentrate diets (P < 0.01) but not Nannochloropsis LEA. Degradation of N was greater for SOY with forage diets and LEA for concentrate diets (P < 0.0001). Total VFA production was greatest for SOY in forage diets and increased when LEA was added to concentrate diets (P < 0.0001). Microbial efficiency did not differ between SOY and LEA in forage diets (P ≤ 0.08). In concentrate diets Nannochloropsis decreased microbial efficiency

  3. TFA and EPA Productivities of Nannochloropsis salina Influenced by Temperature and Nitrate Stimuli in Turbidostatic Controlled Experiments

    PubMed Central

    Hoffmann, Maren; Marxen, Kai; Schulz, Rüdiger; Vanselow, Klaus Heinrich

    2010-01-01

    The influence of different nitrate concentrations in combination with three cultivation temperatures on the total fatty acids (TFA) and eicosapentaenoic acid (EPA) content of Nannochloropsis salina was investigated. This was done by virtue of turbidostatic controlled cultures. This control mode enables the cultivation of microalgae under defined conditions and, therefore, the influence of single parameters on the fatty acid synthesis of Nannochloropsis salina can be investigated. Generally, growth rates decreased under low nitrate concentrations. This effect was reinforced when cells were exposed to lower temperatures (from 26 °C down to 17 °C). Considering the cellular TFA concentration, nitrate provoked an increase of TFA under nitrate limitation up to 70% of the biological dry mass (BDM). In contrast to this finding, the EPA content decreased under low nitrate concentrations. Nevertheless, both TFA and EPA contents increased under a low culture temperature (17 °C) compared to moderate temperatures of 21 °C and 26 °C. In terms of biotechnological production, the growth rate has to be taken into account. Therefore, for both TFA and EPA production, a temperature of 17 °C and a nitrate concentration of 1800 μmol L−1 afforded the highest productivities. Temperatures of 21 °C and 26 °C in combination with 1800 μmol L−1 nitrate showed slightly lower TFA and EPA productivities. PMID:20948904

  4. Notes on freshwater and terrestrial algae from Ny-Alesund, Svalbard (high Arctic sea area).

    PubMed

    Kim, Gwang Hoon; Klochkova, Tatyana A; Kang, Sung Ho

    2008-07-01

    Field survey of algae and cyanobacteria from terrestrial and freshwater habitats in the vicinity of arctic Ny-Alesund, Svalbard (790N) (high Arctic sea area) was performed in June 2006. Species diversity and abundance were evaluated by using epifluorescence microscopy and culturing methods. In total, 29 taxa in 25 genera were identified, of which Leptolyngbya spp., Trichormus sp. and Chlamydomonas nivalis were abundantly present in almost every sample. In several locations, blooms were formed by species C. nivalis, Scotiellopsis sp., Klebsormidium flaccidum, Zygnema sp., Meridion circulare, Tabellaria fenestrata and Fragilaria sp. Eleven new species from this locality are described.

  5. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    SciTech Connect

    Phaneuf, D.; Cote, I.; Dumas, P.; Ferron, L.A.; LeBlanc, A.

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine, and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.

  6. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  7. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  8. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  9. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  10. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  11. Feasibility and Treatment of Oil and Gas Produced Water as a Medium for Nannochloropsis Salina cultivation

    SciTech Connect

    Sullivan, Enid J.; Dean, Cynthia A.; Yoshida, Thomas M.; Steichen, Seth A.; Laur, Paul A.; Visolay, Alfonz

    2012-06-06

    Some conclusions of this paper are: (1) How much PW is available - (a) Lots, but probably not enough to support the largest estimates of algae production needed, (b) Diluent water is likely needed to support cultivation in some cases, (c) An assessment of how much PW is really available for use is needed; (2) Where is it available - (a) In many places near other resources (land, CO{sub 2}, sunlight, nutrients) and infrastructure (pipelines, refineries, disposal operations/wells); (3) Is the water chemistry acceptable for use - (a) Yes, in many cases with minimal treatment, (b) Additional constituents of value exist in PW for media; (4) Does it need treatment prior to use - (a) Yes, it may often need treatment for organics, some metals, and biological contaminants, (b) Source control and monitoring can reduce need for treatment; (5) How much does it cost to treat it - (a) If desalination is not needed, from <$0.01-$0.60 per m3 is a starting estimate; and (6) Can you grow algae in it - (a) Yes, but we need more experimentation to optimize field conditions, media mixing, and algae types.

  12. Rapid Evolution of microRNA Loci in the Brown Algae.

    PubMed

    Cock, J Mark; Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P; Coelho, Susana M; Tarver, James E

    2017-03-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function.

  13. Rapid Evolution of microRNA Loci in the Brown Algae

    PubMed Central

    Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P.; Coelho, Susana M.; Tarver, James E.

    2017-01-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function. PMID:28338896

  14. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  15. Superlubricity of a natural polysaccharide from the alga Porphyridium sp.

    NASA Astrophysics Data System (ADS)

    Gourdon, Delphine; Lin, Qi; Israelachvili, Jacob

    2005-03-01

    Using a surface forces apparatus we have studied the adhesive and lubrication forces of mica surfaces separated by a molecularly-thin, sub-nanometer, film of a high molecular weight (2.6 MDa) naturally occurring anionic polysaccharide adsorbed from aqueous solution. The adhesion and friction forces of the biopolymer were monitored as a function of time, shearing distance and driving velocity under a large range of compressive loads. Although the thickness of the confined biopolymer was <1 nm, the friction was ultra-low (coefficient of friction = 0.015) at pressures up to 100 atm and over 4 decades of velocity with no wear. Complementary atomic force microscopy imaging in solution shows that the biopolymer adsorbs well to the mica surface but remains mobile and easily dragged upon shearing. The good adsorption of this polysaccharide to negatively charged surfaces, its low friction, its robustness (high-load carrying capacity and wear protection), as well as the weak (logarithmic) dependency of the friction on the sliding velocity make it, or this class of polyelectrolytes, excellent candidates for use in water-based lubricant fluids and as potential additives to synovial fluid in joints and other biolubricating fluids. The physical reasons for the tribological properties of this polysaccharide will be discussed.

  16. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation.

  17. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Ni, Wanmin; Luo, Yang; Jan Stevenson, R.; Qi, Jiaguo

    Although frequent algal blooms in Taihu Lake in China have become major environmental problems and have drawn national and international attention, little is understood about the relationship between algal blooms and water quality. The goal of this study was to assess the growth and species responses of freshwater algae to variation in water quality in Qinshan Lake, located in headwaters of the Taihu watershed. Water samples were collected monthly from ten study sites in the Qinshan Lake and were analyzed for species distribution of freshwater algae and physiochemical parameters such as total nitrogen (TN), NH4+-N, NO3--N, total phosphorus (TP), chemical oxygen demand (COD Mn) and Chl-a. The results showed that average TN was 4.47 mg/L, with 92.2% of values greater than the TN standard set by the Chinese Environmental Protection Agency; average TP was 0.051 mg/L, with 37.9% of values above the TP national standard; and average trophic level index (TLI) was 53, the lower end of eutrophic condition. Average Chl-a concentration was 12.83 mg/m 3. Green algae and diatom far outweighed other freshwater algae and were dominant most time of the year, with the highest relative abundances of 96% and 99%, respectively. Blue-green algae, composed mainly toxic strains like Microcystis sp ., Nostoc sp. and Oscillatoria sp., became most dominant in the summer with the maximum relative abundance of 69%. The blue-green algae sank to the lake bottom to overwinter, and then dinoflagellates became the dominant species in the winter, with highest relative abundance of 89%. Analysis indicated that nutrients, especially control of ammonia and co-varying nutrients were the major restrictive factor of population growth of blue-green algae, suggesting that control in nutrient enrichments is the major preventive measure of algal blooms in Qinshan Lake.

  18. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp.

    PubMed

    Lee, Young-Ki; Ahn, Chi-Yong; Kim, Hee-Sik; Oh, Hee-Mock

    2010-11-01

    A bacterium, which was observed in all cultivations of Microcystis sp., was isolated and designated as Rhodococcus sp. KWR2. The growth of bloom-forming cyanobacteria, including four strains of Microcystis aeruginosa and Anabaena variabilis, was suppressed by up to 75-88% by 2% (v/v) culture broth of KWR2 after 5 days. But KWR2 did not inhibit eukaryotic algae, Chlorella vulgaris and Scenedesmus sp. An extracellular algicidal substance produced by KWR2 showed a cyanobactericidal activity of 94% and was water-soluble with a molecular weight of lower than 8 kDa.

  19. Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors.

    PubMed

    San Pedro, A; González-López, C V; Acién, F G; Molina-Grima, E

    2014-10-01

    This work studied outdoor pilot scale production of Nannochloropsis gaditana in tubular photobioreactors. The growth and biomass composition of the strain were studied under different culture strategies: continuous-mode (varying nutrient supply and dilution rate) and two-stage cultures aiming lipid enhancement. Besides, parameters such as irradiance, specific nitrate input and dilution rate were used to obtain models predicting growth, lipid and fatty acids production rates. The range of optimum dilution rate was 0.31-0.351/day with maximum biomass, lipid and fatty acids productivities of 590, 110 and 66.8 mg/l day, respectively. Nitrate limitation led to an increase in lipid and fatty acids contents (from 20.5% to 38.0% and from 16.9% to 23.5%, respectively). Two-stage culture strategy provided similar fatty acids productivities (56.4 mg/l day) but the neutral lipids content was doubled.

  20. Effect of specific light supply rate on photosynthetic efficiency of Nannochloropsis salina in a continuous flat plate photobioreactor.

    PubMed

    Sforza, Eleonora; Calvaruso, Claudio; Meneghesso, Andrea; Morosinotto, Tomas; Bertucco, Alberto

    2015-10-01

    In this work, Nannochloropsis salina was cultivated in a continuous-flow flat-plate photobioreactor, working at different residence times and irradiations to study the effect of the specific light supply rate on biomass productivity and photosynthetic efficiency. Changes in residence times lead to different steady-state cell concentrations and specific growth rates. We observed that cultures at steady concentration were exposed to different values of light intensity per cell. This specific light supply rate was shown to affect the photosynthetic status of the cells, monitored by fluorescence measurements. High specific light supply rate can lead to saturation and photoinhibition phenomena if the biomass concentration is not optimized for the selected operating conditions. Energy balances were applied to quantify the biomass growth yield and maintenance requirements in N. salina cells.

  1. On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina.

    PubMed

    Hanson, David T; Collins, Aaron M; Jones, Howland D T; Roesgen, John; Lopez-Nieves, Samuel; Timlin, Jerilyn A

    2014-09-01

    Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.

  2. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  3. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  4. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    NASA Astrophysics Data System (ADS)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  5. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    PubMed

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery.

  6. The role of algae in mine drainage bioremediation

    SciTech Connect

    Davison, J. )

    1990-06-01

    The effect of mine drainage effluent on aquatic ecosystems has been abundantly documented and remediation efforts to data have always been costly and temporary at best. Bioremediation, using natural environmental microbes, to treat acid mine drainage has shown great promise as an affordable, permanent treatment. At Lambda, we used mixatrophic cultures of bacteria, algae, protozoans and fungal groups on four different jobs and it has proven effective. The role of two particular algal groups, the Euglena mutabilis and the Ochramonas sp. are particularly of phycological interest.

  7. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  8. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  9. The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus

    PubMed Central

    Simionato, Diana; Block, Maryse A.; La Rocca, Nicoletta; Jouhet, Juliette; Maréchal, Eric

    2013-01-01

    Microalgae of the genus Nannochloropsis are capable of accumulating triacylglycerols (TAGs) when exposed to nutrient limitation (in particular, nitrogen [N]) and are therefore considered promising organisms for biodiesel production. Here, after nitrogen removal from the medium, Nannochloropsis gaditana cells showed extensive triacylglycerol accumulation (38% TAG on a dry weight basis). Triacylglycerols accumulated during N deprivation harbored signatures, indicating that they mainly stemmed from freshly synthesized fatty acids, with a small proportion originating from a recycling of membrane glycerolipids. The amount of chloroplast galactoglycerolipids, which are essential for the integrity of thylakoids, decreased, while their fatty acid composition appeared to be unaltered. In starved cells, galactolipids were kept at a level sufficient to maintain chloroplast integrity, as confirmed by electron microscopy. Consistently, N-starved Nannochloropsis cells contained less photosynthetic membranes but were still efficiently performing photosynthesis. N starvation led to a modification of the photosynthetic apparatus with a change in pigment composition and a decrease in the content of all the major electron flow complexes, including photosystem II, photosystem I, and the cytochrome b6f complex. The photosystem II content was particularly affected, leading to the inhibition of linear electron flow from water to CO2. Such a reduction, however, was partially compensated for by activation of alternative electron pathways, such as cyclic electron transport. Overall, these changes allowed cells to modify their energetic metabolism in order to maintain photosynthetic growth. PMID:23457191

  10. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  11. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  12. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  13. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  14. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  15. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  16. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  17. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia...

  18. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  19. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  20. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  1. Algae -- a poor man's HAART?

    PubMed

    Teas, Jane; Hebert, James R; Fitton, J Helen; Zimba, Paul V

    2004-01-01

    Drawing inferences from epidemiologic studies of HIV/AIDS and in vivo and in vitro HIV inhibition by algae, we propose algal consumption as one unifying characteristic of countries with anomalously low rates. HIV/AIDS incidence and prevalence in Eastern Asia ( approximately 1/10000 adults in Japan and Korea), compared to Africa ( approximately 1/10 adults), strongly suggest that differences in IV drug use and sexual behavior are insufficient to explain the 1000-fold variation. Even in Africa, AIDS/HIV rates vary. Chad has consistently reported low rates of HIV/AIDS (2-4/100). Possibly not coincidentally, most people in Japan and Korea eat seaweed daily and the Kanemba, one of the major tribal groups in Chad, eat a blue green alga (Spirulina) daily. Average daily algae consumption in Asia and Africa ranges between 1 and 2 tablespoons (3-13 g). Regular consumption of dietary algae might help prevent HIV infection and suppress viral load among those infected.

  2. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  3. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  4. Three novel species of coccoid green algae within the Watanabea clade (Trebouxiophyceae, Chlorophyta).

    PubMed

    Song, Huiyin; Hu, Yuxin; Zhu, Huan; Wang, Qinghua; Liu, Guoxiang; Hu, Zhengyu

    2016-12-01

    Coccoid green algae are extremely diverse despite their simple coccoid phenotype, a phenotype that may be the result of convergent evolution. In this study, we used a polyphasic approach combining molecular phylogenetic analyses, morphology and ultrastructure to investigate isolated coccoid strains from China, and our results reveal three new lineages of Trebouxiophyceae: the novel genus and species Mysteriochloris nanningensis gen. et sp. nov., and the two novel species Phyllosiphon coccidium sp. nov. and Desertella yichangensis sp. nov. (Trebouxiophyceae, Chlorophyta). We provide a detailed characterization of the novel microalgae which they are autosporic coccoid unicells and have parietal chloroplasts. In phylogenies based on 18S rDNA sequences and the chloroplast ribulose-bisphosphate carboxylase gene (rbcL), these three algae are nested within the Watanabea clade and are different from any known algae. M. nanningensis FACHB-1787 is not really close to any known algae within the Watanabea clade. Phyllosiphoncoccidium FACHB-2212 is within the Phyllosiphon lineages. D. yichangensis FACHB-1793 is closely related to Desertella californica and described as a representative of a novel species of the genus Desertella.

