Science.gov

Sample records for algaas buffer layer

  1. Atomic layer epitaxy of AlAs and AlGaAs

    NASA Astrophysics Data System (ADS)

    Meguro, T.; Iwai, S.; Aoyagi, Y.; Ozaki, K.; Yamamoto, Y.; Suzuki, T.; Okano, Y.; Hirata, A.

    1990-01-01

    Atomic layer epitaxy (ALE) of AlAs and AlGaAs with metalorganic vapor-phase epitaxy (MOVPE) under Ar-ion laser irradiation has been successfully realized in a triethylaluminum (TEA)/AsH 3 system for the first time. Comparison with the growth characteristics of MOVPE with alternative feeding modes of TMA/AsH 3 and TEA/AsH 3 is discussed. Application to laser-ALE of AlGaAs using a triethylgallium (TEG)/TEA/AsH 3 system is also discussed.

  2. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  3. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  4. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  5. Buffer layers on biaxially textured metal substrates

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  6. Aerosol buffering of marine boundary layer cloudiness

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Feingold, G.; Wang, H.

    2010-12-01

    The role of aerosol particles in maintaining a cloudy boundary layer in the remote marine environment is explored. It has previously been shown that precipitation can result in the transition from a closed- to open-cellular state but that the boundary layer cannot maintain this open-cell state without a resupply of particles. Potential sources include wind-driven production of sea salt particles from the ocean, nucleation from the gas phase, and entrainment from the free troposphere. Here we investigate with model simulations how the interplay of cloud properties, aerosol production, and boundary layer dynamics results in aerosol sources acting as a buffer against processes that destabilize cloudiness and the dynamic state of the marine boundary layer. For example, at nighttime, cloud liquid water increases in the absence of solar heating, resulting in increased precipitation, stronger cloud top cooling, accelerated boundary layer turbulence, and faster surface wind speeds. Faster surface wind speeds drive an enhanced flux of sea salt aerosol, at a time when aerosol particles are scavenged more readily by enhanced precipitation. In contrast, absorption of solar radiation during daytime reduces cloud water, decelerates boundary layer turbulence, reduces surface wind speeds, and therefore slows surface emissions. This is compensated by nucleation of small aerosol particles from the gas phase in response to the nigh complete removal of cloud condensation nuclei in precipitating open cell walls. These newly formed particles need to grow to larger sizes before they can serve as cloud condensation nuclei (CCN), but will likely contribute to the CCN population during the nighttime and, together with ocean emissions, buffer the system against precipitation removal.

  7. Buffer layers and articles for electronic devices

    DOEpatents

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  8. Back contact buffer layer for thin-film solar cells

    DOEpatents

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  9. Buffer layers for REBCO films for use in superconducting devices

    DOEpatents

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  10. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  11. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  12. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  13. Methods for improved growth of group III nitride buffer layers

    DOEpatents

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  14. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    DOEpatents

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2001-01-01

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  15. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    SciTech Connect

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2004-01-27

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  16. Buffer layer effect on ZnO nanorods growth alignment

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal; Ma, Jiangang; Liu, Yichun; Shen, Dezhen

    2005-06-01

    Vertical aligned ZnO nanorods array was fabricated on Si with introducing a ZnO thin film as a buffer layer. Two different nucleation mechanisms were found in growth process. With using Au catalyst, Zn vapor could diffuse into Au nanoclusters with forming a solid solution. Then the ZnO nucleation site is mainly on the catalyst by oxidation of Au/Zn alloy. Without catalyst, nucleation could occur directly on the surface of buffer layer by homoepitaxy. The density and the size of ZnO nanorods could be governed by morphological character of catalyst and buffer layer. The nanorods growth is followed by vapor-solid mechanism.

  17. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  18. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  19. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  20. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  1. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  2. Electrodeposited Biaxially Textured Buffer Layers for YBCO Superconductors

    SciTech Connect

    Bhattacharya, R.; Phok, S.; Zhao, W.; Norman, A.

    2009-06-01

    Non-vacuum electrodeposition (ED) was used to prepare simplified Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7} and CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} buffer layers on a Ni-W substrate. Post-annealing conditions of electrodeposited precursor films were optimized to obtain high-quality biaxially textured buffer layers. The buffer layers were characterized by X-ray diffraction, optical profiling, and transmission electron microscopy (TEM). The effect of the cap layer thickness on the surface morphology and texture of the buffers was also studied. The microstructure of CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} was analyzed and compared to Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7}. The high-resolution TEM shows biaxially textured crystalline elctrodeposited Gd{sub 2}O{sub 3} and CeO{sub 2} cap layers on the electrodeposited Gd{sub 2}Zr{sub 2}O{sub 7} layers without any defects. YBa{sub 2}Cu{sub 3}O{sub 7}-delta (YBCO) superconductor was deposited by pulsed laser deposition (PLD) on the simplified ED-Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7} and ED-CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} buffers. Transport current density of 3.3 MA/cm{sup 2} at 77 K was obtained for PLD YBCO deposited on ED-Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7} buffer layers.

  3. Current-voltage characteristics of silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating overgrown with an undoped GaAs layer

    SciTech Connect

    Dementyev, P. A.; Dunaevskii, M. S. Samsonenko, Yu. B.; Cirlin, G. E.; Titkov, A. N.

    2010-05-15

    A technique for measurement of longitudinal current-voltage characteristics of semiconductor nanowhiskers remaining in contact with the growth surface is suggested. The technique is based on setting up a stable conductive contact between the top of a nanowhisker and the probe of an atomic-force microscope. It is demonstrated that, as the force pressing the probe against the top of the nanowhisker increases, the natural oxide layer covering the top is punctured and a direct contact between the probe and the nanowhisker body is established. In order to prevent nanowhiskers from bending and, ultimately, breaking, they need to be somehow fixed in space. In this study, GaAs nanowhiskers were kept fixed by partially overgrowing them with a GaAs layer. To isolate nanowhiskers from the matrix they were embedded in, they were coated by a nanometer layer of AlGaAs. Doping of GaAs nanowhiskers with silicon was investigated. The shape of the current-voltage characteristics obtained indicates that introduction of silicon leads to p-type conduction in nanowhiskers, in contrast to n-type conduction in bulk GaAs crystals grown by molecular-beam epitaxy. This difference is attributed to the fact that the vapor-liquid-solid process used to obtain nanowhiskers includes a final stage of liquid-phase epitaxy, a characteristic of the latter being p-type conduction obtained in bulk GaAs(Si) crystals.

  4. Band engineering at the GaAssbnd AlGaAs heterojunction using ultra-thin Si and Be dipole layers: a comparison of modification techniques

    NASA Astrophysics Data System (ADS)

    Wilks, S. P.; Burgess, S.; Dunstan, P.; Pan, M.; Pritchard, M. A.; Williams, R. H.; Cammack, D.; Clark, S. A.; Westwood, D. I.

    1998-01-01

    The control of semiconductor interfaces is essential to engineer new material properties for device applications. In this article we have considered the use of ultra-thin (1 monolayer) interfacial Si and Be dipoles layers to modify the band discontinuity present at the GaAssbnd AlGaAs heterojunction. Soft X-ray photoelectron spectroscopy (SXPS) was performed at the Daresbury synchrotron radiation source (SRS) on samples previously grown by molecular beam epitaxy (MBE). Detailed deconvolution of the As 3d core level spectra enabled the valence band modification due to the presence of the interlayers to be extracted. The results of this study indicate the potential of this method to induce large valence band-offset modification (+0.4 eV for Si and -0.52 eV for Be) due to the presence of the dipole layers. The effect of any near interface doping by the Si and Be layers was considered by solving Poisson's equation for these structures. Finally, the technique is compared to other band engineering methods, namely δ-doping and multi quantum barriers (MQB), to assess the potential and viability for use in real devices.

  5. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  6. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  7. Temperature dependent investigation of carrier transport, injection, and densities in 808 nm AlGaAs multi-quantum-well active layers for VCSELs

    NASA Astrophysics Data System (ADS)

    Engelhardt, Andreas P.; Kolb, Johanna S.; Römer, Friedhard; Weichmann, Ulrich; Moench, Holger; Witzigmann, Bernd

    2014-05-01

    The electro-optical efficiency of semiconductor vertical-cavity surface-emitting lasers (VCSELs) strongly depends on the efficient carrier injection into the quantum wells (QWs) in the laser active region. However, carrier injection degrades with increasing temperature which limits the VCSEL performance particularly in high power applications where self heating imposes high temperatures in operation. By simulation we investigate the transport of charge carriers in 808 nm AlGaAs multi-quantum-well active layers with special attention to the temperature dependence of carrier injection into the QWs. Experimental reference data was extracted from oxide-confined, top-emitting VCSELs. The transport simulations follow a drift-diffusion-model complemented by a customized, energy-resolved, semi-classical carrier capture theory. QW gain was calculated in the screened Hartree-Fock approximation with band structures from 8x8 k.p-theory. Using the gain data and by setting losses and the optical confinement factor according to experimental reference results, the appropriate threshold condition and threshold carrier densities in the QWs for a VCSEL are established in simulation for all transport considerations. With the combination of gain and transport model, we can explain experimental reference data for the injection efficiency and threshold current density. Our simulations show that the decreasing injection efficiency with temperature is not solely due to increased thermionic escape of carriers from the QWs. Carrier injection is also hampered by state filling in the QWs initiated from higher threshold carrier densities with temperature. Consequently, VCSEL properties not directly related to the active layer design like optical out-coupling or internal losses link the temperature dependent carrier injection to VCSEL mirror design.

  8. An ultra-thin buffer layer for Ge epitaxial layers on Si

    SciTech Connect

    Kawano, M.; Yamada, S.; Tanikawa, K.; Miyao, M.; Hamaya, K.; Sawano, K.

    2013-03-25

    Using an Fe{sub 3}Si insertion layer, we study epitaxial growth of Ge layers on a Si substrate by a low-temperature molecular beam epitaxy technique. When we insert only a 10-nm-thick Fe{sub 3}Si layer in between Si and Ge, epitaxial Ge layers can be obtained on Si. The detailed structural characterizations reveal that a large lattice mismatch of {approx}4% is completely relaxed in the Fe{sub 3}Si layer. This means that the Fe{sub 3}Si layers can become ultra-thin buffer layers for Ge on Si. This method will give a way to realize a universal buffer layer for Ge, GaAs, and related devices on a Si platform.

  9. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    SciTech Connect

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam; Madhurima, V.

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  10. Cobalt disilicide buffer layer for YBCO film on silicon

    SciTech Connect

    Belousov, I.; Rudenko, E.; Linzen, S.; Seidel, P.

    1997-02-01

    The CoSi{sub 2} films were used as buffer layers of YBCO/CoSi{sub 2}/Si(100), YBCO/ZrO{sub 2}/CoSi{sub 2}/Si(100) and YBCO/CeO{sub 2}/YSZ/CoSi{sub 2}/epi-Si/Al{sub 2}O{sub 3} heterostructures in this work. Transition temperatures of YBCO films were obtained up to 86K for YBCO films deposited by laser ablation on the top of CeO{sub 2}/YSZ/CoSi{sub 2}/Si/Al{sub 2}O{sub 3} structure. Local nucleation on the crystal defects of silicon, the phenomenon of lateral directed growth (DLG) and agglomeration of CoSi{sub 2} phase are responsible for grain boundaries (GB) position in CoSi{sub 2} layer and its roughness. The roughness was decreased using an additional Zr film on the top structure.

  11. Buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  12. Leakage effects in n-GaAs MESFET with n-GaAs buffer layer

    NASA Technical Reports Server (NTRS)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    Whereas improvement of the interface between the active layer and the buffer layer has been demonstrated, the leakage effects can be important if the buffer layer resistivity is not sufficiently high and/or the buffer layer thickness is not sufficiently small. It was found that two buffer leakage currents exist from the channel under the gate to the source and from drain to the channel in addition to the buffer leakage resistance between drain and source. It is shown that for a 1 micron gate-length n-GaAs MESFET, if the buffer layer resistivity is 12 OHM-CM and the buffer layer thickness h is 2 microns, the performance of the device degrades drastically. It is suggested that h should be below 2 microns.

  13. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  14. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  15. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    SciTech Connect

    Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.; Kuciauskas, Darius; Dippo, Patricia; Contreras, Miguel A.; Levi, Dean H.

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.

  16. Development of buffer layers by chemical solution deposition for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Akin, Yalcin

    Short length YBCO coated conductors have been fabricated by vacuum thin film deposition techniques. However, the fabrication process increases the cost, and makes them impractical to use for commercial applications even if they are fabricated in kilometer lengths. YBCO coated conductors could be available in the market with a cheaper price by developing non-vacuum deposition techniques. The objective of this research was to investigate development of buffer layers by chemical solution deposition technique for YBCO coated conductors. Buffer layer structures are mainly used to prevent metal ion diffusion, and to reduce the lattice mismatch between YBCO and the metallic substrate. The technical approach, which was adapted here, is the reel-to-reel sol-gel dip coating process to fabricate long length coatings by developing buffer layers' chemical solutions. Rolling assisted biaxially textured Ni substrates were used for deposition of buffer layers. Cold rolled Ni strips were heat-treated at certain conditions to form biaxially textured structure, which became templates for textured growth of buffer layers that is necessary to obtain high critical current in the coated conductors. CeO2 was chosen as a buffer layers because it has been recognized as one of the best cap layers. Growth of highly textured, crack free, pinhole free and smooth CeO2 buffer layers have been demonstrated by chemical solution deposition technique on biaxially textured substrates. A new buffer layer with pseudocubic lattice parameters matching YBCO, (Eu0.893Yb0.107)2O3, was developed for the first time by using a mixture of Eu2O 3 and Yb2O3 to eliminate lattice mismatch, which adversely affected the critical current of the coated conductors. Highly textured (Eu0.893Yb0.107)2O3 buffer layers were deposited on biaxially textured Ni substrates by chemical solution deposition technique. Finally, the growth of CeO2 and (Eu0.893Yb 0.107)2O3 buffer layers were investigated on oxide layers because both Ce

  17. Development of N/P AlGaAs free-standing top solar cells for tandem applications

    NASA Technical Reports Server (NTRS)

    Negley, Gerald H.; Dinetta, Louis C.; Cummings, John R.; Hannon, Margaret H.; Sims, Paul E.; Barnett, Allen M.

    1991-01-01

    The combination of a free standing AlGaAs top solar cell and an existing bottom solar cell is the highest performance, lowest risk approach to implementing the tandem cell concept. The solar cell consists of an AlGaAs substrate layer, an AlGaAs base layer, an AlGaAs emitter, and an ultra-thin AlGaAs window layer. The window layer is compositionally graded which minimizes reflection at the window layer/emitter interface and creates a built-in electric field to improve quantum response in the blue region of the spectrum. Liquid phase epitaxy (LPE) is the only viable method to produce this free standing top solar cell. Small (0.125 sq cm), transparent p/n AlGaAs top solar cells were demonstrated with optimum bandgap for combination with a silicon bottom solar cell. The efficiency of an AlGaAs/Si stack using the free standing AlGaAs device upon an existing silicon bottom solar cell is 24 pct. (1X, Air Mass Zero (AM0). The n/p AlGaAs top solar cell is being developed in order to facilitate the wiring configuration. The two terminal tandem stack will retain fit, form, and function of existing silicon solar cells. Progress in the development of large area (8 and 16 sq cm), free standing AlGaAs top solar cells is discussed.

  18. Effect of Oxide Buffer Layer on the Thermochromic Properties of VO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Koo, Hyun; Xu, Lu; Ko, Kyeong-Eun; Ahn, Seunghyun; Chang, Se-Hong; Park, Chan

    2013-12-01

    VO2 thin films were deposited on soda lime glass substrates with ZnO, TiO2, SnO2, and CeO2 thin films applied as buffer layers between the VO2 films and the substrates in order to investigate the effect of buffer layer on the formation and the thermochromic properties of VO2 film. Buffer layers with thicknesses over 50 nm were found to affect the formation of VO2 film, which was confirmed by XRD spectra. By using ZnO, TiO2, and SnO2 buffer layers, monoclinic VO2 (VO2(M)) film was successfully fabricated on soda lime glass at 370 °C. On the contrary, films of VO2(B), which is known to have no phase transition near room temperature, were formed rather than VO2(M) when the film was deposited on CeO2 buffer layer at the same film deposition temperature. The excellent thermochromic properties of the films deposited on ZnO, TiO2, and SnO2 buffer layers were confirmed from the temperature dependence of electrical resistivity from room temperature to 80 °C. Especially, due to the tendency of ZnO thin film to grow with a high degree of preferred orientation on soda lime glass at low temperature, the VO2 film deposited on ZnO buffer layer exhibits the best thermochromic properties compared to those on other buffer layer materials used in this study. These results suggest that deposition of VO2 films on soda lime glass at low temperature with excellent thermochromic properties can be achieved by considering the buffer layer material having structural similarity with VO2. Moreover, the degree of crystallization of buffer layer is also related with that of VO2 film, and thus ZnO can be one of the most effective buffer layer materials.

  19. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  20. Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    The present invention provides methods and biaxially textured articles having a deformed epitaxial layer formed therefrom for use with high temperature superconductors, photovoltaic, ferroelectric, or optical devices. A buffer layer is epitaxially deposited onto biaxially-textured substrates and then mechanically deformed. The deformation process minimizes or eliminates grooves, or other irregularities, formed on the buffer layer while maintaining the biaxial texture of the buffer layer. Advantageously, the biaxial texture of the buffer layer is not altered during subsequent heat treatments of the deformed buffer. The present invention provides mechanical densification procedures which can be incorporated into the processing of superconducting films through the powder deposit or precursor approaches without incurring unfavorable high-angle grain boundaries.

  1. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    NASA Astrophysics Data System (ADS)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  2. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  3. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  4. Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru; Hashimoto, Masayuki; Horii, Shigeru; Doi, Toshiya

    REBa2Cu3Oy (REBCO; RE: rare-earth elements)-coated conductors (CCs) have high potential for use in superconducting devices. In particular, REBCO CCs are useful for superconducting devices working at relatively high temperatures near 77 K. The important issues in their applications are high performance, reliability and low cost. To date, sufficient performance for some applications has almost been achieved by considerable efforts. The establishment of the reliability of superconducting devices is under way at present. The issue of low cost must be resolved to realize the application of superconducting devices in the near future. Therefore, we have attempted several ways to reduce the cost of REBCO CCs. The coated conductors using a Nb-doped SrTiO3 buffer layer and Ni-plated Cu and stainless steel laminate metal tapes have recently been developed to eliminate the use of electric stabilization layers of Cu and Ag, which are expected to reduce the material cost. Good superconducting properties are obtained at 77 K. The critical current density (JC) at 77 K under a magnetic self-field is determined to be more than 2x106 A/cm2. The microstructures of the CCs are analyzed by transmission electron microscopy to obtain a much higher quality. By microscopic structure analysis, an overgrowth of the buffer layer is observed at a grain boundary of the metal substrate, which is one of the reasons for the high JC.

  5. Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Chui, H.C.; Hou, H.Q.; Hull, R.

    1996-06-01

    The authors discuss the selective conversion of buried layers of AlGaAs to a stable oxide and the implementation of this oxide into high performance vertical-cavity surface emitting lasers (VCSELs). The rate of lateral oxidation is shown to be linear with an Arrhenius temperature dependence. The measured activation energies vary with Al composition, providing a high degree of oxidation selectivity between AlGaAs alloys. Thus buried oxide layers can be selectively fabricated within the VCSEL through small compositional variations in the AlGaAs layers. The oxidation of AlGaAs alloys, as opposed to AlAs, is found to provide robust processing of reliable lasers. The insulating and low refractive index oxide provides enhanced electrical and optical confinement for ultralow threshold currents in oxide-apertured VCSELs.

  6. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  7. MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  8. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    SciTech Connect

    Xu, Xiaoqing Parizi, Kokab B.; Huo, Yijie; Kang, Yangsen; Philip Wong, H.-S.; Li, Yang

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surface leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.

  9. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  10. Lattice curvature generation in graded InxGa1-xAs/GaAs buffer layers

    NASA Astrophysics Data System (ADS)

    Natali, M.; Romanato, F.; Napolitani, E.; de Salvador, D.; Drigo, A. V.

    2000-10-01

    Position dependent lattice tilts in InGaAs/GaAs(001) compositionally graded buffer layers are investigated. The lateral dependence of the tilt defines a concave buffer layer curvature of up to 3 deg cm-1. The buffer layer curvature is associated with a distribution of the misfit dislocation Burgers vectors that varies nearly linearly across the sample. The origin of this peculiar distribution is discussed and is explained in terms of a Burgers-vector selection rule, which governs the cross slip of gliding threading dislocations and that has been experimentally observed by Capano in Phys. Rev. B 45, 11 768 (1992). A quantitative model of lattice curvature formation is presented that satisfactorily accounts for the main features of the observed buffer layer curvature.

  11. Thick lanthanum zirconate buffer layers from water-based precursor solutions on Ni-5%W substrates

    SciTech Connect

    Narayanan, Vyshnavi; Lommens, Petra; De Buysser, Klaartje; Huehne, Ruben; Van Driessche, Isabel

    2011-11-15

    In this work, water-based precursor solutions suitable for dip-coating of thick La{sub 2}Zr{sub 2}O{sub 7} (LZO) buffer layers for coated conductors on Ni-5%W substrates were developed. The solutions were prepared based on chelate chemistry using water as the main solvent. The effect of polymer addition on the maximum crack-free thickness of the deposited films was investigated. This novel solution preparation method revealed the possibility to grow single, crack-free layers with thicknesses ranging 100-280 nm with good crystallinity and an in-plane grain misalignment with average FWHM of 6.55{sup o}. TEM studies illustrated the presence of nanovoids, typical for CSD-LZO films annealed under Ar-5%H{sub 2} gas flow. The appropriate buffer layer action of the film in preventing the Ni diffusion was studied using XPS. It was found that the Ni diffusion was restricted to the first 30 nm of a 140 nm thick film. The surface texture of the film was improved using a seed layer. - Graphical abstract: Thick LZO buffer layers from water-based precursor solutions were synthesized and their crystallinity, microstructure and buffer layer action were studied. The buffer layer action of the LZO layer was substantial to restrict the Ni penetration within 30 nm of a 140 nm thick film. Highlights: > LZO buffer layers with high thicknesses for use in coated conductors were prepared. > Prepared from water-based solutions. > Polymeric PVP increases the crack-free critical thickness of thick films. > Thick films showed good barrier action against Ni penetration. > Seed layers promote epitaxial growth of thick layers.

  12. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  13. Photovoltaic devices comprising zinc stannate buffer layer and method for making

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter; Coutts, Timothy J.

    2001-01-01

    A photovoltaic device has a buffer layer zinc stannate Zn.sub.2 SnO.sub.4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.

  14. Buffer layer annealing effects on the magnetization reversal process in Pd/Co/Pd systems

    NASA Astrophysics Data System (ADS)

    Fassatoui, A.; Belhi, R.; Vogel, J.; Abdelmoula, K.

    2016-12-01

    We have investigated the effect of annealing the buffer layer on the magnetization reversal behavior in Pd/Co/Pd thin films using magneto-optical Kerr microscopy. It was found that annealing the buffer layer at 150 °C for 1 h decreases the coercivity and increases the saturation magnetization and the effective magnetic anisotropy constant. This study also shows that the annealing induces a change of the magnetization reversal from a mixed nucleation and domain wall propagation process to one dominated by domain wall propagation. This result demonstrates that the main effect of annealing the buffer layer is to decrease the domain wall pinning in the Co layer, favoring the domain wall propagation mode.

  15. Growth of InSb on GaAs Using InAlSb Buffer Layers

    SciTech Connect

    BIEFELD, ROBERT M.; PHILLIPS, JAMIE D.

    1999-09-20

    We report the growth of InSb on GaAs using InAlSb buffers of high interest for magnetic field sensors. We have grown samples by metal-organic chemical vapor deposition consisting of {approximately} 0.55 {micro}m thick InSb layers with resistive InAlSb buffers on GaAs substrates with measured electron nobilities of {approximately}40,000 cm{sup 2}/V.s. We have investigated the In{sub 1{minus}x}Al{sub x}Sb buffers for compositions x{le}0.22 and have found that the best results are obtained near x=0.12 due to the tradeoff of buffer layer bandgap and lattice mismatch.

  16. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. PMID:27181758

  17. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  18. Magneto-optical properties of Co /Ge(100) with ultrathin Ag buffer layers

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Tsay, J. S.; Hwang, C. H.; Yao, Y. D.

    2005-05-01

    Magnetic properties of Co films (<2nm) with Ag buffer layers (<0.7nm) grown on Ge(100) at room temperature and 200K were studied by surface magneto-optical Kerr effect. Without the buffer, the films reveal in-plane magnetic anisotropy even Co and Ge forms nonmagnetic interfacial alloys. The hysteresis due to intercalation of Ag can be detected at thinner Co thicknesses. The buffer can effectively cutoff the intermixing of Co and Ge. As the thickness of Ag is reduced, out-of-plane magnetic anisotropy due to the interface interactions between Co /Ag and Co /Ge was discovered and was only at 200K.

  19. Evaluation of methods for application of epitaxial layers of superconductor and buffer layers

    SciTech Connect

    1997-06-01

    The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, based on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an

  20. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  1. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  2. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoshan; Zhan, Qingfeng; Dai, Guohong; Liu, Yiwei; Zuo, Zhenghu; Yang, Huali; Chen, Bin; Li, Run-Wei

    2013-05-01

    We systematically investigated the effect of a Ta buffer layer and external stress on the magnetic properties of magnetostrictive Fe81Ga19 films deposited on flexible polyethylene terephthalate (PET) substrates. The Ta buffer layers could effectively smoothen the rough surface of PET. As a result, the FeGa films grown on Ta buffer layers exhibit a weaker uniaxial magnetic anisotropy and lower coercivity, as compared to those films directly grown on PET substrates. By inward and outward bending the FeGa/Ta/PET samples, external in-plane compressive and tensile stresses were applied to the magnetic films. Due to the inverse magnetostrictive effect of FeGa, both the coercivity and squareness of hysteresis loops for FeGa/Ta films could be well tuned under various strains.

  3. Microstructure of GaN epitaxy on SiC using AlN buffer layers

    SciTech Connect

    Ponce, F.A.; Krusor, B.S.; Major, J.S. Jr.; Plano, W.E.; Welch, D.F.

    1995-07-17

    The crystalline structure of GaN epilayers on (0001) SiC substrates has been studied using x-ray diffraction and transmission microscopy. The films were grown by metalorganic chemical vapor deposition, using AlN buffer layers. X-ray diffraction measurements show negligible strain in the epilayer, and a long-range variation in orientation. Transmission electron lattice images show that the AlN buffer layer consists of small crystallites. The nature of the buffer layer and its interfaces with the substrate and the GaN film is discussed. The defect structure of the GaN film away from the substrate consists mostly of threading dislocations with a density of {similar_to}10{sup 9} cm{sup {minus}2}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  5. Buffer layer between a planar optical concentrator and a solar cell

    SciTech Connect

    Solano, Manuel E.; Barber, Greg D.; Lakhtakia, Akhlesh; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  6. Buffer layer between a planar optical concentrator and a solar cell

    NASA Astrophysics Data System (ADS)

    Solano, Manuel E.; Barber, Greg D.; Lakhtakia, Akhlesh; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.

    2015-09-01

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  7. Influence of homo buffer layer thickness on the quality of ZnO epilayers.

    PubMed

    Eid, E A; Fouda, A N

    2015-10-01

    ZnO buffer layers with different thicknesses were deposited on a-plane sapphire substrates at 300 °C. ZnO epilayers were grown on ZnO buffers at 600 °C by radio-frequency magnetron sputtering and vacuum annealed at 900 °C for an hour. Influence of nucleation layer thickness on the structural and quality of ZnO thin films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The best ZnO film quality was obtained with the ZnO buffer layer of 45 nm thick which provided the smoothest surface with RMS value of 0.3 nm. X-ray diffraction measurements reveal that the films have a single phase wurtzite structure with (0001) preferred crystal orientation. As evident from narrow FWHM of ZnO (0002) rocking curve, ZnO buffer can serve as a good template for the growth of high-quality ZnO films with little tilt. In addition, the micro-Raman scattering measurements at room temperature revealed the existence of Raman active phonon modes of ZnO; A1(TO), A1(LO) and E2(high). The latter two modes were not observed in thin buffer layer beside the dis-appearance of E2(low) mode in all films. PMID:25950638

  8. Coercivity enhancement of Nd-Fe-B thin film magnets by Dy buffer and capping layers

    NASA Astrophysics Data System (ADS)

    You, C. Y.; Wang, J. W.; Lu, Z. X.

    2012-04-01

    The Dy layer was inserted into the structure of SiO2/Ti/Nd-Fe-B/Ti as the buffer or capping layer of the Nd-Fe-B layer. The insertions of Dy layers had no significant influence on the film texture with the easy axis mainly perpendicular to the film plane. The film without Dy layer gave the out-of-plane coercivity of 533 kA/m, maximum magnetic energy product (BH)max of 245 kJ/m3. With a Dy buffer layer, the out-of-plane coercivity and (BH)max were increased to 1074 kA/m, 291 kJ/m3 respectively. The film with Dy capping layer had a coercivity of 1035 kA/m and (BH)max of 286 kJ/m3. Microstructure observations showed that the Nd-rich phases were evolved into grain boundaries from triple junctions by a Dy buffer layer deposition, resulting in a well magnetic decoupling of Nd2Fe14B neighboring grains. Through capping a Dy layer, the environment of grain boundaries had been improved and some Dy diffused into Nd2Fe14B phases, which contributed to the enhancement of magnetic performance.

  9. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  10. The role of buffer layers and double windows layers in a solar cell CZTS performances

    NASA Astrophysics Data System (ADS)

    Mebarkia, C.; Dib, D.; Zerfaoui, H.; Belghit, R.

    2016-07-01

    In the overall context of the diversification of the use of natural resources, the use of renewable energy including solar photovoltaic has become increasingly indispensable. As such, the development of a new generation of photovoltaic cells based on CuZnSnS4 (CZTS) looks promising. Cu2ZnSnS4 (CZTS) is a new film absorber, with good physical properties (band gap energy 1.4-1.6 eV with a large absorption coefficient over 104 cm-1). Indeed, the performance of these cells exceeded 30% in recent years. In the present paper, our work based on modeling and numerical simulation, we used SCAPS to study the performance of solar cells based on Cu2ZnSnS4 (CZTS) and thus evaluate the electrical efficiency η for typical structures of n-ZnO:Al / i-ZnO / n-CdS / p-CZTS and n-ITO / n-ZnO:Al / n-CdS /p-CZTS. Furthermore, the influence of the change of CdS by ZnSeand In2S3buffer layer was treated in this paper.

  11. Substrate surface treatment and YSZ buffer layers by IBAD method for coated conductors

    NASA Astrophysics Data System (ADS)

    Feng, F.; Liu, R.; Chen, H.; Shi, K.; Wang, Z.; Wu, W.; Han, Z.

    2009-10-01

    In this work, an Ion Beam Assisted Deposition (IBAD) system was utilized to fabricate Yttria-Stabilized Zirconia (YSZ) template films for coated conductors. The surface of the Hastelloy C276 substrate was modified by rolling and electropolishing. The effect of the electropolishing parameters of the substrate on the texture of the YSZ buffer layers was studied. The electropolishing current and time were optimized for short samples of 1 cm×1 cm square shape as 1 A and 60 s, respectively. And the relationship between the roughness of the substrate surface and the texture of the YSZ layer is discussed. Reel-to-reel metal tape moving apparatus was installed and used to produce meter-long buffer layer for coated conductors. The YSZ template film was deposited by IBAD method on meter-long Hastelloy tape with tape shifting speed of 15-20 m/h, and the thickness of the buffer layer was up to about 1.7 μm. The Hastelloy substrate surface was measured by Atomic Force Microscope. The thickness of the YSZ films over length was measured by Thermal Field Emission Scan Electronic Microscopy. X Ray Diffraction Ω-scan and ϕ-scan measurements were performed in order to examine the out-of-plane and in-plane texture of the YSZ buffer layers, respectively.

  12. Efficient AlGaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Fan, J. C. C.; Turner, G. W.; Chapman, R. L.; Pantano, J. V.

    1984-01-01

    Shallow-homojunction n+/p/p+ solar cells with one-sun, AM1 conversion efficiencies as high as 12.9 percent have been fabricated in Al0.2Ga0.8As epitaxial layers grown by organometallic chemical vapor deposition on single-crystal GaAs substrates. For these cells, which have n+ layers thinned by anodic oxidation to about 500 A, the quantum efficiencies in the short-wavelength portion of the spectrum are as high as the best reported for AlGaAs cells with high band-gap window layers.

  13. Degradation Characteristics of MgO Based Magnetic Tunnel Junction Caused by Surface Roughness of Ta/Ru Buffer Layers.

    PubMed

    Lee, Jung Min; Choi, Chul Min; Sukegawa, Hiroaki; Lee, Jeong Yong; Mitani, Seiji; Song, Yun-Heub

    2016-01-01

    We investigated how surface roughness of a Ta/Ru buffer layer affects the degradation characteristics on MgO-based magnetic tunnel junctions (MTJs). MTJs with worse surface roughness on the buffer layer showed increased resistance drift and degraded time-dependent dielectric breakdown (TDDB) characteristics. We suggest that this resulted from reduced MgO thickness on the MTJ with worse surface roughness on the buffer layer, which was estimated by the TDDB and analytic approach. As a result, surface roughness of the buffer layer is a critical factors that impacts the reliability of MTJs, and it should be controlled to have the smallest roughness value as possible. PMID:27398503

  14. Narrow divergence, single quantum well, separate confinement, AlGaAs laser

    SciTech Connect

    Haw, T.E.; Williams, J.E.; Wober, M.A.

    1991-01-29

    This patent describes a improvement in a structure for a narrow divergence, single quantum well, separate confinement, laser. It comprises: an n-AlGaAs cladding epitaxial layer, a first AlGaAs waveguide epitaxial layer, a GaAs quantum well active epitaxial layer, a second AlGaAs waveguide epitaxial layer, a p-AlGaAs cladding epitaxial layer, and a GaAs cap epitaxial layer, all sequentially grown with respect to each other. The improvement comprises: the n-AlGaAs cladding layer dimensioned to a thickness which is greater than 2 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}; the first AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; the GaAs quantum well layer dimensioned to a thickness in a range between 50 and 200 Angstroms; the second AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; and the p-AlGaAs cladding layer dimensioned to a thickness which is greater than 2.0 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}.

  15. Effect of buffer layer on the voltage responsivity of the pyroelectric thermal sensors prepared with PZT ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Moon-Ho; Hwang, Ha R.; Bae, Seong-Ho

    1997-08-01

    The pyroelectric thermal detectors were prepared with lead zirconate titanate (PZT) ceramics, where a signal electrode had a structure of Au/metallic buffer/(PZT ceramic). The effect of buffer layer on the voltage responsivity was investigated with a response to step signal, taken by dynamic pyroelectric measurement. Pyroelectric ceramic wafer was prepared by mixed oxide technique. Au layer (thickness: 50 nm) and metallic buffers (thickness: 0 - 20 nm) of Cr, NiCr (80/20), and Ti were prepared by dc magnetron sputtering. In order to improve the light absorptivity, an Au-black was coated on Au signal electrode by thermal evaporation. At steady state, the output voltage (Vo) was decreased with increasing chopping frequency in the range of 1 - 100 Hz. A sensor without buffer showed the severe time-drift and instability in the output signal. However, the sensors with buffer layer showed the stable outputs. For step radiations, rising time (tp), peak voltage (Vp), and initial slope (k) of the output voltage were dependent upon the thickness and materials of buffer layer. The mechanical and electrical contacts between Au electrode and PZT ceramics were improved by inserting the metallic buffer layer. Considering the characteristics of the output voltage, the optimum thickness of buffer layer was about 15 - 20 nm, and the sensors with Ti buffer of 15 - 20 nm in thickness showed the good detectivity. Therefore, the stability and reliability of the thermal sensors could be improved by use of appropriate buffer layer.

  16. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    SciTech Connect

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  17. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor.

    PubMed

    Wu, Yun; Zou, Jianjun; Huo, Shuai; Lu, Haiyan; Kong, Yuecan; Chen, Tangshen; Wu, Wei; Xu, Jingxia

    2015-08-01

    Owing to the scattering and trapping effects, the interfaces of dielectric/graphene or substrate/graphene can tailor the performance of field-effect transistor (FET). In this letter, the polymer of benzocyclobutene (BCB) was used as an amphibious buffer layer and located at between the layers of substrate and graphene and between the layers of dielectric and graphene. Interestingly, with the help of nonpolar and hydrophobic BCB buffer layer, the large-scale top-gated, chemical vapor deposited (CVD) graphene transistors was prepared on Si/SiO2 substrate, its cutoff frequency (fT) and the maximum cutoff frequency (fmax) of the graphene field-effect transistor (GFET) can be reached at 12 GHz and 11 GHz, respectively. PMID:26369142

  18. 'Buffer-layer' technique for the growth of single crystal SiC on Si

    NASA Astrophysics Data System (ADS)

    Addamiano, A.; Sprague, J. A.

    1984-03-01

    The nature of the buffer layers needed for the single-crystal deposition of cubic SiC on Si substrates has been studied. The preparation of chemically formed surface layers of SiC on (100) Si wafers is described. The reaction-grown films of SiC were examined by reflection high-energy electron diffraction using an incident electron energy of 200 keV and by SEM using incident electron energies of 20 and 200 keV. It is concluded that the buffer layer obtained at about 1400 C is a stressed monocrystalline layer of cubic SiC whose crystals contain considerable imperfections. The stresses are due to quenching to room temperature because of the large difference between the thermal expansion coefficients of Si and SiC.

  19. Interface characterization of nanometer scale CdS buffer layer in chalcopyrite solar cell

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Hung; Cheng, Tzu-Huan

    2016-06-01

    The buffer layer of a chalcopyrite solar cell plays an important role in optical responses of open circuit voltage (V oc) and short circuit current (J sc). A CdS buffer layer is applicable on the nanometer scale owing to its high carrier concentration and n-type semiconductor behavior in chalcopyrite solar cells. The thin buffer layer also contributes to the passivation of the absorber surface to reduce defect recombination loss. Non-destructive metrological parameters such as photoluminescence (PL) intensity, external quantum efficiency (EQE), and depth-resolved photovoltage are used to characterize the interface quality of CdS/chalcopyrite. The defects and dangling bonds at the absorber surface will cause interface recombination and reduce the cell performance in build-in voltage distribution. Post annealing can improve Cd ion diffusion from the buffer layer to the absorber surface and reduce the density of defects and dangling bonds. After thermal annealing, the EQE, PL intensity, and minority carrier lifetime are improved.

  20. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  1. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    SciTech Connect

    Srinivas, S.; Bhatnagar, A.K.; Pinto, R.

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  2. Sol-gel deposition of buffer layers on biaxially textured metal substances

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  3. High-Quality AgGaTe2 Layers on Si Substrates with Ag2Te Buffer Layers

    NASA Astrophysics Data System (ADS)

    Uruno, Aya; Kobayashi, Masakazu

    2016-05-01

    AgGaTe2 layers were successfully grown on Si substrates by the close-spaced sublimation method. The Si substrates were confirmed to be etched during AgGaTe2 layer growth when the layer was grown directly on the substrate. To eliminate melt-back etching, a buffer layer of Ag2Te was introduced. It was found that the Ag2Te buffer layer changed into the AgGaTe2 layer during the growth process, and a uniform AgGaTe2 layer with an abrupt interface was formed. Both the diffusion of Ga into Ag2Te and the growth of AgGaTe2 occurred simultaneously. It was confirmed that uniform AgGaTe2 layers could be formed without any traces of the Ag2Te layer or melt-back etching by tuning the growth parameters. A solar cell was also fabricated using the p-AgGaTe2/n-Si heterojunction. This solar cell showed conversion efficiency of approximately 3%.

  4. High-Quality AgGaTe2 Layers on Si Substrates with Ag2Te Buffer Layers

    NASA Astrophysics Data System (ADS)

    Uruno, Aya; Kobayashi, Masakazu

    2016-09-01

    AgGaTe2 layers were successfully grown on Si substrates by the close-spaced sublimation method. The Si substrates were confirmed to be etched during AgGaTe2 layer growth when the layer was grown directly on the substrate. To eliminate melt-back etching, a buffer layer of Ag2Te was introduced. It was found that the Ag2Te buffer layer changed into the AgGaTe2 layer during the growth process, and a uniform AgGaTe2 layer with an abrupt interface was formed. Both the diffusion of Ga into Ag2Te and the growth of AgGaTe2 occurred simultaneously. It was confirmed that uniform AgGaTe2 layers could be formed without any traces of the Ag2Te layer or melt-back etching by tuning the growth parameters. A solar cell was also fabricated using the p-AgGaTe2/n-Si heterojunction. This solar cell showed conversion efficiency of approximately 3%.

  5. Controlling optical polarization of {11-22} semipolar multiple quantum wells using relaxed underlying InGaN buffer layers

    NASA Astrophysics Data System (ADS)

    Okada, Narihito; Okamura, Yasuhiro; Uchida, Katsumi; Tadatomo, Kazuyuki

    2016-08-01

    We successfully fabricated {11-22} multiple quantum wells (MQWs) having different emission peak wavelengths on partially or completely relaxed thick InGaN buffer layers with different In contents formed on a semipolar {11-22} GaN layer, which was grown on a patterned r-plane sapphire substrate. The polarization properties changed significantly with changing in In content and thickness for InGaN buffer layer. For the same In content of the InGaN buffer layer, the optical polarization changed with an increase in the thickness of the underlying InGaN buffer layer, indicating a change in the relaxation ratio of the InGaN buffer layer. Similarly, for the same thickness of the InGaN buffer layer, the optical polarization changed by changing In content of the InGaN buffer layer. Thus, the degree of optical polarization could be controlled by varying the In content of the underlying InGaN buffer layer.

  6. Formation of CeO 2 buffer layer using multi-plume PLD

    NASA Astrophysics Data System (ADS)

    Sutoh, Y.; Nakaoka, K.; Miura, M.; Matsuda, J.; Nakanishi, T.; Nakai, A.; Yoshizumi, M.; Izumi, T.; Miyata, S.; Iijima, Y.; Yamada, Y.; Shiohara, Y.; Saitoh, T.

    2008-09-01

    The CeO 2 buffer layer was fabricated using the multi-plume pulsed laser deposition (PLD) method with different deposition rates controlled by the excimer laser energy and frequency on the Gd 2Zr 2O 7 template tape formed by the ion-beam assisted deposition (IBAD) with 14° of Δ φ (full width at half maximum (FWHM) value of X-ray diffraction φ-scan for Gd 2Zr 2O 7 (2 2 2) pole). The laser conditions with high pulse energy and low frequency resulted in a highly textured in-plane grain alignment (Δ φ). The surface roughness and Δ φ values were improved by increasing the thickness of the CeO 2 buffer layer. YBCO films with the thickness of 1 μm and 1.6 μm were further deposited by the advanced trifluoroacetates-metal organic deposition (TFA-MOD) on the CeO 2 buffered substrates with the deposition rate of 0.15 and 0.5 μm/min. The Jc values of 2.5 MA/cm 2 and 2 MA/cm 2 were obtained, respectively. High Jc films could be deposited on the CeO 2 buffer layer even at high deposition rate by the multi-plume deposition.

  7. Improved performance of microcrystalline silicon solar cell with graded-band-gap silicon oxide buffer layer

    NASA Astrophysics Data System (ADS)

    Shi, Zhen-Liang; Ji, Yun; Yu, Wei; Yang, Yan-Bin; Cong, Ri-Dong; Chen, Ying-Juan; Li, Xiao-Wei; Fu, Guang-Sheng

    2015-07-01

    Microcrystalline silicon (μc-Si:H) solar cell with graded band gap microcrystalline silicon oxide (μc-SiOx:H) buffer layer is prepared by plasma enhanced chemical vapor deposition and exhibits improved performance compared with the cell without it. The buffer layer moderates the band gap mismatch by reducing the barrier of the p/i interface, which promotes the nucleation of the i-layer and effectively eliminates the incubation layer, and then enhances the collection efficiency of the cell in the short wavelength region of the spectrum. The p/i interface defect density also decreases from 2.2 × 1012 cm-2 to 5.0 × 1011 cm-2. This graded buffer layer allows to simplify the deposition process for the μc-Si:H solar cell application. Project supported by the Key Basic Research Project of Hebei Province, China (Grant Nos. 12963930D and 12963929D), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013201250 and E2012201059), and the Science and Technology Research Projects of the Education Department of Hebei Province, China (Grant No. ZH2012030).

  8. Magnetooptical and crystalline properties of sputtered garnet ferrite film on spinel ferrite buffer layer

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Sasaki, Ai-ichiro; Morimura, Hiroki; Kagami, Osamu; Tanabe, Takaya

    2016-09-01

    The purpose of this study is to provide garnet films for volumetric magnetic holography. Volumetric magnetic holography usually employs an easily obtainable short-wavelength laser (visible light, not infrared light) with a large diffraction intensity. Bi-substituted garnet ferrite with a large Faraday rotation is promising for volumetric magnetic holography applications in the visible light region. However, a garnet film without a deteriorated layer must be obtained because a deteriorated layer (minute polycrystalline grains containing an amorphous phase) is formed during the initial deposition on a glass substrate. In particular, the required magnetooptical properties have not been obtained in a thin garnet film (100 nm or less) after annealing (1 h, 700 °C, oxygen atmosphere). Therefore, there is a need for excellent garnet films with the required magnetooptical (MO) properties even if the films are thin. By using a spinel ferrite buffer layer for garnet film deposition, we could obtain a thin garnet film with excellent MO properties. We determined the effect of the initial buffer layer on the crystallinity of the deposited garnet films by observing the film cross section. In addition, we undertook a qualitative estimation of the influence of the crystallinity and optical properties of the garnet film on a glass substrate with a spinel ferrite buffer layer.

  9. Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells

    PubMed Central

    2012-01-01

    Ultraviolet-ozone-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)was used as the anode buffer layer in copper phthalocyanine (CuPc)/fullerene-based solar cells. The power conversion efficiency of the cells with appropriated UV-ozone treatment was found to increase about 20% compared to the reference cell. The improved performance is attributed to the increased work function of the PEDOT:PSS layer, which improves the contact condition between PEDOT:PSS and CuPc, hence increasing the extraction efficiency of the photogenerated holes and decreasing the recombination probability of holes and electrons in the active organic layers. PMID:22901365

  10. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  11. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    DOEpatents

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  12. Effects of buffer layers on the structural and electronic properties of InSb films

    SciTech Connect

    Weng, X.; Rudawski, N.G.; Wang, P.T.; Goldman, R.S.; Partin, D.L.; Heremans, J.

