Science.gov

Sample records for algaas window layers

  1. Atomic layer epitaxy of AlAs and AlGaAs

    NASA Astrophysics Data System (ADS)

    Meguro, T.; Iwai, S.; Aoyagi, Y.; Ozaki, K.; Yamamoto, Y.; Suzuki, T.; Okano, Y.; Hirata, A.

    1990-01-01

    Atomic layer epitaxy (ALE) of AlAs and AlGaAs with metalorganic vapor-phase epitaxy (MOVPE) under Ar-ion laser irradiation has been successfully realized in a triethylaluminum (TEA)/AsH 3 system for the first time. Comparison with the growth characteristics of MOVPE with alternative feeding modes of TMA/AsH 3 and TEA/AsH 3 is discussed. Application to laser-ALE of AlGaAs using a triethylgallium (TEG)/TEA/AsH 3 system is also discussed.

  2. Development of N/P AlGaAs free-standing top solar cells for tandem applications

    NASA Technical Reports Server (NTRS)

    Negley, Gerald H.; Dinetta, Louis C.; Cummings, John R.; Hannon, Margaret H.; Sims, Paul E.; Barnett, Allen M.

    1991-01-01

    The combination of a free standing AlGaAs top solar cell and an existing bottom solar cell is the highest performance, lowest risk approach to implementing the tandem cell concept. The solar cell consists of an AlGaAs substrate layer, an AlGaAs base layer, an AlGaAs emitter, and an ultra-thin AlGaAs window layer. The window layer is compositionally graded which minimizes reflection at the window layer/emitter interface and creates a built-in electric field to improve quantum response in the blue region of the spectrum. Liquid phase epitaxy (LPE) is the only viable method to produce this free standing top solar cell. Small (0.125 sq cm), transparent p/n AlGaAs top solar cells were demonstrated with optimum bandgap for combination with a silicon bottom solar cell. The efficiency of an AlGaAs/Si stack using the free standing AlGaAs device upon an existing silicon bottom solar cell is 24 pct. (1X, Air Mass Zero (AM0). The n/p AlGaAs top solar cell is being developed in order to facilitate the wiring configuration. The two terminal tandem stack will retain fit, form, and function of existing silicon solar cells. Progress in the development of large area (8 and 16 sq cm), free standing AlGaAs top solar cells is discussed.

  3. Hybrid window layer for photovoltaic cells

    SciTech Connect

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  4. Hybrid window layer for photovoltaic cells

    SciTech Connect

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  5. Hybrid window layer for photovoltaic cells

    DOEpatents

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  6. Efficient AlGaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Fan, J. C. C.; Turner, G. W.; Chapman, R. L.; Pantano, J. V.

    1984-01-01

    Shallow-homojunction n+/p/p+ solar cells with one-sun, AM1 conversion efficiencies as high as 12.9 percent have been fabricated in Al0.2Ga0.8As epitaxial layers grown by organometallic chemical vapor deposition on single-crystal GaAs substrates. For these cells, which have n+ layers thinned by anodic oxidation to about 500 A, the quantum efficiencies in the short-wavelength portion of the spectrum are as high as the best reported for AlGaAs cells with high band-gap window layers.

  7. InP solar cell with window layer

    NASA Technical Reports Server (NTRS)

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  8. Current-voltage characteristics of silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating overgrown with an undoped GaAs layer

    SciTech Connect

    Dementyev, P. A.; Dunaevskii, M. S. Samsonenko, Yu. B.; Cirlin, G. E.; Titkov, A. N.

    2010-05-15

    A technique for measurement of longitudinal current-voltage characteristics of semiconductor nanowhiskers remaining in contact with the growth surface is suggested. The technique is based on setting up a stable conductive contact between the top of a nanowhisker and the probe of an atomic-force microscope. It is demonstrated that, as the force pressing the probe against the top of the nanowhisker increases, the natural oxide layer covering the top is punctured and a direct contact between the probe and the nanowhisker body is established. In order to prevent nanowhiskers from bending and, ultimately, breaking, they need to be somehow fixed in space. In this study, GaAs nanowhiskers were kept fixed by partially overgrowing them with a GaAs layer. To isolate nanowhiskers from the matrix they were embedded in, they were coated by a nanometer layer of AlGaAs. Doping of GaAs nanowhiskers with silicon was investigated. The shape of the current-voltage characteristics obtained indicates that introduction of silicon leads to p-type conduction in nanowhiskers, in contrast to n-type conduction in bulk GaAs crystals grown by molecular-beam epitaxy. This difference is attributed to the fact that the vapor-liquid-solid process used to obtain nanowhiskers includes a final stage of liquid-phase epitaxy, a characteristic of the latter being p-type conduction obtained in bulk GaAs(Si) crystals.

  9. Band engineering at the GaAssbnd AlGaAs heterojunction using ultra-thin Si and Be dipole layers: a comparison of modification techniques

    NASA Astrophysics Data System (ADS)

    Wilks, S. P.; Burgess, S.; Dunstan, P.; Pan, M.; Pritchard, M. A.; Williams, R. H.; Cammack, D.; Clark, S. A.; Westwood, D. I.

    1998-01-01

    The control of semiconductor interfaces is essential to engineer new material properties for device applications. In this article we have considered the use of ultra-thin (1 monolayer) interfacial Si and Be dipoles layers to modify the band discontinuity present at the GaAssbnd AlGaAs heterojunction. Soft X-ray photoelectron spectroscopy (SXPS) was performed at the Daresbury synchrotron radiation source (SRS) on samples previously grown by molecular beam epitaxy (MBE). Detailed deconvolution of the As 3d core level spectra enabled the valence band modification due to the presence of the interlayers to be extracted. The results of this study indicate the potential of this method to induce large valence band-offset modification (+0.4 eV for Si and -0.52 eV for Be) due to the presence of the dipole layers. The effect of any near interface doping by the Si and Be layers was considered by solving Poisson's equation for these structures. Finally, the technique is compared to other band engineering methods, namely δ-doping and multi quantum barriers (MQB), to assess the potential and viability for use in real devices.

  10. Temperature dependent investigation of carrier transport, injection, and densities in 808 nm AlGaAs multi-quantum-well active layers for VCSELs

    NASA Astrophysics Data System (ADS)

    Engelhardt, Andreas P.; Kolb, Johanna S.; Römer, Friedhard; Weichmann, Ulrich; Moench, Holger; Witzigmann, Bernd

    2014-05-01

    The electro-optical efficiency of semiconductor vertical-cavity surface-emitting lasers (VCSELs) strongly depends on the efficient carrier injection into the quantum wells (QWs) in the laser active region. However, carrier injection degrades with increasing temperature which limits the VCSEL performance particularly in high power applications where self heating imposes high temperatures in operation. By simulation we investigate the transport of charge carriers in 808 nm AlGaAs multi-quantum-well active layers with special attention to the temperature dependence of carrier injection into the QWs. Experimental reference data was extracted from oxide-confined, top-emitting VCSELs. The transport simulations follow a drift-diffusion-model complemented by a customized, energy-resolved, semi-classical carrier capture theory. QW gain was calculated in the screened Hartree-Fock approximation with band structures from 8x8 k.p-theory. Using the gain data and by setting losses and the optical confinement factor according to experimental reference results, the appropriate threshold condition and threshold carrier densities in the QWs for a VCSEL are established in simulation for all transport considerations. With the combination of gain and transport model, we can explain experimental reference data for the injection efficiency and threshold current density. Our simulations show that the decreasing injection efficiency with temperature is not solely due to increased thermionic escape of carriers from the QWs. Carrier injection is also hampered by state filling in the QWs initiated from higher threshold carrier densities with temperature. Consequently, VCSEL properties not directly related to the active layer design like optical out-coupling or internal losses link the temperature dependent carrier injection to VCSEL mirror design.

  11. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  12. Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Chui, H.C.; Hou, H.Q.; Hull, R.

    1996-06-01

    The authors discuss the selective conversion of buried layers of AlGaAs to a stable oxide and the implementation of this oxide into high performance vertical-cavity surface emitting lasers (VCSELs). The rate of lateral oxidation is shown to be linear with an Arrhenius temperature dependence. The measured activation energies vary with Al composition, providing a high degree of oxidation selectivity between AlGaAs alloys. Thus buried oxide layers can be selectively fabricated within the VCSEL through small compositional variations in the AlGaAs layers. The oxidation of AlGaAs alloys, as opposed to AlAs, is found to provide robust processing of reliable lasers. The insulating and low refractive index oxide provides enhanced electrical and optical confinement for ultralow threshold currents in oxide-apertured VCSELs.

  13. Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices.

    PubMed

    Chung, Choong-Heui; Song, Tze-Bin; Bob, Brion; Zhu, Rui; Duan, Hsin-Sheng; Yang, Yang

    2012-10-23

    A silver nanowire-indium tin oxide nanoparticle composite and its successful application to fully solution processed CuInSe(2) solar cells as a window layer are demonstrated, effectively replacing the traditionally sputtered both intrinsic zinc oxide and indium tin oxide layers. The devices utilizing the nanocomposite window layer demonstrate photovoltaic parameters equal to or even beyond those with sputtered intrinsic zinc oxide and indium tin oxide contacts. PMID:22887002

  14. Narrow divergence, single quantum well, separate confinement, AlGaAs laser

    SciTech Connect

    Haw, T.E.; Williams, J.E.; Wober, M.A.

    1991-01-29

    This patent describes a improvement in a structure for a narrow divergence, single quantum well, separate confinement, laser. It comprises: an n-AlGaAs cladding epitaxial layer, a first AlGaAs waveguide epitaxial layer, a GaAs quantum well active epitaxial layer, a second AlGaAs waveguide epitaxial layer, a p-AlGaAs cladding epitaxial layer, and a GaAs cap epitaxial layer, all sequentially grown with respect to each other. The improvement comprises: the n-AlGaAs cladding layer dimensioned to a thickness which is greater than 2 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}; the first AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; the GaAs quantum well layer dimensioned to a thickness in a range between 50 and 200 Angstroms; the second AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; and the p-AlGaAs cladding layer dimensioned to a thickness which is greater than 2.0 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}.

  15. Effect of the control of global planarity of intermetal dielectric layers on the lithographic process window

    NASA Astrophysics Data System (ADS)

    Keysar, Shani; Markowitz, Leah; Ben-Gigi, Corin; Tweg, Rama; Margalit-Ilovich, Ayelet; Kepten, Avishai; Wachs, Amir; Shaviv, Roey

    1999-06-01

    The sensitivity of lithographic process window to global planarity of the inter metal dielectric layers is established in this work. The inter metal dielectric layers, between the metal layers, were prepared by utilizing the H2O2/SiH4 chemistry known as the 'Advanced Planarity Layer (APL)'. Four degrees of global planarity were tested within the APL process window, utilizing different H2O2 stabilization pressures. SEM cross sections were used to determine the degree of planarity in the CMOS product and at lithographic test structures. The lithographic process window and the effect of the stepper leveling system were defined for typical high and low topographies. The results how a strong link between the lithographic process window to degree of global planarity of the APL. Good global planarity enlarged depth of focus and energy latitude, allowing a wider lithographic process window. Also, in cases of improved APL planarity, the stepper leveling system had only a limited contribution to a lithographic process window. This control over the global planarity of the inter metal dielectric layers and the wide lithographic process window that results eliminate the need for CMP at 0.5 (mu) technology.

  16. Spatial Solitons in Algaas Waveguides

    NASA Astrophysics Data System (ADS)

    Kang, Jin Ung

    In this work, by measuring the two-, three-photon absorption, and the nonlinear refractive index coefficients, a useful bandwidth for an all-optical switching applications in the AlGaAs below half the band gap is identified. Operating in this material system, several types of spatial solitons such as fundamental bright solitons, Vector solitons, and Manakov solitons are experimentally demonstrated. The propagation and the interaction behaviors of these solitons are studied experimentally and numerically. The distinct properties of each soliton are discussed along with some possible applications. Some applications, such as all -optical switching based on spatial soliton dragging and the efficient guiding of orthogonally polarized femtosecond pulses by a bright spatial soliton, are experimentally demonstrated. The signal gain due to an ultrafast polarization coupling, better known as Four Wave Mixing (FWM) is demonstrated in a channel waveguide. The effects of FWM are studied experimentally and numerically. This effect is also used to demonstrate polarization switching. The linear and nonlinear properties of AlGaAs/GaAs multiple quantum well waveguides are measured. Anisotropic two photon absorption and nonlinear refractive indices near half the band gap are measured along with the linear birefringence for several different quantum well structures. The usefulness of multiple quantum well structures for an all -optical switching because of anisotropic nature of this material system is discussed.

  17. The growth of high-quality AlGaAs by metalorganic molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hersee, S. D.; Martin, P. A.; Chin, A.; Ballingall, J. M.

    1991-07-01

    The electrical and optical properties of AlGaAs grown by metalorganic molecular-beam epitaxy using triethylaluminum, tri-isobutylaluminum, and trimethylamine-alane are compared. It is found that tri-isobutylaluminum yields the lowest residual carbon incorporation in the layers (Na - Nd = 4 × 1015 cm-3) and the highest electron and hole mobilities. Photoluminescence spectra for the higher-quality AlGaAs, grown using TiBAl, show excitonic luminescence. However, this luminescence appears to be defect related.

  18. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  19. Effect of InAlAs window layer on efficiency of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide bandgap, lattice-matched indium aluminum arsenide (In(0.52)Al(0.48)As) window layer on the performance of InP solar cells was investigated by using the numerical code PC-1D. The p(+)n InP solar cell performance improved significantly with the use of the window layer. No improvement was seen for the n(+)p InP cells. The cell results were explained by the band diagram of the heterostructure and the conduction band energy discontinuity. The calculated current voltage and internal quantum efficiency results clearly demonstrated that In(0.52)Al(0.48)As is a very promising candidate for a window layer material for p(+)n InP solar cells.

  20. Effect of InAlAs window layer on the efficiency of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    Indium phosphide (InP) solar cell efficiencies are limited by surface recombination. The effect of a wide-bandgap lattice-matched indium aluminum arsenide (In0.52Al0.48As) window layer on the performance of InP solar cells was investigated using a numerical code PC-1D. The p(+)n InP solar cell performance improves significantly with the use of a window layer. No improvement is seen for n(+)p InP cells. Cell results are explained by the band diagram of the heterostructure and the conduction-band energy discontinuity. The calculated I-V and internal quantum efficiency results clearly demonstrate that In0.52Al0.48As is a promising candidate as a window layer material for p(+)n InP solar cells.

  1. Passivating Window/First Layer AR Coating for Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.

    2004-01-01

    Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.

  2. Single photon emission from impurity centers in AlGaAs epilayers on Ge and Si substrates

    SciTech Connect

    Minari, S.; Cavigli, L.; Sarti, F.; Abbarchi, M.; Accanto, N.; Munoz Matutano, G.; Vinattieri, A.; Gurioli, M.; Bietti, S.; Sanguinetti, S.

    2012-10-22

    We show that the epitaxial growth of thin layers of AlGaAs on Ge and Si substrates allows to obtain single photon sources by exploiting the sparse and unintentional contamination with acceptors of the AlGaAs. Very bright and sharp single photoluminescence lines are observed in confocal microscopy. These lines behave very much as single excitons in quantum dots, but their implementation is by far much easier, since it does not require 3D nucleation. The photon antibunching is demonstrated by time resolved Hanbury Brown and Twiss measurements.

  3. Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates

    SciTech Connect

    Sarti, F.; Muñoz Matutano, G.; Bauer, D.; Dotti, N.; Vinattieri, A.; Gurioli, M.; Bietti, S.; Sanguinetti, S.; Isella, G.

    2013-12-14

    The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device.

  4. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    SciTech Connect

    Ochoa-Landin, R.; Sastre-Hernandez, J.; Vigil-Galan, O.; Ramirez-Bon, R.

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  5. Carbon incorporation in AlGaAs grown by CBE

    NASA Astrophysics Data System (ADS)

    Lee, B. J.; Houng, Y. M.; Miller, J. N.; Turner, J. E.

    1990-10-01

    The incorporation of carbon into unintentionally doped Al xGa 1- xAs epilayers grown by chemical beam epitaxy (CBE) using arsine and various combinations of group III sources was investigated. Growth of unintentionally doped Al xGa 1- xAs using triethylgallium (TEGa)+triisobutylaluminum (TIBAl) resulted in lower hole and carbon concentrations than those grown from TEGa+triethylaluminum (TEAl). The carbon concentration in AlGaAs epilayers increased with decreasing growth temperature below 560°C and increased with increasing growth temperature above 560°C. This "U-shaped" dependence of carbon concentration on growth temperature exhibited its minimum value at ˜ 560°C for both the TEGa+TEAl and TEGa+TIBAl systems. The alkyl-Al compounds are thought to be the controlling species for the carbon incorporation in the low temperature regime, while the AlCH 3 formed through β-methyl elimination is responsible for the carbon incorporation in the high temperature regime. Based on this study, we are able to grow high quality AlGaAs epilayers with reduced carbon contamination by using TIBAl instead of TEAl at the growth temperature of 560°C with a V/III ratio of 20. AlGaAs/GaAs modulation-doped structures grown from TEGa+TIBAl show a two-dimensional electron gas mobility as high as 88,600 cm 2/V·s at 77 K, which is a 40% improvement over that grown from TEGa+TEAl, with a sheet carrier concentration of 6x10 11 cm -2 and a spacer layer thickness of 150 Å.

  6. The role of buffer layers and double windows layers in a solar cell CZTS performances

    NASA Astrophysics Data System (ADS)

    Mebarkia, C.; Dib, D.; Zerfaoui, H.; Belghit, R.

    2016-07-01

    In the overall context of the diversification of the use of natural resources, the use of renewable energy including solar photovoltaic has become increasingly indispensable. As such, the development of a new generation of photovoltaic cells based on CuZnSnS4 (CZTS) looks promising. Cu2ZnSnS4 (CZTS) is a new film absorber, with good physical properties (band gap energy 1.4-1.6 eV with a large absorption coefficient over 104 cm-1). Indeed, the performance of these cells exceeded 30% in recent years. In the present paper, our work based on modeling and numerical simulation, we used SCAPS to study the performance of solar cells based on Cu2ZnSnS4 (CZTS) and thus evaluate the electrical efficiency η for typical structures of n-ZnO:Al / i-ZnO / n-CdS / p-CZTS and n-ITO / n-ZnO:Al / n-CdS /p-CZTS. Furthermore, the influence of the change of CdS by ZnSeand In2S3buffer layer was treated in this paper.

  7. Improved degradation resistance of (AlGa)As lasers

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Ladany, J.

    1980-01-01

    Simultaneous doping with Ge and Zn improves degradation resistance of short-wavelength (AlGa)As lasers. Method opens up prospects for greatly increased reliability in lasers and LED's operating at 7,500 angstroms or below.

  8. Full chip two-layer CD and overlay process window analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Rachit; Shang, Shumay; Sturtevant, John

    2015-03-01

    In-line CD and overlay metrology specifications are typically established by starting with design rules and making certain assumptions about error distributions which might be encountered in manufacturing. Lot disposition criteria in photo metrology (rework or pass to etch) are set assuming worst case assumptions for CD and overlay respectively. For example poly to active overlay specs start with poly endcap design rules and make assumptions about active and poly lot average and across lot CDs, and incorporate general knowledge about poly line end rounding to ensure that leakage current is maintained within specification. There is an opportunity to go beyond generalized guard band design rules to full-chip, design-specific, model-based exploration of worst case layout locations. Such an approach can leverage not only the above mentioned coupling of CD and overlay errors, but can interrogate all layout configurations for both layers to help determine lot-specific, design-specific CD and overlay dispositioning criteria for the fab. Such an approach can elucidate whether for a specific design layout there exist asymmetries in the response to misalignment which might be exploited in manufacturing. This paper will investigate an example of two-layer model-based analysis of CD and overlay errors. It is shown, somewhat non-intuitively, that there can be small preferred misalignment asymmetries which should be respected to protect yield. We will show this relationship for via-metal overlap. We additionally present a new method of displaying edge placement process window variability, akin to traditional CD process window analysis.

  9. Lattice-mismatched In(0. 40)Al(0. 60)As window layers for indium phosphide solar cells

    SciTech Connect

    Jain, R.K.; Landis, G.A.; Wilt, D.M.; Flood, D.J.

    1993-11-01

    The efficiency of indium phosphide (InP) solar cells is limited by its high surface recombination velocity (approximately 10(exp 7) cm/s). This might be reduced by a wide-bandgap window layer. The performance of InP solar cells with wide-bandgap (1.8 eV) lattice-mismatched In(0.40)Al(0.60)As as a window layer was calculated. Because the required window layer thickness is less than the critical layer thickness, growth of strained (pseudomorphic) layers without interfacial misfit dislocations should be possible. Calculations using the PC-lD numerical code showed that the efficiencies of baseline and optimized p(+)n (p-on-n) cells are increased to more than 22 and 24 percent, (air mass zero (AMO), 25 C), respectively for a lattice-mismatched In(0.40)Al(0.60)As window layer of 10-nm thickness. Currently, most cell development work has been focused on n(+)p (n-on-p) structures although comparatively little improvement has been found for n(+)p cells.

  10. Lattice-mismatched In(0.40)Al(0.60)As window layers for indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.; Wilt, David M.; Flood, Dennis J.

    1993-01-01

    The efficiency of indium phosphide (InP) solar cells is limited by its high surface recombination velocity (approximately 10(exp 7) cm/s). This might be reduced by a wide-bandgap window layer. The performance of InP solar cells with wide-bandgap (1.8 eV) lattice-mismatched In(0.40)Al(0.60)As as a window layer was calculated. Because the required window layer thickness is less than the critical layer thickness, growth of strained (pseudomorphic) layers without interfacial misfit dislocations should be possible. Calculations using the PC-lD numerical code showed that the efficiencies of baseline and optimized p(+)n (p-on-n) cells are increased to more than 22 and 24 percent, (air mass zero (AMO), 25 C), respectively for a lattice-mismatched In(0.40)Al(0.60)As window layer of 10-nm thickness. Currently, most cell development work has been focused on n(+)p (n-on-p) structures although comparatively little improvement has been found for n(+)p cells.

  11. Monolithic AlGaAs second-harmonic nanoantennas.

    PubMed

    Gili, V F; Carletti, L; Locatelli, A; Rocco, D; Finazzi, M; Ghirardini, L; Favero, I; Gomez, C; Lemaître, A; Celebrano, M; De Angelis, C; Leo, G

    2016-07-11

    We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical nanoantennas. Using a selective oxidation technique, we fabricated epitaxial semiconductor nanocylinders on an aluminum oxide substrate. Second harmonic generation from AlGaAs nanocylinders of 400 nm height and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an optimized geometry. PMID:27410864

  12. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  13. Solution Processing of Cadmium Sulfide Buffer Layer and Aluminum-Doped Zinc Oxide Window Layer for Thin Films Solar Cells

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Islam, Mohammad; Achour, Amine; Hayat, Ansar; Ahsan, Bilal; Rasheed, Haroon; Salam, Shahzad; Mujahid, Mohammad

    2014-07-01

    Cadmium sulfide (CdS) and aluminum-doped zinc oxide (Al:ZnO) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al:ZnO thin films were produced using chemical bath deposition (CBD) and sol-gel technique, respectively. For CBD CdS, the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12-17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS) to 3.76 eV along with a shift in the absorption edge toward 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al:ZnO films prepared via spin coating of precursor sols containing 0.90-1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is 2.7 × 10-4 Ω ṡ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

  14. Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells

    NASA Astrophysics Data System (ADS)

    Tsin, Fabien; Vénérosy, Amélie; Hildebrandt, Thibaud; Hariskos, Dimitrios; Naghavi, Negar; Lincot, Daniel; Rousset, Jean

    2016-02-01

    The Cu(In,Ga)Se2 (CIGS) thin film solar cell technology has made a steady progress within the last decade reaching efficiency up to 22.3% on laboratory scale, thus overpassing the highest efficiency for polycrystalline silicon solar cells. High efficiency CIGS modules employ a so-called buffer layer of cadmium sulfide CdS deposited by Chemical Bath Deposition (CBD), which presence and Cd-containing waste present some environmental concerns. A second potential bottleneck for CIGS technology is its window layer made of i-ZnO/ZnO:Al, which is deposited by sputtering requiring expensive vacuum equipment. A non-vacuum deposition of transparent conductive oxide (TCO) relying on simpler equipment with lower investment costs will be more economically attractive, and could increase competitiveness of CIGS-based modules with the mainstream silicon-based technologies. In the frame of Novazolar project, we have developed a low-cost aqueous solution photo assisted electrodeposition process of the ZnO-based window layer for high efficiency CIGS-based solar cells. The window layer deposition have been first optimized on classical CdS buffer layer leading to cells with efficiencies similar to those measured with the sputtered references on the same absorber (15%). The the optimized ZnO doped layer has been adapted to cadmium free devices where the CdS is replaced by chemical bath deposited zinc oxysulfide Zn(S,O) buffer layer. The effect of different growth parameters has been studied on CBD-Zn(S,O)-plated co-evaporated Cu(In,Ga)Se2 substrates provided by the Zentrum für Sonnenenergie-und Wasserstoff-Forschung (ZSW). This optimization of the electrodeposition of ZnO:Cl on CIGS/Zn(S,O) stacks led to record efficiency of 14%, while the reference cell with a sputtered (Zn,Mg)O/ZnO:Al window layer has an efficiency of 15.2%.

  15. Photosignal enhancement in Al-GaAs diodes due to surface plasmons and guided wave modes

    NASA Astrophysics Data System (ADS)

    Tamm, I. R.; Dawson, P.; Pate, M. A.; Grey, R.; Hill, G.

    1993-12-01

    In the study, Al-GaAs diodes have been examined in the Otto configuration or prism-air gap sample geometry with a view to producing surface plasmon polaritons (SPP) enhanced photosignals. The investigation is of relevance to polarization selective photodetection and the fabrication of simple polarization sensors. The geometry and the results yielded from it are closely related to SPP mediated spatial light modulators, in which a liquid crystal layer forms the coupling gap between a high index prism and the semiconductor based substrate on which the addressing pixels are fabricated.

  16. [The impact of ZnS/CdS composite window layer on the quantun efficiency of CdTe solar cell in short wavelength].

    PubMed

    Zhang, Li-xiang; Feng, Liang-huan; Wang, Wen-wu; Xu, Hang; Wu, Li-li; Zhang, Jing-quan; Li, Wei; Zeng, Guang-gen

    2015-02-01

    ZnS/CdS composite window layer was prepared by magnetron sputtering method and then applied to CdTe solar cell. The morphology and structure of films were measured. The data of I-V in light and the quantum efficiency of CdTe solar cells with different window layers were also measured. The effect of ZnS films prepared in different conditions on the performance of CdTe solar cells was researched. The effects of both CdS thickness and ZnS/CdS composite layer on the transmission in short wavelength were studied. Particularly, the quantum efficiency of CdTe solar cells with ZnS/CdS window layer was measured. The results show as follows. With the thickness of CdS window layer reducing from 100 to 50 nm, the transmission increase 18.3% averagely in short wavelength and the quantum efficiency of CdTe solar cells increase 27.6% averagely. The grain size of ZnS prepared in 250 degrees C is smaller than prepared at room temperature. The performance of CdTe solar cells with ZnS/CdS window layer is much better if ZnS deposited at 250 degrees C. This indicates grain size has some effect on the electron transportation. When the CdS holds the same thickness, the transmission of ZnS/CdS window layer was improved about 2% in short wavelength compared with CdS window layer. The quantum efficiency of CdTe solar cells with ZnS/CdS window layer was also improved about 2% in short wavelength compared with that based on CdS window layer. These indicate ZnS/CdS composite window layer can increase the photon transmission in short wavelength so that more photons can be absorbed by the absorbent layer of CdTe solar cells. PMID:25970885

  17. Multiple quantum well AlGaAs nanowires.

    PubMed

    Chen, Chen; Braidy, Nadi; Couteau, Christophe; Fradin, Cécile; Weihs, Gregor; LaPierre, Ray

    2008-02-01

    This letter reports on the growth, structure, and luminescent properties of individual multiple quantum well (MQW) AlGaAs nanowires (NWs). The composition modulations (MQWs) are obtained by alternating the elemental flux of Al and Ga during the molecular beam epitaxy growth of the AlGaAs wire on GaAs (111)B substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy performed on individual NWs are consistent with a configuration composed of conical segments stacked along the NW axis. Microphotoluminescence measurements and confocal microscopy showed enhanced light emission from the MQW NWs as compared to nonsegmented NWs due to carrier confinement and sidewall passivation. PMID:18184023

  18. Light management and efficient carrier generation with a highly transparent window layer for a multijunction amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Iftiquar, Sk Md; Lee, Jeong Chul; Lee, Jieun; Kim, Youngkuk; Jang, Juyeon; Lee, Yeun-Jung; Yi, Junsin

    2013-01-01

    P-layer of a p-i-n type amorphous silicon solar cell helps in creating a built-in electric field inside the cell; it also contributes to parasitic absorption loss of incident light. Here, we report optimization of these two characteristic contributions of the p-layer of the cell. We used a highly transparent p-type hydrogenated amorphous silicon carbide (p-a-Si1-xCx:H) window layer in an amorphous silicon solar cell. With the increased transparency of the p-type layer, the solar cell showed an improvement in short-circuit current density by 17%, along with improvement in blue response of its external quantum efficiency, although further thinner p-layer showed lower open-circuit voltage. Such a cell shows low light-induced degradation and a promise to be used in high-efficiency multijunction solar cell.

  19. Graded-bandgap AlGaAs solar cells for AlGaAs/Ge cascade cells

    NASA Technical Reports Server (NTRS)

    Timmons, M. L.; Venkatasubramanian, R.; Colpitts, T. S.; Hills, J. S.; Hutchby, J. A.; Iles, P. A.; Chu, C. L.

    1991-01-01

    Some p/n graded-bandgap Al(x)Ga(1-x)As solar cells were fabricated and show AMO conversion efficiencies in excess of 15 percent without antireflection (AR) coatings. The emitters of these cells are graded between 0.008 is less than or equal to x is less than or equal to 0.02 during growth of 0.25 to 0.30 micron thick layers. The keys to achieving this performance were careful selection of organometallic sources and scrubbing oxygen and water vapor from the AsH3 source. Source selection and growth were optimized using time-resolved photoluminescence. Preliminary radiation-resistance measurements show AlGaAs cells degraded less than GaAs cells at high 1 MeV electron fluences, and AlGaAs cells grown on GaAs and Ge substrates degrade comparably.

  20. Calculated performance of p(+)n InP solar cells with In(0.52)Al(0.48)As window layers

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Landis, G. A.

    1991-01-01

    The performance of indium phosphide solar cells with lattice matched wide band-gap In(0.52)Al(0.48)As window layers was calculated using the PC-1D computer code. The conversion efficiency of p(+)n InP solar cells is improved significantly by the window layer. No improvement is seen for n(+)p structures. The improvement in InP cell efficiency was studied as a function of In(0.52)Al(0.48)As layer thickness. The use of the window layer improves both the open circuit voltage and short circuit current.For a typical In(0.52)Al(0.48)As window layer thickness of 20 nm, the cell efficiency improves in excess of 27 percent to a value of 18.74 percent.

  1. The 1.1 micrometer and visible emission semiconductor diode lasers. [(AlGa)As lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Nuese, C. J.; Kressel, H.

    1978-01-01

    In (AlGa)As, the first of three alloy systems studied, Continuous Wave (CW) operation was obtained at room temperature at a wavelength as low as 7260 A. Reliability in this system was studied in the incoherent mode. Zinc doped devices had significant degradation, whereas Ge or Ge plus Zi doped devices had none. The Al2O3 facet coatings were shown to significantly reduce facet deterioration in all types of lasers, longer wavelength units of that type having accumulated (at the time of writing) 22,000 hours with little if any degradation. A CL study of thin (AlGa)As layers revealed micro fluctuation in composition. A macro-scale fluctuation was observed by electroreflectance. An experimental and theoretical study of the effect of stripe width on the threshold current was carried out. Emission below 7000 A was obtained in VPE grown Ga(AsP) (In,Ga)P with CW operation at 10 C. Lasers and LED's were made by LPE in (InGa) (AsP). Laser thresholds of 5 kA/cm2 were obtained, while LED efficiences were on the order of 2%. Incoherent life test over 6000 hours showed no degradation.

  2. High-efficiency nanostructured window GaAs solar cells.

    PubMed

    Liang, Dong; Kang, Yangsen; Huo, Yijie; Chen, Yusi; Cui, Yi; Harris, James S

    2013-10-01

    Nanostructures have been widely used in solar cells due to their extraordinary optical properties. In most nanostructured cells, high short circuit current has been obtained due to enhanced light absorption. However, most of them suffer from lowered open circuit voltage and fill factor. One of the main challenges is formation of good junction and electrical contact. In particular, nanostructures in GaAs only have shown unsatisfactory performances (below 5% in energy conversion efficiency) which cannot match their ideal material properties and the record photovoltaic performances in industry. Here we demonstrate a completely new design for nanostructured solar cells that combines nanostructured window layer, metal mesa bar contact with small area, high quality planar junction. In this way, we not only keep the advanced optical properties of nanostructures such as broadband and wide angle antireflection, but also minimize its negative impact on electrical properties. High light absorption, efficient carrier collection, leakage elimination, and good lateral conductance can be simultaneously obtained. A nanostructured window cell using GaAs junction and AlGaAs nanocone window demonstrates 17% energy conversion efficiency and 0.982 V high open circuit voltage. PMID:24021024

  3. Preparation and characterization of pulsed laser deposited a novel CdS/CdSe composite window layer for CdTe thin film solar cell

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyan; Liu, Bo; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-03-01

    A novel CdS/CdSe composite window structure was designed and then the corresponding films were prepared by pulsed laser deposition as an improved window layer for CdTe-based solar cells. Two types of this composite window structure with 5 cycles and 10 cycles CdS/CdSe respectively both combined with CdS layers were prepared at 200 °C compared with pure CdS window layer and finally were applied into CdTe thin film solar cells. The cross section and surface morphology of the two composite window layers were monitored by using scanning electron microscopy and the result shows that the pulsed laser deposited composite window layers with good crystallinity are stacking together as the design. The devices based on CdS/CdSe composite window layers have demonstrated the enhanced photocurrent collection from both short and long wavelength regions compared to CdS/CdTe solar cell. The efficiency of the best reference CdS/CdTe solar cell was 10.72%. And the device with 5 cycles CdS/CdSe composite window showed efficiency of 12.61% with VOC of 772.92 mV, JSC of 25.11 mA/cm2 and FF of 64.95%. In addition, there are some differences which exist within the optical transmittance spectra and QE curves between the two CdS/CdSe composite window samples, indicating that the volume proportion of CdSe may influence the performance of CdTe thin film solar cell.