  5. The effect of low temperature on Antarctic endolithic green algae

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Morris, G. J.; Friedmann, E. I.

    1988-01-01

    Laboratory experiments show that undercooling to about -5 degrees C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5 degrees C and -5 degrees C or -10 degrees C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50 degrees C. 14CO2 incorporation after freezing to -20 degrees C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.

  6. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment.

    PubMed

    Zhou, Wenguang; Cheng, Yanling; Li, Yun; Wan, Yiqin; Liu, Yuhuan; Lin, Xiangyang; Ruan, Roger

    2012-05-01

    A novel fungi pelletization-assisted bioflocculation technology was developed for efficient algae harvesting and wastewater treatment. Microalga Chlorella vulgaris UMN235 and two locally isolated fungal species Aspergillus sp. UMN F01 and UMN F02 were used to study the effect of various cultural conditions on pelletization process for fungi-algae complex. The results showed that pH was the key factor affecting formation of fungi-algae pellet, and pH could be controlled by adjusting glucose concentration and fungal spore number added. The best pelletization happened when adding 20 g/L glucose and approximately 1.2E8/L spores in BG-11 medium, under which almost 100% of algal cells were captured onto the pellets with shorter retention time. The fungi-algae pellets can be easily harvested by simple filtration due to its large size (2-5 mm). The filtered fungi-algae pellets were reused as immobilized cells for treatment wastewaters and the nutrient removal rates of 100, 58.85, 89.83, and 62.53 % (for centrate) and 23.23, 44.68, 84.70, and 70.34% (for diluted swine manure wastewater) for ammonium, total nitrogen, total phosphorus, and chemical oxygen demand, respectively, under both 1- and 2-day cultivations. The novel technology developed is highly promising compared with current algae harvesting and biological wastewater treatment technologies in the literature.

  7. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    PubMed

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments.

  8. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  9. Extracts of marine algae show inhibitory activity against osteoclast differentiation.

    PubMed

    Koyama, Tomoyuki

    2011-01-01

    Osteoclasts are multinucleated cells that play a crucial role in bone resorption. The imbalance between bone resorption and bone formation results in osteoporosis. Therefore, substances that can suppress osteoclast formation are potential candidate materials for drug development or functional foods. There have been reports that extracts or purified compounds from marine micro- and macroalgae can suppress osteoclast differentiation. Symbioimine, isolated from the cultured dinoflagellate Symbiodinium sp., had suppressive effects against osteoclast differentiation in osteoclast-like cells. Norzoanthamine, isolated from the colonial zoanthid Zoanthas sp., has been shown to have antiosteoporosis activity in ovariectomized mice. With regard to marine extracts, the fucoxanthin-rich component from brown algae has been shown to have suppressive effects against osteoclast differentiation. An extract of Sargassum fusiforme has recently been shown to have antiosteoporosis activity. This extract suppressed both osteoclast differentiation and accelerated osteoblast formation in separate in vitro experiments. It also showed antiosteoporosis activity in ovariectomized mice by regulating the balance between bone resorption and bone formation. These marine algae and their extracts may be sources of marine medicinal foods for the prevention of osteoporosis.

  10. Chimpanzees routinely fish for algae with tools during the dry season in Bakoun, Guinea.

    PubMed

    Boesch, Christophe; Kalan, Ammie K; Agbor, Anthony; Arandjelovic, Mimi; Dieguez, Paula; Lapeyre, Vincent; Kühl, Hjalmar S

    2017-03-01

    Wild chimpanzees regularly use tools, made from sticks, leaves, or stone, to find flexible solutions to the ecological challenges of their environment. Nevertheless, some studies suggest strong limitations in the tool-using capabilities of chimpanzees. In this context, we present the discovery of a newly observed tool-use behavior in a population of chimpanzees (Pan troglodytes verus) living in the Bakoun Classified Forest, Guinea, where a temporary research site was established for 15 months. Bakoun chimpanzees of every age-sex class were observed to fish for freshwater green algae, Spirogrya sp., from rivers, streams, and ponds using long sticks and twigs, ranging from 9 cm up to 4.31 m in length. Using remote camera trap footage from 11 different algae fishing sites within an 85-km(2) study area, we found that algae fishing occurred frequently during the dry season and was non-existent during the rainy season. Chimpanzees were observed algae fishing for as little as 1 min to just over an hour, with an average duration of 9.09 min. We estimate that 364 g of Spirogyra algae could be retrieved in this time, based on human trials in the field. Only one other chimpanzee population living in Bossou, Guinea, has been described to customarily scoop algae from the surface of the water using primarily herbaceous tools. Here, we describe the new behavior found at Bakoun and compare it to the algae scooping observed in Bossou chimpanzees and the occasional variant reported in Odzala, Republic of the Congo. As these algae are reported to be high in protein, carbohydrates, and minerals, we hypothesize that chimpanzees are obtaining a nutritional benefit from this seasonally available resource.

  11. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    NASA Astrophysics Data System (ADS)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    some putative predators of algae. A loss of chloroplasts in the brown algae could have led to lower photosynthetic activities and reduced EPS production, which is known to affect predator colonization. Collectively, our results suggest the coexistence of oxygen-generating algae Tribonema sp. and strictly microaerophilic neutrophilic FeOB in a heavy metal-rich environment.

  12. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  13. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  14. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  15. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.

  16. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  17. Improvement of Nannochloropsis oceanica growth performance through chemical mutation and characterization of fast growth physiology by transcriptome profiling

    NASA Astrophysics Data System (ADS)

    Liang, Sijie; Guo, Li; Lin, Genmei; Zhang, Zhongyi; Ding, Haiyan; Wang, Yamei; Yang, Guanpin

    2016-09-01

    Nannochloropsis oceanica promises to be an industrial-level producer of polyunsaturated fatty acids. In this study, the fastest and slowest growing N. oceanica mutants were selected through N-methyl-N'-nitro-N-nitrosoguanidine mutation, and two mutant strains and the wild type (WT) subjected to transcriptome profiling. It was found that the OD680 reads at stationary growth phase of both WT and its mutants were proportional to their cell density, thus indicating their division rate and growth speed during culture. This chemical mutation was effective for improving growth performance, and the fast strain divided faster by upregulating the expression of genes functioning in the cell cycle and downregulating genes involved in synthesis of amino acids, fatty acids, and sugars as well as the construction of ribosome and photosynthetic machinery. However, the relationship among the effected genes responsible for cell cycle, metabolism of fatty and amino acids, and construction of ribosome and photosynthetic machinery remained unclear. Further genetic studies are required for clarifying the genetic/metabolic networks underpinning the growth performance of N. oceanica. These findings demonstrated that this mutation strategy was effective for improving the growth performance of this species and explored a means of microalgal genetic improvement, particularly in species possessing a monoploid nucleus and asexual reproduction.

  18. Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions.

    PubMed

    Millán-Oropeza, Aarón; Fernández-Linares, Luis

    2016-06-06

    The effect of sequential batch cultures of the marine microalgae Nannochloropsis oculata on lipid and biomass production was studied in 200-L raceway ponds for 167 days (nine harvesting cycles) during winter and spring seasons under greenhouse conditions. The highest biomass concentration and productivity were 1.2 g/L and 49.8 mg/L/day on days 73 (5th cycle) and 167 (9th cycle), respectively. The overall interval of lipid production was between 131 and 530 mg/L. Despite the daily and seasonal variations of light irradiance (0-1099 μmol photon/m(2) s), greenhouse temperature (2.1-50.7 °C), and culture temperature (12.5-31.4 °C), ANOVA analysis showed no statistical difference (p value > 0.01) on the fatty acid methyl ester (FAMES) composition over the nine harvesting cycles evaluated. The most abundant FAMES were palmitic (C16:0), stearic (C18:0) and palmitoleic (C16:1∆9) acids with 37.1, 28.6, and 8.4 %, respectively. The sequential batch cultures of N. oculata in raceway ponds showed an increasing biomass production in each new cycle while keeping the quality of the fatty acid mixture under daily and seasonal variations of light irradiance and temperature.

  19. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2.

    PubMed

    Chen, Chun-Yen; Chen, Yu-Chun; Huang, Hsiao-Chen; Huang, Chieh-Chen; Lee, Wen-Lung; Chang, Jo-Shu

    2013-11-01

    Microalgae have emerged as promising resources for highly unsaturated fatty acids. In this study, an indigenous microalga identified as Nannochloropsis oceanica CY2 was grown photoautotrophically to produce eicosapentaenoic acid (EPA; 20:5, n-3). Specific engineering strategies were employed to stimulate EPA accumulation in the microalgal cells. The results show that BG-11 was the most effective medium to grow N. oceanica CY2, giving an EPA content and biomass concentration of 2.38% (per dry cell weight) and 1.53 g/l. The EPA content nearly doubled when using the optimal nitrogen source (NaNO3) at a concentration of 1.50 g/l. The illumination system also markedly affected the EPA content for the photoautotrophic microalga. When the microalgal culture was illuminated with a red LED, an impressively high EPA content of 5.5% was obtained. Finally, using semi-batch cultures operations with LED-blue illumination, the EPA content of N. oceanica CY2 was stably maintained at 5.0%.

  20. Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements.

    PubMed

    Chen, Chun-Yen; Chen, Yu-Chun; Huang, Hsiao-Chen; Ho, Shih-Hsin; Chang, Jo-Shu

    2015-09-01

    Binary combinations of LEDs with four different colors were used as light sources to identify the effects of multiple wavelengths on the production of eicosapentaenoic acid (EPA) by an isolated microalga Nannochloropsis oceanica CY2. Combining LED-Blue and LED-Red could give the highest EPA productivity of 13.24 mg L(-1) d(-1), which was further enhanced to 14.4 mg L(-1) d(-1) when using semi-batch operations at a 40% medium replacement ratio. A novel photobioreactor with additional immersed light sources improved light penetration efficiency and led to an 38% (0.170-0.235 g L(-1) d(-1)) increase in the microalgae biomass productivity and a 9% decrease in electricity consumption yield of EPA (10.15-9.33 kW-h (g EPA)(-1)) when compared with the control (i.e., without immersed light sources). Operating the immersed LEDs at a flashing-frequency of 9 Hz further lowered the energy consumption yield to 8.87 kW-h (g EPA)(-1).

  1. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes.

    PubMed

    Meng, Yingying; Jiang, Junpeng; Wang, Haitao; Cao, Xupeng; Xue, Song; Yang, Qing; Wang, Weiliang

    2015-03-01

    The strategy of nitrogen limitation has been widely applied to enhance lipid production in microalgae. The changes of cellular composition, and the characteristics of triacylglycerol (TAG) and eicosapentaenoic acid (EPA) accumulation in Nannochloropsis oceanica IMET1 were investigated. The results revealed that after nitrogen limitation TAG rather than carbohydrate was the dominant carbon sink in N. oceanica IMET1. Different nitrogen supplementation strategies were applied in order to achieve high TAG and EPA productivity, respectively. Limited nitrogen was supplied to improve TAG production, and a maximum productivity of 29.44 mg L(-1) d(-1) was obtained, which was a 6.74-fold increase compared to nitrogen-depleted cultivation. The highest EPA productivity of 7.66 mg L(-1) d(-1) was achieved under nitrogen-replete cultivation, which is different from the condition for TAG maximum productivity because the EPA is in glycolipids and phospholipids mainly. The fatty acid composition analysis identified the source of acyl group in TAG accumulation.

  2. Survival of Nannochloropsis Phytoplankton in Hypervelocity Impact Events up to Velocities of 6.07 km/s

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypothesis [1], [2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1] whilst larger more complex objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. We demonstrate here the survivability of Nannochloropsis Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone'(sunlit surface layers of oceans) [4] at impact velocities up to 6.07 km s-1. Phytoplankton from a culture sample was frozen and then fired into water (to simulate oceanic impacts, as described in [5]) using a light gas gun (LGG) [6]. The water was then retrieved and placed into a sealed culture vessel and left under a constant light source to check the viability of any remnant organisms.

  3. Effect of outdoor conditions on Nannochloropsis salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent.

    PubMed

    Sheets, Johnathon P; Ge, Xumeng; Park, Stephen Y; Li, Yebo

    2014-01-01

    The effects of simulated outdoor seasonal climatic conditions on Nannochloropsis salina (N. salina) grown using nutrients from anaerobic digestion (AD) effluent were evaluated in this study. Under various light exposure (LE) and temperature (10-30 °C) conditions, N. salina specific growth rate (μ) was strongly affected by LE. Light availability (LA) was observed to be crucial for biomass production, with μ values of 0.038±0.013 d(-1), 0.093±0.013 d(-1), and 0.151±0.021 d(-1) for 6-h, 12-h, and 24-h LA conditions, respectively. Temperature (10-25 °C) was not significant in affecting the light dependent growth coefficient (μ/LE), indicating the suitability of culturing this strain in the Ohio climate. Cultures exposed to low illumination had significantly higher unsaturated fatty acid content than those under high illumination, with nearly 29% higher eicosapentaenoic acid (C20:5) content. Using LE and light attenuation resulted in adequate prediction of N. salina growth in a 1000 L open raceway pond.

  4. Effects of acid stress on Scenedesmus quadricauda (chlorophyta) and Anabaena sp. (cyanophyta)

    SciTech Connect

    Hadden-Carter, P.J.

    1984-01-01

    The effects of pH in conjunction with light and temperature on growth of Scenedesmus quadricauda (Chlorophyta) and Anabaena sp. (Cyanophyta) were examined in culture. Decreasing pH from 7 to 3 inhibited growth, more so in the blue-green alga. Effects were greatly influenced by light and temperature. Above a critical level (pH4 with the blue-green, pH 3 with the green) both algae recovered when acid stress was removed; post-acidification growth rates varied inversely with pH for the green alga and directly for the blue-green. Two sheathed blue-green algae (Lyngbya and Gleocapsa) grew below pH 6, while two unsheathed blue-green algae (Anabaena and Oscillatoria) did not. Cell dimensions of both S. quadricaude and Anabaena sp. generally increased as pH declined; the green alga was the more plastic of the two. Acid stress significantly decreased photosynthetic rate in S. quadricauda but did not for Anabaena sp. Respiratory rates were not significantly related to pH for either alga. Chlorophyll a per cell was higher than controls (pH 7) at pH 5 and 6 in Anabaena sp. and at pH 4 through 6 for S. quadricauda. Both cell division and total culture biomass declined with pH. When grown in mixed culture, the green alga usually predominated at pH 4 and often at pH 5; the blue-green was favored at lower light intensities and higher temperatures. In no instance did one alga stimulate growth of the other, although mutual inhibition occurred in several instances.

  5. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase.

    PubMed

    Patel, Bhavish; Guo, Miao; Chong, Chinglih; Sarudin, Syazwani Hj Mat; Hellgardt, Klaus

    2016-10-15

    Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350°C and Residence Times (RT) ranging between 5 and 60min The effect of reaction conditions on the NO3(-),PO4(3-),SO4(2-),Cl(-),Na(+),andK(+) ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275°C/30min and 350°C/10min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD.

  6. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  7. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  8. Photobioreactors for mass cultivation of algae.

    PubMed

    Ugwu, C U; Aoyagi, H; Uchiyama, H

    2008-07-01

    Algae have attracted much interest for production of foods, bioactive compounds and also for their usefulness in cleaning the environment. In order to grow and tap the potentials of algae, efficient photobioreactors are required. Although a good number of photobioreactors have been proposed, only a few of them can be practically used for mass production of algae. One of the major factors that limits their practical application in algal mass cultures is mass transfer. Thus, a thorough understanding of mass transfer rates in photobioreactors is necessary for efficient operation of mass algal cultures. In this review article, various photobioreactors that are very promising for mass production of algae are discussed.