    2005-02-15

    We have investigated the effects of various buffer layers on the structural and electronic properties of n-doped InSb films. We find a significant decrease in room-temperature electron mobility of InSb films grown on low-misfit GaSb buffers, and a significant increase in room-temperature electron mobility of InSb films grown on high-misfit InAlSb or step-graded GaSb+InAlSb buffers, in comparison with those grown directly on GaAs. Plan-view transmission electron microscopy (TEM) indicates a significant increase in threading dislocation density for InSb films grown on the low-misfit buffers, and a significant decrease in threading dislocation density for InSb films grown on high-misfit or step-graded buffers, in comparison with those grown directly on GaAs. Cross-sectional TEM reveals the role of the film/buffer interfaces in the nucleation (filtering) of threading dislocations for the low-misfit (high-misfit and step-graded) buffers. A quantitative analysis of electron mobility and carrier-concentration dependence on threading dislocation density suggests that electron scattering from the lattice dilation associated with threading dislocations has a stronger effect on electron mobility than electron scattering from the depletion potential surrounding the dislocations. Furthermore, while lattice dilation is the predominant mobility-limiting factor in these n-doped InSb films, ionized impurity scattering associated with dopants also plays a role in limiting the electron mobility.

  13. MBE grown III-V strain relaxed buffer layers and superlattices characterized by atomic force microscopy

    SciTech Connect

    Howard, A.J.; Fritz, I.J.; Drummond, T.J.; Olsen, J.A.; Hammons, B.E.; Kurtz, S.R.; Brennan, T.M.

    1993-11-01

    Using atomic force microscopy (AFM), the authors have investigated the effects of growth temperature and dopant incorporation on the surface morphology of MBE grown graded buffer layers and strained layer superlattices (SLSs) in the InGaAlAs/GaAs and InAsSb/InSb material systems. The AFM results show quantitatively that over the temperature range from 380 to 545 C, graded in{sub x}Al{sub 1{minus}x}As(x = 0.05 {minus} 0.32) buffer layers grown at high temperatures ({approximately}520 C), and graded In{sub x}Ga{sub 1{minus}x}As (x = 0.05 {minus} 0.33) buffer layers and In{sub 0.4}Ga{sub 0.6}As/In{sub 0.26}Al{sub 0.35}Ga{sub 0.39}As SLSs grown at low temperatures ({approximately}400 C) have the lowest RMS roughness. Also, for SLSs InAs{sub 0.21}Sb{sub 0.79}/InSb, undoped layers grown at 470 C were smoother than undoped layers grown at 420 C and Be-doped layers grown at 470 C. These results illustrate the role of surface tension in the growth of strained layer materials near the melting temperature of the InAs{sub x}Sb{sub {minus}x}/InSb superlattice. Nomarski interference and transmission electron microscopies, IR photoluminescence, x-ray diffraction, and photocurrent spectroscopy were also used to evaluate the relative quality of the material but usually, the results were not conclusive.

  14. Performance of organic photovoltaics using an ytterbium trifluoride n-type buffer layer

    NASA Astrophysics Data System (ADS)

    Ji, Chan Hyuk; Jang, Ji Min; Oh, Se Young

    2016-03-01

    Ytterbium trifluoride (YbF3) was used as an n-type cathode buffer layer in conventional poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PC60BM) bulk heterojunction (BHJ) organic photovoltaic cells. This buffer layer acts as an electron-transport layer and improves the open circuit voltage ( V oc), power conversion efficiency (PCE), and interfacial durability of the device. The physical properties and performance of the device were studied using impedance spectroscopy, photocurrent measurements, ultraviolet photoelectron spectroscopy, and atomic force microscopy. The PCE reached to 3.2% with a 65% fill factor under 1 sun irradiation. The PCE decreased to half of its original value after 120 h at room temperature in air or 24 h at 70°C in air. Comparison with Yb and TiOx cathode buffer layers reveals that YbF3 has superior performance and longevity. These findings suggest that YbF3 has the potential to replace costly device encapsulation. [Figure not available: see fulltext.

  15. Electron dynamics of the buffer layer and bilayer graphene on SiC

    SciTech Connect

    Shearer, Alex J.; Caplins, Benjamin W.; Suich, David E.; Harris, Charles B.; Johns, James E.; Hersam, Mark C.

    2014-06-09

    Angle- and time-resolved two-photon photoemission (TPPE) was used to investigate electronic states in the buffer layer of 4H-SiC(0001). An image potential state (IPS) series was observed on this strongly surface-bound buffer layer, and dispersion measurements indicated free-electron-like behavior for all states in this series. These results were compared with TPPE taken on bilayer graphene, which also show the existence of a free-electron-like IPS series. Lifetimes for the n = 2, and n = 3 states were obtained from time-resolved TPPE; slightly increased lifetimes were observed in the bilayer graphene sample for the n = 2 the n = 3 states. Despite the large band gap of graphene at the center of the Brillouin zone, the lifetime results demonstrate that the graphene layers do not behave as a simple tunneling barrier, suggesting that the buffer layer and graphene overlayers play a direct role in the decay of IPS electrons.

  16. Exploring Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Varley, J.; He, X.; Mackie, N.; Rockett, A.; Lordi, V.

    2015-03-01

    The development of thin-film photovoltaics has largely focused on alternative absorber materials, while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the USDoE by LLNL under Contract DE-AC52-07NA27344 and funded by the DoE EERE through the SunShot BRIDGE program.

  17. Selective growth of Pb islands on graphene/SiC buffer layers

    SciTech Connect

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.; Hu, T. W.; Ma, F. E-mail: kwxu@mail.xjtu.edu.cn; Chu, Paul K.; Xu, K. W. E-mail: kwxu@mail.xjtu.edu.cn

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Since Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.

  18. Improved nonlinear slot waveguides using dielectric buffer layers: properties of TM waves.

    PubMed

    Elsawy, Mahmoud M R; Renversez, Gilles

    2016-04-01

    We propose an improved version of the symmetric metal slot waveguides with a Kerr-type nonlinear dielectric core adding linear dielectric buffer layers between the metal regions and the core. Using a finite element method to compute the stationary nonlinear modes, we provide the full phase diagrams of its main transverse magnetic modes as a function of the total power, buffer layer, and core thicknesses that are more complex than the ones of the simple nonlinear metal slot. We show that these modes can exhibit spatial transitions toward specific modes of the new structure as a function of power. We also demonstrate that, for the main modes, the losses are reduced compared to the previous structures, and that they can now decrease with power. Finally, we describe the stability properties of the main stationary solutions using nonlinear FDTD simulations. PMID:27192282

  19. Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability

    PubMed Central

    Zhao, Wenchao; Ye, Long; Zhang, Shaoqing; Fan, Bin; Sun, Mingliang; Hou, Jianhui

    2014-01-01

    Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device. Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover, ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were originated from the high transparency, small film roughness and suitable work function. PMID:25300365

  20. CoFe2O4/buffer layer ultrathin heterostructures on Si(001)

    NASA Astrophysics Data System (ADS)

    Bachelet, R.; de Coux, P.; Warot-Fonrose, B.; Skumryev, V.; Fontcuberta, J.; Sánchez, F.

    2011-10-01

    Epitaxial films of ferromagnetic CoFe2O4 (CFO) were grown by pulsed laser deposition on Si(001) buffered with ultrathin yttria-stabilized zirconia (YSZ) layers in a single process. Reflection high-energy electron diffraction was used to monitor in real time the crystallization of YSZ, allowing the fabrication of epitaxial YSZ buffers with thickness of about 2 nm. CFO films, with thicknesses in the 2-50 nm range were subsequently deposited. The magnetization of the CFO films is close to the bulk value. The ultrathin CFO/YSZ heterostructures have very flat morphology (0.1 nm roughness) and thin interfacial SiOx layer (about 2 nm thick) making them suitable for integration in tunnel (e.g., spin injection) devices.

  1. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOEpatents

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  2. Law-of-the-wall buffer layer explained by a simplified cospectral budget model

    NASA Astrophysics Data System (ADS)

    Mccoll, K. A.; Katul, G. G.; Gentine, P.; Entekhabi, D.

    2015-12-01

    A series of recent studies have shown that a model of the turbulent vertical velocity variance spectrum (Fvv) combined with a simplified cospectral budget can reproduce many macroscopic flow properties of turbulent wall-bounded flows, including various features of the mean-velocity profile (MVP), i.e., the "law of the wall". While the theory reasonably models the MVP's logarithmic layer, the modelled buffer layer displays insufficient curvature compared to measurements at moderate Reynolds number. The theory is re-examined here using a DNS dataset at moderate Reynolds number. Starting with several hypotheses for the cause of the 'missing' curvature, it is shown that it is mainly due to mismatches between (i) the modelled and DNS-observed pressure-strain terms in the cospectral budget and (ii) the DNS-observed Fvv and the idealized form used in the previous model. By replacing the current parameterization for the pressure-strain term with an expansive version that directly accounts for the presence of a wall, the modelled and DNS reported pressure-strain profiles match each other in the buffer and logarithmic layers. Forcing the new model with DNS-reported Fvv rather than the idealized form previously used reproduces the missing buffer layer curvature to high fidelity thereby confirming the "spectral link" between Fvv and the MVP. A major departure between the idealized Fvv previously employed and those reported from DNS is the invariance with distance from the wall of the cross-over scale to the inertial subrange in Fvv. This invariance is presumably due to the presence of streaks within the buffer region whose dimensions do not scale with distance from the wall. Comparisons between DNS reported and modeled cospectra are also discussed. A broad implication of this work is that much of the macroscopic properties of the flow (such as the MVP) may be derived from the energy distribution in turbulent eddies (i.e., Fvv) representing the microstates of the flow.

  3. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  4. Spatial Solitons in Algaas Waveguides

    NASA Astrophysics Data System (ADS)

    Kang, Jin Ung

    In this work, by measuring the two-, three-photon absorption, and the nonlinear refractive index coefficients, a useful bandwidth for an all-optical switching applications in the AlGaAs below half the band gap is identified. Operating in this material system, several types of spatial solitons such as fundamental bright solitons, Vector solitons, and Manakov solitons are experimentally demonstrated. The propagation and the interaction behaviors of these solitons are studied experimentally and numerically. The distinct properties of each soliton are discussed along with some possible applications. Some applications, such as all -optical switching based on spatial soliton dragging and the efficient guiding of orthogonally polarized femtosecond pulses by a bright spatial soliton, are experimentally demonstrated. The signal gain due to an ultrafast polarization coupling, better known as Four Wave Mixing (FWM) is demonstrated in a channel waveguide. The effects of FWM are studied experimentally and numerically. This effect is also used to demonstrate polarization switching. The linear and nonlinear properties of AlGaAs/GaAs multiple quantum well waveguides are measured. Anisotropic two photon absorption and nonlinear refractive indices near half the band gap are measured along with the linear birefringence for several different quantum well structures. The usefulness of multiple quantum well structures for an all -optical switching because of anisotropic nature of this material system is discussed.

  5. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer.

    PubMed

    Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang

    2014-01-01

    Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976

  6. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Kim, Seojin; Park, Hanok; Yoo, Dong Jin; Leel, Soo-Hyoung

    2014-11-01

    Polymer solar cells (PSCs) have attracted increasing attention in recent years. The rapid progress and mounting interest suggest the feasibility of PSC commercialization. However, critical issues such as stability and the weak nature of their interfaces posses quite a challenge. In the context of improving stability, PSCs with inverted geometry consising of inorganic oxide layer acting as an n-buffer offer quite the panacea. Zinc oxide (ZnO) is one of the most preferred semiconducting wide band gap oxides as an efficient cathode layer that effectively extracts and transports photoelectrons from the acceptor to the conducting indium-doped tin oxide (ITO) due to its high conductivity and transparency. However, the existence of a back charge transfer from metal oxides to electron-donating conjugated polymer and poor contact with the bulk heterojunction (BHJ) active layer results in serious interfacial recombination and leads to relatively low photovoltaic performance. One approach to improving the performance and charge selectivity of these types of inverted devices consists of modifying the interface between the inorganic metal oxide (e.g., ZnO) and organic active layer using a sub-monolayer of interfacial materials (e.g., functional dyes). In this work, we demonstrate that the photovoltaic parameters of inverted solar cells comprising a thin overlayer of functional dyes over ZnO nanoparticle as an n-buffer layer are highly influenced by the anchoring groups they possess. While an inverted PSC containing an n-buffer of only ZnO exhibited an overall power conversion efficiency (PCE) of 2.87%, the devices with an interlayer of dyes containing functional cyano-carboxylic, cyano-cyano, and carboxylic groups exhibited PCE of 3.52%, 3.39%, and 3.21%, respectively, due to increased forward charge collection resulting from enhanced electronic coupling between the ZnO and BHJ active layers. PMID:25958563

  7. A study on intermediate buffer layer of coated Fiber Bragg Grating cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Freitas, R.; Araujo, F.; Araujo, J.; Neumann, H.; Ramalingam, R.

    2015-12-01

    The sensor characteristics of a coated Fiber Bragg grating (FBG) thermal sensor for cryogenic temperatures depends mainly on the coating materials. The sensitivity of the coated FBG can be improved by enhancing the effective thermal strain transfer between the different layers and the bare FBG. The dual coated FBG's has a primary layer and the secondary layer. The primary coating acts as an intermediate buffer between the secondary coating and the bare FBG. The outer secondary coating is normally made of metals with high thermal expansion coefficient. In this work, a detailed study is carried out on chromium and titanium intermediate buffer layers with various coating thicknesses and combinations. To improve the sensitivity, the secondary coating layer was tested with Indium, Lead and Tin. The sensors were then calibrated in a cryogenic temperature calibration facility at Institute of Technical Physics (ITEP), Karlsruhe Institute of Technology. The sensors were subjected to several thermal cycles between 4.2 and 80 K to study the sensor performance and its thermal characteristics. The sensor exhibits a Bragg wavelength shift of 13pm at 20K. The commercially available detection equipment with a resolution of 1pm can result in a temperature resolution of 0.076 K at 20K.

  8. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    SciTech Connect

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; You, Chun-Yeol; Han, Dong-Soo; Kim, June-Seo Swagten, Henk J. M.

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness, which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.

  9. The growth of high-quality AlGaAs by metalorganic molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hersee, S. D.; Martin, P. A.; Chin, A.; Ballingall, J. M.

    1991-07-01

    The electrical and optical properties of AlGaAs grown by metalorganic molecular-beam epitaxy using triethylaluminum, tri-isobutylaluminum, and trimethylamine-alane are compared. It is found that tri-isobutylaluminum yields the lowest residual carbon incorporation in the layers (Na - Nd = 4 × 1015 cm-3) and the highest electron and hole mobilities. Photoluminescence spectra for the higher-quality AlGaAs, grown using TiBAl, show excitonic luminescence. However, this luminescence appears to be defect related.

  10. Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Qiu, Xiaofeng; List III, Frederick Alyious; Zhang, Yifei; Li, Xiaoping; Sathyamurthy, Srivatsan; Thieme, C. L. H.; Rupich, M. W.

    2011-01-01

    Abstract The main objective of this research is to find a suitable alternate solution based seed layer for the standard RABiTS three-layer architecture of physical vapor deposited CeO cap/YSZ barrier/Y O seed on Ni-5%W metal tape. In the present work, we have identified CeO buffer layer as a potential replacement for Y O seeds. Using a metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of CeO (pure and Zr, Cu and Gd-doped) directly on biaxially textured Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial CeO phase with slightly improved out-of-plane texture compared to the texture of the underlying Ni-W substrates can be achieved in pure, undoped CeO samples. We have also demonstrated the growth of YSZ barrier layers on pure CeO seeds using sputtering. Both sputtered CeO cap layers and MOD-YBCO films were grown epitaxially on these YSZ-buffered MOD-CeO /Ni-5W substrates. High critical currents per unit width, of 264 A/cm (critical current density, of 3.3 MA/cm ) at 77 K and 0.01 T was achieved for 0.8 m thick MOD-YBCO films grown on MOD-CeO seeds. These results indicate that CeO films can be grown directly on Ni-5W substrates and still support high performance YBCO coated conductors. This work holds promise for a route for producing low-cost buffer architecture for RABiTS based YBCO coated conductors.

  11. Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Qiu, Xiaofeng; Kim, Kyunghoon; Shi, D.; Zhang, Yifei; Li, Xiaoping; Sathyamurthy, Srivatsan; Thieme, C. L. H.; Rupich, M. W.

    2010-01-01

    The main objective of this research is to find a suitable alternate solution based seed layer for the standard RABiTS three-layer architecture of physical vapor deposited CeO2 cap/YSZ barrier/Y2O3 seed on Ni-5%W metal tape. In the present work, we have identified CeO2 buffer layer as a potential replacement for Y2O3 seeds. Using a metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of CeO2 (both pure and Zr, Cu and Gd-doped) directly on biaxially textured Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial CeO2 phase with slightly improved out-of-plane texture compared to the texture of underlying Ni-W substrates can be achieved in pure, undoped CeO2 samples. We have also demonstrated the growth of YSZ barrier layers on pure CeO2 seeds using sputtering. Both sputtered CeO2 cap layers and MOD-YBCO films were grown epitaxially on these YSZ-buffered MOD-CeO2/Ni-5W substrates. High critical currents per unit width, Ic of 264 A/cm (critical current density, Jc of 3.3 MA/cm2) at 77 K and 0.01 T was achieved for 0.8 m thick MOD-YBCO films grown on MOD-CeO2 seeds. These results indicate that CeO2 films can be grown directly on Ni-5W substrates and still support high performance YBCO coated conductors. This work holds promise for a route for producing low-cost buffer architecture for RABiTS based YBCO coated conductors.

  12. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tan, Zhan'ao; Yang, Chunhe; Zhou, Erjun; Wang, Xiang; Li, Yongfang

    2007-07-01

    A solution processible titanium chelate, titanium (diisopropoxide) bis (2,4-pentanedionate) (TIPD), was used as the cathode buffer layer in the polymer solar cells (PSCs) based on the blend of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] and [6,6]-phenyl-C61-butyric acid methyl ester. Introducing TIPD buffer layer reduced the interface resistance between the active layer and Al electrode, leading to a lower device resistance. The power conversion efficiency of the PSC with TIPD buffer layer reached 2.52% under the illumination of AM1.5, 100mW/cm2, which is increased by 51.8% in comparison with that (1.66%) of the device without TIPD buffer layer under the same experimental conditions.

  13. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  14. Lattice-matched HfN buffer layers for epitaxy of GaN on Si

    SciTech Connect

    Armitage, Robert; Yang, Qing; Feick, Henning; Gebauer, Joerg; Weber, Eicke R.; Shinkai, Satoko; Sasaki, Katsutaka

    2002-05-08

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using sputter-deposited hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 (mu)m. Initial results for GaN grown on the (111) surface show a photoluminescence peak width of 17 meV at 11 K, and an asymmetric x-ray rocking curve width of 20 arcmin. Wurtzite GaN on HfN/Si(001) shows reduced structural quality and peculiar low-temperature luminescence features. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  15. Versatile buffer layer architectures based on Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.

    2005-05-01

    We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.

  16. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  17. Effects of the nano-tubular anodic TiO2 buffer layer on bioactive hydroxyapatite coating.

    PubMed

    Piao, Zhonglie; Qiu, Jijun; Wu, Yongqing; Park, Se-Jeong; He, Weizhen; Timur, A; Ryu, Su-Chak; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2011-01-01

    We studied the effect of nano-tubular anodic TiO2 buffer layers on hydroxyapatite (HA) coating. The pulsed laser deposition (PLD) method was used to deposit HA on a well arranged nano-tubular anodic TiO2 (NT-ATO) buffer layer prepared by an electrochemical anodization technique. The surface morphology and chemical composition of HA coatings were characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and contact angle measurement. We found that crystalline HA coatings show well arranged porous morphologies with a favorable surface wettability. We also found that an anodic nano-tubular TiO2 buffer layer with a relatively short tube length shows a better coating morphology. The deposition process of HA on the nanotubular TiO2 buffer layer was also proposed. PMID:21446441

  18. ZnO-SiO2 solar-blind photodetectors on flexible polyethersulfone substrate with organosilicon buffer layer

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chih; Chen, Jiun-Ting; Yang, Ya-Yu

    2013-05-01

    The ZnO-SiO2 nanocomposite solar-blind metal-semiconductor-metal photodetectors (PDs) on flexible polyethersulfone (PES) with an organosilicon (SiOx(CH3)) buffer layer improved the -10 V-biased responsivity of PDs illuminated wavelength of 240 nm from 0.75 A/W (without SiOx(CH3) buffer layer) to 3.86 A/W and the deep-ultraviolet (DUV)-visible rejection ratio of PDs from 8.10 × 104 (without SiOx(CH3) buffer layer) to 1.75 × 105. Moreover, the inserted SiOx(CH3) buffer layer would reduce the responsivity and DUV-visible rejection ratio of degradation of the severely bended ZnO-SiO2 nanocomposite PDs on PES.

  19. Graphene Growth on Pre-patterned Copper Film with Nickel as a Buffer Layer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Deng, Wu-Zhu; Wang, Dong-Zhao; Chen, Yang-Yang; Zhou, Wen-Li

    2015-11-01

    Selective graphene growth has been simultaneously achieved on oxidized silicon substrate with three kinds of pre-patterned rectangular metal films, i.e., Cu/Ni double layer, and Ni and Cu single layer film, by atmospheric chemical vapor deposition at 1020°C. The top graphene maintains the micron-scale patterning of the metal film underneath. It was found that single layer graphene growth is more favorable on the Cu/Ni double layer film than on either single layer. The morphology and structure study of the pre-patterned metal substrates before and after graphene growth indicated that Ni functions as a buffer layer to significantly weaken the lattice mismatch between the copper and silicon substrate, resulting in a smoother and larger grain-sized Cu surface. It is also suggested that Ni diffuses to the Cu surface and participates in the graphene growth during the chemical vapor deposition (CVD) process. Defect-free single layer graphene growth can be obtained when the ratio of Cu/Ni is appropriate with respect to their thickness and the feature size of rectangular patterning.

  20. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    PubMed

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV). PMID:26000570

  1. Structure, Optical Absorption, and Performance of Organic Solar Cells Improved by Gold Nanoparticles in Buffer Layers.

    PubMed

    Yang, Yingguo; Feng, Shanglei; Li, Meng; Wu, Zhongwei; Fang, Xiao; Wang, Fei; Geng, Dongping; Yang, Tieying; Li, Xiaolong; Sun, Baoquan; Gao, Xingyu

    2015-11-11

    11-Mercaptoundecanoic acid (MUA)-stabilized gold nanoparticles (AuNPs) embedded in copper phthalocyanine (CuPc) were used as a buffer layer between a poly(3-hexyl-thiophene) (P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction and anodic indium-tin oxide (ITO) substrate. As systematic synchrotron-based grazing incidence X-ray diffraction (GIXRD) experiments demonstrated that the AuNPs present in the buffer layer can improve the microstructure of the active layer with a better lamella packing of P3HT from the surface to the interior, UV-visible absorption spectrum measurements revealed enhanced optical absorption due to the localized surface plasma resonance (LSPR) generated by the AuNPs. The device of ITO/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/CuPc:MUA-stabilized AuNPs/P3HT:PCBM/LiF/Al was found with over 24% enhancement of power conversion efficiency (PCE) in comparison with reference devices without AuNPs. This remarkable improvement in PCE should be partially attributed to LSPR generated by the AuNPs and partially to improved crystallization as well as preferred orientation order of P3HT due to the presence of the AuNPs, which would promote more applications of metal NPs in the organic photovoltaic devices and other organic multilayer devices. PMID:26477556

  2. Surface plasmon enhanced organic solar cells with a MoO3 buffer layer.

    PubMed

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhang, Guang; Zhao, Haifeng; Yang, Haigui; Ma, Yuejia; Chu, Bei; Li, Wenlian

    2013-12-26

    High-efficiency surface plasmon enhanced 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane:C70 small molecular bulk heterojunction organic solar cells with a MoO3 anode buffer layer have been demonstrated. The optimized device based on thermal evaporated Ag nanoparticles (NPs) shows a power conversion efficiency of 5.42%, which is 17% higher than the reference device. The improvement is attributed to both the enhanced conductivity and increased absorption due to the near-field enhancement of the localized surface plasmon resonance of Ag NPs. PMID:24320799

  3. Mild oxygen plasma treated PEDOT:PSS as anode buffer layer for vacuum deposited organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunfei; Yuan, Yongbo; Lian, Jiarong; Zhang, Jie; Pang, Hongqi; Cao, Lingfang; Zhou, Xiang

    2006-08-01

    The surface morphology of PEDOT:PSS after mild oxygen plasma treatment were investigated by scanning electron microscopy and atomic force microscopy. The nanometer-scale islands on the surface of treated PEDOT:PSS were observed. Vacuum deposited organic light-emitting diodes (OLEDs) with treated PEDOT:PSS as anode buffer layer had been fabricated. The OLEDs with an appropriately treated PEDOT:PSS as anode buffer layer exhibited significantly enhanced lifetime and decreased driving voltage. The results suggest that the appropriate mild oxygen plasma treatment of PEDOT:PSS layers may be useful for the improvement of the interface with the hole transport layer and enhanced device performance.

  4. The growth of various buffer layer structures and their influence on the quality of (CdHg)Te epilayers

    NASA Astrophysics Data System (ADS)

    Gouws, G. J.; Muller, R. J.; Bowden, R. S.

    1993-05-01

    The suitability of various buffer layer structures on (100) GaAs for (CdHg)Te growth by organometallic vapour phase epitaxy (OMVPE) was investigated. The preferred epitaxial orientation of {(100)GaAs}/{(111)CdTe} was found to be unsuitable due to the formation of electrically active defects in the material. An intermediate ZnTe layer was used to select the (100) orientation and (100) CdTe layers were when deposited on this ZnTe layer. The quality of the resultant CdTe buffer was found to critically depend on the thickness of this intermediate ZnTe buffer, with a ZnTe thickness of approximately 500 Å producing the best CdTe buffer. (CdHg)Te epilayers grown on these {ZnTe}/{CdTe} buffers had improved electrical properties, but still suffered from a poor surface morphology. This surface morphology could be improved by using a lattice matched Cd 0.96Zn 0.04Te alloy as the final buffer layer, but the surface pyramids typical of the (100) orientation could never be completely eliminated.

  5. Characterization of mismatched SiGe grown on low temperature Si buffer layers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Linder, K. K.; Zhang, F. C.; Rieh, J.-S.; Bhattacharya, P.

    1997-05-01

    Several types of buffer layer structures, including superlattice and step-graded layers, have been employed to reduce the threading dislocation in SiGe epitaxial layers. A new technique, using a 0.1 μm thick Si buffer grown at 450°C by molecular beam epitaxy, provides the best results. For a 0.5 μm thick Si 0.85Ge 0.15 layer, the dislocation density is ⩽ 10 5cm -2. Hall measurements indicate an improvement in the hole mobility of a 1 μm thick Boron doped Si 0.7Ge 0.3 layer. A {SiGe}/{Si} heterojunction bipolar transistor has been fabricated exploiting the low temperature Si buffer. Transmission electron microscopy of the structure does not indicate any evidence of threading dislocations.

  6. Fabrication of YSZ buffer layer by single source MOCVD technique for YBCO coated conductor

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Hyuk; Sun, Jong-Won; Kim, Ho-Jin; Lee, Dong-Wook; Jung, Choong-Hwan; Park, Soon-Dong; Kim, Chan-Joong

    2003-10-01

    Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition technique using a single liquid source for the application of YBa 2Cu 3O 7- δ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (1 0 0) single crystal MgO substrate was used for searching the deposition conditions. Bi-axially oriented CeO 2 and NiO films were fabricated on {1 0 0} <0 0 1> textured Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660-800 °C) and oxygen flow rates (100-500 sccm) were changed to find the optimum deposition condition. The best (1 0 0) oriented YSZ film on MgO was obtained at 740 °C and O 2 flow rate of 300 sccm. For a YSZ buffer layer with this deposition condition on a CeO 2/Ni template, full width half maximum values of the in-plane ( ϕ-scan) and out-of-plane ( ω-scan) alignments were 10.6° and 9.8°, respectively. The SEM image of YSZ film on CeO 2/Ni showed surface morphologies without microcracks. The film deposition rate was about 100 nm/min.

  7. Hydrogenated amorphous silicon thin film solar cell with buffer layer of DNA-CTMA biopolymer

    NASA Astrophysics Data System (ADS)

    Son, Won-Ho; Reddy, M. Siva Pratap; Choi, Sie-Young

    2014-05-01

    The characteristics of nip-type a-Si:H thin film solar cells based on DNA-CTMA biopolymer was investigated. The DNA-CTMA was used as the buffer layer in nip-type a-Si:H solar cell. The Eopt of the DNA-CTMA biopolymer was measured with UV-VIS spectrometer. The Eopt of DNA-CTMA was determined as 3.96 eV by the plot of (Ahν)2 versus hν. All films of amorphous materials were deposited by PECVD method. The solar cell with a simple structure of glass/ITO/n-a-Si:H/i-a-Si:H/p-a-Si:H/DNA-CTMA/Al was fabricated. The various values of Voc, Jsc, FF, and conversion efficiency η were measured under 100 mW/cm2 (AM 1.5) solar simulator irradiation. Consequently, the resulting in solar cell showed an enhancement in conversion efficiency η compared to conventional nip-type a-Si:H solar cell without buffer layer of DNA-CTMA biopolymer.

  8. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  9. Structure and magnetic properties of ultrathin Ni films on Pt(111) with Co buffer layers

    NASA Astrophysics Data System (ADS)

    Shern, C. S.; Ho, H. Y.; Lin, S. H.; Su, C. W.

    2004-12-01

    The growth mode and the structure of ultrathin Ni films on Pt(111) with Co buffer layers were studied by low-energy electron diffraction (LEED) and Auger electron spectroscopy. The comparative study of the magnetic properties between Ni/Pt(111) and Ni/1 ML Co/Pt(111) was investigated by magneto-optical Kerr effect. The oscillation of the specular beam of LEED and the Auger uptake curve were used to calibrate the thickness of Ni overlayers and to study the growth mode of Ni thin films on 1 ML Co/Pt(111) . The study of the alloy formation for Ni/1 ML Co/Pt(111) showed that the temperature for mixing Ni and Co in the upper interface without diffusing into the bulk of Pt is independent of the thickness of Ni overlayers. By further increasing the temperature, Co and Ni diffuse into Pt bulk simultaneously to form Co-Pt , Ni-Pt , and Ni-Co-Pt alloys. The temperature of the formation of these alloys is dependent on the Ni thickness. Studies of the magnetic properties showed that the easy axis of the magnetization changed from the cant to the out-of-plane direction when the Co buffer layer was inserted on Ni/Pt(111) . The alloy formation causes some interesting changes in the polar Kerr signal. The enhancement in the out-of-plane magnetization of Ni/Co/Pt(111) is mainly contributed by the formation of Co-Pt alloy.

  10. Calcium manganate: A promising candidate as buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems

    SciTech Connect

    Zhao, Pengjun; Wang, Hongguang; Kong, Wenwen; Xu, Jinbao Wang, Lei; Ren, Wei; Bian, Liang; Chang, Aimin

    2014-11-21

    We have systematically studied the feasibility of CaMnO{sub 3} thin film, an n-type perovskite, to be utilized as the buffer layer for hybrid halide perovskite photovoltaic-thermoelectric device. Locations of the conduction band and the valence band, spontaneous polarization performance, and optical properties were investigated. Results indicate the energy band of CaMnO{sub 3} can match up well with that of CH{sub 3}NH{sub 3}PbI{sub 3} on separating electron-hole pairs. In addition, the consistent polarization angle helps enlarge the open circuit voltage of the composite system. Besides, CaMnO{sub 3} film shows large absorption coefficient and low extinction coefficient under visible irradiation, demonstrating high carrier concentration, which is beneficial to the current density. More importantly, benign thermoelectric properties enable CaMnO{sub 3} film to assimilate phonon vibration from CH{sub 3}NH3PbI{sub 3}. All the above features lead to a bright future of CaMnO{sub 3} film, which can be a promising candidate as a buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems.

  11. Uncovering the role of cathode buffer layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  12. Uncovering the role of cathode buffer layer in organic solar cells.

    PubMed

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL. PMID:25588623

  13. Engineered oxide thin films as 100% lattice match buffer layers for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Akin, Y.; Heiba, Z. K.; Sigmund, W.; Hascicek, Y. S.

    2003-12-01

    One of the most important qualities of buffer layers for RE-BCO coated conductors' growth is close lattice match with RE-BCO. However, there is no natural material with a 100% lattice match with RE-BCO. In this study mixtures of europium oxide (Eu 2O 3) and ytterbium oxide (Yb 2O 3), (Eu 1- uYb u) 2O 3 (0.0⩽ u⩽1.0), were investigated as a candidate buffer layer that could have same lattice parameter as YBa 2Cu 3O 7- δ(YBCO). Because the pseudocubic lattice parameter of Eu 2O 3 is bigger, and that of Yb 2O 3 is smaller than lattice parameter of YBCO, and the mixed oxides with appropriate ratio would have same lattice parameter of YBCO. The mixtures were prepared using metal-organic precursor by sol-gel process, and it was found that all mixed samples are single phase, complete solid solutions, and have same crystal system over the whole range of " u". Lattice parameters of mixed (Eu 1- uYb u) 2O 3 oxide powders were changed between 10.86831 and 10.42828 Å which are lattice parameter of Eu 2O 3 and Yb 2O 3, respectively by changing the ratio of Eu/Yb in the mixture. Phase and lattice parameter analysis revealed that pseudocubic lattice parameter of (Eu 0.893Yb 0.107) 2O 3 is 3.82 Å which is same as the lattice parameter of YBCO. Textured (Eu 0.893Yb 0.107) 2O 3 buffer layers were grown on biaxially textured-Ni (1 0 0) substrates. The solution was prepared from Europium and Ytterbium 2,4-pentadioanate, and was deposited on the Ni substrates using a reel-to-reel sol-gel dip coating system. The textured films were annealed at 1150 °C for 10 min under 4% H 2-Ar gas flow. Extensive texture analysis has been done to characterize the texture of (Eu 0.893Yb 0.107) 2O 3 buffer layers. X-ray diffraction (XRD) of the buffer layer showed strong out-of-plane orientation on Ni tape. The (Eu 0.893Yb 0.107) 2O 3 (2 2 2) pole figure indicated a single cube-on-cube textured structure. The omega and phi scans revealed good out-of-plane and in-plane alignments. The full

  14. Buffer influence on magnetic dead layer, critical current, and thermal stability in magnetic tunnel junctions with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Żywczak, Antoni; Czapkiewicz, Maciej; Zietek, Sławomir; Kanak, Jarosław; Banasik, Monika; Powroźnik, Wiesław; Skowroński, Witold; Checiński, Jakub; Wrona, Jerzy; Głowiński, Hubert; Dubowik, Janusz; Ansermet, Jean-Philippe; Stobiecki, Tomasz

    2015-06-01

    We present a detailed study of Ta/Ru-based buffers and their influence on features crucial from the point of view of applications of Magnetic Tunnel Junctions (MTJs) such as critical switching current and thermal stability. We study buffer/FeCoB/MgO/Ta/Ru and buffer/MgO/FeCoB/Ta/Ru layers, investigating the crystallographic texture, the roughness of the buffers, the magnetic domain pattern, the magnetic dead layer thickness, and the perpendicular magnetic anisotropy fields for each sample. Additionally, we examine the effect of the current induced magnetization switching for complete nanopillar MTJs with lateral dimensions of 270 × 180 nm. Buffer Ta 5/Ru 10/Ta 3 (thicknesses in nm), which has the thickest dead layer, exhibits a much larger thermal stability factor (63 compared to 32.5) while featuring a slightly lower critical current density value (1.25 MA/cm2 compared to 1.5 MA/cm2) than the buffer with the thinnest dead layer Ta 5/Ru 20/Ta 5. We can account for these results by considering the difference in damping which compensates for the difference in the switching barrier heights.

  15. Artificially MoO3 graded ITO anodes for acidic buffer layer free organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Min; Kim, Seok-Soon; Kim, Han-Ki

    2016-02-01

    We report characteristics of MoO3 graded ITO anodes prepared by a RF/DC graded sputtering for acidic poly(3,4-ethylene dioxylene thiophene):poly(styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs). Graded sputtering of the MoO3 buffer layer on top of the ITO layer produced MoO3 graded ITO anodes with a sheet resistance of 12.67 Ω/square, a resistivity of 2.54 × 10-4 Ω cm, and an optical transmittance of 86.78%, all of which were comparable to a conventional ITO anode. In addition, the MoO3 graded ITO electrode showed a greater work function of 4.92 eV than that (4.6 eV) of an ITO anode, which is beneficial for hole extraction from an organic active layer. Due to the high work function of MoO3 graded ITO electrodes, the acidic PEDOT:PSS-free OSCs fabricated on the MoO3 graded ITO electrode exhibited a power conversion efficiency 3.60% greater than that of a PEDOT:PSS-free OSC on the conventional ITO anode. The successful operation of PEDOT:PSS-free OSCs indicates simpler fabrication steps for cost-effective OSCs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable OSCs.

  16. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    SciTech Connect

    Fu, Tsu-Yi Wu, Jia-Yuan; Jhou, Ming-Kuan; Hsu, Hung-Chan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kinds of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.

  17. Semi-insulating Sn-Zr-O: Tunable resistance buffer layers

    SciTech Connect

    Barnes, Teresa M.; Burst, James M.; Reese, Matthew O.; Perkins, Craig L.

    2015-03-02

    Highly resistive and transparent (HRT) buffer layers are critical components of solar cells and other opto-electronic devices. HRT layers are often undoped transparent conducting oxides. However, these oxides can be too conductive to form an optimal HRT. Here, we present a method to produce HRT layers with tunable electrical resistivity, despite the presence of high concentrations of unintentionally or intentionally added dopants in the film. This method relies on alloying wide-bandgap, high-k dielectric materials (e.g., ZrO{sub 2}) into the host oxide to tune the resistivity. We demonstrate Sn{sub x}Zr{sub 1−x}O{sub 2}:F films with tunable resistivities varying from 0.001 to 10 Ω cm, which are controlled by the Zr mole fraction in the films. Increasing Zr suppresses carriers by expanding the bandgap almost entirely by shifting the valence-band position, which allows the HRT layers to maintain good conduction-band alignment for a low-resistance front contact.

  18. Improved performance of organic light-emitting devices with plasma treated ITO surface and plasma polymerized methyl methacrylate buffer layer

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Sung; Shin, Paik-Kyun

    2007-02-01

    Transparent indium-tin-oxide (ITO) anode surface was modified using O 3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N, N'-Diphenyl- N, N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq 3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.

  19. Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.

    PubMed

    Ramasamy, Devaraj; Nasani, Narendar; Brandão, Ana D; Pérez Coll, Domingo; Fagg, Duncan P

    2015-05-01

    The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+δ electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ≪ Gd < no buffer layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers. PMID:25857870

  20. Reduction of dislocation density in mismatched SiGe/Si using a low-temperature Si buffer layer

    NASA Astrophysics Data System (ADS)

    Linder, K. K.; Zhang, F. C.; Rieh, J.-S.; Bhattacharya, P.; Houghton, D.

    1997-06-01

    The reduction of the dislocation density in relaxed SiGe/Si heterostructures using a low-temperature Si(LT-Si) buffer has been investigated. We have shown that a 0.1 μm LT-Si buffer reduces the threading dislocation density in mismatched Si0.85Ge0.15/Si epitaxial layers as low as ˜104cm-2. Samples were grown by both gas-source molecular beam epitaxy and ultrahigh vacuum chemical vapor deposition.

  1. The role of buffer layer between TCO and p-layer in improving series resistance and carrier recombination of a-Si:H solar cells

    SciTech Connect

    Yoon, Kichan; Shin, Chonghoon; Lee, Youn-Jung; Kim, Youngkuk; Park, Hyeongsik; Baek, Seungsin; Yi, Junsin

    2012-10-15

    The properties of the window layer and transparent conducting oxide (TCO)/p interface in silicon based thin-film solar cells are important factors in determining the cell efficiency. As the potential barrier got larger at the interface, the transmission of photo-generated holes were impeded and the recombination of photo-generated electrons diffusing back toward the TCO interface were enhanced leading to a deterioration of the fill factor. In this paper different p-layers were studied. It was found that using p-type hydrogenated amorphous silicon oxide (a-SiO{sub x}:H) layer as the window layer along with a 5 nm buffer layer which reduced the barrier at the fluorine doped tin oxide (SnO{sub 2}:F) TCO/p-layer interface, improved the cell efficiency. a-SiO{sub x}:H was used as the buffer layer. With the buffer layer between TCO and p-type a-SiO{sub x}:H, the potential barrier dropped from 0.506 eV to 0.472 eV. This lowered barrier results in increased short circuit current density (J{sub sc}) and fill factor (FF). With the buffer layer, J{sub sc} increased from 11.9 mA/cm{sup 2} to 13.35 mA/cm{sup 2} and FF increased from 73.22% to 74.91%.

  2. New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.

  3. Alloying of Co ultrathin films on Pt(111) with Ag buffer layers

    NASA Astrophysics Data System (ADS)

    Shern, C. S.; Su, C. W.; Wu, Y. E.; Fu, T. Y.

    2000-07-01

    The structure at the interfaces of Co/Ag/Pt(111) was studied by low-energy electron diffraction, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, and depth profiling. An atomic exchange occurs between Co and Ag before the formation of a Co-Pt alloy. Ag atoms start moving to the top at 425 K when the coverage of Co is one monolayer. The temperature of the complete exchange between Ag atoms and Co atoms is dependent on the thickness of the Ag buffer layer. The Co-Pt alloy develops after the atomic exchange is complete. The especially small surface free energy of Ag and large strain energy in this system are proposed as the driving force for the exchange.

  4. Direct electron injection into an oxide insulator using a cathode buffer layer

    PubMed Central

    Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang

    2015-01-01

    Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current–voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼107, and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642

  5. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%. PMID:27483883

  6. Direct electron injection into an oxide insulator using a cathode buffer layer.

    PubMed

    Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang

    2015-01-01

    Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current-voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼10(7), and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642

  7. Growth of III-V nitrides and buffer layer investigation by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Fang

    1999-11-01

    III-V nitrides have been investigated intensively due to the enormous interest in optoelectronic device applications in the green, blue, violet, and near-ultraviolet regions. Advances in III-V nitride materials for short wavelength light sources will lead to both a revolution in optical disk storage, as higher densities can be achieved with short wavelengths, and a major impact on imaging and graphic technology as high quality red, green, and blue light-emitting diodes (LED) and lasers become available. High quality GaN films have mostly been prepared by metal-organic vapor phase epitaxy (MOCVD), molecular beam epitaxy (MBE) and vapor phase epitaxy (VPE). Compared to these techniques, pulsed laser deposition (PLD) is a relatively new growth technique used widely for the growth of oxide thin films. However, several advantages of PLD make it worthy of study as a method of growing nitrides. The congruent ablation achieved with short UV-laser pulses allows deposition of a multicomponent material by employing a single target and the ability for depositing a wide variety of materials. This advantage makes PLD very suitable for growing multilayer structures sequentially in the same chamber and investigating the effect of buffer layers. Moreover, the strong nonequilibrium growth conditions of PLD may lead to different nucleation and growth processes. In this work, GaN and (Al,Ga)N films have been epitaxially grown on (0001) sapphire substrate by PLD, which has been successfully applied to controlling the lattice constant and band gap of (Al,Ga)N. Room-temperature photoluminescence of PLD-GaN exhibits a strong band edge emission at 3.4eV. The threading dislocations of GaN are predominantly screw dislocations with Burgers vector of <0001> while edge dislocations with Burgers vector of 1/3<11-20> are the dominant ones in GaN grown by MBE, MOCVD and VPE. This variation observed in defect characteristics may come from the difference in nucleation and growth kinetics between PLD

  8. Epitaxial CeO2 buffer layers for YBa2Cu3O(7-delta) films on sapphire

    NASA Astrophysics Data System (ADS)

    Maul, M.; Schulte, B.; Haeussler, P.; Frank, G.; Steinborn, T.; Fuess, H.; Adrian, H.

    1993-08-01

    The paper reports the successful in situ preparation of thin epitaxial CeO2 buffer layers and YBa2Cu3O(7-delta) (YBCO) films on (1 -1 0 2) Al2O3 substrates by electron beam coevaporation, using an evaporation system (Leybold L560) with four sources. Electron beam sources were used for Y, Ba, and Ce, while Cu was evaporated from a resistively heated tungsten boat. The buffer layers show very smooth surfaces and structural properties close to those of a single crystal. High quality YBCO films grown on these buffer layers have Tc not 88 K or above and j(c) values of 10 exp 6 A/sq cm or greater.

  9. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  10. Effects of buffer layer and thermal annealing on the performance of hybrid Cu2S/PVK electrically bistable devices

    NASA Astrophysics Data System (ADS)

    Li, Xu; Lu, Yue; Guan, Li; Li, Jiantao; Wang, Yichao; Dong, Guoyi; Tang, Aiwei; Teng, Feng

    2016-09-01

    Hybrid organic/inorganic electrically bistable devices (EBDs) based on Cu2S/PVK nanocomposites have been fabricated by using a simple spin-coating method. An obvious electrical bistability is observed in the current-voltage (I-V) characteristics of the devices, and the presence of the buffer layer and the annealing process have an important effect on the enhancement of the ON/OFF current ratios. Different electrical conduction mechanisms are responsible for the charge switching of the devices in the presence and absence of the buffer layer.

  11. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Taohong, Wang; Changbo, Chen; Kunping, Guo; Guo, Chen; Tao, Xu; Bin, Wei

    2016-03-01

    The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.

  12. Investigation of hole injection enhancement by MoO{sub 3} buffer layer in organic light emitting diodes

    SciTech Connect

    Haitao, Xu; Xiang, Zhou

    2013-12-28

    An MoO{sub 3} buffer layer prepared by thermal evaporation as hole injection layer was investigated in organic light emitting diodes. The MoO{sub 3} film inserted between the anode and hole transport layer decreased the operating voltage and enhanced power efficiency. Introduction of 1 nm MoO{sub 3} film, which was found to be the optimum layer thickness, resulted in 45% increase in efficiency compared with traditional ITO anode. Results from atomic force microscopy and photoemission spectroscopy showed that smooth surface morphology and suitable energy level alignment of ITO/MoO{sub 3} interface facilitated hole injection and transport. The hole injection and transport mechanism at the ITO/MoO{sub 3} interface in thin and thick buffer layers were analyzed.

  13. Growth of lanthanum manganate buffer layers for coated conductors via a metal-organic decomposition process

    NASA Astrophysics Data System (ADS)

    Venkataraman, Kartik

    LaMnO3 (LMO) was identified as a possible buffer material for YBa2Cu3O7-x conductors due to its diffusion barrier properties and close lattice match with YBa2Cu 3O7-x. Growth of LMO films via a metal-organic decomposition (MOD) process on Ni, Ni-5at.%W (Ni-5W), and single crystal SrTiO3 substrates was investigated. Phase-pure LMO was grown via MOD on Ni and SrTiO 3 substrates at temperatures and oxygen pressures within a thermodynamic "process window" wherein LMO, Ni, Ni-5W, and SrTiO3 are all stable components. LMO could not be grown on Ni-5W in the "process window" because tungsten diffused from the substrate into the overlying film, where it reacted to form La and Mn tungstates. The kinetics of tungstate formation and crystallization of phase-pure LMO from the La and Mn acetate precursors are competitive in the temperature range explored (850--1100°C). Temperatures <850°C might mitigate tungsten diffusion from the substrate to the film sufficiently to obviate tungstate formation, but LMO films deposited via MOD require temperatures ≥850°C for nucleation and grain growth. Using a Y2O3 seed layer on Ni-5W to block tungsten from diffusing into the LMO film was explored; however, Y2O3 reacts with tungsten in the "process window" at 850--1100°C. Tungsten diffusion into Y2O3 can be blocked if epitaxial, crack-free NiWO4 and NiO layers are formed at the interface between Ni-5W and Y2O3. NiWO 4 only grows epitaxially if the overlying NiO and buffer layers are thick enough to mechanically suppress (011)-oriented NiWO4 grain growth. This is not the case when a bare 75 nm-thick Y2O3 film on Ni-5W is processed at 850°C. These studies show that the Ni-5W substrate must be at a low temperature to prevent tungsten diffusion, whereas the LMO precursor film must be at elevated temperature to crystallize. An excimer laser-assisted MOD process was used where a Y2O 3-coated Ni-5W substrate was held at 500°C in air and the pulsed laser photo-thermally heated the Y2O3 and LMO

  14. Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Kaur, Jagdish; Tripathi, S. K.