  4. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1995-01-01

    This report concerns studies of the use of ZnSe as a window layer for GaAs solar cells. Well-oriented crystalline ZnSe films on (100) single crystal GaAs substrates were grown by MOCVD. In particular, ZnSe films were grown by reacting a zinc adduct with hydrogen selenide at temperatures in the range of 200 C to 400 C. X-ray diffraction studies and images obtained with an atomic force microscope determined that the films were highly oriented but were polycrystalline. Particular emphasis was placed on the use of a substrate temperature of 350 C. Using iodine as a dopant, n-type ZnSe films with resistivities in the range of .01 to .05 ohm-cm were grown on semi-insulating GaAs. Thus procedures have been developed for investigating the utility of n-type ZnSe window layers on n/p GaAs structures. Studies of recombination at n-ZnSe/n-GaAs interfaces in n-ZnSe/n-GaAs/p-GaAs cell structures are planned for future work.

  5. Window layer with p doped silicon oxide for high Voc thin-film silicon n-i-p solar cells

    NASA Astrophysics Data System (ADS)

    Biron, Rémi; Pahud, Celine; Haug, Franz-Josef; Escarré, Jordi; Söderström, Karin; Ballif, Christophe

    2011-12-01

    We investigate the influence of the oxygen content in boron-doped nanocrystalline silicon oxide films (p-nc-SiOx) and introduce this material as window layer in n-i-p solar cells. The dependence of both, optical and electrical properties on the oxygen content is consistent with a bi-phase model which describes the p-nc-SiOx material as a mixture of an oxygen-rich (O-rich) phase and a silicon-rich (Si-rich) phase. We observe that increasing the oxygen content enhances the optical gap E04 while deteriorating the activation energy and the planar conductivity. These trends are ascribed to a higher volume fraction of the O-rich phase. Incorporated into n-i-p a-Si:H cells, p-nc-SiOx layers with moderate oxygen content yield open circuit voltage (Voc) up to 945 mV, which corresponds to a relative gain of 11% compared to an oxygen-free p-layer. As a similar gain is obtained on planar and on textured substrates, we attribute the increase in Voc to the higher work function of the p-nc-SiOx layer made possible by its wider band gap. These results are attained without changing the dilution ratio of the 250 nm thick intrinsic layer. We also observe an enhancement of 0.6 mA cm-2 in short circuit current density in the short wavelengths due to the higher transparency of the p-nc-SiOx layer. Finally, an initial efficiency of 9.9% for a single junction 250 nm a-Si:H n-i-p solar cell on plastic foil is achieved with the optimization of the p layer thickness, the doping ratio of the front transparent conductive oxide, and the optical properties of the back reflector.

  6. Narrow growth window for stoichiometric, layer-by-layer growth of LaAlO3 thin films using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Golalikhani, M.; Lei, Q. Y.; Wolak, M. A.; Davidson, B. A.; Xi, X. X.

    2016-06-01

    We study the structure and surface morphology of the 100 nm homoepitaxial LaAlO3 films grown by pulsed laser deposition in a broad range of growth parameters. We show that there is a narrow window of growth conditions in which the stoichiometric, bulk-like structure is obtained while maintaining a 2-dimensional (2D) layer-by-layer growth mode. In our system, these optimum growth conditions are 100 mTorr background pressure with laser energy density 1.5-2 J/cm2. The sensitivity to growth conditions of the stoichiometry and structure of LaAlO3 films can have a crucial role in the 2-D electron gas formed at the LaAlO3/SrTiO3 interface.

  7. High reflectance Cr/V multilayer with B(4)C barrier layer for water window wavelength region.

    PubMed

    Huang, Qiushi; Fei, Jiani; Liu, Yang; Li, Pin; Wen, Mingwu; Xie, Chun; Jonnard, Philippe; Giglia, Angelo; Zhang, Zhong; Wang, Kun; Wang, Zhanshan

    2016-02-15

    To develop the high reflectance mirror for the short wavelength range of the water window region (λ=2.42-2.73  nm), Cr/V multilayers with B4C barrier layers are studied. The grazing incidence x-ray reflectometry results show that the multilayer interface widths are significantly reduced down to 0.21-0.31 nm, after the introduction of 0.1 nm B4C barrier layers at both interfaces. The [B4C/Cr/B4C/V] multilayer with a large number of bilayers of N=300 maintains the same small interface widths while the surface roughness is only 0.2 nm. According to the transmission electron microscope measurements, the layer structure improvement with barrier layers can be attributed to the suppression of the crystallization of vanadium inside the structure. Using the interface engineered multilayer, a maximum soft x-ray reflectance of 24.3% is achieved at λ=2.441  nm, under the grazing incidence of 42°. PMID:26872167

  8. Development of electrodeposited ZnTe layers as window materials in ZnTe/CdTe/CdHgTe multi-layer solar cells

    SciTech Connect

    Islam, A.B.M.O. Chaure, N.B.; Wellings, J.; Tolan, G.; Dharmadasa, I.M.

    2009-02-15

    Zinc telluride (ZnTe) thin films have been deposited on glass/conducting glass substrates using a low-cost electrodeposition method. The resulting films have been characterized using various techniques in order to optimize growth parameters. X-ray diffraction (XRD) has been used to identify the phases present in the films. Photoelectrochemical (PEC) cell and optical absorption measurements have been performed to determine the electrical conductivity type, and the bandgap of the layers, respectively. It has been confirmed by XRD measurement that the deposited layers mainly consist of ZnTe phases. The PEC measurements indicate that the ZnTe layers are p-type in electrical conduction and optical absorption measurements show that their bandgap is in the range 2.10-2.20 eV. p-Type ZnTe window materials have been used in CdTe based solar cell structures, following new designs of graded bandgap multi-layer solar cells. The structures of FTO/ZnTe/CdTe/metal and FTO/ZnTe/CdTe/CdHgTe/metal have been investigated. The results are presented in this paper using observed experimental data.

  9. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1997-01-01

    This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.

  10. Degradation of ZnO-Based Window Layers for Thin-Film CIGS by Accelerated Stress Exposures

    SciTech Connect

    Pern, F. J.; Noufi, R.; To, B.; DeHart, C.; Li, X.; Glick, S. H.

    2008-01-01

    The reliability of ZnO-based window layer for CuInGaSe{sub 2} (CIGS) solar cells was investigated. Samples of RF magnetron-sputtered, single-layer intrinsic and Al-doped ZnO and their combined bilayer on glass substrates were exposed in a weatherometer (WOM) and damp heat (DH) conditions with or without acetic acid vapor. Some preliminary samples of single-layer Al-doped Zn{sub 1-x}Mg{sub x}O (ZMO) alloy, a potential replacement for Al:ZnO with a wider bandgap, were also evaluated in the DH. The Al-doped ZnO and ZMO films showed irreversible loss in the conducting properties, free carrier mobility, and characteristic absorption band feature after <500-h DH exposure, with the originally clear transparent films turned into white hazy insulating films and the degradation rate follows the trend of (DH + acetic acid) > DH > WOM. The degradation rate was also reduced by higher film thickness, higher deposition substrate temperature, and dry-out intervals. The results of X-ray diffraction analysis indicate that the ZnO-based films underwent structural degeneration by losing their highly (002) preferential orientation with possible transformation from hexagonal into cubic and formation of Zn(OH){sub 2}. Periodic optical micro-imaging observations suggested a temporal process that involves initial hydrolysis of the oxides at sporadic weak spots, swelling and popping of the hydrolyzed spots due to volume increase, segregation of hydrolyzed regions causing discontinuity of electrical path, hydrolysis of the oxide-glass interface, and finally, formation of insulating oxides/hydroxides with visible delamination over larger areas.

  11. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer.

    PubMed

    Dang, Xiangnan; Gu, Li; Qi, Jifa; Correa, Santiago; Zhang, Geran; Belcher, Angela M; Hammond, Paula T

    2016-05-10

    Fluorescence imaging in the second near-infrared window (NIR-II, 1,000-1,700 nm) features deep tissue penetration, reduced tissue scattering, and diminishing tissue autofluorescence. Here, NIR-II fluorescent probes, including down-conversion nanoparticles, quantum dots, single-walled carbon nanotubes, and organic dyes, are constructed into biocompatible nanoparticles using the layer-by-layer (LbL) platform due to its modular and versatile nature. The LbL platform has previously been demonstrated to enable incorporation of diagnostic agents, drugs, and nucleic acids such as siRNA while providing enhanced blood plasma half-life and tumor targeting. This work carries out head-to-head comparisons of currently available NIR-II probes with identical LbL coatings with regard to their biodistribution, pharmacokinetics, and toxicities. Overall, rare-earth-based down-conversion nanoparticles demonstrate optimal biological and optical performance and are evaluated as a diagnostic probe for high-grade serous ovarian cancer, typically diagnosed at late stage. Successful detection of orthotopic ovarian tumors is achieved by in vivo NIR-II imaging and confirmed by ex vivo microscopic imaging. Collectively, these results indicate that LbL-based NIR-II probes can serve as a promising theranostic platform to effectively and noninvasively monitor the progression and treatment of serous ovarian cancer. PMID:27114520

  12. Electron and proton damage on InGaAs solar cells having an InP window layer

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Cotal, Hector L.; Walters, Robert J.; Summers, Geoffrey P.

    1995-01-01

    As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.

  13. Emittance of a radar absorber coated with an infrared layer in the 3~5microm window.

    PubMed

    Liu, Lingyun; Gong, Rongzhou; Cheng, Yongshan; Zhang, Fengguo; He, Huahui; Huang, Dexiu

    2005-12-12

    By use of the Kubelka-Munk theory, the Mie theory and the independent scattering approximation, we obtain the explicit expression of the emittance of an infrared coating attached to a radar absorber with a high emittance, in the 3~5microm window. Taking aluminum particles with spherical shape as the pigments within the coating, we give the dependence of the coating emittance with respect to the particle radius, the thickness of the coating. At a volume fraction of 0.05, we propose the optimum particle radius range of the pigment particles is around 0.35~0.6microm. When the thickness of the coating exceeds 300microm, the decrease of emittance at 4microm wavelength becomes negligible. Too much thickness of IR layer wouldn't contribute to the decrease of emittance. We study the influence of the infrared coating on the performance of the radar absorber, and believe that not too much thick infrared coating consisting of spherical Al particles wouldn't result in a remarkable deterioration of the absorbing ability of the radar absorber. PMID:19503253

  14. AlGaAs diode pumped tunable chromium lasers

    DOEpatents

    Krupke, William F.; Payne, Stephen A.

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  15. The reliability of /AlGa/As CW laser diodes

    NASA Astrophysics Data System (ADS)

    Ettenberg, M.; Kressel, H.

    1980-02-01

    Major factors bearing on the reliability of (AlGa)As CW laser diodes are reviewed with attention given to the degradation modes of facet mirror damage, contact degradation, and internal damage. Detailed results are provided for the oxide-defined stripe-contact double-heterojunction lasers operated for more than 40,000 h with extrapolations indicating a median time to failure between 100,000 and 1,000,000. Facet damage and contact degradation appear to be under control, and internal damage remains the dominant failure mechanism. Most of the data deals with threshold current increase; however, shifts in far-field pattern and changes in laser modulation characteristics, including self-sustained oscillations, may affect laser performance in real systems.

  16. Weak-beam trapping by bright spatial solitons in AlGaAs planar waveguides

    NASA Astrophysics Data System (ADS)

    Kang, J. U.; Stegeman, G. I.; Aitchison, J. S.

    1995-10-01

    We demonstrate experimentally the trapping and spatial wave breaking of weak signal beams by orthogonally polarized bright spatial solitons. Experiments were performed in an AlGaAs planar waveguide excited at a wavelength of 1.55 mu m .

  17. Growth of high quality AlGaAs by metalorganic molecular beam epitaxy using trimethylamine alane

    NASA Astrophysics Data System (ADS)

    Abernathy, C. R.; Jordan, A. S.; Pearton, S. J.; Hobson, W. S.; Bohling, D. A.; Muhr, G. T.

    1990-06-01

    AlGaAs grown by metalorganic molecular beam epitaxy (MOMBE) has been problematic due to oxygen and carbon contamination, particularly when triethylaluminum (TEAl) has been used as the aluminum source. Consequently, we have investigated trimethylamine alane (TMAAl) as a potential replacement for the conventional metalorganic Al sources. AlGaAs films with excellent structural and optical properties have been grown with this source. Photoluminescence intensities from AlGaAs grown by MOMBE at 500 °C using TMAAl are comparable to those from material grown by metalorganic chemical vapor deposition at 675 °C using triethylaluminum (TMAl). Carbon and oxygen levels in MOMBE-grown AlGaAs are drastically reduced in comparison to similar films grown with TEAl.

  18. Doping-free silicon thin film solar cells using a vanadium pentoxide window layer and a LiF/Al back electrode

    NASA Astrophysics Data System (ADS)

    Jung, Hyung Hwan; Kwon, Jung-Dae; Lee, Sunghun; Su Kim, Chang; Nam, Kee-Seok; Jeong, Yongsoo; Chung, Kwun-Bum; Yoon Ryu, Seung; Ocak, Tülay; Eray, Aynur; Kim, Dong-Ho; Park, Sung-Gyu

    2013-08-01

    This work describes the preparation of a doped layer-free hydrogenated amorphous silicon (a-Si:H) thin film solar cell consisting of a vanadium pentoxide (V2O5-x) window layer, an intrinsic a-Si:H absorber layer, and a lithium fluoride (LiF)/aluminum (Al) back electrode. The large difference between the work functions of the V2O5-x layer and the LiF/Al electrode permitted photogenerated carriers in the i-a-Si:H absorber layer to be effectively separated and collected. The effects of the V2O5-x layer thickness and the oxidation states on the photovoltaic performance were investigated in detail. X-ray photoelectron spectroscopy analysis confirmed that the major species of the sputtered V2O5-x thin films were V5+ and V4+. Optimization of the V2O5-x window layer yielded a power conversion efficiency of 7.04%, which was comparable to the power conversion efficiency of a typical a-Si:H solar cell (7.09%).

  19. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells

    SciTech Connect

    Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa

    2014-07-28

    High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270 °C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O{sub 2}/(O{sub 2} + Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270 °C decrease as the O{sub 2}/(O{sub 2} + Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270 °C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270 °C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270 °C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

  20. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  1. AlGaAs phased array laser for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.

    1989-01-01

    Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.

  2. AlGaAs heterojunction visible (700 nm) light-emitting diodes on Si substrates fabricated by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Kawarada, Y.; Kamijoh, T.; Akiyama, M.; Watanabe, N.

    1986-06-01

    The fabrication of AlGaAs LEDs emitting at 700 nm (half width 45 nm) by the metal-organic chemical-vapor deposition (MOCVD) method of Akiyama et al. (1985) is reported. Using trimethylgallium, trimethylaluminum, and arsine as the source reactants in a horizontal reactor at 100 torr and flow rate 4 l/min, a 200-300-nm-thick layer of n-GaAs is grown on a 3-micron-thick (100) n-Si substrate at 425 C prior to MOCVD of a 1-micron-thick layer of n-Al(0.4)Ga(0.6)As, a 3-micron-thick layer of p-Al(0.35)Ga(0.65)As, and a 50-nm-thick p-GaAs ohmic-contact cap layer at 750 C and AlGaAs growth rate 120 nm/min. The 350-micron-square LED chips exhibit forward voltages 1.38 V at 10 microA and 2.4 V at 100 mA, reverse voltage 11 V at 10 microA, and optical output power 600 microW at 100 mA and room temperature, corresponding to external efficiency 0.3 percent.

  3. Impact of an AlAs window layer upon the optical properties of Al x Ga1‑x As photodiodes

    NASA Astrophysics Data System (ADS)

    Kang, T.; Chen, X. J.; Johnson, E. B.; Christian, J. F.; Lee, K.; Hammig, M. D.

    2016-05-01

    Recently developed advanced scintillators, which have the ability to distinguish gamma-ray interaction events from those that accompany neutron impact, require improved quantum efficiency in the blue to near UV region of the spectrum. We utilize GaAs/Al0.8Ga0.2As photodiode elements as components in a wide band-gap solid-state photomultiplier as a lower-cost, lower logistical burden, and higher quantum efficiency replacement for the photomultiplier tube. An AlAs window layer is employed as a means to increase the diode’s optical performance. Relative to structures absent the window layer, simulations and measurements demonstrate that the AlAs layer produces a spatial coincidence between regions of large drift fields with regions of high photon absorption. In addition to the AlAs layer, secondary ion mass spectrometry measurements show that an unexpected high degree of inter-diffusion of GaAs and AlAs quenches the photon-detection efficiency, a decrease that can be avoided by its post-growth removal. With the AlAs layer, the peak external quantum efficiency of 49% is achieved at 450 nm with 10 V reverse bias, which does not fully deplete the device. Simulations show that full depletion can result in efficiencies exceeding 90%. In order to enhance the optical response, a simple anti-reflective coating layer is designed using the existing passivation layer components that successfully minimizes the reflection at the wavelength range of interest (300 nm–500 nm).

  4. Aortopulmonary window

    MedlinePlus

    Aortopulmonary window is a rare heart defect in which there is a hole connecting the major artery taking blood ... rest of the body. Babies with an aortopulmonary window have a hole in between the aorta and ...

  5. Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO3/MoO3 multilayer as the interconnecting layer

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Lu, Shunmian; Zhu, Lu; Li, Xinchen; Choy, Wallace C. H.

    2016-02-01

    In this study, we present a two-terminal perovskite (PVSK)-organic hybrid tandem solar cell with a nanostructured PVSK as the light window and a PFN/doped MoO3/MoO3 structure as the interconnecting layer (ICL). In this tandem structure, the PVSK layer is specially designed with a nanostructured surface morphology; thus the PCBM could be filled-up for forming intimately contacted interface with PVSK layers. This design could not only efficiently increase the device performance, it could also greatly remove the hysteresis of PVSK solar cells. The study indicates that doped MoO3 as the step layer plays a key role in protecting the underlying layer against multi-solution processes and aids in the efficient recombination of electrons and holes generated from the sub-cells. The hybrid tandem solar cell could achieve a high VOC of 1.58 V, which is the sum of those in the two sub-cells, and a high FF of 0.68, indicating the effectiveness of the multilayer ICL.In this study, we present a two-terminal perovskite (PVSK)-organic hybrid tandem solar cell with a nanostructured PVSK as the light window and a PFN/doped MoO3/MoO3 structure as the interconnecting layer (ICL). In this tandem structure, the PVSK layer is specially designed with a nanostructured surface morphology; thus the PCBM could be filled-up for forming intimately contacted interface with PVSK layers. This design could not only efficiently increase the device performance, it could also greatly remove the hysteresis of PVSK solar cells. The study indicates that doped MoO3 as the step layer plays a key role in protecting the underlying layer against multi-solution processes and aids in the efficient recombination of electrons and holes generated from the sub-cells. The hybrid tandem solar cell could achieve a high VOC of 1.58 V, which is the sum of those in the two sub-cells, and a high FF of 0.68, indicating the effectiveness of the multilayer ICL. Electronic supplementary information (ESI) available. See DOI: 10

  6. High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells with an Oxygenated Amorphous CdS (a-CdS:O) Window Layer: Preprint

    SciTech Connect

    Wu, X.; Dhere, R. G.; Yan, Y.; Romero, M. J.; Zhang, Y.; Zhou, J.; DeHart, C.; Duda, A.; Perkins, C.; To, B.

    2002-05-01

    In the conventional CdS/CdTe device structure, the poly-CdS window layer has a bandgap of {approx}2.4 eV, which causes absorption in the short-wavelength region. Higher short-circuit current densities (Jsc) can be achieved by reducing the CdS thickness, but this can adversely impact device open-circuit voltage (Voc) and fill factor (FF). Also, poly-CdS film has about 10% lattice mismatch related to the CdTe film, which limits the improvement of device Voc and FF. In this paper, we report a novel window material: oxygenated amorphous CdS film (a-CdS:O) prepared at room temperature by rf sputtering. The a-CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and an amorphous structure. The preliminary device results have demonstrated that Jsc of the CdTe device can be greatly improved while maintaining higher Voc and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed Jsc of 25.85 mA/cm2 and a total-area efficiency of 15.4%.

  7. Air transparent soundproof window

    SciTech Connect

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  8. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell

    NASA Astrophysics Data System (ADS)

    Wang, Mang; Yi, Jie; Yang, Sui; Cao, Zhou; Huang, Xiaopan; Li, Yuanhong; Li, Hongxing; Zhong, Jianxin

    2016-09-01

    Mg doped ZnO (ZMO) film with the tunable bandgap can adjust the conduction band offset of the window/chalcopyrite absorber heterointerface to positive to reduce the interface recombination and resulting in an increasement of chalcopyrite based solar cell efficiency. A systematic study of the effect of the electrodeposition potential on morphology, crystalline structure, crystallographic orientation and optical properties of ZMO films was investigated. It is interestingly found that the prepared doped samples undergo a significant morphological change induced by the deposition potential. With negative shift of deposition potential, an obvious morphology evolution from nanorod structrue to particle covered films was observed. A possible growth mechanism for explaining the morphological change is proposed and briefly discussed. The combined optical techniques including absorption, transmission and photoluminescence were used to study the obtained ZMO films deposited at different potential. The sample deposited at -0.9 V with the hexagonal nanorods morphology shows the highest optical transparency of 92%. The photoluminescence spectra reveal that the crystallization of the hexagonal nanorod ZMO thin film deoposited at -0.9 V is much better than the particles covered ZMO thin film. Combining the structural and optical properties analysis, the obtained normal hexagonal nanorod ZMO thin film could potentially be useful in nanostructured chalcopyrite solar cells to improve the device performance.

  9. Highly conducting and wide band gap phosphorous doped nc-Si-QD/a-SiC films as n-type window layers for solar cells

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2016-05-01

    Nano-crystalline silicon quantum dots (Si-QDs) embedded in the phosphorous doped amorphous silicon carbide (a-SiC) matrix has been successfully prepared at a low temperature (300 °C) by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD) system from (SiH4 + CH4)-plasma with PH3 as the doping gas. The effect of PH3 flow rate on structural, optical and electrical properties of the films has been studied. Phosphorous doped nc-Si-QD/a-SiC films with high optical band gap (>1.9 eV) and superior conductivity (~10-2 S cm-1) are obtained, which could be appropriately used as n-type window layers for nc-Si solar cells in n-i-p configuration.

  10. Effect of heat treatments and window layer processing on the characteristics of CuInGaSe{sub 2} thin film solar cells

    SciTech Connect

    Ramanathan, K.; Contreras, M.A.; Tuttle, J.R.

    1996-05-01

    Interaction between chemical bath deposited CdS and ZnO window layers are a focus of this paper. Low temperature anneals were used to follow the changes at the interface. Optical absorption spectra show that CdS and ZnO intermix upon annealing. When applied to ZnO/CdS/CuInGaSe{sub 2} thin film solar cells, changes in the short and long wavelength response were observed. The latter is attributed to an increase in the energy gap of the absorber by diffusion of S. The interdiffusion is shown to increase the short wavelength collection, and hence the current density of the devices. Photoluminescence data provides some indication of the quality of the interface.

  11. The Effect of CeO2 Antireflection Layer on the Optical Properties of Thermochromic VO2 Film for Smart Window System

    NASA Astrophysics Data System (ADS)

    Koo, Hyun; Shin, Dongmin; Bae, Sung-Hwan; Ko, Kyeong-Eun; Chang, Se-Hong; Park, Chan

    2013-11-01

    CeO2-VO2 bilayer structure was fabricated to investigate the effect of depositing CeO2 film on the optical properties of VO2 film for smart window application. CeO2 was employed as an antireflection (AR) layer material of VO2 film because of its advantages which include high transparency in the visible-near infrared range and high refractive index. All the films were deposited on soda-lime glass substrate by pulsed laser deposition method. Optical calculations were carried out using transfer-matrix method for the purpose of designing CeO2-VO2 bilayer structure with enhanced integrated luminous transmittance (T lum) and switching efficiency (ΔT sol). The optical constants of VO2 and CeO2 films needed for the optical calculation were measured by spectroscopic ellipsometer. The curve of T lum the shape of which depends on the thickness of CeO2 layer, was calculated in each VO2 sample, which showed two maxima. The samples were divided into two groups; one for the highest enhancement of T lum and the other for balanced enhancement between T lum and ΔT sol. The sample with the structure of ~60 nm CeO2 AR layer on 39-nm thick VO2 film showed large increase of T lum (~27%) with ΔT sol of ~5%, which is the largest increase in T lum reported so far. Two samples in the other group showed the balanced enhancement in T lum (~57, ~50%) and ΔT sol (~9, ~10.5%). The effect of CeO2 AR layer on the optical properties of VO2 film was confirmed with the optical calculation and the experimental results. CeO2-VO2 bilayer structure showed notable improvement of optical properties compared to the single VO2 film, indicating that CeO2 layer can be effectively used as the antireflection layer while working as a protective layer that can prevent the oxidation of VO2 layer as well.

  12. Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO3/MoO3 multilayer as the interconnecting layer.

    PubMed

    Liu, Jian; Lu, Shunmian; Zhu, Lu; Li, Xinchen; Choy, Wallace C H

    2016-02-14

    In this study, we present a two-terminal perovskite (PVSK)-organic hybrid tandem solar cell with a nanostructured PVSK as the light window and a PFN/doped MoO3/MoO3 structure as the interconnecting layer (ICL). In this tandem structure, the PVSK layer is specially designed with a nanostructured surface morphology; thus the PCBM could be filled-up for forming intimately contacted interface with PVSK layers. This design could not only efficiently increase the device performance, it could also greatly remove the hysteresis of PVSK solar cells. The study indicates that doped MoO3 as the step layer plays a key role in protecting the underlying layer against multi-solution processes and aids in the efficient recombination of electrons and holes generated from the sub-cells. The hybrid tandem solar cell could achieve a high VOC of 1.58 V, which is the sum of those in the two sub-cells, and a high FF of 0.68, indicating the effectiveness of the multilayer ICL. PMID:26809656

  13. Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell

    PubMed Central

    Tsin, Fabien; Venerosy, Amélie; Vidal, Julien; Collin, Stéphane; Clatot, Johnny; Lombez, Laurent; Paire, Myriam; Borensztajn, Stephan; Broussillou, Cédric; Grand, Pierre Philippe; Jaime, Salvador; Lincot, Daniel; Rousset, Jean

    2015-01-01

    This paper presents the low cost electrodeposition of a transparent and conductive chlorine doped ZnO layer with performances comparable to that produced by standard vacuum processes. First, an in-depth study of the defect physics by ab-initio calculation shows that chlorine is one of the best candidates to dope the ZnO. This result is experimentally confirmed by a complete optical analysis of the ZnO layer deposited in a chloride rich solution. We demonstrate that high doping levels (>1020 cm−3) and mobilities (up to 20 cm2 V−1 s−1) can be reached by insertion of chlorine in the lattice. The process developed in this study has been applied on a CdS/Cu(In,Ga)(Se,S)2 p-n junction produced in a pilot line by a non vacuum process, to be tested as solar cell front contact deposition method. As a result efficiency of 14.3% has been reached opening the way of atmospheric production of Cu(In,Ga)(Se,S)2 solar cell. PMID:25753657

  14. Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell.

    PubMed

    Tsin, Fabien; Venerosy, Amélie; Vidal, Julien; Collin, Stéphane; Clatot, Johnny; Lombez, Laurent; Paire, Myriam; Borensztajn, Stephan; Broussillou, Cédric; Grand, Pierre Philippe; Jaime, Salvador; Lincot, Daniel; Rousset, Jean

    2015-01-01

    This paper presents the low cost electrodeposition of a transparent and conductive chlorine doped ZnO layer with performances comparable to that produced by standard vacuum processes. First, an in-depth study of the defect physics by ab-initio calculation shows that chlorine is one of the best candidates to dope the ZnO. This result is experimentally confirmed by a complete optical analysis of the ZnO layer deposited in a chloride rich solution. We demonstrate that high doping levels (>10(20) cm(-3)) and mobilities (up to 20 cm(2) V(-1) s(-1)) can be reached by insertion of chlorine in the lattice. The process developed in this study has been applied on a CdS/Cu(In,Ga)(Se,S)2 p-n junction produced in a pilot line by a non vacuum process, to be tested as solar cell front contact deposition method. As a result efficiency of 14.3% has been reached opening the way of atmospheric production of Cu(In,Ga)(Se,S)2 solar cell. PMID:25753657

  15. High-Performance Electron Injection Layers with a Wide Processing Window from an Amidoamine-Functionalized Polyfluorene.

    PubMed

    Stolz, Sebastian; Petzoldt, Martin; Dück, Sebastian; Sendner, Michael; Bunz, Uwe H F; Lemmer, Uli; Hamburger, Manuel; Hernandez-Sosa, Gerardo

    2016-05-25

    In this work, we present organic light-emitting diodes (OLEDs) utilizing a novel amidoamine-functionalized polyfluorene (PFCON-C) as an electron injection layer (EIL). PFCON-C consists of a polyfluorene backbone to which multiple tertiary amine side chains are connected via an amide group. The influence of molecular characteristics on electronic performance and morphological properties was tested and compared to that of the widely used, literature known amino-functionalized polyfluorene (PFN) and polyethylenimine (PEI). PFCON-C reduces the turn-on voltage (VON) of poly(p-phenylene vinylene) (PPV)-based OLEDs from ∼5 to ∼3 V and increases the maximum power efficiency from <2 to >5 lm W(-1) compared to that of PFN. As a result of its semiconducting backbone, PFCON-C is significantly less sensitive to the processing parameters than PEI, and comparable power efficiencies are achieved for devices where thicknesses of PFCON-C are between 15 and 35 nm. Atomic force microscopy (AFM) measurements indicate that the presence of nonpolar side chains in the EIL material is important for its film-forming behavior, while Kelvin probe measurements suggest that the amount of amine groups in the side chains influences the work-function shift induced by the EIL material. These results are used to suggest strategies for the design of polymeric electron injection layers. PMID:27160328

  16. CAVE WINDOW

    DOEpatents

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  17. Thickness Effect of Al-Doped ZnO Window Layer on Damp-Heat Stability of CuInGaSe2 Solar Cells

    SciTech Connect

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-01-01

    We investigated the damp heat (DH) stability of CuInGaSe{sub 2} (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 {micro}m to a modest 0.50 {micro}m over an underlying 0.10-{micro}m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 {micro}m/3 {micro}m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85 C and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  18. Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint

    SciTech Connect

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-07-01

    We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 μm to a modest 0.50 μm over an underlying 0.10-μm intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 μm/3 μm) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  19. Research on the radiation exposure “memory effects” in AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Sednev, V. V.

    2015-04-01

    Radiation exposure and long running time cause degradation of semiconductors' structures as well as semiconductors based on these structures. Besides, long running time can be the reason of partial radiation defects annealing. The purpose of the research work is to study the “memory effect” that happens during fast neuron radiation in AlGaAs heterostructures. Objects of the research are Infrared Light Emitting Electrodes (IRED) based on doubled AlGaAs heterostructures. During the experimental research LEDs were preliminarily radiated with fast neutrons, and radiation defects were annealed within the condition of current training with high temperatures, then emission power was measured. The research proved the existence of the “memory effect” that results in radiation stability enhancement with subsequent radiation. Possible mechanisms of the “memory effect” occurrence are under review.

  20. The technology and applications of selective oxidation of AlGaAs

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Mathes, D.; Hull, R.

    1998-08-01

    Wet oxidation of AlGaAs alloys, pioneered at the University of Illinois a decade ago, recently has been used to fabricate high performance vertical-cavity surface emitting lasers (VCSELs). The superior properties of oxide-confined VCSELs has stimulated interest in understanding the fundamental of wet oxidation. The authors briefly review the technology of selective oxidation of III-V alloys, including the oxide microstructure and oxidation processing as well as describe its application to selectively oxidized VCSELs.

  1. Average power constraints in AlGaAs semiconductor lasers under pulse-position-modulation conditions

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1986-01-01

    In some optical communications systems there are advantages to using low duty-cycle pulsed modulation formats such as pulse-position-modulation. However, because of intrinsic limitations of AlGaAs semiconductor lasers, the average power that they can deliver in a pulsed mode of operation is lower than in a CW mode. The magnitude of this problem and its implications are analyzed in this letter, and one possible solution is mentioned.