  9. Assessing the potential impact of water-based drill cuttings on deep-water calcareous red algae using species specific impact categories and measured oceanographic and discharge data.

    PubMed

    Nilssen, Ingunn; dos Santos, Francisco; Coutinho, Ricardo; Gomes, Natalia; Cabral, Marcelo Montenegro; Eide, Ingvar; Figueiredo, Marcia A O; Johnsen, Geir; Johnsen, Ståle

    2015-12-01

    The potential impact of drill cuttings on the two deep water calcareous red algae Mesophyllum engelhartii and Lithothamnion sp. from the Peregrino oil field was assessed. Dispersion modelling of drill cuttings was performed for a two year period using measured oceanographic and discharge data with 24 h resolution. The model was also used to assess the impact on the two algae species using four species specific impact categories: No, minor, medium and severe impact. The corresponding intervals for photosynthetic efficiency (ΦPSIImax) and sediment coverage were obtained from exposure-response relationship for photosynthetic efficiency as function of sediment coverage for the two algae species. The temporal resolution enabled more accurate model predictions as short-term changes in discharges and environmental conditions could be detected. The assessment shows that there is a patchy risk for severe impact on the calcareous algae stretching across the transitional zone and into the calcareous algae bed at Peregrino.

  10. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We

  11. ["Depilation" by micro-algae?].

    PubMed

    Ditrich, H

    1996-01-01

    Itching, reddening and depilation of body hairs was reported by swimmers in the Attersee-lake in Austria. Initially, an environmental crime was suspected. However, further investigations showed that a biological cause was probably responsible for these symptoms. The accrustations found on body hairs turned out in the scanning electron microscope to be dried mucus containing numerous diatoms. The prevailing micro-algae were identified as Cyclotella comensis. Thus, although the phenomenon had a natural, harmless cause, it may happen again given the appropriate environmental conditions.

  12. Community structure of epiphytic algae on three different macrophytes at Acarlar floodplain forest (northern Turkey)

    NASA Astrophysics Data System (ADS)

    Tunca, Hatice; Ongun Sevindik, Tuğba; Bal, Dilek Nur; Arabaci, Sevil

    2014-07-01

    The aim of this study was to determine the species composition, biodiversity and, relative abundance of epiphytic algae and their relationship with environmental variables on three different macrophytes ( Nymphaea alba, Ceratophyllum demersum, Typha latifolia ) at Acarlar Floodplain Forest (AFF). Epiphytic algae were gathered monthly by collecting aquatic plants between November 2011 and October 2012, except in winter when there were no plants. In this study, 67 taxa on N. alba, 66 taxa on C. demersum and 66 taxa on T. latifolia were identified as epiphytic algae. The mean value of species richness was 17, that of diversity was 1.5 and that of evenness was 0.54 for epiphytic algae on N. alba, 17, 1.1, and 0.39 on C. demersum, and 18, 1.64, and 0.56 on T. latifolia, respectively. Oscillatoria sp. and Komvophoron crassum (Vozzen) Anagnostidis and Komárek were the most abundant and consistent epiphytic algal species, occurring in high abundance on all macrophytes. Results show that species composition of epiphytic algae was different, but diversity values were similar on all the macrophytes. The hydrological pulse is one of the most important factors determining the physical and chemical environment of the epiphytic algal community. However, substrate type also affected the colonization by F. capucina, O. sancta, P. catenata, and L. truncicola more than the epiphytic algal seasonality.

  13. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark.

    PubMed

    Lüttge, U; Büdel, B

    2010-05-01

    The rough bark of orchard trees (Malus) around Darmstadt is predominantly covered in red to purple-brown layers (biofilms) of epiphytic terrestrial alga of Trentepohlia umbrina. The smooth bark of forest trees (Fagus sylvatica L. and Acer sp.) in the same area is covered by bright green biofilms composed of the green algae Desmococcus, Apatococcus and Trebouxia, with a few cells of Coccomyxa and 'Chlorella' trebouxioides between them. These algae are desiccation tolerant. After samples of bark with the biofilms were kept in dry air in darkness for various periods of time, potential quantum yield of PSII, F(v)/F(m), recovered during rehydration upon rewetting. The kinetics and degree of recovery depended on the length of time that the algae were kept in dry air in the desiccated state. Recovery was better for green biofilm samples, i.e. quite good even after 80 days of desiccation (F(v)/F(m) = ca. 50% of initial value), than the red samples, where recovery was only adequate up to ca. 30-40 days of desiccation (F(v)/F(m) = ca. 20-55% of initial value). It is concluded that the different bark types constitute different ecophysiological niches that can be occupied by the algae and that can be distinguished by their capacity to recover from desiccation after different times in the dry state.

  14. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2011-01-01

    This investigation was undertaken to determine the applicability of algae for the assessment of contamination level of water reservoirs with heavy metals. The alga Spirogyra sp. collected in the littoral zone of the Large Turawa Lake (artificial lake in Southern Poland) was used for the study. The concentrations of heavy metals accumulated in the alga inhabiting a flow-through water basin of the Large Turawa Lake were found to correlate with sources of these metals, such as benthic sediments and contaminated watercourses. The highest concentrations of metals were found in alga samples collected at the outlet of the lake: c (Mn) = 12330 mg/kg dry mass, c (Fe) = 15059 mg/kg d.m., c (Cu) = 47.5 mg/kg d.m., c (Zn) = 1411 mg/kg d.m., c (Cd) = 108.8 mg/kg d.m., and c (Pb) = 684 mg/kg d.m. The metals originated from benthic sediments (sapropelic mud) deposited close to the outlet of the lake. Statistically significant differences in the concentrations of cadmium accumulated in the alga were found between samples from the sites, where cadmium occurred in sandy sediments (max. 27.6 mg/kg d.m.), and samples from the sites located far from the contaminated sediments (max. 12.8 mg/kg d.m.).

  15. A new microscopic method to analyse desiccation‐induced volume changes in aeroterrestrial green algae

    PubMed Central

    LAJOS, K.; MAYR, S.; BUCHNER, O.; BLAAS, K.

    2016-01-01

    Summary Aeroterrestrial green algae are exposed to desiccation in their natural habitat, but their actual volume changes have not been investigated. Here, we measure the relative volume reduction (RVRED) in Klebsormidium crenulatum and Zygnema sp. under different preset relative air humidities (RH). A new chamber allows monitoring RH during light microscopic observation of the desiccation process. The RHs were set in the range of ∼4 % to ∼95% in 10 steps. RVRED caused by the desiccation process was determined after full acclimation to the respective RHs. In K. crenulatum, RVRED (mean ± SE) was 46.4 ± 1.9%, in Zygnema sp. RVRED was only 34.3 ± 2.4% at the highest RH (∼95%) tested. This indicates a more pronounced water loss at higher RHs in K. crenulatum versus Zygnema sp. By contrast, at the lowest RH (∼4%) tested, RVRED ranged from 75.9 ± 2.7% in K. crenulatum to 83.9 ± 2.2% in Zygnema sp. The final volume reduction is therefore more drastic in Zygnema sp. These data contribute to our understanding of the desiccation process in streptophytic green algae, which are considered the closest ancestors of land plants. PMID:27075881

  16. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.

    PubMed

    Keşan, Gürkan; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, Václav; Polívka, Tomáš

    2016-04-01

    Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480nm and red carotenoids with absorption extended up to 530nm. Both carotenoid groups transfer energy efficiently from their S2 states, reaching efficiencies of ~70% (blue) and ~60% (red). The S1 pathway, however, is efficient only for the red carotenoid pool for which two S1 routes characterized by 0.33 and 2.4ps time constants were identified. For the blue carotenoids the S1-mediated pathway is represented only by a minor route likely involving a hot S1 state. The relaxed S1 state of blue carotenoids decays to the ground state within 21ps. Presence of a fraction of non-transferring red carotenoids with the S1 lifetime of 13ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S1 lifetime of Vio and/or Vau whose S1 lifetimes in methanol are 26 and 29ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%.

  17. Low-temperature affected LC-PUFA conversion and associated gene transcript level in Nannochloropsis oculata CS-179

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Zhang, Lin; Zhu, Baohua; Pan, Kehou; Li, Si; Yang, Guanpin

    2011-09-01

    Nannochloropsis oculata CS-179, a marine eukaryotic unicellular microalga, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs). Culture temperature affected cell growth and the composition of LC-PUFAs. At an initial cell density of 1.5 × 106 cell mL-1, the highest growth was observed at 25°C and the cell density reached 3 × 107 cell mL-1 at the beginning of logarithmic phase. The content of LC-PUFAs varied with culture temperature. The highest content of LC-PUFAs (43.96%) and EPA (36.6%) was gained at 20°C. Real-time PCR showed that the abundance of Δ6-desaturase gene transcripts was significantly different among 5 culture temperatures and the highest transcript level (15°C) of Nanoc-D6D took off at cycle 21.45. The gene transcript of C20-elongase gene was higher at lower temperatures (10, 15, and 20°C), and the highest transcript level (20°C) of Nanoc-E took off at cycle 21.18. The highest conversion rate (39.3%) of Δ6-desaturase was also gained at 20°C. But the conversion rate of Nanoc-E was not detected. The higher content of LC-PUFAs was a result of higher gene transcript level and higher enzyme activity. Compared with C20-elongase gene, Δ6-desaturase gene transcript and enzyme activity varied significantly with temperature. It will be useful to study the mechanism of how the content of LC-PUFAs is affected by temperature.

  18. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  19. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  20. Mechanism of algal aggregation by Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2014-07-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting.

  1. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  2. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  3. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  4. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  5. The ice nucleation activity of extremophilic algae.

    PubMed

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.

  6. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  7. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.

  8. Advances in genetic engineering of marine algae.

    PubMed

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.

  9. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  10. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga

    PubMed Central

    Qin, Jie; Lehr, Corinne R.; Yuan, Chungang; Le, X. Chris; McDermott, Timothy R.; Rosen, Barry P.

    2009-01-01

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a Topt of 60–70 °C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases. PMID:19276121

  11. [Generalized behavior study on the growth dynamics for dominant algae species forming algal bloom in the three Gorges reservoir region].

    PubMed

    Liu, Xin-an; Feng, Li; Jia, Charles Q

    2008-08-01

    From the blue-green algae species a representative algae, namely, ChloreUlla vulgaris (CV)to belong to Chlorophyta is selected as one of algae species studied in order to investigate the effect of TN, TP on the growth behavior of CV with the Monod equation, and calculate the semi-saturation constants of CV to TP(K(SP)) and TN(K(SN)). K(SN) > K(SP) showed that the effect of TP on growth of CV is obvious significant than that of TN. The growth rate of Chlorella vulgaris is very sensitive to the concentration of phosphorus: Compares with the blank value, the special growth rate (mu) has been enhanced under the low concentration of 0.002 mg x L(-1), then the concentration turned to 0.2 mg x L(-1) the special growth rate (mu) has been enhanced obviously; but there was hardly any change under the concentration of nitrogen from 0.000 to 0.050 mg x L(-1). At the same time, in order to reveal whether there was a generalized character associating the growth dynamics of CV with that of dominant blue-green algae species, the dynamic models including CV constructed from our experimental data, dominant blue-green algae and sea algae from literature information have been compared and analyzed systemically, and the results showed that their growth dynamics behavior and ecological characteristic were extremely similar and common. According to extrapolation of the intercommunity of all growth dynamics we could describe and show availably there is a common behavior to the growth of dominant blue-green algae in the Three Gorges reservoir region. This conclusion would have some important theoretical and applied significance.

  12. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  13. The anti-allergic activity of polyphenol extracted from five marine algae

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Lin, Hong; Li, Zhenxing; Mou, Quangui

    2015-08-01

    Natural polyphenol has been widely believed to be effective in allergy remission. Currently, most of the natural polyphenol products come from terrestrial sources such as tea, grape seeds among others, and few polyphenols have been developed from algae for their anti-allergic activity. The aim of the study was to screen some commercial seaweed for natural extracts with anti-allergic activity. Five algae including Laminaria japonica, Porphyra sp., Spirulina platensis, Chlorella pyrenoidosa and Scytosiphon sp. were extracted with ethanol, and the extracts were evaluated for total polyphenol contents and anti-allergic activity with the hyaluronidase inhibition assay. Results showed that the total polyphenol contents in the ethanol extracts ranged from 1.67% to 8.47%, while the highest was found in the extract from Scytosiphon sp. Hyaluronidase inhibition assay showed that the extracts from Scytosiphon sp. had the lowest IC50, 0.67 mg mL-1, while Chlorella pyrenoidosa extract had the highest IC50, 15.07 mg mL-1. The anti-allergic activity of Scytosiphon sp. extract was even higher than the typical anti-allergic drug Disodium Cromoglycate (DSCG) (IC50 = 1.13 mg mL-1), and was similar with natural polyphenol from Epigallocatechin gallate (EGCG) (IC50 = 0.56 mg mL-1). These results indicated that the ethanol extract of Scytosiphon sp. contains a high concentration of polyphenol with high anti-allergic activity. Potentially Scytosiphon sp. can be developed to a natural anti-allergic compound for allergy remission.

  14. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  15. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  16. Method and apparatus for processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  17. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  18. Integration of biological kinetics and computational fluid dynamics to model the growth of Nannochloropsis salina in an open channel raceway.

    PubMed

    Park, Stephen; Li, Yebo

    2015-05-01

    Microalgal growth and systemic productivity is not only affected by environmental conditions such as temperature, irradiance, and nutrient concentrations, but also by physical processes such as fluid flow and particulate sedimentation. Modeling and simulating the system is a cost-effective way to predict the growth behavior under various environmental and physical conditions while determining effective engineering approaches to maximize productivity. Many mathematical models have been proposed to describe microalgal growth, while computational fluid dynamics (CFD) have been used to model the behavior of many fluid systems. Integrating the growth kinetics into a CFD model can help researchers understand the impact of a variety of parameters and determine what measures can be taken to overcome some obstacles in the aquaculture industry--self-shading, biomass sedimentation, and contamination--which prevent the production of high biomass yields. The aim of this study was to integrate physical and environmental effects to predict space- and time-dependent algal growth in industrial scale raceways. A commercial CFD software, ANSYS-Fluent 14.5, was used to solve the proposed models in regards to fluid flow, heat transfer, and nutrient balance. User-defined functions written in C language were used to incorporate the kinetic equations into a three-dimensional standard k-ε turbulence model of an open channel raceway system driven by a single paddlewheel. Simulated results were compared with light intensity, temperature, nutrient concentration, and algal biomass data acquired for 56 day from an industrial scale raceway pond constructed for the growth of Nannochloropsis salina and were observed to be in good agreement with one another. There was up to a 17.6% increase in simulated productivity when the incoming CO2 concentration was increased from 0.0006 to 0.150 g L(-1), while the effect of paddlewheel velocity was not significant. Sensitivity analysis showed that the model

  19. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  20. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  1. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  2. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  3. Pyogenic Flexor Tenosynovitis Caused by Shewanella algae.