    2015-07-01

    Resistive memory devices based on nanocomposites have attracted great potential for future applications in electronic and optoelectronic devices. The successful synthesis of aqueous CdSe nanoparticles has been provided with UV-Vis and Photoluminescence spectroscopy. The two terminal planar devices of CdSe nanocomposite have been fabricated. The effect of Ag doping and additional dielectric buffer layers on the memory devices have been studied by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The devices show hysteresis loops in both positive and negative bias directions. The memory window has been found to be increased with both Ag doping and PVA layer addition. The charge carrier transport mechanism in the memory devices has been studied by fitting the I-V characteristics with the theoretical model, Space charge conduction model (SCLC). C-V hysteresis loop in both positive and negative bias directions indicate that both the electrons and holes are responsible for memory mechanism of the devices. The switching mechanism of the memory devices has been explained by charge trapping/detrapping model. The retention characteristics show good stability and reliability of the devices.

  15. Crystallization of amorphous silicon thin films using nanoenergetic intermolecular materials with buffer layers

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Jeong, Tae Hoon; Kim, Do Kyung; Jeong, Woong Hee; Kang, Myung-Koo; Hwang, Tae Hyung; Kim, Hyun Jae

    2009-02-01

    Optimization of the crystallization of amorphous silicon (a-Si) using a mixture of nanoenergetic materials of iron oxide/aluminum (Fe 2O 3/Al) was studied. To achieve high-quality polycrystalline Si (poly-Si) thin films, silicon oxide (SiO 2) and silver (Ag) layer were deposited on the a-Si as buffer layers to prevent the metal diffusion in a-Si during thermite reaction and to transport the thermal energy released from nanoenergetic materials, respectively. Raman measurement was used to define the crystallinity of poly-Si. For molar ratio of Al and Fe of 2 with 100-nm-thick-SiO 2, Raman measurement showed the 519.59 cm -1 of peak position and the 5.08 cm -1 of full width at half maximum with 353 MPa of low tensile stress indicating high quality poly-Si thin film. These results showed that optimized thermite reaction could be used successfully in crystallization of a-Si to high -quality poly-Si thin films.

  16. Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT devices

    NASA Astrophysics Data System (ADS)

    Gamarra, Piero; Lacam, Cedric; Tordjman, Maurice; Splettstösser, Jörg; Schauwecker, Bernd; di Forte-Poisson, Marie-Antoinette

    2015-03-01

    This work reports on the optimisation of carbon doping GaN buffer layer (BL) for AlGaN/GaN HEMT (high electron mobility transistor) structures, grown by low pressure metal-organic vapour phase epitaxy (LP-MOVPE) on 3 in. SiC semi-insulating substrates. The incorporation of carbon impurities in GaN is studied as a function of the growth conditions, without using an external carbon source. We observed that the C incorporation can be effectively controlled over more than one order of magnitude by tuning the reactor pressure and the growth temperature, without degradation of the crystalline properties of the GaN layers. HEMT structures with a specific barrier design were grown with different carbon dopings in the GaN BL and processed into transistors to evaluate the impact of the BL doping on the device performances. A significant improvement of the HEMT drain leakage current and of the breakdown voltage was obtained by increasing the carbon incorporation in the GaN BL. The RF performances of the devices show a trade-off between leakage currents and trapping phenomena which are enhanced by the use of carbon doping, limiting the delivered output power. An output power as high as 6.5 W/mm with a Power Added Efficiency of 70% has been achieved at 2 GHz by the HEMT structures with the lowest carbon doping in the BL.

  17. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  18. Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics.

    PubMed

    Alonzo, José; Kochemba, W Michael; Pickel, Deanna L; Ramanathan, Muruganathan; Sun, Zhenzhong; Li, Dawen; Chen, Jihua; Sumpter, Bobby G; Heller, William T; Kilbey, S Michael

    2013-10-01

    Buffer layers that control electrochemical reactions and physical interactions at electrode/film interfaces are key components of an organic photovoltaic cell. Here the structure and properties of layers of semi-rigid poly(3-hexylthiophene) (P3HT) chains tethered at a surface are investigated, and these functional systems are applied in an organic photovoltaic device. Areal density of P3HT chains is readily tuned through the choice of polymer molecular weight and annealing conditions, and insights from optical absorption spectroscopy and semiempirical quantum calculation methods suggest that tethering causes intrachain defects that affect co-facial π-stacking of brush chains. Because of their ability to modify oxide surfaces, P3HT brushes are utilized as an anode buffer layer in a P3HT-PCBM (phenyl-C₆₁-butyric acid methyl ester) bulk heterojunction device. Current-voltage characterization shows a significant enhancement in short circuit current, suggesting the potential of these novel nanostructured buffer layers to replace the PEDOT:PSS buffer layer typically applied in traditional P3HT-PCBM solar cells. PMID:23955069

  19. Preferentially oriented BaTiO3 thin films deposited on silicon with thin intermediate buffer layers

    PubMed Central

    2013-01-01

    Barium titanate (BaTiO3) thin films are prepared by conventional 2-methoxy ethanol-based chemical solution deposition. We report highly c-axis-oriented BaTiO3 thin films grown on silicon substrates, coated with a lanthanum oxynitrate buffer layer of 8.9 nm. The influence of the intermediate buffer layer on the crystallization of BaTiO3 film is investigated. The annealing temperature and buffer layer sintering conditions are optimized to obtain good crystal growth. X-ray diffraction measurements show the growth of highly oriented BaTiO3 thin films having a single perovskite phase with tetragonal geometry. The scanning electron microscopy and atomic force microscopy studies indicate the presence of smooth, crack-free, uniform layers, with densely packed crystal grains on the silicon surface. A BaTiO3 film of 150-nm thickness, deposited on a buffer layer of 7.2 nm, shows a dielectric constant of 270, remnant polarization (2Pr) of 5 μC/cm2, and coercive field (Ec) of 60 kV/cm. PMID:23391429

  20. Morphology and arrangement of InN nanocolumns deposited by radio-frequency sputtering: Effect of the buffer layer

    NASA Astrophysics Data System (ADS)

    Monteagudo-Lerma, L.; Valdueza-Felip, S.; Núñez-Cascajero, A.; Ruiz, A.; González-Herráez, M.; Monroy, E.; Naranjo, F. B.

    2016-01-01

    We present the structural and optical properties of (0001)-oriented nanocolumnar films of InN deposited on c-sapphire substrates by radio-frequency reactive sputtering. It is observed that the column density and dimensions are highly dependent on the growth parameters of the buffer layer. We investigate four buffer layers consisting of (i) 30 nm of low-growth-rate InN, (ii) 30 nm of AlN deposited on the unbiased substrate (us), (iii) 30 nm of AlN deposited on the reverse-biased substrate (bs), and (iv) a 60-nm-thick bilayer consisting of 30-nm-thick bs-AlN deposited on top of 30-nm-thick us-AlN. Differences in the layer nucleation process due to the buffer layer induce variations of the column density in the range of (2.5-16)×109 cm-2, and of the column diameter in the range of 87-176 nm. Best results in terms of mosaicity are obtained using the bs-AlN buffer layer, which leads to a full width at half-maximum of the InN(0002) rocking curve of 1.2°. A residual compressive strain is still present in the nanocolumns. All samples exhibit room temperature photoluminescence emission at ~1.6 eV, and an apparent optical band gap at ~1.7 eV estimated from linear optical transmittance measurements.

  1. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  2. Single photon emission from impurity centers in AlGaAs epilayers on Ge and Si substrates

    SciTech Connect

    Minari, S.; Cavigli, L.; Sarti, F.; Abbarchi, M.; Accanto, N.; Munoz Matutano, G.; Vinattieri, A.; Gurioli, M.; Bietti, S.; Sanguinetti, S.

    2012-10-22

    We show that the epitaxial growth of thin layers of AlGaAs on Ge and Si substrates allows to obtain single photon sources by exploiting the sparse and unintentional contamination with acceptors of the AlGaAs. Very bright and sharp single photoluminescence lines are observed in confocal microscopy. These lines behave very much as single excitons in quantum dots, but their implementation is by far much easier, since it does not require 3D nucleation. The photon antibunching is demonstrated by time resolved Hanbury Brown and Twiss measurements.

  3. Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates

    SciTech Connect

    Sarti, F.; Muñoz Matutano, G.; Bauer, D.; Dotti, N.; Vinattieri, A.; Gurioli, M.; Bietti, S.; Sanguinetti, S.; Isella, G.

    2013-12-14

    The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device.

  4. Buffer effects of Ag layers on magneto-optical Co/Ge(1 0 0) ultrathin films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Tsay, J. S.; Yao, Y. D.

    2006-09-01

    Magnetic properties of the Co/Ag/Ge(1 0 0) films grown at room temperature and 200 K were studied by the surface magneto-optical Kerr effect (SMOKE). More than 1.5 monolayer Ag buffer layers not only effectively block the interdiffusion between the capped Co layers and the Ge(1 0 0) substrate but also stabilize the magnetic phase. The temperature and thickness dependence on coercivity measurements show that interactions upon the interfaces are strongly correlated to the microstructures.

  5. Solution Processing of Cadmium Sulfide Buffer Layer and Aluminum-Doped Zinc Oxide Window Layer for Thin Films Solar Cells

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Islam, Mohammad; Achour, Amine; Hayat, Ansar; Ahsan, Bilal; Rasheed, Haroon; Salam, Shahzad; Mujahid, Mohammad

    2014-07-01

    Cadmium sulfide (CdS) and aluminum-doped zinc oxide (Al:ZnO) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al:ZnO thin films were produced using chemical bath deposition (CBD) and sol-gel technique, respectively. For CBD CdS, the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12-17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS) to 3.76 eV along with a shift in the absorption edge toward 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al:ZnO films prepared via spin coating of precursor sols containing 0.90-1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is 2.7 × 10-4 Ω ṡ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

  6. Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Varley, Joel B.; He, Xiaoqing; Mackie, Neil; Rockett, Angus A.; Lordi, Vincenzo

    2015-09-01

    Advances in thin-film photovoltaics have largely focused on modifying the absorber layer(s), while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid density functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into device model simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Department of Energy office of Energy Efficiency and Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program.

  7. Carbon incorporation in AlGaAs grown by CBE

    NASA Astrophysics Data System (ADS)

    Lee, B. J.; Houng, Y. M.; Miller, J. N.; Turner, J. E.

    1990-10-01

    The incorporation of carbon into unintentionally doped Al xGa 1- xAs epilayers grown by chemical beam epitaxy (CBE) using arsine and various combinations of group III sources was investigated. Growth of unintentionally doped Al xGa 1- xAs using triethylgallium (TEGa)+triisobutylaluminum (TIBAl) resulted in lower hole and carbon concentrations than those grown from TEGa+triethylaluminum (TEAl). The carbon concentration in AlGaAs epilayers increased with decreasing growth temperature below 560°C and increased with increasing growth temperature above 560°C. This "U-shaped" dependence of carbon concentration on growth temperature exhibited its minimum value at ˜ 560°C for both the TEGa+TEAl and TEGa+TIBAl systems. The alkyl-Al compounds are thought to be the controlling species for the carbon incorporation in the low temperature regime, while the AlCH 3 formed through β-methyl elimination is responsible for the carbon incorporation in the high temperature regime. Based on this study, we are able to grow high quality AlGaAs epilayers with reduced carbon contamination by using TIBAl instead of TEAl at the growth temperature of 560°C with a V/III ratio of 20. AlGaAs/GaAs modulation-doped structures grown from TEGa+TIBAl show a two-dimensional electron gas mobility as high as 88,600 cm 2/V·s at 77 K, which is a 40% improvement over that grown from TEGa+TEAl, with a sheet carrier concentration of 6x10 11 cm -2 and a spacer layer thickness of 150 Å.

  8. Surface Plasmon Resonance Enhanced Polymer Solar Cells by Thermally Evaporating Au into Buffer Layer.

    PubMed

    Yao, Mengnan; Jia, Xu; Liu, Yan; Guo, Wenbin; Shen, Liang; Ruan, Shengping

    2015-08-26

    Generally, the surface plasmon resonance (SPR) effect of metal nanoparticles is widely applied on polymer solar cells (PSCs) to improve device performance by doping method into solution. Herein, a diameter-controlled thermally evaporation method was used to realize Au nanoparticles (Au NPs) doping into WO3 anode buffer layer in inverted PSCs. The surface energy differences between Au and WO3 inevitably lead to Au growing up through the process from nucleation, isolated island, aggregation of metal islands to continuous films along with the process of evaporation. The atom force microscopy (AFM) images indicate that critical thickness of Au film formation is 8 nm, which is in accordance with current density-voltage (J-V) and incident photon-to-electron conversion efficiency (IPCE) measurement results of optimal device performance. The power conversion efficiency (PCE) with 8 nm Au is dramatically improved from 4.67 ± 0.13% to 6.63 ± 0.17% compared to the one without Au. Moreover, the optical absorption enhancement is demonstrated by steady state photoluminescence (PL), which agrees well with transmission spectrum. The optical and electrical improvement all suggest that thermal evaporation is the appropriate method to further enhance device performance. PMID:26230868

  9. Characterization of MFIS Structure with Dy-Doped ZrO2 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Im, J. H.; Ah, G. Z.; Han, D. H.; Park, B. E.

    2011-12-01

    To evaluate the feasibility of DZO thin film as an insulating buffer layer for ferroelectric gate field effect transistors (Fe-FETs) with a metal-ferroelectric-insulator-semiconductor (MFIS) structure, we fabricated DZO/Si and BLT/DZO/Si structures by a sol-gel method. Equivalent oxide thickness (EOT) values of the DZO thin films were about 12.4nm, 11.9nm, 11.2nm and 11.1 nm for 650 °C, 700 °C 750 °C, and 800 °C,, respectively. Hysteresis was observed in all capacitance-voltage (C-V) curves of the DZO/Si structures, but hysteresis of the 750-°C-annealed film was negligible. The leakage current densities of the DZO thin films on Si showed the good characteristics regardless of the annealing temperature variations. The C-V characteristics of Au/300-nm-thick BLT/750-°C-annealed DZO/Si structure showed clockwise hysteresis loops, and the memory window width increased as the bias voltage increased. The maximum value of the memory window width was about 1.9 V at ±7 V.

  10. Enhancement in electrical properties of ITO/PEDOT:PSS/PTCDA/Ag by using calcium buffer layer

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Hassan Sayyad, Muhammad; Wahab, Fazal; Aziz, Fakhra; Ullah, Irfan; Khan, Gulzar

    2015-06-01

    This paper reports on electrical characterization of ITO/PEDOT:PSS/PTCDA/Ca/Ag device based on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and calcium (Ca) buffer layer with improved junction properties. The I-V characteristics have been utilized to extract various electrical parameters such as ideality factor (n), barrier height (ϕB) and series resistance Rs, which are found to be 1.9, 0.79 eV and 2.5 kΩ, respectively. The device shows good rectifying behavior, with a rectification ratio of 528, and also field-lowering mechanism with a linear dependence of log I on V1/2. The device reported in the present work shows 50% improvement in the rectification ratio and ideality factor as compared to our previously fabricated device. It appears from the experimental data that the transport mechanism in the PTCDA thin film is dominated by the Poole-Frenkel model of thermionic emission, which may be associated with high density of structural defects or traps present in the film.

  11. Rayleigh-Taylor growth and imprint reduction using foam buffer layers on the Omega Laser

    NASA Astrophysics Data System (ADS)

    Watt, R. G.; Duke, J. R.; Elliot, N. E.; Gobby, P. L.; Hollis, R. V.; Kopp, R. A.; Mason, R. J.; Pollak, G.; Wilson, D. C.; Willi, O.; Kalantar, D. H.; Boehly, T. R.; Knauer, J. P.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.

    1997-11-01

    A serious concern for directly driven ICF implosions is the asymmetry imparted to the capsule by laser drive nonuniformities. A distributed phase plate (DPP) with speckle pattern averaged over several coherence times by smoothing with spectral dispersion (SSD) still retains an ``early time imprint''. A supersonically preheated foam, with Au preheat layer, may reduce this imprint, by creating a low density, high temperature thermal plasma between the absorption and ablation surfaces. We report on experiments using machined polystyrene (PS) foams at 30 mg/cc on the Omega laser at 351 nm. The Rayleigh-Taylor growth of intentional solid substrate mass modulations was measured. Similar observed growth with and without foam suggests at most minor isentrope changes in the solid due to the presence of the foam. Significant reduction in the imprint from the OMEGA beams with DPP and distributed polarization rotators (DPR) but without smoothing by spectral dispersion (SSD) is observed when a foam buffer is employed. Recent experimental results will be shown and compared to simulations.

  12. Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer

    NASA Astrophysics Data System (ADS)

    Jian-Feng, Li; Chuang, Zhao; Heng, Zhang; Jun-Feng, Tong; Peng, Zhang; Chun-Yan, Yang; Yang-Jun, Xia; Duo-Wang, Fan

    2016-02-01

    In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)) (PEDOT:PSS) and its influence on the performance of perovskite solar cells. . The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide (ITO)/PEDOT:PSS/CH3NH3PbI3/PC61BM/Al, where PEDOT:PSS and PC61BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency (PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G (100 mW/cm2 illumination) after the buffer layer has been modified. Project supported by the National Natural Science Foundation of China (Grant Nos. 61264002, 61166002, 91333206, and 51463011), the Natural Science Foundation of Gansu Province, China (Grant No. 1308RJZA159), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0840), the Research Project of Graduate Teacher of Gansu Province, China (Grant No. 2014A-0042), and the Postdoctoral Science Foundation from Lanzhou Jiaotong University, China.

  13. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    PubMed

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated. PMID:26684416

  14. Control of Sn Precipitation and Strain Relaxation in Compositionally Step-Graded Ge1-xSnx Buffer Layers for Tensile-Strained Ge Layers

    NASA Astrophysics Data System (ADS)

    Shimura, Yosuke; Tsutsui, Norimasa; Nakatsuka, Osamu; Sakai, Akira; Zaima, Shigeaki

    2009-04-01

    We investigated the relationship between Sn precipitation and strain relaxation in Ge1-xSnx buffer layers grown by the compositionally step-graded (CSG) method on a virtual Ge substrate. We found that the strain in the upper Ge1-xSnx layers is reduced by Sn precipitation rather than the lateral propagation of misfit dislocations at the interfaces of upper Ge1-xSnx layers in the CSG method. The critical misfit strain was increased to 5.8 ×10-3 compared with that in our previous work by lowering the temperature of the postdeposition annealing, and a Sn content of 6.3% in the Ge1-xSnx buffer layer was achieved with a large degree of strain relaxation using only two stacked layers of the CSG structure. An in-plane tensile strain of 0.62% in a 30-nm-thick Ge layer fabricated on these Ge1-xSnx buffer layers was achieved.

  15. High Jc YBCO coated conductors on non-magnetic metallic substrate using YSZ-based buffer layer architecture

    NASA Astrophysics Data System (ADS)

    Celentano, G.; Boffa, V.; Ciontea, L.; Fabbri, F.; Galluzzi, V.; Gambardella, U.; Mancini, A.; Petrisor, T.; Rogai, R.; Rufoloni, A.; Varesi, E.

    2002-08-01

    Biaxially aligned YBa 2Cu 3O 7- δ (YBCO) thick films were deposited by pulsed laser ablation technique on cube textured non-magnetic Ni 89V 11 (Ni-V) substrate, using CeO 2/YSZ/CeO 2/NiO buffer layer architecture. The first NiO seed layer was formed by epitaxial oxidation of the Ni-V substrate. Structural analyses show typical full width at half maximum values of φ- and ω-scans less than 10° and 8°, respectively. The highest value obtained for the critical current density at 77 K and zero magnetic field was 6×10 5 A cm -2, which is close to that obtained for YBCO films grown on CeO 2/NiO buffer layer architecture.

  16. Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers

    NASA Astrophysics Data System (ADS)

    Li, Changli; Hisatomi, Takashi; Watanabe, Osamu; Nakabayashi, Mamiko; Shibata, Naoya; Domen, Kazunari; Delaunay, Jean-Jacques

    2016-07-01

    Coating n-type buffer and protective layers on Cu2O may be an effective means to improve the photoelectrochemical (PEC) water-splitting performance of Cu2O-based photocathodes. In this letter, the functions of the buffer layer and protective layer on Cu2O are examined. It is found that a Ga2O3 buffer layer can form a buried junction with Cu2O, which inhibits Cu2O self-reduction as well as increases the photovoltage through a small conduction band offset between the two semiconductors. The introduction of a TiO2 thin protective layer not only improves the stability of the photocathode but also enhances the electron transfer from the photocathode surface into the electrolyte, thus resulting in an increase in photocurrent at positive potentials. These results show that the selection of overlayers with appropriate conduction band positions provides an effective strategy for obtaining a high photovoltage and high photocurrent in PEC systems.

  17. Effects of low-temperature buffer-layer thickness and growth temperature on the SEE sensitivity of GaAs HIGFET circuits

    SciTech Connect

    Weatherford, T.R.; Fouts, D.J.; Marshall, P.W. |; Marshall, C.J.; Mathes, B.; LaMacchia, M.

    1997-12-01

    Heavy-ion Single Event Effects (SEE) test results reveal the role of growth temperature and buffer layer thickness in the use of a low-temperature grown GaAs (LT GaAs) buffer layer for suppressing SEE sensitivity in GaAs HIGFET circuits.

  18. Enhanced performance and stability in PBDTTT-C-T : PC70 BM polymer solar cells by optimizing thickness of NiOx buffer layers

    NASA Astrophysics Data System (ADS)

    Fan, Xi; Fang, Guojia; Cheng, Fei; Qin, Pingli; Huang, Huihui; Li, Yongfang

    2013-07-01

    We report efficient polymer solar cells (PSCs) based on PBDTTT-C-T : PC70BM with a NiOx anode buffer layer (thickness of 3-15 nm) prepared by radio-frequency magnetron sputtering deposition. The PSC with the optimum NiOx buffer layer thickness of 9 nm showed the highest power conversion efficiency of 7.42% with Voc of 0.75 V, Jsc of 15.82 mA cm-2 and FF of 62.5%, which was higher than that of the PSCs with a PEDOT : PSS buffer layer. Moreover, compared with the PSCs with a PEDOT : PSS buffer layer, the PSCs with the optimum NiOx buffer layer exhibited a better stability under N2 atmosphere. The results indicate that the sputtered 9 nm thick NiOx buffer layer is superior to the PEDOT : PSS buffer layer not only for better performance but also for improved long-term stability. The optimized NiOx buffer layer thickness possesses an appropriate energy level matching with PBDTTT-C-T, which results in effective hole collection and improved photovoltaic performance.

  19. Self-assembled Ge QDs Formed by High-Temperature Annealing on Al(Ga)As (001)

    NASA Astrophysics Data System (ADS)

    O'Brien, William A.; Qi, Meng; Yan, Lifan; Stephenson, Chad A.; Protasenko, Vladimir; Xing, Huili; Millunchick, Joanna M.; Wistey, Mark A.

    2015-05-01

    This work studies the spontaneous self-assembly of Ge QDs on AlAs, GaAs and AlGaAs by high-temperature in situ annealing using molecular beam epitaxy (MBE). The morphology of Ge dots formed on AlAs were observed by atom probe tomography, which revealed nearly spherical QDs with diameters approaching 10 nm and confirmed the complete absence of a wetting layer. Reflection high-energy electron diffraction and atomic force microscopy of Ge annealed under similar conditions on GaAs and Al0.3Ga0.7As surfaces revealed the gradual suppression of QD formation with decreasing Al-content of the buffer. To investigate the prospects of using encapsulated Ge dots for upconverting photovoltaics, in which photocurrent can still be generated from photons with energy less than the host bandgap, Ge QDs were embedded into the active region of III-V PIN diodes by MBE. It was observed that orders of magnitude higher short-circuit current is obtained at photon energies below the GaAs bandgap compared with a reference PIN diode without Ge QDs. These results demonstrate the promise of Ge QDs for upconverting solar cells and the realization of device-quality integration of group IV and III-V semiconductors.

  20. Flexible PTB7:PC71BM bulk heterojunction solar cells with a LiF buffer layer

    NASA Astrophysics Data System (ADS)

    Yanagidate, Tatsuki; Fujii, Shunjiro; Ohzeki, Masaya; Yanagi, Yuichiro; Arai, Yuki; Okukawa, Takanori; Yoshida, Akira; Kataura, Hiromichi; Nishioka, Yasushiro

    2014-02-01

    Bulk heterojunction solar cells were fabricated using poly[4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) after a layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited on a flexible indium tin oxide (ITO)-coated polyethylene terephthalate substrate. The fabricated structures were Al/LiF/PTB7:PC71BM/PEDOT:PSS/ITO with or without a lithium fluoride (LiF) buffer layer, and the effect of the LiF buffer layer on the performance of the solar cells was investigated. The LiF layer significantly increased the open-circuit voltages and fill factors of the solar cells, presumably because of the work function shift of the aluminum cathode. As a result, the conversion efficiency increased from 2.31 to 4.02% owing to the presence of the LiF layer. From the results of a stability test, it was concluded that the inserted LiF layer acted as a shielding and scavenging protector, which prevented the intrusion of some chemical species into the active layer, thereby improving the lifetime of the unpakcaged devices.

  1. Air-bridged lateral growth of an Al0.98Ga0.02N layer by introduction of porosity in an AlN buffer

    NASA Astrophysics Data System (ADS)

    Wang, T.; Bai, J.; Parbrook, P. J.; Cullis, A. G.

    2005-10-01

    We demonstrated air-bridged lateral growth of an Al0.98Ga0.02N layer with significant dislocation reduction by introduction of a porous AlN buffer underneath via metalorganic chemical vapor deposition. By modifying growth conditions, a porous AlN layer and an atomically flat AlN layer have been obtained for comparison, confirmed by atomic force microscopy. An Al0.98Ga0.02N layer was subsequently grown on both the porous AlN layer and the atomically flat AlN layer under identical conditions. Significant dislocation reduction was achieved for the Al0.98Ga0.02N layer grown on the porous AlN buffer layer, compared to the layer grown on the atomically flat AlN layer, as observed by transmission electron microscopy. Clear bubbles from the layer grown on the porous AlN buffer layer have been observed, while in contrast, there was not any bubble from the layer on the flat AlN buffer, confirming the mechanism of lateral growth for dislocation reduction. Asymmetric x-ray diffraction studies also indicated that the crystal quality was dramatically improved using the porous AlN buffer layer.

  2. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    SciTech Connect

    Hodges, C. Pomeroy, J.; Kuball, M.

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  3. Graphene on a metal surface with an h-BN buffer layer: gap opening and N-doping

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Lu, Yunhao; Feng, Y. P.

    2016-04-01

    Graphene grown on a metal surface, Cu(111), with a boron-nitride (h-BN) buffer layer is studied. Our first-principles calculations reveal that charge is transferred from the copper substrate to graphene through the h-BN buffer layer which results in n-doped graphene in the absence of a gate voltage. More importantly, a gap of 0.2 eV, which is comparable to that of a typical narrow gap semiconductor, opens just 0.5 eV below the Fermi level at the Dirac point. The Fermi level can be easily shifted inside this gap to make graphene a semiconductor, which is crucial for graphene-based electronic devices. A graphene-based p-n junction can be realized with graphene eptaxially grown on a metal surface.

  4. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films

    NASA Astrophysics Data System (ADS)

    Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.

    Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.

  5. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    SciTech Connect

    Tuttle, J.R.; Berens, T.A.; Keane, J.

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  6. Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer.

    PubMed

    Khim, Dongyoon; Shin, Eul-Yong; Xu, Yong; Park, Won-Tae; Jin, Sung-Ho; Noh, Yong-Young

    2016-07-13

    The threshold voltage and onset voltage for p-channel and n-channel regimes of solution-processed ambipolar organic transistors with top-gate/bottom-contact (TG/BC) geometry were effectively tuned by gate buffer layers in between the gate electrode and the dielectric. The work function of a pristine Al gate electrode (-4.1 eV) was modified by cesium carbonate and vanadium oxide to -2.1 and -5.1 eV, respectively, which could control the flat-band voltage, leading to a remarkable shift of transfer curves in both negative and positive gate voltage directions without any side effects. One important feature is that the mobility of transistors is not very sensitive to the gate buffer layer. This method is simple but useful for electronic devices where the threshold voltage should be precisely controlled, such as ambipolar circuits, memory devices, and light-emitting device applications. PMID:27323003

  7. Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer

    NASA Astrophysics Data System (ADS)

    Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo

    2016-02-01

    Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained.

  8. Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer

    PubMed Central

    Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo

    2016-01-01

    Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained. PMID:26887790

  9. Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer.

    PubMed

    Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo

    2016-01-01

    Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained. PMID:26887790

  10. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  11. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Makise, Kazumasa; Zhang, Lu; Terai, Hirotaka; Wang, Zhen

    2016-06-01

    We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.

  12. Hydride vapor phase epitaxy growth of GaN on sapphire with ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Gu, S.; Zhang, R.; Shi, Y.; Zheng, Y.; Zhang, L.; Kuech, T. F.

    The initial stages and subsequent growth of GaN on sapphire using ZnO buffer layers is reported for the hydride vapor phase epitaxy technique. A high gas-phase supersaturation in the growth ambient was used to favor a rapid initial growth on the substrate. A subsequent growth step was employed under conditions that favor a high lateral growth rate in order to promote the coalescence of the initial islands and provide optimal material properties. The specific gas-phase mole fractions of the GaCl and NH3 at the growth front control both the vertical and lateral growth rates. The use of a two-step growth process in the GaN growth leads to a controlled morphology and improved material properties for GaN materials when grown with a ZnO buffer layer. An optimized set of growth conditions, utilizing this two-step process, was found to also improve the growth directly on sapphire without a ZnO buffer layer.

  13. Growth modes of InN (000-1) on GaN buffer layers on sapphire

    SciTech Connect

    Liu Bing; Kitajima, Takeshi; Chen Dongxue; Leone, Stephen R.

    2005-03-01

    In this work, using atomic force microscopy and scanning tunneling microscopy, we study the surface morphologies of epitaxial InN films grown by plasma-assisted molecular beam epitaxy with intervening GaN buffer layers on sapphire substrates. On smooth GaN buffer layers, nucleation and evolution of three-dimensional InN islands at various coverages and growth temperatures are investigated. The shapes of the InN islands are observed to be predominantly mesalike with large flat (000-1) tops, which suggests a possible role of indium as a surfactant. Rough GaN buffer layers composed of dense small GaN islands are found to significantly improve uniform InN wetting of the substrates, on which atomically smooth InN films are obtained that show the characteristics of step-flow growth. Scanning tunneling microscopy imaging reveals the defect-mediated surface morphology of smooth InN films, including surface terminations of screw dislocations and a high density of shallow surface pits with depths less than 0.3 nm. The mechanisms of the three-dimensional island size and shape evolution and formation of defects on smooth surfaces are considered.

  14. Growth modes of InN(000-1) on GaN buffer layers on sapphire

    SciTech Connect

    Liu, Bing; Kitajima, Takeshi; Chen, Dongxue; Leone, Stephen R.

    2005-01-24

    In this work, using atomic force microscopy and scanning tunneling microscopy, we study the surface morphologies of epitaxial InN films grown by plasma-assisted molecular beam epitaxy with intervening GaN buffer layers on sapphire substrates. On smooth GaN buffer layers, nucleation and evolution of three-dimensional InN islands at various coverages and growth temperatures are investigated. The shapes of the InN islands are observed to be predominantly mesa-like with large flat (000-1) tops, which suggests a possible role of indium as a surfactant. Rough GaN buffer layers composed of dense small GaN islands are found to significantly improve uniform InN wetting of the substrates, on which atomically smooth InN films are obtained that show the characteristics of step-flow growth. Scanning tunneling microscopy imaging reveals the defect-mediated surface morphology of smooth InN films, including surface terminations of screw dislocations and a high density of shallow surface pits with depths less than 0.3 nm. The mechanisms of the three-dimensional island size and shape evolution and formation of defects on smooth surfaces are considered.

  15. Atomically flat Ge buffer layers and alternating shutter growth of CaGe2 for large area germanane

    NASA Astrophysics Data System (ADS)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam; Pinchuk, Igor; Williams, Robert; McComb, David; Kawakami, Roland

    Germanane (GeH), which is converted from CaGe2 by soaking in HCl acid, has recently attracted interest because of its novel properties, such as large band gap (1.56eV), spin orbit coupling and predictions of high mobility (18000 cm2/Vs). Previously CaGe2 was successfully grown on Ge(111) substrates by molecular beam epitaxy (MBE) growth. But there were cracks between µm-sized islands, which is not desirable for scientific study and application, and limits the material quality. By growing atomically flat Ge buffer layers and using alternating shutter MBE growth, we are able to grow crack-free, large area films of CaGe2 films. Reflection high energy electron diffraction (RHEED) patterns of Ge buffer layer and CaGe2 indicates high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform Ge buffer layer and CaGe2. The appearance of Laue oscillation in X-ray diffraction (XRD) and Kiessig fringes in X-ray reflectivity (XRR) proves the uniformity of CaGe2 film and the smoothness of the interface. The high quality of CaGe2 film makes it promising to explore novel properties of GeH. Funded by NSF MRSEC DMR-1420451.

  16. Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer

    SciTech Connect

    Vajargah, S. Hosseini; Botton, G. A.; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1; Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 ; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.; Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7; Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7

    2013-09-21

    The initial growth stages of GaSb epilayers on Si substrates and the role of the AlSb buffer layer were studied by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Heteroepitaxy of GaSb and AlSb on Si both occur by Volmer-Weber (i.e., island mode) growth. However, the AlSb and GaSb islands have distinctly different characteristics as revealed through an atomic-resolution structural study using Z-contrast of HAADF-STEM imaging. While GaSb islands are sparse and three dimensional, AlSb islands are numerous and flattened. The introduction of 3D island-forming AlSb buffer layer facilitates the nucleation of GaSb islands. The AlSb islands-assisted nucleation of GaSb islands results in the formation of drastically higher quality planar film at a significantly smaller thickness of films. The interface of the AlSb and GaSb epilayers with the Si substrate was further investigated with energy dispersive X-ray spectrometry to elucidate the key role of the AlSb buffer layer in the growth of GaSb epilayers on Si substrates.

  17. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  18. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  19. Improved degradation resistance of (AlGa)As lasers

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Ladany, J.

    1980-01-01

    Simultaneous doping with Ge and Zn improves degradation resistance of short-wavelength (AlGa)As lasers. Method opens up prospects for greatly increased reliability in lasers and LED's operating at 7,500 angstroms or below.

  20. Zn0.85Cd0.15Se active layers on graded-composition InxGa1-xAs buffer layers

    NASA Astrophysics Data System (ADS)

    Müller, B. H.; Lantier, R.; Sorba, L.; Heun, S.; Rubini, S.; Lazzarino, M.; Franciosi, A.; Napolitani, E.; Romanato, F.; Drigo, A. V.; Lazzarini, L.; Salviati, G.

    1999-06-01

    We investigated the structural and optical properties of Zn0.85Cd0.15Se epilayers for blue optical emission on lattice-matched InxGa1-xAs buffer layers. Both the II-VI layers and the III-V buffers were grown by molecular beam epitaxy on GaAs(001) wafers. A parabolic In concentration profile within the graded-composition InxGa1-xAs buffers was selected to control strain relaxation and minimize the concentration of threading dislocations. Dislocation-free II-VI growth was readily achieved on the graded buffers, with a Rutherford backscattering yield ratio reduced by a factor of 3 and a deep-level emission intensity reduced by over two orders of magnitude relative to those observed following direct II-VI growth on GaAs. The surface morphology of the materials, however, was found to replicate the crosshatched pattern of the underlying InxGa1-xAs substrates.

  1. Monolithic AlGaAs second-harmonic nanoantennas.

    PubMed

    Gili, V F; Carletti, L; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G

    2016-07-11

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical nanoantennas. Using a selective oxidation technique, we fabricated epitaxial semiconductor nanocylinders on an aluminum oxide substrate. Second harmonic generation from AlGaAs nanocylinders of 400 nm height and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an optimized geometry. PMID:27410864

  2. Effect of anode buffer layer on the efficiency of inverted quantum-dot light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ram Cho, Ye; Kang, Pil-Gu; Shin, Dong Heon; Kim, Ji-Hoon; Maeng, Min-Jae; Sakong, Jeonghun; Hong, Jong-Am; Park, Yongsup; Suh, Min Chul

    2016-01-01

    The impact of anode buffer layers (ABLs) on the performance of CdSe quantum-dot light-emitting diodes (QLED) with a ZnO nanoparticle (NP) electron-transport layer and 4,4‧-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) hole-transport layer was studied. Either MoO3 or 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) was used as the ABL. The QLED with a HAT-CN ABL exhibited better luminance performance, while the ultraviolet photoelectron spectroscopy and hole-only devices indicated that MoO3 was a superior hole injector. These results suggest that the QLED with a MoO3 ABL suffered from a severe charge carrier imbalance. Therefore, electron injection through the ZnO NP layer must be improved to further enhance the QLED performance.

  3. High rate buffer layer for IBAD MgO coated conductors

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  4. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Ok, Kyung-Chul; Ko Park, Sang-Hee; Hwang, Chi-Sun; Kim, H.; Soo Shin, Hyun; Bae, Jonguk; Park, Jin-Seong

    2014-02-01

    We demonstrated the fabrication of flexible amorphous indium gallium zinc oxide thin-film transistors (TFTs) on high-temperature polyimide (PI) substrates, which were debonded from the carrier glass after TFT fabrication. The application of appropriate buffer layers on the PI substrates affected the TFT performance and stability. The adoption of the SiNx/AlOx buffer layers as water and hydrogen diffusion barriers significantly improved the device performance and stability against the thermal annealing and negative bias stress, compared to single SiNx or SiOx buffer layers. The substrates could be bent down to a radius of curvature of 15 mm and the devices remained normally functional.

  5. High-performance hybrid buffer layer using 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile/molybdenum oxide in inverted top-emitting organic light-emitting diodes.

    PubMed

    Park, Cheol Hwee; Lee, Hyun Jun; Hwang, Ju Hyun; Kim, Kyu Nyun; Shim, Yong Sub; Jung, Sun-Gyu; Park, Chan Hyuk; Park, Young Wook; Ju, Byeong-Kwon

    2015-03-25

    A high-performance 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN)/molybdenum oxide (MoO3) hybrid buffer layer with high hole-injection efficiency and superior plasma resistance under the sputtering process was developed. The HATCN enhances the hole-injection efficiency, and the MoO3 effectively protects the underlying organic layers from plasma damage during deposition by sputtering. This improves the characteristics of inverted top-emitting organic light-emitting diodes using a top transparent conductive oxide electrode. The device using the hybrid buffer layer showed the highest electroluminescence characteristics among devices with other buffer layers. The high hole-injection efficiency of HATCN was shown by the J-F curve of hole-only devices, and the plasma protection performance of MoO3 was shown by atomic force microscope surface morphology images of the buffer layer film after O2 plasma treatment. PMID:25761363

  6. Annealing of an AlN buffer layer in N2-CO for growth of a high-quality AlN film on sapphire

    NASA Astrophysics Data System (ADS)

    Miyake, Hideto; Nishio, Gou; Suzuki, Shuhei; Hiramatsu, Kazumasa; Fukuyama, Hiroyuki; Kaur, Jesbains; Kuwano, Noriyuki

    2016-02-01

    The annealing of an AlN buffer layer in a carbon-saturated N2-CO gas on a sapphire substrate was investigated. The crystal quality of the buffer layer was significantly improved by annealing at 1650-1700 °C. An AlN buffer layer with a thickness of 300 nm was grown by metalorganic vapor phase epitaxy (MOVPE), and was annealed at 1700 °C for 1 h. We fabricated a 2-µm-thick AlN layer on the annealed AlN buffer layer by MOVPE. The full widths at half maximum of the (0002)- and (10\\bar{1}2)-plane X-ray rocking curves were 16 and 154 arcsec, respectively, and the threading dislocation density was 4.7 × 108 cm-2.

  7. Performance improvement of phase-change memory cell using AlSb3Te and atomic layer deposition TiO2 buffer layer

    PubMed Central

    2013-01-01

    A phase change memory (PCM) cell with atomic layer deposition titanium dioxide bottom heating layer is investigated. The crystalline titanium dioxide heating layer promotes the temperature rise in the AlSb3Te layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline titanium dioxide material. Among the various thicknesses of the TiO2 buffer layer, 4 nm was the most appropriate thickness that maximized the improvement with negligible sacrifice of the other device performances, such as the reset/set resistance ratio, voltage window, and endurance. PMID:23414571

  8. Effect of por-SiC buffer layer on the parameters of thin Er2O3 layers on silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Bacherikov, Yu Yu; Konakova, R. V.; Okhrimenko, O. B.; Berezovska, N. I.; Kapitanchuk, L. M.; Svetlichnyi, A. M.; Svetlichnaya, L. A.

    2015-04-01

    Using optical absorption and Auger spectrometry techniques, we studied the effect of rapid thermal annealing (RTA) on the properties of erbium oxide films deposited onto a porous silicon carbide buffer layer formed on 4H-SiC substrates. An analysis of atomic composition of the films under investigation as a function of RTA duration was performed. It is shown that phase composition of erbium oxide films on silicon carbide substrates with a porous SiC layer can be changed by varying RTA duration.

  9. Surface passivation and interface properties of bulk GaAs and epitaxial-GaAs/Ge using atomic layer deposited TiAlO alloy dielectric.

    PubMed

    Dalapati, G K; Chia, C K; Tan, C C; Tan, H R; Chiam, S Y; Dong, J R; Das, A; Chattopadhyay, S; Mahata, C; Maiti, C K; Chi, D Z

    2013-02-01

    High quality surface passivation on bulk-GaAs substrates and epitaxial-GaAs/Ge (epi-GaAs) layers were achieved by using atomic layer deposited (ALD) titanium aluminum oxide (TiAlO) alloy dielectric. The TiAlO alloy dielectric suppresses the formation of defective native oxide on GaAs layers. X-ray photoelectron spectroscopy (XPS) analysis shows interfacial arsenic oxide (As(x)O(y)) and elemental arsenic (As) were completely removed from the GaAs surface. Energy dispersive X-ray diffraction (EDX) analysis and secondary ion mass spectroscopy (SIMS) analysis showed that TiAlO dielectric is an effective barrier layer for reducing the out-diffusion of elemental atoms, enhancing the electrical properties of bulk-GaAs based metal-oxide-semiconductor (MOS) devices. Moreover, ALD TiAlO alloy dielectric on epi-GaAs with AlGaAs buffer layer realized smooth interface between epi-GaAs layers and TiAlO dielectric, yielding a high quality surface passivation on epi-GaAs layers, much sought-after for high-speed transistor applications on a silicon platform. Presence of a thin AlGaAs buffer layer between epi-GaAs and Ge substrates improved interface quality and gate dielectric quality through the reduction of interfacial layer formation (Ga(x)O(y)) and suppression of elemental out-diffusion (Ga and As). The AlGaAs buffer layer and TiAlO dielectric play a key role to suppress the roughening, interfacial layer formation, and impurity diffusion into the dielectric, which in turn largely enhances the electrical property of the epi-GaAs MOS devices. PMID:23331503

  10. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE PAGESBeta

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  11. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-08-01

    We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  12. Transmission Electron Microscope Study on Electrodeposited Gd2O3 and Gd2Zr2O7 Buffer Layers forYBa2Cu307-..delta.. Superconductors

    SciTech Connect

    Zhao, W.; Norman, A.; Phok, S.; Bhattacharya, R.

    2008-01-01

    We have investigated the microstructures of electrodeposited Gd{sub 2}O{sub 3} (GO) and Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) buffer layers for YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) superconductors with conventional transmission electron microscopy (TEM). A high density of nanoscale voids was present in the GZO buffer layers. No voids were observed in GO buffer layers grown on GZO. YBCO superconductor grown on the GO/GZO buffer layer structure produced a critical current density (J{sub c}) of 3.3 x 10{sup 6} A/cm{sup 2} at 77 K in zero field.

  13. TEM study of dislocations structure in In0.82Ga0.18As/InP heterostructure with InGaAs as buffer layer

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Guo, Zuo-xing; Yuan, De-zeng; Wei, Qiu-lin; Zhao, Lei

    2016-05-01

    In order to improve the quality of detector, In x Ga1- x As ( x=0.82) buffer layer has been introduced in In0.82Ga0.18As/InP heterostructure. Dislocation behavior of the multilayer is analyzed through plane and cross section [110] by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The dislocations are effectively suppressed in In x Ga1- x As ( x=0.82) buffer layer, and the density of dislocations in epilayer is reduced obviously. No lattice mismatch between buffer layer and epilayer results in no misfit dislocation (MD). The threading dislocations (TDs) are directly related to the multiplication of the MDs in buffer layer.

  14. Deposition of LaMnO 3 buffer layer on IBAD-MgO template by reactive DC sputtering

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Oh, S. S.; Ha, H. S.; Ko, R. K.; Ha, D. W.; Kim, T. H.; Youm, D. J.; Lee, N. J.; Moon, S. H.; Yoo, S. I.; Park, C.

    2009-10-01

    The deposition conditions of LaMnO 3 (LMO) buffer layer on Ion Beam Assisted Deposition (IBAD)-MgO template by reactive DC sputtering were investigated. We developed a specially designed chamber for reactive DC magnetron sputtering. The deposition chamber was composed of two sputtering guns with the mixed metallic target of La (50 at%) + Mn (50 at%), halogen lamp heater, QCM (Quartz Crystal Microbalance), RGA (Residual Gas Analyzer) and reel to reel tape moving system. We investigated the effect of oxygen flow rate on the deposition rate of LMO layer. We found that there was an optimal range of oxygen flow rate to have the desired layer. Above the range, the deposition rate decreased sharply and plasma was unstable. Below the range, the deposited layer was partially metallic. We investigated the effect of substrate temperature on the texturing of LMO layer. The texturing of LMO layer was improved by increasing the substrate temperature. We investigated the effect of deposition rate on the texturing of LMO layer. The LMO layer has a good texture in the deposition rate range of 0.07-0.21 nm/s. We confirmed that deposition rate had little effect on the texturing of LMO layer in the deposition rate range. Sm 1Ba 2Cu 3O 7-d superconducting layer was deposited on the LMO(reactive)/IBAD-MgO template. I c and J c were 81.6 A and 1 MA/cm 2. This means that LMO layer deposited by reactive DC sputtering shows a good performance in superconductor coated conductor.