  2. Surface plasmon effect of Ag nanodots embedded in amorphous Si window layers deposited on Si solar cells.

    PubMed

    Park, Seungil; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2014-12-01

    We investigated solar cells containing temperature-dependent Ag nanodots embedded in an amorphous Si thin film layer by using hot-wire chemical vapor deposition in order to improve the properties of crystalline Si solar cells. An Ag thin film with a thickness of 10 nm was deposited by DC sputtering followed by annealing at various temperatures ranging from 250 to 850 degrees C for 15 min under N2 gas. As increasing the annealing temperature, the Ag nanodots were enlarged and the photoreflectances of the samples with Ag nanodots were lower than the reference samples in the spectral range of 200-600 nm, demonstrating the plasmon effect of Ag nanodots. The cell properties on photoluminescence spectra, quantum efficiency, and conversion efficiency were measured with the maximum values for the sample annealed at 450 degrees C, indicating that there exists an optimal size of the Ag nanodots about 15-35 nm to be effective on the enhancement of surface plasmon effect. PMID:25971039

  3. Self-assembled Ge QDs Formed by High-Temperature Annealing on Al(Ga)As (001)

    NASA Astrophysics Data System (ADS)

    O'Brien, William A.; Qi, Meng; Yan, Lifan; Stephenson, Chad A.; Protasenko, Vladimir; Xing, Huili; Millunchick, Joanna M.; Wistey, Mark A.

    2015-05-01

    This work studies the spontaneous self-assembly of Ge QDs on AlAs, GaAs and AlGaAs by high-temperature in situ annealing using molecular beam epitaxy (MBE). The morphology of Ge dots formed on AlAs were observed by atom probe tomography, which revealed nearly spherical QDs with diameters approaching 10 nm and confirmed the complete absence of a wetting layer. Reflection high-energy electron diffraction and atomic force microscopy of Ge annealed under similar conditions on GaAs and Al0.3Ga0.7As surfaces revealed the gradual suppression of QD formation with decreasing Al-content of the buffer. To investigate the prospects of using encapsulated Ge dots for upconverting photovoltaics, in which photocurrent can still be generated from photons with energy less than the host bandgap, Ge QDs were embedded into the active region of III-V PIN diodes by MBE. It was observed that orders of magnitude higher short-circuit current is obtained at photon energies below the GaAs bandgap compared with a reference PIN diode without Ge QDs. These results demonstrate the promise of Ge QDs for upconverting solar cells and the realization of device-quality integration of group IV and III-V semiconductors.

  4. AlGaAs ridge laser with 33% wall-plug efficiency at 100 °C based on a design of experiments approach

    NASA Astrophysics Data System (ADS)

    Fecioru, Alin; Boohan, Niall; Justice, John; Gocalinska, Agnieszka; Pelucchi, Emanuele; Gubbins, Mark A.; Mooney, Marcus B.; Corbett, Brian

    2016-04-01

    Upcoming applications for semiconductor lasers present limited thermal dissipation routes demanding the highest efficiency devices at high operating temperatures. This paper reports on a comprehensive design of experiment optimisation for the epitaxial layer structure of AlGaAs based 840 nm lasers for operation at high temperature (100 °C) using Technology Computer-Aided Design software. The waveguide thickness, Al content, doping level, and quantum well thickness were optimised. The resultant design was grown and the fabricated ridge waveguides were optimised for carrier injection and, at 100 °C, the lasers achieve a total power output of 28 mW at a current of 50 mA, a total slope efficiency 0.82 W A-1 with a corresponding wall-plug efficiency of 33%.

  5. Rigid thin windows for vacuum applications

    DOEpatents

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  6. BERKELEY LAB WINDOW

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records frommore » IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of

  7. BERKELEY LAB WINDOW

    SciTech Connect

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen; Mitchell, Robin D.; Kohler, Christian; Vidanovic, Simon V.; Huizenga, Charlie

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the

  8. [Aortopulmonary window].

    PubMed

    González-Marín, María Arántzazu; Jiménez-Díaz, Javier; Centeno-Jiménez, Miriam; García-Cabezas, M Ángel

    2015-01-01

    The aortopulmonary window is a rare cause of heart failure in the neonate. It must be ruled out if there are signs of pulmonary edema without the most frequent left-right shunts. We report the echocardiographic images of a newborn who was admitted with symptoms of heart failure at our institution. PMID:25698530

  9. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  10. Low density GaAs /AlGaAs quantum dots grown by modified droplet epitaxy

    NASA Astrophysics Data System (ADS)

    Mantovani, V.; Sanguinetti, S.; Guzzi, M.; Grilli, E.; Gurioli, M.; Watanabe, K.; Koguchi, N.

    2004-10-01

    Low temperature photoluminescence spectroscopy is used to analyze the effects of the Ga coverage and of the postgrowth thermal annealing on the electronic properties of low density (≈1×109cm-2) self-assembled GaAs /AlGaAs quantum dots (QDs) grown by modified droplet epitaxy (MDE). We demonstrate that with the MDE method it is possible to obtain low density and high efficiency QD samples with high photoluminescence efficiency. Large modifications of the photoluminescence band, which depend on Ga coverage and thermal annealing, are found and quantitatively interpreted by means of a simple model based on the Al-Ga interdiffusion.

  11. Single-growth embedded epitaxy AlGaAs injection lasers with extremely low threshold currents

    SciTech Connect

    Katz, J.; Margalit, S.; Wilt, D.; Chen, P.C.; Yariv, A.

    1980-12-01

    A new type of strip-geometry AlGaAs double-heterostructure laser with an embedded optical waveguide has been developed. The new structure is fabricated using a single step of epitaxial growth. Lasers with threshold currents as low as 9.5 mA (150 ..mu..m long) were obtained. These lasers exhibit operation in a single spatial and longitudinal mode, have differential quantum efficiencies exceeding 45%, and a characteristic temperature of 175/sup 0/ C. They emit more than 12 mW/facet of optical power without any kinks.

  12. Electronic properties of C-doped (100) AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Grbić, B.; Ellenberger, C.; Ihn, T.; Ensslin, K.; Reuter, D.; Wieck, A. D.

    2005-06-01

    Carbon doped p-type AlGaAs heterostructures are investigated by low-temperature magnetotransport measurements. High quality of such two dimensional hole gases is demonstrated by observing sharp integer plateaus in Hall resistance as well as features of fractional quantum Hall effect at filling factors 4/3 and 5/3. The observed beating pattern of low-field Shubnikov-de Haas oscillations represents clear evidence for the existence of the two spin-split subbands which arise from strong spin-orbit coupling in hole systems.

  13. Photon pair sources in AlGaAs: from electrical injection to quantum state engineering

    NASA Astrophysics Data System (ADS)

    Autebert, C.; Boucher, G.; Boitier, F.; Eckstein, A.; Favero, I.; Leo, G.; Ducci, S.

    2015-11-01

    Integrated quantum photonics is a very active field of quantum information, communication, and processing. One of the main challenges to achieve massively parallel systems for complex operations is the generation, manipulation, and detection of many qubits within the same chip. Here, we present our last achievements on AlGaAs quantum photonic devices emitting nonclassical states of light at room temperature by spontaneous parametric down conversion (SPDC). The choice of this platform combines the advantages of a mature fabrication technology, a high nonlinear coefficient, a SPDC wavelength in the C-telecom band and the possibility of electrical injection.

  14. Window comparator

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1977-01-01

    A window comparator is described, comprising two operational amplifiers, one with two feedback circuits, each feedback circuit having a diode connected to the amplifier output and poled for forward current conduction of opposite polarity, to provide an algebraic difference between an input signal and a selected set-point voltage. Differential input terminals of the second operational amplifier were connected to the separate feedback circuits of the first operational amplifier, one input terminal to the output of one diode, and the other to the output of the other diode. A selected window-width voltage was connected through a coupling resistor to one of the input terminals of the second operational amplifier to determine when the algebraic difference of the input signal and the setpoint voltage has exceeded a predetermined tolerance after that difference has changed signs.

  15. Liquid Phase Chemical Enhanced Oxidation on AlGaAs and Its Application

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Wei; Wang, Yeong-Her; Houng, Mau-Phon

    2004-07-01

    A new method named the liquid phase chemical enhanced oxidation (LPCEO) technique has been proposed for the oxidation of aluminum gallium arsenide (AlGaAs) near room temperature. The initial stage of AlGaAs oxidation by this method has been investigated. The native oxide film composition is determined on the basis of the results of Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Based on current-voltage (I-V) characteristics of the metal-oxide-semiconductor (MOS) structure, the leakage current density is approximately 5× 10-9 A/cm2 at the electric field of 1 MV/cm, and the breakdown field is at least 10 MV/cm after rapid temperature annealing. In addition, the oxide film properties can be improved after thermal annealing based on capacitance-voltage (C-V) measurements. Finally, the application of the new method to the AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electronic-mobility transistor (MOS-PHEMT) is demonstrated.

  16. Development of a self-supporting, transparent AlGaAs top solar cell for mechanical attachment to an existing solar cell

    NASA Astrophysics Data System (ADS)

    Negley, Gerald H.; Terranova, Nancy E.; McNeely, James B.; Barnett, Allen M.

    A technique for fabricating AlGaAs solar cells on transparent AlGaAs substrates has been developed which utilizes the most advanced wide-bandgap material on a transparent substrate. The rugged, self-supporting, transparent AlGaAs top solar cell can be mechanically stacked on any well-developed existing solar cell. The key to this success is the growth technique, liquid-phase epitaxy (LPE). Fabrication of tandem or triple stacks is impossible with this transparent, self-supporting AlGaAs device. To obtain high stack efficiencies, the top solar cell must be state-of-the-art. A 1.93 eV AlGaAs top cell results in two-stack solar cells with efficiencies over 30 percent AM0 and triple stacks approaching 35 percent AM0. Transmission of 91 percent of the photons less energetic than the top solar cell bandgap has been demonstrated for the self-supporting AlGaAs substrate. The design rules for the tandem structure and progress in the development of the transparent AlGaAs top solar cell are discussed.

  17. Two-photon passive electro-optic upconversion in a GaAs /AlGaAs heterostructure device

    NASA Astrophysics Data System (ADS)

    Zhao, Lai; Thompson, Pete; Faleev, N. N.; Prather, D. W.; Appelbaum, Ian

    2007-03-01

    A semiconductor heterostructure device that requires no external power source to upconvert two low-energy photons into one higher-energy photon is proposed. This passive device is fabricated in the AlGaAs /GaAs material system and it is used to demonstrate photon upconversion from 808to710nm at room temperature.

  18. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  19. Gas Source Melecular Beam Epitaxy Growth of High Quality AlGaAs Using Trimethylamine Alane as the Aluminum Source

    NASA Astrophysics Data System (ADS)

    Okamoto, Naoya; Ando, Hideyasu; Sandhu, Adarsh; Fujii, Toshio

    1991-12-01

    We investigated the dependence of the background impurity incorporation on growth conditions and optical properties of undoped AlGaAs grown by gas source molecular beam epitaxy using trimethylamine alane (TMAAl), triethylgallium, and arsine. The use of TMAAl enabled us to reduce the carbon concentration (7× 1016 cm-3) to over one order of magnitude less than that using triethylaluminum (TEAl). The 77 K photoluminescence spectrum of undoped AlGaAs grown using TMAAl was dominated by excitonic band-edge emission not observable in AlGaAs grown using TEAl. Furthermore, we report for the first time the doping characteristics of n-type AlGaAs grown using disilane (Si2H6) as an n-type gaseous dopant source together with TMAAl. The carrier concentration (5× 1017--3× 1018 cm-3) in n-AlxGa1-xAs (x{=}0.09--0.27) was reliably controlled and showed the same Si2H6 flow rate dependence as that of GaAs. The activation efficiency of silicon was more than 60%. We demonstrated the excellent n-type doping characteristics by uisng TMAAl.

  20. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  1. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak.

    PubMed

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented. PMID:26724011

  2. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    SciTech Connect

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar; Kumar, Ajai

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  3. AlGaAs growth by OMCVD using an excimer laser

    SciTech Connect

    Warner, J.D.; Wilt, D.M.; Pouch, J.J.; Aron, P.R.

    1986-12-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H/sub 2/, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  4. AlGaAs growth by OMCVD using an excimer laser

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1986-01-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  5. Frequency-modulation spectroscopy of rubidium atoms with an AlGaAs diode laser

    SciTech Connect

    Nakanishi, S.; Ariki, H.; Itoh, H.; Kondo, K.

    1987-11-01

    Frequency-modulation (FM) spectroscopy has been performed on the D/sub 2/ transitions of rubidium atoms with an AlGaAs diode laser at 780 nm. Doppler-broadened hyperfine-structure transitions of /sup 85/Rb and /sup 87/Rb were resolved with no residual amplitude-modulation-induced background signal by modulating the injection current of the laser diode at a low frequency (20--50 MHz) compared with the Doppler width. To obtain Doppler-free spectra, we combined FM spectroscopy with saturation spectroscopy. The results show that the FM spectroscopy technique is sensitive and should be useful for high-resolution spectroscopy, although the resolution was instrument limited and unusual double peaks were observed.

  6. Self-aligned Si-Zn diffusion into GaAs and AlGaAs

    SciTech Connect

    Zou, W.X.; Corzine, S.; Vawter, G.A.; Merz, J.L.; Coldren, L.A.; Hu, E.L.

    1988-08-15

    A practical technology for self-aligned Si-Zn diffusion into GaAs and AlGaAs has been developed. It is found that the use of a Si film alone for self-aligned Si-Zn diffusion is subject to serious problems of morphology degradation and doping contamination during the process of the Si diffusion. A procedure combining the use of a SiO/sub 2/ film as an encapsulant with a sputtered Si film as source for Si diffusion and mask for Zn diffusion is investigated in detail. Optimum thicknesses of the Si and SiO/sub 2/ films are determined to be 180 and 550 A, respectively.

  7. Sputter-Deposited Thin Films Of Linbo3 And LiTaO3 For The Ion Conducting Layer Of Smart Windows

    NASA Astrophysics Data System (ADS)

    Haas, T. E.; Goldner, R. B.; Seward, G.; Wong, K. K.; Foley, G.; Kabani, R.

    1987-11-01

    Some of the materials properties required for successful use in electrochromic windows are reviewed. The preparation of thin films of lithium niobate and lithium tantalate by rf sputtering is described. The films are shown to be amorphous to X-rays, and transparent to visible and NIR radiation. The sputtering process on substrates of tungsten trioxide leads to the formation of the lithium tungsten bronze. Estimates of the electronic resistivity and conuctivity are given as 1012Ω-cm and 10-7(Ω-cm)-1.

  8. High-efficiency TEM(00) continuous-wave (Al,Ga)As epitaxial surface-emitting lasers and effect of half-wave periodic gain

    SciTech Connect

    Gourley, P.L.; Brennan, T.M.; Hammons, B.E.; Corzine, S.W.; Geels, R.S.

    1989-03-27

    This report is on room temperature, continuous-wave (c-w), photopumped operation of (Al,Ga)As surface-emitting lasers grown by molecular beam epitaxy. These monolithic semiconductor lasers comprise two multilayer semiconductor mirrors surrounding a layered active region. In the active region, GaAs quantum wells are spaced with half-wave periodicity to center on standing-wave maxima of the cavity optical field. By comparing threshold data for different lasers grown with and without half-wave periodicity, the first experimental evidence is observed for reduced c-w lasing threshold (as low as 20,000 W/sq cm) with periodic gain in an epitaxial surface-emitting laser. Up to 50 mW with high efficiency (35% total, 80% differential) and narrow spectral linewidth (2 A) have been measured. A very high-quality beam with low divergence (2.5 deg) and circular TEM(00) profile has been observed. All of these observations represent significant advances for surface-emitting laser technology.

  9. High-efficiency TEM/sub 00/ continuous-wave (Al,Ga)As epitaxial surface-emitting lasers and effect of half-wave periodic gain

    SciTech Connect

    Gourley, P.L.; Brennan, T.M.; Hammons, B.E.; Corzine, S.W.; Geels, R.S.; Yan, R.H.; Scott, J.W.; Coldren, L.A.

    1989-03-27

    We report room-temperature, continuous-wave (cw), photopumped operation of (Al,Ga)As surface-emitting lasers grown by molecular beam epitaxy. These monolithic semiconductor lasers comprise two multilayer semiconductor mirrors surrounding a layered active region. In the active region, GaAs quantum wells are spaced with half-wave periodicity to center on standing-wave maxima of the cavity optical field. By comparing threshold data for different lasers grown with and without half-wave periodicity, we observe the first experimental evidence for reduced cw lasing threshold (as low as 2 x 10/sup 4/ W/cm/sup 2/ ) with periodic gain in an epitaxial surface-emitting laser. Up to 50 mW with high efficiency (35% total, 80% differential) and narrow spectral linewidth (2 A) have been measured. A very high quality beam with low divergence (2.5/sup 0/) and circular TEM/sub 00/ profile has been observed. All of these observations represent significant advances for surface-emitting laser technology.

  10. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    SciTech Connect

    Malyshev, K. V.

    2015-01-28

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh–Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F{sup 0}{sub 11}(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional “cubic” diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  11. Nanohole formation on AlGaAs surfaces by local droplet etching with gallium

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Stemmann, A.; Hansen, W.

    2009-03-01

    We demonstrate the self-assembled generation of nanoholes on AlGaAs surfaces by local droplet etching (LDE). For the etching process, Ga is deposited on the surface, where liquid droplets are formed in a Volmer-Weber-like growth mode. The etching takes place locally at the interface between droplets and substrate and removes a significant amount of substrate material. The structural properties of the LDE nanoholes are studied with atomic force microscopy as function of etching temperature and Ga coverage. A bimodal depth distribution with flat and deep holes is observed. The formation of flat holes can be almost suppressed by optimized etching parameters. The depth of deep holes was adjusted by the process parameters up to a maximum depth of 15 nm. The density of deep holes is in the range 5×10 -7-1×10 -8 cm -2 and depends only slightly on the etching parameters. However, the density can be significantly increased by repeated etching.

  12. Low-temperature laser assisted CBE-growth of AlGaAs

    NASA Astrophysics Data System (ADS)

    Jothilingam, R.; Farrell, T.; Joyce, T. B.; Goodhew, P. J.

    1998-06-01

    We report preliminary studies of low-temperature (335-400°C) chemical beam epitaxial (CBE) growth of Al xGa 1- xAs on GaAs(0 0 1) using triethylgallium (TEG), trimethylaminealane (TMAA) and thermally precracked Arsine (AsH 3) as precursors. We also report results of Ar + laser assisted chemical beam epitaxial growth over the same temperature range. The growth rate for both assisted and unassisted growth as a function of substrate temperature, laser power and precursor beam pressures was determined using laser reflectometry in which the Ar + laser was also used as the probe. In the nonlaser assisted growth Al incorporation is observed to be significantly higher than would be expected at the normal growth temperature of 500°C. With laser assistance the Al concentration, while higher than that at normal growth temperatures, is less than that without laser assistance and the growth rate is higher. These observations, which extended Abernathy's early results to higher nominal Al concentration, are discussed in terms of the relative enhancement of the decomposition of TEG and the alane during laser assistance. Using literature values of the refractive index of AlGaAs alloys at the growth temperature, laser reflectometry was used to monitor both composition and growth rate over a range of growth temperatures. Reflectometry data were compared with the results of Auger Electron Microscopy (AES) and Dektak stylus profiling.

  13. On the improvement of photovoltaic action of ZnO/P3HT:PCBM by controlling roughness of window layer

    SciTech Connect

    Geethu, R. Menon, M. R. Rajesh Kartha, C. Sudha Vijayakumar, K. P.

    2014-04-24

    Polymer solar cells with configuration ITO/ZnO/P3HT:PCBM/Ag were fabricated using cost effective chemical spray pyrolysis and spin coating techniques. When surface of ZnO layer was modified with a second layer so as to increase the roughness, considerable improvement in cell parameters were observed. Optimum conditions for the required roughness were identified and changes in cell parameters with variation in surface roughness were studied. Major enhancements were observed in the open circuit voltage and in the cell efficiency.

  14. Two-Band, Low-Loss Microwave Window

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael; Franco, Manuel

    2007-01-01

    A window for a high-sensitivity microwave receiving system allows microwave radiation to pass through to a cryogenically cooled microwave feed system in a vacuum chamber, while keeping ambient air out of the chamber and helping to keep the interior of the chamber cold. The microwave feed system comprises a feed horn and a low-noise amplifier, both of which are required to be cooled to a temperature of 15 K during operation. The window is designed to exhibit very little microwave attenuation in two frequency bands: 8 to 9 GHz and 30 to 40 GHz. The window is 15 cm in diameter. It includes three layers (see figure): 1) The outer layer is made of a poly(tetrafluoroethylene) film 0.025 mm thick. This layer serves primarily to reflect and absorb solar ultraviolet radiation to prolong the life of the underlying main window layer, which is made of a polyimide that becomes weakened when exposed to ultraviolet. The poly(tetrafluoroethylene) layer also protects the main window layer against abrasion. Moreover, the inherent hydrophobicity of poly(tetrafluoroethylene) helps to prevent the highly undesirable accumulation of water on the outer surface. 2) The polyimide main window layer is 0.08 mm thick. This layer provides the vacuum seal for the window. 3) A 20-mm-thick layer of ethylene/ propylene copolymer foam underlies the main polyimide window layer. This foam layer acts partly as a thermal insulator: it limits radiational heating of the microwave feed horn and, concomitantly, limits radiational cooling of the window. This layer has high compressive strength and provides some mechanical support for the main window layer, reducing the strength required of the main window layer. The ethylene/propylene copolymer foam layer is attached to an aluminum window ring by means of epoxy. The outer poly(tetrafluoroethylene) film and the main polyimide window layer are sandwiched together and pressed against the window ring by use of a bolted clamp ring. The window has been found to

  15. A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell

    NASA Technical Reports Server (NTRS)

    Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.

    1989-01-01

    Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.

  16. Highly conducting and preferred <220> oriented boron doped nc-Si films for window layers in nc-Si solar cells

    NASA Astrophysics Data System (ADS)

    Mondal, Praloy; Das, Debajyoti

    2016-05-01

    Growth and optimization of the boron dopednanocrystalline silicon (nc-Si) films have been studied by varyingthe gaspressure applied to the hydrogendiluted silane plasma in RF (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) system, using diborane (B2H6) as the dopant gas. High magnitudeof electrical conductivity (~102 S cm-1) and<220>orientedcrystallographic lattice planes have been obtained with high crystalline volume fraction (~86 %) at an optimum pressure of 2.5 Torr. XRD and Raman studies reveal good crystallinity with preferred orientation, suitable for applications in stacked layer devices, particularly in nc-Si solar cells.

  17. Effect of source chemistry and growth parameters on AlGaAs grown by metalorganic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Abernathy, C. R.; Pearton, S. J.; Baiocchi, F. A.; Ambrose, T.; Jordan, A. S.; Bohling, D. A.; Muhr, G. T.

    1991-03-01

    We have investigated the effect of V/III ratio and substrate temperature on the growth rate, Al composition, crystallinity, and impurity concentration of AlGaAs grown by metalorganic beam epitaxy (MOMBE). The effect of these growth parameters on the deposition rates of both GaAs and AlAs has also been determined. By comparing films grown from various combinations of triethylgallium (TEGa), trimethylgallium (TMGa), triethylaluminum (TEAl), and trimethylamine alane (TMAA1), we have been able to further identity the surface reactions which are most important in determining film composition and quality.

  18. Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching

    NASA Astrophysics Data System (ADS)

    Petter, K.; Kipp, T.; Heyn, Ch.; Heitmann, D.; Schuller, C.

    2002-07-01

    By laser-interference lithography, reactive-ion etching, and selective wet-chemical etching using a citric acid-based solution, we have fabricated large periodic arrays of AlGaAs microdisks with periods of 4 mum and disk diameters between 1.5 and 2 mum. The arrays are characterized by temperature-dependent photoluminescence spectroscopy. Taking into account the below-threshold absorption of the quantum wells inside the disks, we get disk quality factors close to the theoretical maximum value. We demonstrate that our technique allows one also to produce one-dimensionally or two-dimensionally coupled arrays of microdisks.

  19. PREFACE: INERA Workshop: Transition Metal Oxide Thin Films-functional Layers in "Smart windows" and Water Splitting Devices. Parallel session of the 18th International School on Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof

  20. SiNWs-based electrochemical double layer micro-supercapacitors with wide voltage window (4 V) and long cycling stability using a protic ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Aradilla, David; Gentile, Pascal; Ruiz, Vanesa; Gómez-Romero, Pedro; Wimberg, Jan; Iliev, Boyan; Schubert, Thomas J. S.; Sadki, Saïd; Bidan, Gérard

    2015-03-01

    The present work reports the use and application of a novel protic ionic liquid (triethylammonium bis(trifluoromethylsulfonyl)imide; NEt3H TFSI) as an electrolyte for symmetric planar micro-supercapacitors based on silicon nanowire electrodes. The excellent performance of the device has been successfully demonstrated using cyclic voltammetry, galvanostatic charge-discharge cycles and electrochemical impedance spectroscopy. The electrochemical characterization of this system exhibits a wide operative voltage of 4 V as well as an outstanding long cycling stability after millions of galvanostatic cycles at a high current density of 2 mA cm-2. In addition, the electrochemical double layer micro-supercapacitor was able to deliver a high power density of 4 mW cm-2 in a very short time pulses (a few ms). Our results could be of interest to develop prospective on-chip micro-supercapacitors using protic ionic liquids as electrolytes with high performance in terms of power and energy densities. Invited talk at the 2nd International Workshop on Nano Materials for Energy Conversion NMEC-2, 17-20 November, 2014, Ho Chi Minh City, Vietnam.

  1. A redox-flow electrochromic window.

    PubMed

    Jennings, James R; Lim, Wei Yang; Zakeeruddin, Shaik M; Grätzel, Michael; Wang, Qing

    2015-02-01

    A low-cost electrochromic (EC) window based on a redox-flow system that does not require expensive transparent conductive oxide (TCO) substrates is introduced and demonstrated for the first time. An aqueous I3–/I– redox electrolyte is used in place of a TCO to oxidize/reduce a molecular layer of an EC triphenylamine derivative that is anchored to a mesoporous TiO2 scaffold on the inner faces of a double-paned window. The redox electrolyte is electrochemically oxidized/reduced in an external two-compartment cell and circulated through the window cavity using an inexpensive peristaltic pump, resulting in coloration or decoloration of the window due to reaction of the redox solution with the triphenylamine derivative. The absorption characteristics, coloration/decoloration times, and cycling stability of the prototype EC window are evaluated, and prospects for further development are discussed. PMID:25584903

  2. X-ray windows for spaceborne detectors

    NASA Astrophysics Data System (ADS)

    Viitanen, Veli-Pekka; Nenonen, Seppo; Partanen, Panu; Sipila, Heikki; Mutikainen, Risto

    1992-10-01

    Several types of ultrathin entrance windows have been developed for applications in spaceborne X-ray instruments. Active area diameters up to 140 mm have been achieved. The latest windows developed have a transmission of more than 20 percent at B K-alpha and more than 40 percent at N K-alpha. A new gas block layer type utilizing aluminum nitride has been developed, as well as semitransparent support structures for the membranes. The effects of pressure-induced strain, radiation and atomic oxygen corrosion on the gas leak properties of the windows has been studied.

  3. Noise Transmission Characteristics of Damped Plexiglas Windows

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Buehrle, Ralph D.; Klos, Jacob; Brown, Sherilyn A.

    2002-01-01

    Most general aviation aircraft utilize single layer plexiglas material for the windshield and side windows. Adding noise control treatments to transparent panels is a challenging problem. In this paper, damped plexiglas windows are evaluated for replacement of conventional windows in general aviation aircraft to reduce the structure-borne and airborne noise transmitted into the interior. In contrast to conventional solid windows, the damped plexiglas window panels are fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. Results from acoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission (SALT) facility are used to compare different designs of the damped plexiglas panels with solid windows of the same nominal thickness. Comparisons of the solid and damped plexiglas panels show reductions in the radiated sound power of up to 8 dB at low frequency resonances and as large as 4.5 dB over a 4000 Hz bandwidth. The weight of the viscoelastic treatment was approximately 1% of the panel mass. Preliminary FEM/BEM modeling shows good agreement with experimental results for radiated sound power.

  4. Efficiency enhancement using a Zn1‑ x Ge x -O thin film as an n-type window layer in Cu2O-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-05-01

    Efficiency enhancement was achieved in Cu2O-based heterojunction solar cells fabricated with a zinc–germanium-oxide (Zn1‑ x Ge x -O) thin film as the n-type window layer and a p-type Na-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing Cu sheets. The Ge content (x) dependence of the obtained photovoltaic properties of the heterojunction solar cells is mainly explained by the conduction band discontinuity that results from the electron affinity difference between Zn1‑ x Ge x -O and Cu2O:Na. The optimal value of x in Zn1‑ x Ge x -O thin films prepared by pulsed laser deposition was observed to be 0.62. An efficiency of 8.1% was obtained in a MgF2/Al-doped ZnO/Zn0.38Ge0.62-O/Cu2O:Na heterojunction solar cell.

  5. Optical reflection from the Bragg lattice of AsSb metal nanoinclusions in an AlGaAs matrix

    SciTech Connect

    Ushanov, V. I.; Chaldyshev, V. V.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2013-08-15

    The optical properties of metal-semiconductor metamaterials based on an AlGaAs matrix are studied. The specific feature of these materials is that there are As and AsSb nanoinclusion arrays which modify the dielectric properties of the material. These nanoinclusions are randomly arranged in the medium or form a Bragg structure with a reflectance peak at a wavelength close to 750 nm, corresponding to the transparency region of the matrix. The reflectance spectra are studied for s- and p-polarized light at different angles of incidence. It is shown that (i) As nanoinclusion arrays only slightly influence the optical properties of the medium in the wavelength range 700-900 nm, (ii) chaotic AsSb nanoinclusion arrays cause strong scattering of light, and (iii) the spatial periodicity in the arrangement of AsSb nanoinclusions is responsible for Bragg resonance in the optical reflection.

  6. High-power fundamental mode AlGaAs quantum well channeled substrate laser grown by molecular beam epitaxy

    SciTech Connect

    Jaeckel, H.; Meier, H.P.; Bona, G.L.; Walter, W.; Webb, D.J.; Van Gieson, E. )

    1989-09-11

    We demonstrate a high-power AlGaAs single quantum well graded-index separate confinement heterojunction laser grown by molecular epitaxy over channeled substrates. Fundamental mode operation up to 130 mW for reflection modified devices has been achieved at a high differential quantum front-facet efficiency of 81%. This device structure allows extremely low threshold currents to 6 mA for power lasers due to the incorporation of lateral current blocking {ital pn} junction by crystallographic plane-dependent doping of amphoteric dopants. We obtained a very high-power continuous-wave fundamental mode operation of this type of laser at extremely low threshold currents and very high overall efficiency of more than 50%. This laser shows considerable potential for are comparable to those of conventional TJS lasers.

  7. Efficient Windows Collaborative

    SciTech Connect

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  8. Color Wheel Windows

    ERIC Educational Resources Information Center

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  9. Multi-functional windows

    NASA Astrophysics Data System (ADS)

    Nag, Nagendra; Goldman, Lee M.; Balasubramanian, Sreeram; Sastri, Suri

    2013-06-01

    The requirements for modern aircraft are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the physical properties of optically transparent materials currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows held in weight bearing frames. Novel material systems will have to be developed which combine different materials (e.g. ductile metals with transparent ceramics) into structures that combine transparency with structural integrity. Surmet's demonstrated ability to produce novel transparent ceramic/metal structures will allow us to produce such structures in the types of conformal shapes required for future aircraft applications. Furthermore, the ability to incorporate transparencies into such structures also holds out the promise of creating multi-functional windows which provide a broad range of capabilities that might include RF antennas and de-icing in addition to transparency. Recent results in this area will be presented.

  10. Windows technology assessment

    SciTech Connect

    Baron, J.J.

    1995-10-01

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  11. Zero Energy Windows

    SciTech Connect

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-05-17

    Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

  12. Selecting windows for energy efficiency

    SciTech Connect

    1997-05-01

    New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

  13. GA microwave window development

    SciTech Connect

    Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

    1994-10-01

    The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE{sub 11} mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec.

  14. The Efficient Windows Collaborative

    SciTech Connect

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  15. Shatter-Resistant, Flame-Resistant Window

    NASA Technical Reports Server (NTRS)

    Richardson, William R.; Walker, Ernie D.

    1989-01-01

    Combustion-chamber window combines properties of polycarbonate and sapphire. Inner layer of sapphire, withstands flame in chamber. Outer layer of polycarbonate tough but susceptible to weakening by flame and protected from flame by sapphire layer. Resists flames, shattering, and high pressure. Windows withstand 60 lb/in. to second power (414 kPa) in hydrostatic pressure vessel. Also survives leak test under internal pressure of 2 atm (0.2 MPa) of helium and external pressure of 10 to negative fifth power torr (1.3 mPa). Has transmission density of 0.08 to 0.11 in visible light. In contrast, unbonded layers have transmission density of 0.13 to 0.16.

  16. double hung window details, hall window details, entrance door profiles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    double hung window details, hall window details, entrance door profiles - Chopawamsic Recreational Demonstration Area - Cabin Camp 1, Help's Quarters, Prince William Forest Park, Triangle, Prince William County, VA

  17. High-R Window Technology Development : Phase II Final Report.

    SciTech Connect

    Arasteh, Dariush

    1991-01-01

    Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 super'' windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

  18. High-R window technology development. Phase 2, Final report

    SciTech Connect

    Arasteh, D.