    PubMed

    Fluke, Erin C; Carayannopoulos, Nikoletta L; Lindsey, Ronald W

    2016-07-01

    Pyogenic flexor tenosynovitis is an orthopedic emergency most commonly caused by Staphylococcus aureus and streptococci and occasionally, when associated with water exposure, Mycobacterium marinum. Shewanella algae, a gram-negative bacillus found in warm saltwater environments, has infrequently been reported to cause serious soft tissue infections and necrosis. In this case, S. algae caused complicated flexor tenosynovitis requiring open surgical irrigation and debridement. Flexor tenosynovitis caused by S. algae rapidly presented with all 4 Kanavel cardinal signs as well as subcutaneous purulence, ischemia, and necrosis, thus meeting the requirements for Pang et al group III classification of worst prognosis. Because of its rarity and virulence, S. algae should always be considered in cases of flexor tenosynovitis associated with traumatic water exposure to treat and minimize morbidity appropriately.

  4. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis.

    PubMed

    Hayashi, T; Hayashi, K; Maeda, M; Kojima, I

    1996-01-01

    Bioactivity-directed fractionation of a hot H2O extract from a blue-green alga Spirulina platensis led to the isolation of a novel sulfated polysaccharide named calcium spirulan (Ca-SP) as an antiviral principle. This polysaccharide was composed of rhamnose, ribose, mannose, fructose, galactose, xylose, glucose, glucuronic acid, galacturonic acid, sulfate, and calcium. Ca-SP was found to inhibit the replication of several enveloped viruses, including Herpes simplex virus type 1, human cytomegalovirus, measles virus, mumps virus, influenza A virus, and HIV-1. It was revealed that Ca-SP selectively inhibited the penetration of virus into host cells. Retention of molecular conformation by chelation of calcium ion with sulfate groups was suggested to be indispensable to its antiviral effect.

  5. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  6. Laboratory study on the ecological impact of sophorolipid used for harmful algae elimination

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxia; Kim, Eunki; Sun, Song

    2010-11-01

    We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve ( Mytilus edulis) in laboratory. The result shows that sophorolipid could inhibit the growth of algal species selectively. Among three algae species selected, Platymonas helgolandica var. tsingtaoensis was promoted with increasing sophorolipid concentration; Isochrysis galbana was inhibited seven days later in sophorolipid concentration below 40 mg/L; and Nitzschia closterium f. minutissima was inhibited obviously in only a high sophorolipid concentration over 20 mg/L. Therefore, sophorolipid in a low concentration at <20 mg/L could remove certain harmful algae species effectively without harming other non-harmful microalgae. For other animals, sophorolipid could inhibit the growth of ciliate Strombidium sp. by 50% at 20 mg/L sophorolipid concentration after 96 h. The concentration in 96-h LC50 for Calanus sinicus, Neomysis awatschensis, Lateolabrax japonicus, and Paralichthys olivaceus was 15, 150, 60, and 110 mg/L, respectively. The 24 h LC50 value for Artemia salina was 600 mg/L. The relative clearance rate of mussel Mytilus edulis decreased to 80%, 40%, and 20% of the control group after being exposed to 20, 50, and 100 mg/L sophorolipid for 24 h. Therefore, the toxicity for mitigation of harmful algae bloom at previously recommended concentration of 5-20 mg/L sophorolipid is low for most tested organisms in this reaserch.

  7. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  8. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  9. Hypoglossum fujianensis sp. nov. (Delesseriaceae, Rhodophyta) from Fujian Coast, China

    NASA Astrophysics Data System (ADS)

    Zheng, Yi

    1998-12-01

    Hypoglossum fujianensis sp. nov. is an epiphytic alga in the intertidal zone. Plants are light red, 0.9 2 cm high. Margin of branches gives rise to uniseriate hair-like rhizoids, formed outward from the fusion of the second-and third-order cells. Blades are single layered (except the midrib) and uncorticated. Tetrasporangial sori are formed on the middle part of blades. The globular tetrasporangia are developed from lateral pericentral cells.

  10. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina

    SciTech Connect

    Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

    2014-03-01

    We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

  11. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation.

    PubMed

    Wan, Chun; Zhao, Xin-Qing; Guo, Suo-Lian; Asraful Alam, Md; Bai, Feng-Wu

    2013-05-01

    Microalgae are widely studied for biofuel production, however, current technologies to harvest microalgae for this purpose are not well developed. In this work, a bacterial strain W01 was isolated from activated sludge and identified as Solibacillus silvestris. Bioflocculant in the culture broth of W01 showed 90% flocculating efficiency on marine microalga Nannochloropsis oceanica, and no metal ion was required for the flocculation process. Chemical analysis of the purified bioflocculant indicated that it is a proteoglycan composed of 75.1% carbohydrate and 24.9% protein (w/w). The bioflocculant exhibits no effect on the growth of microalgal cells and can be reused to for economical harvesting of N. oceanica. This is the first report that strain of S. silvestris can produce bioflocculant for microalgae harvest. The novel bioflocculant produced by W01 has the potential to harvest marine microalgae for cost-effective production of microalgal bioproducts.

  12. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata.

    PubMed

    Montalescot, V; Rinaldi, T; Touchard, R; Jubeau, S; Frappart, M; Jaouen, P; Bourseau, P; Marchal, L

    2015-11-01

    A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI-SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI-SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling.

  13. Pond Crash Forensics: Presumptive identification of pond crash agents by next generation sequencing in replicate raceway mass cultures of Nannochloropsis salina

    SciTech Connect

    Carney, Laura T.; Wilkenfeld, Joshua S.; Lane, Pam D.; Solberg, Owen D.; Fuqua, Zachary B.; Cornelius, Nina G.; Gillespie, Shaunette; Williams, Kelly P.; Samocha, Tzachi M.; Lane, Todd W.

    2016-06-02

    Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In this paper, we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In the second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Finally, our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.

  14. Pond Crash Forensics: Presumptive identification of pond crash agents by next generation sequencing in replicate raceway mass cultures of Nannochloropsis salina

    DOE PAGES

    Carney, Laura T.; Wilkenfeld, Joshua S.; Lane, Pam D.; ...

    2016-06-02

    Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In this paper, we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In themore » second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Finally, our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.« less

  15. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    PubMed

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken.

  16. Epilithic algae distribution along a chemical gradient in a naturally acidic river, Río Agrio (Patagonia, Argentina).

    PubMed

    Baffico, Gustavo D

    2010-04-01

    The epilithic algae distribution along a pH gradient and the relationship between the chemical gradient and biomass development were studied in Río Agrio, a naturally acidic river located in Patagonia (Argentina). The epilithic community was monitored during the summer of three consecutive years in sites located above and below the entrance of tributaries. The epilithic community showed differences between sites based on the chemical composition of the water and the precipitates that appear on the streambed of the river. The lowest biomass, diversity, and number of species were found at the most extreme part of the river in terms of pH (ca. 2) and element concentrations. Euglena mutabilis was the dominant species in this section of the river. As pH increased (ca. 3), the community changed to be dominated by filamentous green algae (Ulothrix spp., Mougeotia sp., Klebsormidium sp.) showing luxuriant growths in terms of biomass. With the inflow of a neutral tributary, the pH of Río Agrio increased above 3, and the precipitates of orange-red iron hydroxides appeared. The algal community was not affected by these precipitates or the low P concentrations, along the next 30 km of river downstream from this site. The apparent physical stress that the precipitates impose on algae is in fact a dynamic reservoir of P because diel cycle of Fe could be promoting precipitation and redissolution processes that binds and releases P from these precipitates. Where the pH increased above 6, precipitates of aluminum hydroxides appeared. At this site, the epilithic biomass and density decreased, some algae species changed, but the diversity and the number of species in general remained consistent with the upstream values. The physical stress of the Al precipitates on the algae is added to the chemical stress that represents the sequestering of P in these precipitates that are not redissolved, resulting P a limiting nutrient for algae growth.

  17. Algae for controlled ecological life support system diet characterization of cyanobacteria 'spirulina' in batch cultures

    NASA Technical Reports Server (NTRS)

    Tadros, M. G.

    1990-01-01

    Spirulina sp. is a bioregenerative photosynthetic and edible alga for space craft crews in a Closed Ecological Life Support System (CLESS). It was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for one strain of Spirulina: S. maxima. Fast growth rate and high yield were obtained. The partitioning of the assimulatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental conditions. Experiments with Spirulina demonstrated that under stress conditions carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. In other words, the nutritional quality of the alga could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  18. Growth of Legionella pneumophila in association with blue-green algae (Cyanobacteria)

    SciTech Connect

    Tison, D.L.; Pope, D.H.; Cherry, W.B.; Fliermans, C.B.

    1980-02-01

    Legionella pneumophila (Legionnaires disease bacterium) of serogroup 1 was isolated from an algal-bacterial mat community growing at 45/sup 0/C in a man-made thermal effluent. This isolate was grown in mineral salts medium at 45/sup 0/C in association with the blue-green alga (cyanobacterium) Fischerella sp. over a pH range of 6.9 to 7.6. L. pneumophila was apparently using algal extracellular products as its carbon and energy sources. These observations indicate that the temperature, pH, and nutritional requirements of L. pneumophila are not as stringent as those previously observed when cultured on complex media. This association between L. pneumophila and certain blue-green algae suggests an explanation for the apparent widespread distribution of the bacterium in nature.

  19. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation.

    PubMed

    Agbakpe, Michael; Ge, Shijian; Zhang, Wen; Zhang, Xuezhi; Kobylarz, Patricia

    2014-08-01

    There is a pressing need to develop efficient and sustainable separation technologies to harvest algae for biofuel production. In this work, two bacterial species (Escherichia coli and Rhodococus sp.) were used as biocoagulants to harvest Chlorella zofingiensis and Scenedesmus dimorphus. The influences of UV irradiation and polyethylenimine (PEI)-coating on the algal harvesting efficiency were investigated. Results showed that the UV irradiation could slightly enhance bacteria-algae biocoagulation and algal harvesting efficiency. In contrast, the PEI-coated E. coli cells noticeably increased the harvesting efficiencies from 23% to 83% for S. dimorphus when compared to uncoated E. coli cells. Based on the soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, an energy barrier existed between uncoated E. coli cells and algal cells, whereas the PEI coating on E. coli cells eliminated the energy barrier, thereby the biocoagulation was significantly improved. Overall, this work presented groundwork toward the potential use of bacterial biomass for algal harvesting from water.

  20. Investigating the feasibility of growing algae for fuel in Southern nevada

    NASA Astrophysics Data System (ADS)

    Moazeni, Faegheh

    Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as an initial source of water and nutrients for microalgal growth. The generated biomass waste can be continuously recycled, serving as a fertilizer. If so desired, the centrate can be reverted back into the system from time to time as a nutrition supplement and as a make-up water source, particularly in open ponds that face evaporation. Of the six studied algae, i.e. Chlorella sorokiniana, Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in and around the Las Vegas Valley, two green algae were eligible. In the laboratory, the green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate or algal residue faster than in the mineral medium BG11, optimized for algal growth. The enhanced productivity is mainly attributed to the photosynthesis known for mixotrophic process and the presence of organic carbon in the waste which serves as an extra source of energy. Tolerance for hard water and strong light and, in the case of C. sorokiniana , an unusually high optimum temperature between 32 and 35°C are also attributing factors to the enhanced productivity of algae. These studied species are particularly suited for cultivation in their native southwestern United States, particularly

  1. Responses of marine unicellular algae to brominated organic compounds in six growth media

    SciTech Connect

    Walsh, G.E.; Yoder, M.J.; McLaughlin, L.L.; Lores, E.M.

    1987-12-01

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp. were exposed to the industrial brominated compounds tetrabromobisphenol A, decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromoethylbenzene (PBEB), and the herbicide bromoxynil (BROM), in six algal growth media. High concentrations of DBBO (1 mg liter-1), PBMB (1 mg liter-1), and PBEB (0.5 mg liter-1) reduced growth by less than 50%. EC50s of the other compounds varied with growth medium, with high EC50/low EC50 ratios between 1.3 and 9.9. Lowest EC50s, 9.3 to 12.0 micrograms liter-1, were obtained with S. costatum and HBCD. It is concluded that responses to toxicants in different media are the results of interactions among algae, growth medium, toxicant, and solvent carrier.

  2. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  3. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.

    PubMed

    Dao, Ly H T; Beardall, John

    2016-03-01

    In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae.

  4. Dynamic photoinhibition exhibited by red coralline algae in the red sea

    PubMed Central

    2014-01-01

    Background Red coralline algae are critical components of tropical reef systems, and their success and development is, at least in part, dependent on photosynthesis. However, natural variability in the photosynthetic characteristics of red coralline algae is poorly understood. This study investigated diurnal variability in encrusting Porolithon sp. and free-living Lithophyllum kotschyanum. Measured parameters included: photosynthetic characteristics, pigment composition, thallus reflectance and intracellular concentrations of dimethylsulphoniopropionate (DMSP), an algal antioxidant that is derived from methionine, an indirect product of photosynthesis. L. kotschyanum thalli were characterised by a bleached topside and a pigmented underside. Results Minimum saturation intensity and intracellular DMSP concentrations in Porolithon sp. were characterised by significant diurnal patterns in response to the high-light regime. A smaller diurnal pattern in minimum saturation intensity in the topside of L. kotschyanum was also evident. The overall reflectance of the topside of L. kotschyanum also exhibited a diurnal pattern, becoming increasingly reflective with increasing ambient irradiance. The underside of L. kotschyanum, which is shaded from ambient light exposure, exhibited a much smaller diurnal variability. Conclusions This study highlights a number of dynamic photoinhibition strategies adopted by coralline algae, enabling them to tolerate, rather than be inhibited by, the naturally high irradiance of tropical reef systems; a factor that may become more important in the future under global change projections. In this context, this research has significant implications for tropical reef management planning and conservation monitoring, which, if natural variability is not taken into account, may become flawed. The information provided by this research may be used to inform future investigations into the contribution of coralline algae to reef accretion, ecosystem

  5. Aliterella atlantica gen. nov., sp. nov., and Aliterella antarctica sp. nov., novel members of coccoid Cyanobacteria.

    PubMed

    Rigonato, Janaina; Gama, Watson Arantes; Alvarenga, Danillo Oliveira; Branco, Luis Henrique Zanini; Brandini, Frederico Pereira; Genuário, Diego Bonaldo; Fiore, Marli Fatima

    2016-09-01

    Two Cyanobacteria isolated from South Atlantic Ocean continental shelf deep water and from a marine green algae inhabiting the Admiralty Bay, King George Island, Antarctica were investigated based on morphological and ultrastructural traits, phylogeny of 16S rRNA gene sequences, secondary structure of the 16S-23S internal transcribed spacer regions and phylogenomic analyses. The majority of these evaluations demonstrated that both strains differ from the genera of cyanobacteria with validly published names and, therefore, supported the description of the novel genus as Aliterella gen. nov. The identity and phylogeny of 16S rRNA gene sequences, together with the secondary structure of D1D1' and BoxB intergenic regions, further supported the two strains representing distinct species: Aliterella atlantica gen. nov., sp. nov. (type SP469036, strain CENA595T) and Aliterella antarctica sp. nov. (type SP469035, strain CENA408T). The phylogenomic analysis of A. atlantica sp. nov. CENA595T, based on 21 protein sequences, revealed that this genus belongs to the cyanobacterial order Chroococcidiopsidales. The isolation and cultivation of two geographically distant unicellular members of a novel cyanobacterial genus and the sequenced genome of the type strain bring new insights into the current classification of the coccoid group, and into the reconstruction of their evolutionary history.

  6. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  7. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  8. [Functional components in fish and algae oils].