  15. Hierarchical rendering of trees from precomputed multi-layer z-buffers

    SciTech Connect

    Max, N.

    1996-02-01

    Chen and Williams show how precomputed z-buffer images from different fixed viewing positions can be reprojected to produce an image for a new viewpoint. Here images are precomputed for twigs and branches at various levels in the hierarchical structure of a tree, and adaptively combined, depending on the position of the new viewpoint. The precomputed images contain multiple z levels to avoid missing pixels in the reconstruction, subpixel masks for anti-aliasing, and colors and normals for shading after reprojection.

  16. Synthesis of Vertically Aligned ZnO Nanorods on Ni-Based Buffer Layers Using a Thermal Evaporation Process

    NASA Astrophysics Data System (ADS)

    Kuo, Dong-Hau; He, Jheng-Yu; Huang, Ying-Sheng

    2012-03-01

    Uniform, vertically aligned ZnO nanorods have been grown mainly on Au-coated and ZnO-coated sapphire substrates, ZnO- and GaN-coated substrates, or self-catalyzing substrates. Conventionally, Ni-coated substrates have resulted in thick rods with diameter more than 250 nm, rods with nonuniform distribution in diameter, or rods with an alignment problem. In the best result in this paper, slender, uniform, vertically aligned, solely UV-emitting ZnO nanorods with diameter of 110 ± 25 nm and length of 30 ± 10 μm have been successfully grown at 700°C for 2 h on sapphire substrates covered with Ni-based buffer layers by using metallic zinc and oxygen as reactants. Scanning electron microscopy and room-temperature photoluminescence have been used to investigate the effects of process conditions on the slenderness and vertical alignment of the ZnO rods. To develop the desired ZnO nanorods, etched sapphire substrates, a second metallic Sn buffer layer on top of a spin-coated nickel oxide layer, polyvinyl alcohol binder at 10% concentration in solution of iron nitrate, and pyrolysis and reduction reactions were involved. Defect photoemission for thick ZnO rods is attributed to insufficient oxygen supply during the growth process with fixed oxygen flow rate.

  17. Effects of Strain and Buffer Layer on Interfacial Magnetization in Sr2CrReO6 Films

    NASA Astrophysics Data System (ADS)

    Liu, Yaohua; Te Velthuis, S. G. E.; Glavic, A.; Ambaye, H.; Lauter, V.; Lucy, J. M.; Yang, F. Y.

    2015-03-01

    Magnetic double-perovskite Sr2CrReO6 (SCRO) has several functional properties including a TC > 500 K, high spin polarization, large spin-orbit interaction, and semiconducting behavior in highly ordered films. However, fabrication of highly ordered films is still challenging, and progress toward device applications requires an in-depth understanding of the electronic and magnetic properties, especially at interfaces. We have investigated how the Cr/Re antisite disorder and strain affect the interfacial magnetization in SCRO films via x-ray and polarized neutron reflectometry. We find that the magnetization of SCRO films is reduced near the interface with the substrate. The width of this interfacial layer weakly depends on the strain and decreases when a SrCr0.5Nb0.5O3 (SCNO) buffer layer is used to reduce the antisite disorder. Interestingly, for the SCRO film deposited on a SCNO buffer layer, the region with reduced magnetization is wider than the antisite disorder region at the SCRO/SCNO interface, suggesting that antisite disorder is not the only mechanism reducing the magnetization. Work at ANL was supported by the DOE-BES, MSE, at OSU by the Center for Emergent Materials, a NSF MRSEC (DMR-1420451), at ORNL by DOE-BES, Scientific User Facilities Division.

  18. Effect of CeO{sub 2} buffer layer thickness on the structures and properties of YBCO coated conductors.

    SciTech Connect

    Li, M.; Zhao, X.; Ma, B.; Dorris, S. E.; Balachandran, U.; Maroni, V. A.; Wuhan Univ.

    2007-01-01

    Biaxially textured YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) films were grown on inclined-substrate-deposited (ISD) MgO-textured metal substrates by pulsed laser deposition. CeO{sub 2} was deposited as a buffer layer prior to YBCO growth. CeO{sub 2} layers of different thickness were prepared to evaluate the thickness dependence of the YBCO films. The biaxial alignment features of the films were examined by X-ray diffraction 2{theta}-scans, pole-figure, {phi}-scans and rocking curves of {Omega} angles. The significant influence of the CeO{sub 2} thickness on the structure and properties of the YBCO films were demonstrated and the optimal thickness was found to be about 10 nm. High values of T{sub c} = 91 K and J{sub c} = 5.5 x 10{sup 5} A/cm{sup 2} were obtained on YBCO films with optimal CeO{sub 2} thickness at 77 K in zero field. The possible mechanisms responsible for the dependence of the structure and the properties of the YBCO films on the thickness of the CeO{sub 2} buffer layers are discussed.

  19. Nanometer-Scale Epitaxial Strain Release in Perovskite Heterostructures Using 'SrAlOx' Sliding Buffer Layers

    SciTech Connect

    Bell, Christopher

    2011-08-11

    We demonstrate the strain release of LaAlO{sub 3} epitaxial film on SrTiO{sub 3} (001) by inserting ultra-thin 'SrAlO{sub x}' buffer layers. Although SrAlO{sub x} is not a perovskite, nor stable as a single phase in bulk, epitaxy stabilizes the perovskite structure up to a thickness of 2 unit cells (uc). At a critical thickness of 3 uc of SrAlO{sub x}, the interlayer acts as a sliding buffer layer, and abruptly relieves the lattice mismatch between the LaAlO{sub 3} filmand the SrTiO{sub 3} substrate, while maintaining crystallinity. This technique may provide a general approach for strain relaxation of perovskite film far below the thermodynamic critical thickness. A central issue in heteroepitaxial filmgrowth is the inevitable difference in lattice constants between the filmand substrate. Due to this lattice mismatch, thin film are subjected to microstructural strain, which can have a significan effect on the filmproperties. This challenge is especially prominent in the rapidly developing fiel of oxide electronics, where much interest is focused on incorporating the emergent physical properties of oxides in devices. Although strain can be used to great effect to engineer unusual ground states, it is often deleterious for bulk first-orde phase transitions, which are suppressed by the strain and symmetry constraints of the substrate. While there are some reports discussing the control of the lattice mismatch in oxides using thick buffer layers, the materials choice, lattice-tunable range, and control of misfit dislocations are still limited. In this Letter, we report the fabrication of strain-relaxed LaAlO{sub 3} (LAO) thin film on SrTiO{sub 3} (STO) (001) using very thin 'SrAlO{sub x}' (SAO) buffer layers. Whereas for 1 or 2 pseudo-perovskite unit cells (uc) of SAO, the subsequent LAO filmis strained to the substrate, at a critical thickness of 3 uc the SAO interlayer abruptly relieves the lattice mismatch between the LAO and the STO, although maintaining the

  20. Photosignal enhancement in Al-GaAs diodes due to surface plasmons and guided wave modes

    NASA Astrophysics Data System (ADS)

    Tamm, I. R.; Dawson, P.; Pate, M. A.; Grey, R.; Hill, G.

    1993-12-01

    In the study, Al-GaAs diodes have been examined in the Otto configuration or prism-air gap sample geometry with a view to producing surface plasmon polaritons (SPP) enhanced photosignals. The investigation is of relevance to polarization selective photodetection and the fabrication of simple polarization sensors. The geometry and the results yielded from it are closely related to SPP mediated spatial light modulators, in which a liquid crystal layer forms the coupling gap between a high index prism and the semiconductor based substrate on which the addressing pixels are fabricated.

  1. Distortions to current-voltage curves of cigs cells with sputtered Zinc(Oxygen,Sulfur) buffer layers

    NASA Astrophysics Data System (ADS)

    Song, Tao

    Sputtered-deposited Zn(O,S) is an attractive alternative to CdS for Cu(In,Ga)Se 2 (CIGS) thin-film solar cells' buffer layer. It has a higher band gap and thus allows greater blue photon collection to achieve higher photon current. The primary goal of the thesis is to investigate the effects of the secondary barrier at the buffer-absorber interface on the distortions to current-voltage (J-V) curves of sputtered-Zn(O,S)/CIGS solar cells. A straightforward photodiode model is employed in the numerical simulation to explain the physical mechanisms of the experimental J-V distortions including J-V crossover and red kink. It is shown that the secondary barrier is influenced by both the internal material properties, such as the conduction-band offset (CBO) and the doping density of Zn(O,S), and the external conditions, such as the light intensity and operating temperature. A key parameter for the sputter deposition of Zn(O,S) has been the oxygen fraction in the argon beam. It is found that the CBO varies with the oxygen fraction in the argon beam at a fixed temperature. With a greater CBO (DeltaEC>0.3 eV), the resulting energy barrier limits the electron current flowing across the interface and thus leads to the J-V distortion. Two different ZnS targets, non-indium and indium-doped one, were used to deposit the Zn(O,S) buffer layer. At the same oxygen fraction in argon beam, a non-In-doped Zn(O,S) buffer with a smaller amount of doping forms a greater secondary barrier to limit the electron current due to the compensation of the Zn(O,S) buffer layer. In addition, the temperature-dependent J-V crossover can be explained by the temperature-dependent impact of the secondary barrier - at lower temperature in the dark, the maximum distortion-free barrier is reduced and results in a more serious current limitation, indicating a greater J-V crossover. It is also found that, under low-intensity illumination, there is a lower doping density of Zn(O,S) due to a smaller amount of

  2. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    DOE PAGESBeta

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Le, Lingcong; Hwang, Ya-Hsi; Kim, Byung-Jae; Ren, Fan; Pearton, Stephen J.; Lind, Aaron G.; Jones, Kevin S.; et al

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersionmore » observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.« less

  3. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Le, Lingcong; Hwang, Ya-Hsi; Kim, Byung-Jae; Ren, Fan; Pearton, Stephen J.; Lind, Aaron G.; Jones, Kevin S.; Kravchenko, I. I.; Zhang, Ming-Lan

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 109 and 5 × 108 cm₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, there was no dispersion observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.

  4. DEVELOPMENT OF IN-SITU CONTROL DIAGNOSTICS FOR APPLICATION OF EPITAXIAL SUPERCONDUCTOR AND BUFFER LAYERS

    SciTech Connect

    B.C. Winkleman; T.V. Giel, Jr.; J. Cunningham

    1999-06-30

    The recent achievements of critical currents in excess of 1x10{sup 6}amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the U. S. Department of Energy (DOE's) sponsorship, the University of Tennessee Space Institute (UTSI) performed an extensive evaluation of leading coated conductor processing options. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's (LANL) ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's (ORNL) rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.

  5. Development of in-situ control diagnostics for application of epitaxial superconductor and buffer layers

    SciTech Connect

    B.C. Winkleman; T.V. Giel; Jason Cunningham

    1999-07-30

    The recent achievements of critical currents in excess of 1 x 10{sup 6} amp/cm{sup 2} at 77 K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the US DOE's sponsorship, the University of Tennessee Space Institute performed an extensive evaluation of leading coated conductor processing options. In general, it is their feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.

  6. Mechanism for interfacial adhesion strength of an ion beam mixed Cu/polyimide with a thin buffer layer

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Chae, K. H.; Whang, C. N.; Kurmaev, E. Z.; Zatsepin, D. A.; Winarski, R. P.; Ederer, D. L.; Moewes, A.; Lee, Y. P.

    1999-01-01

    A Cu (400 Å)/Al (50 Å)/polyimide system showed larger adhesion strength than that of Cu (400 Å)/polyimide after N2+ ion beam mixing. X-ray emission spectroscopy was performed to elucidate the mechanism of adhesion enhancement of the ion beam mixed Cu (400 Å)/polyimide with a thin Al buffer layer. Cu L2,3 x-ray emission spectra showed the formation of a CuAl2O4 layer which is strongly correlated with the large adhesion strength of a Cu/Al/polyimide. A decrease in adhesion strength at an ion dose higher than 5×1015cm-2 was also explained by the formation of an amorphous carbon. This was understood by investigating C Kα x-ray emission spectra. The overall spectroscopic results were in accordance with the behavior of quantitative adhesion strength.

  7. Development of mid-frequency AC reactive magnetron sputtering for fast deposition of Y2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Xiong, Jie; Xia, Yudong; Xue, Yan; Zhang, Fei; Guo, Pei; Zhao, Xiaohui; Tao, Bowan

    2014-02-01

    A reel-to-reel magnetron sputtering system with mid-frequency alternating current (AC) power supply was used to deposit double-sided Y2O3 seed layer on biaxially textured Ni-5 at.%W tape for YBa2Cu3O7-δ coated conductors. A reactive sputtering process was carried out using two opposite symmetrical sputtering guns with metallic yttrium targets and water vapor for oxidizing the sputtered metallic atoms. The voltage control mode of the power supply was used and the influence of the cathode voltage and ArH2 pressure were systematically investigated. Subsequently yttrium-stabilized zirconia (YSZ) barrier and CeO2 cap layers were deposited on the Y2O3 buffered substrates in sequence, indicating high quality and uniform double-sided structure and surface morphology of such the architecture.

  8. Reel-to-reel deposition of epitaxial double-sided MgO buffer layers for coated conductors

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Xiong, Jie; Zhang, Yahui; Zhang, Fei; Zhao, Rui-Peng; Hui, Wang; Wang, Quiling; Cheng, Guo; Zhao, Xiao-Hui; Tao, Bo-Wan

    2016-06-01

    We have successfully employed a double-sided process to deposit MgO buffer layers on both sides of amorphous Y2O3 surface for double-sided YBa2Cu3O7-δ (YBCO) coated conductors (CCs) for the first time, the structure of which is of great prospect to improve the performance and cut the production cost. The biaxial textures of MgO buffer layer are noticeably affected by the ion energy and film thickness, which is demonstrated by X-ray diffraction. The best biaxial texture of double-sided MgO films shows ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 4° and 7.8° for one side, respectively, as well as 3.5° and 6.7° for the other side. The subsequent double-sided YBCO films are deposited on the as-prepared MgO template with entire critical current of over 300 A/cm for both sides.

  9. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers.

    PubMed

    Bersweiler, M; Dumesnil, K; Lacour, D; Hehn, M

    2016-08-24

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces. PMID:27351776

  10. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm–2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  11. Improved electrical properties of PbZrTiO3/BiFeO3 multilayers with ZnO buffer layer

    NASA Astrophysics Data System (ADS)

    Dutta, Shankar; Pandey, Akhilesh; Yadav, I.; Thakur, O. P.; Laishram, R.; Pal, Ramjay; Chatterjee, Ratnamala

    2012-10-01

    In this study, the effect of ZnO buffer layer on the electrical properties of PbZrTiO3/BiFeO3 (PZT/BFO) multilayers has been reported. For this, PZT/BFO multilayers were spin-coated with and without ZnO buffer layer on platinized silicon wafers. X-ray diffraction results of both the films showed polycrystalline phase pure perovskite structure. Both the films show a dense and homogeneous grain structure. The electric properties of the films were measured. The ZnO buffered multilayer thin film showed ˜3 times improvement in remnant polarization compared to the multilayer thin film with no buffer. The buffered samples were found to have higher dielectric constant (1000 at 100 Hz) compared to that of sample (580 at 100 Hz)) with no buffer. Dielectric constants of both the films were found to be ˜30% tunable at 5 V. The buffered film also showed low leakage current density and higher dielectric breakdown compared to the multilayer thin film without buffer.

  12. GaN Epitaxial Layer Grown with Conductive Al(x)Ga(1-x)N Buffer Layer on SiC Substrate Using Metal Organic Chemical Vapor Deposition.

    PubMed

    So, Byeongchan; Lee, Kyungbae; Lee, Kyungjae; Heo, Cheon; Pyeon, Jaedo; Ko, Kwangse; Jang, Jongjin; Nam, Okhyun

    2016-05-01

    This study investigated GaN epitaxial layer growth with a conductive Al(x)Ga(1-x)N buffer layer on n-type 4H-SiC by high-temperature metalorganic chemical vapor deposition (HT-MOCVD). The Al composition of the Al(x)Ga(1-x)N buffer was varied from 0% to 100%. In terms of the crystal quality of the GaN layer, 79% Al was the optimal composition of the Al(x)Ga(1-x)N buffer layer in our experiment. A vertical conductive structure was fabricated to measure the current voltage (I-V) characteristics as a function of Al composition, and the I-V curves showed that the resistance increased with increasing Al concentration of the Al(x)Ga(1-x)N buffer layer. PMID:27483845

  13. [Study on the Effects of Alq₃:CsF Composite Cathode Buffer Layer on the Performances of CuPc/C₆₀ Solar Cells].

    PubMed

    Zhao, Huan-bin; Sun, Qin-jun; Zhou, Miao; Gao, Li-yan; Hao, Yu-ying; Shi, Fang

    2016-02-01

    This paper introduces the methods improving the performance and stability of copper-phthalocyanine(CuPc) / fullerene (C₆₀) small molecule solar cells by using tris-(8-hydroxyquinoline) aluminum(Alq₃): cesium fluoride(CsF) composite cathode buffer layer. The device with Alq₃:CsF composite cathode buffer layer with a 4 wt. % CsF at a thickness of 5 nm exhibits a power conversion efficiency (PCE) of up to 0.76%, which is an improvement of 49%, compared to a device with single Alq₃ cathode buffer layer and half-lifetime of the cell in air at ambient circumstance without any encapsulation is almost 9.8 hours, 6 times higher than that of without buffer layer, so the stability is maintained. The main reason of the device performance improvement is that doping of CsF can adjust the interface energy alignment, optimize the electronic transmission characteristics of Alq₃ and improve the short circuit current and the fill factor of the device using ultraviolet-visible absorption, external quantum efficiency and single-electron devices. Placed composite cathode buffer layer devices with different time in the air, by comparing and analyzing current voltage curve, Alq₃:CsF can maintain a good stability as Alq₃. Alq₃:CsF layer can block the diffusion of oxygen and moisture so completely as to improve the lifetime of the device. PMID:27209725

  14. Multiple quantum well AlGaAs nanowires.

    PubMed

    Chen, Chen; Braidy, Nadi; Couteau, Christophe; Fradin, Cécile; Weihs, Gregor; LaPierre, Ray

    2008-02-01

    This letter reports on the growth, structure, and luminescent properties of individual multiple quantum well (MQW) AlGaAs nanowires (NWs). The composition modulations (MQWs) are obtained by alternating the elemental flux of Al and Ga during the molecular beam epitaxy growth of the AlGaAs wire on GaAs (111)B substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy performed on individual NWs are consistent with a configuration composed of conical segments stacked along the NW axis. Microphotoluminescence measurements and confocal microscopy showed enhanced light emission from the MQW NWs as compared to nonsegmented NWs due to carrier confinement and sidewall passivation. PMID:18184023

  15. UV-ozone-treated ultra-thin NaF film as anode buffer layer on organic light emitting devices.

    PubMed

    Chen, Yu-Cheng; Kao, Po-Ching; Chu, Sheng-Yuan

    2010-06-21

    An ultra-thin NaF film was thermally deposited between ITO and NPB as the buffer layer and then treated with the ultraviolet (UV) ozone, in the fabrication of organic light emitting diodes (ITO/NaF/NPB/Alq(3)/LiF/Al) to study its effect on hole-injection properties. The treatment drastically transforms the role of NaF film from hole-blocking to hole-injecting. This transformation is elucidated using hole-only devices, energy band measurement, surface energy, surface polarity, and X-ray photoelectron spectra. With the optimal thickness (3 nm) of the UV-ozone-treated NaF layer, the device performance is significantly improved, with a turn-on voltage, maximum luminance, and maximum current efficiency of 2.5 V, 15700 cd/m(2), and 4.9 cd/A, respectively. Results show that NaF film is not only a hole-blocking layer, but also a promising hole-injecting layer after UV-ozone treatment. PMID:20588585

  16. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.

    PubMed

    Rao, Arun D; Karalatti, Suresh; Thomas, Tiju; Ramamurthy, Praveen C

    2014-10-01

    Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of ∼3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer. PMID:25238197

  17. Optical properties of InGaAs linear graded buffer layers on GaAs grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, B.; Baek, J. H.; Lee, J. H.; Choi, S. W.; Jung, S. D.; Han, W. S.; Lee, E. H.

    1996-05-01

    We report optical characteristics of linear graded InxGa1-xAs (XIn=0-0.58) buffer layers grown on GaAs by low-pressure metalorganic chemical vapor deposition. Two types of wirelike surface structures were observed from the layers grown at two different temperatures. Low-temperature photoluminescence (PL) and double-crystal x-ray diffractometric measurements indicate that the PL energy and the relaxation of the graded layers were strongly dependent on the top surface structure. InGaAs cap layers were grown on top of the graded buffer layers with a variation of indium composition. A strong PL signal was observed from the top region of the graded layer grown with a lattice-matched cap layer. It suggests that the top region of the grade, similar to a graded well structure, is compressively strained but is of high structural quality without dislocations.

  18. Improved high temperature integration of Al{sub 2}O{sub 3} on MoS{sub 2} by using a metal oxide buffer layer

    SciTech Connect

    Son, Seokki; Choi, Moonseok; Kim, Dohyung; Choi, Changhwan; Yu, Sunmoon

    2015-01-12

    We deposited a metal oxide buffer layer before atomic layer deposition (ALD) of Al{sub 2}O{sub 3} onto exfoliated molybdenum disulfide (MoS{sub 2}) in order to accomplish enhanced integration. We demonstrate that even at a high temperature, functionalization of MoS{sub 2} by means of a metal oxide buffer layer can effectively provide nucleation sites for ALD precursors, enabling much better surface coverage of Al{sub 2}O{sub 3}. It is shown that using a metal oxide buffer layer not only allows high temperature ALD process, resulting in highly improved quality of Al{sub 2}O{sub 3}/MoS{sub 2} interface, but also leaves MoS{sub 2} intact.

  19. Growth of wurtzite and zinc-blende phased GaN on silicon (100) substrate with sputtered AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Pang, Wen-Yuan; Lo, Ikai; Wu, Sean; Lin, Zhi-Xun; Shih, Cheng-Hung; Lin, Yu-Chiao; Wang, Ying-Chieh; Hu, Chia-Hsuan; Hsu, Gary Z. L.

    2013-11-01

    GaN films were grown by plasma-assisted molecular beam epitaxy with a sputtered AlN buffer layer on Si (100) substrate. From the analyses of X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) measurements, we showed that the variant M-plane, A-plane and c-plane GaN wurtzite structures can be achieved by the selection of crystalline orientation of sputtered AlN buffer layer and the control of epitaxial growth temperature. We also found that the GaN layer grown on sputtered AlN buffer layer can be converted to GaN zinc-blende structure at the epitaxial growth temperature higher than 750 °C and under Ga-rich condition.

  20. Evaluation of methods for application of epitaxial buffer and superconductor layers

    SciTech Connect

    1999-03-30

    The recent achievements of critical currents exceeding million amperes per square centimeter at 77K in YBCO deposited over suitably textured substrate have stimulated interest in the potential applications of coated conductors at high temperatures and in high magnetic fields. Currently, ion-beam assisted deposition (IBAD), and rolling assisted bi-axially textured substrate (RABiTS), represent two available options for obtaining textured substrates. For applying suitable coatings of buffer and high temperature superconductor (HTS) material over textured substrates, several options are available which include sputtering, electron-beam evaporation, laser ablation, electrophoresis, chemical vapor deposition (including metal organics chemical vapor deposition), sol-gel, metal organics decomposition, electrodeposition and aerosol/spray pyrolysis. A commercial continuous long-length wire/tape manufacturing scheme developed out of any suitable combination of the above techniques would consist of operations involving preparation of the substrate and application of buffer, HTS and passivation/insulation materials and special treatment steps such as post-annealing. These operations can be effected by various process parameters that can be classified into chemistry, materials, engineering and environmental related parameters. Under the DOE-sponsored program, to carry out an engineering evaluation, first, the process flow schemes were developed for various candidate options identifying the major operating steps, process conditions, and process streams. Next, to evaluate quantifiable parameters such as process severity (e.g. temperature and pressure), coating thickness and deposition rate for HTS material, achieved maximum J{sub c} value (for films >1{micro}m thick) and cost of chemical and material utilization efficiency, the multi-attribute method was used to determine attributes/merits for various parameters and candidate options. To determine similar attribute values for the

  1. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  2. Effect of rear-surface buffer layer on performance of lift-off Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Aoyagi, Kenta; Tamura, Akihiro; Takakura, Hideyuki; Minemoto, Takashi

    2014-01-01

    The effect of an Au and MoOx rear-surface buffer layer inserted between Cu(In,Ga)Se2 (CIGS) and ZnO:Al on solar cell performances was examined. The lift-off CIGS solar cell without a rear-surface buffer layer showed particular characteristics of two series-connected diodes in the reverse direction, and its short-circuit current density was almost zero. In contrast, the Au or MoOx rear-surface buffer layer improved these characteristics. Although the lift-off CIGS solar cell with the Au rear-surface buffer layer showed shunt characteristics and low efficiency, the efficiency of the lift-off CIGS solar cell with the MoOx rear-surface buffer layer was approximately 50% of that of substrate-type CIGS solar cells. Diode parameters of lift-off CIGS solar cells were determined by fitting analysis of current density-voltage curves using a proposed new equivalent circuit model for lift-off CIGS solar cells.

  3. Improved UV photoresponse properties of high-quality ZnO thin films through the use of a ZnO buffer layer on flexible polyimide substrates

    NASA Astrophysics Data System (ADS)

    Kim, Mincheol; Leem, Jae-Young; Son, Jeong-Sik

    2016-03-01

    An oxidized ZnO buffer layer was prepared by using thermal oxidation of a Zn buffer layer on a polyimide (PI) substrate; then, ZnO thin films with (sample 1) and without (sample 2) an oxidized ZnO buffer layer were grown by using the sol-gel spin-coating method. The intensities of the ZnO (002) diffraction peaks observed in sample 1 were stronger than those observed in sample 2, implying that the crystal quality was enhanced by the oxidized ZnO buffer layer. Moreover, the residual stress of sample 1 was reduced compared to that of sample 2 due to the decreased number of defects. Sample 2 exhibited defect-related deep-level orange-yellow emissions, which almost disappeared with the introduction of the ZnO buffer layer (sample 1). The values of the responsivity were 0.733 (sample 1) and 0.066 (sample 2) mA/W; therefore, the proposed method could provide a pathway to the easy fabrication of fast-response UV sensors.

  4. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination. PMID:27483938

  5. Ideal p-n Diode Current Equation for Organic Heterojunction using a Buffer Layer: Derivation and Numerical Study

    NASA Astrophysics Data System (ADS)

    Kim, SeongMin; Ha, Jaewook; Kim, Jin-Baek

    2016-04-01

    The equation of p-n diode current-voltage (J-V) of an organic heterojunction (HJ) including a hole and electron buffer layer is derived, and its characteristics are numerically simulated based on a polaron-pair model Giebink et al. (Forrest, Phys. Rev. B 82; 1-12, 2010). In particular, the correlation between a fraction of the potential drop for an electron/hole buffer ( δ e - b / δ h - b ) and for a donor (D)/acceptor (A) ( δ D / δ A ) is numerically investigated for J-V curves. As a result, the lowest diode current (DC) is obtained for the condition of δ e - b + δ A ≅ 0 or δ D + δ h - b ≅ 1. It is suggested that it is important to characterize the lowest DC curve for the state of D/A blending with a condition of a fraction of the potential drop ( δ e - b / δ h - b ). Under these circumstances, the transport of holes ( h +) from a DC source at the reverse bias is effectively limited.

  6. Graded-bandgap AlGaAs solar cells for AlGaAs/Ge cascade cells

    NASA Technical Reports Server (NTRS)

    Timmons, M. L.; Venkatasubramanian, R.; Colpitts, T. S.; Hills, J. S.; Hutchby, J. A.; Iles, P. A.; Chu, C. L.

    1991-01-01

    Some p/n graded-bandgap Al(x)Ga(1-x)As solar cells were fabricated and show AMO conversion efficiencies in excess of 15 percent without antireflection (AR) coatings. The emitters of these cells are graded between 0.008 is less than or equal to x is less than or equal to 0.02 during growth of 0.25 to 0.30 micron thick layers. The keys to achieving this performance were careful selection of organometallic sources and scrubbing oxygen and water vapor from the AsH3 source. Source selection and growth were optimized using time-resolved photoluminescence. Preliminary radiation-resistance measurements show AlGaAs cells degraded less than GaAs cells at high 1 MeV electron fluences, and AlGaAs cells grown on GaAs and Ge substrates degrade comparably.

  7. Epitaxial strontium titanate films grown by atomic layer deposition on SrTiO{sub 3}-buffered Si(001) substrates

    SciTech Connect

    McDaniel, Martin D.; Posadas, Agham; Ngo, Thong Q.; Dhamdhere, Ajit; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2013-01-15

    Epitaxial strontium titanate (STO) films have been grown by atomic layer deposition (ALD) on Si(001) substrates with a thin STO buffer layer grown by molecular beam epitaxy (MBE). Four unit cells of STO grown by MBE serve as the surface template for ALD growth. The STO films grown by ALD are crystalline as-deposited with minimal, if any, amorphous SiO{sub x} layer at the STO-Si interface. The growth of STO was achieved using bis(triisopropylcyclopentadienyl)-strontium, titanium tetraisopropoxide, and water as the coreactants at a substrate temperature of 250 Degree-Sign C. In situ x-ray photoelectron spectroscopy (XPS) analysis revealed that the ALD process did not induce additional Si-O bonding at the STO-Si interface. Postdeposition XPS analysis also revealed sporadic carbon incorporation in the as-deposited films. However, annealing at a temperature of 250 Degree-Sign C for 30 min in moderate to high vacuum (10{sup -6}-10{sup -9} Torr) removed the carbon species. Higher annealing temperatures (>275 Degree-Sign C) gave rise to a small increase in Si-O bonding, as indicated by XPS, but no reduced Ti species were observed. X-ray diffraction revealed that the as-deposited STO films were c-axis oriented and fully crystalline. A rocking curve around the STO(002) reflection gave a full width at half maximum of 0.30 Degree-Sign {+-} 0.06 Degree-Sign for film thicknesses ranging from 5 to 25 nm. Cross-sectional transmission electron microscopy revealed that the STO films were continuous with conformal growth to the substrate and smooth interfaces between the ALD- and MBE-grown STO. Overall, the results indicate that thick, crystalline STO can be grown on Si(001) substrates by ALD with minimal formation of an amorphous SiO{sub x} layer using a four-unit-cell STO buffer layer grown by MBE to serve as the surface template.

  8. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    PubMed

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%. PMID:24878826

  9. Growth and Characterization of La2Zr2O7 Buffer Layers Deposited by Chemical Solution Deposition

    NASA Astrophysics Data System (ADS)

    Armenio, A. Angrisani; Augieri, A.; Fabbri, F.; Freda, R.; Galluzzi, V.; Mancini, A.; Rizzo, F.; Rufoloni, A.; Vannozzi, A.; Sotgiu, G.; Pompeo, N.; Torokhtii, K.; Silva, E.; Bemporad, E.; Contini, G.; Celentano, G.

    The deposition and characterization of La2Zr2O7 thin films deposited by metal-organic decomposition method on both single crystal SrTiO3 and cube textured Ni-5 at.%W substrates are presented. Metal acetylacetonates in propionic acid solution was used. The results showed that LZO films are epitaxially grown with smooth surface with rms roughness around 2 nm. YBa2Cu3O7-δ films, deposited by pulsed laser deposition technique on LZO buffer layers, showed critical temperature of 90 K and critical current density in self magnetic field Jc = 1.6 and 13 MA/cm2 at 77 K and 4.2 K, respectively. A better Jc retention in magnetic field for YBCO films deposited on LZO/STO than YBCO on bare STO is observed indicating a rather strong vortex pinning as confirmed by microwave measurements.

  10. Enhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots.

    PubMed

    Li, Zhiqi; Li, Shujun; Zhang, Zhihui; Zhang, Xinyuan; Li, Jingfeng; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-04-20

    Enhanced performance of polymer solar cells (PSCs) based on the blend of poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) is demonstrated by titanium dioxide (TiO2) interface modification via CuInS2/ZnS quantum dots (CZdots). Devices with a TiO2/CZdots composite buffer layer exhibit both a high short-circuit current density (Jsc) and fill factor (FF), leading to a power conversion efficiency (PCE) up to 7.01%. The charge transport recombination mechanisms are investigated by an impedance behavior model, which indicates that TiO2 interfacial modification results in not only increasing the electron extraction but also reducing impedance. This study provides an important and beneficial approach to develop high efficiency PSCs. PMID:27055908

  11. Nano LaAlO3 buffer layer-assisted tunneling current in manganite p-n heterojunction

    NASA Astrophysics Data System (ADS)

    Ma, Jun-Jie; Wang, Deng-Jing; Huang, Hai-Lin; Wang, Ru-Wu; Li, Yun-Bao

    2015-10-01

    An oxide p-n heterojunction composed of a 150-nm La0.67Ca0.33MnO3 (LCMO) film, 0.05 wt% Nb doped SrTiO3 substrate (STON), and sandwiched 5-nm LaAlO3 (LAO) thin film is fabricated with the pulsed laser deposition technique and the interfacial transport properties are experimentally studied. The rectifying behavior of the junction is in agreement with Newman’s equation, indicating that tunneling is the dominant process for the carriers to pass through the interface while thermal emission is the dominant transport model of an LCMO/STON heterojunction with no LAO buffer layer. Project supported by the National Natural Science Foundation of China (Grant No. 10804089).

  12. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates

    SciTech Connect

    Ok, Kyung-Chul; Park, Jin-Seong E-mail: jsparklime@hanyang.ac.kr; Ko Park, Sang-Hee; Kim, H. E-mail: jsparklime@hanyang.ac.kr; Hwang, Chi-Sun; Soo Shin, Hyun; Bae, Jonguk

    2014-02-10

    We demonstrated the fabrication of flexible amorphous indium gallium zinc oxide thin-film transistors (TFTs) on high-temperature polyimide (PI) substrates, which were debonded from the carrier glass after TFT fabrication. The application of appropriate buffer layers on the PI substrates affected the TFT performance and stability. The adoption of the SiN{sub x}/AlO{sub x} buffer layers as water and hydrogen diffusion barriers significantly improved the device performance and stability against the thermal annealing and negative bias stress, compared to single SiN{sub x} or SiO{sub x} buffer layers. The substrates could be bent down to a radius of curvature of 15 mm and the devices remained normally functional.

  13. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    SciTech Connect

    Vashistha, Indu B. Sharma, S. K.; Sharma, Mahesh C.; Sharma, Ramphal

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5 eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.

  14. Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1-xSnxOy buffer layers

    NASA Astrophysics Data System (ADS)

    Platzer-Björkman, C.; Frisk, C.; Larsen, J. K.; Ericson, T.; Li, S.-Y.; Scragg, J. J. S.; Keller, J.; Larsson, F.; Törndahl, T.

    2015-12-01

    Cu2ZnSnS4 (CZTS) solar cells typically include a CdS buffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal ("cliff-like"), which enhances interface recombination. In this work, we show how a Zn1-xSnxOy (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (Voc) for CZTS devices. The ZTO is deposited by atomic layer deposition (ALD), with a process previously developed for Cu(In,Ga)Se2 solar cells. By varying the ALD process temperature, the position of the conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 °C is found to give higher Voc and efficiency as compared with the CdS reference devices. For a ZTO process at 120 °C, where the conduction band alignment is expected to be the same as for CdS, the Voc and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 °C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the Voc of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.

  15. Electrically Active Defects in GaN Layers Grown With and Without Fe-doped Buffers by Metal-organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Umana-Membreno, G. A.; Parish, G.; Fichtenbaum, N.; Keller, S.; Mishra, U. K.; Nener, B. D.

    2008-05-01

    Electrically active defects in n-GaN films grown with and without an Fe-doped buffer layer have been investigated using conventional and optical deep-level transient spectroscopy (DLTS). Conventional DLTS revealed three well- defined electron traps with activation energies E a of 0.21, 0.53, and 0.8 eV. The concentration of the 0.21 and 0.8 eV defects was found to be slightly higher in the sample without the Fe-doped buffer, whereas the concentration of the 0.53 eV trap was higher in the sample with the Fe-doped buffer. A minority carrier trap with E a ≈ 0.65 eV was detected in both samples using optical DLTS; its concentration was ˜40% higher in the sample without the Fe-doped buffer. Mobility spectrum analysis and multiple magnetic-field measurements revealed that the electron mobility in the topmost layer of both samples was similar, but that the sample without the Fe-doped buffer layer was affected by parallel conduction through underlying layers with lower electron mobility.

  16. Strain-driven synthesis of <112> direction InAs nanowires in V-grooved trenches on Si using InP/GaAs buffer layers

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhou, Xuliang; Kong, Xiangting; Li, Mengke; Mi, Junping; Wang, Mengqi; Pan, Jiaoqing

    2016-09-01

    The catalyst-free metal organic vapor phase epitaxial growth of InAs nanowires on silicon (001) substrates is investigated by using selectively grown InP/GaAs buffer layers in V-grooved trenches. A strain-driven mechanism of self-aligned <112> direction InAs nanowires growing is proposed and demonstrated by the transmission electron microscopy measurement. The morphology of InAs nanowires is tapered in diameter and exhibits a hexagonal cross-section. The defect-free InAs nanowire shows a pure zinc blende crystal structure and an epitaxial relationship with InP buffer layer.

  17. Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan

    2015-07-29

    The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a

  18. Tantalum as a buffer layer in diamond-like carbon coated artificial hip joints.

    PubMed

    Kiuru, Mirjami; Alakoski, Esa; Tiainen, Veli-Matti; Lappalainen, Reijo; Anttila, Asko

    2003-07-15

    The acid resistance of tantalum coated and uncoated human hip joint prostheses was studied with commercial CrCoMo acetabular cups. The samples were exposed to 10% HCl solution and the quantities of dissolved Cr, Co, and Mo were measured with proton-induced X-ray emission (PIXE). The absolute quantities were obtained with the use of Cr and Se solution standards. Tantalum coatings (thicknesses 4-6 microm) were prepared in vacuum with magnetron sputtering. Tantalum coating decreased the corrosion rate by a factor of 10(6). As a spinoff from recent wear tests on artificial hip joints it was shown that tantalum has excellent mechanical properties as an intermediate layer of diamond-like carbon (DLC) coatings. When tantalum was tested together with DLC on three metal-on-metal hip joint pairs in a hip simulator, no observable defects occurred during 15 million walking cycles with a periodic 50-300-kg load (Paul curve). PMID:12808604

  19. Enhanced adhesion buffer layer for deep x-ray lithography using hard x-rays.

    SciTech Connect

    De Carlo, F.

    1998-08-28

    The first step in the fabrication of microstructure using deep x-ray lithography (DXRL) is the irradiation of a x-ray sensitive resist like polymethylmethacrylate (PMMA) by hard x-rays. At the Advanced Photon Source, a dedicated beamline allows the proper exposure of very thick (several mm) resists. To fabricate electroformed metal microstructure with heights of several mm, a PMMA sheet is glued onto a metallic plating base. An important requirement is that the PMMA layer must adhere well to the plating base. The adhesion is greatly reduced by the penetration of even a small fraction of hard x-rays through the mask absorber into the substrate. In this work we will show a novel technique to improve the adhesion of PMMA onto high-Z substrates for DXRL. Results of the improved adhesion are shown for different exposure/substrate conditions.

  20. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Yang, Nam Chul; Lee, Jaeho; Song, Myung-Won; Ahn, Nari; Kim, Mu-Hyun; Lee, Songtaek; Doo Chin, Byung

    2007-08-01

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad™ of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process.

  1. High current density and high PVCR Si/Si 1-xGe x DQW RTD formed with quadruple-layer buffer

    NASA Astrophysics Data System (ADS)

    Maekawa, Hirotaka; Sano, Yoshihiro; Ueno, Chihiro; Suda, Yoshiyuki

    2007-04-01

    As a strain-relief relaxed Si 1-xGe x buffer that is used for type II band offset formation, we have proposed a quadruple-Si 1-xGe x-layer (QL) buffer where misfit dislocations are evenly distributed in the lower two interfaces and a buffer surface with good crystallinity was obtained. The crystallinity of the buffer surface does not degrade by high P doping with a P concentration of ˜10 19 cm -3 during the buffer growth. A vertical-type electron-tunneling Si/Si 1-xGe x resonant tunneling diode (RTD) formed with the highly P-doped QL buffer exhibits a high current density and a high peak-to-valley current ratio (PVCR) value. A planer-type electron-tunneling Si/ Si 1-xGe x RTD formed with the same buffer using tetramethyl ammonium hydroxide (TMAH) etching and polyimide insulator, which is better suited for device integration, also exhibits a high current density and a high PVCR value and good initial static performance reproducibility.

  2. Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Ive, Tommy

    2015-09-01

    Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.

  3. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-01

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts. PMID:27124605

  4. Investigation of CdZnS Buffer Layers on the Performance of CuInGaSe2 and CuGaSe2 Solar Cells

    SciTech Connect

    Song, J.; Li, S. S.; Chen, L.; Noufi, R.; Anderson, T. J.; Crisalle, O. D.

    2006-01-01

    Cu(In,Ga)Se{sub 2} (CIGS) and CuGaSe{sub 2} (CGS) solar cells were fabricated using Cd{sub 1-x}Zn{sub x}S (CdZnS) buffer layers prepared by chemical bath deposition (CBD) with relative Zn compositions in the CBD bath values of X{sub bath} = 0 (i.e., pure CdS), 0.1, 0.2, 0.3, 0.4, and 0.5. The cell performance parameters of CIGS and CGS films treated with a KCN solution were investigated and compared to cells without KCN treatment. It was found that absorber films treated with KCN etching prior to the buffer CBD step show an improved cell performance for both the CIGS and CGS cells deposited with either CdS or CdZnS buffer layer. A CIGS cell with CdZnS buffer layer of X{sub bath} = 0.2 produced a 13% AM1.5G conversion efficiency with higher V{sub oc}, J{sub sc}, and FF values as compared to the CdZnS/CIGS cells with different Zn contents. Results of photo- J-V and quantum efficiency (QE) measurements reveal that the CGS cell with CdZnS buffer layer of X{sub bath} = 0.3 performed better than the CGS cell deposited with a pure CdS buffer layer. This result is suggested as a result of an increased photocurrent at shorter wavelengths and a more favorable conduction band-offset at the CdZnS/CGS junction.

  5. The 1.1 micrometer and visible emission semiconductor diode lasers. [(AlGa)As lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Nuese, C. J.; Kressel, H.

    1978-01-01

    In (AlGa)As, the first of three alloy systems studied, Continuous Wave (CW) operation was obtained at room temperature at a wavelength as low as 7260 A. Reliability in this system was studied in the incoherent mode. Zinc doped devices had significant degradation, whereas Ge or Ge plus Zi doped devices had none. The Al2O3 facet coatings were shown to significantly reduce facet deterioration in all types of lasers, longer wavelength units of that type having accumulated (at the time of writing) 22,000 hours with little if any degradation. A CL study of thin (AlGa)As layers revealed micro fluctuation in composition. A macro-scale fluctuation was observed by electroreflectance. An experimental and theoretical study of the effect of stripe width on the threshold current was carried out. Emission below 7000 A was obtained in VPE grown Ga(AsP) (In,Ga)P with CW operation at 10 C. Lasers and LED's were made by LPE in (InGa) (AsP). Laser thresholds of 5 kA/cm2 were obtained, while LED efficiences were on the order of 2%. Incoherent life test over 6000 hours showed no degradation.

  6. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

    SciTech Connect

    Däubler, J. Passow, T.; Aidam, R.; Köhler, K.; Kirste, L.; Kunzer, M.; Wagner, J.

    2014-09-15

    Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown on metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.

  7. Ink-jet printing of SrTiO3 buffer layers from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pollefeyt, G.; Clerick, S.; Vermeir, P.; Feys, J.; Hühne, R.; Lommens, P.; Van Driessche, I.

    2014-09-01

    In this work, fully a-axis oriented SrTiO3 thin films were synthesized by ink-jet printing of water-based precursor inks. The developed precursor solution or ‘ink’ was optimized in terms of rheology, leading to the ejection of single droplets showing a maximum contact angle of 12° on (100) oriented single crystal LaAlO3 substrates. By using the appropriate ink-jet deposition parameters and thermal treatment, well-textured and dense SrTiO3 films of 130 nm thickness were obtained. The biaxial texture is maintained up to the surface of the films, leading to the formation of (h00)-oriented terraces. As shown by transmission electron microscopy, excellent texture transfer was achieved from the SrTiO3 film to the YBa2Cu3O7 - δ layer deposited by pulsed laser deposition. Outstanding superconducting properties were obtained with critical current densities up to 3.6 MA cm-2 in self-field at 77 K, demonstrating that these sustainable SrTiO3 films meet the requirements to be used as growing template for high quality superconducting coatings.

  8. EXAMINATION OF DISLOCATIONS IN LATTICE-MISMATCHED GaInAs/BUFFER LAYER/GaAs FOR III-V PHOTOVOLTAICS

    SciTech Connect

    Levander, A.; Geisz, J.

    2007-01-01

    Dislocations act as sites for nonradiative electron/hole pair recombination, which reduces the effi ciency of photovoltaics. Lattice-matched materials can be grown on top of one another without forming a high density of dislocations. However, when the growth of lattice-mismatched (LMM) materials is attempted, many dislocations result from the relaxation of strain in the crystal structure. In an attempt to reduce the number of dislocations that propagate into a solar device when using LMM materials, a compositionally step-graded buffer is placed between the two LMM materials. In order to confi ne the dislocations to the buffer layer and therefore increase material quality and device effi ciency, the growth temperature and thickness of the buffer layer were varied. A GaInP compositionally graded buffer and GaInAs p-n junction were grown on a GaAs substrate in a metal-organic chemical vapor deposition (MOCVD) system. A multibeam optical stress sensor (MOSS) and X-ray diffraction (XRD) were used to characterize the strain in the epilayers. Electrical and optoelectronic properties were measured using a probe station and multimeter setup, solar simulator, and a quantum effi ciency instrument. It was determined that device functionality was highly dependent on the growth temperature of the graded buffer. As growth temperature increased, so did the dislocation density in the device despite an increase in the dislocation velocity, which should have increased the dislocation annihilation rate and the diffusion of dislocations to the edge of the crystal. The thickness of the graded buffer also affected device effi ciency with thinner samples performing poorly. The thinner graded buffer layers had high internal resistances from reduced carrier concentrations. In terms of effi ciency, the empirically derived recipe developed by the scientists at the National Renewable Energy Laboratory (NREL) produced the highest quality cells.

  9. Improvement of Performance and Stability of Polymer Photovoltaic Cells by WO3/CUPC as Anode Buffer Layers

    NASA Astrophysics Data System (ADS)

    Varnamkhasti, M. G.; Shahriaria, E.