    1991-01-01

    Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 ``super`` windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

  19. Cordilleran slab windows

    SciTech Connect

    Thorkelson, D.J.; Taylor, R.P. )

    1989-09-01

    The geometry and geologic implications of subducted spreading ridges are topics that have bedeviled earth scientists ever since the recognition of plate tectonics. As a consequence of subduction of the Kula-Farallon and East Pacific rises, slab windows formed and migrated beneath the North American Cordillera. The probable shape and extent of these windows, which represent the asthenosphere-filled gaps between two separating, subducting oceanic plates, are depicted from the Late Cretaceous to the present. Possible effects of the existence and migration of slab windows on the Cordillera at various times include cessation of arc volcanism and replacement by rift or plate-edge volcanism; lithospheric uplift, attenuation, and extension; and increased intensity of compressional tectonism. Eocene extensional tectonism and alkaline magmatism in southern British Columbia and the northwestern United States were facilitated by slab-window development.

  20. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  1. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  2. AlGaAs converters and arrays for laser power beaming

    NASA Astrophysics Data System (ADS)

    Khvostikov, Vladimir; Sorokina, Svetlana; Potapovich, Nataliia; Khvostikova, Olga; Shvarts, Maxim; Timoshina, Nailya; Andreev, Viacheslav

    2015-09-01

    This study reports on the development of AlGaAs/GaAs-based laser power photovoltaic (PV) converters fabricated by LPE. The monochromatic (λ = 809 nm) conversion efficiency up to 58% is measured for cells with p-n junction in Al0.07Ga0.93As and low (x = 0.25-0.3) Al concentration `window'. Modules, which have converters of low and high power laser radiation and the voltage of 4V, have been designed and fabricated. Comparison of output parameters measured at two different conditions (i.e., under flash lamp and laser beam) has been performed.

  3. Energy-efficient windows

    SciTech Connect

    1994-10-01

    This fact sheet describes energy efficient windows for the reduction of home heating and cooling energy consumption. It discusses controlling air leaks by caulking and weatherstripping and by replacing window frames. Reducing heat loss and condensation is discussed by describing the types of glazing materials, the number of glass and air spaces, frame and spacer materials, and the use of movable insulation (shutters, drapes, etc.). A resource list is provided for further information.

  4. The influence of Sb doping on the growth and electronic properties of GaAs(100) and AlGaAs(100)

    NASA Technical Reports Server (NTRS)

    Jamison, K. D.; Chen, H. C.; Bensaoula, A.; Lim, W.; Trombetta, L.

    1989-01-01

    Isoelectronic doping using antimony has been shown to reduce traps and improve material properties during epitaxial growth of Si doped GaAs(100) and AlGaAs(100). In this study, the effect of the antimony dopant on the optimal growth temperature is examined with the aim of producing high-quality heterostructures at lower temperatues. High-quality films of GaAs and AlGaAs have been grown by molecular-beam epitaxy at the normal growth temperatures of 610 and 700 C, respectively, and 50-100 C below this temperature using varying small amounts of Sb as a dopant. Electrical properties of the films were then examined using Hall mobility measurements and deep-level transient spectroscopy.

  5. Enhanced 1.53 μm photoluminescence from Er-doped AlGaAs wet thermal native oxides by postoxidation implantation

    NASA Astrophysics Data System (ADS)

    Huang, M.; Hall, D. C.

    2007-10-01

    A significant enhancement in the 300K, cw photoluminescence (PL) from Er-doped Al0.3Ga0.7As native oxide films is achieved by incorporating the Er after (relative to before) wet thermal oxidation of the AlGaAs. Postoxidation Er ion implantation (1015cm-2 and 300keV) prevents the formation of nonradiative ErAs complexes, leading to a relatively long 1.53μm fluorescence lifetime τ =6.1ms (an approximately seven times improvement) with approximately three times enhancement in the PL intensity. The data suggest that Er-doped AlGaAs native oxides formed using postoxidation implantation may be a viable active media for monolithic optoelectronic integration of waveguide amplifiers on GaAs substrates.

  6. The deep oval window.

    PubMed

    Kapur, T R

    1991-09-01

    This article presents the results of an analysis of the variable and surgically important relationship between the oval window, the fossular walls and the related posterior tympanic recesses in 50 temporal bones. The visual impressions of superficial and deep oval windows seem to correspond fairly closely to the depth of the inferior wall of the fossula fenestra vestibuli (FFV). The depth of the superior and anterior walls of the FFV by themselves, did not appear to have such a dominating relationship in determining the deep oval window. There does not appear to be a well defined posterior wall in the vast majority of the specimens (86 per cent). In the event of scar tissue forming between the superior, inferior and anterior walls, the gap between the postero-superior part of the promontory and the posterior tympanic wall (posterior communication) could allow aeration of the region of the deep oval window in such an instance. Closure of this gap by a solid shelf of ponticulus or scar tissue could cause a localized malaeration of the fossula in most cases of deep oval windows. This is an entirely new concept of the likely problems of malaeration of a deep oval window which could arise due to anatomical variations and of the possible safety valve mechanism which could prevent such malaeration and its consequences. PMID:1919338

  7. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  8. Modeling Windows in Energy Plus with Simple Performance Indices

    SciTech Connect

    Arasteh, Dariush; Kohler, Christian; Griffith, Brent

    2009-10-12

    The building energy simulation program, Energy Plus (E+), cannot use standard window performance indices (U, SHGC, VT) to model window energy impacts. Rather, E+ uses more accurate methods which require a physical description of the window. E+ needs to be able to accept U and SHGC indices as window descriptors because, often, these are all that is known about a window and because building codes, standards, and voluntary programs are developed using these terms. This paper outlines a procedure, developed for E+, which will allow it to use standard window performance indices to model window energy impacts. In this 'Block' model, a given U, SHGC, VT are mapped to the properties of a fictitious 'layer' in E+. For thermal conductance calculations, the 'Block' functions as a single solid layer. For solar optical calculations, the model begins by defining a solar transmittance (Ts) at normal incidence based on the SHGC. For properties at non-normal incidence angles, the 'Block' takes on the angular properties of multiple glazing layers; the number and type of layers defined by the U and SHGC. While this procedure is specific to E+, parts of it may have applicability to other window/building simulation programs.

  9. Damped Windows for Aircraft Interior Noise Control

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Klos, Jacob; Gibbs, Gary P.

    2004-01-01

    Windows are a significant path for structure-borne and air-borne noise transmission into aircraft. To improve the acoustical performance, damped windows were fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. In this paper, numerical and experimental results are used to evaluate the acoustic benefits of damped windows. Tests were performed in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center to measure the transmission loss for diffuse acoustic excitation and radiated sound power for point force excitation. Comparisons between uniform and damped plexiglas windows showed increased transmission loss of 6 dB at the first natural frequency, 6 dB at coincidence, and 4.5 dB over a 50 to 4k Hz range. Radiated sound power was reduced up to 7 dB at the lower natural frequencies and 3.7 dB over a 1000 Hz bandwidth. Numerical models are presented for the prediction of radiated sound power for point force excitation and transmission loss for diffuse acoustic excitation. Radiated sound power and transmission loss predictions are in good agreement with experimental data. A parametric study is presented that evaluates the optimum configuration of the damped plexiglas windows for reducing the radiated sound power.

  10. Highly transparent light-harvesting window film.

    PubMed

    Cocilovo, Byron; Hashimura, Aki; Tweet, Douglas J; Voutsas, Tolis; Norwood, Robert A

    2015-10-20

    We have simulated unique textured window films that capture solar radiation without compromising the window's transparency by scattering infrared light toward photovoltaic strips located at the edges of the window. These films are ideal for powering electrochromic glass, which is difficult to install as each window requires its own power source. Our most promising design consists of an embedded array of 35° cones coated with a five-layer SiO2-Ag stack that was simulated to direct 1.4% of the incident light toward the edges and generate 1 W of power under a collimated 1000  W/m2 AM1.5G source at 60° and an average of 0.5 W over a full year when applied to a 1  m×1  m window. The internal visible transmittance of the window with the applied film is 95% at normal incidence, and remains above 85% for viewing angles up to 60°. The haze is 0.6% at normal incidence and 3.9% at 60°. PMID:26560389

  11. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  12. Window for radiation detectors and the like

    DOEpatents

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  13. Adaptive Liquid Crystal Windows

    SciTech Connect

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  14. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  15. Optical transitions in GaNAs quantum wells with variable nitrogen content embedded in AlGaAs

    NASA Astrophysics Data System (ADS)

    Elborg, M.; Noda, T.; Mano, T.; Sakuma, Y.

    2016-06-01

    We investigate the optical transitions of GaNxAs1-x quantum wells (QWs) embedded in wider band gap AlGaAs. A combination of absorption and emission spectroscopic techniques is employed to systematically investigate the properties of GaNAs QWs with N concentrations ranging from 0 - 3%. From measurement of the photocurrent spectra, we find that besides QW ground state and first excited transition, distinct increases in photocurrent generation are observed. Their origin can be explained by N-induced modifications in the density of states at higher energies above the QW ground state. Photoluminescence experiments reveal that peak position dependence with temperature changes with N concentration. The characteristic S-shaped dependence for low N concentrations of 0.5% changes with increasing N concentration where the low temperature red-shift of the S-shape gradually disappears. This change indicates a gradual transition from impurity picture, where localized N induced energy states are present, to alloying picture, where an impurity-band is formed. In the highest-N sample, photoluminescence emission shows remarkable temperature stability. This phenomenon is explained by the interplay of N-induced energy states and QW confined states.

  16. Internal stress and degradation in short-wavelength AlGaAs double-heterojunction devices

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Furman, T. R.; Marinelli, D. P.

    1979-01-01

    Aging tests of incoherently operated zinc-doped double-heterojunction (DH) lasers designed for short-wavelength (0.71-0.72 micron) operation show that the introduction of buffer layers between the substrate and the DH structure leads to a drastic reduction in gradual degradation. This is attributed to a decrease in lattice mismatch stress.

  17. Bi-level microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  18. Single level microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  19. "Stained Glass" Landscape Windows

    ERIC Educational Resources Information Center

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  20. Exploring Shop Window Displays

    ERIC Educational Resources Information Center

    Christopoulou, Martha

    2011-01-01

    Using visual resources from everyday life in art lessons can enrich students' knowledge about the creation of visual images, artifacts, and sites, and develop their critical understanding about the cultural impact of these images and their effects on people's lives. Through examining an exhibition in the windows of Selfridges department store in…

  1. Opening the Literature Window

    ERIC Educational Resources Information Center

    Jago, Carol

    2012-01-01

    Great literature gives students a window to other places and times, but it often requires students to step outside their comfort zones and take on challenges they wouldn't usually attempt. Unfortunately, research shows that many schools are not assigning literature that pushes students beyond their current reading level. Jago encourages teachers…

  2. Foamglass solar window collector

    NASA Astrophysics Data System (ADS)

    Grande, P. C.

    Solar heating of a living area by means of a foamglass window collector is reported. The collector was built with readily available materials available at most local hardware stores. The payback period was found to be 3.7 years, slightly longer than anticipated.

  3. Apollo window meteoroid experiment

    NASA Technical Reports Server (NTRS)

    Cour-Palais, B. G.; Flaherty, R. E.; Brown, M. L.

    1972-01-01

    Apollo window meteoroid experiment for obtaining data from crater counts and analysis of meteoroid residue combined with fused glass in described. A preliminary estimate of the flux resulting from seven Apollo spacecraft is found to be in agreement with the Surveyor 3 data, but is lower than the model environment.

  4. Software: Looking Through WINDOW.

    ERIC Educational Resources Information Center

    Classroom Computer News, 1983

    1983-01-01

    Reviews the educational value, design quality, and ease of use of "WINDOW," an educational "magazine" on a disk for the Apple II/IIe microcomputer. Indicates that the articles, software reviews, and other informative material are greatly enhanced by sound, graphics, and the chance to try out reviewed programs. (JN)

  5. Candles in Our Windows

    ERIC Educational Resources Information Center

    McGrath, Kathryn

    2005-01-01

    "Candles in Our Windows"--also titled "Nightlights"--is a play developed for elementary and middle school students about how residents in Billings, Montana, took a stand against hate. Last March, the 6th-grade students of Woodland Elementary School in New Jersey performed an early version of the play based on a children's book, "The Christmas…

  6. Migration to Windows NT.

    ERIC Educational Resources Information Center

    Doles, Daniel T.

    In the constantly changing world of technology, migration is not only inevitable but many times necessary for survival, especially when the end result is simplicity for both users and IT support staff. This paper describes the migration at Franklin College (Indiana). It discusses the reasons for selecting Windows NT, the steps taken to complete…

  7. Windows to Art Excitement.

    ERIC Educational Resources Information Center

    Laird, Shirley; Crumpecker, Cheryl

    2003-01-01

    Describes an art project that aimed to bring more attention to an art program. Explains that the students created themed murals on the windows of the art classroom, such as a "Jungle,""Ocean,""Masterpiece Paintings," and "Rainforest Tree Frogs." Discusses how the murals were created. (CMK)

  8. Microwave Workshop for Windows.

    ERIC Educational Resources Information Center

    White, Colin

    1998-01-01

    "Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third is a more…

  9. Windows and lighting program

    SciTech Connect

    Not Available

    1990-06-01

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  10. Windows into Art Classrooms.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1995-01-01

    An editorial by Kit Grauer introduces this collection of articles which establish that there is no such thing as a simple definition of art education even within one culture, and that people's views can be reflected by art educators across the world. The first article, "A Window on Three Singapore Art Classrooms" (Jane Chia; John Matthews; Paul…

  11. Sliding window construction

    SciTech Connect

    Klompenburg, M.V.

    1987-07-28

    A window assembly is described in a window frame. The frame includes a head, a sill, and opposite jambs, the assembly comprising: first and second sashes each having interior and exterior surfaces, a top, a bottom, and opposite first and second sides extending between the top and the bottom: the first sash being laterally movably within the window frame between a closed position and an open position wherein the first sash is substantially in a non-planar position relative to the second sash; track means extending along one of the sill or head of the window frame; first track follower means connected to one of the top or the bottom of the first sash adjacent the first side and cooperating with the track means for supporting and guiding the first sash during lateral movement between the open and closed positions; and the track means having an opening for releasing the track follower means for cooperation only when the first sash is in the open position such that the first sash is pivotal about a vertical axis adjacent the second side between the open position and a maintenance position.

  12. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  13. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  14. Double window viewing chamber assembly

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)

    1986-01-01

    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.

  15. VIEW OF THREE SOUTH FACING STAINED GLASS WINDOWS. THESE WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THREE SOUTH FACING STAINED GLASS WINDOWS. THESE WINDOWS ARE LOCATED ADJACENT TO THE ALTER. - U.S. Naval Base, Pearl Harbor, Chapel, Corner of Oakley & Nimitz Street, Pearl City, Honolulu County, HI

  16. VIEW OF THREE NORTH FACING STAINED GLASS WINDOWS. THESE WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THREE NORTH FACING STAINED GLASS WINDOWS. THESE WINDOWS ARE LOCATED ADJACENT TO THE ALTAR. - U.S. Naval Base, Pearl Harbor, Chapel, Corner of Oakley & Nimitz Street, Pearl City, Honolulu County, HI

  17. VIEW OF THREE NORTH FACING STAINED GLASS WINDOWS. THESE WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THREE NORTH FACING STAINED GLASS WINDOWS. THESE WINDOWS ARE LOCATED JUST BELOW THE CHOIR LOFT. - U.S. Naval Base, Pearl Harbor, Chapel, Corner of Oakley & Nimitz Street, Pearl City, Honolulu County, HI

  18. details: window jamb from first period of construction; window jamb, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    details: window jamb from first period of construction; window jamb, sill profile, and transom profile from second period of construction - Joseph Poffenberger Farm, House, 17834 Mansfield Avenue, Sharpsburg, Washington County, MD

  19. Lens window simplifies TDL housing

    NASA Technical Reports Server (NTRS)

    Robinson, D. M.; Rowland, C. W.

    1979-01-01

    Lens window seal in tunable-diode-laser housing replaces plan parallel window. Lens seals housing and acts as optical-output coupler, thus eliminating need for additional reimaging or collimating optics.

  20. A Window-Washing Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Skyscrapers sure do have a lot of windows, and these windows are cleaned and checked regularly. All this takes time, money, and puts workers at potential risk. Might there be a better way to do it? In this article, the author discusses a window-washing challenge and describes how students can tackle this task, pick up the challenge, and creatively…

  1. Beam Window for Pressure Chambers

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Austin, J. G., Jr.

    1985-01-01

    Window resists products of combustion experiments. Sodium chloride window seals over chamber pressures from 0.1 to 13.8 MPa while absorbing minimal energy from CO2 laser beam that passes through it into chamber. Window inexpensive and easily replacable.

  2. Windows: The Benefits Are Clear.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1999-01-01

    Discusses the importance of specifying windows in a school renovation or building project in order to energize a campus. Explains how windows are psychologically uplifting, how glass accentuates excitement and its shapes signal stability, and how windows convey the institution's confidence in the present. (GR)

  3. A highly selective, chlorofluorocarbon-free GaAs on AlGaAs etch

    SciTech Connect

    Smith, L.E. . Solid State Technology Center)

    1993-07-01

    A highly selective reactive ion etching process using SiCl[sub 4], CF[sub 4], O[sub 2], and He is reported. The selectivity of the etch, which is adjustable, ranges from 308:1 to 428:1 for GaAs to Al[sub 0.11]Ga[sub 0.89]As. This variability in selectivity is achieved by adjusting the helium flow rate. One very attractive feature of this etch is that it uses no chlorofluorocarbons and therefore complies with future bans on these substances imposed at both federal and corporate levels. The etch is demonstrated on a GaAs field effect transistor structure with an underlying Al[sub 0.11]Ga[sub 0.89]As stop-etch layer. The etch can be used for both anisotropic and isotropic applications.

  4. Chemical changes accompanying facet degradation of AlGaAs quantum well lasers

    NASA Astrophysics Data System (ADS)

    Houle, F. A.; Neiman, D. L.; Tang, W. C.; Rosen, H. J.

    1992-11-01

    Detailed measurements are reported using high-resolution scanning Auger microscopy of the chemical state of uncoated quantum well (QW) laser facets after brief and intermediate operating times. Analyses or uncoated facets which have suffered catastrophic optical damage (COD) under various operating conditions are described. The data show clearly that initial facet compositions are variable and far from ideal. After operation for as little as 2-10 min, the composition of the facet regions of the active/graded index and cladding layer change markedly, but no single type of change can be linked to COD. In particular, facet oxidation is not uniform or extensive, and facets which suffer COD are not necessarily more oxidized than those which have not. Composition changes are not limited to the facet surface, indicating that elemental redistribution during laser operation is very fast. These results suggest that the process of facet degradation plays a complex role in laser degradation.

  5. Comparison of low temperature photoluminescence of bulk MBE (Molecular Beam Epitaxy) grown AlGaAs and GaAs using a graphite generated dimer versus a standard tetramer arsenic group-V source

    SciTech Connect

    Brennan, T.M.; Hammons, B.E.; Smith, M.C.; Jones, E.D.

    1987-01-01

    The carbon concentrations in GaAs and AlGaAs grown by Molecular Beam Epitaxy (MBE) have been studied when a graphite generated dimeric arsenic species and a standard tetramer arsenic species are used as the group-V source. Photoluminescence and Van der Pauw-Hall measurements have been made to examine the material quality in reference to which arsenic species is used for film growth. Results indicate that a graphite crucible arrangement for the thermal cracking of As/sub 4/ produces significant carbon contamination and is unacceptable for the MBE growth of GaAs and AlGaAs. 15 refs., 3 figs.

  6. Efficient Adjustable Reflectivity Smart Window

    SciTech Connect

    D. Morgan Tench

    2005-12-01

    This project addressed the key technical issues for development of an efficient smart window based on reversible electrochemical transfer of silver between a mirror electrode and a localized counter electrode. Effort to provide uniform switching over large areas focused on use of a resistive transparent electrode innerlayer to increase the interelectrode resistance. An effective edge seal was developed in collaboration with adhesive suppliers and an electrochromic device manufacturer. Work to provide a manufacturable counter electrode focused on fabricating a dot matrix electrode without photolithography by electrodeposition of Pt nuclei on inherent active sites on a transparent oxide conductor. An alternative counter electrode based on a conducting polymer and an ionic liquid electrolyte was also investigated. Work in all of these areas was successful. Sputtered large-bandgap oxide innerlayers sandwiched between conductive indium tin oxide (ITO) layers were shown to provide sufficient cross-layer resistance (>300 ohm/cm{sup 2}) without significantly affecting the electrochemical properties of the ITO overlayer. Two edge seal epoxies, one procured from an epoxy manufacturer and one provided by an electrochromic device manufacturer in finished seals, were shown to be effective barriers against oxygen intrusion up to 80 C. The optimum density of nuclei for the dot matrix counter electrode was attained without use of photolithography by electrodeposition from a commercial alkaline platinum plating bath. Silver loss issues for cells with dot matrix electrodes were successfully addressed by purifying the electrolyte and adjusting the cell cycling parameters. More than 30K cycles were demonstrated for a REM cell (30-cm square) with a dot matrix counter electrode. Larger cells (30-cm square) were successfully fabricated but could not be cycled since the nucleation layers (provided by an outside supplier) were defective so that mirror deposits could not be produced.

  7. Sunlight Responsive Thermochromic Window System

    SciTech Connect

    Millett, F,A; Byker,H, J

    2006-10-27

    Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

  8. An acoustic window for sustainable buildings

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Brocklesby, Martin; Li, Zhemin; Oldham, David J.

    2005-04-01

    Encouraging the use of natural ventilation is an important tendency in the green building movement, but opening windows can often cause noise problems. This research develops a window system which allows natural ventilation while reducing noise transmission. The core idea is to create a ventilation path by staggering two layers of glass and using micro-perforated absorbers (MPA) along the path created to reduce noise. The MPA are made from transparent materials so that daylighting is relatively unaffected. Starting with a brief introduction of the MPA theory and its application in ducts, the paper presents a series of numerical simulations using finite element method based software FEMLAB, and experiment results measured between a semi-anechoic chamber and a reverberation chamber. Performance in acoustics, ventilation and daylighting are all taken into account. A basic window configuration is first considered, studying the effectiveness of various window parameters. A number of strategic designs are then examined, including external hoods and louvers in the sound path. There is generally a good agreement between simulation and measurement, and the noise reduction can be as good as a single glazing, with air movement to achieve occupant comfort, rather than just for minimum air exchange. [Work supported by EPSRC.

  9. Windows on the axion

    SciTech Connect

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  10. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  11. Window Observational Research Facility (WORF)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph; Sledd, Annette

    2007-01-01

    This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.

  12. Subject Responses to Electrochromic Windows

    SciTech Connect

    Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

    2006-03-03

    Forty-three subjects worked in a private office with switchable electrochromic windows, manually-operated Venetian blinds, and dimmable fluorescent lights. The electrochromic window had a visible transmittance range of approximately 3-60%. Analysis of subject responses and physical data collected during the work sessions showed that the electrochromic windows reduced the incidence of glare compared to working under a fixed transmittance (60%) condition. Subjects used the Venetian blinds less often and preferred the variable transmittance condition, but used slightly more electric lighting with it than they did when window transmittance was fixed.

  13. INTERIOR DETAIL, RETRACTABLE WINDOW SHUTTERS, VENETIAN WINDOW IN THE SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR DETAIL, RETRACTABLE WINDOW SHUTTERS, VENETIAN WINDOW IN THE SOUTHEAST CABINET. (NOTE THE MIRRORED PANEL IN THE FORWARD SHUTTER’S LOWER SECTION. DURING THE HAMILTONIAN OCCUPANCY, MIRRORS LIKE THESE WERE USED LIBERALLY THROUGHOUT THE HOUSE’S PUBLIC ROOMS - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  14. Study of the shape of an optical window in a super-resolution state by electromagnetic-thermal coupled simulation: Effects of melting of an active layer in an optical disc

    SciTech Connect

    Sano, Haruyuki; Shima, Takayuki; Kuwahara, Masashi; Fujita, Yoshiya; Uchiyama, Munehisa; Aono, Yoshiyuki

    2014-04-21

    We performed a multi-physics simulation for the propagation of electromagnetic waves and heat conduction in a super-resolution optical disc that includes an active layer of InSb. Because the change in the optical constant of InSb due to the phase transition is taken into account, the melting of the active layer can be realistically simulated in our calculation. It was found that in the case of an incident light power (P) of 2 mW, a profile of the electric field intensity transmitted through the InSb layer has an asymmetric shape with a narrow peak. This beam-narrowing was suggested to be an essential mechanism of the super-resolution, because a narrower light beam allows the detection of a smaller pit structure than the optical diffraction limit. This beam-narrowing was found to be originating from a small molten region produced in the InSb layer, which works as a mask for light exposure.

  15. Surface passivation and interface properties of bulk GaAs and epitaxial-GaAs/Ge using atomic layer deposited TiAlO alloy dielectric.

    PubMed

    Dalapati, G K; Chia, C K; Tan, C C; Tan, H R; Chiam, S Y; Dong, J R; Das, A; Chattopadhyay, S; Mahata, C; Maiti, C K; Chi, D Z

    2013-02-01

    High quality surface passivation on bulk-GaAs substrates and epitaxial-GaAs/Ge (epi-GaAs) layers were achieved by using atomic layer deposited (ALD) titanium aluminum oxide (TiAlO) alloy dielectric. The TiAlO alloy dielectric suppresses the formation of defective native oxide on GaAs layers. X-ray photoelectron spectroscopy (XPS) analysis shows interfacial arsenic oxide (As(x)O(y)) and elemental arsenic (As) were completely removed from the GaAs surface. Energy dispersive X-ray diffraction (EDX) analysis and secondary ion mass spectroscopy (SIMS) analysis showed that TiAlO dielectric is an effective barrier layer for reducing the out-diffusion of elemental atoms, enhancing the electrical properties of bulk-GaAs based metal-oxide-semiconductor (MOS) devices. Moreover, ALD TiAlO alloy dielectric on epi-GaAs with AlGaAs buffer layer realized smooth interface between epi-GaAs layers and TiAlO dielectric, yielding a high quality surface passivation on epi-GaAs layers, much sought-after for high-speed transistor applications on a silicon platform. Presence of a thin AlGaAs buffer layer between epi-GaAs and Ge substrates improved interface quality and gate dielectric quality through the reduction of interfacial layer formation (Ga(x)O(y)) and suppression of elemental out-diffusion (Ga and As). The AlGaAs buffer layer and TiAlO dielectric play a key role to suppress the roughening, interfacial layer formation, and impurity diffusion into the dielectric, which in turn largely enhances the electrical property of the epi-GaAs MOS devices. PMID:23331503

  16. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  17. Low emittance, semi-transparent coating for cryogenic window applications

    NASA Astrophysics Data System (ADS)

    Heaney, James B.; Nowak, Maria; Quijada, Manuel; Threat, Felix; Stock, Joseph

    2009-08-01

    A warm window surface with a relatively high (>50%) surface emittance can add significant undesired heat loading into a cryogenic test chamber. However, a front surface coating that consists of a very thin adherent layer of evaporated Cr that is overcoated with about 7nm of evaporated Au has been demonstrated to reduce the inherently high emittance of a glass or sapphire window surface down to about 14%, while maintaining a visible transmittance in excess of 55%. The coating possesses reasonably good adhesion and cleaning durability when deposited onto glass or sapphire substrates and has survived multiple temperature cycles between 316K and 20K. The addition of a single layer anti-reflection coating, such as reactively evaporated SiOx, to the otherwise uncoated exterior surface of a cryogenic window produced a further increase in visible wavelength transmittance without altering window emittance. This paper will present measured reflectance, transmittance, and emittance data for the Cr + Au window surface coating relevant to a cryogenic window application.

  18. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  19. Switchable Solar Window Devices Based on Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Ma, Dakang; Munday, Jeremy

    Windows are an interesting target for photovoltaics due to the potential for large area of deployment and because glass is already a ubiquitous component of solar cell devices. Many demonstrations of solar windows in recent years have used photovoltaic devices which are semitransparent in the visible region. Much research has focused on enhancing device absorption in the UV and IR ranges as a means to circumvent the basic tradeoff between efficiency and transparency to visible light. Use of switchable solar window is a less investigated alternative approach; these windows utilize the visible spectrum but can toggle between high transparency and high efficiency as needed. We present a novel switchable solar window device based on Polymer Dispersed Liquid Crystals (PDLC). By applying an electric field to the PDLC layer, the device can be switched from an opaque, light diffusing, efficient photovoltaic cell to a clear, transparent window. In the off state (i.e. scattering state), these devices have the added benefits of increased reflectivity for reduced lighting and cooling costs and haze for privacy. Further, we demonstrate that these windows have the potential for self-powering due to the very low power required to maintain the on, or high transparency, state. Support From: University of Maryland and Maryland Nano-center and its Fablab.

  20. High-quality molecular-beam epitaxial regrowth of (Al,Ga)As on Se-modified (100) GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Turco, F. S.; Sandroff, C. J.; Hwang, D. M.; Ravi, T. S.; Tamargo, M. C.

    1990-08-01

    It is shown that high-quality molecular-beam epitaxial (MBE) regrowth of (Al,Ga)As on GaAs can be achieved by chemically passivating the GaAs surface ex situ prior to regrowth with aqueous selenium reagents. Reflection high-energy electron diffraction intensity oscillations show the bidimensional character of the regrowth and high-resolution transmission electron microscopy reveals defect-free regrown interfaces. Photoluminescence intensity from the Se-treated GaAs surfaces on which Al0.5Ga0.5 As is regrown rivals that from an all in situ grown AlGaAs/GaAs interface. The high quality of these regrown interfaces could be attributed to the thermally and chemically stable selenium and oxygen phases that remain bound to GaAs under MBE conditions.

  1. Tuning the g-factor of neutral and charged excitons confined to self-assembled (Al,Ga)As shell quantum dots

    SciTech Connect

    Corfdir, P. Van Hattem, B.; Phillips, R. T.; Fontana, Y.; Russo-Averchi, E.; Heiss, M.; Fontcuberta i Morral, A.

    2014-12-01

    We study the neutral exciton (X) and charged exciton (CX) transitions from (Al,Ga)As shell quantum dots located in core-shell nanowires, in the presence of a magnetic field. The g-factors and the diamagnetic coefficients of both the X and the CX depend on the orientation of the field with respect to the nanowire axis. The aspect ratio of the X wavefunction is quantified based on the anisotropy of the diamagnetic coefficient. For specific orientations of the magnetic field, it is possible to cancel the g-factor of the bright states of the X and the CX by means of an inversion of the sign of the hole's g-factor, which is promising for quantum information processing applications.

  2. Tokamak physics experiment: Diagnostic windows study

    SciTech Connect

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

  3. Holography through optically active windows

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1979-01-01

    By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig.

  4. Imaging Microscope For "Water-Window" X Rays

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1991-01-01

    Proposed microscope operates in "water-window" part of x-ray spectrum. Contains spherical-mirror substrates coated with multiple thin layers of material exhibiting Bragg reflection at wavelength at which water transparent. Suited for making high-resolution, high-contrast images for microbiological research.

  5. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  6. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  7. Window Design for Manned Spaceflight

    NASA Astrophysics Data System (ADS)

    Lamoure, Richard; Kitchingman, Ian; Novo, Francisco; Sinnema, Gerben

    2012-07-01

    The Window Design for Manned Spacecraft (WDM) project being undertaken by Magna Parva Ltd, under contract with the European Space Agency, aims to develop and improve the current structural integrity verification program for manned spacecraft pressurised windows. A critical review of the existing requirements and current state-of-the-art in spacecraft window design, materials and verification practice is conducted. Possible areas for improvement are identified. An experimental test programme is designed to perform and assess mechanical characterisation methods at material level. Tests are intended to increase familiarity with material testing methods and investigate the effects of sample size, surface finish and load type on material characterisation. Novel methods and their applicability are investigated. Results of characterisation testing will be employed in the design and verification of a breadboard window.

  8. Window-closing safety system

    DOEpatents

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  9. Window-closing safety system

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  10. Method for making photovoltaic devices using oxygenated semiconductor thin film layers

    SciTech Connect

    Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

    2014-12-16

    A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

  11. A window on urban sustainability

    SciTech Connect

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  12. In situ window cleaning by laser blowoff through optical fibera)

    NASA Astrophysics Data System (ADS)

    Alfier, A.; Barison, S.; Danieli, T.; Giudicotti, L.; Pagura, C.; Pasqualotto, R.

    2008-10-01

    The feasibility of a window cleaning system based on the laser blowoff technique is investigated to remove the impurity deposition on vacuum windows of the modified reversed field experiment fusion device. The laser pulse is sent to the window through a fused silica fiber optic (φ=1mm), then focused on its internal surface, single shot ablating up to ˜5mm2 of the impurity layer; the focused pulse is scanned across the window to clean its entire surface. The composition of the deposited layer is studied through the secondary ion mass spectrometry and profilometry techniques. Effectiveness of cleaning is analyzed in terms of quality of the cleaned spot, its dimension, repetition rate of the laser, and its wavelength. The energy damage threshold of the fiber optic is also investigated. Three different lasers (microjoule Nd:YAG, Nd:YLF, and ruby) are first tested directly on the window; then only the ruby laser beam is propagated through an optical fiber and tested.

  13. Influence of the additional p+ doped layers on the properties of AlGaAs/InGaAs/AlGaAs heterostructures for high power SHF transistors

    NASA Astrophysics Data System (ADS)

    Gulyaev, D. V.; Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.; Protasov, D. Yu; Gutakovskii, A. K.; Ber, B. Ya; Kazantsev, D. Yu

    2016-03-01

    The peculiarities of a new type of pseudomorphic AlGaAs/InGaAs/AlGaAs heterostructures with the additional acceptor doping of barriers used for the creation of the power SHF pseudomorphic high electron mobility transistor (pHEMT) have been studied. A comparison of the transport characteristic of the new and typical pHEMT heterostructures was carried out. The influence of the doped acceptor impurities in the AlGaAs barriers of the new pHEMT heterostructure on the transport properties was studied. It was shown that the application of the additional p+ doped barrier layers allows the achievement of a double multiplex increase in the two-dimensional electron gas (2DEG) concentration in the InGaAs quantum well with no parasite parallel conductivity in the AlGaAs barrier layers. An estimation of the concentration of the doped donors and acceptors penetrating into the deliberately undoped InGaAs quantum well from the AlGaAs barriers was performed by second ion mass spectrometry and photoluminescence spectrometry methods. Taking into account the electron scattering by the ionized impurity atoms, calculation of the electron mobility in the InGaAs channel showed that some reduction of the electron mobility results from scattering by the ionized Si donor due to an increase in the Si concentration and, therefore, is not caused by the application of additional p+ doped layers in the construction of pHEMT heterostructures.