    PubMed

    Conchillo, A; Valencia, I; Puente, A; Ansorena, D; Astiasarán, I

    2006-01-01

    An important area of the development of new functional foods is facussed on finding or applying food components which favour achieving a healthier lipid profile in the organism. The objective of this work was to carry out the characterisation of the lipid fraction of two oils, fish oil and algae oil, to evaluate their potential use as functional ingredients, in relation to the high molecular weight fatty acid content and the presence of sterols and other components of the unsaponificable fraction. Both oils showed a lipid fraction rich in high molecular weight polyunsaturated omega-3 fatty acids, containing a 33.75% in the fish oil and a 43.97% in the algae oil. Eicosapentaenoic acid was the major fatty acid in fish oil, whereas docosahexaenoic was the most abundant fatty acid in algae oil. The omega-6/omega-3 ratio was lower than 0.4 in both oils. In the unsaponificable fraction, algae oil had a Mold lower cholesterol content and a higher proportion of squalene than fish oil. The phytosterol content was significantly higher in the algae oil.

  9. Oil from algae; salvation from peak oil?

    PubMed

    Rhodes, Christopher J

    2009-01-01

    A review is presented of the use of algae principally to produce biodiesel fuel, as a replacement for conventional fuel derived from petroleum. The imperative for such a strategy is that cheap supplies of crude oil will begin to wane within a decade and land-based crops cannot provide more than a small amount of the fuel the world currently uses, even if food production were allowed to be severely compromised. For comparison, if one tonne of biodiesel might be produced say, from rape-seed per hectare, that same area of land might ideally yield 100 tonnes of biodiesel grown from algae. Placed into perspective, the entire world annual petroleum demand which is now provided for by 31 billion barrels of crude oil might instead be met from algae grown on an area equivalent to 4% of that of the United States. As an additional benefit, in contrast to growing crops it is not necessary to use arable land, since pond-systems might be placed anywhere, even in deserts, and since algae grow well on saline water or wastewaters, no additional burden is imposed on freshwater-a significant advantage, as water shortages threaten. Algae offer the further promise that they might provide future food supplies, beyond what can be offered by land-based agriculture to a rising global population.

  10. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements.

  11. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature.

  12. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction.

    PubMed

    Li, Hao; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Lu, Haifeng; Duan, Na; Liu, Minsheng; Zhu, Zhangbing; Si, Buchun

    2014-02-01

    Hydrothermal liquefaction (HTL) is a promising technology for converting algae into biocrude oil. Here, HTL of a low-lipid high-protein microalgae (Nannochloropsis sp.) and a high-lipid low-protein microalgae (Chlorella sp.) was studied. An orthogonal design was applied to investigate the effects of reaction temperature (220-300°C), retention time (30-90 min), and total solid content (TS, 15-25%wt) of the feedstock. The highest biocrude yield for Nannochloropsis sp. was 55% at 260°C, 60 min and 25%wt, and for Chlorella sp. was 82.9% at 220°C, 90 min and 25%wt. The maximum higher heating values (HHV) of biocrude oil from both algae were ∼ 37 MJ/kg. GC-MS revealed a various distribution of chemical compounds in biocrude. In particular, the highest hydrocarbons content was 29.8% and 17.9% for Nannochloropsis and Chlorella sp., respectively. This study suggests that algae composition greatly influences oil yield and quality, but may not be in similar effects.

  13. Effects of temperature on the germination of green algae micro-propagules in coastal waters of the Subei Shoal, China

    NASA Astrophysics Data System (ADS)

    Song, Wei; Peng, Keqin; Xiao, Jie; Li, Yan; Wang, Zongling; Liu, Xiangqing; Fu, Mingzhu; Fan, Shiliang; Zhu, Mingyuan; Li, Ruixiang

    2015-09-01

    Since 2007, large-scale green tides that primarily consisted of Ulva prolifera have consecutively invaded the coast of Qingdao (36°06'N, 120°25'E, PR China) in summer. The germination of green algae micro-propagules in the Subei Shoal played a significant role in the formation of these green tides. The change in sea temperature might be the key factor that affects the germination of the micro-propagules because the other environmental factors varied only slightly according to previous studies. This study was designed to investigate the effects of temperature on the germination of micro-propagules via laboratory experiments. The results showed the following: (1) five types of green algae micro-propagules, including U. prolifera, U. linza, U. compressa, Ulva sp. (Clade 6) and Blidingia sp., were detected in the seawater samples collected from the Subei Shoal; (2) at 5 °C, germinated micro-propagules were not detected in any of the samples; at 10 °C, the micro-propagules began to germinate, and the germination quantity markedly changed between 10 °C and 30 °C; (3) the germination numbers of U. prolifera, U. linza, Ulva sp. (Clade 6) and Blidingia sp. were maximized at 15 °C, 10 °C, 25 °C and 20 °C, respectively. This study indicated that the sea temperature played a significant role in the germination of green algae micro-propagules in water and could partly explain the community succession phenomenon of the attached green algae in the Subei Shoal.

  14. Visualization of nuclear localization of transcription factors with cyan and green fluorescent proteins in the red alga Porphyra yezoensis.

    PubMed

    Uji, Toshiki; Takahashi, Megumu; Saga, Naotsune; Mikami, Koji

    2010-04-01

    Transcription factors play a central role in expression of genomic information in all organisms. The objective of our study is to analyze the function of transcription factors in red algae. One way to analyze transcription factors in eukaryotic cells is to study their nuclear localization, as reported for land plants and green algae using fluorescent proteins. There is, however, no report documenting subcellular localization of transcription factors from red algae. In the present study, using the marine red alga Porphyra yezoensis, we confirmed for the first time successful expression of humanized fluorescent proteins (ZsGFP and ZsYFP) from a reef coral Zoanthus sp. and land plant-adapted sGFP(S65T) in gametophytic cells comparable to expression of AmCFP. Following molecular cloning and characterization of transcription factors DP-E2F-like 1 (PyDEL1), transcription elongation factor 1 (PyElf1) and multiprotein bridging factor 1 (PyMBF1), we then demonstrated that ZsGFP and AmCFP can be used to visualize nuclear localization of PyElf1 and PyMBF1. This is the first report to perform visualization of subcellular localization of transcription factors as genome-encoded proteins in red algae.

  15. Are algae relevant to the detritus-based food web in tank-bromeliads?

    PubMed

    Brouard, Olivier; Le Jeune, Anne-Hélène; Leroy, Céline; Cereghino, Régis; Roux, Olivier; Pelozuelo, Laurent; Dejean, Alain; Corbara, Bruno; Carrias, Jean-François

    2011-01-01

    We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼10(2) to 10(4) cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web.

  16. Coralline algae elevate pH at the site of calcification under ocean acidification.

    PubMed

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-04-02

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pHcf ) using δ(11) B as a proxy. Declines in δ(11) B for all three species are consistent with shifts in δ(11) B expected if B(OH)4(-) was incorporated during precipitation. In particular, the δ(11) B ratio in Amphiroa anceps was too low to allow for reasonable pHcf values if B(OH)3 rather than B(OH)4(-) was directly incorporated from the calcifying fluid. This points towards δ(11) B being a reliable proxy for pHcf for coralline algal calcite and that if B(OH)3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH)4(-) . We thus show that pHcf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO2 , as did their pHcf . Neogoniolithon sp. had the highest pHcf , and most constant calcification rates, with the decrease in pHcf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pHcf under ocean acidification is physiologically important and should be included in future models involving calcification.

  17. Are Algae Relevant to the Detritus-Based Food Web in Tank-Bromeliads?

    PubMed Central

    Brouard, Olivier; Le Jeune, Anne-Hélène; Leroy, Céline; Cereghino, Régis; Roux, Olivier; Pelozuelo, Laurent; Dejean, Alain; Corbara, Bruno; Carrias, Jean-François

    2011-01-01

    We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼102 to 104 cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web. PMID:21625603

  18. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2016-07-12

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  19. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  20. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  1. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  2. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  3. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  4. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  5. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  6. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  7. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  8. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  9. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  10. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth... suitable fermentation, under controlled conditions, from a pure culture of the genus Spongiococcum....

  11. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution.

  12. Neonatal sepsis caused by Shewanella algae: A case report.

    PubMed

    Charles, Marie Victor Pravin; Srirangaraj, Sreenivasan; Kali, Arunava

    2015-01-01

    Sepsis remains a leading cause of mortality among neonates, especially in developing countries. Most cases of neonatal sepsis are attributed to Escherichia coli and other members of the Enterobacteriaceae family. Shewanella algae (S. algae) is a gram-negative saprophytic bacillus, commonly associated with the marine environment, which has been isolated from humans. Early onset neonatal sepsis caused by S. algae is uncommon. We report a case of S. algae blood stream infection in a newborn with early onset neonatal sepsis.

  13. Anti-glycation properties of the aqueous extract solutions of dried algae products and effect of lactic acid fermentation on the properties.

    PubMed

    Kuda, Takashi; Eda, Mika; Kataoka, Manami; Nemoto, Maki; Kawahara, Miho; Oshio, Satoshi; Takahashi, Hajime; Kimura, Bon

    2016-02-01

    The antioxidant and anti-glycation properties in aqueous extract solutions (AESs) of 11 dried algae products were investigated. AESs of brown algae Ecklonia kurome (kurome) and Ecklonia stolonifera (tsuruarame) showed a strong DPPH radical-scavenging capacity and Fe-reducing power with high total phenolic compound content. On the other hand, superoxide anion radical-scavenging capacities of Porphyra sp. (iwanori, red alga), sporophyll of Undaria pinnatifida (mekabu, brown alga), and Gelidiaceae sp. (tengusa, red alga) were also high. Anti-glycation activities in BSA-fructose and BSA-methylglyoxal glycation were also high in kurome, while iwanori showed high activity. Results of the BSA-fructose model agreed with those of superoxide anion radical-scavenging. On the other hand, those of the BSA-methylglyoxal model agreed with those of the phenolic content, DPPH radical-scavenging capacity, and Fe-reducing power. Anti-glycation activities of iwanori, U. pinnatifida (wakame), and mekabu in the BSA-fructose model were clearly increased by fermentation with Lactobacillus plantarum AN6.

  14. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  15. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  16. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  17. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  18. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  19. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  20. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    PubMed

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  1. Sterol chemotaxonomy of marine pelagophyte algae.

    PubMed

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  2. Pheromone signaling during sexual reproduction in algae.

    PubMed

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  3. Research for Developing Renewable Biofuels from Algae

    SciTech Connect

    Black, Paul N.

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  4. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice.

  5. Polyamine biosynthetic diversity in plants and algae.

    PubMed

    Fuell, Christine; Elliott, Katherine A; Hanfrey, Colin C; Franceschetti, Marina; Michael, Anthony J

    2010-07-01

    Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.

  6. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  7. [Allelopathic effect of artemisinin on green algae].

    PubMed

    Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo; Li, Long-Yun

    2013-05-01

    To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.

  8. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  9. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  10. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  11. Hydrogen production from salt water by Marine blue green algae and solar radiation

    NASA Technical Reports Server (NTRS)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  12. Preliminary development and evaluation of an algae-based air regeneration system

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.

    2000-01-01

    The potential of air regeneration system based on the growth of microalgae on the surface of porous ceramic tubes is evaluated. The algae have been maintained in the system for extended periods, up to 360 days. Preliminary measurements of the photosynthetic capacity have been made for Chlorella vulgaris (UTEX 259), Neospongiococcum punctatum (UTEX 786), Stichococcus sp., and Gloeocapsa sp. Under standard test conditions (photosynthetic photon flux approximately 66 micromoles m-2 s-1, initial CO2 concentration approximately 450 micromoles mol-1), mature tubes remove up to 0.2 micromoles of CO2 per tube per minute. The rate of removal increases with photon flux up to at least 225 micromoles m-2 s-1 (PPF); peak rates of 0.35 micromoles of CO2 per tube per minute have been achieved with Chlorella vulgaris. These rates correspond to between 120 and 210 micromoles of CO2 removed per square meter of projected area per minute.

  13. Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production.

    PubMed

    Wileman, Angel; Ozkan, Altan; Berberoglu, Halil

    2012-01-01

    Rheological properties of microalgae slurries were measured as a function of biomass concentration from 0.5 to 80 kg/m(3) for Nannochloris sp., Chlorella vulgaris, and Phaeodactylum tricornutum. At biomass concentrations smaller than 20 kg/m(3), all slurries displayed a Newtonian fluid behavior with less than 30% increase in the effective viscosity from that of the nutrient medium. However, at biomass concentrations larger than 60 kg/m(3), the slurries of the green algae, Nannochloris sp. and C. vulgaris, displayed a shear thinning non-Newtonian behavior with varying degrees of sensitivity to shear rate while that of the diatom, P. tricornutum, was still a Newtonian fluid up to 80 kg/m(3). Moreover, bioenergy pumping effectiveness showed significant deviation among different species in the non-Newtonian regime. Finally, dewatering the slurries to concentration factors larger than 80 did not further increase the total bioenergy harvest effectiveness.

  14. Heavy metal bioaccumulation in sediment, common reed, algae, and blood worm from the Shoor river, Iran.

    PubMed

    Hamidian, Amir Hossein; Zareh, Maryam; Poorbagher, Hadi; Vaziri, Leila; Ashrafi, Sohrab

    2016-03-01

    Concentrations of 11 metals (cadmium, zinc, copper (Cu), vanadium (V), lead, magnesium (Mg), manganese, aluminum, iron (Fe), chromium (Cr), and nickel), and one metalloid (arsenic (As)) were measured in sediment, common reed (Phragmites australis), algae (Spirogyra sp.), and blood worm (Chironomus sp.) tissues of samples collected from the Shoor river. Samples were dried, acid digested, and the concentrations of metals were measured using inductively coupled plasma-optical emission spectrometer. A higher concentration of heavy metals was accumulated in Spirogyra and Chironomids than sediment and common reed. The highest rate of accumulation was found for Mg, V, Fe, As, Cu, and Cr. Spirogyra and Chironomids are capable of accumulating and thereby removing metals from polluted water bodies and are suitable for biomonitoring purposes.

  15. First freshwater coralline alga and the role of local features in a major biome transition

    PubMed Central

    Žuljević, A.; Kaleb, S.; Peña, V.; Despalatović, M.; Cvitković, I.; De Clerck, O.; Le Gall, L.; Falace, A.; Vita, F.; Braga, Juan C.; Antolić, B.

    2016-01-01

    Coralline red algae are significant components of sea bottom and up to now considered as exclusively marine species. Here we present the first coralline alga from a freshwater environment, found in the Cetina River (Adriatic Sea watershed). The alga is fully adapted to freshwater, as attested by reproductive structures, sporelings, and an inability to survive brackish conditions. Morphological and molecular phylogenetic analyses reveal the species belongs to Pneophyllum and is described as P. cetinaensis sp. nov. The marine-freshwater transition most probably occurred during the last glaciation. The brackish-water ancestor was preadapted to osmotic stress and rapid changes in water salinity and temperature. The particular characteristics of the karst Cetina River, such as hard water enriched with dissolved calcium carbonate and a pH similar to the marine environment, favoured colonization of the river by a marine species. The upstream advance and dispersal is facilitated by exceptionally pronounced zoochory by freshwater gastropods. Pneophyllum cetinaensis defies the paradigm of Corallinales as an exclusively marine group. PMID:26791421

  16. First freshwater coralline alga and the role of local features in a major biome transition.

    PubMed

    Žuljević, A; Kaleb, S; Peña, V; Despalatović, M; Cvitković, I; De Clerck, O; Le Gall, L; Falace, A; Vita, F; Braga, Juan C; Antolić, B

    2016-01-21

    Coralline red algae are significant components of sea bottom and up to now considered as exclusively marine species. Here we present the first coralline alga from a freshwater environment, found in the Cetina River (Adriatic Sea watershed). The alga is fully adapted to freshwater, as attested by reproductive structures, sporelings, and an inability to survive brackish conditions. Morphological and molecular phylogenetic analyses reveal the species belongs to Pneophyllum and is described as P. cetinaensis sp. nov. The marine-freshwater transition most probably occurred during the last glaciation. The brackish-water ancestor was preadapted to osmotic stress and rapid changes in water salinity and temperature. The particular characteristics of the karst Cetina River, such as hard water enriched with dissolved calcium carbonate and a pH similar to the marine environment, favoured colonization of the river by a marine species. The upstream advance and dispersal is facilitated by exceptionally pronounced zoochory by freshwater gastropods. Pneophyllum cetinaensis defies the paradigm of Corallinales as an exclusively marine group.