    2015-05-01

    In this work, bulk-hetrojunction polymer photovoltaic cells based on poly-(3-hexylthiophene) (P3HT): [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were fabricated with tungsten oxide (WO3) and copper phthalocyanine (CuPc) as anodic buffer layers. The WO3 plays an important role in reducing the interfacial resistance, efficiently extracting holes and good band structure matching between the work function of the anode and the highest occupied molecular orbital of the organic material. The insertion of CuPc improves the device In this work, bulk-hetrojunction polymer photovoltaic cells based on poly-(3-hexylthiophene) (P3HT): [6, 6]-phenyl C61 butyric acid methylester (PCBM) were fabricated with tungsten oxide (WO3) and copper phthalocyanine (CuPc) as anodic buffer layers. The WO3 plays animportant role in reducing the interfacial resistance, efficiently extracting holes and good band structure matching between the workfunction of the anode and the highest occupied molecular orbital of the organic material. The insertion of CuPc improves the device performance and expands the absorption spectra range of the photovoltaic devices. The effects of WO3 and CuPc thickness on the performance of the photovoltaic devices were investigated. The optimum thicknesses of WO3 and CuPc were 10 nm and 8 nm, respectively. The obtained power conversion efficiency of optimized cell was about 4.21%. Also, the device performance was analyzed based on thesurface roughness of bare ITO and ITO that was covered with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) or WO3/CuPc. The device stability in an ambient atmosphere without encapsulation under continuous light irradiation was also investigated.For the cell with PEDOT:PSS, the power conversion efficiency reduced down to 50% of the maximum value (half-life) after light irradiation for 12 h, while the half-life of device for WO3/CuPc was about 120 h. Therefore, the lifetime of unpackaged devices was improved with

  10. High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer

    SciTech Connect

    Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.

    2011-12-23

    High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, {mu}-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO{sub InN} and LO{sub InN} modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.

  11. Improved dielectric properties of lead zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers

    NASA Astrophysics Data System (ADS)

    Zou, Q.; Ruda, H. E.; Yacobi, B. G.

    2001-02-01

    Improved dielectric properties of lead zirconate titanate (PZT) films deposited on a variety of foils using buffer layers are reported. Foils include titanium, stainless steel, and nickel with LaNiO3(LNO) buffer layers which were prepared by sol-gel processing. High dielectric constant (330 for stainless steel, 420 for titanium, and 450 for nickel foils), low dielectric loss (<2.2% for titanium and 8% for stainless steel), symmetric ferroelectric C-V characteristics and P-E curves were obtained. The LNO layers are shown to provide an effective diffusion barrier for Ni and Cr and to restrict oxide layer formation (i.e., TiOx or NiOx) between the PZT film and the metallic foils during annealing in air.

  12. Impact of CoFe buffer layers on the structural and electronic properties of the Co2MnSi/MgO interface

    NASA Astrophysics Data System (ADS)

    Fetzer, Roman; Liu, Hong-xi; Stadtmüller, Benjamin; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2016-05-01

    The latest improvement of MgO-based magnetic tunnel junctions has been achieved by the combination of CoFe buffer layers and potentially half-metallic ultrathin Co2MnSi electrodes. By this, tunnel magnetoresistance ratios of almost 2000% could be obtained. However, a complete understanding of the underlying processes leading to this enhancement is not yet given. We present a comprehensive study regarding the structural and electronic spin properties of the CoFe(30 nm)-buffered Co2MnSi(3 nm)/MgO(2 nm) buried interface identical to the one formed in actual devices. Low energy electron diffraction experiments show that the ultrathin Co2MnSi layer adopts the lattice constant of the underlying CoFe buffer layer, leading to improved structural conditions at the interface to MgO. In contrast, the Co2MnSi/MgO interface spin polarization at the Fermi level is not affected by the magnetic CoFe buffer layer, as found by interface-sensitive spin-resolved extremely low energy photoemission spectroscopy.

  13. High-power SiC MESFET using a dual p-buffer layer for an S-band power amplifier

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Chuan; Sun, He; Rao, Cheng-Yuan; Zhang, Bo

    2013-01-01

    A silicon carbide (SiC) based metal semiconductor field effect transistor (MESFET) is fabricated by using a standard SiC MESFET structure with the application of a dual p-buffer layer and a multi-recessed gate to the process for an S-band power amplifier. The lower doped upper-buffer layer serves to maintain the channel current, while the higher doped lower-buffer layer is used to provide excellent electron confinement in the channel layer. A 20-mm gate periphery SiC MESFET biased at a drain voltage of 85 V demonstrates a pulsed wave saturated output power of 94 W, a linear gain of 11.7 dB, and a maximum power added efficiency of 24.3% at 3.4 GHz. These results are improved compared with those of the conventional single p-buffer MESFET fabricated in this work using the same process. A radio-frequency power output greater than 4.7 W/mm is achieved, showing the potential as a high-voltage operation device for high-power solid-state amplifier applications.

  14. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers

    PubMed Central

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11–22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1–100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  15. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers

    NASA Astrophysics Data System (ADS)

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-01

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  16. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  17. Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions.

    PubMed

    Wang, Zhihua; Liu, Fang; Lu, Chao

    2012-01-01

    In this work, serving as supports in immobilizing luminol reagent, catalysts of luminol chemiluminescence (CL), and buffer solutions for the CL reaction, Mg-Al-CO(3) layered double hydroxides (LDHs) were found to trigger luminol CL in weak acid solutions (pH 5.8). The silica sol-gel with glucose oxidase and horseradish peroxidase was immobilized in the first half of the inside surface of a clear quartz tube, and luminol-hybrid Mg-Al-CO(3) LDHs were packed in the second half. Therefore, a novel CL flow-through biosensor for glucose was constructed in weak acid solutions. The CL intensity was linear with glucose concentration in the range of 0.005-1.0mM, and the detection limit for glucose (S/N=3) was 0.1 μM. The proposed biosensor exhibited excellent stability, high reproducibility and high selectivity for the determination of glucose and has been successfully applied to determine glucose in human plasma samples with satisfactory results. The success of this work has broken the bottleneck of the pH incompatibility between luminol CL and enzyme activity. PMID:22770831

  18. Magnetic properties of nano-patterned GaMnAs films grown on ZnCdSe buffer layers

    NASA Astrophysics Data System (ADS)

    Dong, Sining; Li, Xiang; Kanzyuba, Vasily; Yoo, Taehee; Liu, Xinyu; Dobrowolska, Malgorzata; Furdyna, Jacek

    Magnetic semiconductor nanostructures are attracting intense attention, both because of their fundamental physical properties, and because of the promise which they hold for building smaller, faster and more energy-efficient devices. In this study we report successful MBE growth of GaMnAs films on the GaAs (100) substrates with ZnCdSe buffer layers, which results in perpendicular magnetic easy axis in the GaMnAs films. The GaMnAs/ZnCdSe films have been etched into nano-stripe shapes with various widths below 200nm by e-beam lithography, which resulted in a new geometry of interest for perpendicular magnetic recording. Magnetic anisotropy of as-grown GaMnAs films and nano-stripes was then studied by SQUID magnetometry. The results indicate that the GaMnAs films consist of magnetic domains with magnetization normal to the film plane, having rather high coercivety, which survives after nanofabrication. This is also confirmed by the dynamics of the domain motion as shown by AC susceptibility measurements. These findings are of interest for understanding the magnetic anisotropy mechanisms in GaMnAs and its domain structures, as well as for designing of nano-sized spintronic devices which require hard ferromagnetic behavior with perpendicular easy axes. This work was supported by the National Science Foundation Grant DMR1400432.

  19. Characterization of Zn(O,S) Buffer Layers for Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Choi, Ji Hyun; Jung, Sung Hee; Chung, Chee Won

    2016-05-01

    Zn(O,S) thin films were deposited using a ZnS target under Ar/O2 gases by radio-frequency magnetron sputtering. As the O2 concentration increased, the deposition rates of the Zn(O,S) films decreased due to increase of O-. The crystalline structure of Zn(O,S) was maintained at up to 0.6% O2, while the films became unstable at the condition exceeding 0.8% O2. This was attributed to incomplete nucleation and film growth on the substrate at the room temperature. Additionally, optical emission spectroscopy analysis indicated that an increased O- intensity at high O2 concentration was responsible for the slow deposition rate and increased oxygen concentration of the films. X-ray diffraction and scanning electron microscopy revealed the formation of a Zn(O,S) crystal structure with partial substitution of O for S and uniform and dense grains of the films. X-ray photoelectron spectroscopy showed that the Zn(O,S) films have a uniform composition of each element and consisted of a mixed crystal structure of Zn(O,S) with Zn-O bonding. Overall, the results of this study confirmed that Zn(O,S) films deposited by radio-frequency sputtering using Ar/O2 gas at room temperature can be applied to Cu(In,Ga)Se2 solar cells as a buffer layer. PMID:27483934

  20. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    NASA Astrophysics Data System (ADS)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and <1\\bar{1}0>CdTe//<1\\bar{1}0>Ge//{< \\bar{1}10> }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  1. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  2. Tuning the interfacial hole injection barrier between p-type organic materials and Co using a MoO{sub 3} buffer layer

    SciTech Connect

    Wang Yuzhan; Wee, Andrew T. S.; Cao Liang; Qi Dongchen; Chen Wei; Gao Xingyu

    2012-08-01

    We demonstrate that the interfacial hole injection barrier {Delta}{sub h} between p-type organic materials (i.e., CuPc and pentacene) and Co substrate can be tuned by the insertion of a MoO{sub 3} buffer layer. Using ultraviolet photoemission spectroscopy, it was found that the introduction of MoO{sub 3} buffer layer effectively reduces the hole injection barrier from 0.8 eV to 0.4 eV for the CuPc/Co interface, and from 1.0 eV to 0.4 eV for the pentacene/Co interface, respectively. In addition, by varying the thickness of the buffer, the tuning effect of {Delta}{sub h} is shown to be independent of the thickness of MoO{sub 3} interlayer at both CuPc/Co and pentacene/Co interfaces. This Fermi level pinning effect can be explained by the integer charge-transfer model. Therefore, the MoO{sub 3} buffer layer has the potential to be applied in p-type organic spin valve devices to improve the device performance via reducing the interfacial hole injection barrier.

  3. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Brubaker, Matt D.; Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A.; Bright, Victor M.

    2011-09-01

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  4. Reduction in edge dislocation density in corundum-structured α-Ga2O3 layers on sapphire substrates with quasi-graded α-(Al,Ga)2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Jinno, Riena; Uchida, Takayuki; Kaneko, Kentaro; Fujita, Shizuo

    2016-07-01

    Efforts have been made to reduce the density of defects in corundum-structured α-Ga2O3 thin films on sapphire substrates by applying quasi-graded α-(Al x Ga1‑ x )2O3 buffer layers. Transmission electron microscopy images revealed that most strains were located in the α-(Al x Ga1‑ x )2O3 buffer layers, and that the total density of dislocations in the α-Ga2O3 thin films was successfully decreased by more than one order of magnitude compared with that without buffer layers, that is, the screw and edge dislocation densities were about 3 × 108 and 6 × 108 cm‑2, respectively.

  5. MoO3 as a Cathode Buffer Layer Material for the Improvement of Planar pn-Heterojunction Organic Solar Cell Performance

    NASA Astrophysics Data System (ADS)

    Kageyama, Hiroshi; Kajii, Hirotake; Ohmori, Yutaka; Shirota, Yasuhiko

    2011-03-01

    The use of MoO3 as a cathode buffer layer inserted between LiF and Al improved the power conversion efficiency (PCE) of planar pn-heterojunction organic solar cells (OSCs) by reducing exciton quenching at the interface between the n-type organic active layer and the electrode. The cell using an amorphous molecular material, tris[4-(5-phenylthiophen-2-yl)phenyl]amine, as a p-type organic semiconductor, C70 as an n-type organic semiconductor and MoO3 as a cathode buffer layer exhibited a PCE of 3.3% under AM1.5G illumination (100 mW cm-2), which is of the highest level among those for planar pn-heterojunction OSCs using amorphous molecular materials as donor materials.

  6. Realization of high quality epitaxial current- perpendicular-to-plane giant magnetoresistive pseudo spin-valves on Si(001) wafer using NiAl buffer layer

    NASA Astrophysics Data System (ADS)

    Chen, Jiamin; Liu, J.; Sakuraba, Y.; Sukegawa, H.; Li, S.; Hono, K.

    2016-05-01

    In this letter, we report a NiAl buffer layer as a template for the integration of epitaxial current-perpendicular-plane-giant magnetoresistive (CPP-GMR) devices on a Si(001) single crystalline substrate. By depositing NiAl on a Si wafer at an elevated temperature of 500 °C, a smooth and epitaxial B2-type NiAl(001) layer was obtained. The surface roughness was further improved by depositing Ag on the NiAl layer and applying subsequent annealing process. The epitaxial CPP-GMR devices grown on the buffered Si(001) substrate present a large magnetoresistive output comparable with that of the devices grown on an MgO(001) substrate, demonstrating the possibility of epitaxial spintronic devices with a NiAl templated Si wafer for practical applications.

  7. Fractal analysis and atomic force microscopy measurements of surface roughness for Hastelloy C276 substrates and amorphous alumina buffer layers in coated conductors

    NASA Astrophysics Data System (ADS)

    Feng, F.; Shi, K.; Xiao, S.-Z.; Zhang, Y.-Y.; Zhao, Z.-J.; Wang, Z.; Wei, J.-J.; Han, Z.

    2012-02-01

    In coated conductors, surface roughness of metallic substrates and buffer layers could significantly affect the texture of subsequently deposited buffer layers and the critical current density of superconductor layer. Atomic force microscopy (AFM) is usually utilized to measure surface roughness. However, the roughness values are actually relevant to scan scale. Fractal geometry could be exerted to analyze the scaling performance of surface roughness. In this study, four samples were prepared, which were electro polished Hastelloy C276 substrate, mechanically polished Hastelloy C276 substrate and the amorphous alumina buffer layers deposited on both the substrates by ion beam deposition. The surface roughness, described by root mean squared (RMS) and arithmetic average (Ra) values, was analyzed considering the scan scale of AFM measurements. The surfaces of amorphous alumina layers were found to be fractal in nature because of the scaling performance of roughness, while the surfaces of Hastelloy substrates were not. The flatten modification of AFM images was discussed. And the calculation of surface roughness in smaller parts divided from the whole AFM images was studied, compared with the results of actual AFM measurements of the same scan scales.

  8. Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode.

    PubMed

    Bush, Kevin A; Bailie, Colin D; Chen, Ye; Bowring, Andrea R; Wang, Wei; Ma, Wen; Leijtens, Tomas; Moghadam, Farhad; McGehee, Michael D

    2016-05-01

    A sputtered oxide layer enabled by a solution-processed oxide nanoparticle buffer layer to protect underlying layers is used to make semi-transparent perovskite solar cells. Single-junction semi-transparent cells are 12.3% efficient, and mechanically stacked tandems on silicon solar cells are 18.0% efficient. The semi-transparent perovskite solar cell has a T 80 lifetime of 124 h when operated at the maximum power point at 100 °C without additional sealing in ambient atmosphere under visible illumination. PMID:26880196

  9. Pulsed laser deposition of hydroxyapatite thin films on Ti-5Al-2.5Fe substrates with and without buffer layers

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Ristoscu, C.; Chiritescu, C.; Ghica, C.; Mihailescu, I. N.; Pelletier, H.; Mille, P.; Cornet, A.

    2000-12-01

    We present a method for processing hydroxyapatite (HA) thin films on Ti-5Al-2.5Fe substrates. The films were grown by pulsed laser deposition (PLD) in vacuum at room temperature, using a KrF∗ excimer laser. The amorphous as-deposited HA films were recrystallized in ambient air by a thermal treatment at 550°C. The best results have been obtained when inserting a buffer layer of ceramic materials (TiN, ZrO2 or Al2O3). The films were characterized by complementary techniques: grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), cross-section transmission electron microscopy (XTEM), SAED, energy dispersive X-ray spectroscopy (EDS) and nanoindentation. The samples with buffer interlayer preserve the stoichiometry are completely recrystallized and present better mechanical characteristics as compared with that without buffer interlayer.

  10. Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique

    SciTech Connect

    Lee, S. W.; Minegishi, T.; Lee, W. H.; Goto, H.; Lee, H. J.; Lee, S. H.; Lee, Hyo-Jong; Ha, J. S.; Goto, T.; Hanada, T.; Cho, M. W.; Yao, T.

    2007-02-05

    Strain-free freestanding GaN layers were prepared by in situ lift-off process using a ZnO buffer as a sacrificing layer. Thin Zn-polar ZnO layers were deposited on c-plane sapphire substrates, which was followed by the growth of Ga-polar GaN layers both by molecular beam epitaxy (MBE). The MBE-grown GaN layer acted as a protecting layer against decomposition of the ZnO layer and as a seeding layer for GaN growth. The ZnO layer was completely in situ etched off during growth of thick GaN layers at low temperature by hydride vapor phase epitaxy. Hence freestanding GaN layers were obtained for the consecutive growth of high-temperature GaN thick layers. The lattice constants of freestanding GaN agree with those of strain-free GaN bulk. Extensive microphotoluminescence study indicates that strain-free states extend throughout the high-temperature grown GaN layers.

  11. Effect of Dual Cathode Buffer Layer on the Charge Carrier Dynamics of rrP3HT:PCBM Based Bulk Heterojunction Solar Cell.

    PubMed

    Singh, Ashish; Dey, Anamika; Das, Dipjyoti; Iyer, Parameswar Krishnan

    2016-05-01

    In bulk heterojunction (BHJ) solar cells, the buffer layer plays a vital role in enhancing the power conversion efficiency (PCE) by improving the charge carrier dynamics. A comprehensive understanding of the contacts is especially essential in order to optimize the performance of organic solar cells (OSCs). Although there are several fundamental reports on this subject, a proper correlation of the physical processes with experimental evidence at the photoactive layer and contact materials is essential. In this work, we incorporated three different additional buffer layers, namely, tris(8-hydroxyquinolinato) aluminum (Alq3), bathophenanthroline (BPhen) or bathocuproine (BCP) with LiF/Al as conventional cathode contact in both rrP3HT:PC61BM and rrP3HT:PC71BM blend BHJ solar cells and their corresponding photovoltaic performances were systematically correlated with their energy level diagram. The device with dual cathode buffer layer having ITO/PEDOT:PSS/blend polymer/BCP/LiF/Al configuration showed the best device performance with PCE, η = 4.96%, Jsc = 13.53 mA/cm(2), Voc = 0.60 V and FF= 61% for rrP3HT:PC71BM and PCE, η = 4.5% with Jsc = 13.3 mA/cm(2), Voc = 0.59 V and FF = 59% for rrP3HT:PC61BM. This drastic improvement in PCE in both the device configurations are due to the combined effects of better hole-blocking capacity of BCP and low work function provided by LiF/Al with the blend polymer. These results successfully explain the role of dual cathode buffer layers and their contribution to the PCE improvement and overall device performance with rrP3HT:PCBM based BHJ solar cell. PMID:27075007

  12. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    PubMed

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer. PMID:26135943

  13. Effects of buffer layer and back-surface field on MBE-grown InGaAsP/InGaAs solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Yuanyuan; Ji, Lian; Dai, Pai; Tan, Ming; Lu, Shulong; Yang, Hui

    2016-02-01

    Solid-state molecular beam epitaxy (MBE)-grown InGaAsP/InGaAs dual-junction solar cells on InP substrates are reported. An efficiency of 10.6% under 1-sun AM1.5 global light intensity is realized for the dual-junction solar cell, while the efficiencies of 16.4 and 12.3% are reached for the top InGaAsP and bottom InGaAs cells, respectively. The effects of the buffer layer and back-surface field on the performance of solar cells are discussed. High device performance is achieved in the case of a low concentration of oxygen and weak recombination when InGaAs buffers and InP back-surface field layers are used, respectively.

  14. Optical, structural, and chemical properties of flash evaporated In{sub 2}S{sub 3} buffer layer for Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect

    Verma, Rajneesh; Chirila, Adrian; Guettler, Dominik; Perrenoud, Julian; Pianezzi, Fabian; Tiwari, Ayodhya N.; Datta, Debjit; Kumar, Satyendra; Mueller, Ulrich

    2010-10-15

    In{sub 2}S{sub 3} layers were deposited by flash evaporation technique with varying flash rates. The optical constants of layers based on Tauc-Lorentz model dielectric function were extracted from spectroscopic ellipsometry measurements. X-ray photoelectron spectroscopic investigation revealed the presence of oxygen impurity in as-deposited and air-annealed layers with traces of Na inclusion in the layer grown at high flash rate. The enhancement in crystalline arrangement of as-deposited layer after air annealing was confirmed by Raman spectroscopy. Rutherford backscattering measurements revealed the growth of off-stoichiometric layers at all flash rates. An analytical layer growth model has been proposed supporting the results obtained by various layer characterization techniques. The solar cells were prepared with flash evaporated In{sub 2}S{sub 3} buffer layers and their performances were compared with CdS reference solar cell. A significant gain in short-circuit current was obtained after air annealing of the complete device at 200 deg. C for 20 min. A maximum conversion efficiency of 12.6% was delivered by a high flash rate In{sub 2}S{sub 3} buffered cell with open-circuit voltage close to that of CdS reference cell. The improvement in device performance after air annealing treatment is explained by thermally enhanced Cu and oxygen diffusion from Cu(In,Ga)Se{sub 2} and i-ZnO to In{sub 2}S{sub 3} layer, respectively.

  15. Rapid deposition of biaxially-textured CeO 2 buffer layers on polycrystalline nickel alloy for superconducting tapes by ion assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Xiong, Xuming; Winkler, Dag

    2000-07-01

    The long deposition time of sharply textured buffer layer was the main obstacle for the ion beam assisted deposition (IBAD) process to go to large scale fabrication of superconducting tapes. This paper shows that this obstacle can be overcome. (002)-oriented, sharply-textured CeO 2 buffer layers with (111) phi-scan full width of half maximum (FWHM) of 10° were deposited by ion beam assisted pulsed laser deposition (PLD) on polycrystalline Hastelloy C in 10 min. The deposition rate was about 3 nm/s. CeO 2 film surface was smooth and free of cracks compared with film by inclined substrate deposition (ISD). The IBAD was carried out at small ion-to-atom ratio values, which resulted in CeO 2 (200) plane aligned along the incident plane of the ion beam. The Jc of Y 1Ba 2Cu 3O 7- δ (YBCO) film deposited on the buffer layer was 7.3×10 5 A/cm 2.

  16. Highly Reliable 0.15 μm/14 F2 Cell Ferroelectric Random Access Memory Capacitor Using SrRuO3 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Heo, Jang‑Eun; Bae, Byoung‑Jae; Yoo, Dong‑Chul; Nam, Sang‑Don; Lim, Ji‑Eun; Im, Dong‑Hyun; Joo, Suk‑Ho; Jung, Yong‑Ju; Choi, Suk‑Hun; Park, Soon‑Oh; Kim, Hee‑Seok; Chung, U‑In; Moon, Joo‑Tae

    2006-04-01

    We investigated a novel technique of modifying the interface between a Pb(ZrxTi1-x)O3 (PZT) thin film and electrodes for high density 64 Mbit ferroelectric random access memory (FRAM) device. Using a SrRuO3 buffer layer, we successfully developed highly reliable 0.15 μm/14 F2 cell FRAM capacitors with 75-nm-thick polycrystalline PZT thin films. The SrRuO3 buffer layer greatly enhanced ferroelectric characteristics due to the decrease in interfacial defect density. In PZT capacitors with a total thickness of 180 nm for whole capacitor stack, a remnant polarization of approximately 42 μC/cm2 was measured with a 1.4 V operation. In addition, an opposite state remnant polarization loss of less than 15% was observed after baking at 150 °C for 100 h. In particular, we found that the SrRuO3 buffer layer also played a key role in inhibiting the diffusion of Pb and O from the PZT thin films.

  17. β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector

    NASA Astrophysics Data System (ADS)

    Liu, X. Z.; Guo, P.; Sheng, T.; Qian, L. X.; Zhang, W. L.; Li, Y. R.

    2016-01-01

    Gallium oxide thin films were grown on c-plane sapphire substrate by molecular beam epitaxy. The homo-self-templated buffer layer was introduced for the gallium oxide thin film growth, and accordingly the FWHM of the on-axis (2 bar 0 1) β-Ga2O3 diffraction peak of the X-ray diffraction rocking curve was reduced from 1.9° to 0.9°, proving an improvement in the crystalline quality of β-Ga2O3 thin film. In addition, the planar-geometry metal-semiconductor-metal photoconductive detectors (PDs) were manufactured by using the 100 nm β-Ga2O3 thin films. Accordingly, the PDs based on the β-Ga2O3 thin films with homo-self-templated buffer layer performed obviously improved device properties, such as small dark current of 0.04 nA, high photo- to dark- current ratio in the order of 104, large photoresponsivity of 259 A/W, high external quantum efficiency of 7.9 × 104%, weak persistent photoconductivity, and excellent solar-blind UV responsivity. Hence, it is reasonable to believe that the β-Ga2O3 thin film grown with homo-self-templated buffer layer is a promising candidate for the application in solar-blind UV camera.

  18. Preparation of La-modified PbTiO3 thin films on the oxide buffer layers with NaCl-type structure

    NASA Astrophysics Data System (ADS)

    Fujii, Satoru; Tomozawa, Atsushi; Fujii, Eiji; Torii, Hideo; Takayama, Ryoichi; Hirao, Takashi

    1994-09-01

    La-modified PbTiO3(PLT: Pb0.9La0.1Ti0.975O3) thin films by rf magnetron sputtering were prepared on the preferred (100)-oriented oxide buffer layers with NaCl-type structure, which were prepared by plasma-enhanced metalorganic chemical vapor deposition. Fused silica, (111)Si, soda-lime glass, and stainless steel were used as the substrates to prepare the oxide buffer layers. The c-axis and a-axis preferred oriented PLT thin films were obtained on the buffer layer, independent of the kind of substrate. Further, highly c-axis oriented PLT thin films were obtained when the substrate had a large thermal expansion coefficient. Significant pyroelectric currents were detected without a poling treatment. The NiCr/PLT/(100)Pt/(100)MgO/stainless steel structure had a dielectric constant of 250, a dielectric loss factor tan δ of 0.8%, and a pyroelectric coefficient of 3.8×10-4 C/m2 K.

  19. Non-Stoichiometric Amorphous Indium Selenide Thin Films as a Buffer Layer for CIGS Solar Cells with Various Temperatures in Rapid Thermal Annealing.

    PubMed

    Yoo, Myoung Han; Kim, Nam-Hoon

    2016-05-01

    The conventional structure of most of copper indium gallium diselenide (Culn(1-x)Ga(x)Se2, CIGS) solar cells includes a CdS thin film as a buffer layer. Cd-free buffer layers have attracted great interest for use in photovoltaic applications to avoid the use of hazardous and toxic materials. The RF magnetron sputtering method was used with an InSe2 compound target to prepare the indium selenide precursor. Rapid thermal annealing (RTA) was conducted in ambient N2 gas to control the concentration of volatile Se from the precursor with a change in temperature. The nature of the RTA-treated indium selenide thin films remained amorphous under annealing temperatures of ≤ 700 degrees C. The Se concentration of the RTA-treated specimens demonstrated an opposite trend to the annealing temperature. The optical transmittance and band gap energies were 75.33% and 2.451-3.085 eV, respectively, and thus were suitable for the buffer layer. As the annealing temperature increased, the resistivity decreased by an order-of-magnitude from 10(4) to 10(1) Ω-cm. At lower Se concentrations, the conductivity abruptly changed from p-type to n-type without crystallite formation in the amorphous phase, with the carrier concentration in the order of 10(17) cm(-3). PMID:27483873

  20. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

    PubMed

    Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi

    2016-07-20

    We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability. PMID:27349330

  1. Comparative research on reflection-mode GaAs photocathode with graded AlxGa1-xAs buffer layer

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Shen, Yang; Zhang, Shuqin; Qian, Yunsheng; Xu, Sunan

    2015-11-01

    The graded Al compositional AlxGa1-xAs buffer layer can not only form continuous internal electric field from buffer layer to active layer but also optimize the interface properties by decreasing the misfit dislocations and stacking faults arising from lattice mismatch. By measuring the spectral response current (SRC) for two reflection-mode (r-mode) designed samples of graded and stationary Al compositional structure, we can find the special phenomenon that the graded structure had quite influence at the middle wavelength band from 550 nm to 850 nm, but not the short wavelength band from 400 nm to 550 nm, though the buffer layer can only absorb photon energy at the short wavelength band. Through the comparative research for designed samples through SPV before Cs-O activation and SRC after Cs-O activation, the graded structure can well optimize the key parameters such as LD, Ln, Sv and P. For the photon absorption lengths are relative little at the short wavelength band and relative long at the middle wavelength band, so the optimizations of key parameters have little influence on photo-excited electrons at the short wavelength band which are mainly excited from the region in active layer near surface barriers. The optimizations of key parameter, mainly the back interface recombination velocity (Sv), can have quite impact on photo-excited electrons at the middle short wavelength band which are mainly excited from the internal active layer near the back interface. This comparative research can help to well study the photo-emission theory and structure design on graded Al compositional design for r-mode GaAs photocathodes in the future research.

  2. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  3. Tunable work function of a WO{sub x} buffer layer for enhanced photocarrier collection of pin-type amorphous silicon solar cells

    SciTech Connect

    Fang Liang; Baik, Seung Jae; Kang, Sang Jung; Seo, Jung Won; Jeon, Jin-Wan; Lim, Koeng Su; Kim, Jeong Won; Kim, Yoon Hak

    2011-05-15

    An in situ postdeposition ultraviolet treatment was proposed to improve the electrical properties of a tungsten oxide (WO{sub x}) buffer layer of pin-type amorphous silicon-based solar cell. Based on the x-ray and ultraviolet photoelectron spectroscopy and the activation energy measurements, it was found that the work function of WO{sub x} is tunable by ultraviolet light treatment, and the collection performance of solar cells incorporating WO{sub x} with the lower work function is further improved. Moreover, the optimal band alignment scheme for a window layer is discussed in terms of obtaining enhanced carrier collection without open circuit voltage degradation.

  4. Control of metamorphic buffer structure and device performance of InxGa1-xAs epitaxial layers fabricated by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nguyen, H. Q.; Yu, H. W.; Luc, Q. H.; Tang, Y. Z.; Phan, V. T. H.; Hsu, C. H.; Chang, E. Y.; Tseng, Y. C.

    2014-12-01

    Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique’s precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (˜106 cm-2), while keeping each individual SG layer slightly exceeding the critical thickness (˜80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 1012 eV-1 cm-2 in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

  5. IR spectroscopy of lattice vibrations and comparative analysis of the ZnTe/CdTe quantum-dot superlattices on the GaAs substrate and with the ZnTe and CdTe buffer layers

    SciTech Connect

    Kozyrev, S. P.

    2009-07-15

    A comparative analysis of multiperiod ZnTe/CdTe superlattices with the CdTe quantum dots grown by molecular beam epitaxy on the GaAs substrate with the ZnTe and CdTe buffer layers is carried out. The elastic-stress-induced shifts of eigenfrequencies of the modes of the CdTe- and ZnTe-like vibrations of materials forming similar superlattices but grown on different buffer ZnTe and CdTe layers are compared. The conditions of formation of quantum dots in the ZnTe/CdTe superlattices on the ZnTe and CdTe buffer layers differ radically.

  6. Structural and electrical properties of Pb(Zr,Ti)O3 thin films on NiCr substrate modified by LaNiO3 and PbTiO3 buffer layers

    NASA Astrophysics Data System (ADS)

    He, Liang; Cheng, Jinrong; Meng, Zhongyan

    2004-12-01

    Ferroelectric Pb(Zr,Ti)O3 (PZT) thin films were deposited onto the NiCr (NC) substrate by using sol-gel techniques. LaNiO3 (LNO) and PbTiO3 (PT) buffer layers have been introduced to grow single-phase perovskite PZT thin films at the lower temperature of 550°C. The (110) preferred orientation of PZT thin films was favored using LNO and PT buffer layers. Dielectric constant and remnant polarization of PZT thin films on NC with a LNO buffer layer achieved ~ 430 and 13 μC/cm2 respectively. The ferroelectric P-E loops of PZT thin films were shifted towards the positive field by introducing LNO buffer layers. In addition, the coercive field and internal bias field increased with increasing the thickness of LNO layer.

  7. Ambipolar organic heterojunction transistors based on F16CuPc/CuPc with a MoO3 buffer layer

    NASA Astrophysics Data System (ADS)

    Mingdong, Yi; Ning, Zhang; Linghai, Xie; Wei, Huang

    2015-10-01

    We fabricated heterojunction organic field-effect transistors (OFETs) using copper phthalocyanine (CuPc) and hexadecafluorophtholocyaninatocopper (F16CuPc) as hole transport layer and electron transport layer, respectively. Compared with F16CuPc based OFETs, the electron field-effect mobility in the heterojunction OFETs increased from 3.1 × 10-3 to 8.7 × 10-3 cm2/(V·s), but the p-type behavior was not observed. To enhanced the hole injection, we modified the source-drain electrodes using the MoO3 buffer layer, and the hole injection can be effectively improved. Eventually, the ambipolar transport characteristics of the CuPc/F16CuPc based OFETs with a MoO3 buffer layer were achieved, and the field-effect mobilities of electron and hole were 2.5 × 10-3 and 3.1 × 10-3 cm2/(V·s), respectively. Project supported by the National Natural Science Foundation of China (Nos. 61475074, 61204095).

  8. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells.

    PubMed

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-21

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells. PMID:27124650

  9. Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer

    SciTech Connect

    Wang, W.; Leung, K. K.; Fong, W. K.; Wang, S. F.; Surya, C.; Hui, Y. Y.; Lau, S. P.; Chen, Z.; Shi, L. J.; Cao, C. B.

    2012-05-01

    We report on the systematic investigation of optoelectronic properties of tin (IV) sulfide (SnS) van der Waals epitaxies (vdWEs) grown by molecular beam epitaxy (MBE) technique. Energy band simulation using commercial CASTEP code indicates that SnS has an indirect bandgap of size 0.982 eV. Furthermore, our simulation shows that elemental Cu can be used as a p-type dopant for the material. Growth of high quality SnS thin films is accomplished by MBE technique using graphene as the buffer layer. We observed significant reduction in the rocking curve FWHM over the existing published values. Crystallite size in the range of 2-3 {mu}m is observed which is also significantly better than the existing results. Measurement of the absorption coefficient, {alpha}, is performed using a Hitachi U-4100 Spectrophotometer system which demonstrate large values of {alpha} of the order of 10{sup 4} cm{sup -1}. Sharp cutoff in the values of {alpha}, as a function of energy, is observed for the films grown using a graphene buffer layer indicating low concentration of localized states in the bandgap. Cu-doping is achieved by co-evaporation technique. It is demonstrated that the hole concentration of the films can be controlled between 10{sup 16} cm{sup -3} and 5 x 10{sup 17}cm{sup -3} by varying the temperature of the Cu K-cell. Hole mobility as high as 81 cm{sup 2}V{sup -1}s{sup -1} is observed for SnS films on graphene/GaAs(100) substrates. The improvements in the physical properties of the films are attributed to the unique layered structure and chemically saturated bonds at the surface for both SnS and the graphene buffer layer. Consequently, the interaction between the SnS thin films and the graphene buffer layer is dominated by van der Waals force and structural defects at the interface, such as dangling bonds or dislocations, are substantially reduced.

  10. Preparation of Bi2Sr2CaCu2Oy films on alumina substrates with a CuAl2O4 buffer layer

    NASA Astrophysics Data System (ADS)

    Lee, Kiejin; Song, Insang; Park, Gwangseo

    1993-07-01

    High-Tc Bi2Sr2CaCu2Oy films have been prepared using the surface diffusion process, with the screen printing of Bi2O3, SrCO3, and CaCO3 (Bi:Sr:Ca=2:2:2) mixed powders on Cu-deposited alumina substrates. Through the heating at temperatures above 400 °C, CuAl2O4 buffer layers were formed via an interaction between the Cu layer and alumina. The Bi2Sr2CaCu2Oy films, heat treated at 860 °C for 30 min in air, have a zero resistance at 72 K. The x-ray diffraction, scanning electron microscope, and energy dispersive x-ray analysis studies show that the Bi2Sr2Ca1Cu2Oy films are strongly c-axis oriented along the direction normal to the alumina substrate, and the CuAl2O4 buffer layer acted as a barrier to suppress the interdiffusion of Al ions into the superconducting films.

  11. Growth of epitaxial Y 2O 3 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors by MOD approach

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. S.; Paranthaman, M.; Kang, S.; Lee, D. F.; Salama, K.

    2005-06-01

    We have grown epitaxial Y 2O 3 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors using a newly developed metal organic decomposition (MOD) approach. Y 2O 3 precursor solution of 0.25 M concentration was spin coated on short samples of Ni-3 at.%W (Ni-W) substrates and heat-treated at 1150 °C in a gas mixture of Ar-4% H 2 for an hour. Detailed X-ray studies indicate that Y 2O 3 films have good out-of-plane and in-plane textures with full-width-half-maximum values of 6.22° and 7.51°, respectively. SEM and AFM investigations of Y 2O 3 films reveal a fairly dense and smooth microstructure without cracks and porosity. Highly textured YSZ barrier layers and CeO 2 cap layers were deposited on MOD Y 2O 3-buffered Ni-W substrates using rf-magnetron sputtering. Pulsed laser deposition was used to grow YBCO films on these substrates. A critical current, Jc, of about 1.21 MA/cm 2 at 77 K and self-field was obtained on YBCO (PLD)/CeO 2 (sputtered)/YSZ (sputtered)/Y 2O 3 (spin-coated)/Ni-W.

  12. A simple MOD method to grow a single buffer layer of Ce 0.8Gd 0.2O 1.9 (CGO) for coated conductors

    NASA Astrophysics Data System (ADS)

    Liu, Min; Shi, Dongqi; Suo, Hongli; Ye, Shuai; Zhao, Yue; Zhu, Yonghua; Li, Qi; Wang, Lin; Jihyun, Ahn; Zhou, Meiling

    2009-03-01

    A single Ce 0.8Gd 0.2O 1.9 (CGO) buffer layer was successfully grown on the home-made textured Ni-5 at.%W (Ni-5W) substrates for YBCO coated conductors by a simple metal-organic deposition (MOD) technique. The precursor solution was prepared using a newly developed process and only contained common metal-organic salts of both Ce and Gd dissolved into a propionic acid solvent. The precursor solution at 0.4 M concentration was spin coated on short samples of Ni-5W substrates and heat-treated at 1100 °C in a mixture gas of 5% H 2 in Ar for an hour. X-ray studies indicated that the CGO films had good out-of-plane and in-plane textures with full-width-half-maximum values of 4.18° and 6.19°, respectively. Atomic force microscope (AFM) investigations of the CGO films revealed that most of the grain boundary grooves on the Ni-5W surface were found to be well covered by CGO layers, which had a fairly dense and smooth microstructure without cracks and porosity. These results indicate that our MOD technique is very promising for further development of single buffer layer architecture for YBCO coated conductors, due to its low cost and simple process.

  13. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni W substrates for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. S.; Paranthaman, M.; Sathyamurthy, S.; Aytug, T.; Kang, S.; Lee, D. F.; Goyal, A.; Payzant, E. A.; Salama, K.

    2003-11-01

    We have grown epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors using a newly developed metal organic decomposition (MOD) approach. Precursor solution of 0.25 M concentration was spin coated on short samples of Ni-3 at%W (Ni-W) substrates and heat-treated at 1100 °C in a gas mixture of Ar-4%H2 for 15 min. Detailed x-ray studies indicate that CeO2 films have good out-of-plane and in-plane textures with full-width-half-maximum values of 5.8° and 7.5°, respectively. High temperature in situ XRD studies show that the nucleation of CeO2 films starts at 600 °C and the growth completes within 5 min when heated at 1100 °C. SEM and AFM investigations of CeO2 films reveal a fairly dense microstructure without cracks and porosity. Highly textured YSZ barrier layers and CeO2 cap layers were deposited on MOD CeO2-buffered Ni-W substrates using rf-magnetron sputtering. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A critical current, Jc, of about 1.5 MA cm-2 at 77 K and self-field was obtained on YBCO (PLD)/CeO2 (sputtered)/YSZ (sputtered)/CeO2 (spin-coated)/Ni-W.

  14. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  15. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.

    PubMed

    Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  16. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    NASA Astrophysics Data System (ADS)

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-07-01

    We demonstrate the high structural and optical properties of InxGa1‑xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm‑2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1‑xN epilayers can be achieved with high optical quality of InxGa1‑xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  17. Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell

    SciTech Connect

    Dao, Vinh Ai; Heo, Jongkyu; Choi, Hyungwook; Kim, Yongkuk; Park, Seungman; Jung, Sungwook; Lakshminarayan, Nariangadu; Yi, Junsin

    2010-05-15

    The influence of various parameters such as buffer intrinsic layers, back-surface fields, densities of interface defects (D{sub it}), the resistivity of p-type silicon substrates ({rho}) and then work function of transparent conductive oxide ({phi}{sub TCO}) on heterojunction with intrinsic thin-layer (HIT) solar cell performance was investigated using software simulation. Automat for the simulation of heterostructures (AFORS-HET) software was used for that purpose. Our results indicate that band bending, which is determined by the band offsets at the buffer intrinsic/c-Si and/or the c-Si/back-surface field heterointerface, could be critical to solar cell performance. The effect of band bending on solar cell performance and the dependence of cell performance on {rho} and {phi}{sub TCO} were investigated in detail. Eventually, suggestive design parameters for HIT solar cell fabrication are proposed. (author)

  18. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    NASA Astrophysics Data System (ADS)

    Tang Huang, Xin; Qing Wang, You; Wang, Qiu Liang; Chen, Qing Ming

    2000-02-01

    High critical current density and in-plane aligned YBa2 Cu3 O7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O+ ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18° and 11°, respectively. The critical current density of YBCO film is 7.9 × 105 A cm-2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K.

  19. A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency.

    PubMed

    Tao, Jiahua; Zhang, Kezhi; Zhang, Chuanjun; Chen, Leilei; Cao, Huiyi; Liu, Junfeng; Jiang, Jinchun; Sun, Lin; Yang, Pingxiong; Chu, Junhao

    2015-06-28

    Cu2ZnSnS4 thin films with thicknesses ranging from 0.35 to 1.85 μm and micron-sized grains (0.5-1.5 μm) were synthesized using co-electrodeposited Cu-Zn-Sn-S precursors with different deposition times. Here we have introduced a sputtered CdS buffer layer for the development of CZTS solar cells for the first time, which enables breakthrough efficiencies up to 6.6%. PMID:26027699

  20. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    SciTech Connect

    Bairamis, A.; Zervos, Ch.; Georgakilas, A.; Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.

  1. Improvement of electron mobility in La:BaSnO3 thin films by insertion of an atomically flat insulating (Sr,Ba)SnO3 buffer layer

    NASA Astrophysics Data System (ADS)

    Shiogai, Junichi; Nishihara, Kazuki; Sato, Kazuhisa; Tsukazaki, Atsushi

    2016-06-01

    One perovskite oxide, ASnO3 (A = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO3 substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO3 / (Sr,Ba)SnO3 for buffering this large lattice mismatch between La:BaSnO3 and SrTiO3 substrate. The insertion of 200-nm-thick BaSnO3 on (Sr,Ba)SnO3 bilayer buffer structures reduces the number of dislocations and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO3 buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO3 shows that the highest obtained value of mobility is 78 cm2V-1s-1 because of its fewer dislocations. High electron mobility films based on perovskite BaSnO3 can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.

  2. AlGaAs diode pumped tunable chromium lasers

    DOEpatents

    Krupke, William F.; Payne, Stephen A.

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  3. The reliability of /AlGa/As CW laser diodes

    NASA Astrophysics Data System (ADS)

    Ettenberg, M.; Kressel, H.

    1980-02-01

    Major factors bearing on the reliability of (AlGa)As CW laser diodes are reviewed with attention given to the degradation modes of facet mirror damage, contact degradation, and internal damage. Detailed results are provided for the oxide-defined stripe-contact double-heterojunction lasers operated for more than 40,000 h with extrapolations indicating a median time to failure between 100,000 and 1,000,000. Facet damage and contact degradation appear to be under control, and internal damage remains the dominant failure mechanism. Most of the data deals with threshold current increase; however, shifts in far-field pattern and changes in laser modulation characteristics, including self-sustained oscillations, may affect laser performance in real systems.

  4. Weak-beam trapping by bright spatial solitons in AlGaAs planar waveguides

    NASA Astrophysics Data System (ADS)

    Kang, J. U.; Stegeman, G. I.; Aitchison, J. S.

    1995-10-01

    We demonstrate experimentally the trapping and spatial wave breaking of weak signal beams by orthogonally polarized bright spatial solitons. Experiments were performed in an AlGaAs planar waveguide excited at a wavelength of 1.55 mu m .

  5. Growth of high quality AlGaAs by metalorganic molecular beam epitaxy using trimethylamine alane

    NASA Astrophysics Data System (ADS)

    Abernathy, C. R.; Jordan, A. S.; Pearton, S. J.; Hobson, W. S.; Bohling, D. A.; Muhr, G. T.

    1990-06-01

    AlGaAs grown by metalorganic molecular beam epitaxy (MOMBE) has been problematic due to oxygen and carbon contamination, particularly when triethylaluminum (TEAl) has been used as the aluminum source. Consequently, we have investigated trimethylamine alane (TMAAl) as a potential replacement for the conventional metalorganic Al sources. AlGaAs films with excellent structural and optical properties have been grown with this source. Photoluminescence intensities from AlGaAs grown by MOMBE at 500 °C using TMAAl are comparable to those from material grown by metalorganic chemical vapor deposition at 675 °C using triethylaluminum (TMAl). Carbon and oxygen levels in MOMBE-grown AlGaAs are drastically reduced in comparison to similar films grown with TEAl.

  6. Memory and threshold resistive switching in BiFeO3 thin films using NiO as a buffer layer

    NASA Astrophysics Data System (ADS)

    Luo, Jinming; Zhang, Haining; Chen, Shuhan; Yang, Xiaodong; Bu, Shouliang; Wen, Jianping

    2016-05-01

    BiFeO3 and BiFeO3/NiO thin films have been deposited on Pt/Ti/SiO2/Si substrates by sol-gel method. Compared with bare BiFeO3 thin films, an improvement of memory resistive switching characteristic, such as the dispersion of switching voltages and resistances, has been clearly observed in BiFeO3 thin films using NiO as a buffer layer. Moreover, threshold resistive switching has also been demonstrated in BiFeO3/NiO thin films, but no observation in BiFeO3 thin films. Then, the role of thin NiO layer on memory resistive switching stabilization and threshold resistive switching is discussed.

  7. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    NASA Astrophysics Data System (ADS)

    Lupina, L.; Zoellner, M. H.; Niermann, T.; Dietrich, B.; Capellini, G.; Thapa, S. B.; Haeberlen, M.; Lehmann, M.; Storck, P.; Schroeder, T.

    2015-11-01

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc2O3/Y2O3/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc2O3/Y2O3 buffer system a very promising template for the growth of high quality GaN layers on silicon.