  14. Phase transitions in CdTe/ZnTe strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Dunstan, D. J.; Prins, A. D.; Gil, B.; Faurie, J. P.

    1991-08-01

    In CdTe/ZnTe strained-layer superlattices under hydrostatic pressure, the CdTe phase transition does not occur until around 60 kbar, compared with the bulk CdTe value of 35 kbar. This dramatic superpressing cannot be explained by the model proposed to explain superpressing in unstrained (Al,Ga)As superlattices [Weinstein et al., Phys. Rev. Lett. 58, 781 (1987)] but can be accounted for by consideration of a probable microscopic mechanism of the phase transition, by shear on (111) planes. The results show that most semiconductors may be superpressed.

  15. Extending the X Window System

    SciTech Connect

    Brenkosh, J.P.

    1993-12-23

    The X Window System was originally developed in 1984 at Massachusetts Institute of Technology. It provides client-server computing functionality and also facilitates the establishment of a distributed computing environment. Since its inception the X Window System has undergone many enhancements. Despite these enhancements there will always be a functionality desired in the standard released version of X that is not supported or commercially or academically available. The developers of the X Window System have designed it in such a way that it is possible to add functionality that is not included in the standard release. This is called an extension. Extensions are one method used to develop a customized version of the X Window System to support a specialized application. This report presents the mechanics of adding an extension and examines a particular extension that was developed at Sandia National Laboratories to support data compression in X Windows which was one aspect of the Desktop Video and Collaborative Engineering Laboratory Directed Research and Development (LDRD).

  16. Switchable Materials for Smart Windows.

    PubMed

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-01

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting. PMID:27023660

  17. Thermal performance of windows having high solar transmittance

    SciTech Connect

    Rubin, M.; Selkowitz, S.

    1981-07-01

    Antireflected polyester films and low-iron glass sheets have values of solar transmittance that are substantially higher than those of their untreated counterparts. The plastic films utilize coatings to reduce loses due to surface reflectance and the glass is made with low levels of impurities to reduce adsorption within the material itself. The optical and thermal properties of these materials are discussed and the solar and thermal characteristics of windows incorporating high-transmittance glazing layers are derived. Comparisons among these and other types of windows are made on the basis of net energy use for residential buildings in winter.

  18. 16 CFR 455.3 - Window form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Window form. 455.3 Section 455.3 Commercial... Window form. (a) Form given to buyer. Give the buyer of a used vehicle sold by you the window form...) Incorporated into contract. The information on the final version of the window form is incorporated into...

  19. Windows and daylighting: A brighter outlook

    SciTech Connect

    Not Available

    1994-11-01

    This is an overview of energy efficient window glazing and framing technology. The topics of the report include: windows and energy use, a point of view; a challenging federal opportunity; DOE window research; advanced optical technologies such as spectrally selective glazing, switchable glazing, super windows with low-emissivity coatings and noble gas fills; and performance evaluation and design tools.

  20. A robust industrial accelerator window design

    NASA Astrophysics Data System (ADS)

    Schuetz, Marlin N.; Vroom, David A.

    1998-06-01

    An improved design for the thin metal foil window associated with high power industrial accelarators has been developed and tested. This design, which employs specifically shaped flanges, greatly reduce the stresses normally present on accelerators windows and has lead to longer window lifetime and a better means of window cooling.

  1. Music@Microsoft.Windows: Composing Ambience

    ERIC Educational Resources Information Center

    Rickert, Thomas

    2010-01-01

    It is well known, of course, that all Windows versions except for 3.1 have a brief (four to six second) piece of music indicating that Windows is booted and ready for use. While the music may indicate Windows has booted, it bears no immediately discernable relation to the various uses we might actually put Windows to--working, gaming,…

  2. Gas-source MBE growth and n-type doping of AlGaAs using TEG, TEA, AsH 3 and Si 2H 6

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Ando, H.; Sandhu, A.; Ishikawa, H.; Sugiyama, Y.

    1991-01-01

    We have studied gas-source molecular beam epitaxy (GSMBE) growth and n-type doping of AlGaAs using triethylgallium, triethylaluminum, arsine (AsH 3) and disilane (Si 2H 6), focusing on (1) the effect of substrate temperature (520-690°C) and AsH 3 flow rate (2-7 SCCM) on the carbon and oxygen incorporation of Al xGa 1- xAs ( x ˜ 0.28), and (2) the variation of the carrier concentration of n-type Al xGa 1- xAs ( x = 0-0.28) with Si 2H 6 flow rate (0.4-10 SCCM). The carbon concentration decreased with increasing substrate temperature up to 610°C, then increased with increasing substrate temperature using an AsH 3 flow rate of 2 SCCM. Below 610°C, an increase in AsH 3 flow rate resulted in a reduction in the carbon concentration. We obtained a carbon concentration of 1 × 10 18 cm -3 at a substrate temperature of 520°C and an AsH 3 flow rate of 7 SCCM. The addition of molecular hydrogen was found to further reduce the carbon concentration, and the lowest value obtained was 8.2 × 10 17 cm -3 at a substrate temperature of 520°C using 4 SCCM AsH 3 and 4.5 SCCM of molecular hydrogen. The oxygen concentration was not affected by the substrate temperature, but showed a slight decrease with increasing AsH 3 flow rate. The lowest oxygen concentration was 2.5 × 10 17 cm -3 at 7 SCCM AsH 3 flow rate. The variation of the hole concentration with growth conditions was similar to that observed for carbon. The 4.2 K photoluminescence was dominated by a free-to-bound emission having a full-width-at-half-maximum of 18 meV, which is thought to be related to shallow carbon acceptors. Si 2H 6 was shown to be a suitable cold n-type gaseous dopant source for GSMBE growth of AlGaAs. The carrier concentration of the n-type Al xGa 1- xAs ( x = 0-0.28) epilayer was reproducibly controlled between 5 × 10 17 and 2 × 10 18 cm -3.

  3. Method of fabricating a microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

  4. Dry etching of Al-rich AlGaAs with silicon nitride masks for photonic crystal fabrication

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuyu; Togano, Yuji; Hashimura, Kentaro; Morifuji, Masato; Kondow, Masahiko

    2015-04-01

    We investigate inductively coupled plasma (ICP) deep dry etching of Al0.8Ga0.2As for photonic crystal (PC) fabrication using a Cl2/BCl3/CH4 gas mixture. On the basis of our previous report [Y. Kitabayashi et al., Jpn. J. Appl. Phys. 52, 04CG07 (2013)], we obtained a PC structure having air holes deeper than 1.5 µm and a diameter of 120 nm by adjusting the gas flow rate and increasing the process pressure. In this study, silicon nitride (SiNx) and SiO2 were both used as the mask layer. Furthermore, samples with SiNx and SiO2 masks for ICP deep dry etching were also fabricated and compared. The vertical profile of the PC structure with the SiNx mask layer displayed a rounded shape that was caused by the charge up in the mask layer. Then, a thinner mask layer was used to ease the effects of mask retardation and charge up. As a result, a PC structure with a SiNx mask layer having air holes deeper than 1.7 µm and a diameter of 190 nm was successfully fabricated.

  5. Counter tube window and X-ray fluorescence analyzer study

    NASA Technical Reports Server (NTRS)

    Hertel, R.; Holm, M.

    1973-01-01

    A study was performed to determine the best design tube window and X-ray fluorescence analyzer for quantitative analysis of Venusian dust and condensates. The principal objective of the project was to develop the best counter tube window geometry for the sensing element of the instrument. This included formulation of a mathematical model of the window and optimization of its parameters. The proposed detector and instrument has several important features. The instrument will perform a near real-time analysis of dust in the Venusian atmosphere, and is capable of measuring dust layers less than 1 micron thick. In addition, wide dynamic measurement range will be provided to compensate for extreme variations in count rates. An integral pulse-height analyzer and memory accumulate data and read out spectra for detail computer analysis on the ground.

  6. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  7. Creating a Window Cleaner Company.

    ERIC Educational Resources Information Center

    Sarquis, A. M.; And Others

    1995-01-01

    Provides a description of a project used in the Cool Science and Technology Camps in which campers are presented with the challenge of developing and marketing their own brand of window cleaner. Topics such as chemistry, marketing, and cost analysis are intertwined as students prepare and plan their approach to product development. (DDR)

  8. Notes on UHV beryllium windows

    SciTech Connect

    Hartman, P.L.

    1986-10-01

    Techniques are described for making large ultrahigh vacuum beryllium windows for use in synchrotron radiation installations. Procedures are given for affecting both hard brazed seals and demountable seals involving either lead or copper gaskets. Brazed seals can be made to either stainless steel or copper. Possible alternative methods are suggested.

  9. Closing the Windows on Opportunity.

    ERIC Educational Resources Information Center

    Coombs, Norman

    1995-01-01

    The rapid adoption of graphic user interface (GUI), as indicated by Microsoft's Windows95 and the Internet's increased use of graphics, is threatening information technology opportunities for people with disabilities. Recent legislation requires that schools provide access to computers and information technology, and producers of Mosaic are…

  10. High-power low-threshold graded-index separate confinement heterostructure AlGaAs single quantum well lasers on Si substrates

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Lang, Robert J.; Radhakrishnan, Gouri; Katz, Joseph; Narayanan, Authi A.

    1989-01-01

    A high-power low-threshold graded-index separate confinement heterostructure AlGaAs single quantum well laser on Si substrates has been demonstrated for the first time by a hybrid growth of migration-enhanced molecular beam epitaxy followed by metalorganic vapor phase epitaxy. The quantum well laser showed an output power of more than 400 mW per facet under pulsed conditions. A room-temperature threshold current of 300 mA was obtained with a differential quantum efficiency of 40 percent without facet coating. The threshold current density was 550 A/sq cm for a cavity length of 500 microns. These results show the highest peak power reported to date for low-threshold lasers on Si substrates. The full width at half maximum of the far-field pattern parallel to the junction was 6 deg. Threshold current densities as low as 250 A/sq cm were obtained for lasers on GaAs substrates.

  11. Direct detection optical intersatellite link at 220 Mbps using AlGaAs laser diode and silicon APD with 4-ary PPM signaling

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A newly developed 220 Mbps free-space 4-ary pulse position modulation (PPM) direct detection optical communication system is described. High speed GaAs integrated circuits were used to construct the PPM encoder and receiver electronic circuits. Both PPM slot and word timing recovery were provided in the PPM receiver. The optical transmitter consisted of an AlGaAs laser diode (Mitsubishi ML5702A, lambda=821nm) and a high speed driver unit. The photodetector consisted of a silicon avalanche photodiode (APD) (RCA30902S) preceded by an optical interference filter (delta lambda=10nm). Preliminary tests showed that the self-synchronized PPM receiver could achieve a receiver bit error rate of less than 10(exp -6) at 25 nW average received optical signal power or 360 photons per transmitted information bit. The relatively poor receiver sensitivity was believed to be caused by the insufficient electronic bandwidth of the APD preamplifier and the poor linearity of the preamplifier high frequency response.

  12. Removable Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Grady, James P. (Inventor)

    2015-01-01

    A window system for a platform comprising a window pane, a retention frame, and a biasing system. The window pane may be configured to contact a sealing system. The retention frame may be configured to contact the sealing system and hold the window pane against the support frame. The biasing system may be configured to bias the retention frame toward the support frame while the support frame and the retention frame are in a configuration that holds the window pane. Removal of the biasing system may cause the retention frame and the window pane to be removable.

  13. Measured winter performance of storm windows

    SciTech Connect

    Klems, Joseph H.

    2002-08-23

    Direct comparison measurements were made between various prime/storm window combinations and a well-weatherstripped, single-hung replacement window with a low-E selective glazing. Measurements were made using an accurate outdoor calorimetric facility with the windows facing north. The doublehung prime window was made intentionally leaky. Nevertheless, heat flows due to air infiltration were found to be small, and performance of the prime/storm combinations was approximately what would be expected from calculations that neglect air infiltration. Prime/low-E storm window combinations performed very similarly to the replacement window. Interestingly, solar heat gain was not negligible, even in north-facing orientation.

  14. Investigation of electrochemical etch differences in AlGaAs heterostructures using Cl{sub 2} ion beam assisted etching

    SciTech Connect

    Anglin, Kevin Goodhue, William D.; Swint, Reuel B.; Porter, Jeanne

    2015-03-15

    A deeply etched, anisotropic 45° and 90° mirror technology is developed for Al{sub x}Ga{sub 1−x}As heterostructures using a Cl{sub 2} ion beam assisted etching system. When etching vertically, using a conductive low-erosion Ni mask, electrochemical etch differences between layers with various Al mole fractions caused nonuniform sidewall profiles not seen in semi-insulating GaAs test samples. These variations, based on alloy composition, were found to be negligible when etching at a 45°. A Si{sub 3}N{sub 4}-Ni etch mask is designed in order to electrically isolate charge buildup caused by the incoming Ar{sup +} ion beam to the Ni layer, preventing conduction to the underlying epitaxial layers. This modification produced smoothly etched facets, up to 8 μm in depth, enabling fabrication of substrate–surface-emitting slab-coupled optical waveguide lasers and other optoelectronic devices.

  15. Windows in the Milky Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Tacconi-Garman, Lowell Evan; Boulanger, Francois; Okumura, Koryo

    1991-01-01

    The objectives were twofold: (1) to study the IRAS emission levels in the vicinity of Baade's Window and in other optically transparent regions near the Galactic Center; and (2) to study the IRAS emission levels along sightlines in the Milky Way that exhibit very little CO emission. Tests were attempted to see whether the optically transparent 'windows' near the Galactic center can be identified (as FIR-weak regions) in the IRAS data base; and if so, whether the CO weak regions found elsewhere in the Milky Way represent similarly FIR weak and thus optically transparent sightlines through the Galaxy. The CO weak regions were also targeted in an effort to study the diffuse intercloud dust and its warming by the interstellar radiation field.

  16. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  17. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  18. Rugged Ceramic Window for RF Applications

    SciTech Connect

    Neubauer, Michael; Johnson, Rolland P.; Rimmer, Robert; Elliot, Tom; Stirbet, Mircea

    2009-05-04

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  19. Beryllium window for an APS diagnostics beamline

    SciTech Connect

    Sheng, I.C.; Yang, B.X.; Sharma, Y.S.

    1997-09-01

    A beryllium (Be) window for an Advanced Photon Source (APS) diagnostics beamline has been designed and built. The window, which has a double concave axisymmetrical profile with a thickness of 0.5 mm at the center, receives 160 W/mm{sup 2} (7 GeV/100 mA stored beam) from an undulator beam. The window design as well as thermal and thermomechanical analyses, including thermal buckling of the Be window, are presented.

  20. Use of UV-protective windows and window films to aid in the prevention of skin cancer.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Cox, Mary Jude; Becker, Daniel G; Horowitz, Jed H; Nichter, Larry S; Britt, L D; Long, William B; Edlic, Elizabeth C

    2004-01-01

    People are exposed to ambient solar ultraviolet (UV) radiation throughout their daily routine, intentionally and unintentionally. Cumulative and excessive exposure to UV radiation is the behavioral cause to skin cancers, skin damage, premature skin aging, and sun-related eye disorders. More than one million new cases of skin cancer were diagnosed in the United States this year. UV radiates directly and diffusely scattered by the various environmental and atmospheric conditions and has access to the skin from all directions. Because of this diffuse UV radiation, a person situated under a covering, such as the roof of a car or house, is not completely protected from the sun's rays. Because shade structures do not protect effectively against UV radiation, there have been major advances in photoprotection of glass by the development of specially designed photoprotective windows and films. It is the purpose of this collective review to highlight the photoprotective windows and films that should be incorporated into residential, commercial, and school glass windows to reduce sun exposure. Low-emittence (low-E) coatings are microscopically thin, virtually invisible, metal or metallic oxide layers deposited on a window or skylight glazing surface to reduce the U-factor by suppressing radiative heat flow as well as to limit UV radiation. The exclusive Thermaflect coating uses the most advanced, double-layer soft coat technology to continue to deliver top performance for UV protection as well as prevent heat loss in the home. This product blocks 87% of UV radiation and has an Energy Star certification in all climate zones. Tints and films have been another important advance in glass photoprotection, especially in automobiles. Quality widow film products are high-tech laminates of polyester and metallized coatings bonded by distortion-free adhesives. The International Window Film Association provides members with accreditation in solar control films, safety films, and

  1. High-performance GaInAsSb thermophotovoltaic devices with an AlGaAsSb window

    SciTech Connect

    Choi, H.K.; Wang, C.A.; Turner, G.W.; Manfra, M.J.; Spears, D.L.; Charache, G.W.; Danielson, L.R.; Depoy, D.M.

    1997-12-01

    A large increase in the quantum efficiency (QE) and open-circuit voltage V{sub oc} of GaInAsSb thermophotovoltaic (TPV) devices is obtained by the use of an AlGaAsSb window layer compared with devices without a window layer. The TPV structure, grown on GaSb substrates by organometallic vapor phase epitaxy or molecular beam epitaxy, consists of a 1-{mu}m-thick n-GaInAsSb base layer, a 3-{mu}m-thick p-GaInAsSb emitter layer, a 100-nm-thick AlGaAsSb window layer, and a 25-nm-thick GaSb contacting layer. The band-gap energy of the lattice-matched GaInAsSb is 0.53{endash}0.55 eV. The peak internal QE of the TPV cells with the window is {gt}90{percent}, compared with less than 60{percent} for those without the window. At a short-circuit current density of {approximately}1000mA/cm{sup 2}, V{sub oc} of {approximately}300meV is obtained for cells with the window layer, compared with less than 220 meV without the window layer. These increases are attributed to a substantial decrease in the surface recombination velocity with the window layer. Based on a standard calculation, the electron diffusion length in the p-GaInAsSb layer is at least 5 {mu}m. {copyright} {ital 1997 American Institute of Physics.}

  2. Space station proximity operations and window design

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1988-01-01

    On-orbit proximity operations (PROX-OPS) consist of all extravehicular activity (EVA) within 1 km of the space station. Because of the potentially large variety of PROX-OPS, very careful planning for space station windows is called for and must consider a great many human factors. The following topics are discussed: (1) basic window design philosophy and assumptions; (2) the concept of the local horizontal - local vertical on-orbit; (3) window linear dimensions; (4) selected anthropomorphic considerations; (5) displays and controls relative to windows; and (6) full window assembly replacement.

  3. Purged window apparatus utilizing heated purge gas

    DOEpatents

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  4. Analysis of deposited impurity material on the surface of the optical window of the Tokamak using LIBS

    NASA Astrophysics Data System (ADS)

    Singh Maurya, Gulab; Jyotsana, Aradhana; Kumar, Rohit; Kumar, Ajai; Rai, A. K.

    2014-07-01

    The emission spectra emitted from the laser-induced plasma of the optical window of Aditya Tokamak have been studied to identify the eroded materials deposited on its surface. Different layers of the window, such as the impurity deposited layer, antireflection coating and main matrix of the window material, have been identified. Laser-induced breakdown spectroscopy (LIBS) spectra of the impurity layer (first layer) shows the presence of spectral lines of Fe, Cr, Ni, Mn, Mo, Cu, C and O most of which are the components of stainless steel (SS316L) used for the fabrication of the Tokamak. LIBS spectra of the antireflection coating layer (second layer) show the spectral signature of Ca and Mg, whereas in the inner layer (last layer), the spectral lines of Al, Si and B are present. The concentrations of the impurities estimated by CF-LIBS are closely related to the constituents (major and minor) of the SS316L. Principal component analysis using LIBS data was performed to differentiate the different layers (impurity, antireflection coating and main matrix) of the window. The result of the present study demonstrates the capability of LIBS as an in-situ monitoring tool for detection and quantification of elements present in the different layers of the optical window of the Tokamak.

  5. High-performance solar-control windows. Final report

    SciTech Connect

    King, W.J.

    1980-04-01

    The use of ion-beam sputtered, metal-dielectric layers was investigated for fabricating high-performance solar-control windows for office buildings and residences. Two basic types of windows were studied. The first was optimized for rejecting incident solar energy during the cooling season while maintaining high daylight transmittance. The second was optimized for transmission of solar energy and reduction of thermal losses in the heating season by maximizing reflectivity in the long-wave infrared (i.e., transparent heat mirror). Various compromise configurations for performing both functions were also considered. The program covered original equipment (glass) and retrofit (plastic) substrate materials. Various metal-dielectric combinations, including Cu-SiO/sub 2/, Bs-SiO/sub 2/ (Bs = brass), Bs-Al/sub 2/O/sub 3/, AG-SiO/sub 2/, and Ag-Al/sub 2/O/sub 3/, were used to obtain the necessary optical characteristics. Extensive weathering tests were conducted to demonstrate that the final systems developed are capable of extended life in a practical environment. Roll-to-roll (1' wide) coating was demonstrated for retrofit office and residential windows on various forms of polyester. Comparable window performance was achieved on polypropylene and teflon FEP substrates. A brief economic analysis is presented which indicates that KCl's processing is completely consistent with the price structure in the solar-control film industry.

  6. Aerodynamic window for high precision laser drilling

    NASA Astrophysics Data System (ADS)

    Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth

    2007-05-01

    High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the

  7. Durable coatings for IR windows

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Jha, Santosh K.; Gunda, Nilesh; Cooke, Rick; Agarwal, Neeta; Sastri, Suri A.; Harker, Alan; Kirsch, Jim

    2005-05-01

    Durable coatings of silicon-carbon-oxy-nitride (a.k.a. SiCON) are being developed to protect high-speed missile windows from the environmental loads during flight. Originally developed at Rockwell Scientific Corporation (RSC) these coatings exhibited substantial promise, but were difficult to deposit. Under a DoD DARPA SBIR Phase I program, Surmet Corporation, working closely with RSC, is depositing these coatings using an innovative vacuum vapor deposition process. High rate of coating deposition and the ease of manipulating the process variables, make Surmet"s process suitable for the deposition of substantially thick films (up to 30 μm) with precisely controlled chemistry. Initial work has shown encouraging results, and the refinement of the coating and coating process is still underway. Coupons of SiN and SiCON coatings with varying thickness on a variety of substrates such as Si-wafer, ZnS and ALON were fabricated and used for the study. This paper will present and discuss the results of SiN and SiCON coatings deposition and characterization (physical, mechanical and optical properties) as a basis for evaluating their suitability for high speed missile windows application.

  8. Interferometer for Space Station Windows

    NASA Technical Reports Server (NTRS)

    Hall, Gregory

    2003-01-01

    Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

  9. Downsampling Photodetector Array with Windowing

    NASA Technical Reports Server (NTRS)

    Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit

    2012-01-01

    In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated

  10. Challenger Center's Window on the Universe

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J. J.; Smith, S.; Bobrowsky, M.; Radnofsky, M.; Perelmuter, J.-M.; Jaggar, L.

    2001-11-01

    Challenger Center for Space Science Education's Window on the Universe program aims to create a network of under-served communities across the nation dedicated to sustained science, math, and technology education. Window communities presently include Broken Arrow, OK; Muncie, IN; Moscow, ID; Nogales, AZ; Tuskegee, AL; Marquette, MI; Altamont, KS; Washington, D.C.; and other emerging sites. Window uses themes of human space flight and the space sciences as interdisciplinary means to inspire entire communities. Practicing scientists and engineers engaged in these disciplines are invited to volunteer to become a part of these communities for a week, each visitor reaching roughly 2000 K-12 students through individual classroom visits and Family Science Night events during an intense Window on the Universe Week. In the same Window Week, Challenger Center scientists and educators present a workshop for local educators to provide training in the use of a K-12 educational module built around a particular space science and exploration theme. Window communities follow a 3-year development: Year 1, join the network, experience Window Week presented by Challenger Center and visiting researchers; Year 2, same as Year 1 plus workshop on partnering with local organizations to develop sources of visiting researchers and to enhance connections with local resources; Year 3 and subsequent, the community stages its own Window Week, with Challenger Center providing new education modules and training workshops for "master educators" from the Window community, after which the master educators return home to conduct training workshops of their own. Challenger Center remains a resource and clearinghouse for Window communities to acquire experience, technical information, and opportunities for distance collaboration with other Window communities. Window on the Universe is dedicated to assessing degree of success vs. failure in each program component and as a whole, using pre- and post

  11. Lithography process window analysis with calibrated model

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Yu, Jin; Lo, James; Liu, Johnson

    2004-05-01

    As critical-dimension shrink below 0.13 μm, the SPC (Statistical Process Control) based on CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for more accurate decision of process window center. However in practical fabrication, we found that systematic error introduced by metrology and/or resist process can significantly impact the process window analysis result. Especially, when the simple polynomial functions are used to fit the lithographic data from focus exposure matrix (FEM), the model will fit these systematic errors rather than filter them out. This will definitely impact the process window analysis and determination of the best process condition. In this paper, we proposed to use a calibrated first principle model to do process window analysis. With this method, the systematic metrology error can be filtered out efficiently and give a more reasonable window analysis result.

  12. Reflective insulating blinds for windows and the like

    DOEpatents

    Barnes, P.R.; Shapira, H.B.

    1979-12-07

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  13. Reflective insulating blinds for windows and the like

    DOEpatents

    Barnes, Paul R.; Shapira, Hanna B.

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  14. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  15. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  16. Window Observational Rack Facility (WORF)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Developed by Boeing, at the Marshall Space Flight Center (MSFC) Space Station Manufacturing building, the Window Observational Rack Facility (WORF) will help Space Station crews take some of the best photographs ever snapped from an orbiting spacecraft by eliminating glare and allowing researchers to control their cameras and other equipment from the ground. The WORF is designed to make the best possible use of the high-quality research window in the Space Station's U.S. Destiny laboratory module. Engineers at the MSFC proposed a derivative of the EXPRESS (Expedite the Processing of Experiments to the Space Station) Rack already used on the Space Station and were given the go-ahead. The EXPRESS rack can hold a wide variety of experiments and provide them with power, communications, data, cooling, fluids, and other utilities - all the things that Earth-observing experiment instruments would need. WORF will supply payloads with power, data, cooling, video downlink, and stable, standardized interfaces for mounting imaging instruments. Similar to specialized orbital observatories, the interior of the rack is sealed against light and coated with a special low-reflectant black paint, so payloads will be able to observe low-light-level subjects such as the faint glow of auroras. Cameras and remote sensing instruments in the WORF can be preprogrammed, controlled from the ground, or operated by a Station crewmember by using a flexible shroud designed to cinch tightly around the crewmember's waist. The WORF is scheduled to be launched aboard the STS-114 Space Shuttle mission in the year 2003.

  17. Contoured insulation window for evacuated solar collector

    SciTech Connect

    Coppola, F. T.; Lentz, W. P.; Vandewoestine, R. V.

    1980-02-05

    An insulating contoured window is provided for use with an enclosed chamber such as an evacuated flat plate solar heat collector with the contoured solar window being of minimum thickness and supported solely about its peripheral edge portions. The window is contoured in both its longitudinal and transverse directions, such that in its longitudinal direction the window is composed of a plurality of sinusoidal corrugations whereas in its transverse direction the peaks of such corrugations are contoured in the form of paraboloids so that the structure may withstand the forces generated thereon by the atmosphere.

  18. Manufacturing of diamond windows for synchrotron radiation

    SciTech Connect

    Schildkamp, W.; Nikitina, L.

    2012-09-15

    A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.

  19. Thermally insulated window sash construction for a casement window

    SciTech Connect

    Biro, A.J.

    1987-09-01

    A window sash member is described comprising: first and second generally parallel sidewalls; first and second spaced, generally parallel transverse walls connecting the first and second sidewalls, extending between and oriented generally perpendicular to the first and second sidewalls to define a first hollow chamber; a third transverse wall, located without the first hollow chamber adjacent to and generally parallel to the first transverse wall, extending from the first sidewall and terminating short of the second sidewall; a first interior wall extending from the third transverse wall to the first transverse wall and oriented generally parallel to the first sidewall to define a second hollow chamber; a fourth transverse wall, located without the first hollow chamber adjacent to and generally to the second transverse wall, extending from the first sidewall and terminating short of the second sidewall; and a second interior wall extending from the fourth transverse wall to the second transverse wall and oriented generally parallel to the second sidewall to define a third hollow chamber.

  20. Window type: 2x3 fixed multipaned steel window flanked by 1x3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: 2x3 fixed multipaned steel window flanked by 1x3 multipaned steel casements. Concrete sill and spandrel also illustrated. Building 43, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  1. Characterization of an all solid-state electrochromic window

    NASA Astrophysics Data System (ADS)

    Tonazzi, Juan C. L.; Valla, Bruno; Macedo, Marcelo A.; Baudry, Paul; Aegerter, Michel A.; Martins Rodrigues, Ana C.; Bulhoes, Luis O.

    1990-11-01

    Sol-gel cerium - titanium oxide layers present potential application as transparent counter-electrode (ion storage layer) in electrochromic windows and mirrors using lithium conducting electrolyte and W03 electrochromic coating. The precursor sol, prepared by mixing Ti(OPri)4 and Ce(N03)6 (NH4)2 in ethanol, is initially dark red and becomes transparent after a few days aging indicating the presence of Ce3 complexes. The layers have been obtained by dip coating technique and heat treated at 4509C during 15 minutes.They have been characterized by XRD, SIMS, optical absorption and electrochemical techniques; it is shown that the electrochemical reaction corresponds to a reversible insertion-extraction oflithium ions within a Ti02 amorphous film containing small Ce02 crystallites. At low sweep frequencies the process is controlled by a diffusion mechanism (DLi ~= 6.4 lOl2cm2/s at 259C). Characterizations of an all solid state electrochromic window/glass/JTO/ W03/ POE-Li N (502 CF3)2 1 Ti02 - Ce02 I ITO I glass I are also presented.

  2. Glass-windowed ultrasound transducers.

    PubMed

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  3. Effects of thermally grown native oxides on the luminescence properties of compound semiconductors

    NASA Astrophysics Data System (ADS)

    Islam, M. R.; Dupuis, R. D.; Curtis, A. P.; Stillman, G. E.

    1996-08-01

    Data are presented on the luminescence characteristics of GaAs layers adjacent to native-oxide regions derived from epitaxial AlGaAs and InAlP films. The native-oxide ``window'' layers capping the epitaxial structures are formed by the oxidation of the exposed Al0.9Ga0.1As and In0.48Al0.52P cladding layers. Extensive photoluminescence and time-resolved photoluminescence studies performed at 300 K show that both the luminescence intensity and lifetime from GaAs ``active regions'' drop dramatically when the adjacent AlGaAs window layer is oxidized completely. However, there is a marked increase in the efficiency and decay time of the luminescence with the oxidation of InAlP window layers which are grown immediately above the GaAs layer.

  4. Humeral windows in revision total elbow arthroplasty.

    PubMed

    Peach, Chris A; Salama, Amir; Stanley, David

    2016-04-01

    The use of cortical windows for revision elbow arthroplasty has not previously been widely reported. Their use aids safe revision of a well fixed humeral prosthesis and can be used in the setting of dislocation, periprosthetic fracture or aseptic loosening of the ulnar component. We describe our technique and results of cortical windows in the distal humerus for revision elbow arthroplasty surgery. PMID:27583011

  5. Microfibrillar collagen in the oval window.

    PubMed

    Liston, S L

    1982-01-01

    Compressed microfibrillar collagen was used to seal openings in cat oval windows. Histologic examination showed the material was well tolerated and produced a good oval window seal. Because of its hemostatic properties, this material should prove to be useful when bleeding is encountered during a stapedectomy. PMID:10994440

  6. Thermal measurements of microwave transmitter feedhorn window

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.

    1989-01-01

    Thermal measurements of microwave transmitter feedhorn windows were performed using an imaging infrared radiometer. The measurement technique is described and results are presented for windows made of 0.001-in. Kapton (trademark of Dupont Chemical Co.) and 0.1-in. HTP-6 (Space Shuttle tile material). Measured and calculated temperatures agree well.

  7. Window Cleaner—New and Improved?

    NASA Astrophysics Data System (ADS)

    Jacobsen, Erica K.

    2007-11-01

    A recent coupon advertisement for window cleaner in the Sunday newspaper was reminiscent of a past JCE Classroom Activity . The new product says it offers a cheaper way to clean your windows and is a way to cut down on the number of plastic spray containers you throw away.

  8. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  9. Measured Rattle Threshold of Residential House Windows

    NASA Technical Reports Server (NTRS)

    Sizov, Natalia; Schultz, Troy; Hobbs, Christopher; Klos, Jacob

    2008-01-01

    Window rattle is a common indoor noise effect in houses exposed to low frequency noise from such sources as railroads, blast noise and sonic boom. Human perception of rattle can be negative that is a motivating factor of the current research effort to study sonic boom induced window rattle. A rattle study has been conducted on residential houses containing windows of different construction at a variety of geographic locations within the United States. Windows in these houses were excited by a portable, high-powered loudspeaker and enclosure specifically designed to be mounted on the house exterior to cover an entire window. Window vibration was measured with accelerometers placed on different window components. Reference microphones were also placed inside the house and inside of the loudspeaker box. Swept sine excitation was used to identify the vibration threshold at which the response of the structure becomes non-linear and begins to rattle. Initial results from this study are presented and discussed. Future efforts will continue to explore the rattle occurrence in windows of residential houses exposed to sonic booms.