  17. Identification and characterization of a symbiotic alga from soil bryophyte for lipid profiles

    PubMed Central

    Feng, Jia; Guo, Yuning; Zhang, Xiujuan; Wang, Guihua; Lv, Junping; Liu, Qi; Xie, Shulian

    2016-01-01

    ABSTRACT A symbiotic alga was successfully isolated from the soil moss Entodon obtusatus found in the Guandi Mountains, Shanxi Province, China, and cultivated under axenic conditions. Morphological observations showed that the symbiotic alga was similar to Chlorococcum. Based on phylogenetic analysis of 18S rRNA and rbcL genes and internal transcribed spacer (ITS) regions, Chlorococcum sp. GD was identified as Chlorococcum sphacosum. The three data sets were congruent for those aspects of the topologies that were relatively robust, and differed for those parts of the topologies that were not. This strain was cultured in BG11 medium to test its growth and biodiesel properties. It produced a lipid content of nearly 40%, and achieved biomass concentration of 410 mg l−1 and lipid productivity of 6.76 mg l−1 day−1, with favorable C16:0 (23.10%) and C18:1 (21.62%) fatty acid content. This alga appears to have potential for use in biodiesel production. PMID:27543061

  18. First freshwater coralline alga and the role of local features in a major biome transition

    NASA Astrophysics Data System (ADS)

    Žuljević, A.; Kaleb, S.; Peña, V.; Despalatović, M.; Cvitković, I.; de Clerck, O.; Le Gall, L.; Falace, A.; Vita, F.; Braga, Juan C.; Antolić, B.

    2016-01-01

    Coralline red algae are significant components of sea bottom and up to now considered as exclusively marine species. Here we present the first coralline alga from a freshwater environment, found in the Cetina River (Adriatic Sea watershed). The alga is fully adapted to freshwater, as attested by reproductive structures, sporelings, and an inability to survive brackish conditions. Morphological and molecular phylogenetic analyses reveal the species belongs to Pneophyllum and is described as P. cetinaensis sp. nov. The marine-freshwater transition most probably occurred during the last glaciation. The brackish-water ancestor was preadapted to osmotic stress and rapid changes in water salinity and temperature. The particular characteristics of the karst Cetina River, such as hard water enriched with dissolved calcium carbonate and a pH similar to the marine environment, favoured colonization of the river by a marine species. The upstream advance and dispersal is facilitated by exceptionally pronounced zoochory by freshwater gastropods. Pneophyllum cetinaensis defies the paradigm of Corallinales as an exclusively marine group.

  19. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows.

    PubMed

    Boeckaert, C; Vlaeminck, B; Dijkstra, J; Issa-Zacharia, A; Van Nespen, T; Van Straalen, W; Fievez, V

    2008-12-01

    Two experiments with rumen-fistulated dairy cows were conducted to evaluate the effects of feeding docosahexaenoic acid (DHA; C22:6 n-3)-enriched diets or diets provoking a decreased rumen pH on milk fatty acid composition. In the first experiment, dietary treatments were tested during 21-d experimental periods in a 4 x 4 Latin square design. Diets included a control diet, a starch-rich diet, a bicarbonate-buffered starch-rich diet, and a diet supplemented with DHA-enriched micro algae [Schizochytrium sp., 43.0 g/kg of dry matter intake (DMI)]. Algae were supplemented directly through the rumen fistula. The total mixed ration consisted of grass silage, corn silage, soybean meal, and a standard or glucogenic concentrate. The glucogenic and buffered glucogenic diet had no effect on rumen fermentation and milk fatty acid composition because, unexpectedly, no reduced rumen pH was detected. The algae diet had no effect on rumen pH but provoked decreased butyrate and increased isovalerate molar proportions in the rumen. In addition, algae supplementation affected rumen biohydrogenation of linoleic and linolenic acid as reflected in the modified milk fatty acid composition toward increased conjugated linoleic acid (CLA) cis-9 trans-11, CLA trans-9 cis-11, C18:1 trans-10, C18:1 trans-11, and C22:6 n-3 concentrations. Concomitantly, on average, a 45% decrease in DMI and milk yield was observed. Based on these drastic and impractical results, a second animal experiment was performed for 20 d in which 9.35 g/kg of total DMI of algae were incorporated in the concentrate and supplemented to 3 rumen-fistulated cows. Algae concentrate feeding increased rumen pH, which was associated with decreased rumen short-chain fatty acid concentrations. Moreover, a different shift in rumen short-chain fatty acid proportions was observed compared with the first experiment because molar proportions of butyrate, isobutyrate, and isovalerate increased, whereas acetate molar proportion decreased

  20. Actinobacteria Associated with the Marine Sponges Cinachyra sp., Petrosia sp., and Ulosa sp. and Their Culturability

    PubMed Central

    Khan, Shams Tabrez; Takagi, Motoki; Shin-ya, Kazuo

    2012-01-01

    Actinobacteria associated with 3 marine sponges, Cinachyra sp., Petrosia sp., and Ulosa sp., were investigated. Analyses of 16S rRNA gene clone libraries revealed that actinobacterial diversity varied greatly and that Ulosa sp. was most diverse, while Cinachyra sp. was least diverse. Culture-based approaches failed to isolate actinobacteria from Petrosia sp. or Ulosa sp., but strains belonging to 10 different genera and 3 novel species were isolated from Cinachyra sp. PMID:22214828

  1. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2001-12-01

    The altitudinal distribution of a snow algal community was investigated on an Alaska glacier (Gulkana Glacier in the Alaska Range) from 1270 to 1770 m a.s.l.. Seven species of snow and ice algae (Chlorophyta and cyanobacteria) were observed on the glacier surface. These species were Chlamydomonas nivalis, Mesotaenium berggrenii, Ancylonema nordenskioldii, Cylindrocystis brébissonii, Raphidonema sp., and two Oscillatoriaceae cyanobacteria. The altitudinal distribution of snow algae was different among the species: Cd. nivalis was distributed on the middle to upper area, M. berggrenii; A. nordenskioldii, and one Oscillatoriaceae cyanobacterium on the middle to lower area; Raphidonema sp. on the middle area; and Cyl. brébissonii and one Oscillatoriaceae cyanobacterium on the lower area. The total cell concentration and the cell volume biomass of the snow algae ranged from 4·4 × 103 to 9·9 × 105 cells ml-1 and from 33 to 2211 µl m-2 respectively. The cell volume biomass changed with altitude; the biomass increased with altitude below 1600 m a.s.l., and decreased above 1600 m a.s.l. The community structure showed that algae is discussed in terms of the physical and chemical condition of the glacier surface, and is compared with that on a Himalayan glacier. A larger biomass in the snow area on the Alaska glacier than that of the Himalayan glacier is likely due to less frequent snow cover in summer in Alaska. Small amounts of filamentous cyanobacteria on the Alaska glacier may allow washouts of unicellular green algae by running melt water and may cause a different pattern of altitudinal distribution of algal biomass on the ice area from the Himalayan glacier

  2. Microfiltration for separation of green algae from water.

    PubMed

    Hung, M T; Liu, J C

    2006-08-15

    Cross-flow microfiltration was used for separation of green algae, Chlorella sp., from freshwater. The transmembrane pressure (TMP) was adjusted at 40, 50 and 60 kPa, respectively. The cross-flow velocity was set at 0.43 m/s for laminar flow and 0.84 m/s for turbulent flow, respectively. The results showed that flux increased as TMP increased from 40 to 50 kPa. But drastic flux decline was observed when operating at TMP of 60 kPa. Raising cross-flow velocity increased the initial flux of MF under TMP of 60 kPa. Nevertheless, implementing turbulent cross-flow did not improve the drastic flux decline under the highest TMP. Preozonation increased the dissolved organic carbon, decreased algal viability and made the size of algal cells smaller. It also increased dissolved polysaccharide that derived from extracellular organic matter (EOM). Different effects of preozonation on flux behavior of MF were observed when utilizing hydrophobic and hydrophilic membrane. Generally speaking, preozonation improved performance of microfiltration by reducing cake compressibility and the biomass loading when both membranes were used. However, dissolved polysaccharide released during preozonation was adsorbed onto the hydrophobic membrane. Consequently, fouling resistance of the hydrophobic membrane became higher. These arguments were verified by classification of hydrodynamic resistances.

  3. Evaluation of oil-producing algae as potential biodiesel feedstock.

    PubMed

    Zhou, XuPing; Ge, HongMei; Xia, Ling; Zhang, Delu; Hu, ChunXiang

    2013-04-01

    This study attempted to connect the dots between laboratory research and the outdoors. Chlorella sp. NJ-18 was selected among seven oil-producing algae cultivated in this study because it had the highest lipid productivity. The nitrogen and phosphorus concentrations for cultivating this Chlorella strain were optimized indoors. This strain was incubated outdoors in a 70 L photobioreactor, containing the favorable nitrogen (8.32 mM urea) and phosphorus (0.18 mM monopotassium phosphate) concentrations. Semi-continuous cultivation was performed by harvesting 30 L biomass and replacing it with fresh medium. The maximum biomass and lipid productivity acquired outdoors were 91.84 and 24.05 mg L(-1) d(-1), respectively. Furthermore, biomass productivity could be maintained at a high level throughout the cultivation process when using the semi-continuous mode, whereas it decreased dramatically in batch cultures. More than 95% of the total fatty acids obtained were C16 and C18, which are the main components for biofuel.

  4. Phycobilisomes from Blue-Green and Red Algae

    PubMed Central

    Gantt, Elisabeth; Lipschultz, Claudia A.; Grabowski, Joseph; Zimmerman, Burke K.

    1979-01-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin. PMID:16660778

  5. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.

  6. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nannochloropsis oculata.

    PubMed

    Wei, Likun; Huang, Xuxiong

    2017-01-01

    Microalga Nannochloropsis oculata is a promising alternative feedstock for biodiesel. Elevating its oil-yielding capacity is conducive to cost-saving biodiesel production. However, the regulatory processes of multi-factor collaborative stresses (MFCS) on the oil-yielding performance of N. oculata are unclear. The duration effects of MFCS (high irradiation, nitrogen deficiency and elevated iron supplementation) on N. oculata were investigated in an 18-d batch culture. Despite the reduction in cell division, the biomass concentration increased, resulting from the large accumulation of the carbon/energy-reservoir. However, different storage forms were found in different cellular storage compounds, and both the protein content and pigment composition swiftly and drastically changed. The analysis of four biodiesel properties using pertinent empirical equations indicated their progressive effective improvement in lipid classes and fatty acid composition. The variation curve of neutral lipid productivity was monitored with fluorescent Nile red and was closely correlated to the results from conventional methods. In addition, a series of changes in the organelles (e.g., chloroplast, lipid body and vacuole) and cell shape, dependent on the stress duration, were observed by TEM and LSCM. These changes presumably played an important role in the acclimation of N. oculata to MFCS and accordingly improved its oil-yielding performance.

  7. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica.

    PubMed

    Chen, Jia-Wen; Liu, Wan-Jun; Hu, Dong-Xiong; Wang, Xiang; Balamurugan, Srinivasan; Alimujiang, Adili; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2016-08-30

    Oleaginous microalgae hold great promises for biofuel production. However, commercialization of microalgal biofuels remains impracticable due to lack of suitable industrial strain with high growth rate and lipid productivity. Engineering of metabolic pathways is a potential strategy for the improvement of microalgal strains for the production of lipids and also value-added products in microalgae. Malonyl CoA-acyl carrier protein transacylase (MCAT) has been reported to be involved in fatty acid biosynthesis. Here, we identified a putative MCAT in the oleaginous marine microalga Nannochloropsis oceanica. NoMCAT-overexpressing N. oceanica showed higher growth rate and photosynthetic efficiency. The neutral lipid content of engineered lines showed a significant increase by up to 31% compared to wild type. GC-MS analysis revealed that NoMCAT overexpression significantly altered the fatty acid composition. The composition of EPA (C20:5) increased by 8%, which is a polyunsaturated fatty acid necessary for animal nutrition. These results demonstrate the role of MCAT in enhancing fatty acid biosynthesis and growth in microalgae, and also provide an insight into metabolic engineering of microalgae with high industrial potential. This article is protected by copyright. All rights reserved.

  8. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nannochloropsis oculata

    PubMed Central

    Wei, Likun; Huang, Xuxiong

    2017-01-01

    Microalga Nannochloropsis oculata is a promising alternative feedstock for biodiesel. Elevating its oil-yielding capacity is conducive to cost-saving biodiesel production. However, the regulatory processes of multi-factor collaborative stresses (MFCS) on the oil-yielding performance of N. oculata are unclear. The duration effects of MFCS (high irradiation, nitrogen deficiency and elevated iron supplementation) on N. oculata were investigated in an 18-d batch culture. Despite the reduction in cell division, the biomass concentration increased, resulting from the large accumulation of the carbon/energy-reservoir. However, different storage forms were found in different cellular storage compounds, and both the protein content and pigment composition swiftly and drastically changed. The analysis of four biodiesel properties using pertinent empirical equations indicated their progressive effective improvement in lipid classes and fatty acid composition. The variation curve of neutral lipid productivity was monitored with fluorescent Nile red and was closely correlated to the results from conventional methods. In addition, a series of changes in the organelles (e.g., chloroplast, lipid body and vacuole) and cell shape, dependent on the stress duration, were observed by TEM and LSCM. These changes presumably played an important role in the acclimation of N. oculata to MFCS and accordingly improved its oil-yielding performance. PMID:28346505

  9. A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance.

    PubMed

    Camacho-Rodríguez, J; González-Céspedes, A M; Cerón-García, M C; Fernández-Sevilla, J M; Acién-Fernández, F G; Molina-Grima, E

    2014-03-01

    Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day(-1)) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l(-1) day(-1) (peak 0.4 g l(-1) day(-1)) at 0.4 day(-1) in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l(-1) day(-1).

  10. [Influence of decomposition of Cladophora sp. on phosphorus concentrations and forms in the overlying water].

    PubMed

    Hou, Jin-Zhi; Wei, Quan; Gao, Li; Sun, Wei-Ming

    2013-06-01

    Sediments were sampled in the dominated zone of Cladophora sp. in Rongcheng Swan Lake, and cultivated with algae in the laboratory to reveal the influence of Cladophora decomposition on concentrations and forms of phosphorus in the overlying water. Concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), soluble reactive phosphorus (SRP), particulate phosphorus (PP) and dissolved organic phosphorus (DOP) in overlying water were investigated, and some physicochemical parameters, such as dissolved oxygen (DO), pH and conductivity were monitored during the experiment. In addition, the influence of algae decomposition on P release from sediments was analyzed. Due to the decomposition of Cladophora, DO concentration in the overlying water declined remarkably and reached the anoxic condition (0-0.17 mg x L(-1)). The pH value of different treatments also decreased, and treatments with algae reduced by about 1 unit. Concentrations of TP and different P forms all increased obviously, and the increasing extent was larger with the adding algae amount. TP concentrations of different treatments varied from 0.04 mg x L(-1) to 1.34 mg x L(-1). DOP and PP were the main P forms in the overlying water in algae without sediments treatments, but SRP concentrations became much higher in algae with sediments treatments. The result showed that P forms released from decomposing Cladophora were mainly DOP and PP, and the Cladophora decomposition could also promote the sediments to release P into the overlying water.