  8. Characterization of Sulfur Bonding in CdS:O Buffer Layers for CdTe-based Thin-Film Solar Cells.

    PubMed

    Duncan, Douglas A; Kephart, Jason M; Horsley, Kimberly; Blum, Monika; Mezher, Michelle; Weinhardt, Lothar; Häming, Marc; Wilks, Regan G; Hofmann, Timo; Yang, Wanli; Bär, Marcus; Sampath, Walajabad S; Heske, Clemens

    2015-08-01

    On the basis of a combination of X-ray photoelectron spectroscopy and synchrotron-based X-ray emission spectroscopy, we present a detailed characterization of the chemical structure of CdS:O thin films that can be employed as a substitute for CdS layers in thin-film solar cells. It is possible to analyze the local chemical environment of the probed elements, in particular sulfur, hence allowing insights into the species-specific composition of the films and their surfaces. A detailed quantification of the observed sulfur environments (i.e., sulfide, sulfate, and an intermediate oxide) as a function of oxygen content is presented, allowing a deliberate optimization of CdS:O thin films for their use as alternative buffer layers in thin-film photovoltaic devices. PMID:26200260

  9. X-ray photoelectron spectroscopy study of energy-band alignments of ZnO on buffer layer Lu2O3

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Pan, Xinhua; Xu, Chenxiao; Huang, Jingyun; Ye, Zhizhen

    2016-02-01

    Lu2O3 was used as the buffer layer of the epitaxy of ZnO film on Si substrate by plasma-assisted molecular beam epitaxy. X-ray photoelectron spectroscopy was used to determine the band alignment at ZnO/Lu2O3 interface. The conduction band offset (CBO) and valence band offset (VBO) of the ZnO/Lu2O3 heterojunction are calculated to be 1.77 eV and 0.66 eV, respectively, with a type-I band alignment. And the ratio of CBO and VBO (ΔEc / ΔEv) is estimated to be about 2.68. The large ΔEv and ΔEc reveal that Lu2O3 is an ideal barrier layer in Si-based ZnO optoelectronic devices.

  10. Improved performances of CuPc/C60-based solar cell by using randomly and irregularly embossed PEDOT:PSS as anode buffer layer

    NASA Astrophysics Data System (ADS)

    Zhang, Haiqing; Hao, Yuying; Zhang, Fan; Sun, Qinjun; Li, Zhanfeng; Cui, Yanxia; Wang, Hua; Shi, Fang

    2015-07-01

    An unique organic solar cell (OSC) based on copper phthalocyanine (CuPc) and fullerene C60 as the electron donor and acceptor materials is demonstrated with randomly and irregularly embossed poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) as anode buffer layer. The effect of PEDOT:PSS nanostructure is characterized by optical and electrical measurements. The results indicate that introducing irregular nanostructure with random distribution into OSC leads to longer light paths by efficient scattering of the incident light and thus higher light absorption in active layer. Moreover, such a nanostructure increases the junction area, allowing more efficient exciton dissociation and charge carrier transfer/collection. These combined effects result in a prominent enhancement of 25.5% in average power conversion efficiency relative to the non-structured OSC due to the increases in short-circuit current and fill factor.

  11. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    SciTech Connect

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G.; Niermann, T.; Lehmann, M.; Thapa, S. B.; Haeberlen, M.; Storck, P.; Schroeder, T.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  12. Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer

    PubMed Central

    2013-01-01

    To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524

  13. ZnO film with ultra-low background electron concentration grown by plasma-assisted MBE using Mg film as the buffer layer

    SciTech Connect

    Chen, Mingming; Zhang, Quanlin; Su, Longxing; Su, Yuquan; Cao, Jiashi; Zhu, Yuan; Wu, Tianzhun; Gui, Xuchun; Yang, Chunlei; Xiang, Rong; Tang, Zikang

    2012-09-15

    Highlights: ► High quality ZnO film with ultra-low background electron concentration is grown by plasma-assisted molecular beam epitaxy using Mg film as a buffer layer. ► High resolution X-ray diffraction and photoluminescence (PL) spectroscopy indicate a high degree of crystallization. ► Hall measurement shows a carrier concentration as low as ∼10{sup 14} cm{sup −3}. ► The mechanism of the improved crystallinity is discussed in detail. -- Abstract: High quality ZnO epilayer with background electron concentration as low as 2.6 × 10{sup 14} cm{sup −3} was obtained by plasma-assisted MBE on c-sapphire using a thin Mg film as the buffer layer. High-resolution XRD measurement shows a sharp (0 0 2) peak with full width at half maximum (FWHM) of only 0.029°. Photoluminescence spectroscopy presents a weak defect-related near-edge emission. A metal–semiconductor–metal (MSM) typed photodetector based on the material demonstrates a response of ∼43 A/W under the bias of 1 V and an ON/OFF ratio of 10{sup 4}. This un-doped ZnO with ultra-low background electron concentration could be a promising starting material for p-type doping.

  14. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhao, Yong; Xia, Yudong; Guo, Chunsheng; Cheng, C. H.; Zhang, Yong; Zhang, Han

    2015-06-01

    La2Zr2O7 (LZO) epitaxial films have been deposited on LaAlO3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa2Cu3O7-x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  15. Optical and electrical properties of highly (100)-oriented PbZr1-xTixO3 thin films on the LaNiO3 buffer layer

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Meng, X. J.; Sun, J. L.; Huang, Z. M.; Chu, J. H.

    2004-09-01

    In this paper, using wet chemical solution deposition processes, the (100)-highly oriented LaNiO3 buffer layers were grown on both silicon and platinized silicon wafers and, sequentially, the highly (100)-oriented PbZr1-xTixO3 thin films with various compositions were obtained on them. The misfit elastic strains were found to be critical factors to determine the orientation of PZT thin films, even though the used LaNiO3 buffer layer reduces the lattice mismatch between PZT films and silicon wafers. For the PZT thin films with x =0.5 and 0.6 on the LaNiO3/platinized silicon substrate, the infrared optical constant, ferroelectric, and dielectric properties were characterized and analyzed with relation to the film orientation and the film grain size. It was found that the finite grain size effect here played a key role in determining these optical and electrical properties. With nanoferroelectric thin films, it is the most useful way of controlling both grain size and crystallographic orientation to tune performance of commercial film devices.

  16. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    SciTech Connect

    Fedorenko, Y. G. Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  17. Fabrication of highly textured Ni-7at.%W substrates and further application for coated La 2Zr 2O 7 buffer layer

    NASA Astrophysics Data System (ADS)

    Cheng, Y. L.; Suo, H. L.; Zhao, Y.; Gao, M. M.; Zhu, Y. H.; Wang, R.; Liu, M.; Ma, L.; Zhou, M. L.

    2011-11-01

    In this work, highly cube textured Ni-7at.%W (Ni7W) substrate was fabricated from the ingots synthesized by Spark Plasma Sintering (SPS) technique. Both the La 2Zr 2O 7 (LZO) buffer layer and the YBCO superconducting layer were coated using chemical solution deposition (CSD) and pulsed laser deposition (PLD) layer by layer. The full-width-at-half-maximum (FWHM) values of the (1 1 1) phi-scan and the (2 0 0) ω-scan in rolling direction of the Ni7W substrate were 6.30° and 5.08°, respectively. The EBSD analyses indicated that the percentage of the cube texture component on the surface of the as-obtained Ni7W substrate was 99.4% within a tolerance angle of less than 10°. Highly epitaxial growth of homogenous crack-free LZO film was obtained cube-on-cube relative to the Ni7W substrate, with FWHM values of (2 2 2) phi-scan and (4 0 0) ω-scan of 7.57° and 5.73°, respectively. The critical temperature of the YBCO layer prepared on LZO/Ni7 W substrate is about 90.5 K, while the critical current density is 1.25 MA cm -2 (77 K, sf).

  18. Threading dislocation reduction in a GaN film with a buffer layer grown at an intermediate temperature

    NASA Astrophysics Data System (ADS)

    Cho, Youngji; Chang, Jiho; Ha, Joonseok; Lee, Hyun-jae; Fujii, Katsushi; Yao, Takafumi; Lee, Woong; Sekiguchi, Takashi; Yang, Jun-Mo; Yoo, Jungho

    2015-01-01

    Remarkable reduction of the threading dislocation (TD) density has been achieved by inserting a GaN layer grown at an intermediate temperature (900 °C) (IT-GaN layer), just prior to the growth of GaN at 1040 °C by using a hydride vapor phase epitaxy. The variation in the dislocation density variation along the growth direction was observed by using cathodoluminescence (CL) and transmission electron microscopy (TEM). A cross-sectional CL image revealed that the reduction of the TD density happened during the growth of IT-GaN layer. The TEM measurement provided the proof that the TD reduction could be ascribed to the masking of the TD by stacking faults in the IT-GaN layer.

  19. Investigation of polycrystalline thin-film CuInSe{sub 2} solar cells based on ZnSe and ZnO buffer layers. Final report, February 16, 1992--November 15, 1995

    SciTech Connect

    Olsen, L C

    1996-06-01

    The major objective of this program was to determine the potential of ZnSe and ZnO buffer layers in solar cells based on CuInSe{sub 2} and related alloys. Experimental studies were carried out with CIS and CIGSS substrates. ZnSe films were deposited by a CVD process which involved the reaction of a zinc adduct and H{sub 2}Se. Al/ZnSe/CIS test cells were used for process development. Test cell performance aided in determining the optimum thickness for ZnSe buffer layers to be in the range of 150 {angstrom} to 200 {angstrom} for Siemens CIS material, and between 80 {angstrom} and 120 {angstrom} for the graded absorber material. If the buffer layers exceeded these values significantly, the short-circuit current would be reduced to zero. The best efficiency achieved for a ZnSe/CIS cell was an active area value of 9.2%. In general, deposition of a conductive ZnO film on top of a ZnSe/CIS structure resulted in either shunted or inflected I-V characteristics. Two approaches were investigated for depositing ZnO buffer layers, namely, chemical bath deposition and CVD. CVD ZnO buffer layers are grown by reacting a zinc adduct with tetrahydrofuran. Best results were obtained for ZnO buffer layers grown with a substrate temperature ca. 225--250 C. These studies concentrated on Siemens graded absorber material (CIGSS). ZnO/CIS solar cells have been fabricated by first depositing a ZnO buffer layer, followed by deposition of a low resistivity ZnO top contact layer and an Al/Ag collector grid. Several cells were fabricated with an area of 0.44 cm{sup 2} that have total area efficiencies greater than 11%. To date, the best performing ZnO/CIS cell had a total area efficiency of 11.3%. In general, the authors find that ZnO buffer layers should have a resistivity > 1,000 ohm-cm and have a thickness from 200 {angstrom} to 600 {angstrom}. CIS cells studies with ZnO buffer layers grown by CBD also show promise. Finally, simulation studies were carried out using the 1-D code, PC-1D.

  20. Ga2Se3 and (InGa)2Se3 as novel buffer layers in the GaAs on Si system

    NASA Astrophysics Data System (ADS)

    Kojima, Nobuaki; Morales, Crisóforo; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-09-01

    III-V compound solar cells on Si are attractive structure with expectations of the significant cost reduction of high efficiency multi-junction solar cells. However, the large lattice mismatch and thermal expansion coefficient difference between GaAs and Si generate a high density of threading dislocations in III-V overlayers grown on Si. In this paper, novel buffer layers consisting of Ga2Se3 and (InGa)2Se3 III-VI compounds for the GaAs on Si system are proposed. In-rich (InGa)2Se3 has a layered defect zincblende structure. The van der Waals interface of the layered structure should absorb any strain caused by lattice mismatch and thermal expansion coefficient difference between Si and GaAs. As the first step in studying the MBE growth of (InGa)2Se3 compounds, the epitaxial growth of defect zincblende structure Ga2Se3 and layered defect zincblende structure In2Se3 on GaAs(111) was confirmed.

  1. Growth and structure evaluation of strain-relaxed Ge1-xSnx buffer layers grown on various types of substrates

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shotaro; Sakai, Akira; Yamamoto, Koji; Nakatsuka, Osamu; Ogawa, Masaki; Zaima, Shigeaki

    2007-01-01

    We have performed growth and structure evaluation of strain-relaxed Ge1-xSnx buffer layers grown on Si(0 0 1), virtual Ge(0 0 1) and bulk Ge(0 0 1) substrates. In the case of Si(0 0 1), amorphous Ge1-xSnx phases are partially formed as well as many threading dislocations in Ge0.98Sn0.02 layers. Employing virtual Ge substrates to reduce the lattice mismatch at the interface leads to epitaxial Ge0.978Sn0.022 layers with a flat surface. Most of threading dislocations in the Ge0.978Sn0.022 layer comes from pre-existing ones in the virtual Ge substrate and propagates laterally, leaving misfit segments at the Ge0.978Sn0.022/virtual Ge interface, after post-deposition annealing (PDA). This simultaneously results in the reduction of threading dislocation density and the promotion of strain relaxation. In the case of bulk Ge(0 0 1), although low threading dislocation density can be achieved, less than 106 cm-2, the film exhibits surface undulation and a lesser degree of strain relaxation even after PDA.

  2. Growth and characterization of metamorphic InxGa1-xAs/InAlAs (x >= 0.8) modulation doped heterostructures on GaAs using a linearly graded In(AlGa)as buffer layer

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Karlsson, C.; Rorsman, N.; Bergh, M.; Olsson, E.; Andersson, T. G.

    1997-01-01

    Metamorphic InxGa1-xAs/InAlAs (x >= 0.8) modulation doped heterostructures have been grown on GaAs using a linearly graded In(AlGa)As buffer layer, and their structural and electric properties have been investigated. Surface morphology was found to depend on growth temperature and graded buffer thickness. Low growth temperature resulted in a relatively smooth surface with a minimum root-mean-square roughness value of 4-7 nm. The In(AlGa)As graded buffer effectively prevented dislocations from threading into the top layers. The epilayer grown on the graded buffer was tilted and not fully relaxed. High electron mobility and sheet density were achieved. The highest mobility value was 13740 cm2/Vs with a carrier density of 1.9 · 1012 cm-2 at 300 K. These values are comparable with InP-based InGaAs/InAlAs modulation doped heterostructures.

  3. High efficiency Cu(In,Ga)Se{sub 2} thin film solar cells without intermediate buffer layers

    SciTech Connect

    Ramanathan, K.; Wiesner, H.; Asher, S.; Niles, D.; Bhattacharya, R.N.; Keane, J.; Contreras, M.A.; Noufi, R.

    1998-09-01

    The nature of the interface between CuInGaSe{sub 2} (CIGS) and the chemical bath deposited CdS layer has been investigated. The authors show that heat-treating the absorbers in Cd- or Zn-containing solutions in the presence of ammonium hydroxide sets up an interfacial reaction with the possibility of an ion exchange occurring between Cd and Cu. The characteristics of devices made in this manner suggest that the reaction generates a thin, n-doped region in the absorber. The authors suggest that this aspect might be more important than the CdS layer in the formation of the junction. It is quite possible that the CdS/CuInSe{sub 2} device is a buried, shallow junction with a CdS window layer, rather than a heterojunction between CdS and CIGS. The authors use these ideas to develop methods for fabricating diodes without CdS or Cd.

  4. Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering: Preprint

    SciTech Connect

    Ramanathan, K.; Mann, J.; Glynn, S.; Christensen, S.; Pankow, J.; Li, J.; Scharf, J.; Mansfield, L. M.; Contreras, M. A.; Noufi, R.

    2012-06-01

    Zn(O,S) thin films were deposited by chemical bath deposition (CBD), atomic layer deposition, and sputtering. Composition of the films and band gap were measured and found to follow the trends described in the literature. CBD Zn(O,S) parameters were optimized and resulted in an 18.5% efficiency cell that did not require post annealing, light soaking, or an undoped ZnO layer. Promising results were obtained with sputtering. A 13% efficiency cell was obtained for a Zn(O,S) emitter layer deposited with 0.5%O2. With further optimization of process parameters and an analysis of the loss mechanisms, it should be possible to increase the efficiency.

  5. Electrodeposited Biaxially Textured CeO2 and CeO2:Sm Buffer Layer for YBCO Superconductor Oxide Films

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Raghu; Phok, Sovannary; Spagnol, Priscila; Chaudhuri, Tapas

    2006-03-01

    Nonvacuum electrodeposition was used to prepare biaxially textured CeO2 and Sm-doped CeO2 coatings on Ni-W substrates. The samples were characterized by X-ray diffraction (including θ/2θ, pole figures, omega scans, and phi scans), atomic force microscopy (AFM), Auger electron spectroscopy (AES), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Full-width at half-maximum values of the ω scan and φ scan of the electrodeposited layers were better than those of the Ni-W base substrates, indicating improved biaxial texturing of the electrodeposited layers.

  6. Effects of annealing in Be/W and Be/C bilayers deposited on Si(0 0 1) substrates with Fe buffer layers

    NASA Astrophysics Data System (ADS)

    Schinteie, G.; Greculeasa, S. G.; Palade, P.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Filoti, G.; Kuncser, V.

    2015-02-01

    Atomic intermixing processes in relation to structural aspects and phase formation in Be based thin films subjected to different annealing treatments simulating the case of re-deposited layered structures on plasma facing components in nuclear fusion devices are reported. Accordingly, bilayers of Be/W and Be/C have been deposited on Si(0 0 1) substrates with Fe buffer layers. The Fe films have been prepared by radiofrequency sputtering and further processed by annealing in hydrogen atmosphere at 300 °C, for 90 min, at a pressure of 10 bars of H2. After the Be/W and Be/C bilayer deposition by means of thermionic vacuum arc method, annealing in vacuum at 600 °C, for 10 min has been applied to the complex structures. The influence of annealing on the phase composition and atomic intermixing processes in the complex structures has been studied by means of X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The layered structures present an oxidation gradient with oxide phases in the uppermost layers and non-oxidized phases in the lower layers, as observed from the XPS data. The CEMS results revealed that the as-deposited structures contain a main metallic Fe phase and secondary superparamagnetic Fe oxide phases at the Fe/Be interface, while annealed samples present a large contribution of Fe-Be and Fe-C mixtures. The annealing treatment induces considerable atomic interdiffusion, strongly dependent on the nature of the upper layer. In the case of Be/W system, the annealing provides a much rougher Be/W interface, while in case of the Be/C structure, the annealing treatment only homogenize the structure over the whole depth.

  7. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    SciTech Connect

    Mitchel, W. C. Haugan, H. J.; Mou, Shin; Brown, G. J.; Elhamri, S.; Berney, R.

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  8. Growth and characterization of highly tensile strained Ge1-xSnx formed on relaxed InyGa1-yP buffer layers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Loke, Wan Khai; Yin, Tingting; Zhang, Zheng; D'Costa, Vijay Richard; Dong, Yuan; Liang, Gengchiau; Pan, Jisheng; Shen, Zexiang; Yoon, Soon Fatt; Tok, Eng Soon; Yeo, Yee-Chia

    2016-03-01

    Ge0.94Sn0.06 films with high tensile strain were grown on strain-relaxed InyGa1-yP virtual substrates using solid-source molecular beam epitaxy. The in-plane tensile strain in the Ge0.94Sn0.06 film was varied by changing the In mole fraction in InxGa1-xP buffer layer. The tensile strained Ge0.94Sn0.06 films were investigated by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. An in-plane tensile strain of up to 1% in the Ge0.94Sn0.06 was measured, which is much higher than that achieved using other buffer systems. Controlled thermal anneal experiment demonstrated that the strain was not relaxed for temperatures up to 500 °C. The band alignment of the tensile strained Ge0.94Sn0.06 on In0.77Ga0.23P was obtained by high resolution x-ray photoelectron spectroscopy. The Ge0.94Sn0.06/In0.77Ga0.23P interface was found to be of the type I band alignment, with a valence band offset of 0.31 ± 0.12 eV and a conduction band offset of 0.74 ± 0.12 eV.

  9. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  10. Effects of the Buffer Layers on the Adhesion and Antimicrobial Properties of the Amorphous ZrAlNiCuSi Films

    NASA Astrophysics Data System (ADS)

    Chiang, Pai-Tsung; Chen, Guo-Ju; Jian, Sheng-Rui; Shih, Yung-Hui

    2011-06-01

    To extend the practical applications of the bulk metallic glasses (BMGs), the preparation of the metallic glass coatings on various substrates becomes an important research issue. Among the interfacial properties of the coatings, the adhesion between films and substrates is the most crucial. In this study, amorphous Zr61Al7.5Ni10Cu17.5Si4 (ZrAlNiCuSi) thin films were deposited on SUS304 stainless steel at various sputtering powers by DC sputtering. According to the scratch tests, the introduction of the Cr and Ti buffer layers effectively improves the adhesion between the amorphous thin films and substrate without changing the surface properties, such as roughness and morphology. The antimicrobial results show that the biological activities of these microbes, except Acinetobacter baumannii, are effectively suppressed during the test period.

  11. Characterization of ZnInxSey Thin Films as a Buffer Layer for High Efficiency Cu(InGa)Se2 Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Ohtake, Yasutoshi; Chaisitsak, Sutichai; Yamada, Akira; Konagai, Makoto

    1998-06-01

    The structural, optical and electrical properties of ZnInxSey (ZIS) thin films on Cu(InGa)Se2 (CIGS) thin films and glass substrates were characterized. Polycrystalline ZIS thin films were grown by the coevaporation method using three constituent elements. We confirmed the formation of ZnIn2Se4 from the X-ray diffraction patterns of the ZIS thin films on glass substrates. From the transmittance and reflectance measurements of these films, the bandgap of ZIS is estimated at around 2.0 eV in this study. In addition, the ZIS films on glass substrates show low dark conductivity and high photosensitivity, which are suitable for the buffer layer in CIGS thin-film solar cells. We also fabricated the CIGS thin-film solar cells with a ZnO/ZIS/CIGS structure, and investigated the relationship between the cell performance and the beam intensity ratio of zinc to indium.

  12. Catalyst-free growth of InP nanowires on patterned Si (001) substrate by using GaAs buffer layer

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhou, Xuliang; Kong, Xiangting; Li, Mengke; Mi, Junping; Pan, Jiaoqing

    2016-04-01

    The catalyst-free metal organic vapor phase epitaxial growth of InP nanowires on silicon (001) substrate is investigated using selectively grown GaAs buffer layers in V-shaped trenches. A yield up to 70% of nanowires is self-aligned in uncommon <112> directions under the optimized growth conditions. The evolution mechanism of self-aligned <112> directions for nanowires is discussed and demonstrated. Using this growth method, we can achieve branched and direction switched InP nanowires by varying the V/III ratio in situ. The structure of the nanowires is characterized by scanning electron microscope and transmission electron microscopy measurements. The crystal structure of the InP nanowires is stacking-faults-free wurtzite with its c axis perpendicular to the nanowire axis.

  13. Effect of the Pt buffer layer on perpendicular exchange bias based on collinear/non-collinear coupling in a Cr2O3/Co3Pt interface

    NASA Astrophysics Data System (ADS)

    Ashida, T.; Sato, Y.; Nozaki, T.; Sahashi, M.

    2013-05-01

    In this study, we fabricated a Cr2O3 (0001) film without and with a Pt buffer layer and investigated its effect on perpendicular exchange coupling in a Cr2O3/Co3Pt interface. The results showed that the exchange bias field (μ0Hex) and blocking temperature (TB) of a Cr2O3 film without and with Pt were very different. The Cr2O3 film without Pt had a lower μ0Hex of 176 Oe and a lower TB of 75 K, whereas that with Pt had a higher μ0Hex of 436 Oe and a higher TB of 150 K. We discussed this difference in μ0Hex and TB values based on collinear/non-collinear coupling in a ferromagnetic and antiferromagnetic interface using Meiklejohn and Bean's exchange anisotropy model.

  14. Growth of corundum-structured In2O3 thin films on sapphire substrates with Fe2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Suzuki, Norihiro; Kaneko, Kentaro; Fujita, Shizuo

    2013-02-01

    We report the fabrication of rhombohedral corundum-structured indium oxide (α-In2O3) thin films, which can complete a semiconductor quaternary alloy system with α-Al2O3 and α-Ga2O3, on sapphire substrates with α-Fe2O3 buffer layers. X-ray diffraction showed the formation of α-In2O3, and the α-In2O3 film exhibited n-type semiconductor properties with electron concentration of 1.2×1018 cm-3 and electron mobility of 83 cm2/Vs. The α-In2O3 took grain structure with the lateral sizes of 300-600 nm, and in a grain area α-In2O3 grew epitaxially on a sapphire substrate.

  15. Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer

    NASA Astrophysics Data System (ADS)

    Wen, Hui-Juan; Zhang, Jin-Cheng; Lu, Xiao-Li; Wang, Zhi-Zhe; Ha, Wei; Ge, Sha-Sha; Cao, Rong-Tao; Hao, Yue

    2014-03-01

    The quality of an AlGaN channel heterojunction on a sapphire substrate is massively improved by using an AlGaN/GaN composite buffer layer. We demonstrate an Al0.4Ga0.5N/Al0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V·s) and a sheet resistance of 890 Ω/□ under room temperature. The crystalline quality and the electrical properties of the AlGaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance—voltage (C—V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.

  16. Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions

    SciTech Connect

    Belmoubarik, M.; Nozaki, T.; Sahashi, M.; Endo, H.

    2013-05-07

    Deposition of ZnO thin films on a ferromagnetic metallic buffer layer (Co{sub 3}Pt) by molecular beam epitaxy technique was investigated for realization of ZnO-based magnetic tunneling junctions with good quality hexagonal ZnO films as tunnel barriers. For substrate temperature of 600 Degree-Sign C, ZnO films exhibited low oxygen defects and high electrical resistivity of 130 {Omega} cm. This value exceeded that of hexagonal ZnO films grown by sputtering technique, which are used as tunnel barriers in ZnO-MTJs. Also, the effect of oxygen flow during deposition on epitaxial growth conditions and Co{sub 3}Pt surface oxidation was discussed.

  17. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    SciTech Connect

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha; Louis, Godfrey; Vijayakumar, K. P.; Kumar, K. Rajeev

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin film solar cells.

  18. Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.

    2002-01-01

    Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.

  19. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang

    2015-08-01

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  20. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    SciTech Connect

    Liu, Xiaodong; Zhou, Yi E-mail: songbo@suda.edu.cn Song, Bo E-mail: songbo@suda.edu.cn; Lei, Ming; Li, Yongfang E-mail: songbo@suda.edu.cn

    2015-08-10

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  1. Superconducting HoBa sub 2 Cu sub 3 O sub x films on Si without a buffer layer

    SciTech Connect

    Tsukamoto, A.; Imagawa, K.; Hiratani, M.; Aida, T.; Miyauchi, K. )

    1990-11-15

    HoBa{sub 2}Cu{sub 3}O{sub {ital x}} thin films with a zero resistivity temperature of 63 K are successively grown on a Si substrate, at a substrate temperature as low as 550 {degree}C using reactive evaporation with microwave-discharged oxygen plasma. The films are polycrystalline and consist of grains with radii of about 100 nm without microcracks. No significant interdiffusion between the substrate and film is observed by x-ray diffraction or secondary ion mass spectrometry depth profiles. However, a transmission electron microscopy study reveals that two kinds of amorphous interlayers are formed between the film and substrate: a Ba-excess diffusion layer and a silicon oxide layer.

  2. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  3. AlGaAs phased array laser for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.

    1989-01-01

    Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.

  4. Strain states of AlN/GaN-stress mitigating layer and their effect on GaN buffer layer grown by ammonia molecular beam epitaxy on 100-mm Si(111)

    SciTech Connect

    Ravikiran, L.; Radhakrishnan, K.; Agrawal, M.; Dharmarasu, N.; Munawar Basha, S.

    2013-09-28

    The effect of strain states of AlN/GaN-stress mitigating layer (SML) on buried crack density and its subsequent influence on the residual stresses in GaN buffer layers grown using ammonia-molecular beam epitaxy on 100-mm Si(111) substrate has been investigated. Different stages involved in the formation of buried cracks, which are crack initialization, growth of relaxed AlN layer, and subsequent lateral over growth, are identified using in-situ curvature measurements. While the increase of GaN thickness in AlN/GaN-SML enhanced its compressive strain relaxation and resulted in reduced buried crack spacing, the variation of AlN thickness did not show any effect on the crack spacing. Moreover, the decrease in the crack spacing (or increase in the buried crack density) was found to reduce the residual compression in 1st and 2nd GaN layers of AlN/GaN-SML structure. The higher buried crack density relaxed the compressive strain in 1st GaN layer, which further reduced its ability to compensate the tensile stress generated during substrate cool down, and hence resulted in lower residual compressive stress in 2nd GaN layer.

  5. Effects of BaBi2Ta2O9 thin buffer layer on crystallization and electrical properties of CaBi2Ta2O9 thin films on Pt-coated silicon

    NASA Astrophysics Data System (ADS)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-05-01

    Non-c-axis oriented CaBi2Ta2O9 (CBT) thin films have been successfully deposited via the triple alkoxide solution method on Pt-coated Si substrates by inserting BaBi2Ta2O9 (BBT) thin buffer layers. The BBT thin buffer layer, which was prepared on Pt-coated Si, was a key material for suppression of the nonpolar c-axis orientation and promoting the ferroelectric structure perpendicular to the in-plane direction of CBT thin film. The annealing temperature and thickness of the BBT thin buffer layers affected the dielectric, ferroelectric, and fatigue properties of the stacked CBT/BBT thin films. The resultant 650 °C annealed CBT/BBT(30 nm) thin film exhibited good P-E hysteresis properties and fatigue behaviors.

  6. Effects of AlN buffer layer thickness on the crystallinity and surface morphology of 10-µm-thick a-plane AlN films grown on r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Tamaki, Shinya; Yamashita, Yasuhiro; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-08-01

    10-µm-thick a-plane AlN(11\\bar{2}0) films containing a low-temperature AlN (LT-AlN) buffer layer and a high-temperature AlN (HT-AlN) film were prepared on r-plane sapphire (1\\bar{1}02) substrates. The crystallinity of all the samples with different LT-AlN buffer layer thicknesses was improved after thermal annealing and HT-AlN growth, mainly owing to the elimination of domain boundaries and the concurrent suppression of facet formation. The optimum crystallinity of HT-AlN films was obtained with full widths at half maximum of the X-ray rocking curves of 660 arcsec for AlN(11\\bar{2}0)\\parallel [1\\bar{1}00]AlN and 840 arcsec for (0002) using a 200-nm-thick LT-AlN buffer layer.

  7. AlGaAs heterojunction visible (700 nm) light-emitting diodes on Si substrates fabricated by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Kawarada, Y.; Kamijoh, T.; Akiyama, M.; Watanabe, N.

    1986-06-01

    The fabrication of AlGaAs LEDs emitting at 700 nm (half width 45 nm) by the metal-organic chemical-vapor deposition (MOCVD) method of Akiyama et al. (1985) is reported. Using trimethylgallium, trimethylaluminum, and arsine as the source reactants in a horizontal reactor at 100 torr and flow rate 4 l/min, a 200-300-nm-thick layer of n-GaAs is grown on a 3-micron-thick (100) n-Si substrate at 425 C prior to MOCVD of a 1-micron-thick layer of n-Al(0.4)Ga(0.6)As, a 3-micron-thick layer of p-Al(0.35)Ga(0.65)As, and a 50-nm-thick p-GaAs ohmic-contact cap layer at 750 C and AlGaAs growth rate 120 nm/min. The 350-micron-square LED chips exhibit forward voltages 1.38 V at 10 microA and 2.4 V at 100 mA, reverse voltage 11 V at 10 microA, and optical output power 600 microW at 100 mA and room temperature, corresponding to external efficiency 0.3 percent.

  8. Preparation and crystalline qualities of SrTiO 3 and CeO 2 buffer layers fabricated on Ni substrates via a sol-gel method for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Chen, S.; Sun, Z.; Shi, K.; Wang, S.; Meng, J.; Liu, Q.; Han, Z.

    2004-10-01

    High purity rolled Ni substrate was annealed at 1000 °C for 60 min to develop a cube texture with a full-width at half-maximum (FWHM) value of 5.26°. Strontium acetate, titanium (IV) butoxide, and inorganic cerium nitrite were used as the starting materials for fabrication of SrTiO 3 and CeO 2 buffer layers via a sol-gel method on the Ni substrate material. The results show that the heat treatment temperature and holding time affect both the surface morphology and the texture of the buffer layers. The SrTiO 3 and CeO 2 buffer layers grown on the Ni substrate show a sharp (2 0 0) orientation distribution. An intermediate layer was found between the SrTiO 3 layer and the Ni substrate. By optimizing the heat treatment parameters, the ω-scan FWHM values can reach 5.31° and 6.60° for the SrTiO 3 and CeO 2 buffer layers, respectively.

  9. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively. PMID:26413646

  10. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    SciTech Connect

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  11. Epitaxial c-axis oriented BaTiO{sub 3} thin films on SrTiO{sub 3}-buffered Si(001) by atomic layer deposition

    SciTech Connect

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G.; Posadas, Agham B.; Demkov, Alexander A.; Hu, Chengqing; Yu, Edward T.; Bruley, John

    2014-02-24

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO{sub 3} (BTO) on Si(001) using a thin (1.6 nm) buffer layer of SrTiO{sub 3} (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225  °C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600  °C. Two-dimensional XRD confirms the tetragonal structure and orientation of 7–20-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 7–20 nm-thick BTO films are examined and show an effective dielectric constant of ∼660 for the heterostructure.

  12. Polar-axis-oriented crystal growth of tetragonal PZT films on stainless steel substrate using pseudo-perovskite nanosheet buffer layer

    NASA Astrophysics Data System (ADS)

    Minemura, Yoshiki; Ichinose, Daichi; Nagasaka, Kohei; Kim, Jin Woon; Shima, Hiromi; Nishida, Ken; Kiguchi, Takanori; Konno, Toyohiko J.; Oshima, Naoya; Funakubo, Hiroshi; Uchida, Hiroshi

    2015-07-01

    Lead zirconate titanate (PZT) film with polar axis orientation was grown on a SUS 316L stainless steel substrate with the help of a Ca2Nb3O10 nanosheet (ns-CN) layer that had a pseudo-perovskite-type crystal structure. The ns-CN buffer layer was supported on a platinized SUS 316L (Pt/SUS) substrate, followed by chemical solution deposition (CSD) of the PZT films with tetragonal symmetry (Zr/Ti =40/60). The PZT films consisting of c-domain, with [001]-axis orientation of the perovskite unit cell, were deposited on the ns-CN/Pt/SUS substrate owing to (i) epitaxial lattice matching between the unit cell of PZT and substrate surface and (ii) in-plane thermal stress applied to the PZT film during cooling-down step of CSD procedure. The c-domain-oriented PZT film on ns-CN/Pt/SUS substrate exhibited enhanced remanent polarization of approximately 52 μC/cm2 and lowered dielectric permittivity of approximately 230, which are superior to those of conventional PZT films with random crystal orientation and comparable to those of epitaxial PZT films grown on (100)SrRuO3//(100)SrTiO3 substrates.

  13. New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se2 solar cells for faster reaction kinetics

    NASA Astrophysics Data System (ADS)

    Löckinger, Johannes; Nishiwaki, Shiro; Fuchs, Peter; Buecheler, Stephan; Romanyuk, Yaroslav E.; Tiwari, Ayodhya N.

    2016-08-01

    The development of a novel chemistry for the chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se2 (CIGS) solar cells is desired for a higher growth rate, hence reduced deposition time, while reducing simultaneously the required concentration of reactants. State-of-the-art recipes are based on thiourea as sulphide precursor requiring a high molarity of reactants and relatively long deposition times due to the slow decomposition rate of thiourea. In this contribution thioamide based sulphide precursors were investigated for their decomposition and growth behaviour. A co-solvent approach in an ethanolic/aqueous ammonia medium was evaluated omitting the need for additional complexants. By replacing thiourea with the investigated thioamides, homogeneous dense layers of around 30 nm were grown with a greatly decreased deposition time of 8 min compared to 25 min for thiourea. Likewise, the concentration of the sulphide precursor was 40-fold reduced. The photovoltaic performance as characterized by external quantum efficiency and current–voltage measurements, showed conversion efficiencies of 15% comparable to the thiourea based process.

  14. Buffer Biology.

    ERIC Educational Resources Information Center

    Morgan, Kelly

    2000-01-01

    Presents a science experiment in which students test the buffering capacity of household products such as shampoo, hand lotion, fizzies candy, and cola. Lists the standards addressed in this experiment and gives an example of a student lab write-up. (YDS)

  15. High-efficiency ferroelectric-film solar cells with an n-type Cu₂O cathode buffer layer.

    PubMed

    Cao, Dawei; Wang, Chunyan; Zheng, Fengang; Dong, Wen; Fang, Liang; Shen, Mingrong

    2012-06-13

    Because of the existence of interface Schottky barriers and depolarization electric field, ferroelectric films sandwiched between top and bottom electrodes are strongly expected to be used as a new kind of solar cells. However, the photocurrent with a typical order of μA/cm(2) is too low to be practical. Here we demonstrate that the insertion of an n-type cuprous oxide (Cu(2)O) layer between the Pb(Zr,Ti)O(3) (PZT) film and the cathode Pt contact in a ITO/PZT/Pt cell leads to the short-circuit photocurrent increasing 120-fold to 4.80 mA/cm(2) and power conversion efficiency increasing of 72-fold to 0.57% under AM1.5G (100 mW/cm(2)) illumination. Ultraviolet photoemission spectroscopy and dark J-V characteristic show an ohmic contact on Pt/Cu(2)O, an n(+)-n heterojunction on Cu(2)O/PZT and a Schottky barrier on PZT/ITO, which provide a favorable energy level alignment for efficient electron-extraction on the cathode. Our work opens up a promising new method that has the potential for fulfilling cost-effective ferroelectric-film photovoltaic. PMID:22582756

  16. A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO2 nanorods growth

    NASA Astrophysics Data System (ADS)

    Rahmani, N.; Dariani, R. S.; Rajabi, M.

    2016-03-01

    In this study, we have synthesized TiO2 nanorods (NRs) on silicon and porous silicon (PS) substrates by hydrothermal method. The PS substrates with different porosities were fabricated by electrochemical anodization on silicon. According to the field emission electron microscopy images, TiO2 NRs grown on PS substrates have a better growth compared to those grown on silicon. Also increasing substrate porosity leads to an increase in density of the NRs. Atomic force microscopy observation demonstrates that porous layer formation due to etching of silicon surface leads to an increase of its roughness. Results indicate surface roughness evolution with porosity increasing enhances TiO2 nucleation on substrate and thus increases TiO2 NRs density. We propose a growth mechanism to explain how we can control the local surface chemical potential and thus the nucleation and alignment of TiO2 NRs by surface roughness variation. Also, photoluminescence studies show a red-shift in band gap energy of NRs compared to that of common bulk TiO2.

  17. Internal stress and degradation in short-wavelength AlGaAs double-heterojunction devices

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Furman, T. R.; Marinelli, D. P.

    1979-01-01

    Aging tests of incoherently operated zinc-doped double-heterojunction (DH) lasers designed for short-wavelength (0.71-0.72 micron) operation show that the introduction of buffer layers between the substrate and the DH structure leads to a drastic reduction in gradual degradation. This is attributed to a decrease in lattice mismatch stress.

  18. Metal-oxide buffer layer for maintaining topological bumpy surface underlayer of columnar CoPt-SiO2 granular media deposited at high substrate temperature

    NASA Astrophysics Data System (ADS)

    Tham, Kim Kong; Hinata, Shintaro; Saito, Shin; Takahashi, Migaku

    2015-05-01

    Investigation of surface topography for underlayer with various metal-oxide buffer layer (BL) materials for magnetic recording media is reported. In the previous study, it was found out that the application of a high substrate temperature deposition process to a granular layer with a magnetic alloy and a non-magnetic oxide material, such as CoPtCr-SiO2, will induce lamellar and spherical grains due to the flattening of the underlayer bumpy surface by recrystallization. By depositing a CoCr-SiO2 BL onto the Ru underlayer at room temperature, CoCr grains grow epitaxially onto Ru grains and SiO2 segregates to Ru boundaries. Consequently, bumpy surface morphology of the underlayer is maintained even though heated to around 400 °C before depositing the granular layer. Therefore, CoPt magnetic grains of a Co82.4Pt17.6- 27.7 vol. % SiO2 granular film deposited on the underlayer grow epitaxially on CoCr grains with columnar structure. As a result, high average Ku⊥ of around 6.7 × 106 erg/cm3 can be obtained. Among the studied BL materials, CoCr-SiO2 shows the highest thermal resistance with root mean square surface roughness (Rq) of around 1.7 nm after heating at around 400 °C. To obtain columnar magnetic grains with critical thickness more than 13 nm, underlayer with Rq more than 1.6 nm is needed.

  19. Microstructure of a high Jc, laser-ablated YBa 2Cu 3O 7- δ/sol-gel deposited NdGaO 3 buffer layer/(001) SrTiO 3 multi-layer structure

    NASA Astrophysics Data System (ADS)

    Yang, Chau-Yun; Ichinose, Ataru; Babcock, S. E.; Morrell, J. S.; Mathis, J. E.; Verebelyi, D. T.; Paranthaman, M.; Beach, D. B.; Christen, D. K.

    A YBa 2Cu 3O 7- δ (YBCO) film with a transport critical current density ( Jc) value of 1 mA/cm 2 (77 K, 0 T) was grown on a solution deposited NdGaO 3 (NGO) buffer layer on (100) SrTiO 3 (STO). The 25-nm thick NGO buffer layer was dip-coated onto the STO single crystal from a solution of metal methoxyethoxides in 2-methoxyethanol. Pulsed laser deposition (PLD) was used to grow a 250-nm-thick YBCO film on the NGO. The epitaxial relationships are cube-on-cube throughout the structure when the pseudo cubic and pseudo tetragonal unit cells are used to describe the NGO and YBCO crystal structures, respectively: (001) YBCO∥(001) NGO∥(001) STO and [100] YBCO∥[100] NGO∥[100] STO. High resolution scanning electron microscopy (SEM) of the bare NGO surface revealed ∼40 nm diameter pinholes with number density of ∼2×10 13 m -2, corresponding to an area fraction coverage of 2.5%, in an otherwise featureless surface. Cross-sectional transmission electron microscopy (TEM) showed that these pinholes penetrate to the STO; otherwise the NGO layer was uniformly thick to within approximately ±5 nm and defect free. The X-ray diffraction φ- and ω-scans indicated that the YBCO film was highly oriented with a full-width-half maximum peak breadth of 1.14° for in-plane and 0.46° for out-of-plane alignment, respectively. The film contained sparse a-axis oriented grains, an appreciable density of (001) stacking faults and apparently insulating second phase precipitates of the type that typically litter the surface of PLD films. All of these defects are typical of YBCO thin films. High-resolution cross-sectional TEM images indicate that no chemical reaction occurs at the YBCO/NGO interface.

  20. Growth of Sputtered-Aluminum Oxide Thin Films on si (100) and si (111) Substrates with Al2O3 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Lim, Wei Qiang; Shanmugan, Subramani; Devarajan, Mutharasu

    2016-03-01

    Aluminum oxide (Al2O3) thin films with Al2O3 buffer layer were deposited on Si (100) and Si (111) substrates using RF magnetron sputtering of Al2O3 target in Ar atmosphere. The synthesized films were then annealed at the temperature of 400∘C, 600∘C and 800∘C in nitrogen (N2) environment for 6h. Structural properties and surface morphology are examined by using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscope (AFM). XRD analysis indicated that different orientation of Al2O3 were formed with different intensities due to increase in the annealing temperature. From FESEM cross-section analysis results, it is observed that the thickness of films were increased as the annealing temperature increased. EDX analysis shows that the concentration of aluminum and oxygen on both the Si substrates increased with the increase in annealing temperature. The surface roughness of the films were found to be decreased first when the annealing temperature is increased to 400∘C, yet the roughness increased when the annealing temperature is further increased to 800∘C.

  1. Improving source/drain contact resistance of amorphous indium–gallium–zinc-oxide thin-film transistors using an n+-ZnO buffer layer

    NASA Astrophysics Data System (ADS)

    Hung, Chien-Hsiung; Wang, Shui-Jinn; Lin, Chieh; Wu, Chien-Hung; Chen, Yen-Han; Liu, Pang-Yi; Tu, Yung-Chun; Lin, Tseng-Hsing

    2016-06-01

    To avoid high temperature annealing in improving the source/drain (S/D) resistance (R DS) of amorphous indium–gallium–zinc-oxide (α-IGZO) thin-film transistors (TFTs) for flexible electronics, a simple and efficient technique using a sputtering-deposited n+-ZnO buffer layer (BL) sandwiched between the S/D electrode and the α-IGZO channel is proposed and demonstrated. It shows that the R DS of α-IGZO TFTs with the proposed n+-ZnO BL is reduced to 8.1 × 103 Ω as compared with 6.1 × 104 Ω of the conventional one. The facilitation of carrier tunneling between the S/D electrode and the α-IGZO channel through the use of the n+-ZnO BL to lower the effective barrier height therein is responsible for the R DS reduction. Effects of the chamber pressure on the carrier concentration of the sputtering-deposited n+-ZnO BL and the thickness of the BL on the degree of improvement in the performance of α-IGZO TFTs are analyzed and discussed.

  2. Ambient CdCl{sub 2} treatment on CdS buffer layer for improved performance of Sb{sub 2}Se{sub 3} thin film photovoltaics

    SciTech Connect

    Wang, Liang; Luo, Miao; Qin, Sikai; Liu, Xinsheng; Chen, Jie; Yang, Bo; Leng, Meiying; Xue, Ding-Jiang; Zhou, Ying; Gao, Liang; Song, Haisheng; Tang, Jiang

    2015-10-05

    Antimony selenide (Sb{sub 2}Se{sub 3}) is appealing as a promising light absorber because of its intrinsically benign grain boundaries, suitable band gap (∼1.1 eV), strong absorption coefficient, and relatively environmentally friendly constituents. Recently, we achieved a certified 5.6% efficiency Sb{sub 2}Se{sub 3} thin film solar cell with the assistance of ambient CdCl{sub 2} treatment on the CdS buffer layer. Here, we focused on investigating the underlying mechanism from a combined materials and device physics perspective applying current density-voltage (J-V) fitting analysis, atomic force microscope, X-ray photoelectron spectroscopy, fluorescence, and UV–Vis transmission spectroscopy. Our results indicated that ambient CdCl{sub 2} treatment on CdS film not only improved CdS grain size and quality, but also incorporated Cl and more O into the film, both of which can significantly improve the heterojunction quality and device performance of CdS/Sb{sub 2}Se{sub 3} solar cells.

  3. Preparation of highly c-axis oriented AlN thin films on Hastelloy tapes with Y2O3 buffer layer for flexible SAW sensor applications

    NASA Astrophysics Data System (ADS)

    Peng, Bin; Jiang, Jianying; Chen, Guo; Shu, Lin; Feng, Jie; Zhang, Wanli; Liu, Xinzhao

    2016-02-01

    Highly c-axis oriented aluminum nitrade (AlN) films were successfully deposited on flexible Hastelloy tapes by middle-frequency magnetron sputtering. The microstructure and piezoelectric properties of the AlN films were investigated. The results show that the AlN films deposited directly on the bare Hastelloy substrate have rough surface with root mean square (RMS) roughness of 32.43nm and its full width at half maximum (FWHM) of the AlN (0002) peak is 12.5∘. However, the AlN films deposited on the Hastelloy substrate with Y2O3 buffer layer show smooth surface with RMS roughness of 5.46nm and its FWHM of the AlN (0002) peak is only 3.7∘. The piezoelectric coefficient d33 of the AlN films deposited on the Y2O3/Hastelloy substrate is larger than three times that of the AlN films deposited on the bare Hastelloy substrate. The prepared highly c-axis oriented AlN films can be used to develop high-temperature flexible SAW sensors.