  10. Internally cooled window for endoatmospheric homing

    NASA Astrophysics Data System (ADS)

    Wojciechowski, C. J.; Leary, D. F.; Bouska, D. H.

    1992-05-01

    This paper presents an innovative approach to infrared (IR) sensor window cooling which will result in improved performance as well as miniaturization of the IR sensor window and coolant hardware. The successful development of this concept can lead to IR windows that can be mass produced at very low overall cost, with short production lead times. The concept involves internal cooling of an advanced diamond film/silicon window, a technique whose goal is to enhance the aero-optics performance by avoiding the turbulence and optical distortion induced by external film cooling injection. Preliminary analysis indicates that the proposed IR window concept can meet advanced interceptor mission requirements while providing significant design improvements in terms of reduced coolant subsystem mass and low manufacturing cost.

  11. Internally cooled window for endoatmospheric homing - Update

    NASA Astrophysics Data System (ADS)

    Wojciechowski, C. J.; Ravi, K. V.; Jones, G.

    1993-06-01

    This paper presents an innovative approach to infrared (IR) sensor window cooling which will result in improved performance as well as miniaturization of the IR sensor window and coolant hardware. The successful development of this concept can lead to IR windows that can be mass produced at very low overall cost, with short production lead times. The concept involves internal cooling of an advanced diamond film/silicon window, a technique whose goal is to enhance the aero-optics performance by avoiding the turbulence and optical distortion induced by external film cooling injection. Preliminary analysis indicates that the proposed IR window concept can meet advanced interceptor mission requirements while providing significant design improvements in terms of reduced coolant subsystem mass and low manufacturing cost.

  12. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  13. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  14. THERM 5 / WINDOW 5 NFRC simulation manual

    SciTech Connect

    Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

    2003-06-01

    This document, the ''THERM 5/WINDOW 5 NFRC Simulation Manual', discusses how to use the THERM and WINDOW programs to model products for NFRC certified simulations and assumes that the user is already familiar with those programs. In order to learn how to use these programs, it is necessary to become familiar with the material in both the ''THERM User's Manual'' and the ''WINDOW User's Manual''. In general, this manual references the User's Manuals rather than repeating the information. If there is a conflict between either of the User Manual and this ''THERM 5/''WINDOW 5 NFRC Simulation Manual'', the ''THERM 5/WINDOW 5 NFRC Simulation Manual'' takes precedence. In addition, if this manual is in conflict with any NFRC standards, the standards take precedence. For example, if samples in this manual do not follow the current taping and testing NFRC standards, the standards not the samples in this manual, take precedence.

  15. Unsteady fluid and optical simulation of transonic aero-windows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    The time-varying fluid and optical fields of several cavity configurations have been computed on overset mesh systems using the Reynolds-averaged Navier-Stokes equations and geometric optics. Comparisons between numerical results and Airborne Optical Adjunct (AOA) flight data are made in two-dimensions for a quieted cavity geometry with two lip-blowing rates. In three-dimensions, two proposed aero-window locations for the Stratospheric Observatory For Infrared Astronomy (SOFIA) are discussed. The simulations indicate that convection of large shear layer structures across the aperture cause the blur circle diameter to be three times the diffraction-limited diameter in the near-infrared band.

  16. Visual and energy performance of switchable windows with antireflection coatings

    SciTech Connect

    Jonsson, Andreas; Roos, Arne

    2010-08-15

    The aim of this project was to investigate how the visual appearance and energy performance of switchable or smart windows can be improved by using antireflective coatings. For this study clear float glass, low-e glass and electrochromic glass were treated with antireflection (AR) coatings. Such a coating considerably increases the transmittance of solar radiation in general and the visible transmittance in particular. For switchable glazing based on absorptive electrochromic layers in their dark state it is necessary to use a low-emissivity coating on the inner pane of a double glazed window in order to reject the absorbed heat. In principle all surfaces can be coated with AR coatings, and it was shown that a thin AR coating on the low-e surface neither influences the thermal emissivity nor the U-value of the glazing. The study showed that the use of AR coatings in switchable glazing significantly increases the light transmittance in the transparent state. It is believed that this is important for a high level of user acceptance of such windows. (author)

  17. Long-term imaging in awake mice using removable cranial windows

    PubMed Central

    Glickfeld, Lindsey L.; Kerlin, Aaron M.; Reid, R. Clay; Bonin, Vincent; Schafer, Dorothy P.; Andermann, Mark L.

    2015-01-01

    Cranial window implants in head-fixed rodents are becoming a preparation of choice for stable optical access to large areas of cortex over extended periods of time. Here, we provide a highly detailed and reliable surgical protocol for a cranial window implantation procedure for chronic widefield and cellular imaging in awake, head-fixed mice, which enables subsequent window removal and replacement in the weeks and months following the initial craniotomy. This protocol has facilitated awake, chronic imaging in adolescent as well as adult mice over several months from a large number of cortical brain regions; targeted virus and tracer injections from data obtained using prior awake functional mapping; and functionally-targeted two-photon imaging across all cortical layers in awake mice using a microprism attachment to the cranial window. Collectively, these procedures extend the reach of chronic imaging of cortical function and dysfunction in behaving animals. PMID:25275789

  18. Study of periodic surface profile on improving the window capacity at single and repetitive pulses

    SciTech Connect

    Liu, Y. S.; Zhang, X. W.; Zhang, Z. Q.; Shao, H.; Wang, Y.; Liu, W. Y.; Ke, C. F.; Chen, C. H.; Liang, Y. Q.; Wu, X. L.; Guo, L. T.; Chang, C.

    2015-09-15

    The surface breakdown of dielectric windows seriously limits the transmission of high power microwaves (HPM), and has blocked the development of microwave technology in recent decades. In this paper, X-band HPM experiments of window breakdown at the vacuum/dielectric interface and the atmosphere/dielectric interface at single and repetitive pulses were conducted. The cross-linked polystyrene (CLPS) dielectric window with a periodic surface profile can significantly improve the breakdown threshold at single and repetitive pulses. Furthermore, the flat surface layer of CLPS was discovered to be carbonized to a depth of several millimeters and filled with electrical trees at repetitive pulses. Theoretical models were built to understand the underlying physics behind the phenomena in experiments. With the analysis of the electron resonance process breaking the molecular bond and the temperature rise caused by the traversing current in the dielectric material, a microscopic explanation for the carbonization of the dielectric window was introduced.

  19. Double window configuration as a low cost microwave waveguide window for plasma applications

    SciTech Connect

    Baskaran, R.

    1997-12-01

    Waveguide windows are major components of a transmission line used in microwave plasma devices. The function of the waveguide window is to provide vacuum isolation of the source side from the plasma chamber while transmitting microwaves with minimum attenuation. Commonly a single thin dielectric plate is sandwiched between a choke type flange and a flat flange and is used as a waveguide window. To arrive at a better window configuration in terms of the low power reflection coefficient, the voltage standing wave ratio calculation is carried out for different window configurations (single window and double window) and for various window thicknesses. It is found that the power reflection is the minimum in the case of double window configuration. The minimum power reflection is as low as 0.8{percent} for a combination of alumina and a quartz plate each of 1 cm thickness in the double window configuration. Also, it is more advantageous to use radial microwave coupling than axial coupling in order to increase the life time of the microwave waveguide window. {copyright} {ital 1997 American Institute of Physics.}

  20. Window Insulation: How to Sort Through the Options.

    ERIC Educational Resources Information Center

    Miller, Barbara

    This two-part report explores the efforts of businesses and individuals to improve the thermal performance of windows. Part I discusses the basics of what makes a window product insulate or save energy. Topic areas addressed include saving energy lost through windows, key components of window insulation, three basic types of window insulation,…

  1. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  2. Air leakage of newly instaled residential windows

    SciTech Connect

    Weidt, J.; Weidt, J.

    1980-06-01

    The air-leakage characteristics of five major window designs were measured in a field survey conducted in Twin Cities, Minnesota. A total of 192 windows (16 manufacturers) were tested at 58 sites representing a cross-section of single-family homes, townhouses, low- and high-rise apartments, and condominiums. Air-leakage measurements of the installed windows were compared with the current standard used by industry and government of 0.50 ft/sup 3//min/linear ft of crack. Other parameters studied were: effect of sash and frame material, effect of leakage between window frame and wall, differences among the product lines of a single manufacturer and between manufacturers, effect of installation practices, effect of cold weather on performance, change in performance over time for older windows, and performance of fixed glazing. Based on industry and government standards, 40% of all windows tested showed air-leakage characteristics higher than the 0.50 cfm/lfc standard, and 60% exceeded manufacturers' specifications for performance which in some cases were lower than the general industry standard. Analysis of the impact of various parameters on air-leakage performance showed that the operational design of the window was the most critical determinant although the ranking changes if performance is expressed in cfm/unit area or cfm/opening area. Air leakage was measured using a portable pressurization chamber. Smoke pencils, thermographic techniques and extensive photographic documentation provided additional data as to the location and cause of air leakage problems.

  3. Lithographic process window optimization for mask aligner proximity lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna; Erdmann, Andreas; Ünal, Nezih; Hofmann, Ulrich; Hennemeyer, Marc; Zoberbier, Ralph; Nguyen, David; Brugger, Juergen

    2014-03-01

    We introduce a complete methodology for process window optimization in proximity mask aligner lithography. The commercially available lithography simulation software LAB from GenISys GmbH was used for simulation of light propagation and 3D resist development. The methodology was tested for the practical example of lines and spaces, 5 micron half-pitch, printed in a 1 micron thick layer of AZ® 1512HS1 positive photoresist on a silicon wafer. A SUSS MicroTec MA8 mask aligner, equipped with MO Exposure Optics® was used in simulation and experiment. MO Exposure Optics® is the latest generation of illumination systems for mask aligners. MO Exposure Optics® provides telecentric illumination and excellent light uniformity over the full mask field. MO Exposure Optics® allows the lithography engineer to freely shape the angular spectrum of the illumination light (customized illumination), which is a mandatory requirement for process window optimization. Three different illumination settings have been tested for 0 to 100 micron proximity gap. The results obtained prove, that the introduced process window methodology is a major step forward to obtain more robust processes in mask aligner lithography. The most remarkable outcome of the presented study is that a smaller exposure gap does not automatically lead to better print results in proximity lithography - what the "good instinct" of a lithographer would expect. With more than 5'000 mask aligners installed in research and industry worldwide, the proposed process window methodology might have significant impact on yield improvement and cost saving in industry.

  4. Challenger Center's Window on the Universe Program

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.; Goldstein, J.; Livengood, T.; Offringa, K.; Richards, S.; Riddle, B.

    2001-05-01

    Each year, Challenger Center's Window on the Universe launches thousands of everyday people---teachers and students, parents---on a fantastic journey through our universe. Recently, for example, we visited Nogales, Arizona, where we trained 350 teachers, talked to 6000 students in classrooms, and 1500 more students and their families as part of ``Family Science Night'' presentations. Window aims to increase community involvement in science education within underserved communities throughout the United States. Challenger Center's national team works with a local team in the participating community to provide training for teachers, classroom talks, and Family Science Night presentations for the community. The national team includes at least one astronomer and one educator from Challenger Center, as well as at least two Visiting Researchers (VRs) from other institutions. (However, in Washington, D.C., there were 40 VRs from 12 different institutions who, along with the national team, visited every 6th grade classroom in the city! Window materials have become an essential part of the 6th grade curriculum in Washington, D.C.) VRs are scientists or engineers in the fields of astronomy, space science, or human space flight who are gifted at communicating their passion about research to audiences of all ages. Their research is related to the topics covered in the Window educational modules, which provide the core content for Window on the Universe programming. VRs travel to Window communities during one of the Window weeks, where they visit classrooms and sometimes conduct Family Science Night presentations. Researchers from any institution are invited to participate as VRs in Window programs and showcase their research and their institution. If you or someone from your institution is interested in participating, please visit http://challenger.org/wotu/ and click on ``Find Out More.'' Window on the Universe is funded by grants from NASA's Human Exploration and Development

  5. Optimal spectral windows for microwave diversity imaging

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.; Bai, Baocheng

    1991-01-01

    Tomographic microwave diversity imaging is analyzed using linear system theory concepts, and optimal spectral windows for data acquisition are obtained either by considering window position in the spectral domain or by using simulated annealing to find an optimal phase weighting of the object frequency response samples collected over the specified spectral window. This study provides a means of microwave image formation that is applicable under general assumptions. Results of numerical simulations and representative images reconstructed from realistic experimental microwave scattering data are given, demonstrating that the proposed approach is superior to previous image reconstruction methods.

  6. Implementing Boot Control for Windows Vista

    NASA Astrophysics Data System (ADS)

    Ashino, Yuki; Fujita, Keisuke; Furusawa, Maiko; Uehara, Tetsutaro; Sasaki, Ryoichi

    A digital forensic logging system must prevent the booting of unauthorized programs and the modification of evidence. Our previous research developed Dig-Force2, a boot control system for Windows XP platforms that employs API hooking and a trusted platform module. However, Dig-Force2 cannot be used for Windows Vista systems because the hooked API cannot monitor booting programs in user accounts. This paper describes an enhanced version of Dig-Force2, which uses a TPM and a white list to provide boot control functionality for Windows Vista systems. In addition, the paper presents the results of security and performance evaluations of the boot control system.

  7. Apollo experience report: Spacecraft structural windows

    NASA Technical Reports Server (NTRS)

    Pigg, O. E.; Weiss, S. P.

    1973-01-01

    The window structural design and verification experience is presented for the Apollo command and lunar modules. This report presents window design philosophy, design criteria, hardware description, and qualification and acceptance test programs and discusses the problems encountered and solutions developed in these areas. The structural characteristics of glass are not generally well understood by designers. The optics and instrument glass covers were not considered to be structural components and thus were not normally subjected to the design, qualification, and acceptance standards necessary to preclude failures. These two factors contributed significantly to window problems on both Apollo spacecraft.

  8. GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing

    NASA Astrophysics Data System (ADS)

    Hartmann, F.; Langer, F.; Bisping, D.; Musterer, A.; Höfling, S.; Kamp, M.; Forchel, A.; Worschech, L.

    2012-04-01

    Al0.6Ga0.4As/GaAs/Al0.6Ga0.4As double-barrier resonant-tunneling diodes (RTD) were grown by molecular beam epitaxy with a nearby, lattice-matched Ga0.89In0.11N0.04As0.96 absorption layer. RTD mesas with ring contacts and an aperture for optical excitation of charge carriers were fabricated on the epitaxial layers. Electrical and optical properties of the RTDs were investigated for different thicknesses of a thin GaAs spacer layer incorporated between the AlGaAs tunnel barrier adjacent to the GaInNAs absorption layer. Illumination of the RTDs with laser light of 1.3 μm wavelength leads to a pronounced photo-effect with a sensitivities of around 103 A/W.

  9. Internal structure of oceanic lithosphere: A perspective from tectonic windows

    NASA Astrophysics Data System (ADS)

    Karson, Jeffrey A.

    Major faulted escarpments on the seafloor provide "tectonic windows" into oceanic crust and upper mantle. Direct observations in these settings reveal that the spatial arrangement, internal structure, and contacts between major rock units are significantly more complex than commonly anticipated on the basis of seismic studies and ophiolite analogs. From this perspective, a stratiform, ophiolite-like sequence of rock units, including basaltic volcanic rocks, sheeted diabase dike complex, isotropic and layered gabbroic and ultramafic rocks over upper mantle peridotites—all separated by generally horizontal contacts, may be much less common in the oceanic lithosphere than generally thought. Conversely, documented examples of large outcrop areas (tens of kilometers across) that lack the ophiolite-like sequence or that contain structures that do not conform to the ophiolite model call into question the basic assumptions made in the reconstruction and interpretation of ophiolite complexes. Historically, the stratiform ophiolite architecture has been the basis for inferences of the interaction between tectonism and magmatism at mid-ocean ridge spreading centers. A growing number of constraints on geological relations along seafloor escarpments hint at much broader range of interactions between tectonic deformation and magmatic construction. Along slow-spreading ridges, the magma budget (volume of magma per unit plate separation) is highly variable, giving rise to a wide range of morphologic and geologic features along wide rift valleys. The diversity of crustal architectures and internal structures seen in tectonic windows is correspondingly large. Although it is possible that a relatively simple, layered ophiolite-like crust develops in regions of relatively high magma budget (Reykjanes Ridge, Azores region, etc.), more complex structures that differ from those of stratiform ophiolites are present where lower magma budgets prevail. Significant deviations from a simple

  10. DETAIL OF GROUND, MEZZANINE, AND FIRST FLOOW WINDOW OPENINGS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF GROUND, MEZZANINE, AND FIRST FLOOW WINDOW OPENINGS AT CORNER OF CLAY AND 15TH STREETS. WINDOWS AND WINDOW FRAMES REMOVED - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA

  11. DETAIL VIEW, WEST VENETIAN WINDOW IN SOUTH WALL. (NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, WEST VENETIAN WINDOW IN SOUTH WALL. (NOTE THE IRON BARS ON THE CELLAR WINDOW BELOW. THIS WINDOW LETS ONTO WHAT WAS LIKELY THE ESTATE OFFICE DURING THE HAMILTONIAN RESIDENCY - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  12. Field Evaluation of Low-E Storm Windows

    SciTech Connect

    Drumheller, S. Craig; Kohler, Christian; Minen, Stefanie

    2007-07-11

    A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single-pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homeshad traditional clear glass. Overall heating load reduction due to the storm windows was 13percent with the clear glass and 21percent with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years forthe low-e storm windows.

  13. NREL Electrochromic Window Research Wins Award

    ScienceCinema

    None

    2013-05-29

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  14. Opening a window on the universe

    NASA Astrophysics Data System (ADS)

    Dutson, Kate

    2015-04-01

    The Cherenkov Telescope Array will revolutionize ground-based gamma-ray astronomy, explains Kate Dutson, extending our electromagnetic window on to the universe to include the highest-energy photons ever detected.

  15. MANAGING LARGE DATABASES WITH CUSTOMIZED SAS WINDOWS

    EPA Science Inventory

    This paper discusses the principles of database management through customized windows using SAS/AF, particularly PROC BUILD, to invoke interactive and batch processing of data entry, editing, updating, automatic report generation, and custom report generation functions, including...

  16. Electrochromic sun control coverings for windows

    SciTech Connect

    Benson, D K; Tracy, C E

    1990-04-01

    The 2 billion square meters (m{sup 2}) of building windows in the United States cause a national energy drain almost as large as the energy supply of the Alaskan oil pipeline. Unlike the pipeline, the drain of energy through windows will continue well into the 21st century. A part of this energy drain is due to unwanted sun gain through windows. This is a problem throughout the country in commercial buildings because they generally require air conditioning even in cold climates. New commercial windows create an additional 1600 MW demand for peak electric power in the United States each year. Sun control films, widely used in new windows and as retrofits to old windows, help to mitigate this problem. However, conventional, static solar control films also block sunlight when it is wanted for warmth and daylighting. New electrochromic, switchable, sun-gain-control films now under development will provide more nearly optimal and automatic sun control for added comfort, decreased building operating expense, and greater energy saving. Switchable, electrochromic films can be deposited on polymers at high speeds by plasma enhanced chemical vapor deposition (PECVD) in a process that may be suitable for roll coating. This paper describes the electrochromic coatings and the PECVD processes, and speculates about their adaptability to high-speed roll coating. 8 refs., 3 figs.

  17. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  18. Window size impact in human activity recognition.

    PubMed

    Banos, Oresti; Galvez, Juan-Manuel; Damas, Miguel; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Signal segmentation is a crucial stage in the activity recognition process; however, this has been rarely and vaguely characterized so far. Windowing approaches are normally used for segmentation, but no clear consensus exists on which window size should be preferably employed. In fact, most designs normally rely on figures used in previous works, but with no strict studies that support them. Intuitively, decreasing the window size allows for a faster activity detection, as well as reduced resources and energy needs. On the contrary, large data windows are normally considered for the recognition of complex activities. In this work, we present an extensive study to fairly characterize the windowing procedure, to determine its impact within the activity recognition process and to help clarify some of the habitual assumptions made during the recognition system design. To that end, some of the most widely used activity recognition procedures are evaluated for a wide range of window sizes and activities. From the evaluation, the interval 1-2 s proves to provide the best trade-off between recognition speed and accuracy. The study, specifically intended for on-body activity recognition systems, further provides designers with a set of guidelines devised to facilitate the system definition and configuration according to the particular application requirements and target activities. PMID:24721766

  19. Window Size Impact in Human Activity Recognition

    PubMed Central

    Banos, Oresti; Galvez, Juan-Manuel; Damas, Miguel; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Signal segmentation is a crucial stage in the activity recognition process; however, this has been rarely and vaguely characterized so far. Windowing approaches are normally used for segmentation, but no clear consensus exists on which window size should be preferably employed. In fact, most designs normally rely on figures used in previous works, but with no strict studies that support them. Intuitively, decreasing the window size allows for a faster activity detection, as well as reduced resources and energy needs. On the contrary, large data windows are normally considered for the recognition of complex activities. In this work, we present an extensive study to fairly characterize the windowing procedure, to determine its impact within the activity recognition process and to help clarify some of the habitual assumptions made during the recognition system design. To that end, some of the most widely used activity recognition procedures are evaluated for a wide range of window sizes and activities. From the evaluation, the interval 1–2 s proves to provide the best trade-off between recognition speed and accuracy. The study, specifically intended for on-body activity recognition systems, further provides designers with a set of guidelines devised to facilitate the system definition and configuration according to the particular application requirements and target activities. PMID:24721766

  20. Dust adhesion on Viking lander camera window

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Studies of dust impingement on a duplicate Viking Lander camera window indicated the possibility of window obscuration after several days of exposure even at low dust concentration levels. As a result the following corrective measures were recommended: (1) The clearance between the housing surface and the camera post should be eliminated by using an appropriately designed plastic skirt: (2) The three horizontal ledges below the window inside the cavity act as bases for pile-up of dust that slides down the window surface; they should be replaced by a single inclined plane down which the dust will slide and fall out on the ground: (3) Adhered dust on the window surface can be removed by high pressure CO2 jets directed down against the window; the amount of CO2 gas needed for the entire mission can be carried in a 3 1/2-inch diameter sphere equipped with a remotely programable valve. These measures were incorporated in the design of the lander camera system. The continued high quality of photographs transmitted from the Viking spacecraft several months after landing attests to their effectiveness.

  1. Electrochromic Windows: Process and Fabrication Improvements for Lower Total Costs

    SciTech Connect

    Mark Burdis; Neil Sbar

    2007-03-31

    The overall goal with respect to the U.S. Department of Energy (DOE) is to achieve significant national energy savings through maximized penetration of EC windows into existing markets so that the largest cumulative energy reduction can be realized. The speed with which EC windows can be introduced and replace current IGU's (and current glazings) is clearly a strong function of cost. Therefore, the aim of this project was to investigate possible improvements to the SageGlass{reg_sign} EC glazing products to facilitate both process and fabrication improvements resulting in lower overall costs. The project was split into four major areas dealing with improvements to the electrochromic layer, the capping layer, defect elimination and general product improvements. Significant advancements have been made in each of the four areas. These can be summarized as follows: (1) Plasma assisted deposition for the electrochromic layer was pursued, and several improvements made to the technology for producing a plasma beam were made. Functional EC devices were produced using the new technology, but there are still questions to be answered regarding the intrinsic properties of the electrochromic films produced by this method. (2) The capping layer work was successfully implemented into the existing SageGlass{reg_sign} product, thereby providing a higher level of transparency and somewhat lower reflectivity than the 'standard' product. (3) Defect elimination is an ongoing effort, but this project spurred some major defect reduction programs, which led to significant improvements in yield, with all the implicit benefits afforded. In particular, major advances were made in the development of a new bus bar application process aimed at reducing the numbers of 'shorts' developed in the finished product, as well as making dramatic improvements in the methods used for tempering the glass, which had previously been seen to produce a defect which appeared as a pinhole. (4) Improvements have

  2. Transforming the market for residential windows: design considerations for DOE's Efficient Window Collaborative

    SciTech Connect

    Eto, J.; Arasteh, D.; Selkowitz, S.

    1998-08-01

    Market adoption of recent, commercially available technological advances that improve the energy performance of windows will lead to immediate economic and energy savings benefits to the nation. This paper is a scoping study intended to inform the design of a major DOE initiative to accelerate market adoption of these windows in the residential sector. We describe the structure of the US residential window market and the interests of the various market players. We then briefly review five recent market transformation initiatives. Finally, we summarize our findings in a list of considerations we believe will be important for the DOE's initiative to transform the US residential window market.

  3. Los Alamos Neutron Science Center Area-A beam window heat transfer alalysis

    SciTech Connect

    Poston, D.

    1997-07-01

    Several analyses that investigate heat transfer in the Area-A beam window were conducted. It was found that the Area-A window should be able to withstand the 1-mA, 3-cm beam of the accelerator production of tritium materials test, but that the margins to failure are small. It was also determined that when the window is subjected to the 1-mA, 3-cm beam, the inner window thermocouples should read higher than the current temperature limit of 900{degrees}C, although it is possible that the thermocouples may fail before they reach these temperatures. Another finding of this study was that the actual beam width before April 1997 was 20 to 25% greater than the harp-wire printout indicated. Finally, the effect of a copper-oxide layer on the window coolant passage was studied. The results did not indicate the presence of a large copper-oxide layer; however, the results were not conclusive.

  4. Improving the thermal performance of vinyl-framed windows

    SciTech Connect

    Beck, F.A.; Arasteh, D.

    1992-10-01

    Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h[center dot]ft[sup 2][center dot][degree]F [2.86 W/m[sup 2][center dot]K] and 0.30 Btu/h[center dot]ft[sup 2][center dot][degree]F [1.70 W/m[sup 2][center dot]K]). Turning such windows into superwindows,'' windows with a U-value of 0.20 Btu/h[center dot]ft[sup 2][center dot][degree]F (1.14 W/m[sup 2][center dot]K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h[center dot]ft[sup 2][center dot][degree]F (0.57 W/m[sup 2][center dot]K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

  5. Improving the thermal performance of vinyl-framed windows

    SciTech Connect

    Beck, F.A.; Arasteh, D.

    1992-10-01

    Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [2.86 W/m{sup 2}{center_dot}K] and 0.30 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [1.70 W/m{sup 2}{center_dot}K]). Turning such windows into ``superwindows,`` windows with a U-value of 0.20 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (1.14 W/m{sup 2}{center_dot}K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (0.57 W/m{sup 2}{center_dot}K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

  6. The design and testing of a highly insulating glazing system for use with conventional window systems

    SciTech Connect

    Arasteh, D.; Selkowitz, S.; Wolfe, J.R.

    1989-02-01

    In most areas of the United States, windows are by far the poorest insulating material used in buildings. As a result, approximately 3 percent of the nation's energy use is used to offset heat lost through windows. Under cold conditions, conventional double glazings create uncomfortable spaces and collect condensation. However, with the recent introduction of low-emissivity (low-E) coatings and low/conductivity gas filling to respectively reduce radiative and conductive/convective heat transfer between glazing layers, some manufacturers are beginning to offer windows with R-values (resistance to heat transfer) of 4 hr-ft/sup 2/-F/Btu (0.70m/sup 2/-C/W). This papers presents designs for and analysis and test results of an insulated glass unit with a center-of-glass R-value of 8-10; approximately twice as good as gas-filled low-E units, and four times that of conventional double glazing. This high-R design starts with a conventional insulated-glass unit and adds two low-emissivity coatings, a thin glass middle glazing layer, and a Krypton or Krypton/Argon gas fill. The unit's overall width is 1 in. (25 mm) or less, consistent with most manufacturers' frame and sash design requirements. Using state-of-the-art low-emissivity coatings does not significantly degrade the solar heat gain potential or visible transmittance of the window. Work to date has substantiated this concept of a high-R window although specific components require further research and engineering development. Demonstration projects, in conjunction with utilities and several major window manufacturers, are planned. This high-R window design is the subject of a DOE patent application.

  7. Window contamination on Expose-R

    NASA Astrophysics Data System (ADS)

    Demets, R.; Bertrand, M.; Bolkhovitinov, A.; Bryson, K.; Colas, C.; Cottin, H.; Dettmann, J.; Ehrenfreund, P.; Elsaesser, A.; Jaramillo, E.; Lebert, M.; van Papendrecht, G.; Pereira, C.; Rohr, T.; Saiagh, K.

    2015-01-01

    Expose is a multi-user instrument for astrobiological and astrochemical experiments in space. Installed at the outer surface of the International Space Station, it enables investigators to study the impact of the open space environment on biological and biochemical test samples. Two Expose missions have been completed so far, designated as Expose-E (Rabbow et al. 2012) and Expose-R (Rabbow et al. this issue). One of the space-unique environmental factors offered by Expose is full-spectrum, ultraviolet (UV)-rich electromagnetic radiation from the Sun. This paper describes and analyses how on Expose-R, access of the test samples to Solar radiation degraded during space exposure in an unpredicted way. Several windows in front of the Sun-exposed test samples acquired a brown shade, resulting in a reduced transparency in visible light, UV and vacuum UV (VUV). Post-flight investigations revealed the discolouration to be caused by a homogenous film of cross-linked organic polymers at the inside of the windows. The chemical signature varied per sample carrier. No such films were found on windows from sealed, pressurized compartments, or on windows that had been kept out of the Sun. This suggests that volatile compounds originating from the interior of the Expose facility were cross-linked and photo-fixed by Solar irradiation at the rear side of the windows. The origin of the volatiles was not fully identified; most probably there was a variety of sources involved including the biological test samples, adhesives, plastics and printed circuit boards. The outer surface of the windows (pointing into space) was chemically impacted as well, with a probable effect on the transparency in VUV. The reported analysis of the window contamination on Expose-R is expected to help the interpretation of the scientific results and offers possibilities to mitigate this problem on future missions - in particular Expose-R2, the direct successor of Expose-R.

  8. Microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  9. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  10. "Broken windows" and the risk of gonorrhea.

    PubMed Central

    Cohen, D; Spear, S; Scribner, R; Kissinger, P; Mason, K; Wildgen, J

    2000-01-01

    OBJECTIVES: We examined the relationships between neighborhood conditions and gonorrhea. METHODS: We assessed 55 block groups by rating housing and street conditions. We mapped all cases of gonorrhea between 1994 and 1996 and calculated aggregated case rates by block group. We obtained public school inspection reports and assigned findings to the block groups served by the neighborhood schools. A "broken windows" index measured housing quality, abandoned cars, graffiti, trash, and public school deterioration. Using data from the 1990 census and 1995 updates, we determined the association between "broken windows," demographic characteristics, and gonorrhea rates. RESULTS: The broken windows index explained more of the variance in gonorrhea rates than did a poverty index measuring income, unemployment, and low education. In high-poverty neighborhoods, block groups with high broken windows scores had significantly higher gonorrhea rates than block groups with low broken windows scores (46.6 per 1000 vs 25.8 per 1000; P < .001). CONCLUSIONS: The robust association of deteriorated physical conditions of local neighborhoods with gonorrhea rates, independent of poverty, merits an intervention trial to test whether the environment has a causal role in influencing high-risk sexual behaviors. PMID:10667184

  11. Rugged sensor window materials for harsh environments

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jasbinger; Hunt, Michael; Aggarwal, Ishwar D.

    2014-09-01

    There are several military or commercial systems operating in very harsh environments that require rugged windows. On some of these systems, windows become the single point of failure. These applications include sensor or imaging systems, high-energy laser weapons systems, submarine photonic masts, IR countermeasures and missiles. Based on the sea or land or air based platforms the window or dome on these systems must withstand wave slap, underwater or ground based explosions, or survive flight through heavy rain and sand storms while maintaining good optical transmission in the desired wavelength range. Some of these applications still use softer ZnS or fused silica windows because of lack of availability of rugged materials in shapes or sizes required. Sapphire, ALON and spinel are very rugged materials with significantly higher strengths compared to ZnS and fused silica. There have been recent developments in spinel, ALON and sapphire materials to fabricate in large sizes and conformal shapes. We have been developing spinel ceramics for several of these applications. We are also developing β-SiC as a transparent window material as it has higher hardness, strength, and toughness than sapphire, ALON and spinel. This paper gives a summary of our recent findings.

  12. X-Windows Socket Widget Class

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.

    2006-01-01

    The X-Windows Socket Widget Class ("Class" is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network connections for graphical-user-interface (GUI) computer programs. UNIX Transmission Control Protocol/Internet Protocol (TCP/IP) socket programming libraries require many method calls to configure, operate, and destroy sockets. Most X Windows GUI programs use widget sets or toolkits to facilitate management of complex objects. The widget standards facilitate construction of toolkits and application programs. The X-Windows Socket Widget Class encapsulates UNIX TCP/IP socket-management tasks within the framework of an X Windows widget. Using the widget framework, X Windows GUI programs can treat one or more network socket instances in the same manner as that of other graphical widgets, making it easier to program sockets. Wrapping ISP socket programming libraries inside a widget framework enables a programmer to treat a network interface as though it were a GUI.

  13. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOEpatents

    Holland, Stephen Edward

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.

  14. Window and dome technologies and materials; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    NASA Astrophysics Data System (ADS)

    Klocek, Paul

    1989-09-01

    Papers on window and dome technologies and methodologies are presented, covering the processing and application of window and dome materials such as polycrystalline MgAl2O4 spinel, yttria and lanthana-doped yttria, transparent aluminum oxynitride, sapphire materials, fluoride glass, zinc sulfide, and germanium materials. Other topics include high modulus layers as protective coatings for window materials, ultrahard coatings for IR materials, IR applications of GeC thin filems, CVD diamond for IR applications, amorphic diamond films grown with a laser-ion source, dome cooling, microwave shielding effectiveness of electrically conductive coated optical windows, and the window evaluation program for an airborne FLIR system. In addition, papers are presented on modeling optical properties of window materials, lattice symmetries and thermal expansion, rain damage protection for IR materials, optical window materials for hypersonic flow, the IR emission due to aerodynamic heating of missile domes, a ZnS window for the IR instrumentation system, hypersonic aerooptical effects, optical and semiconductor properties of lead telluride coatings, boron phosphide for coating IR transparencies, and the measurement of high out-of-band filter rejection characteristics.