  11. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water.

    PubMed

    Bai, Xuelian; Acharya, Kumud

    2017-03-01

    The persistence and fate of pharmaceutical and personal care products (PPCPs) in the Lake Mead ecosystem are particularly important considering the potential ecological risks and human health impacts. This study evaluated the removal of five common PPCPs (i.e., trimethoprim, sulfamethoxazole, carbamazepine, ciprofloxacin, and triclosan) from Lake Mead water mediated by the green alga Nannochloris sp. The results from the incubation studies showed that trimethoprim and carbamazepine were highly resistant to uptake in the algal cultural medium and were measured at approximately 90%-100% of the applied dose after 14days of incubation. Sulfamethoxazole was found relatively persistent, with >60% of the applied dose remaining in the water after 14days, and its removal was mainly caused by algae-mediated photolysis. However, ciprofloxacin and triclosan dissipated significantly and nearly 100% of the compounds were removed from the water after 7days of incubation under 24h of light. Ciprofloxacin and triclosan were highly susceptible to light, and their estimated half-lives were 12.7hours for ciprofloxacin and 31.2hours for triclosan. Algae-mediated sorption contributed to 11% of the removal of trimethoprim and sulfamethoxazole, 13% of the removal of carbamazepine, and 27% of the removal of triclosan from the lake water. This research showed that 1) trimethoprim, sulfamethoxazole, and carbamazepine are quite persistent in aquatic environments and may potentially affect human health via drinking water intake; 2) photolysis is the dominant pathway to remove ciprofloxacin from aquatic ecosystems, which indicates that ciprofloxacin may have lower ecological risks compared with other PPCPs; and 3) triclosan can undergo photolysis as well as algae-mediated uptake and it may potentially affect the food web because of its high toxicity to aquatic species.

  12. Integrated 'Omics', Targeted Metabolite and Single-cell Analyses of Arctic Snow Algae Functionality and Adaptability.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Field, Katie; Benning, Liane G

    2015-01-01

    Snow algae are poly-extremophilic microalgae and important primary colonizers and producers on glaciers and snow fields. Depending on their pigmentation they cause green or red mass blooms during the melt season. This decreases surface albedo and thus further enhances snow and ice melting. Although the phenomenon of snow algal blooms has been known for a long time, large aspects of their physiology and ecology sill remain cryptic. This study provides the first in-depth and multi-omics investigation of two very striking adjacent green and red snow fields on a glacier in Svalbard. We have assessed the algal community composition of green and red snow including their associated microbiota, i.e., bacteria and archaea, their metabolic profiles (targeted and non-targeted metabolites) on the bulk and single-cell level, and assessed the feedbacks between the algae and their physico-chemical environment including liquid water content, pH, albedo, and nutrient availability. We demonstrate that green and red snow clearly vary in their physico-chemical environment, their microbial community composition and their metabolic profiles. For the algae this likely reflects both different stages of their life cycles and their adaptation strategies. Green snow represents a wet, carbon and nutrient rich environment and is dominated by the algae Microglena sp. with a metabolic profile that is characterized by key metabolites involved in growth and proliferation. In contrast, the dry and nutrient poor red snow habitat is colonized by various Chloromonas species with a high abundance of storage and reserve metabolites likely to face upcoming severe conditions. Combining a multitude of techniques we demonstrate the power of such complementary approaches in elucidating the function and ecology of extremophiles such as green and red snow algal blooms, which play crucial roles in glacial ecosystems.

  13. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation.

    PubMed

    Liu, Chenlin; Wu, Guangting; Huang, Xiaohang; Liu, Shenghao; Cong, Bailin

    2012-05-01

    Antarctic ice alga Chlamydomonas sp. ICE-L can endure extreme low temperature and high salinity stress under freezing conditions. To elucidate the molecular acclimation mechanisms using gene expression analysis, the expression stabilities of ten housekeeping genes of Chlamydomonas sp. ICE-L during freezing stress were analyzed. Some discrepancies were detected in the ranking of the candidate reference genes between geNorm and NormFinder programs, but there was substantial agreement between the groups of genes with the most and the least stable expression. RPL19 was ranked as the best candidate reference genes. Pairwise variation (V) analysis indicated the combination of two reference genes was sufficient for qRT-PCR data normalization under the experimental conditions. Considering the co-regulation between RPL19 and RPL32 (the most stable gene pairs given by geNorm program), we propose that the mean data rendered by RPL19 and GAPDH (the most stable gene pairs given by NormFinder program) be used to normalize gene expression values in Chlamydomonas sp. ICE-L more accurately. The example of FAD3 gene expression calculation demonstrated the importance of selecting an appropriate category and number of reference genes to achieve an accurate and reliable normalization of gene expression during freeze acclimation in Chlamydomonas sp. ICE-L.

  14. Biofuels from algae: challenges and potential.

    PubMed

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2010-09-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.

  15. Hydrogen production by photosynthetic green algae.

    PubMed

    Ghirardi, Maria L

    2006-08-01

    Oxygenic photosynthetic organisms such as cyanobacteria, green algae and diatoms are capable of absorbing light and storing up to 10-13% of its energy into the H-H bond of hydrogen gas. This process, which takes advantage of the photosynthetic apparatus of these organisms to convert sunlight into chemical energy, could conceivably be harnessed for production of significant amounts of energy from a renewable resource, water. The harnessed energy could then be coupled to a fuel cell for electricity generation and recycling of water molecules. In this review, current biochemical understanding of this reaction in green algae, and some of the major challenges facing the development of future commercial algal photobiological systems for H2 production have been discussed.

  16. Engineering algae for biohydrogen and biofuel production.

    PubMed

    Beer, Laura L; Boyd, Eric S; Peters, John W; Posewitz, Matthew C

    2009-06-01

    There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.

  17. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  18. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  19. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  20. Algae: America’s Pathway to Independence

    DTIC Science & Technology

    2007-03-30

    Bioenergy, Biofuel, Energy Policy CLASSIFICATION: Unclassified The United States is dependent on foreign oil to meet 63% of its petroleum demand...source of bioenergy. ALGAE: AMERICA’S PATHWAY TO INDEPENDENCE Ensuring a secure supply of energy is a strategic challenge for...150 years,6 the U.S. will be competing with other nations to procure the 2 finite commodity. The Department of Energy (DOE) estimates that by the

  1. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  2. Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems.

    PubMed

    Sabiri, N E; Castaing, J B; Massé, A; Jaouen, P

    2012-01-01

    In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater. Removal efficiency and capture mechanisms for a fixed superficial velocity (3.5 m/h) were evaluated in relation to size distribution and mean diameter of the sand. Various sands (average diameter ranging between 200 microm and 600 microm) were characterized and used as porous media. The structural parameters of the fixed beds were evaluated for each medium using experimental measurements of pressure drop as a function of superficial velocity over a range of Reynolds numbers covering Darcy's regime and the inertial regime. For a filtration cycle of six hours, the best efficiency (E = 90%) was obtained with the following sand characteristics: sieved sand with a range of grain diameter of 100 and 300 microm and a mean grain diameter equal to 256 microm. Results obtained show the influence of the size distribution of sand on the quality of retention of the micro-algae studied.

  3. [Pharmacology and toxicology of Spirulina alga].

    PubMed

    Chamorro, G; Salazar, M; Favila, L; Bourges, H

    1996-01-01

    Spirulina, a unicellular filamentous blue-green alga has been consumed by man since ancient times in Mexico and central Africa. It is currently grown in many countries by synthetic methods. Initially the interest in Spirulina was on its nutritive value: it was found almost equal to other plant proteins. More recently, some preclinical testing suggests it has several therapeutic properties such as hypocholesterolemic, immunological, antiviral and antimutagenic. This has led to more detailed evaluations such as nucleic acid content and presence of toxic metals, biogenic toxins and organic chemicals: they have shown absence or presence at tolerable levels according to the recommendations of international regulatory agencies. In animal experiments for acute, subchronic and chronic toxicity, reproduction, mutagenicity, and teratogenicity the algae did not cause body or organ toxicity. In all instances, the Spirulina administered to the animals were at much higher amounts than those expected for human consumption. On the other hand there is scant information of the effects of the algae in humans. This area needs more research.

  4. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  5. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  6. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops.

  7. Electro-coagulation-flotation process for algae removal.

    PubMed

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  8. Blue-Green Algae Inhibit the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice

    PubMed Central

    Ku, Chai Siah; Kim, Bohkyung; Pham, Tho X.; Yang, Yue; Wegner, Casey J.; Park, Young-Ki; Balunas, Marcy

    2015-01-01

    Abstract Hyperlipidemia and inflammation contribute to the development of atherosclerotic lesions. Our objective was to determine antiatherogenic effect of edible blue-green algae (BGA) species, that is, Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), in apolipoprotein E knockout (ApoE−/−) mice, a well-established mouse model of atherosclerosis. Male ApoE−/− mice were fed a high-fat/high-cholesterol (HF/HC, 15% fat and 0.2% cholesterol by wt) control diet or a HF/HC diet supplemented with 5% (w/w) of NO or SP powder for 12 weeks. Plasma total cholesterol (TC) and triglycerides (TG) were measured, and livers were analyzed for histology and gene expression. Morphometric analysis for lesions and immunohistochemical analysis for CD68 were conducted in the aorta and the aortic root. NO supplementation significantly decreased plasma TC and TG, and liver TC, compared to control and SP groups. In the livers of NO-fed mice, less lipid droplets were present with a concomitant decrease in fatty acid synthase protein levels than the other groups. There was a significant increase in hepatic low-density lipoprotein receptor protein levels in SP-supplemented mice than in control and NO groups. Quantification of aortic lesions by en face analysis demonstrated that both NO and SP decreased aortic lesion development to a similar degree compared with control. While lesions in the aortic root were not significantly different between groups, the CD68-stained area in the aortic root was significantly lowered in BGA-fed mice than controls. In conclusion, both NO and SP supplementation decreased the development of atherosclerotic lesions, suggesting that they may be used as a natural product for atheroprotection. PMID:26566121

  9. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation.

  10. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    SciTech Connect

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  11. Exploring the potential of algae/bacteria interactions.

    PubMed

    Kouzuma, Atsushi; Watanabe, Kazuya

    2015-06-01

    Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes.

  12. [Biological activity of Penicillium sp. 10-51 exometabolites].

    PubMed

    Savchuk, Ia I; Zaĭchenko, A M; Tsyganenko, E S

    2012-01-01

    Silica gel column chromatography (silica gel "L" II kind of activity 100/160 mkm) of the chloroform extract from the cultural filtrate of Penicillium sp. 10-51 gave two fractions (chloroform and chloroform-acetone, 5:1) having biological activity. Recrystallization yielded two compounds. On the basis of physico-chemical and spectral data these compounds were identified as curvularin and hydroxycurvularin, which have a large spectrum of biological action as to bacteria, yeast, blue-green algae and phytopathogenic micromycetes.

  13. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2016-07-12

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  14. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  15. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  16. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1990-05-01

    division Cyanophyta , commonly called blue -green algae cr cyanobacteria . Although cyanobacteria are found in almost any environment ranging from hot...p ecst Available Copy ~’ COPy Ni AD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS:’ I ISOLATION AND CHARACTERIZATION < DTIC ANNUAL/FINAL...AA I 78 11. TITLE (In•.ju . ’,curry Ci.si fication) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolatior and CharacteriZation 12. PERSONAL

  17. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1989-01-15

    exclusively caused by strains of species that are members of the L division Cyanophyta , commonly called blue -green algae or cyanobacteria . Although...0 0 Lfl (NAD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS: ISOLATION AND CHARACTERIZATION ANNCUAL REPORT Wayne W. Carmichael Sarojini Bose...Frederick, Maryland 21701-5012 62770A 6277GA871 AA 378 11 TITLE &who* Secwn~y C11mrfaon) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolation

  18. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  19. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  20. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  1. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  2. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    PubMed Central

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  3. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus.

    PubMed

    Avia, Komlan; Coelho, Susana M; Montecinos, Gabriel J; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J Mark; Boudry, Pierre

    2017-03-03

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species.

  4. Application of synthetic biology in cyanobacteria and algae.

    PubMed

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO(2) and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.

  5. Method and apparatus for lysing and processing algae

    SciTech Connect

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  6. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  7. Acetone, butanol, and ethanol production from wastewater algae.

    PubMed

    Ellis, Joshua T; Hengge, Neal N; Sims, Ronald C; Miller, Charles D

    2012-05-01

    Acetone, butanol, and ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4 using wastewater algae biomass as a carbon source was demonstrated. Algae from the Logan City Wastewater Lagoon system grow naturally at high rates providing an abundant source of renewable algal biomass. Batch fermentations were performed with 10% algae as feedstock. Fermentation of acid/base pretreated algae produced 2.74 g/L of total ABE, as compared with 7.27 g/L from pretreated algae supplemented with 1% glucose. Additionally, 9.74 g/L of total ABE was produced when xylanase and cellulase enzymes were supplemented to the pretreated algae media. The 1% glucose supplement increased total ABE production approximately 160%, while supplementing with enzymes resulted in a 250% increase in total ABE production when compared to production from pretreated algae with no supplementation of extraneous sugar and enzymes. Additionally, supplementation of enzymes produced the highest total ABE production yield of 0.311 g/g and volumetric productivity of 0.102 g/Lh. The use of non-pretreated algae produced 0.73 g/L of total ABE. The ability to engineer novel methods to produce these high value products from an abundant and renewable feedstock such as algae could have significant implications in stimulating domestic energy economies.

  8. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses.

  9. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy?

    PubMed

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-10-30

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.

  10. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  11. Biodiesel from algae: challenges and prospects.

    PubMed

    Scott, Stuart A; Davey, Matthew P; Dennis, John S; Horst, Irmtraud; Howe, Christopher J; Lea-Smith, David J; Smith, Alison G

    2010-06-01

    Microalgae offer great potential for exploitation, including the production of biodiesel, but the process is still some way from being carbon neutral or commercially viable. Part of the problem is that there is little established background knowledge in the area. We should look both to achieve incremental steps and to increase our fundamental understanding of algae to identify potential paradigm shifts. In doing this, integration of biology and engineering will be essential. In this review we present an overview of a potential algal biofuel pipeline, and focus on recent work that tackles optimization of algal biomass production and the content of fuel molecules within the algal cell.

  12. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated.

  13. Actinobacillus rossii sp. nov., Actinobacillus seminis sp. nov., nom. rev., Pasteurella bettii sp. nov., Pasteurella lymphangitidis sp. nov., Pasteurella mairi sp. nov., and Pasteurella trehalosi sp. nov.