  4. Evolution of epilayer tilt in thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Schulte, K. L.; Strand, M. T.; Kuech, T. F.

    2015-09-01

    Tilt behavior in thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) was measured by high-resolution reciprocal space mapping. Step-graded and continuously-graded structures, grown on nominally (001) oriented GaAs substrates, were analyzed. Tilt was measured as a function of position in a step-graded MBL. It was found that the tilt was strongest near the edges and tended to point toward the sample center. Step-grading induced a nearly linear tilt increase with xInAs, while tilt increased slowly below xInAs~0.10 then increased more sharply with In concentration in continuously-graded samples. The tilt behavior could be described by a model in which the tilt is attributed to imbalances in dislocations that result from cross-slip within a glide length of the sample edge. This finding implies that dislocation multiplication by cross slip is an important strain relief mechanism during the growth of these MBLs. Strategies for minimizing tilt in HVPE MBLs are discussed.

  5. Integration and structural analysis of strain relaxed bi-epitaxial zinc oxide(0001) thin film with silicon(100) using titanium nitride buffer layer

    SciTech Connect

    Gupta, Pranav; Narayan, Jagdish

    2014-01-28

    Epitaxial growth of c-plane ZnO(0001) has been demonstrated on the Si(001) by using TiN as an intermediate buffer layer. Because of different out of plane symmetry of the substrate (Si/TiN) and the film (ZnO), two orientations of ZnO domains were obtained and the ZnO film growth is of bi-epitaxial nature. The ZnO thin film was observed to be nearly strain relaxed from X-ray and Raman measurements. The interface between the ZnO and TiN was investigated by transmission electron microscopy, and atomic arrangement has been modeled to understand the crystallographic orientation and structure of the domain/grain boundaries. Reaction at ZnO/TiN interface at higher growth temperature causing zinc titanate formation was observed. The grain boundary structure between the observed domains investigated by scanning transmission electron microscopy, revealed the ZnO(0001) planes to be contiguous across the grain boundary which is significant from the perspective of conduction electron scattering. In this configuration, the TiN (being electrically conductive) can be effectively used as an electrode for novel vertically integrated device applications (like light emitting diodes) directly on Si(100) substrate.

  6. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  7. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  8. Plasma-assisted hot filament chemical vapor deposition of AlN thin films on ZnO buffer layer: toward highly c-axis-oriented, uniform, insulative films

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Mehdipour, H.; Ganesh, V.; Ameera, A. N.; Goh, B. T.; Shuhaimi, A.; Rahman, S. A.

    2014-12-01

    c-Axis-oriented aluminum nitride (AlN) thin film with improved quality was deposited on Si(111) substrate using ZnO buffer layer by plasma-assisted hot filament chemical vapor deposition. The optical and electrical properties and surface morphology as well as elemental composition of the AlN films deposited with and without ZnO buffer layer were investigated using a host of measurement techniques: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and current-voltage (I-V) characteristic measurement. The XRD and XPS results reveal that the AlN/ZnO/Si films are free of metallic Al particles. Also, cross-sectional FESEM observations suggest formation of a well-aligned, uniform, continuous, and highly (002) oriented structure for a bi-layered AlN film when Si(111) is covered with ZnO buffer. Moreover, a decrease in full width at half maximum of the E2 (high)-mode peak in Raman spectrum indicates a better crystallinity for the AlN films formed on ZnO/Si substrate. Finally, I-V curves obtained indicate that the electrical behavior of the AlN thin films switches from conductive to insulative when film is grown on a ZnO-buffered Si substrate.

  9. Buffer layers for coated conductors

    DOEpatents

    Stan, Liliana; Jia, Quanxi; Foltyn, Stephen R.

    2011-08-23

    A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.

  10. Microstructural evaluation of Sb-adjusted Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer layer systems for IR applications

    SciTech Connect

    Chen, E.; Paine, D.C.; Uppal, P.; Ahearn, J.S.; Nichols, K.; Charache, G.W.

    1998-06-01

    The authors report on a transmission electron microscopy (TEM) study of Sb-adjusted quaternary Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer-layers grown on <001> GaAs substrates. A series of structures were grown by MBE at 470 C that utilize a multilayer grading scheme in which the Sb content of Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer-layers grown on <001> GaAs substrates. A series of structures were grown by MBe at 470 C that utilize a multilayer grading scheme in which the Sb content of Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} is successively increased in a series of 125 nm thick layers. Post growth analysis using conventional bright field and weak beam dark field imaging of these buffer layers in cross-section reveals that the interface misfit dislocations are primarily of the 60{degree} type and are distributed through out the interfaces of the buffer layer. When optimized, the authors have shown, using plan view and cross-sectional TEM, that this approach can reduce the threading defect density to below the detectability limit of TEM (< 10{sup 5}/cm{sup 2}) and preserve growth surface planarity. The Sb-graded approach was used to fabricate two 2.2 {micro}m power converter structures fabricated using InGaAs grown on Sb-based buffer layers on GaAs substrates. A microstructural and electrical characterization was performed on these device structures and the results are contrasted with a sample in which InP was selected as the substrate. Microstructure, defect density and device performance in these not-yet-optimized Sb-based buffer layers compares favorably to equivalent devices fabricated using InP substrates.

  11. Aspects of the SrO-CuO-TiO2 Ternary System Related to the Deposition of SrTiO3 and Copper-Doped SrTiO3 Thin-Film Buffer Layers

    SciTech Connect

    A. Ayala

    2004-12-20

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) coated conductors are promising materials for large-scale superconductivity applications. One version of a YBCO coated conductor is based on ion beam assisted deposition (IBAD) of magnesium oxide (MgO) onto polycrystalline metal substrates. SrTiO{sub 3} (STO) is often deposited by physical vapor deposition (PVD) methods as a buffer layer between the YBCO and IBAD MgO due to its chemical stability and lattice mismatch of only {approx}1.5% with YBCO. In this work, some aspects of the stability of STO with respect to copper (Cu) and chemical solution deposition of STO on IBAD MgO templates were examined. Solubility limits of Cu in STO were established by processing Cu-doped STO powders by conventional bulk preparation techniques. The maximum solubility of Cu in STO was {approx}1% as determined by transmission electron microscopy (TEM) and Rietveld refinements of x-ray diffraction (XRD) data. XRD analysis, performed in collaboration with NIST, on powder compositions on the STO/SrCuO{sub 2} tie line did not identify any ternary phases. SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layers were prepared by pulsed laser deposition (PLD) and CSD on IBAD MgO flexible metallic textured tapes. TEM analysis of a {approx}100 nm thick SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layer deposited by PLD showed a smooth Cu-doped STO/MgO interface. A {approx}600 nm thick YBCO film, deposited onto the SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer by PLD, exhibited a T{sub c} of 87 K and critical current density (J{sub c}) of {approx}1 MA/cm{sup 2}. STO and Cu-doped STO thin films by CSD were {approx}30 nm thick. The in plane alignment (FWHM) after deposition of the STO improved by {approx}1{sup o} while it degraded by {approx}2{sup o} with the SrCu{sub 0.05}TiO{sub y} buffer. YBCO was deposited by PLD on the STO and SrCu{sub 0.05}TiO{sub y} buffers. The in plane alignment (FWHM) of the YBCO with the STO buffer layer slightly improved while that of the

  12. Reduced interface recombination in Cu{sub 2}ZnSnS{sub 4} solar cells with atomic layer deposition Zn{sub 1−x}Sn{sub x}O{sub y} buffer layers

    SciTech Connect

    Platzer-Björkman, C.; Frisk, C.; Larsen, J. K.; Ericson, T.; Li, S.-Y.; Scragg, J. J. S.; Keller, J.; Larsson, F.; Törndahl, T.

    2015-12-14

    Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells typically include a CdS buffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal (“cliff-like”), which enhances interface recombination. In this work, we show how a Zn{sub 1−x}Sn{sub x}O{sub y} (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (V{sub oc}) for CZTS devices. The ZTO is deposited by atomic layer deposition (ALD), with a process previously developed for Cu(In,Ga)Se{sub 2} solar cells. By varying the ALD process temperature, the position of the conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 °C is found to give higher V{sub oc} and efficiency as compared with the CdS reference devices. For a ZTO process at 120 °C, where the conduction band alignment is expected to be the same as for CdS, the V{sub oc} and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 °C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the V{sub oc} of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.

  13. Effect of conductive TiN buffer layer on the growth of stoichiometric VO{sub 2} films and the out-of-plane insulator–metal transition properties

    SciTech Connect

    Mian, Md. Suruz; Okimura, Kunio

    2014-07-15

    A TiN buffer film is used with a conductive interfacial layer for stoichiometric vanadium dioxide (VO{sub 2}) film growth, creating a layered device with a VO{sub 2} insulator–metal transition. Low-temperature growth (<250 °C) of the VO{sub 2} film on a Ti layer on a Si substrate is achieved using inductively coupled plasma-assisted sputtering. It is found that Ti diffusion and oxidation degrades the VO{sub 2} film quality at higher temperatures, but the introduction of a TiN buffer layer suppresses the degradation and enables growth of a stoichiometric VO{sub 2} film even at 400 °C. The high resistance of the VO{sub 2} film grown on the TiN layer suggests the benefit of using the intrinsic insulator–metal transition of VO{sub 2}. The voltage-triggered switching properties of the layered devices are examined, and the cause of the high out-of-plane resistance in this layered structure is discussed based upon the dependence of the initial resistance as a function the electrode area.

  14. A comparative study of the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based solar cells with an indium sulfide buffer layer, partly submitted to wet chemical treatments

    SciTech Connect

    Hönes, C.; Hackenberg, J.; Zweigart, S.; Wachau, A.; Hergert, F.; Siebentritt, S.

    2015-03-07

    Indium sulfide thin films deposited via thermal evaporation from compound source material have been successfully utilized as a cadmium free buffer layer for Cu(In,Ga)Se{sub 2} based solar cells. However, high efficiencies are only reached after an additional annealing step. In this work, the annealing behavior of Cu(In,Ga)(S,Se){sub 2} based indium sulfide buffered solar cells is compared to the annealing behavior of similar cells, which were submitted to wet chemical treatments partly containing cadmium ions. Upon annealing a significant improvement of the initial solar cell characteristics is observed for the untreated cell and is related to the increase of activation energy for the carrier recombination process and a decrease of the ideality factor within the one diode model. It is shown here that this improvement can also be achieved by wet treatments of the absorber prior to buffer layer deposition. Upon annealing these treated cells still gain in collection length but lose open circuit voltage, which is explained here within a model including a highly p-doped absorber surface layer and supported by simulations showing that a decrease in doping density of such a surface layer would lead to the observed effects.

  15. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S)2 and Cu2ZnSn(Se,S)4-based thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.; He, X.; Rockett, A.

    2016-01-01

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ˜400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ˜400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  16. 1,3,5-Tris(phenyl-2-benzimidazole)-benzene cathode buffer layer thickness dependence in solution-processable organic solar cell based on 1,4,8,11,15,18,22,25-octahexylphthalocyanine

    NASA Astrophysics Data System (ADS)

    De Roméo Banoukepa, Gilles; Fujii, Akihiko; Shimizu, Yo; Ozaki, Masanori

    2015-04-01

    Studies on the insertion effects of a cathode buffer layer on bulk heterojunction organic solar cell based on 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) and 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM) by using 1,3,5-tris(phenyl-2-benzimidazole)-benzene (TPBi) as a cathode buffer layer material have been carried out. The external quantum efficiency and the short-circuit current markedly increased, resulting in the enhancement of the power conversion efficiency. The solar cell performance has been discussed from the atomic force microscopy, photoelectron yield spectroscopy and X-ray photoelectron spectroscopy measurements.

  17. 2D SWIR image sensor with extended wavelength cutoff of 2.5 μm on InP/InGaAs epitaxial wafers with graded buffer layers

    NASA Astrophysics Data System (ADS)

    Mushini, Prabhu; Huang, Wei; Morales, Manuel; Brubaker, Robert; Nguyen, Thuc-Uyen; Dobies, Matt; Zhang, Wei; Gustus, William; Mathews, Gary; Endicter, Scott; Paik, Namwoong

    2016-05-01

    Two-dimensional photo detector arrays with a cutoff wavelength of 2.5 μm were fabricated on InP/InGaAs epitaxial wafers with graded buffer layers in a 320x256 geometry on a 12.5μm pitch. Novel growth and fabrication techniques were employed to fabricate these arrays and optimize the performance. The dark current of the detector was investigated for a wide range of temperatures. The fabricated detector array was mated with a ROIC and packaged with a multi-stage TEC and investigated further at the FPA level. The effect of the graded buffer layers on the sensor performance was investigated and the results were compared to other methods used to develop and fabricate 2D image sensors on extended wavelength materials.

  18. Enhanced performance of polymer solar cells using PEDOT:PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer.

    PubMed

    Wang, Kai; Yi, Chao; Hu, Xiaowen; Liu, Chang; Sun, Yan; Hou, Jianhui; Li, Yongfang; Zheng, Jie; Chuang, Steven; Karim, Alamgir; Gong, Xiong

    2014-08-13

    Low efficiency and poor stability are two major obstacles limiting the manufacturing of renewable and cost-effective polymer solar cell (PSCs). To address these problems, solution-processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) doped with Fe3O4 magnetic nanoparticles ((PEDOT:PSS):Fe3O4), and above (PEDOT:PSS):Fe3O4 thin film aligned by an external magnetostatic field ([(PEDOT:PSS):Fe3O4] W/H) were used as the anode buffer layer for PSCs, respectively. As compared with PSCs with PEDOT:PSS as an anode buffer layer, 38.5% enhanced efficiency and twice improved stability are observed from PSCs incorporated with [(PEDOT:PSS):Fe3O4] W/H anode buffer layer. It was found that enhanced efficiency and improved stability resulted from a combination of reduced acidity of PEDOT:PSS and enhanced electrical conductivity that originated from generated counterions and the paramagnetism of Fe3O4 magnetic nanoparticles by an external magnetostatic field. PMID:24980462

  19. Interfacial conditions and electrical properties of the SrBi 2Ta 2O 9/ZrO 2/Si (MFIS) structure according to the heat treatment of the ZrO 2 buffer layer

    NASA Astrophysics Data System (ADS)

    Park, Chul-Ho; Kim, Jae-Hyun; Kim, Min-Cheol; Son, Young-Gook; Won, Mi-Sook

    2005-08-01

    The possibility of the ZrO 2 buffer layer as the insulator for the metal-ferroelectric-insulator-semiconductor (MFIS) structure was investigated. ZrO 2 and SrBi 2Ta 2O 9 (SBT) thin films were deposited on the p-type Si(1 1 1) wafer by the rf magnetron-sputtering method. According to the process with and without the post-annealing of the ZrO 2 buffer layer, the diffusion amount of Sr, Bi, Ta elements show slight difference through the glow discharge spectrometer (GDS) analysis. From X-ray photoelectron spectroscopy (XPS) results, we could confirm that the post-annealing process affects the chemical binding condition of the interface between the ZrO 2 thin film and the Si substrate, which results in the chemical stability of the ZrO 2 thin film. The electrical properties of the MFIS structure were relatively improved by the post-annealing ZrO 2 buffer layer. The window memory of the Pt/SBT (260 nm, 800 °C)/ZrO 2 (20 nm) structure increases from 0.75 to 2.2 V. This memory window is sufficient for the practical application of the NDRO-FRAM operating at low voltage.

  20. Research on the radiation exposure “memory effects” in AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Sednev, V. V.

    2015-04-01

    Radiation exposure and long running time cause degradation of semiconductors' structures as well as semiconductors based on these structures. Besides, long running time can be the reason of partial radiation defects annealing. The purpose of the research work is to study the “memory effect” that happens during fast neuron radiation in AlGaAs heterostructures. Objects of the research are Infrared Light Emitting Electrodes (IRED) based on doubled AlGaAs heterostructures. During the experimental research LEDs were preliminarily radiated with fast neutrons, and radiation defects were annealed within the condition of current training with high temperatures, then emission power was measured. The research proved the existence of the “memory effect” that results in radiation stability enhancement with subsequent radiation. Possible mechanisms of the “memory effect” occurrence are under review.

  1. A statistical approach for optimizing parameters for electrodeposition of indium (III) sulfide (In2S3) films, potential low-hazard buffer layers for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mughal, Maqsood Ali

    Clean and environmentally friendly technologies are centralizing industry focus towards obtaining long term solutions to many large-scale problems such as energy demand, pollution, and environmental safety. Thin film solar cell (TFSC) technology has emerged as an impressive photovoltaic (PV) technology to create clean energy from fast production lines with capabilities to reduce material usage and energy required to manufacture large area panels, hence, lowering the costs. Today, cost ($/kWh) and toxicity are the primary challenges for all PV technologies. In that respect, electrodeposited indium sulfide (In2S3) films are proposed as an alternate to hazardous cadmium sulfide (CdS) films, commonly used as buffer layers in solar cells. This dissertation focuses upon the optimization of electrodeposition parameters to synthesize In2S3 films of PV quality. The work describe herein has the potential to reduce the hazardous impact of cadmium (Cd) upon the environment, while reducing the manufacturing cost of TFSCs through efficient utilization of materials. Optimization was performed through use of a statistical approach to study the effect of varying electrodeposition parameters upon the properties of the films. A robust design method referred-to as the "Taguchi Method" helped in engineering the properties of the films, and improved the PV characteristics including optical bandgap, absorption coefficient, stoichiometry, morphology, crystalline structure, thickness, etc. Current density (also a function of deposition voltage) had the most significant impact upon the stoichiometry and morphology of In2S3 films, whereas, deposition temperature and composition of the solution had the least significant impact. The dissertation discusses the film growth mechanism and provides understanding of the regions of low quality (for example, cracks) in films. In2S3 films were systematically and quantitatively investigated by varying electrodeposition parameters including bath

  2. The technology and applications of selective oxidation of AlGaAs

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Mathes, D.; Hull, R.

    1998-08-01

    Wet oxidation of AlGaAs alloys, pioneered at the University of Illinois a decade ago, recently has been used to fabricate high performance vertical-cavity surface emitting lasers (VCSELs). The superior properties of oxide-confined VCSELs has stimulated interest in understanding the fundamental of wet oxidation. The authors briefly review the technology of selective oxidation of III-V alloys, including the oxide microstructure and oxidation processing as well as describe its application to selectively oxidized VCSELs.

  3. Average power constraints in AlGaAs semiconductor lasers under pulse-position-modulation conditions

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1986-01-01

    In some optical communications systems there are advantages to using low duty-cycle pulsed modulation formats such as pulse-position-modulation. However, because of intrinsic limitations of AlGaAs semiconductor lasers, the average power that they can deliver in a pulsed mode of operation is lower than in a CW mode. The magnitude of this problem and its implications are analyzed in this letter, and one possible solution is mentioned.

  4. Preparation and properties of highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} thin film prepared by rf magnetron sputtering with a PbO{sub x} buffer layer

    SciTech Connect

    Wu, Jiagang; Zhu, Jiliang; Xiao, Dingquan; Zhu, Jianguo; Tan, Junzhe; Zhang, Qinglei

    2007-05-01

    A method for fabrication of highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} (PZT) thin films by rf magnetron sputtering with a special buffer of PbO{sub x} (RFMS-SBP) was developed. With this method, highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} thin films were prepared on the PbO{sub x}/Pt(111)/Ti/SiO{sub 2}/Si(100) substrates, and the preferential (100) orientation of the Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film is 92%. The (100) orientation of the PbO{sub x} buffer layer leads to the (100) orientation of the PZT thin films, and the thickness of the buffer layer plays a significant role on the phase purity and electrical properties of the films. Highly (100)-oriented Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} thin films with proper thickness of PbO{sub x} buffer layer possess good electrical properties with larger remnant polarization P{sub r} (69.7 {mu}C/cm{sup 2}), lower coercive field E{sub c} (92.4 kV/cm), and good pyroelectric coefficient at room temperature (2.6x10{sup -8} C/cm{sup 2} K). The butterfly-shaped {epsilon}-E characteristic curve gives the evidence of the improved in-plane ferroelectric property in the films.

  5. Structural and morphological properties of GaN buffer layers grown by ammonia molecular beam epitaxy on SiC substrates for AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Corrion, A. L.; Poblenz, C.; Wu, F.; Speck, J. S.

    2008-05-01

    The impact of growth conditions on the surface morphology and structural properties of ammonia molecular beam epitaxy GaN buffers layers on SiC substrates was investigated. The threading dislocation (TD) density was found to decrease with decreasing NH{sub 3}:Ga flux ratio, which corresponded to an increase in surface roughness and reduction in residual compressive lattice mismatch stress. Furthermore, the dislocation density and compressive stress decreased for increasing buffer thickness. TD inclination was proposed to account for these observations. Optimized surface morphologies were realized at high NH{sub 3}:Ga flux ratios and were characterized by monolayer-high steps, spiral hillocks, and pyramidal mounds, with rms roughness of {approx}1.0 nm over 2x2 {mu}m{sup 2} atomic force microscopy images. Smooth surface morphologies were realized over a large range of growth temperatures and fluxes, and growth rates of up to 1 {mu}m/h were achieved. TD densities in the buffers as low as 3x10{sup 9} cm{sup -2} were demonstrated. These buffers were highly insulating and were used in recently reported AlGaN/GaN HEMTs with power densities of >11 W/mm at 4 and 10 GHz.

  6. Thick (>20 µm) and high-resistivity carbon-doped GaN-buffer layers grown by metalorganic vapor phase epitaxy on n-type GaN substrates

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tomonobu; Terano, Akihisa; Mochizuki, Kazuhiro

    2016-05-01

    To improve the performance of GaN power devices, we have investigated the crystalline quality of thick (>20 µm) carbon-doped GaN layers on n-type GaN substrates and templates. The surface morphologies and X-ray rocking curves of carbon-doped GaN layers were improved by using GaN substrates. However, the crystalline quality degraded when the carbon concentration was too high (1 × 1020 cm‑3), even in the case of GaN substrates. High breakdown voltages (approximately 7 kV under a lateral configuration) were obtained for the carbon-doped GaN layers on n-type GaN substrates when the carbon concentration was 5 × 1019 cm‑3. These results indicate that lateral power devices with high breakdown voltage can be fabricated by using thick carbon-doped GaN buffer layers, even on n-type GaN substrates.

  7. The visualization of current-limiting defects in YBa2Cu3O7 films on ion-beam assisted deposition buffer layers of yttrium-stabilized ZrO2 and Gd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Born, V.; Hoffmann, J.; Sievers, S.; Thiele, Ch; Guth, K.; Freyhardt, H. C.; Jooss, Ch

    2004-11-01

    For the production of high-current-carrying, long-length superconducting wires or tapes, it is necessary to use biaxially textured metallic substrates or buffer layers. Though being highly textured, the deposited superconducting film exhibits a complex defect structure which (locally) suppresses the critical current and alternates characteristically the magnetic flux distribution seen in magneto-optical imaging. In this paper, we report on pulsed laser deposited YBaCuO films on biaxially textured yttrium-stabilized ZrO2 (YSZ) and Gd2Zr2O7 (GZO) buffers which were grown by ion beam assisted deposition (IBAD) on polycrystalline substrates. The current-limiting defect structure turns out to resemble closely a combination of a dense distribution of pinhole-like induced growth distortions and a fine grain boundary network. The current suppression is caused on the one hand by the dense packing of pinhole-like defects. On the other hand, we observe a substantial current anisotropy being related to the surface morphology of the buffer layers and the direction of the IBAD-beam.

  8. Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer.

    PubMed

    Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck

    2016-08-31

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance. PMID:27494649

  9. AlGaAs ridge laser with 33% wall-plug efficiency at 100 °C based on a design of experiments approach

    NASA Astrophysics Data System (ADS)

    Fecioru, Alin; Boohan, Niall; Justice, John; Gocalinska, Agnieszka; Pelucchi, Emanuele; Gubbins, Mark A.; Mooney, Marcus B.; Corbett, Brian

    2016-04-01

    Upcoming applications for semiconductor lasers present limited thermal dissipation routes demanding the highest efficiency devices at high operating temperatures. This paper reports on a comprehensive design of experiment optimisation for the epitaxial layer structure of AlGaAs based 840 nm lasers for operation at high temperature (100 °C) using Technology Computer-Aided Design software. The waveguide thickness, Al content, doping level, and quantum well thickness were optimised. The resultant design was grown and the fabricated ridge waveguides were optimised for carrier injection and, at 100 °C, the lasers achieve a total power output of 28 mW at a current of 50 mA, a total slope efficiency 0.82 W A-1 with a corresponding wall-plug efficiency of 33%.

  10. The effects of ultraviolet-ozone-treated ultra-thin MnO-doped ZnO film as anode buffer layer on the electrical characteristics of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2015-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing an MnO-doped ZnO film as a buffer layer between the indium tin oxide (ITO) electrode and the α-naphthylphenylbiphenyldiamine hole transport layer. The enhancement mechanism was systematically investigated, and the X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone-treated MnO-doped ZnO film. With this film, the work function increased from 4.8 eV (standard ITO electrode (˜ 10 ±5 Ω/◻ )) to 5.27 eV (UV-ozone-treated MnO-doped ZnO deposited on the ITO electrode with 1 wt. % for 1 nm), while the surface roughness of the UV-ozone-treated MnO-doped ZnO film was smoother than that of the ITO electrode. The deposited UV-ozone-treated MnO-doped ZnO film increased the surface energy and polarity of the ITO surface, as determined from contact angle measurements. Further, results from admittance spectroscopy showed that the inserted UV-ozone-treated MnO-doped ZnO film increased the capacitance and conductance of the OLEDs. It was also found that the carrier injection increased in the space-charge region when the UV-ozone-treated MnO-doped ZnO buffer layer was inserted. Moreover, the turn-on voltage of the devices decreased from 3.8 V to 3.2 V, the luminance increased from 7588 cd/m2 to 20 350 cd/m2, and the current efficiency increased from 3.2 cd/A to 5.8 cd/A when a 1 nm-thick UV-ozone-treated MnO-doped ZnO film with 1 wt. % was inserted as a buffer layer in the OLEDs.

  11. High-tunability and low-microwave-loss Ba0.6Sr0.4TiO3 thin films grown on high-resistivity Si substrates using TiO2 buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Suk; Kim, Ho-Gi; Kim, Il-Doo; Kim, Ki-Byoung; Lee, Jong-Chul

    2005-11-01

    In this Letter, we report on high-tunability and low-microwave-loss properties of Ba0.6Sr0.4TiO3 (BST) thin films by use of atomic-layer-deposited TiO2 films as the microwave buffer layer between BST and high-resistivity Si substrate. The interdigital capacitor fabricated on BST films grown on TiO2/high resistivity Si (2kΩcm) substrates showed the much enhanced tunability value of 33.2% while retaining an appropriate Q factor, as compared to the tunability values of BST (21%) films grown on MgO single-crystal substrates and BST (8.2%) films grown on TiO2/normal Si (10Ωcm) substrates. The coplanar waveguide BST phase shifter fabricated on TiO2/high resistivity Si exhibited a phase shift of 95° and insertion loss of 3.09 dB at 15 GHz and an applied voltage of 50 V. ALD-grown TiO2 buffer layers enable the successful integration of BST-based microwave tunable devices onto high-resistivity Si wafers.

  12. An evaluation of phase separated, self-assembled LaMnO3-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa2YCu3O7-& coated conductors

    SciTech Connect

    Polat, Ozgur; Aytug, Tolga; Paranthaman, Mariappan Parans; Leonard, Keith J; Lupini, Andrew R; Pennycook, Stephen J; Meyer III, Harry M; Kim, Kyunghoon; Qiu, Xiaofeng; Cook, Sylvester W; Thompson, James R; Christen, David K; Goyal, Amit; Selvamanickam, V.; Xiong, X.

    2010-01-01

    Technological applications of high temperature superconductors (HTS) require high critical current density, Jc, under operation at high magnetic field strengths. This requires effective flux pinning by introducing artificial defects through creative processing. In this work, we evaluated the feasibility of mixed-phase LaMnO3:MgO (LMO:MgO) films as a potential cap buffer layer for the epitaxial growth and enhanced performance of YBa2Cu3O7-d (YBCO) films. Such composite films were sputter deposited directly on IBAD-MgO templates (with no additional homo-epitaxial MgO layer) and revealed the formation of two phase-separated, but at the same time vertically aligned, self-assembled composite nanostructures that extend throughout the entire thickness of the film. The YBCO coatings deposited on these nanostructured cap layers showed correlated c-axis pinning and improved in-field Jc performance compared to those of YBCO films fabricated on standard LMO buffers. Microstructural characterization revealed additional extended disorder in the YBCO matrix. The present results demonstrate the feasibility of novel and potentially practical approaches in the pursuit of more efficient, economical, and high performance superconducting devices.

  13. Towards III-V solar cells on Si: Improvement in the crystalline quality of Ge-on-Si virtual substrates through low porosity porous silicon buffer layer and annealing

    SciTech Connect

    Calabrese, Gabriele; Baricordi, Stefano; Bernardoni, Paolo; Fin, Samuele; Guidi, Vincenzo; Vincenzi, Donato

    2014-09-26

    A comparison between the crystalline quality of Ge grown on bulk Si and on a low porosity porous Si (pSi) buffer layer using low energy plasma enhanced chemical vapor deposition is reported. Omega/2Theta coupled scans around the Ge and Si (004) diffraction peaks show a reduction of the Ge full-width at half maximum (FWHM) of 22.4% in presence of the pSi buffer layer, indicating it is effective in improving the epilayer crystalline quality. At the same time atomic force microscopy analysis shows an increase in root means square roughness for Ge grown on pSi from 38.5 nm to 48.0 nm, as a consequence of the larger surface roughness of pSi compared to bulk Si. The effect of 20 minutes vacuum annealing at 580°C is also investigated. The annealing leads to a FWHM reduction of 23% for Ge grown on Si and of 36.5% for Ge on pSi, resulting in a FWHM of 101 arcsec in the latter case. At the same time, the RMS roughness is reduced of 8.8% and of 46.5% for Ge grown on bulk Si and on pSi, respectively. The biggest improvement in the crystalline quality of Ge grown on pSi with respect to Ge grown on bulk Si observed after annealing is a consequence of the simultaneous reorganization of the Ge epilayer and the buffer layer driven by energy minimization. A low porosity buffer layer can thus be used for the growth of low defect density Ge on Si virtual substrates for the successive integration of III-V multijunction solar cells on Si. The suggested approach is simple and fast –thus allowing for high throughput-, moreover is cost effective and fully compatible with subsequent wafer processing. Finally it does not introduce new chemicals in the solar cell fabrication process and can be scaled to large area silicon wafers.

  14. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  15. Low density GaAs /AlGaAs quantum dots grown by modified droplet epitaxy

    NASA Astrophysics Data System (ADS)

    Mantovani, V.; Sanguinetti, S.; Guzzi, M.; Grilli, E.; Gurioli, M.; Watanabe, K.; Koguchi, N.

    2004-10-01

    Low temperature photoluminescence spectroscopy is used to analyze the effects of the Ga coverage and of the postgrowth thermal annealing on the electronic properties of low density (≈1×109cm-2) self-assembled GaAs /AlGaAs quantum dots (QDs) grown by modified droplet epitaxy (MDE). We demonstrate that with the MDE method it is possible to obtain low density and high efficiency QD samples with high photoluminescence efficiency. Large modifications of the photoluminescence band, which depend on Ga coverage and thermal annealing, are found and quantitatively interpreted by means of a simple model based on the Al-Ga interdiffusion.

  16. Single-growth embedded epitaxy AlGaAs injection lasers with extremely low threshold currents

    SciTech Connect

    Katz, J.; Margalit, S.; Wilt, D.; Chen, P.C.; Yariv, A.

    1980-12-01

    A new type of strip-geometry AlGaAs double-heterostructure laser with an embedded optical waveguide has been developed. The new structure is fabricated using a single step of epitaxial growth. Lasers with threshold currents as low as 9.5 mA (150 ..mu..m long) were obtained. These lasers exhibit operation in a single spatial and longitudinal mode, have differential quantum efficiencies exceeding 45%, and a characteristic temperature of 175/sup 0/ C. They emit more than 12 mW/facet of optical power without any kinks.

  17. Electronic properties of C-doped (100) AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Grbić, B.; Ellenberger, C.; Ihn, T.; Ensslin, K.; Reuter, D.; Wieck, A. D.

    2005-06-01

    Carbon doped p-type AlGaAs heterostructures are investigated by low-temperature magnetotransport measurements. High quality of such two dimensional hole gases is demonstrated by observing sharp integer plateaus in Hall resistance as well as features of fractional quantum Hall effect at filling factors 4/3 and 5/3. The observed beating pattern of low-field Shubnikov-de Haas oscillations represents clear evidence for the existence of the two spin-split subbands which arise from strong spin-orbit coupling in hole systems.

  18. Photon pair sources in AlGaAs: from electrical injection to quantum state engineering

    NASA Astrophysics Data System (ADS)

    Autebert, C.; Boucher, G.; Boitier, F.; Eckstein, A.; Favero, I.; Leo, G.; Ducci, S.

    2015-11-01

    Integrated quantum photonics is a very active field of quantum information, communication, and processing. One of the main challenges to achieve massively parallel systems for complex operations is the generation, manipulation, and detection of many qubits within the same chip. Here, we present our last achievements on AlGaAs quantum photonic devices emitting nonclassical states of light at room temperature by spontaneous parametric down conversion (SPDC). The choice of this platform combines the advantages of a mature fabrication technology, a high nonlinear coefficient, a SPDC wavelength in the C-telecom band and the possibility of electrical injection.

  19. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    SciTech Connect

    Krishnaprasad, P. S. E-mail: mkj@cusat.ac.in; Jayaraj, M. K. E-mail: mkj@cusat.ac.in; Antony, Aldrin; Rojas, Fredy

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BST thin films show significantly improved tunable performance over polycrystalline thin films.

  20. The influence of V/III ratio in the initial growth stage on the properties of GaN epilayer deposited on low temperature AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Zhao, D. G.; Jiang, D. S.; Zhu, J. J.; Liu, Z. S.; Zhang, S. M.; Yang, Hui; Liang, J. W.

    2007-05-01

    The V/III ratio in the initial growth stage of metalorganic chemical vapor deposition has an important influence on the quality of a GaN epilayer grown on a low-temperature AlN buffer layer and c-plane sapphire substrate. A weaker yellow luminescence, a narrower half-width of the X-ray diffraction peak, and a higher electron mobility result when a lower V/III ratio is taken. The intensity of in situ optical reflectivity measurements indicates that the film surface is rougher at the beginning of GaN growth, and a longer time is needed for the islands to coalesce and for a quasi-two dimensional mode growth to start. A comparison of front- and back-illuminated photoluminescence spectra confirms that many threading dislocations are bent during the initial stage, leading to a better structural quality of the GaN layer.

  1. UV-ozone-treated MoO3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC71BM photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yang, Qian-Qian; Yang, Dao-Bin; Zhao, Su-Ling; Huang, Yan; Xu, Zheng; Gong, Wei; Fan, Xing; Liu, Zhi-Fang; Huang, Qing-Yu; Xu, Xu-Rong

    2014-03-01

    The enhanced performance of a squaraine compound, with 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, in solution-processed organic photovoltaic devices is obtained by using UV-ozone-treated MoO3 as the hole-collecting buffer layer. The optimized thickness of the MoO3 layer is 8 nm, at which the device shows the best power conversion efficiency (PCE) among all devices, resulting from a balance of optical absorption and charge transport. After being treated by UV-ozone for 10 min, the transmittance of the MoO3 film is almost unchanged. Atomic force microscopy results show that the treated surface morphology is improved. A high PCE of 3.99% under AM 1.5 G illumination (100 mW/cm2) is obtained.

  2. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-01

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2. PMID:26674458

  3. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-01

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  4. Growth of CsLiB6O10 thin films on Si substrate by pulsed laser deposition using SiO2 and CaF2 as buffer layers

    NASA Astrophysics Data System (ADS)

    Yeo, J. S.; Akella, A.; Huang, T. F.; Hesselink, L.

    1998-03-01

    CsLiB6O10 (CLBO) thin films are grown on Si (100) and (111) substrates using lower index SiO2 and CaF2 as buffer layers by pulsed KrF (248 nm) excimer laser ablation of stoichiometric CLBO targets over a temperature range of 425 to 725°C. A CaF2 buffer layer is grown on Si by laser ablation while SiO2 is prepared by standard thermal oxidation. From extended x-ray analysis, it is determined that CaF2 is growth with preferred orientation on Si (100) at temperatures lower than 525°C while on Si (111) substrate, CaF2 is grown epitaxially over the temperature range; this agrees well with observed reflection high energy electron diffraction patterns. X-ray 2θ-scans indicate that crystalline CLBO are grown on SiO2/Si and CaF2/Si (100). Analysis of reflectance spectra from CLBO/SiO2/Si yields the absorption edge at 182 nm. Surface roughness of the CaF2 and CLBO/CaF2/Si film are 19 and 15 nm, respectively. This relatively rough surface caused by the ablation of wide bandgap CaF2 and CLBO limits the application of CLBO for waveguiding measurement.

  5. Observation of hole injection boost via two parallel paths in Pentacene thin-film transistors by employing Pentacene: 4, 4″-tris(3-methylphenylphenylamino) triphenylamine: MoO{sub 3} buffer layer

    SciTech Connect

    Yan, Pingrui; Liu, Ziyang; Liu, Dongyang; Wang, Xuehui; Yue, Shouzhen; Zhao, Yi; Zhang, Shiming

    2014-11-01

    Pentacene organic thin-film transistors (OTFTs) were prepared by introducing 4, 4″-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA): MoO{sub 3}, Pentacene: MoO{sub 3}, and Pentacene: m-MTDATA: MoO{sub 3} as buffer layers. These OTFTs all showed significant performance improvement comparing to the reference device. Significantly, we observe that the device employing Pentacene: m-MTDATA: MoO{sub 3} buffer layer can both take advantage of charge transfer complexes formed in the m-MTDATA: MoO{sub 3} device and suitable energy level alignment existed in the Pentacene: MoO{sub 3} device. These two parallel paths led to a high mobility, low threshold voltage, and contact resistance of 0.72 cm{sup 2}/V s, −13.4 V, and 0.83 kΩ at V{sub ds} = − 100 V. This work enriches the understanding of MoO{sub 3} doped organic materials for applications in OTFTs.

  6. Liquid Phase Chemical Enhanced Oxidation on AlGaAs and Its Application

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Wei; Wang, Yeong-Her; Houng, Mau-Phon

    2004-07-01

    A new method named the liquid phase chemical enhanced oxidation (LPCEO) technique has been proposed for the oxidation of aluminum gallium arsenide (AlGaAs) near room temperature. The initial stage of AlGaAs oxidation by this method has been investigated. The native oxide film composition is determined on the basis of the results of Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Based on current-voltage (I-V) characteristics of the metal-oxide-semiconductor (MOS) structure, the leakage current density is approximately 5× 10-9 A/cm2 at the electric field of 1 MV/cm, and the breakdown field is at least 10 MV/cm after rapid temperature annealing. In addition, the oxide film properties can be improved after thermal annealing based on capacitance-voltage (C-V) measurements. Finally, the application of the new method to the AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electronic-mobility transistor (MOS-PHEMT) is demonstrated.

  7. Step buffer layer of Al0.25Ga0.75N/Al0.08Ga0.92N on P-InAlN gate normally-off high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.

    2016-07-01

    Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm‑1). At a drain bias of 15 V, the current density reached 263 mA mm‑1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.

  8. The microstructure of continuously processed YBa{sub 2}Cu{sub 3}O{sub y} coated conductors with underlying CeO{sub 2} and ion-beam-assisted yttria-stabilized zirconia buffer layers

    SciTech Connect

    Holesinger, T. G.; Foltyn, S. R.; Arendt, P. N.; Kung, H.; Jia, Q. X.; Dickerson, R. M.; Dowden, P. C.; DePaula, R. F.; Groves, J. R.; Coulter, J. Y.

    2000-05-01

    The microstructural development of YBa{sub 2}Cu{sub 3}O{sub y} (Y-123) coated conductors based on the ion-beam-assisted deposition (IBAD) of yttria-stabilized zirconia (YSZ) to produce a biaxially textured template is presented. The architecture of the conductors was Y-123/CeO{sub 2}/IBAD YSZ/Inconel 625. A continuous and passivating Cr{sub 2}O{sub 3} layer forms between the YSZ layer and the Inconel substrate. CeO{sub 2} and Y-123 are closely lattice-matched, and misfit strain is accommodated at the YSZ/CeO{sub 2} interface. Localized reactions between the Y-123 film and the CeO{sub 2} buffer layer result in the formation of BaCeO{sub 3}, YCuO{sub 2}, and CuO. The positive volume change that occurs from the interfacial reaction may act as a kinetic barrier that limits the extent of the reaction. Excess copper and yttrium generated by the interfacial reaction appear to diffuse along grain boundaries and intercalate into Y-123 grains as single layers of the Y-247, Y-248, or Y-224 phases. The interfacial reactions do not preclude the attainment of high critical currents (I{sub c}) and current densities (J{sub c}) in these films nor do they affect to any appreciable extent the nucleation and alignment of the Y-123 film. (c) 2000 Materials Research Society.

  9. Development of a self-supporting, transparent AlGaAs top solar cell for mechanical attachment to an existing solar cell

    NASA Astrophysics Data System (ADS)

    Negley, Gerald H.; Terranova, Nancy E.; McNeely, James B.; Barnett, Allen M.

    A technique for fabricating AlGaAs solar cells on transparent AlGaAs substrates has been developed which utilizes the most advanced wide-bandgap material on a transparent substrate. The rugged, self-supporting, transparent AlGaAs top solar cell can be mechanically stacked on any well-developed existing solar cell. The key to this success is the growth technique, liquid-phase epitaxy (LPE). Fabrication of tandem or triple stacks is impossible with this transparent, self-supporting AlGaAs device. To obtain high stack efficiencies, the top solar cell must be state-of-the-art. A 1.93 eV AlGaAs top cell results in two-stack solar cells with efficiencies over 30 percent AM0 and triple stacks approaching 35 percent AM0. Transmission of 91 percent of the photons less energetic than the top solar cell bandgap has been demonstrated for the self-supporting AlGaAs substrate. The design rules for the tandem structure and progress in the development of the transparent AlGaAs top solar cell are discussed.

  10. Two-photon passive electro-optic upconversion in a GaAs /AlGaAs heterostructure device

    NASA Astrophysics Data System (ADS)

    Zhao, Lai; Thompson, Pete; Faleev, N. N.; Prather, D. W.; Appelbaum, Ian

    2007-03-01

    A semiconductor heterostructure device that requires no external power source to upconvert two low-energy photons into one higher-energy photon is proposed. This passive device is fabricated in the AlGaAs /GaAs material system and it is used to demonstrate photon upconversion from 808to710nm at room temperature.

  11. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  12. Gas Source Melecular Beam Epitaxy Growth of High Quality AlGaAs Using Trimethylamine Alane as the Aluminum Source

    NASA Astrophysics Data System (ADS)

    Okamoto, Naoya; Ando, Hideyasu; Sandhu, Adarsh; Fujii, Toshio

    1991-12-01

    We investigated the dependence of the background impurity incorporation on growth conditions and optical properties of undoped AlGaAs grown by gas source molecular beam epitaxy using trimethylamine alane (TMAAl), triethylgallium, and arsine. The use of TMAAl enabled us to reduce the carbon concentration (7× 1016 cm-3) to over one order of magnitude less than that using triethylaluminum (TEAl). The 77 K photoluminescence spectrum of undoped AlGaAs grown using TMAAl was dominated by excitonic band-edge emission not observable in AlGaAs grown using TEAl. Furthermore, we report for the first time the doping characteristics of n-type AlGaAs grown using disilane (Si2H6) as an n-type gaseous dopant source together with TMAAl. The carrier concentration (5× 1017--3× 1018 cm-3) in n-AlxGa1-xAs (x{=}0.09--0.27) was reliably controlled and showed the same Si2H6 flow rate dependence as that of GaAs. The activation efficiency of silicon was more than 60%. We demonstrated the excellent n-type doping characteristics by uisng TMAAl.

  13. Improving charge transport of P3HT:PCBM organic solar cell using MoO3 nanoparticles as an interfacial buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hyoung; Park, Eung-Kyu; Kim, Ji-Hwan; Cho, Hyeong Jun; Lee, Dong-Hoon; Kim, Yong-Sang

    2016-05-01

    In this work, P3HT:PCBM based organic solar cells (OSCs) were fabricated. We investigated the protection of PEDOT:PSS from active layer using the solution processed molybdenum oxide nanoparticles layer (MoO3 NPs, ≤100 nm). The device structure was ITO/ZnO/P3HT: PCBM/MoO3/PEDOT:PSS/Ag. A thin film MoO3 NPs was spin-coated and it acts as a hole transporting layer between the active layer and PEDOT:PSS. The MoO3 NPs based device showed an improved short circuit current compared without MoO3 NP layer. The pristine OSCs showed short circuit current density ( J sc ) of 11.56 mA/cm2 and PCE of 3.70% under AM 1.5G (100 mW/cm2). MoO3 NPs based device showed an increased PCE of 4.11% with J sc of 12.74 mA/cm2. MoO3 NPs also decreased the charge recombination and resistance of the OSCs. [Figure not available: see fulltext.

  14. Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers.

    PubMed

    Nam, Sungho; Seo, Jooyeok; Woo, Sungho; Kim, Wook Hyun; Kim, Hwajeong; Bradley, Donal D C; Kim, Youngkyoo

    2015-01-01

    Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor. PMID:26656447

  15. Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers

    NASA Astrophysics Data System (ADS)

    Nam, Sungho; Seo, Jooyeok; Woo, Sungho; Kim, Wook Hyun; Kim, Hwajeong; Bradley, Donal D. C.; Kim, Youngkyoo

    2015-12-01

    Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor.

  16. Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers

    PubMed Central

    Nam, Sungho; Seo, Jooyeok; Woo, Sungho; Kim, Wook Hyun; Kim, Hwajeong; Bradley, Donal D. C.; Kim, Youngkyoo

    2015-01-01

    Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor. PMID:26656447

  17. Effects of a Cu x O Buffer Layer on a SiO x -Based Memory Device in a Vaporless Environment.

    PubMed

    Liu, Chih-Yi; Huang, Zheng-Yao

    2015-12-01

    The resistive switching characteristics of the Cu/SiO x /Pt structure (control sample) exhibited a direct correlation to humidity. The H2O vapor formed the Cu oxide at the Cu/SiO x interface, and Cu ions were injected from the Cu oxide into the SiO x layer, thus improving the resistive switching. However, the control sample demonstrated substantial switching dispersion in a vaporless environment. The Cu x O layer in the Cu/Cu x O/SiO x /Pt structure (Cu x O sample) helped the dissolution of Cu ions from the Cu electrode into the SiO x layer, enabling effective electrochemical resistive switching in a vaporless environment. The Cu x O sample exhibited low switching dispersion and favorable endurance characteristics in a vaporless environment. PMID:26168868

  18. Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide

    SciTech Connect

    Mangan, Niall M.; Brandt, Riley E.; Steinmann, Vera; Jaramillo, R.; Poindexter, Jeremy R.; Chakraborty, Rupak; Buonassisi, Tonio; Yang, Chuanxi; Park, Helen Hejin; Zhao, Xizhu; Gordon, Roy G.