  15. Window type: 4x4 multipaned steel window flanked by 1x4 multipaned ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: 4x4 multipaned steel window flanked by 1x4 multipaned steel, casements. Concrete stoop, entry overhang and pipe rail detail also illustrated. Building 36, facing northwest - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  16. Window type: paired 2x4 multipaned steel windows flanked by 1x4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: paired 2x4 multipaned steel windows flanked by 1x4 multipaned steel casements, breaking building corner. Raised panel door front entry also illustrated. Ground floor detail Building 19, facing north - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  17. Window type: paired 3x2 multipaned steel window flanked by 1x3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: paired 3x2 multipaned steel window flanked by 1x3 multipaned steel casements, breaking building corner. Broad overhanging eave also illustrated. Second story detail. Building 13, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  18. The Moving Window Technique: A Window into Developmental Changes in Attention during Facial Emotion Recognition

    ERIC Educational Resources Information Center

    Birmingham, Elina; Meixner, Tamara; Iarocci, Grace; Kanan, Christopher; Smilek, Daniel; Tanaka, James W.

    2013-01-01

    The strategies children employ to selectively attend to different parts of the face may reflect important developmental changes in facial emotion recognition. Using the Moving Window Technique (MWT), children aged 5-12 years and adults ("N" = 129) explored faces with a mouse-controlled window in an emotion recognition task. An…

  19. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  20. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  1. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  2. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  3. 30 CFR 18.30 - Windows and lenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed...

  4. Combined Pressure and Thermal Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Svartstrom, Kirk Nils (Inventor)

    2015-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  5. A simple hazemeter for window pollution assessment

    NASA Astrophysics Data System (ADS)

    Toy, M.; White, M. R.

    1980-03-01

    Window dirtiness is an obvious result of air pollution. The hazemeter described is a cheap and proven device for assessing two optical factors related to this. The value of measuring direct transmission loss is immediately apparent. The value of the haze or scattered light factor is not so obvious. It affects the total light passed through the window and was shown to have correlations with some of the psychological tests of which a brief mention has been made. The potential of this instrument can be extended to the design of more sophisticated analyses of the effect of pollution on windows; for example, the correlation of optical factors with deposit gauge and rain gauge readings, spectral distributions (say at twilight) and the effect on drivers of dirty windscreens.

  6. Apparatus for insulating windows and the like

    DOEpatents

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  7. Apparatus for insulating windows and the like

    DOEpatents

    Mitchell, Robert A.

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  8. Radcalc for Windows. Volume 2: Technical manual

    SciTech Connect

    Green, J.R.

    1995-09-27

    Radcalc for Windows is a user-friendly menu-driven Windows-compatible software program with applications in the transportation of radioactive materials. It calculates the radiolytic generation of hydrogen gas in the matrix of low-level and high-level radioactive waste using NRC-accepted methodology. It computes the quantity of a radionuclide and its associated products for a given period of time. In addition, the code categorizes shipment quantities as radioactive, Type A or Type B, limited quantity, low specific activity, highway route controlled, and fissile excepted using DOT definitions and methodologies, as outlined in 49 CFR Subchapter C. The code has undergone extensive testing and validation. Volume I is a User`s Guide, and Volume II is the Technical Manual for Radcalc for Windows

  9. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  10. Fused silica windows for solar receiver applications

    NASA Astrophysics Data System (ADS)

    Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg

    2016-05-01

    A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.

  11. Integral window hermetic fiber optic components

    SciTech Connect

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  12. Integration Window Position Estimation in TR Receivers

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2005-03-15

    Transmitted-reference (TR) receivers avoid the stringent synchronization requirements that exist in conventional pulse detection schemes. However, the performance of such receivers is highly sensitive to precise timing acquisition and tracking as well as the length of their integration window. This window in TR receivers defines the limits of the finite integrator prior to the final decision making block. In this paper, we propose a novel technique that allows us to extract the timing information of the integration window very accurately in UWB-TR receivers in the presence of channel noise. The principles of the method are presented and the BER performance of a modified UWB-TR receiver is investigated by computer simulation. Our studies show that the proposed estimation technique adds value to the conventional TR receiver structure with modest increase in complexity.

  13. Single-agent parallel window search

    NASA Technical Reports Server (NTRS)

    Powley, Curt; Korf, Richard E.

    1991-01-01

    Parallel window search is applied to single-agent problems by having different processes simultaneously perform iterations of Iterative-Deepening-A(asterisk) (IDA-asterisk) on the same problem but with different cost thresholds. This approach is limited by the time to perform the goal iteration. To overcome this disadvantage, the authors consider node ordering. They discuss how global node ordering by minimum h among nodes with equal f = g + h values can reduce the time complexity of serial IDA-asterisk by reducing the time to perform the iterations prior to the goal iteration. Finally, the two ideas of parallel window search and node ordering are combined to eliminate the weaknesses of each approach while retaining the strengths. The resulting approach, called simply parallel window search, can be used to find a near-optimal solution quickly, improve the solution until it is optimal, and then finally guarantee optimality, depending on the amount of time available.

  14. Solar optical materials for innovative window design

    SciTech Connect

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  15. Error-Based Design Space Windowing

    NASA Technical Reports Server (NTRS)

    Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman

    2002-01-01

    Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.

  16. Interior and Exterior Low-E Storm Window Installation

    SciTech Connect

    Witters, Sarah

    2014-09-03

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings. A new and improved low-e storm window boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement. A recent whole-home experiment performed by PNNL suggests that attaching low-e storm windows can result in as much energy savings replacing the windows.

  17. Quantum well infrared photodetector simultaneously working in two atmospheric windows

    NASA Astrophysics Data System (ADS)

    Huo, Y. H.; Ma, W. Q.; Zhang, Y. H.; Chen, L. H.; Shi, Y. L.

    2010-08-01

    We have demonstrated a two-contact quantum well infrared photodetector (QWIP) exhibiting simultaneous photoresponse in both the mid- and the long-wavelength atmospheric windows of 3-5 μm and of 8-12 μm. The structure of the device was achieved by sequentially growing a mid-wavelength QWIP part followed by a long-wavelength QWIP part separated by an n-doped layer. Compared with the conventional dual-band QWIP device utilizing three ohmic contacts, our QWIP is promising to greatly facilitate two-color focal plane array (FPA) fabrication by reducing the number of the indium bumps per pixel from three to one just like a monochromatic FPA fabrication and to increase the FPA fill factor by reducing one contact per pixel; another advantage may be that this QWIP FPA boasts broadband detection capability in the two atmospheric windows while using only a monochromatic readout integrated circuit. We attributed this simultaneous broadband detection to the different distributions of the total bias voltage between the mid- and long-wavelength QWIP parts.

  18. Aberration and boresight error correction for conformal aircraft windows using the inner window surface and tilted fixed correctors.

    PubMed

    Zhao, Chunzhu; Cui, Qingfeng; Mao, Shan

    2016-04-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported. The solution uses the inner window surface to correct the window aberrations at a 0° look angle and uses fixed correctors behind the window to correct the residual window aberrations at other look angles. Then, the boresight error for the window at different look angles is corrected by tilting the fixed correctors. The principle of the solution is discussed, and a design example shows that the solution is effective in correcting the aberrations and boresight error for a tilted conformal aircraft window at different look angles. PMID:27139665

  19. Improved Performance of Energy Window Ratio Criteria Obtained Using Multiple Windows at Radiation Portal Monitoring Sites

    SciTech Connect

    Weier, Dennis R.; Lopresti, Charles A.; Ely, James H.; Bates, Derrick J.; Kouzes, Richard T.

    2006-06-07

    Radiation portal monitors are being used to detect radioactive target materials in vehicles transporting cargo. As vehicles pass through the portal monitors, they generate count profiles over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory, in support of U.S. Customs and Border Protection (CBP) and U.S. Domestic Nuclear Detection Office (DNDO) under the U.S. Department of Homeland Security (DHS), has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations. Energy window criteria have been shown to increase sensitivity to certain types of target radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. First generation equipment had only two-window capability, and while energy windowing for such systems was shown to be useful for detecting certain types of sources, it was subsequently found that improved performance could be obtained with more windows. Second generation equipment instead has more windows and can thus support additional energy window criteria which can be shown to be sensitive to a wider set of target sources. Detection likelihoods are generated for various sources and energy window criteria, as well as for gross count decision criteria, based on computer simulated injections of sources into archived vehicle profiles. (PIET-43741-TM-534)

  20. The effects of X window HEP graphics applications on ESnet

    SciTech Connect

    Abar, F.A. |; Lidinsky, W.P. |

    1994-12-31

    Wide area networking is the next evolutionary step toward distributed computing. Many applications that were found useful in local area networks are beginning to show their presence in wide area networks (WANs). A question is: Given today`s typical WAN infrastructure, what are the effects of the presence of distributed applications in the WANs and what can be done to facilitate full deployment of such services across wide area network? A simulation model for X window distributed graphical applications in high energy physics communities interacting across the DOE Energy Science wide area networks (ESnet) was created to examine X service resource requirements and ESnet resource limitations. Through simulation analysis the effects of the incremental introduction of X traffic to ESnet was determined as was the load level at which ESnet became unstable. Proposals for improving ESnet performance by upgrading to T3 links and also by introducing a service-based packet priority scheme at the network layer were also examined.

  1. Inexpensive anti-fog coating for windows

    NASA Technical Reports Server (NTRS)

    Carmin, D. L., Jr.; Morrison, H. D.

    1971-01-01

    Coating applications include anti-fog protection for deep-sea diving equipment, fire protection helmets, and windows of vehicles used in hazardous environments. Basic coating composition includes liquid detergent, deionized water, and oxygen compatible fire-resistant oil. Composition prevents visor fogging under maximum metabolic load for 5 hours and longer.

  2. A simple image display application for windows.

    PubMed

    Conrad, G R

    1997-08-01

    The purpose of this project was to develop a simple application for displaying low-to-moderate resolution digital images under the Windows operating environment. The display of scintigraphic images was of special interest, and for this reason the program was designed to show sequences of images and to account for broad ranges of pixel values. In order to function under a variety of Windows versions, the program was developed using the 16-bit Microsoft C +2 compiler and targeted for Windows 3.1 enhanced. It was tested with Trionix images for nuclear medicine and Siemens for computed tomography (CT) and magnetic resonance (MR). The resulting application, called SID, successfully read Magnetom, Somatom, Trionix, and Interfile images of dimension 512 or less on Intel-based Windows PCs with 256 color SVGA-compatible (Super Video Graphics Adapters) video hardware. Early applications of the program included remote monitoring of image studies, resident review of teaching cases, review of research images, and preparation of educational materials. This article describes the features, operation, and potential applications of SID. PMID:9268906

  3. Polycrystal GaAs infrared windows

    NASA Astrophysics Data System (ADS)

    Wada, Hideo; Shibata, Ken-ichiro; Yamashita, Masashi; Nakayama, Shigeru; Fujii, Akihito

    2001-09-01

    There are difficult points such as lowering of the detection or recognition capability of some targets by aerodynamic heating with speedup of the aircraft and missile and restriction of the operation by the raindrop in rainfall time on the conventional ZnS infrared window application used for missile seeker and FLIR equipment. Therefore, in this study, the promising polycrystal GaAs which has low infrared radiations in high temperature was produced using HB method (Horizontal Boat method) and VG method (Vertical Boat method) as a new infrared window material expected the durability for rain erosion. As the result, 70mm2 windows by the HB method and 100mm diameter windows by VB method were realized. Moreover, their optical characteristics, mechanical properties and thermal shock durabilities were measured and they were confirmed to be about 56% in average transmittance in the wavelength of 10micrometers bands, 530~630kg/mm2 in their hardness and thermostable at 300 degree(s)C.

  4. Considerations When Upgrading and Renovating Window Systems

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    Today's educational facilities managers face many challenges. As stewards of their campus' physical assets, these professionals are charged with improving students' learning environments, saving money, and maintaining the historical and aesthetic integrity of their buildings. For schools and universities that have not replaced their windows in…

  5. Sliding, Insulating Window Panel Reduces Heat Loss.

    ERIC Educational Resources Information Center

    School Business Affairs, 1984

    1984-01-01

    A new sliding insulated panel reduces window heat loss up to 86 percent, and infiltration 60-90 percent, paying for itself in 3-9 years. This article discusses the panel's use and testing in the upper Midwest, reporting both technical characteristics and users' reactions. (MCG)

  6. Windows 8: What Educators Need to Know

    ERIC Educational Resources Information Center

    Vedder, Richard G.

    2012-01-01

    In October 2012, Microsoft will release the commercial version of its next operating system, presently called "Windows 8." This version represents a significant departure from the past. Microsoft wants this operating system to meet user needs regardless of physical platform (e.g., desktop, notebook, tablet, mobile phone). As part of this mission,…

  7. Schools Facing the Expiration of Windows XP

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2013-01-01

    Microsoft's plans to end support for Windows XP, believed to be the dominant computer operating system in K-12 education, could pose big technological and financial challenges for districts nationwide--issues that many school systems have yet to confront. The giant software company has made it clear for years that it plans to stop supporting XP…

  8. New Window into the Human Body

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  9. Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-12-01

    We present dynamically self-consistent mantle-scale laboratory models that have been conducted to improve our understanding of the influence of slab window opening on subduction dynamics, mantle flow and associated dynamic topography over geological time scales. The adopted setup consists of a two-layer linearly viscous system simulating the subduction of a fixed plate of silicone (lithosphere) under negative buoyancy in a viscous layer of glucose syrup (mantle). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We found that the opening of a slab window does not produce consistent changes of the geometry and the kinematics of the slab. On the contrary, slab-induced mantle circulation, quantified both in the vertical and horizontal sections using the Feature Tracking image analysis technique, is strongly modified. In particular, rollback subduction and the opening of the slab window generate a complex mantle circulation pattern characterized by the presence of poloidal and toroidal components, with the importance of each evolving according to kinematic stages. Mantle coming from the oceanic domain floods through the slab window, indenting the supra-slab mantle zone and producing its deformation without any mixing between mantle portions. The opening of the slab window and the upwelling of sub-slab mantle produce a regional-scale non-isostatic topographic uplift of the overriding plate that would correspond to values ranging between ca. 1 and 5 km in nature. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compared them to the tectonics and volcanism of the Patagonian subduction zone. We found that the anomalous backarc volcanism that has been developing since the middle Miocene could result from the lateral flow of sub

  10. Sphere-cone-polynomial special window with good aberration characteristic

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Xin; Qu, He-Meng; Wang, Ling-Jie; Wang, Yu

    2013-07-01

    Optical windows with external surfaces shaped to satisfy operational environment needs are known as special windows. A novel special window, a sphere-cone-polynomial (SCP) window, is proposed. The formulas of this window shape are given. An SCP MgF2 window with a fineness ratio of 1.33 is designed as an example. The field-of-regard (FOR) angle is ±75°. From the window system simulation results obtained with the calculated fluid dynamics (CFD) and optical design software, we find that compared to the conventional window forms, the SCP shape can not only introduce relatively less drag in the airflow, but also have the minimal effect on imaging. So the SCP window optical system can achieve a high image quality across a super wide FOR without adding extra aberration correctors. The tolerance analysis results show that the optical performance can be maintained with a reasonable fabricating tolerance to manufacturing errors.

  11. Influence of the observation window size on the performance of multilayer traffic engineering

    NASA Astrophysics Data System (ADS)

    Yan, Qiang; De Maesschalck, Sophie; Colle, Didier; Puype, Bart; Lievens, Ilse; Pickavet, Mario; Demeester, Piet

    2003-08-01

    Although the Optical Transport Network, based on technologies such as Wavelength Division Multiplexing and Optical Cross-Connects, offers tremendous transportation capacity, its management requires frequent manual intervention. However, as the traffic pattern offered to today's transport networks is subject to continuous changes due to the Internet traffic dominance, an optical transport network with a smart, automatic and real-time control system, denoted as Intelligent Optical Network (ION) or Automatic Switched Optical Network (ASON), is desired by network operators. Duly and correctly retrieving the changing traffic load information is a very important factor for the successful deployment of an ION. In this paper, we discuss the influence of the observation window size used for collecting the traffic load information, on the performance of an ION. By comparing the performance of an ION using different traffic observation window sizes, we show that a smaller observation window harms the network stability; while a too large observation window worsens the network reliability. We demonstrate that a suitable traffic observation window size improves the offered Quality of Service (QoS) by reconfiguring the logical layer network at the right time and in the right way.

  12. Characteristics of red-emitting broad area stripe laser diodes with zinc diffused window structures

    NASA Astrophysics Data System (ADS)

    Ohno, Tomoki; Takiguchi, Mikio; Wakabayashi, Kazuya; Uchida, Hiroyuki; Naganuma, Kaori; Ohara, Maho; Ito, Satoshi; Hirata, Shoji

    2010-02-01

    We have applied zinc diffused window structures to 640 nm broad area stripe laser diodes (BALDs) for the first time. A solid-phase zinc diffusion technique was used for a thick single quantum well (SQW) in GaInP employing the short wavelength and disordered active layer possessed a blue shift of 58 nm in photoluminescence spectrum. We fabricated 10 mm arrays including twenty-five BALDs and each BALD consists of a 60 μm ridge stripe and a 1000 μm cavity. An initial catastrophic optical damage (COD) level of the window laser was increased by four times of a conventional none-window laser. A long-term reliability under automatic current control was investigated for initial output powers of 13W and 15W which overcome a previous demonstration of 7.2 W. Measured degradations within a period of 1000-hours were 5 % or less, in contrast a half-life period of our conventional none-window laser with an initial output power of 10 W was only 120-hours. Therefore the window structure improved the BALD in terms of the COD level and the long-term reliability.

  13. Process window control using CDU master

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tomoharu; Toki, Tsuyoshi; Tanaka, Daishi; Sato, Maki; Kosugi, Junichi; Tanaka, Rika; Sakasai, Naruo; Ohashi, Toshio; Nakasone, Ryoko; Tokui, Akira

    2012-03-01

    As double patterning techniques such as spacer double/quadruple patterning mature, ArF water immersion lithography is expected to be applied down to the 1x nm hp node or beyond. This will necessitate precise process control solutions to accommodate extremely small process windows. In the case of spacer double/quadruple patterning in particular, CD uniformity of the final feature is strongly related to the lithography performance of the initial pre-spacer feature. CD uniformity of the resist image is affected by many sources. In the case of the exposure tool, CD error on the reticle, as well as exposure dose and focus errors are the key factors. For the resist process, heterogeneity of the stacked resist film thickness, post exposure bake (PEB) plate temperature, and development all have an impact. Furthermore, the process wafer also has error sources that include under-layer non-uniformities or wafer flatness. Fortunately, the majorities of these non-uniformities are quite stable in a volume production process. To improve and maintain the CD uniformity, a technique to calculate exposure dose and focus correction values simultaneously using the measured resist image feature was reported previously [1]. Further, a demonstration of a correction loop using a neural network calculation model was reported in SPIE 2010 [2], and the corrected CD uniformity was less than 1.5 nm (3 sigma) within a wafer. For further improvement, a demonstration of precise dose and focus control using high order field-by-field correction was then reported at SPIE 2011[3]. In that work, the interand intra-field CD uniformities reported were less than 1 nm (3 sigma) respectively. A key aspect of this method is the simultaneous compensation of dose and focus offsets, which successfully maximizes the process margin of a target pattern. The Nikon CDU Master then derives the optimal control parameters for each compensation function in the scanner using the exposure dose and focus correction data

  14. Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L. W.; Robinson, W. D.

    1983-01-01

    A simple physical algorithm is presented which calculates the water vapor content of the lower troposphere from the 11 and 12 micron (split window) channels on the VISSR Atmospheric Sounder (VAS) on the Geostationary Operational Environmental Satellites. The algorithm is used to analyze a time series of VAS split window radiances observed at 15 km horizontal resolution over eastern North America during a 12 hr period on 13 July 1981. Results of the color coded images of the derived precipitable water fields are found to show vivid water vapor features whose broad structure and evolution are verified by the radiosonde and surface networks. The satellite moisture fields also show significant mesoscale features and rapid developments which are not resolved by the conventional networks. The VAS split window is determined to clearly differentiate those areas in which water vapor extends over a deep layer and is more able to support convective cells from those areas in which water vapor is confined to a shallow layer and is therefore less able to support convection. It is concluded that the VAS split windows can be used operationally to monitor mesoscale developments in the low-level moisture fields over relatively cloud-free areas of the United States.

  15. Convex optimization-based windowed Fourier filtering with multiple windows for wrapped-phase denoising.

    PubMed

    Yatabe, Kohei; Oikawa, Yasuhiro

    2016-06-10

    The windowed Fourier filtering (WFF), defined as a thresholding operation in the windowed Fourier transform (WFT) domain, is a successful method for denoising a phase map and analyzing a fringe pattern. However, it has some shortcomings, such as extremely high redundancy, which results in high computational cost, and difficulty in selecting an appropriate window size. In this paper, an extension of WFF for denoising a wrapped-phase map is proposed. It is formulated as a convex optimization problem using Gabor frames instead of WFT. Two Gabor frames with differently sized windows are used simultaneously so that the above-mentioned issues are resolved. In addition, a differential operator is combined with a Gabor frame in order to preserve discontinuity of the underlying phase map better. Some numerical experiments demonstrate that the proposed method is able to reconstruct a wrapped-phase map, even for a severely contaminated situation. PMID:27409020

  16. Photodetachment neutralizer development: Laser window design study: Volume 2, Window design details: Final report

    SciTech Connect

    Not Available

    1987-01-01

    During 1983, TRW conducted a photodetachment neutralizer development (PDN) - Laser Resonator study. The emphasis of this contract was to assess a technology base of the PDN concept. Three technology assessments were conducted: Mirror Technology assessments, Window Engineering Analysis/Technology assessment, and COIL medium modeling with emphasis on PDN issues. Based on the results of these technology assessments the follow-on contract was funded to develop a technology verification. Due to funding limitations this technology verification program was divided into two separate follow-on contracts. Under this follow-on contract, the following tasks were performed: Measure Attenuation Coefficient of 3M FC-104, FC-77, FC-43 with temperature and attenuation coefficient of sapphire, generate finite element/finite difference thermal/structural model of the HEX double window, determine thermal/structural response from the proposed operating conditions, develop option response data from the deflection/stress inputs, recommend design and operating parameters for demonstrator and operational HEX double window, generate Level 1 layouts and drawings of double paned demonstrator window and window mount/manifold, and generate preliminary layout drawings of shutter. Thermal and structural analyses were conducted for both the operational and demonstrator window heat exchanger (HEX) designs and operating conditions.

  17. Effect of AlGaAs composition on the type-I to type-II transition in AlInAs/AlGaAs self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Neffati, R.; Saïdi, I.; Ben Radhia, S.; Boujdaria, K.; Testelin, C.

    2015-08-01

    We study the transition from type-I to type-II AlInAs/AlGaAs self-assembled quantum dots (QDs) which is induced by changing the Al composition of an AlGaAs matrix. We found theoretical evidence for type-II band alignment above the crossover Al concentration (x\\gt {x}{{c}}=0.43). For this purpose, we obtained the phase diagram for different QD radii, and we can identify the region where the electron states derived from the X-valley are lower than those derived from the Γ-point. The spatial distribution of electrons and holes is very sensitive to QD size variations. Furthermore, the effect of the QD type on the exciton binding energy is investigated. The ground-state exciton binding energy is always significantly smaller for type-II than for corresponding type-I systems, which originates from the redistribution of the electron and hole wave function.

  18. Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs /AlGaAs Heterostructure

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2016-04-01

    We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs /AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.

  19. WINDOW 4.0: Documentation of calculation procedures

    SciTech Connect

    Finlayson, E.U.; Arasteh, D.K.; Huizenga, C.; Rubin, M.D.; Reilly, M.S.

    1993-07-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Building Technologies Group at the Lawrence Berkeley Laboratory for calculating the thermal and optical properties necessary for heat transfer analyses of fenestration products. This report explains the calculation methods used in WINDOW 4.0 and is meant as a tool for those interested in understanding the procedures contained in WINDOW 4.0. All the calculations are discussed in the International System of units (SI). WINDOW 4.0 is the latest in a series of programs released by the Lawrence Berkeley Laboratory. The WINDOW program has its roots in a paper detailing a method for calculating heat transfer through windows [Rubin, 1982]. WINDOW 4.0 replaces the widely used 3.1 version. Although WINDOW 4.0 is a major revision, many of the algorithms used in WINDOW 4.0 build upon those previously documented [Arasteh, 1989b], [Furler, 1991]. This report documents the calculations that are unchanged from WINDOW 3.1, as well as those calculations that are new to WINDOW 4.0. This report uses the organization of the WINDOW 4.0 program. Results displayed on a WINDOW 4.0 screen are discussed in a section describing that screen. In the conclusion the aspects of the calculation method currently slated for revision are discussed. A glossary of variables used throughout the report is found in Section 11.

  20. Photoluminescence from InGaAs/GaAs quantum well regrown on a buried patterned oxidized AlAs layer

    NASA Astrophysics Data System (ADS)

    Chouchane, F.; Makhloufi, H.; Calvez, S.; Fontaine, C.; Almuneau, G.

    2014-02-01

    We present a quasi-planar technological approach for forming a flexible and versatile confinement scheme based on oxidation of AlGaAs buried layers combined to an epitaxial regrowth. This method improves the electrical and optical confinements compared to the lateral oxidation since it allows to define confinement areas from a planar surface. This technique is suitable for the realization of advanced integrated photonic components arrays with close device-to-device spacing such as two-dimensional arrays of vertical-cavity surface-emitting lasers. Our results prove that the oxidation and epitaxial regrowth can be sequenced in a process flow, leading to viable confinement while preserving good radiative properties.

  1. Photoluminescence from InGaAs/GaAs quantum well regrown on a buried patterned oxidized AlAs layer

    SciTech Connect

    Chouchane, F.; Makhloufi, H.; Calvez, S.; Fontaine, C.; Almuneau, G.

    2014-02-10

    We present a quasi-planar technological approach for forming a flexible and versatile confinement scheme based on oxidation of AlGaAs buried layers combined to an epitaxial regrowth. This method improves the electrical and optical confinements compared to the lateral oxidation since it allows to define confinement areas from a planar surface. This technique is suitable for the realization of advanced integrated photonic components arrays with close device-to-device spacing such as two-dimensional arrays of vertical-cavity surface-emitting lasers. Our results prove that the oxidation and epitaxial regrowth can be sequenced in a process flow, leading to viable confinement while preserving good radiative properties.

  2. Continuous neural network with windowed Hebbian learning.

    PubMed

    Fotouhi, M; Heidari, M; Sharifitabar, M

    2015-06-01

    We introduce an extension of the classical neural field equation where the dynamics of the synaptic kernel satisfies the standard Hebbian type of learning (synaptic plasticity). Here, a continuous network in which changes in the weight kernel occurs in a specified time window is considered. A novelty of this model is that it admits synaptic weight decrease as well as the usual weight increase resulting from correlated activity. The resulting equation leads to a delay-type rate model for which the existence and stability of solutions such as the rest state, bumps, and traveling fronts are investigated. Some relations between the length of the time window and the bump width is derived. In addition, the effect of the delay parameter on the stability of solutions is shown. Also numerical simulations for solutions and their stability are presented. PMID:25677526

  3. A CLIPS/X-window interface

    NASA Technical Reports Server (NTRS)

    Pohl, Kym Jason

    1991-01-01

    The design and implementation of an interface between the C Language Integrated Production System (CLIPS) expert system development environment and the graphic user interface development tools of the X-Window system are described. The underlying basis of the CLIPS/X-Window is a client-server model in which multiple clients can attach to a single server that interprets, executes, and returns operation results, in response to client action requests. Implemented in an AIX (UNIX) operating system environment, the interface has been successfully applied in the development of graphics interfaces for production rule cooperating agents in a knowledge-based computer aided design (CAD) system. Initial findings suggest that the client-server model is particularly well suited to a distributed parallel processing operational mode in a networked workstation environment.

  4. Performance Criteria for Residential Zero Energy Windows

    SciTech Connect

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-10-09

    This paper shows that the energy requirements for today's typical efficient window products (i.e. ENERGY STAR{trademark} products) are significant when compared to the needs of Zero Energy Homes (ZEHs). Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate. In heating dominated climates, windows with U-factors of 0.10 Btu/hr-ft{sup 2}-F (0.57 W/m{sup 2}-K) will become energy neutral. In mixed heating/cooling climates a low U-factor is not as significant as the ability to modulate from high SHGCs (heating season) to low SHGCs (cooling season).

  5. OBSERVATIONAL WINDOW FUNCTIONS IN PLANET TRANSIT SURVEYS

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R. E-mail: skane@ipac.caltech.edu

    2009-09-01

    The probability that an existing planetary transit is detectable in one's data is sensitively dependent upon the window function of the observations. We quantitatively characterize and provide visualizations of the dependence of this probability as a function of orbital period upon several observing strategy and astrophysical parameters, such as length of observing run, observing cadence, length of night, transit duration and depth, and the minimum number of sampled transits. The ability to detect a transit is directly related to the intrinsic noise of the observations. In our simulations of observational window functions, we explicitly address noncorrelated (Gaussian or white) noise and correlated (red) noise and discuss how these two noise components affect transit detectability in fundamentally different manners, especially for long periods and/or small transit depths. We furthermore discuss the consequence of competing effects on transit detectability, elaborate on measures of observing strategies, and examine the projected efficiency of different transit survey scenarios with respect to certain regions of parameter space.

  6. An expert system for window glazing design

    SciTech Connect

    Foss, R.V. ); Droste, D.H.

    1990-01-01

    An integrated expert system was developed to facilitate the design of window glass for structural strength, hydrostatic loads, sound attenuation, and solar control. The integrated software consists of a text-based interface, a rule-based expert system, and two neural networks. The text of a glazing design guide is linked by related topics and concepts. The software's design feature lets the user enter design parameters for the window choice via an interactive consultation in to a rule-based expert system that critiques the design. The technical aspects of the glass's structural strength are based primarily on linear methods published by the American Architectural Manufacturers Association Statistical correlations for the new nonlinear failure prediction for glass strength are used to automatically design for the minimum glass thickness required to withstand a specified load. Neural networks estimate values for sound attenuation and solar transmission characteristics from laboratory test data on selected glass constructions.

  7. Energy performance analysis of prototype electrochromic windows

    SciTech Connect

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  8. Diamond windows in a thermal shock environment

    SciTech Connect

    Klein, C.A.

    1995-12-31

    For most infrared-transmitting materials the primary cause of failure in a missile window/dome application can be attributed to brittle fracture induced by tensile stresses originating from instantaneous temperature gradients generated by aerodynamic heating. To describe the thermal shock I rely on the well known expression for the maximum stress experienced by a clamped plate (or a complete sphere), if there is a linear temperature variation across the thickness and both surfaces are free to expand.

  9. Diamondlike carbon protective coatings for optical windows

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.

    1989-01-01

    Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.

  10. DETAIL VIEW, OXEYE WINDOW, SOUTH WALL OF SOUTH GARRET. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, OX-EYE WINDOW, SOUTH WALL OF SOUTH GARRET. THE MUNTIN PATTERN USED IN THIS WINDOW WAS REFERRED TO AS “GOTHIC” IN THE EIGHTEENTH CENTURY - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  11. Evaluation criteria and test methods for electrochromic windows

    SciTech Connect

    Czanderna, A.W. ); Lampert, C.M. )

    1990-07-01

    Report summarizes the test methods used for evaluating electrochromic (EC) windows, and summarizes what is known about degradation of their performance, and recommends methods and procedures for advancing EC windows for buildings applications. 77 refs., 13 figs., 6 tabs.

  12. 10. TYPICAL SIDE WALL WINDOW AND WATER TABLE. The water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. TYPICAL SIDE WALL WINDOW AND WATER TABLE. The water table is an extension of the order base, and the lower torus breaks for ventilation, which applies to all windows. - Westminster Presbyterian Church, 273 Meeting Street, Charleston, Charleston County, SC

  13. WINDOW WITH ORIGINAL PANELED FOLDING SHUTTERS, SECOND FLOOR FRONT ROOM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WINDOW WITH ORIGINAL PANELED FOLDING SHUTTERS, SECOND FLOOR FRONT ROOM, LOOKING OUT WALNUT STREET (SOUTH). NOTE ALTERED LOWER SECTION MADE CA. 1840. Compare window in PA-1436 A-37 - Kid-Chandler House, 323 Walnut Street, Philadelphia, Philadelphia County, PA

  14. 35. DETAIL VIEW, WEST WINDOW IN WEST ELEVATION GABLE (NOTE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. DETAIL VIEW, WEST WINDOW IN WEST ELEVATION GABLE (NOTE: THE MOLDED STRINGCOURSE THAT PROJECTS FROM THE BASE OF THE FIRST FLOOR WINDOW ARCH AND VISIBLE WATERTABLE) - Kenworthy Hall, State Highway 14 (Greensboro Road), Marion, Perry County, AL

  15. Diamond technology for Endo-KEW seeker windows

    NASA Astrophysics Data System (ADS)

    Ravi, K. V.