    PubMed

    Sneath, P H; Stevens, M

    1990-04-01

    Evidence from numerical taxonomic analysis and DNA-DNA hybridization supports the proposal of new species in the genera Actinobacillus and Pasteurella. The following new species are proposed: Actinobacillus rossii sp. nov., from the vaginas of postparturient sows; Actinobacillus seminis sp. nov., nom. rev., associated with epididymitis of sheep; Pasteurella bettii sp. nov., associated with human Bartholin gland abscess and finger infections; Pasteurella lymphangitidis sp. nov. (the BLG group), which causes bovine lymphangitis; Pasteurella mairi sp. nov., which causes abortion in sows; and Pasteurella trehalosi sp. nov., formerly biovar T of Pasteurella haemolytica, which causes septicemia in older lambs.

  14. Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11.

    PubMed

    Pagnout, Christophe; Rast, Claudine; Veber, Anne-Marie; Poupin, Pascal; Férard, Jean-François

    2006-10-01

    Mycobacterium sp. SNP11 has a high PAH biodegradation potential. In this paper, the toxicity of pyrene, fluoranthene, phenanthrene, and their dead-end metabolites, accumulated in the media after biodegradation by Mycobacterium sp. SNP11, were evaluated by a screening battery of acute, chronic, and genotoxic tests. According to the bioassays, performed on bacteria (Vibrio fischeri, Salmonella typhimurium strains TA1535/pSK1002, TA97a, TA98, TA100), algae (Pseudokirchneriella subcapitata), and crustaceans (Daphnia magna, Ceriodaphnia dubia), total disappearance or a very significant reduction of the (geno)toxic potential was observed after PAH degradation by Mycobacterium sp. SNP11.

  15. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae

    PubMed Central

    Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin

    2017-01-01

    The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, “cell fountains,” and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years. PMID:28291791

  16. Diplosphaera sp. MM1 - A microalga with phycoremediation and biomethane potential.

    PubMed

    Liu, Cuixia; Subashchandrabose, Suresh R; Megharaj, Mallavarapu; Hu, Zhiquan; Xiao, Bo

    2016-10-01

    This study evaluated the potential of a microalga Diplosphaera sp. MM1 for its ability to generate energy through biomass production from wastewater remediation. 33% dairy wastewater and 50% winery wastewater demonstrated as promising alternative media for cultivating Diplosphaera sp. MM1 biomass. Interestingly, the alga cultivated in 50% winery wastewater with limited nitrogen produced the highest lipid content (43.07% total solid) and the lowest carbohydrate content (9.35% TS). On the contrary, the lowest lipid content (16.98% TS) and the highest carbohydrate content (29.39% TS) were exhibited by the alga cultivated in 33% dairy wastewater. The results from anaerobic digestion processes in terms of biochemical methane potential of the alga cultivated in BG-11 medium, 33% dairy wastewater and 50% winery wastewater were 197.39, 129.75 and 218.51NmLg(-1)VS, respectively. Further, this study demonstrates the potential of winery wastewater as a candidate to increase the lipid content of algae and enhance biofuel production of algal biomass.

  17. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities.

  18. Two new species of diplosoma (Ascidiacea: Didemnidae) bearing prokaryotic algae prochloron from Okinawajima (Ryukyu Archipelago, Japan).

    PubMed

    Oka, Atsushi T; Suetsugu, Mayu; Hirose, Euichi

    2005-03-01

    Two new species of didemnid ascidians, Diplosoma ooru sp. nov. and Diplosoma simileguwa sp. nov., are described from coral reefs on Okinawajima (Ryukyu Archipelago, Japan). These two species form green colonies, having a symbiotic association with a prokaryotic alga Prochloron sp. The former species was found at the reef edges in the subtidal zone and the latter was found in a shallow reef lagoon. In these species, the colonies are thinner and the zooids are smaller than those of any other Prochloron-bearing Diplosoma species so far described. Moreover, each of the present new species has a unique combination of stigmatic numbers: 5 stigmata in the first and third rows, 6 in the second row, and 4 in the fourth in D. ooru; 4 stigmata in the first and third rows, 5 in the second row, and 3 in the fourth in D. simileguwa. In both of the new species, the retractor muscle emerges from the underside of the thorax. Larval morphology of D. ooru is also described.

  19. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  20. Algae-based oral recombinant vaccines.

    PubMed

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  1. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  2. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  3. Validation of Polytomella piriformis nomen nudum (Chlamydomonadaceae): a Distinct Lineage Within a Genus of Nonphotosynthetic Green Algae.

    PubMed

    MacDonald, Shelley M; Lee, Robert W

    2015-01-01

    Polytomella strain SAG 63-10 was first described by Pringsheim (1963) as Polytomella piriformis nomen nudum. The current study validates the name Polytomella piriformis following the International Code of Nomenclature for algae, fungi, and plants (ICN). We present 18S rRNA sequences of SAG 63-10 and several other Polytomella strains, which, along with existing mitochondrial DNA sequences, clearly distinguishes P. piriformis n. sp. from other available Polytomella species. The first type material of the species is presented, as well as an illustration and micrographs. Our own observations of P. piriformis SAG 63-10 are compared to Pringsheim's description and to descriptions of other valid Polytomella spp.

  4. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  5. Sequencing of complete mitochondrial genome of brown algal Saccharina sp. ye-F.

    PubMed

    Fan, Xiao; Wang, Shuai; Xu, Dong; Zhang, Xiaowen; Xu, Le; Miao, Yu; Ye, Naihao

    2016-09-01

    The complete sequence (37 657 bp) of the mitochondrial DNA (mtDNA) of the Saccharina sp. ye-F was determined using Illumina sequencing data (Illumina Inc., San Diego, CA). The genome contains 38 protein-coding genes (PCG), three ribosomal RNA (rRNA), and 25 transfer RNA (tRNA) genes that are typical of Saccharina mtDNA. A phylogenetic analysis based on the mitochondrial genomes of brown algae indicated that Saccharina sp. ye-F and Saccharina longissima, Saccharina japonica are the most closely related species, which strongly supports their close phylogenetic affinity.

  6. Sequencing of complete mitochondrial genome of brown algal Saccharina sp. ye-W.

    PubMed

    Wang, Shuai; Fan, Xiao; Xu, Dong; Zhang, Xiaowen; Miao, Yu; Xu, Le; Ye, Naihao

    2016-07-01

    The complete sequence (37 657 bp) of the mitochondrial DNA (mtDNA) of the Saccharina sp. ye-W was determined using Illumina sequencing data. The genome contains 38 protein-coding genes (PCG), three ribosomal RNA (rRNA), 25 transfer RNA (tRNA) genes that are typical of Saccharina mtDNA. Phylogenetic analysis based on the mitochondrial genomes of brown algae indicated that Saccharina sp. ye-W and Saccharina longissima, Saccharina japonica are the most closely related species, which strongly supports their close phylogenetic affinity.

  7. Sequencing of complete mitochondrial genome of brown algal Saccharina sp. ye-G.

    PubMed

    Guan, Zheng; Fan, Xiao; Wang, Shuai; Xu, Dong; Zhang, Xiaowen; Wang, Dongsheng; Miao, Yu; Ye, Naihao

    2016-05-01

    The complete sequence (37,673 bp) of the mitochondrial DNA (mtDNA) of the Saccharina sp. ye-G was determined using Illumina sequencing data. The genome contains 38 protein-coding genes (PCG), 3 ribosomal RNA (rRNA), 25 transfer RNA (tRNA) genes that are typical of Saccharina mtDNA. A phylogenetic analysis based on the mitochondrial genomes of brown algae indicated that Saccharina sp. ye-G and Saccharina longissima, Saccharina japonica are the most closely related species, which strongly supports their close phylogenetic affinity.

  8. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield.

  9. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  10. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study.

  11. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    SciTech Connect

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium as a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.

  12. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term.

  13. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter.

  14. Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Nagalakshmi, C; Mandal, A B

    2013-01-01

    The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K(2)HPO(4), MgSO(4).7H(2)O, NH(4)Cl, CaCl(2)·2H(2)O, FeCl(3) (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD(5), COD, and TOC of treated wastewater from algal batch reactor were 20 ± 7, 167 ± 29, and 78 ± 16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD(5),COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day(-1)) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO-Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.

  15. Molecular identification of green algae from the rafts based infrastructure of Porphyra yezoensis.

    PubMed

    Shen, Qi; Li, Hongye; Li, Yan; Wang, Zongling; Liu, Jiesheng; Yang, Weidong

    2012-10-01

    To provide more information on the origin of the Ulva prolifera bloom in Qingdao sea area in China from 2007 to 2011, the diversity of green algae growing on the rafts of Porphyra yezoensis on the coast in Jiangsu Province was investigated based on ITS, rbcL and 5S sequences. Eighty-four of green algal samples from various sites and cruises in 2010 and 2011 were collected. According to ITS and rbcL sequences, samples from the rafts of P. yezoensis fell into four clades: Ulva linza-procera-prolifera (LPP) complex, Ulva flexuosa, Blidingia sp. and Urospora spp. However, based on the 5S rDNA, a more resolved DNA marker, only one of the 84 samples belonged to U. prolifera. Combined with the previous reports, it is likely that U. prolifera bloom in Qingdao sea area might consist of more than one origin, and Porphyra cultivation rafts might be one of the causes.

  16. Response of benthic algae to environmental gradients in an agriculturally dominated landscape

    USGS Publications Warehouse

    Munn, M.D.; Black, R.W.; Gruber, S.J.

    2002-01-01

    Benthic algal communities were assessed in an agriculturally dominated landscape in the Central Columbia Plateau, Washington, to determine which environmental variables best explained species distributions, and whether algae species optima models were useful in predicting specific water-quality parameters. Land uses in the study area included forest, range, urban, and agriculture. Most of the streams in this region can be characterized as open-channel systems influenced by intensive dryland (nonirrigated) and irrigated agriculture. Algal communities in forested streams were dominated by blue-green algae, with communities in urban and range streams dominated by diatoms. The predominance of either blue-greens or diatoms in agricultural streams varied greatly depending on the specific site. Canonical correspondence analysis (CCA) indicated a strong gradient effect of several key environmental variables on benthic algal community composition. Conductivity and % agriculture were the dominant explanatory variables when all sites (n = 24) were included in the CCA; water velocity replaced conductivity when the CCA included only agricultural and urban sites. Other significant explanatory variables included dissolved inorganic nitrogen (DIN), orthophosphate (OP), discharge, and precipitation. Regression and calibration models accurately predicted conductivity based on benthic algal communities, with OP having slightly lower predictability. The model for DIN was poor, and therefore may be less useful in this system. Thirty-four algal taxa were identified as potential indicators of conductivity and nutrient conditions, with most indicators being diatoms except for the blue-greens Anabaenasp. and Lyngbya sp.

  17. Enhanced accumulation of PCB congeners by Baltic Sea blue mussels, Mytilus edulis, with increased algae enrichment

    SciTech Connect

    Gilek, M.; Bjoerk, M.; Broman, D.; Kautsky, N.; Naef, C.

    1996-09-01

    The objective of this study was to examine if natural variations in the quantity of phytoplankton-derived particulate and dissolved organic carbon influences the accumulation of polychlorinated biphenyls (PCBs) in the tissues of Baltic Sea blue mussels (Mytilus edulis L.). In a laboratory flow-through experiment the authors exposed M. edulis to the technical PCB mixture Aroclor{reg_sign} 1248 for 21 d at three different enrichments of the unicellular green algae Chlamydomonas sp., 0.10, 0.16, and 0.32 mg particulate organic carbon (POC)/L. Tissue and water concentrations were determined for seven PCB congeners and 21-d bioaccumulation factors were calculated against total water concentrations. Contrary to what would be expected, an increase in algae enrichment from 0.10 to 0.32 mg POC/L resulted in an enhanced PCB accumulation by a factor of approx. 2. This increase in PCB accumulation was more pronounced for PCB congeners with lower hydrophobicity. These observations have implications for the design of laboratory accumulation studies and potentially for PCB accumulation and cycling in field populations of suspension-feeding mussels in response to changes in eutrophication status.

  18. The influence of nitrogen on heterocyst production in blue-green algae

    USGS Publications Warehouse

    Ogawa, Roann E.; Carr, John F.

    1969-01-01

    A series of experiments on heterocyst production in Anabaena variabilis provides some strong indirect evidence for the role of heterocysts in nitrogen fixation. Of the algae tested (Anabaena variabilis, A. inaequalis, A. cylindrica, A. flos-aquae, Tolypothrix distorta, Gloeotrichia echinulata, Aphanizomenon flos-aquae, Oscillatoria sp., and Microcystis aeruginosa), only those with heterocysts grew in a nitrate-free medium. Growth in the nitrate-free medium was accompanied by an increase in heterocysts. Heterocyst formation in A. variabilis was evident 24 hr after transfer from a nitrate-containing to a nitrate-free medium. The number of heterocysts was altered by changes in the nitrogen source. Numbers were lowest when NH4-N was used as a nitrogen source and highest when nitrogen (N2-N) was derived from the atmosphere. Heterocyst numbers could also be regulated by controlling the concentration of NO3-N in the medium. Heterocyst production depended on the absence of combined nitrogen and the presence of phosphate. Data are presented on the occurrence of blue-green algae (with heterocysts) in Lake Erie and the environmental conditions apparently necessary for them to become dominant.

  19. Cenoses of phototrophic algae of ultrasaline lakes in the Kulunda steppe (Altai krai, Russian Federation)

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Ph. V.; Kalinina, O. Yu.; Nikitin, M. A.; Samylina, O. S.

    2016-01-01

    In 2012, expeditions of the Institute of Microbiology, Russian Academy of Sciences, delivered samples of algo-bacterial mats from Kulunda steppe alkaline lakes (Petukhovskoe alkaline lake, Tanatar VI, and Gorchina III). The filamentous alga Ctenocladus circinnatus (Chlorophyta) acted as an edificator of the mats. The composition of cenoses algocomponents also included chlorophytes Dunaliella viridis and Picocystis salinarum as well as diatoms Anomeoneis sphaerophora, Brachysira brebissonii, B. zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, N. cf. communis, and Nitzschia sp. 1. The composition and structure of phototrophic algae cenoses (including diatom taxocenes) were described for the investigated lakes for the first time. For the period from 2011 to 2012, the total mineralization significantly increased in lakes. This involved sensible alterations of cenoses. B. zellensis was the most permanent component of diatom taxocenes in both seasons. In the summer of 2011, it was often accompanied by A. sphaerophora and B. brebissonii. In the summer of 2012, A. sphaerophora was found only singularly in Lake Gorchina III, and some biotopes of Lake Tanatar VI were massively inhabited by N. cf. communis, including colonies that had not been previously described for the species. The genetic analysis of three diatoms, which are markedly different from each other in their appearance and were sampled from different lakes but were all determined as Nitzschia cf. communis, showed their complete similarity to each other with the 18S rRNA gene fragment and the highest similarity of all the three diatoms with the species Nitzschia communis.

  20. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.

    PubMed

    Ozkan, Altan; Kinney, Kerry; Katz, Lynn; Berberoglu, Halil

    2012-06-01

    This paper reports the construction and performance of an algae biofilm photobioreactor that offers a significant reduction of the energy and water requirements of cultivation. The green alga Botryococcus braunii was cultivated as a biofilm. The system achieved a direct biomass harvest concentration of 96.4 kg/m(3) with a total lipid content 26.8% by dry weight and a productivity of 0.71 g/m(2) day, representing a light to biomass energy conversion efficiency of 2.02%. Moreover, it reduced the volume of water required to cultivate a kilogram of algal biomass by 45% and reduced the dewatering energy requirement by 99.7% compared to open ponds. Finally, the net energy ratio of the cultivation was 6.00 including dewatering. The current issues of this novel photobioreactor are also identified to further improve the system productivity and scaleup.