    2015-09-21

    An outstanding challenge in the development of novel functional materials for optoelectronic devices is identifying suitable charge-carrier contact layers. Herein, we simulate the photovoltaic device performance of various n-type contact material pairings with tin(II) sulfide (SnS), a p-type absorber. The performance of the contacting material, and resulting device efficiency, depend most strongly on two variables: conduction band offset between absorber and contact layer, and doping concentration within the contact layer. By generating a 2D contour plot of device efficiency as a function of these two variables, we create a performance-space plot for contacting layers on a given absorber material. For a simulated high-lifetime SnS absorber, this 2D performance-space illustrates two maxima, one local and one global. The local maximum occurs over a wide range of contact-layer doping concentrations (below 10{sup 16 }cm{sup −3}), but only a narrow range of conduction band offsets (0 to −0.1 eV), and is highly sensitive to interface recombination. This first maximum is ideal for early-stage absorber research because it is more robust to low bulk-minority-carrier lifetime and pinholes (shunts), enabling device efficiencies approaching half the Shockley-Queisser limit, greater than 16%. The global maximum is achieved with contact-layer doping concentrations greater than 10{sup 18 }cm{sup −3}, but for a wider range of band offsets (−0.1 to 0.2 eV), and is insensitive to interface recombination. This second maximum is ideal for high-quality films because it is more robust to interface recombination, enabling device efficiencies approaching the Shockley-Queisser limit, greater than 20%. Band offset measurements using X-ray photoelectron spectroscopy and carrier concentration approximated from resistivity measurements are used to characterize the zinc oxysulfide contacting layers in recent record-efficiency SnS devices. Simulations representative of these

  19. Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes.

    PubMed

    Höfle, Stefan; Bruns, Michael; Strässle, Stefan; Feldmann, Claus; Lemmer, Uli; Colsmann, Alexander

    2013-08-14

    WO3 deposition from tungsten ethoxide precursor solutions at room temperature is demonstrated. The W(OEt)6 precursor can be converted under inert conditions and hence avoids sample contamination with oxygen, opening a pathway to more stable devices. The stoichiometry of all WO3 layers and the optoelectronic performance of the respective SMOLEDs well match thermally evaporated WO3 and its corresponding SMOLEDs. The solution processed WO3 hole injection layers enable the fabrication of blue phosphorescent OLEDs with low onset voltage and current efficiencies of up to 14 cd A(-1) . PMID:23813694

  20. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  1. Effect of As Passivation on Vapor-Phase Epitaxial Growth of Ge on (211)Si as a Buffer Layer for CdTe Epitaxy

    NASA Astrophysics Data System (ADS)

    Shintri, Shashidhar; Rao, Sunil; Sarney, Wendy; Garg, Saurabh; Palosz, Witold; Trivedi, Sudhir; Wijewarnasuriya, Priyalal; Bhat, Ishwara

    2011-08-01

    We report an investigation of epitaxial germanium grown by chemical vapor deposition (CVD) on arsenic-terminated (211)Si, which is the preferred substrate in the USA for fabrication of night-vision devices based on mercury cadmium telluride (MCT) grown by molecular-beam epitaxy (MBE). The films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-sectional transmission electron microscopy (XTEM), and x-ray diffraction (XRD). Arsenic passivation was found to be effective in preventing cross-contamination of unwanted residual species present inside the reactor chamber and also in prolonging the evolution of layer-by-layer growth of Ge for significantly more monolayers than on nonpassivated Si. The two-dimensional (2D) to three-dimensional (3D) transition resulted in Ge islands, the density and morphology of which showed a clear distinction between passivated and nonpassivated (211)Si. Finally, thick Ge layers (˜250 nm) were grown at 525°C and 675°C with and without As passivation, where the layers grown with As passivation resulted in higher crystal quality and smooth surface morphology.

  2. Low current operation of GaN-based blue-violet laser diodes fabricated on sapphire substrate using high-temperature-grown single-crystal AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Ohba, Yasuo; Gotoda, Toru; Kaneko, Kei

    2007-01-01

    Low current laser operation at 405 nm has been demonstrated for the first time for the devices fabricated on sapphire substrates by metalorganic chemical vapor deposition (MOCVD) using a high-temperature-grown single-crystal AlN buffer. The thick optical guiding layers were adopted to improve optical confinement. The device structure was the 2-μm-wide ridge-stripe type without facet coating. The minimum threshold current and current density were 60 mA and 3.8 kA/cm 2 for cavity lengths of 500 mm and 1 mm, respectively. These data were comparable to those reported using the special dislocation reduction techniques. The threshold current density linearly decreases with decreasing inverse of cavity length. It was expected that the low threshold current density ranging from 1 to 2 kA/cm 2 could be realized by adapting high reflection coating for laser facets. This expected current density was comparable to values realized for devices grown on the thick freestanding GaN as substrates. These findings support the promising potential of the HT-AlN buffer technique for production of advanced short-wavelength light-emitting devices on sapphire substrates.

  3. O-buffer: a framework for sample-based graphics.

    PubMed

    Qu, Huamin; Kaufman, Arie E

    2004-01-01

    We present an innovative modeling and rendering primitive, called the O-buffer, as a framework for sample-based graphics. The 2D or 3D O-buffer is, in essence, a conventional image or a volume, respectively, except that samples are not restricted to a regular grid. A sample position in the O-buffer is recorded as an offset to the nearest grid point of a regular base grid (hence the name O-buffer). The O-buffer can greatly improve the expressive power of images and volumes. Image quality can be improved by storing more spatial information with samples and by avoiding multiple resamplings. It can be exploited to represent and render unstructured primitives, such as points, particles, and curvilinear or irregular volumes. The O-buffer is therefore a unified representation for a variety of graphics primitives and supports mixing them in the same scene. It is a semiregular structure which lends itself to efficient construction and rendering. O-buffers may assume a variety of forms including 2D O-buffers, 3D O-buffers, uniform O-buffers, nonuniform O-buffers, adaptive O-buffers, layered-depth O-buffers, and O-buffer trees. We demonstrate the effectiveness of the O--buffer in a variety of applications, such as image-based rendering, point sample rendering, and volume rendering. PMID:18579969

  4. Néel temperature of Cr{sub 2}O{sub 3} in Cr{sub 2}O{sub 3}/Co exchange-coupled system: Effect of buffer layer

    SciTech Connect

    Pati, Satya Prakash E-mail: phy-satya@yahoo.co.in; Shimomura, Naoki; Nozaki, Tomohiro; Sahashi, Masashi; Shibata, Tatsuo

    2015-05-07

    The lattice parameter dependence of the Néel temperature T{sub N} of thin Cr{sub 2}O{sub 3} in a Cr{sub 2}O{sub 3}/Co exchange-coupled system is investigated. Lattice-mismatch-induced strain is generated in Cr{sub 2}O{sub 3} by using different buffer layers. The lattice parameters are determined from out-of-plane and in-plane X-ray diffraction measurements. The Néel temperature is detected by direct temperature-dependent magnetization measurement as well as the temperature-dependent interface exchange coupling energy. It is observed that in-plane lattice contraction can enhance T{sub N} in Cr{sub 2}O{sub 3}, which is consistent with theoretical calculations.

  5. Formation of a strontium buffer layer on Si(001) by pulsed-laser deposition through the Sr/Si(001)(2 × 3) surface reconstruction

    SciTech Connect

    Klement, D.; Spreitzer, M.; Suvorov, D.

    2015-02-16

    The formation of a ½ monolayer (ML) of strontium (Sr) on Si(001) represents the most widely used and effective passivation procedure for the epitaxial growth of strontium titanate (SrTiO{sub 3}) on Si with molecular beam epitaxy (MBE). In the present study, we demonstrate experimentally the possibility of preparing such a buffer layer with the pulsed-laser deposition (PLD) technique. In-situ analysis using reflection high-energy electron diffraction (RHEED) showed surface structure evolution from two-domain (2 × 1) + (1 × 2), exhibited by the bare silicon surface, to a (3 × 2) + (2 × 3) structure at 1/6 ML Sr coverage, which is then replaced by (1 × 2) + (2 × 1) structure at ¼ ML and maintained up to ½ ML coverage. In addition, two different processes for the removal of native silicon dioxide (SiO{sub 2}) layer were studied: thermal and Sr-induced deoxidation process. Annealing above 1100 °C proved to be the most efficient in terms of carbon contamination. The results highlight the possibilities of using the PLD technique for the synthesis of an epitaxial SrTiO{sub 3} layer on Si, needed for the integration of different functional oxides with a Si platform.

  6. Enhancing the orthorhombicity and antiferromagnetic-insulating state in epitaxial La0.67Ca0.33MnO3/NdGaO3(001) films by inserting a SmFeO3 buffer layer

    NASA Astrophysics Data System (ADS)

    Tan, Xuelian; Gao, Guanyin; Chen, Pingfan; Xu, Haoran; Zhi, Bowen; Jin, Feng; Chen, Feng; Wu, Wenbin

    2014-11-01

    Structural and magnetotransport properties of epitaxial La0.67Ca0.33MnO3(30 nm)/NdGaO3(001) [LCMO/NGO(001)] films are tuned by inserting an insulating SmFeO3 (SFO) buffer layer at various thicknesses (t). All the layers and the NGO substrates have the same Pbnm symmetry with the octahedra tilting about the b-axis, but different orthorhombicity (d). We found that as t increases, the fully strained (≤15 nm) or partially relaxed (30-60 nm) SFO layers can produce different d in the upper LCMO films. Correspondingly, the induced antiferromagnetic-insulating (AFI) state in LCMO is greatly enhanced with TAFI shifted from ˜250 K for t ≤ 15 nm to ˜263 K for t = 30-60 nm. We also show that the strain relaxation for t ≥ 30 nm is remarkably anisotropic, with a stable lattice constant a as that of the NGO substrates but increasing b of both SFO and LCMO layers. This indicates the octahedral coupling across the interfaces, leaving the strain along the a-axis accommodated by the octahedral tilts, while along the b-axis most probably by the octahedral deformations. The AFI state in the LCMO layer could be ascribed to the enhanced orthorhombicity with cooperatively increased Jahn-Teller-like distortions and tilting of the MnO6 octahedra. The results strongly suggest that the interfacial octahedral coupling plays a crucial role in epitaxial growth and in tuning functionalities of the perovskite oxide films.

  7. AlGaAs growth by OMCVD using an excimer laser

    SciTech Connect

    Warner, J.D.; Wilt, D.M.; Pouch, J.J.; Aron, P.R.

    1986-12-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H/sub 2/, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  8. AlGaAs growth by OMCVD using an excimer laser

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1986-01-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  9. Frequency-modulation spectroscopy of rubidium atoms with an AlGaAs diode laser

    SciTech Connect

    Nakanishi, S.; Ariki, H.; Itoh, H.; Kondo, K.

    1987-11-01

    Frequency-modulation (FM) spectroscopy has been performed on the D/sub 2/ transitions of rubidium atoms with an AlGaAs diode laser at 780 nm. Doppler-broadened hyperfine-structure transitions of /sup 85/Rb and /sup 87/Rb were resolved with no residual amplitude-modulation-induced background signal by modulating the injection current of the laser diode at a low frequency (20--50 MHz) compared with the Doppler width. To obtain Doppler-free spectra, we combined FM spectroscopy with saturation spectroscopy. The results show that the FM spectroscopy technique is sensitive and should be useful for high-resolution spectroscopy, although the resolution was instrument limited and unusual double peaks were observed.

  10. Self-aligned Si-Zn diffusion into GaAs and AlGaAs

    SciTech Connect

    Zou, W.X.; Corzine, S.; Vawter, G.A.; Merz, J.L.; Coldren, L.A.; Hu, E.L.

    1988-08-15

    A practical technology for self-aligned Si-Zn diffusion into GaAs and AlGaAs has been developed. It is found that the use of a Si film alone for self-aligned Si-Zn diffusion is subject to serious problems of morphology degradation and doping contamination during the process of the Si diffusion. A procedure combining the use of a SiO/sub 2/ film as an encapsulant with a sputtered Si film as source for Si diffusion and mask for Zn diffusion is investigated in detail. Optimum thicknesses of the Si and SiO/sub 2/ films are determined to be 180 and 550 A, respectively.

  11. Spectroscopy analysis of graphene like deposition using DC unbalanced magnetron sputtering on γ‐Al{sub 2}O{sub 3} buffer layer

    SciTech Connect

    Aji, A. S. Darma, Y.

    2014-02-24

    In this work, graphene-like deposition using DC unbalanced magnetron-sputtering technique on γ‐Al{sub 2}O{sub 3} layer at low temperature has been systematically studied. The γ‐Al{sub 2}O{sub 3} was growth on silicon substrate using thermal evaporation of Al wire and continuing with dry oxidation of Al at 550 °C. Sputtering process were carried out using Fe-doped carbon pellet as a target by maintain the chamber pressure of 4.6×10{sup −2} Torr at substrate temperature of 300 °C for time deposition range of 1 to 4 hours. The quality of Al{sub 2}O{sub 3} on Si(100) and the characteristic of carbon thin film on γ‐Al{sub 2}O{sub 3} were analized by mean XRD, opctical microscopy, EDAX, FTIR, and Raman spectra. XRD and optical microscopy analysis shows that Al{sub 2}O{sub 3} film is growth uniformly on Si substrate and forming the γ phase of Al{sub 2}O{sub 3}. Raman and FTIR spectra confirm the formation of graphene like carbon layer on Al{sub 2}O{sub 3}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by XRD spectra. The quality and the number of graphene layers are investigated by using Raman spectra peaks analysis.

  12. Impact of an ultra-thin ZrTiO4 buffer layer for long retention characteristics of metal–ferroelectric–insulator–semiconductor capacitor

    NASA Astrophysics Data System (ADS)

    Hyo Park, Jae; Joo, Seung Ki

    2016-05-01

    In most ferroelectric field-effect transistors (FeFETs), a thin interfacial layer is inserted between the ferroelectric and semiconductor in order to avoid the interdiffusion of metallic impurities. In this work, we have used ZrTiO4 (ZTO) as an interfacial layer to improve the interface of Pb(Zr,Ti)O3 (PZT)/Si and prevent the diffusion of metallic impurities of PZT. It was found that optimizing the thickness of ZTO strongly influences the FeFET retention characteristics. Gate leakage current and Pb metallic interdiffusion were effectively suppressed when the ZTO thickness was thicker than 5 nm. However, a self-depolarization field was generated by the charge compensation loss in PZT, caused by the thick ZTO. On the other hand, our sample showed a large gate leakage current and Pb metallic interdiffusion when ZTO was thinner than 2 nm. It was found that 2 nm thick ZTO is the optimum thickness for long retention characteristics in FeFETs.

  13. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    NASA Astrophysics Data System (ADS)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar

    2012-06-01

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 μm and 0.095 μm for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

  14. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    SciTech Connect

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

  15. Quality-enhanced In{sub 0.3}Ga{sub 0.7}As film grown on GaAs substrate with an ultrathin amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer

    SciTech Connect

    Gao, Fangliang; Li, Guoqiang

    2014-01-27

    Using low-temperature molecular beam epitaxy, amorphous In{sub 0.6}Ga{sub 0.4}As layers have been grown on GaAs substrates to act as buffer layers for the subsequent epitaxial growth of In{sub 0.3}Ga{sub 0.7}As films. It is revealed that the crystallinity of as-grown In{sub 0.3}Ga{sub 0.7}As films is strongly affected by the thickness of the large-mismatched amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer. Given an optimized thickness of 2 nm, this amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer can efficiently release the misfit strain between the In{sub 0.3}Ga{sub 0.7}As epi-layer and the GaAs substrate, trap the threading and misfit dislocations from propagating to the following In{sub 0.3}Ga{sub 0.7}As epi-layer, and reduce the surface fluctuation of the as-grown In{sub 0.3}Ga{sub 0.7}As, leading to a high-quality In{sub 0.3}Ga{sub 0.7}As film with competitive crystallinity to that grown on GaAs substrate using compositionally graded In{sub x}Ga{sub 1-x}As metamorphic buffer layers. Considering the complexity of the application of the conventional In{sub x}Ga{sub 1-x}As graded buffer layers, this work demonstrates a much simpler approach to achieve high-quality In{sub 0.3}Ga{sub 0.7}As film on GaAs substrate and, therefore, is of huge potential for the InGaAs-based high-efficiency photovoltaic industry.

  16. Incorporation of La in epitaxial SrTiO{sub 3} thin films grown by atomic layer deposition on SrTiO{sub 3}-buffered Si (001) substrates

    SciTech Connect

    McDaniel, Martin D.; Ngo, Thong Q.; Ekerdt, John G.; Posadas, Agham; Demkov, Alexander A.; Karako, Christine M.; Bruley, John; Frank, Martin M.; Narayanan, Vijay

    2014-06-14

    Strontium titanate, SrTiO{sub 3} (STO), thin films incorporated with lanthanum are grown on Si (001) substrates at a thickness range of 5–25 nm. Atomic layer deposition (ALD) is used to grow the La{sub x}Sr{sub 1−x}TiO{sub 3} (La:STO) films after buffering the Si (001) substrate with four-unit-cells of STO deposited by molecular beam epitaxy. The crystalline structure and orientation of the La:STO films are confirmed via reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional transmission electron microscopy. The low temperature ALD growth (∼225 °C) and post-deposition annealing at 550 °C for 5 min maintains an abrupt interface between Si (001) and the crystalline oxide. Higher annealing temperatures (650 °C) show more complete La activation with film resistivities of ∼2.0 × 10{sup −2} Ω cm for 20-nm-thick La:STO (x ∼ 0.15); however, the STO-Si interface is slightly degraded due to the increased annealing temperature. To demonstrate the selective incorporation of lanthanum by ALD, a layered heterostructure is grown with an undoped STO layer sandwiched between two conductive La:STO layers. Based on this work, an epitaxial oxide stack centered on La:STO and BaTiO{sub 3} integrated with Si is envisioned as a material candidate for a ferroelectric field-effect transistor.

  17. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    NASA Astrophysics Data System (ADS)

    Wen, F. S.; Xiang, J. Y.; Hao, C. X.; Zhang, F.; Lv, Y. F.; Wang, W. H.; Hu, W. T.; Liu, Z. Y.

    2013-12-01

    The ultrathin films of Co2FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films.

  18. Mechanism for persistent hexagonal island formation in AlN buffer layer during growth on Si (111) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Hsu, K.-Y.; Chung, H.-C.; Liu, C.-P.; Tu, L.-W.

    2007-05-21

    The characteristics of structure and morphology of AlN grown by a growth interruption method on Si (111) with plasma-assisted molecular beam epitaxy are investigated. It is found that the growth interruption method would improve the surface flatness of the AlN layer without the formation of Al droplets. However, AlN hexagonal islands were present and persistent throughout the entire growth owing to effective strain relaxation and Eherlich-Schowebel barrier effect of preexistent surface islands grown on higher terraces of the Si substrate. The density of threading dislocations underneath the hexagonal islands is much less than elsewhere in the film, which is presumably due to dislocation annihilation during the island growth process.

  19. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  20. Buffer Therapy for Cancer.

    PubMed

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S; Bailey, Kate M; Kumar, Nagi B; Sellers, Thomas A; Gatenby, Robert A; Ibrahim-Hashim, Arig; Gillies, Robert J

    2012-08-15

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine "buffering score", in mmol H(+)/pH unit. A "buffering score" was derived as the mEq H(+) consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products' buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums(®) had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The "de-buffered" lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  1. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.

    PubMed

    Choi, Eun Chang; Cha, Ji-Hyun; Jung, Duk-Young; Hong, Byungyou

    2016-05-01

    The CuIn(x)Ga(1-x)Se2 (CIGS) using the solution-based fabrication method is attractive for thin film solar cells because of its possibilities for large-area and low-cost production. ZnO films between transparent conductive oxide (TCO) and the CdS films can improve the performances of CIGS thin-film solar cells. In this study, we investigated the characteristics of ZnO film between TCO and CIGS layers in a solar cell (AZO/ZnO/CdS/CIGS/Mo), which were deposited at various thicknesses to investigate the role of the films in CIGS solar cells. It was confirmed that the conversion efficiency of a CIGS solar cell depends on the ZnO film. For a ZnO film thickness of 80 nm, the highest power conversion efficiency that a solar cell achieved was J(sc) of 18.73 mA/cm2. PMID:27483877

  2. Effect of process pressure and substrate temperature on CdS buffer layers deposited by using RF sputtering for Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Choi, Ji Hyun; Jung, Sung Hee; Chung, Chee Won

    2016-02-01

    The characteristics of CdS films deposited on Cu(In,Ga)Se2(CIGS)/Mo/glass and glass substrates by using RF magnetron sputtering were investigated. The deposition pressure and the substrate temperature were selected as key parameters to examine the electrical, compositional and optical properties of the films. As the deposition pressure was increased, the resistivity increased while the carrier concentration decreased owing to a stoichiometric change and Cd-O incorporation at high pressure. Field-emission scanning electron microscopy(FE-SEM) revealed that the CdS films on CIGS/Mo became denser as the pressure was increased, which was responsible for the high transmittance of the film deposited at high pressure. As the substrate temperature was increased, the deposition rate decreased, which could be explained by using Langmuir theory. As the temperature was increased from room temperature to 573 K, the resistivity increased and the carrier concentration decreased, which was attributed to an increase in [S]/[Cd] ratio. In addition, as the temperature was increased, the small grains were agglomerated to form larger grains due to the increase in the activity of grains at high temperature. CdS films were confirmed to be uniformly deposited on the CIGS layer by using RF sputtering. The large amount of interdiffusion between the CIGS and the CdS films deposited at a high substrate temperature were observed by using X-ray photoelectron spectroscopy.

  3. Equilibrium Lattice Relaxation and Misfit Dislocations in Step-Graded In x Ga1- x As/GaAs (001) and In x Al1- x As/GaAs (001) Metamorphic Buffer Layers

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2016-06-01

    The inclusion of metamorphic buffer layers (MBLs) in the design of lattice-mismatched semiconductor heterostructures is important in enhancing reliability and performance of optoelectronic and electronic devices through proper control of threading dislocations; threading dislocation can be reduced by allowing the distribution of the misfit dislocations throughout the MBL, rather than concentrating them at the interface where substrate defects and tangling can pin dislocations or otherwise reduce their mobility. Compositionally graded layers have been particularly used for this purpose and in this work we considered heterostructures involving a step-graded In x Ga1- x As or In x Al1- x As epitaxial layer on a GaAs (001) substrate. For each structure type, we present minimum energy calculations including (i) the surface and (ii) average in-plane strain and (iii) the misfit dislocation density profile with various grading coefficients (thickness and indium composition variation). In both types of structures, the average in-plane strain and misfit dislocation density profile scale with the average grading coefficient, but In x Al1- x As structures with a greater average elastic stiffness constants exhibit slightly higher average compressive in-plane strain (absolute valued) which is associated with higher misfit dislocation densities. However, the rate of change in the normalized relaxation percentage per unit thickness of each step with respect to the lattice mismatch of the step is lower in the In x Al1- x As material system. The difference of the in-plane strain is small (<3%), however, so that these material systems are virtually interchangeable in terms of their mechanical behavior (<5.1% change in elastic constants).

  4. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  5. New MBE (molecular beam epitaxy) buffer used to eliminate backgating in gaas mesfets

    SciTech Connect

    Smith, F.W.; Calawa, A.R.; Chen, C.L.; Manfra, M.J.; Mahoney, L.J.

    1988-02-01

    A new buffer layer has been developed that eliminates backgating between MESFET's fabricated in active layers grown upon it. The new buffer is grown by molecular beam epitaxy (MBE) at low substrate temperatures (150-300 C) using Ga and As4 beam fluxes. It is highly resistive, optically inactive, and crystalline, and high-quality GaAs active layers can be grown on top of the new buffer. MESFET's fabricated in active layers grown on top of this new buffer show improved output resistance and breakdown voltages; the dc and Rf characteristics are otherwise comparable to MESFET's fabricated by alternative means and with other buffer layers.

  6. High-efficiency TEM(00) continuous-wave (Al,Ga)As epitaxial surface-emitting lasers and effect of half-wave periodic gain

    SciTech Connect

    Gourley, P.L.; Brennan, T.M.; Hammons, B.E.; Corzine, S.W.; Geels, R.S.

    1989-03-27

    This report is on room temperature, continuous-wave (c-w), photopumped operation of (Al,Ga)As surface-emitting lasers grown by molecular beam epitaxy. These monolithic semiconductor lasers comprise two multilayer semiconductor mirrors surrounding a layered active region. In the active region, GaAs quantum wells are spaced with half-wave periodicity to center on standing-wave maxima of the cavity optical field. By comparing threshold data for different lasers grown with and without half-wave periodicity, the first experimental evidence is observed for reduced c-w lasing threshold (as low as 20,000 W/sq cm) with periodic gain in an epitaxial surface-emitting laser. Up to 50 mW with high efficiency (35% total, 80% differential) and narrow spectral linewidth (2 A) have been measured. A very high-quality beam with low divergence (2.5 deg) and circular TEM(00) profile has been observed. All of these observations represent significant advances for surface-emitting laser technology.

  7. High-efficiency TEM/sub 00/ continuous-wave (Al,Ga)As epitaxial surface-emitting lasers and effect of half-wave periodic gain

    SciTech Connect

    Gourley, P.L.; Brennan, T.M.; Hammons, B.E.; Corzine, S.W.; Geels, R.S.; Yan, R.H.; Scott, J.W.; Coldren, L.A.

    1989-03-27

    We report room-temperature, continuous-wave (cw), photopumped operation of (Al,Ga)As surface-emitting lasers grown by molecular beam epitaxy. These monolithic semiconductor lasers comprise two multilayer semiconductor mirrors surrounding a layered active region. In the active region, GaAs quantum wells are spaced with half-wave periodicity to center on standing-wave maxima of the cavity optical field. By comparing threshold data for different lasers grown with and without half-wave periodicity, we observe the first experimental evidence for reduced cw lasing threshold (as low as 2 x 10/sup 4/ W/cm/sup 2/ ) with periodic gain in an epitaxial surface-emitting laser. Up to 50 mW with high efficiency (35% total, 80% differential) and narrow spectral linewidth (2 A) have been measured. A very high quality beam with low divergence (2.5/sup 0/) and circular TEM/sub 00/ profile has been observed. All of these observations represent significant advances for surface-emitting laser technology.

  8. X-ray Microdiffraction from α-Ti0.04Fe1.96O3 (0001) Epitaxial Film Grown Over α-Cr2O3 Buffer Layer Boundary

    SciTech Connect

    Kim, Chang-Yong

    2011-07-01

    Ti-doped hematite (α-Ti0.04Fe1.96O3) film grown over patterned α-Cr2O3 buffer layer on α-Al2O3(0001) substrate was characterized with synchrotron X-ray microdiffraction. The film was grown by oxygen plasma assisted molecular beam epitaxy method. The film growth mode was correlated to buffer layer boundary and Ti concentration variation. Epitaxial α-Ti0.04Fe1.96O3 film was formed on bare substrate adjacent to the buffer layer. The epitaxial film was connected laterally to a strain-relaxed epitaxial α-Ti0.04Fe1.96O3 film grown on the buffer layer. On bare α-Al2O3 substrate with diminished Ti concentration only a small portion of α-TixFe1-xO3 film was epitaxial either as coherent to the substrate or strain-relaxed form.

  9. The action mechanism of TiO{sub 2}:NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} cathode buffer layer in highly efficient inverted organic solar cells

    SciTech Connect

    Liu, Chunyu; Chen, Huan; Zhao, Dan; Shen, Liang; He, Yeyuan; Guo, Wenbin E-mail: chenwy@jlu.edu.cn; Chen, Weiyou E-mail: chenwy@jlu.edu.cn

    2014-08-04

    We report the fabrication and characteristics of organic solar cells with 6.86% power conversion efficiency (PCE) by doping NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} into TiO{sub 2} cathode buffer layer. The dependence of devices performance on doping concentration of NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} is investigated. Results indicate that short-circuit current density (J{sub sc}) has an apparent improvement, leading to an enhancement of 22.7% in PCE for the optimized doping concentration of 0.05 mmol ml{sup −1} compared to the control devices. NaYF{sub 4}:Yb{sup 3+},Tm{sup 3+} nanoparticles (NPs) can play threefold roles, one is that the incident light in visible region can be scattered by NaYF{sub 4} NPs, the second is that solar irradiation in infrared region can be better utilized by Up-conversion effect of Yb{sup 3+} and Tm{sup 3+} ions, the third is that electron transport property in TiO{sub 2} thin film can be greatly improved.

  10. Hydroxyapatite thin films growth by pulsed laser deposition: effects of the Ti alloys substrate passivation on the film properties by the insertion of a TiN buffer layer

    NASA Astrophysics Data System (ADS)

    Nelea, Valentin D.; Ristoscu, Carmen; Ghica, Cornel; Pelletier, Herve; Mihailescu, Ion N.; Mille, Pierre

    2001-06-01

    Hydroxyapatite (HA), Ca5(PO4)3OH, is now widely used in stomatology and orthopedic surgery. Due to a good biocompatibility combined favorable bioactivity make as HA to be considered as a challenge to successful bone repair. We grow HA thin films on Ti-5Al-2.5Fe alloy substrate by pulsed laser deposition (PLD) technique. The films were deposited in vacuum at room temperature using a KrF excimer laser ((lambda) equals 248 nm, (tau) FWHM >= 20 ns). After deposition the HA films were annealed at 550 degree(s)C in ambient air. The insertion of a bioinert TiN buffer layer at the HA film-metallic substrate interface was studied in terms of HA film microstructure and mechanical properties. SEM, TEM and SAED analysis structurally characterized films. The mechanical properties were evaluated by nanoindentation tests in static and scratch modes. Films with TiN interlayer contain uniquely crystalline HA phase and present better mechanical characteristics as compared with those deposited directly on Ti-alloy substrate.

  11. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    SciTech Connect

    Malyshev, K. V.

    2015-01-28

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh–Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F{sup 0}{sub 11}(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional “cubic” diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  12. Nanohole formation on AlGaAs surfaces by local droplet etching with gallium

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Stemmann, A.; Hansen, W.

    2009-03-01

    We demonstrate the self-assembled generation of nanoholes on AlGaAs surfaces by local droplet etching (LDE). For the etching process, Ga is deposited on the surface, where liquid droplets are formed in a Volmer-Weber-like growth mode. The etching takes place locally at the interface between droplets and substrate and removes a significant amount of substrate material. The structural properties of the LDE nanoholes are studied with atomic force microscopy as function of etching temperature and Ga coverage. A bimodal depth distribution with flat and deep holes is observed. The formation of flat holes can be almost suppressed by optimized etching parameters. The depth of deep holes was adjusted by the process parameters up to a maximum depth of 15 nm. The density of deep holes is in the range 5×10 -7-1×10 -8 cm -2 and depends only slightly on the etching parameters. However, the density can be significantly increased by repeated etching.

  13. Low-temperature laser assisted CBE-growth of AlGaAs

    NASA Astrophysics Data System (ADS)

    Jothilingam, R.; Farrell, T.; Joyce, T. B.; Goodhew, P. J.

    1998-06-01

    We report preliminary studies of low-temperature (335-400°C) chemical beam epitaxial (CBE) growth of Al xGa 1- xAs on GaAs(0 0 1) using triethylgallium (TEG), trimethylaminealane (TMAA) and thermally precracked Arsine (AsH 3) as precursors. We also report results of Ar + laser assisted chemical beam epitaxial growth over the same temperature range. The growth rate for both assisted and unassisted growth as a function of substrate temperature, laser power and precursor beam pressures was determined using laser reflectometry in which the Ar + laser was also used as the probe. In the nonlaser assisted growth Al incorporation is observed to be significantly higher than would be expected at the normal growth temperature of 500°C. With laser assistance the Al concentration, while higher than that at normal growth temperatures, is less than that without laser assistance and the growth rate is higher. These observations, which extended Abernathy's early results to higher nominal Al concentration, are discussed in terms of the relative enhancement of the decomposition of TEG and the alane during laser assistance. Using literature values of the refractive index of AlGaAs alloys at the growth temperature, laser reflectometry was used to monitor both composition and growth rate over a range of growth temperatures. Reflectometry data were compared with the results of Auger Electron Microscopy (AES) and Dektak stylus profiling.

  14. Rapid screening buffer layers in photovoltaics

    DOEpatents

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  15. The SVT Hit Buffer

    SciTech Connect

    Belforte, S.; Dell`Orso, M.; Donati, S.

    1996-06-01

    The Hit Buffer is part of the Silicon Vertex Tracker, a trigger processor dedicated to the reconstruction of particle trajectories in the Silicon Vertex Detector and the Central Tracking Chamber of the Collider Detector at Fermilab. The Hit Buffer is a high speed data-traffic node, where thousands of words are received in arbitrary order and simultaneously organized in an internal structured data base, to be later promptly retrieved and delivered in response to specific requests. The Hit Buffer is capable of processing data at a rate of 25 MHz, thanks to the use of special fast devices like Cache-Tag RAMs and high performance Erasable Programmable Logic Devices from the XILINX XC7300 family.

  16. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4} devices

    SciTech Connect

    Varley, J. B.; Lordi, V.

    2014-08-14

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se){sub 2} (CIGS) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be less effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.

  17. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    NASA Astrophysics Data System (ADS)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  18. A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell

    NASA Technical Reports Server (NTRS)

    Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.

    1989-01-01

    Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.

  19. Effect of source chemistry and growth parameters on AlGaAs grown by metalorganic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Abernathy, C. R.; Pearton, S. J.; Baiocchi, F. A.; Ambrose, T.; Jordan, A. S.; Bohling, D. A.; Muhr, G. T.

    1991-03-01

    We have investigated the effect of V/III ratio and substrate temperature on the growth rate, Al composition, crystallinity, and impurity concentration of AlGaAs grown by metalorganic beam epitaxy (MOMBE). The effect of these growth parameters on the deposition rates of both GaAs and AlAs has also been determined. By comparing films grown from various combinations of triethylgallium (TEGa), trimethylgallium (TMGa), triethylaluminum (TEAl), and trimethylamine alane (TMAA1), we have been able to further identity the surface reactions which are most important in determining film composition and quality.

  20. Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching

    NASA Astrophysics Data System (ADS)

    Petter, K.; Kipp, T.; Heyn, Ch.; Heitmann, D.; Schuller, C.

    2002-07-01

    By laser-interference lithography, reactive-ion etching, and selective wet-chemical etching using a citric acid-based solution, we have fabricated large periodic arrays of AlGaAs microdisks with periods of 4 mum and disk diameters between 1.5 and 2 mum. The arrays are characterized by temperature-dependent photoluminescence spectroscopy. Taking into account the below-threshold absorption of the quantum wells inside the disks, we get disk quality factors close to the theoretical maximum value. We demonstrate that our technique allows one also to produce one-dimensionally or two-dimensionally coupled arrays of microdisks.

  1. Buffered Electrochemical Polishing of Niobium

    SciTech Connect

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  2. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  3. Buffer architecture for biaxially textured structures and method of fabricating same

    DOEpatents

    Norton, David P.; Park, Chan; Goyal, Amit

    2004-04-06

    The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  4. Valuation of forested buffers

    NASA Astrophysics Data System (ADS)

    Basnyat, Prakash

    The research concentrated on two fronts: (1) defining relationships between land use complex and nitrate and sediment concentrations; and (2) developing a method for assessing the extent of potential and water quality improvements available through land management options and their associated costs. In this work, selected basins of the Fish River (Alabama) were delineated, land use/land cover types were classified, and "contributing zones" were delineated using Geographic Information System (GIS) and Remote Sensing (RS) analytical tools. Water samples collected from these basins were analyzed for their nutrient contents. Based on measured nitrate and sediment concentrations in basin streams, a linkage model was developed. This linkage model relates land use/land cover with the pollution levels in the stream. The linkage model was evaluated at three different scales: (1) the basin scale; (2) the contributing zone scale; and (3) the stream buffer/riparian zone scale. The contributing zone linkage model suggests that forests act as a sink or transformation zone. Residential/urban/built-up areas were identified as the strongest contributors of nitrate in the contributing zones model and active agriculture was identified as the second largest contributor. Regression results for the "land use/land cover diversity" model (stream buffer/riparian zone scale) suggest that areas that are close (adjacent) to the stream and any disturbances in these areas will have major impacts on stream water quality. The economic model suggests the value of retiring lands from agricultural land uses to forested buffers varies from 0 to 3067 per hectare, depending on the types of crops currently grown. Along with conversion costs, this land value forms the basis for estimates of the costs of land management options for improving (or maintaining) water quality throughout the study area. The model also shows the importance of stream-side management zones, which are key to maintenance of stream

  5. Optical reflection from the Bragg lattice of AsSb metal nanoinclusions in an AlGaAs matrix

    SciTech Connect

    Ushanov, V. I.; Chaldyshev, V. V.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2013-08-15

    The optical properties of metal-semiconductor metamaterials based on an AlGaAs matrix are studied. The specific feature of these materials is that there are As and AsSb nanoinclusion arrays which modify the dielectric properties of the material. These nanoinclusions are randomly arranged in the medium or form a Bragg structure with a reflectance peak at a wavelength close to 750 nm, corresponding to the transparency region of the matrix. The reflectance spectra are studied for s- and p-polarized light at different angles of incidence. It is shown that (i) As nanoinclusion arrays only slightly influence the optical properties of the medium in the wavelength range 700-900 nm, (ii) chaotic AsSb nanoinclusion arrays cause strong scattering of light, and (iii) the spatial periodicity in the arrangement of AsSb nanoinclusions is responsible for Bragg resonance in the optical reflection.

  6. High-power fundamental mode AlGaAs quantum well channeled substrate laser grown by molecular beam epitaxy

    SciTech Connect

    Jaeckel, H.; Meier, H.P.; Bona, G.L.; Walter, W.; Webb, D.J.; Van Gieson, E. )

    1989-09-11

    We demonstrate a high-power AlGaAs single quantum well graded-index separate confinement heterojunction laser grown by molecular epitaxy over channeled substrates. Fundamental mode operation up to 130 mW for reflection modified devices has been achieved at a high differential quantum front-facet efficiency of 81%. This device structure allows extremely low threshold currents to 6 mA for power lasers due to the incorporation of lateral current blocking {ital pn} junction by crystallographic plane-dependent doping of amphoteric dopants. We obtained a very high-power continuous-wave fundamental mode operation of this type of laser at extremely low threshold currents and very high overall efficiency of more than 50%. This laser shows considerable potential for are comparable to those of conventional TJS lasers.

  7. Buffer Capacity: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1987-01-01

    Describes a quantitative experiment designed to demonstrate buffer action and the measurement of buffer capacity. Discusses how to make acetate buffers, determine their buffer capacity, plot the capacity/pH curve, and interpret the data obtained. (TW)

  8. The buffer effect in neutral electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  9. Band alignments of different buffer layers (CdS, Zn(O,S), and In{sub 2}S{sub 3}) on Cu{sub 2}ZnSnS{sub 4}

    SciTech Connect

    Yan, Chang; Liu, Fangyang; Song, Ning; Hao, Xiaojing; Ng, Boon K.; Stride, John A.; Tadich, Anton

    2014-04-28

    The heterojunctions of different n-type buffers, i.e., CdS, Zn(O,S), and In{sub 2}S{sub 3} on p-type Cu{sub 2}ZnSnS{sub 4} (CZTS) were investigated using X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements. The band alignment of the heterojunctions formed between CZTS and the buffer materials was carefully measured. The XPS data were used to determine the Valence Band Offsets (VBO) of different buffer/CZTS heterojunctions. The Conduction Band Offset (CBO) was calculated indirectly by XPS data and directly measured by NEXAFS characterization. The CBO of the CdS/CZTS heterojunction was found to be cliff-like with CBO{sub XPS} = −0.24 ± 0.10 eV and CBO{sub NEXAFS} = −0.18 ± 0.10 eV, whereas those of Zn(O,S) and In{sub 2}S{sub 3} were found to be spike-like with CBO{sub XPS} = 0.92 ± 0.10 eV and CBO{sub NEXAFS} = 0.87 ± 0.10 eV for Zn(O,S)/CZTS and CBO{sub XPS} = 0.41 ± 0.10 eV for In{sub 2}S{sub 3}/CZTS, respectively. The CZTS photovoltaic device using the spike-like In{sub 2}S{sub 3} buffer was found to yield a higher open circuit voltage (Voc) than that using the cliff-like CdS buffer. However, the CBO of In{sub 2}S{sub 3}/CZTS is slightly higher than the optimum level and thus acts to block the flow of light-generated electrons, significantly reducing the short circuit current (Jsc) and Fill Factor (FF) and thereby limiting the efficiency. Instead, the use of a hybrid buffer for optimization of band alignment is proposed.

  10. Virtual Frame Buffer Interface Program

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas L.

    1990-01-01

    Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.

  11. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. PMID:23296746

  12. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Ren, F.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  13. Ring Buffered Network Bus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report describes the research effort to demonstrate the integration of a data sharing technology, Ring Buffered Network Bus, in development by Dryden Flight Research Center, with an engine simulation application, the Java Gas Turbine Simulator, in development at the University of Toledo under a grant from the Glenn Research Center. The objective of this task was to examine the application of the RBNB technologies as a key component in the data sharing, health monitoring and system wide modeling elements of the NASA Aviation Safety Program (AVSP) [Golding, 1997]. System-wide monitoring and modeling of aircraft and air safety systems will require access to all data sources which are relative factors when monitoring or modeling the national airspace such as radar, weather, aircraft performance, engine performance, schedule and planning, airport configuration, flight operations, etc. The data sharing portion of the overall AVSP program is responsible for providing the hardware and software architecture to access and distribute data, including real-time flight operations data, among all of the AVSP elements. The integration of an engine code capable of numerically "flying" through recorded flight paths and weather data using a software tool that allows for distributed access of data to this engine code demonstrates initial steps toward building a system capable of monitoring and modeling the National Airspace.

  14. Oracle Log Buffer Queueing

    SciTech Connect

    Rivenes, A S

    2004-12-08

    The purpose of this document is to investigate Oracle database log buffer queuing and its affect on the ability to load data using a specialized data loading system. Experiments were carried out on a Linux system using an Oracle 9.2 database. Previous experiments on a Sun 4800 running Solaris had shown that 100,000 entities per minute was an achievable rate. The question was then asked, can we do this on Linux, and where are the bottlenecks? A secondary question was also lurking, how can the loading be further scaled to handle even higher throughput requirements? Testing was conducted using a Dell PowerEdge 6650 server with four CPUs and a Dell PowerVault 220s RAID array with 14 36GB drives and 128 MB of cache. Oracle Enterprise Edition 9.2.0.4 was used for the database and Red Hat Linux Advanced Server 2.1 was used for the operating system. This document will detail the maximum observed throughputs using the same test suite that was used for the Sun tests. A detailed description of the testing performed along with an analysis of bottlenecks encountered will be made. Issues related to Oracle and Linux will also be detailed and some recommendations based on the findings.

  15. BUFFERS AND VEGETATIVE FILTER STRIPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Buffers and filter strips are areas of permanent vegetation located within and between agricultural fields and the water courses to which they drain. These buffers are intended to intercept and slow runoff thereby providing water quality benefits. In addition, in many settings they are intended to...

  16. The influence of Sb doping on the growth and electronic properties of GaAs(100) and AlGaAs(100)

    NASA Technical Reports Server (NTRS)

    Jamison, K. D.; Chen, H. C.; Bensaoula, A.; Lim, W.; Trombetta, L.

    1989-01-01

    Isoelectronic doping using antimony has been shown to reduce traps and improve material properties during epitaxial growth of Si doped GaAs(100) and AlGaAs(100). In this study, the effect of the antimony dopant on the optimal growth temperature is examined with the aim of producing high-quality heterostructures at lower temperatues. High-quality films of GaAs and AlGaAs have been grown by molecular-beam epitaxy at the normal growth temperatures of 610 and 700 C, respectively, and 50-100 C below this temperature using varying small amounts of Sb as a dopant. Electrical properties of the films were then examined using Hall mobility measurements and deep-level transient spectroscopy.

  17. Enhanced 1.53 μm photoluminescence from Er-doped AlGaAs wet thermal native oxides by postoxidation implantation

    NASA Astrophysics Data System (ADS)

    Huang, M.; Hall, D. C.

    2007-10-01

    A significant enhancement in the 300K, cw photoluminescence (PL) from Er-doped Al0.3Ga0.7As native oxide films is achieved by incorporating the Er after (relative to before) wet thermal oxidation of the AlGaAs. Postoxidation Er ion implantation (1015cm-2 and 300keV) prevents the formation of nonradiative ErAs complexes, leading to a relatively long 1.53μm fluorescence lifetime τ =6.1ms (an approximately seven times improvement) with approximately three times enhancement in the PL intensity. The data suggest that Er-doped AlGaAs native oxides formed using postoxidation implantation may be a viable active media for monolithic optoelectronic integration of waveguide amplifiers on GaAs substrates.

  18. Influence of buffer-layer construction and substrate orientation on the electron mobilities in metamorphic In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As structures on GaAs substrates

    SciTech Connect

    Kulbachinskii, V. A.; Oveshnikov, L. N.; Lunin, R. A.; Yuzeeva, N. A.; Galiev, G. B.; Klimov, E. A.; Pushkarev, S. S.; Maltsev, P. P.

    2015-07-15

    The influence of construction of the buffer layer and misorientation of the substrate on the electrical properties of In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As quantum wells on a GaAs substrate is studied. The temperature dependences (in the temperature range of 4.2 K < T < 300 K) and field dependences (in magnetic fields as high as 6 T) of the sample resistances are measured. Anisotropy of the resistances in different crystallographic directions is detected; this anisotropy depends on the substrate orientation and construction of the metamorphic buffer layer. In addition, the Hall effect and the Shubnikov–de Haas effect are studied. The Shubnikov–de Haas effect is used to determine the mobilities of electrons separately in several occupied dimensionally quantized subbands in different crystallographic directions. The calculated anisotropy of mobilities is in agreement with experimental data on the anisotropy of the resistances.

  19. Multifunctional, Phase-Separated, BaTiO3 + CoFe2O4 Cap Buffer Layers for Improved Flux-Pinning in YBa2Cu3O7- Based Coated Conductors

    SciTech Connect

    Wee, Sung Hun; Shin, Junsoo; Cantoni, Claudia; Zuev, Yuri L; Cook, Sylvester W; Goyal, Amit

    2010-01-01

    Phase separated, epitaxial, nanostructured film comprised of BaTiO{sub 3} (BTO) and CoFe{sub 2}O{sub 4} (CFO) composite has been developed as a potential multifunctional cap buffer layer for improved flux-pinning in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films. All films were deposited by pulsed laser deposition on SrTiO{sub 3} (STO) (100) single crystal substrates. The CFO fraction and growth temperature were identified as key factors for determining the areal number density and mean diameter of the CFO nanocolumns. Compared to the reference sample grown on a pure BTO cap layer, the YBCO films grown on BTO+CFO cap layers show a remarkable improvement in isotropic flux-pinning and, consequently, J{sub c} over the entire field and angle ranges. Transmission electron microscopy analysis confirmed the presence of a very defective YBCO layer containing a high density of randomly distributed defects at the interface area, induced by nanostructural modulation on the surface of the BTO+CFO composite cap layer.

  20. Electrodialysis operation with buffer solution

    DOEpatents

    Hryn, John N.; Daniels, Edward J.; Krumdick, Greg K.

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.