    1992-05-01

    The attractions of low pressure synthesized diamond films and thick diamond slabs for Endo-KEW seeker window applications are presented. The use of diamond in two forms, as thin films in combination with silicon windows and as thick, free standing windows are discussed. A novel concept of internally cooled silicon/diamond windows that can withstand the rigors of high velocity, endo-atmospheric flight, that do not suffer from window irradiation resulting from aero-optic effects and have the potential for application as multispectral windows is discussed. The synthesis and processing aspects of thin diamond films and free standing diamond windows are presented with an analysis of the significant advantages of silicon and diamond for the fabrication of Endo-KEW seeker windows.

  16. DETAIL, EAST ELEVATION. THIS LUNETTE WINDOW POSITIONED IN A BLIND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, EAST ELEVATION. THIS LUNETTE WINDOW POSITIONED IN A BLIND ARCH ECHOES A SIMILAR TREATMENT OF THE VENETIAN WINDOWS IN THE HOUSE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  17. 12. TRIPLE WINDOW, FIRST FLOOR, SOUTH SIDE. Typical for all ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TRIPLE WINDOW, FIRST FLOOR, SOUTH SIDE. Typical for all triple windows on first and second floors. Note single swing jib door - John Joyner Smith House, 400 Wilmington Street, Beaufort, Beaufort County, SC

  18. 23. CORNICES AND WINDOW ARCHITRAVES OF SOUTHEAST AND SOUTHWEST ROOMS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORNICES AND WINDOW ARCHITRAVES OF SOUTHEAST AND SOUTHWEST ROOMS, FIRST FLOOR. Door architraves similar to window architraves. - John Joyner Smith House, 400 Wilmington Street, Beaufort, Beaufort County, SC

  19. Orthogonal sets of data windows constructed from trigonometric polynomials

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1989-01-01

    Suboptimal, easily computable substitutes for the discrete prolate-spheroidal windows used by Thomson for spectral estimation are given. Trigonometric coefficients and energy leakages of the window polynomials are tabulated.

  20. 13. INTERIOR OF NORTHEAST PHOTO TOWER WITH WINDOW OPEN; ELECTRICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF NORTHEAST PHOTO TOWER WITH WINDOW OPEN; ELECTRICAL POWER BOX BELOW WINDOW - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Energy and Power Evaluation Program for Windows

    2000-06-27

    ENPEP for windows has its origins in the DOS version of the software, however, the Windows release is significantly modified and rather different in structure and capabilities from the older DOS version of ENPEP. ENPEP for Windows provides the user with a graphical interface for designing a comprehensive model of the energy system of a country or region. The BALANCE submodel processes a representative network of all energy production, conversion, transport, distribution, and utilization activitiesmore » in a country (or region) as well as the flows of energy and fuels among these activities. The objective of the model is to simulate energy market and determine energy supply and demand balance over a long-term period of up to 75 years. The environmental aspect is also taken into account by calculating the emissions of various pollutants. In addition to the energy costs, the environmental costs are also calculated by the model. These costs can be used to affect the solution found by the market equilibrium algorithm. The main purpose of the software is to provide analytical capability and tools for the various analyses of energy and environmental systems, as well as for development of long-term energy strategy of a country or region.« less

  2. Microwave Plasma Window Theory and Experiments

    NASA Astrophysics Data System (ADS)

    McKelvey, Andrew; Zheng, Peng; Franzi, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Plasma, Pulsed Power,; Microwave Laboratory Team

    2011-10-01

    The microwave plasma window is an experiment designed to promote RF breakdown in a controlled vacuum-gas environment using a DC bias. Experimental data has shown that this DC bias will significantly reduce the RF power required to yield breakdown, a feature also shown in recent simulation. The cross-polarized conducting array is biased at (100's V) DC on the surface of a Lucite vacuum window. Microwave power is supplied to the window's surface by a single 1-kW magnetron operating at 2.45 GHz CW. The goal of this project is to establish controllable characteristics relating vacuum pressure, DC bias, RF power required for surface breakdown, as well as RF transmission after the formation of plasma. Experimental data will be compared with multipactor susceptibility curves generated using a Monte Carlo simulation which incorporates an applied DC bias and finite pressures of air and argon. Research supported by an AFOSR grant on the Basic Physics of Distributed Plasma Discharge, AFRL, L-3 Communications, and Northrop Grumman.

  3. A review of electrochromic window performance factors

    SciTech Connect

    Selkowitz, S.E.; Rubin, M.; Lee, E.S.; Sullivan, R.; Finlayson, E.; Hopkins, D.

    1994-04-01

    The performance factors which will influence the market acceptance of electrochromic windows are reviewed. A set of data representing the optical properties of existing and foreseeable electrochromic window devices was generated. The issue of reflective versus absorbing electrochromics was explored. This data was used in the DOE 2.1 building energy model to calculate the expected energy savings compared to conventional glazings. The effects of several different control strategies were tested. Significant energy and peak electric demand benefits were obtained for some electrochromic types. Use of predictive control algorithms to optimize cooling control may result in greater energy savings. Initial economic results considering annual savings, cooling equipment cost savings, and electrochromic window costs are presented. Calculations of thermal and visual comfort show additional benefits from electrochromics but more work is needed to quantify their importance. The design freedom and aesthetic possibilities of these dynamic glazings should provide additional market benefits, but their impact is difficult to assess at this time. Ultimately, a full assessment of the market viability of electrochromics must consider the impacts of all of these issues.

  4. Flexible solid-state photoelectrochromic windows

    SciTech Connect

    Pichot, F.; Ferrere, S.; Pitts, R.J.; Gregg, B.A.

    1999-11-01

    Photoelectrochromic smart window technology is extended to include the use of flexible substrates and solid-state electrolytes. This should facilitate their application as retrofit modifications of office windows, where, by blocking incoming solar irradiation, they could substantially lower air-conditioning costs. These devices are based on a dye-sensitized TiO{sub 2} electrode coupled with a 500 nm thick WO{sub 3} electrochromic counter electrode, separated by a cross-linked polymer electrolyte containing LiI. A novel method for preparing conducting nanoporous TiO{sub 2} films is described that allows for the construction of these devices on flexible organic substrates. Colloidal solutions of TiO{sub 2} free of surfactants were spin-coated onto indium-tin oxide coated polyester substrates, resulting in highly transparent films ranging from 100 nm to 1 {micro}m in thickness. Upon annealing at 100 C, these films were strongly adherent and displayed excellent photoconductivity as shown by their current-voltage characteristics. The devices typically transmit 75% of visible light in the bleached state. After a few minutes of exposure to white light (75 mW/cm{sup 2}), the windows turn dark blue, transmitting only 30% of visible light. They spontaneously bleach back to their initial noncolored state upon removal of the light source.

  5. Reactively evaporated multilayer antireflection coatings for Ge optical window

    NASA Astrophysics Data System (ADS)

    Asghar, M. H.; Placido, F.; Naseem, S.

    2007-04-01

    Two multilayer antireflection (AR) coating configurations are designed, prepared and characterized. These AR coatings are designed for a 1 mm thick Ge optical window in the 3.25-5.25 µm band. Ta2O5 and TiO2 are used as high index materials along with SiO2 as low index material. Configuration 1 comprises nine alternating layers of SiO2 and Ta2O5, whereas configuration 2 comprises seven alternating layers of SiO2 and TiO2. Post-deposition annealing is also carried out in the temperature range 150-450 °C for 10 h. The prepared multilayered structures are characterized optically and structurally using a spectrophotometer, an atomic force microscope, x-ray diffraction and a scanning electron microscope. Optical characterization shows that multilayered structures have high absorption for as-deposited samples. A considerable improvement in the transmission profiles for the two multilayered configurations is observed at 350 °C with peak and average transmission for both the configurations exceeding 90%. The as-prepared samples show predominantly amorphous-like structure with pronounced peaks for configuration 2 only. Delamination (for configuration 1) and cracking (for configuration 2) of the multilayered structures are witnessed at an annealing temperature of 450 °C.

  6. Window Area and Development Drive Spatial Variation in Bird-Window Collisions in an Urban Landscape

    PubMed Central

    Hager, Stephen B.; Cosentino, Bradley J.; McKay, Kelly J.; Monson, Cathleen; Zuurdeeg, Walt; Blevins, Brian

    2013-01-01

    Collisions with windows are an important human-related threat to birds in urban landscapes. However, the proximate drivers of collisions are not well understood, and no study has examined spatial variation in mortality in an urban setting. We hypothesized that the number of fatalities at buildings varies with window area and habitat features that influence avian community structure. In 2010 we documented bird-window collisions (BWCs) and characterized avian community structure at 20 buildings in an urban landscape in northwestern Illinois, USA. For each building and season, we conducted 21 daily surveys for carcasses and nine point count surveys to estimate relative abundance, richness, and diversity. Our sampling design was informed by experimentally estimated carcass persistence times and detection probabilities. We used linear and generalized linear mixed models to evaluate how habitat features influenced community structure and how mortality was affected by window area and factors that correlated with community structure. The most-supported model was consistent for all community indices and included effects of season, development, and distance to vegetated lots. BWCs were related positively to window area and negatively to development. We documented mortalities for 16/72 (22%) species (34 total carcasses) recorded at buildings, and BWCs were greater for juveniles than adults. Based on the most-supported model of BWCs, the median number of annual predicted fatalities at study buildings was 3 (range = 0–52). These results suggest that patchily distributed environmental resources and levels of window area in buildings create spatial variation in BWCs within and among urban areas. Current mortality estimates place little emphasis on spatial variation, which precludes a fundamental understanding of the issue. To focus conservation efforts, we illustrate how knowledge of the structural and environmental factors that influence bird-window collisions can be used

  7. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications

    SciTech Connect

    Hoffmann, Sabine; Lee, Eleanor S.; Clavero, César

    2014-01-29

    Current thermochromic windows modulate solar transmission primarily within the visible range, resulting in reduced space-conditioning energy use but also reduced daylight, thereby increasing lighting energy use compared to conventional static, near-infrared selective, low-emittance windows. To better understand the energy savings potential of improved thermochromic devices, a hypothetical near-infrared switching thermochromic glazing was defined based on guidelines provided by the material science community. In this paper, EnergyPlus simulations were conducted on a prototypical large office building and a detailed analysis was performed showing the progression from switching characteristics to net window heat flow and perimeter zone loads and then to perimeter zone heating, ventilation, and air-conditioning (HVAC) and lighting energy use for a mixed hot/cold climate and a hot, humid climate in the US. When a relatively high daylight transmission is maintained when switched (Tsol=0.10–0.50 and Tvis=0.30–0.60) and if coupled with a low-e inboard glazing layer (e=0.04), the hypothetical thermochromic window with a low critical switching temperature range (14–20 °C) achieved reductions in total site annual energy use of 14.0–21.1 kW h/m2-floor-yr or 12–14% for moderate- to large-area windows (WWR≥0.30) in Chicago and 9.8–18.6 kW h/m2-floor-yr or 10–17% for WWR≥0.45 in Houston compared to an unshaded spectrally-selective, low-e window (window E1) in south-, east-, and west-facing perimeter zones. Finally, if this hypothetical thermochromic window can be offered at costs that are competitive to conventional low-e windows and meet esthetic requirements defined by the building industry and end users, then the technology is likely to be a viable energy-efficiency option for internal load dominated commercial buildings.

  8. A Windowing Frequency Domain Adaptive Filter for Acoustic Echo Cancellation

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Qiu, Xiaojun

    This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.

  9. 14 CFR 29.775 - Windshields and windows.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 29.775 Section 29.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Accommodations § 29.775 Windshields and windows. Windshields and windows must be made of material that will...

  10. 14 CFR 27.775 - Windshields and windows.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 27.775 Section 27.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.775 Windshields and windows. Windshields and windows must be made of material that will not...

  11. Nonuniform Effects of Reinstatement within the Time Window

    ERIC Educational Resources Information Center

    Galluccio, Llissa; Rovee-Collier, Carolyn

    2006-01-01

    A time window is a limited period after an event initially occurs in which additional information can be integrated with the memory of that event. It shuts when the memory is forgotten. The time window hypothesis holds that the impact of a manipulation at different points within the time window is nonuniform. In two operant conditioning…

  12. Antireflection-structured surfaces for mid-infrared entrance windows

    NASA Astrophysics Data System (ADS)

    Dubreuil, Didier; Harvey, Erol C.; Pigot, Claude; Rizvi, Nadeem H.

    1998-08-01

    SubWavelength Structured Surfaces (SWS), by synthesizing effective index of refraction, offer an attractive way to mimic antireflective coating effects. It is of particular interest for some IR materials of high index of refraction such as CdTe or KRS-5. These material are often used for entrance window in cryogenic IR instrument in the 20 microns band. For these materials, multilayer antireflective coatings provide limited performances in transmission, while expected performances of SWS can be very high even for a wavelength range covering both the N and Q atmospheric windows, from 7 microns to 28 microns. The SWS simulates a gradient index layer. Its main parameters are its pitch and its depth. The pitches required depend on the IR material index. For CdTe and KRS5, they are around 3 microns to work in N-band and Q-band and around 6 microns to work only on Q- band, and the depth required is around 10 microns to work till 28 microns. We have tried a new approach to realize these structures by using excimer laser ablation technique. We describe the used technique and our results for different materials such as CdTe, KRS5, CsBr and CsI. Antireflection structured surfaces on CdTe could offer an increase in transmission better than 25 percent at 24 microns. We measured a transmission efficiency of near 96 percent between 23 micrometers and 35 micrometers on KRS-5, and more than 95 percent between 18.5 micrometers and 35.5 micrometers on CsI.

  13. A note on windowing for the waveform relaxation

    NASA Technical Reports Server (NTRS)

    Zhang, Hong

    1994-01-01

    The technique of windowing has been often used in the implementation of the waveform relaxations for solving ODE's or time dependent PDE's. Its efficiency depends upon problem stiffness and operator splitting. Using model problems, the estimates for window length and convergence rate are derived. The electiveness of windowing is then investigated for non-stiff and stiff cases respectively. lt concludes that for the former, windowing is highly recommended when a large discrepancy exists between the convergence rate on a time interval and the ones on its subintervals. For the latter, windowing does not provide any computational advantage if machine features are disregarded. The discussion is supported by experimental results.

  14. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  15. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  16. A theoretical investigation of effective surface recombination velocity in AlGaAs/GaAs heteroface solar cells

    SciTech Connect

    Gee, J.M.; Drummond, T.J.

    1990-01-01

    An AlGaAs window layer is used in high-efficiency GaAs solar cells to reduce carrier recombination at the front surface. Free surfaces of III-V semiconductors have a high density of surface states that serve as recombination sites and create a depletion region at the front surface. We have performed a theoretical investigation of front-surface recombination that includes the effect of a surface space-charge layer. It was found that the surface space-charge layer can have a profound effect on front-surface recombination for thin or lightly doped window layers. 15 refs., 5 figs., 1 tab.

  17. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  18. Two Cases of Malleostapedotomy in Congenital Oval Window Atresia

    PubMed Central

    Ahn, Sang Hyeon; Kim, Da Hee; Choi, Jae Young

    2013-01-01

    Congenital anomaly of the oval window with an abnormal facial nerve course is an uncommon embryological defect, which is related to the underdevelopment of second branchial arch derivatives. Some treatments for improving hearing levels are available; these include hearing aids, vestibulotomy, neo-oval window formation, and stapes surgeries, including incudostapedotomy and malleostapedotomy. However, surgery for congenital anomalies of the oval window has rarely been described, usually in very small series of patients. We describe two cases of congenital anomalies of the oval window with aberrant facial nerve courses. One was a 40-year-old male diagnosed with unilateral congenital oval window atresia; the other was a 10-year-old male diagnosed with bilateral congenital oval window atresia. We also describe the clinical manifestations and treatment outcomes of malleostapedotomy for congenital anomalies of the oval window with aberrant facial nerve courses. PMID:24653925

  19. Improving Wang-Landau sampling with adaptive windows

    NASA Astrophysics Data System (ADS)

    Cunha-Netto, A. G.; Caparica, A. A.; Tsai, Shan-Ho; Dickman, Ronald; Landau, D. P.

    2008-11-01

    Wang-Landau sampling (WLS) of large systems requires dividing the energy range into “windows” and joining the results of simulations in each window. The resulting density of states (and associated thermodynamic functions) is shown to suffer from boundary effects in simulations of lattice polymers and the five-state Potts model. Here, we implement WLS using adaptive windows. Instead of defining fixed energy windows (or windows in the energy-magnetization plane for the Potts model), the boundary positions depend on the set of energy values on which the histogram is flat at a given stage of the simulation. Shifting the windows each time the modification factor f is reduced, we eliminate border effects that arise in simulations using fixed windows. Adaptive windows extend significantly the range of system sizes that may be studied reliably using WLS.

  20. Mechanical charactization of sonar window materials

    SciTech Connect

    DeTeresa, S.J.; Groves, S.E.; Harwood, P.J.; Sanchez, R.J.

    1996-03-25

    The three-dimensional mechanical behavior of thick Spectra/epoxy sonar window materials containing various special materials is summarized in this report. Three different materials, which were fabricated by two companies known as `A` and `B` were received from the Naval Warfare Center. The three materials designated `A with microspheres (A micron),` `A without microspheres (A),` and `B` were measured for all properties. The total number of tests was reduced through the assumption that the two orthogonal, in-place directions were identical. Consequently, these materials should have only six independent elastic variables. The measured constants and strengths are given.

  1. Infrared window materials and their fabrication

    SciTech Connect

    Chess, D.L.; White, W.B.

    1984-07-24

    Process for making densified ternary sulfide ceramics as infrared window materials using sulfide compounds MLn/sub 2/S/sub 4/ belonging to the Th/sub 3/P/sub 4/, CaFe/sub 2/O/sub 4/ and spinel structure types. These refractory sulfides show good sinterability especially when fired in flowing hydrogen sulfide, and they can be densified by a combination of hot-pressing and hot-isostatic pressing into ceramic pieces approaching their theoretical density with closed pores and which have good transmission characteristics in the infrared region.

  2. X-Windows PVT Widget Class

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.

    2006-01-01

    The X-Windows Process Validation Table (PVT) Widget Class ( Class is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network registration services for Information Sharing Protocol (ISP) graphical-user-interface (GUI) computer programs. Heretofore, ISP PVT programming tasks have required many method calls to identify, query, and interpret the connections and messages exchanged between a client and a PVT server. Normally, programmers have utilized direct access to UNIX socket libraries to implement the PVT protocol queries, necessitating the use of many lines of source code to perform frequent tasks. Now, the X-Windows PVT Widget Class encapsulates ISP client server network registration management tasks within the framework of an X Windows widget. Use of the widget framework enables an X Windows GUI program to interact with PVT services in an abstract way and in the same manner as that of other graphical widgets, making it easier to program PVT clients. Wrapping the PVT services inside the widget framework enables a programmer to treat a PVT server interface as though it were a GUI. Moreover, an alternate subclass could implement another service in a widget of the same type. This program was written by Matthew R. Barry of United Space Alliance for Johnson Space Center. For further information, contact the Johnson Technology Transfer Office at (281) 483-3809. MSC-23582 Shuttle Data Center File- Processing Tool in Java A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data

  3. Window taper functions for subaperture processing.

    SciTech Connect

    Doerry, Armin Walter

    2013-12-01

    It is well known that the spectrum of a signal can be calculated with a Discrete Fourier Transform (DFT), where best resolution is achieved by processing the entire data set. However, in some situations it is advantageous to use a staged approach, where data is first processed within subapertures, and the results are then combined and further processed to a final result. An artifact of this approach is the creation of grating lobes in the final response. The nature of the grating lobes, including their amplitude and spacing, is an artifact of window taper functions, subaperture offsets, and subaperture processing parameters. We assess these factors and exemplify their effects.

  4. Fused Silica and Other Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.

  5. "Virtual Cockpit Window" for a Windowless Aerospacecraft

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael F.

    2003-01-01

    A software system processes navigational and sensory information in real time to generate a three-dimensional-appearing image of the external environment for viewing by crewmembers of a windowless aerospacecraft. The design of the particular aerospacecraft (the X-38) is such that the addition of a real transparent cockpit window to the airframe would have resulted in unacceptably large increases in weight and cost. When exerting manual control, an aircrew needs to see terrain, obstructions, and other features around the aircraft in order to land safely. The X-38 is capable of automated landing, but even when this capability is utilized, the crew still needs to view the external environment: From the very beginning of the United States space program, crews have expressed profound dislike for windowless vehicles. The wellbeing of an aircrew is considerably promoted by a three-dimensional view of terrain and obstructions. The present software system was developed to satisfy the need for such a view. In conjunction with a computer and display equipment that weigh less than would a real transparent window, this software system thus provides a virtual cockpit window. The key problem in the development of this software system was to create a realistic three-dimensional perspective view that is updated in real time. The problem was solved by building upon a pre-existing commercial program LandForm C3 that combines the speed of flight-simulator software with the power of geographic-information-system software to generate real-time, three-dimensional-appearing displays of terrain and other features of flight environments. In the development of the present software, the pre-existing program was modified to enable it to utilize real-time information on the position and attitude of the aerospacecraft to generate a view of the external world as it would appear to a person looking out through a window in the aerospacecraft. The development included innovations in realistic

  6. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  7. Design and characterization of a durable and highly efficient energy-harvesting electrochromic window

    NASA Astrophysics Data System (ADS)

    Amasawa, Eri

    With the growing global energy demands, electrochromic window (ECW) technology has attracted great attention for its ability to reversibly change the transmittance of incoming light through applied moderate potential. While ECW has a great potential to conserve energy from lighting and air conditioning in buildings, ECW still consumes energy; ECW should be self-powered for further energy conservation. In this study, a new design of energy-harvesting electrochromic window (EH-ECW) based on fusion of two technologies, organic electrochromic window and dye-sensitized solar cell (DSSC) is presented. Unlike other self-powered smart windows such as photoelectrochromic device that only contains two states (i.e. closed circuit colored state and open circuit bleaching state), EH-ECW allows active tuning of transmittance through varying applied potential and function as a photovoltaic cell based on DSSC. The resulting device demonstrates fast switching rate of 1 second in both bleaching and coloring process through the use of electrochromic polymer as a counter electrode layer. In order to increase the transmittance of the device, cobalt redox couple and light colored yet efficient organic dye are employed. The organic dye utilized contains polymeric structure, which contributes to high cyclic stability. The device exhibits power conversion efficiency (PCE) of 4.5 % under AM 1.5 irradiation (100 mW/cm2), change in transmittance (Delta T = Tmax - Tmin) of 34 % upon applied potential, and shows only 3 % degradation in PCE after 5000 cycles.

  8. Environment resistant windows for space greenhouses

    NASA Astrophysics Data System (ADS)

    Gan, B. K.; Kondyurin, A.; Bilek, M.; Latella, B. A.

    One of the ways of providing a self-sustainable environment in space is to provide food and life support systems through bio-regenerative power i e a greenhouse It is an essential structure because it provides oxygen and food in a controlled environment The windows and frames of a greenhouse are generally made from glass or polymer panels which allow sunlight to enter Polymers are useful because they are lightweight transparent corrosion resistant and inexpensive However windows which are made from polymeric materials or polymer-based composites suffer from accelerated erosion due to the presence of atomic oxygen in space environment A metal oxide deposited on the surface of the polymer will aid in the resistance of these polymers to chemical attack as well as improving surface hardness and wear resistance characteristics In this study we modified the surfaces of polycarbonate PC by deposition and implantation of thin and transparent aluminium oxide Al 2 O 3 coatings The Al 2 O 3 plasma was produced using a cathodic arc deposition system with a combination of plasma immersion ion implantation PIII The coatings were then tested for resistance to atomic oxygen environment These were carried out by monitoring the mass loss of the deposited samples exposed to an rf oxygen plasma The morphology and optical properties of the coatings before and after exposure to oxygen plasma were then examined using electron microscopy profilometry and ellipsometry Mechanical properties and adhesion characteristics of the coatings

  9. The GODDESS ionization chamber: developing robust windows

    NASA Astrophysics Data System (ADS)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  10. Prediction of particulate contamination on aperture window

    NASA Technical Reports Server (NTRS)

    Lee, Aleck L.; Fong, Michael C.

    1994-01-01

    This paper presents an analysis to predict the effects of light scattering by surface particles on the sensor window of a missile during ascent flight. The particulate contaminant distribution on the window is calculated by tallying the number of particles in a set of size ranges. The particulate contamination at the end of the mission is predicted by adding the contributions from the events of ground and flight operations. The surface particle redistributions caused by vibroacoustically induced surface acceleration was found to contribute the most of the particulate surface contamination. The analytical surface obscuration calculation with a set of particle counts was compared to the results of image analyzer measurement. The analytical results, which were calculated with a given function of particle shape depending on the size, were more conservative than the measurement. A scattering calculation using a verified BSDF model showed that the scattering was less than 0.001 at 20 off the direction of the incident light in the mid IR wavelength when the surfaces were at Level 300 initially.

  11. User's manual for the Gaussian windows program

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1992-01-01

    'Gaussian Windows' is a method for exploring a set of multivariate data, in order to estimate the shape of the underlying density function. The method can be used to find and describe structural features in the data. The method is described in two earlier papers. I assume that the reader has access to both of these papers, so I will not repeat material from them. The program described herein is written in BASIC and it runs on an IBM PC or PS/2 with the DOS 3.3 operating system. Although the program is slow and has limited memory space, it is adequate for experimenting with the method. Since it is written in BASIC, it is relatively easy to modify. The program and some related files are available on a 3-inch diskette. A listing of the program is also available. This user's manual explains the use of the program. First, it gives a brief tutorial, illustrating some of the program's features with a set of artificial data. Then, it describes the results displayed after the program does a Gaussian window, and it explains each of the items on the various menus.

  12. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  13. Wide field camera observations of Baade's Window

    NASA Technical Reports Server (NTRS)

    Holtzman, Jon A.; Light, R. M.; Baum, William A.; Worthey, Guy; Faber, S. M.; Hunter, Deidre A.; O'Neil, Earl J., Jr.; Kreidl, Tobias J.; Groth, E. J.; Westphal, James A.

    1993-01-01

    We have observed a field in Baade's Window using the Wide Field Camera (WFC) of the Hubble Space Telescope (HST) and obtain V- and I-band photometry down to V approximately 22.5. These data go several magnitudes fainter than previously obtained from the ground. The location of the break in the luminosity function suggests that there are a significant number of intermediate age (less than 10 Gyr) stars in the Galactic bulge. This conclusion rests on the assumptions that the extinction towards our field is similar to that seen in other parts of Baade's Window, that the distance to the bulge is approximately 8 kpc, and that we can determine fairly accurate zero points for the HST photometry. Changes in any one of these assumptions could increase the inferred age, but a conspiracy of lower reddening, a shorter distance to the bulge, and/or photometric zero-point errors would be needed to imply a population entirely older than 10 Gyr. We infer an initial mass function slope for the main-sequence stars, and find that it is consistent with that measured in the solar neighborhood; unfortunately, the slope is poorly constrained because we sample only a narrow range of stellar mass and because of uncertainties in the observed luminosity function at the faint end.

  14. Portable Handheld Optical Window Inspection Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis; Dokos, Adam; Burns, Bradley

    2010-01-01

    The Portable Handheld Optical Window Inspection Device (PHOWID) is a measurement system for imaging small defects (scratches, pits, micrometeor impacts, and the like) in the field. Designed primarily for window inspection, PHOWID attaches to a smooth surface with suction cups, and raster scans a small area with an optical pen in order to provide a three-dimensional image of the defect. PHOWID consists of a graphical user interface, motor control subsystem, scanning head, and interface electronics, as well as an integrated camera and user display that allows a user to locate minute defects before scanning. Noise levels are on the order of 60 in. (1.5 m). PHOWID allows field measurement of defects that are usually done in the lab. It is small, light, and attaches directly to the test article in any orientation up to vertical. An operator can scan a defect and get useful engineering data in a matter of minutes. There is no need to make a mold impression for later lab analysis.

  15. Some Statistical Properties Of The Median Window

    NASA Astrophysics Data System (ADS)

    Frieden, B. R.

    1984-02-01

    Abstract. The median window operation is being increasingly used to process images. Although the deterministic properties of the median are fairly well known, its statistical properties are not. Consider a median window of width N scanning a noisy background image with white power spectrum. We present here the probability law for the median outputs, its mean, variance, and signal-to-noise ratio, and the probability that two successive median outputs are equal. Specialization is made to speckle imagery. Key results are as follows: the probability law is of a Bernoulli multinomial form; the mean is asymptotic with N to the average background times In 2, and hence is about 30% less than the background value; the variance is asymptotic with N to a 1/N dependence; signal-to-noise ratio is asymptotic with N to Ni171 In 2. Finally, the probability that two successive median outputs are equal is 2-1(N-1)/N, or slightly less than 0.5 for N >~ 7. This is independent of the type of image data at hand, i.e., whether speckle, Poisson, or normal, provided that it has a white power spectrum.

  16. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  17. An innovative transparent cranial window based on skull optical clearing An innovative transparent cranial window

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhang, Y.; Xu, T. H.; Luo, Q. M.; Zhu, D.

    2012-06-01

    Noninvasive optical methods for viewing the structural and functional organization of cortex have been playing important roles in brain research, which usually suffer from turbid skull. Various cranial window models based on surgical operation have been proposed, but have respective limitations. Here, an innovative transparent cranial window of mouse was established by topically treatment with a skull optical clearing solution (SOCS), rather than by craniotomy. Based on the experiment of optical clearing efficacy of skull in vitro, we found that the turbid skull became transparent within 25 min after application of SOCS. The USAF target is visible through the treated skull, and the calculated resolution can achieve 8.4 μm. After the in vivo skull was topically treated with SOCS, the cortical micro-vessels can be visible clearly. The quantitative analysis indicated that the minimum resolution diameter of micro-vessels in 14.4±0.8 μm through the transparent cranial window closed to that in 12.8±0.9 μm of the exposed cortical micro-vessels. Further, preliminary results from Laser Speckle Imaging demonstrated that there was no influence on cortical blood flow distribution of mouse after topically treatment with SOCS on skull. This transparent cranial window will provide a convenient model for cortex imaging in vivo, which is very significant for neuroscience research.

  18. Technology Advancements to Lower Costs of Electrochromic Window Glazing

    SciTech Connect

    Mark Burdis; Neil Sbar

    2008-07-13

    An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated

  19. Multilayer vacuum window for wide-band microwave plasma diagnostic systems

    SciTech Connect

    Cavazzana, Roberto; Moresco, Maurizio

    2006-10-15

    Microwave diagnostics, e.g., reflectometry and electron cyclotron emission in plasma machines, often require large windows displaying low attenuation and reflection on a wide band, in addition to some basic features such as vacuum tightness and mechanical robustness. Wide-band matching is usually achieved by coating the window with dielectric layers of suitable permittivity and thickness. On the vacuum side the coating must also be vacuum compatible and resistant to the thermal radiation coming from plasma. On the RFX machine, to satisfy these requirements, a boron nitride disk properly machined on the surface facing the plasma has been clamped to the existing fused silica window. The addition of a Teflon layer on the air side allowed to attain power reflection coefficients as low as 0.025 in the frequency ranges of 26.5-40, 40-56, and 56-75 GHz and as low as 0.01 in the frequency ranges of 75-92 and 92-110 GHz.

  20. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  1. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  2. Electrochromic window with high reflectivity modulation

    DOEpatents

    Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  3. Dual ion beam assisted deposition of biaxially textured template layers

    DOEpatents

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  4. Effect of wet oxidized AlxGa1-xAs layer on the interdiffusion of InGaAs/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Choe, Joong-Seon; Ryu, Sang-Wan; Choe, Byung-Doo; Lim, H.

    1998-06-01

    The effect of wet oxidized AlAs cap layer and AlGaAs interlayer on the thermal stability of In0.2Ga0.8As/GaAs quantum well (QW) is studied. The QW interdiffusion rate is observed to increase with the Al composition of the AlxGa1-xAs interlayer until x reaches about 0.5 and then saturate for x⩾0.5. When the oxidation is performed at 380 °C for 15 min, the threshold value of x for the enhancement of QW interdiffusion is found to be 0.3. It is also confirmed that the QW interdiffusion can only be explained when the strain effect in InGaAs is taken into account.

  5. Nanophotonics-enabled smart windows, buildings and wearables

    NASA Astrophysics Data System (ADS)

    Smith, Geoff; Gentle, Angus; Arnold, Matthew; Cortie, Michael

    2016-06-01

    Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose "smartness" is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs). The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR) and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.

  6. Review theories and experiments of improving HPM window breakdown thresholds

    NASA Astrophysics Data System (ADS)

    Chang, Chao

    2010-11-01

    Dielectric window breakdown is a seriously confronting challenge in HPM transmission and radiation. Breakdown at the vacuum/dielectric interface is triggered by multipactor and finally realized by plasma avalanche in the ambient desorbed or evaporated gas layer above the dielectric [1-4]. The methods of improving breakdown thresholds become key issues of HPM system. We review the main theoretical and experimental progress, and then, we further survey the mechanisms of multipactor suppression of the periodic rectangular [5] and triangular surface profiles [6-8] by dynamic analysis and particle-in-cell simulations, and the demonstration of improving HPM thresholds by proof-of-principle experiments and multi-GW experiments. We also synthesize the theory of using magnetic field [9] to suppress multipactor.[4pt] [1] C. Chang, et al., POP 15, 093508, 2008.[0pt] [2] C. Chang, et al., POP 16, 033505, 2009.[0pt] [3] C. Chang, et al., POP 16, 053506, 2009.[0pt] [4] C. Chang, et al., POP 17, 053301, 2010.[0pt] [5] C. Chang, et al., JAP 105, 123305, 2009.[0pt] [6] C. Chang, et al., POP 16, 083501, 2009.[0pt] [7] C. Chang, et al., LPB 28, 185, 2010.[0pt] [8] C. Chang, et al., PIER 101,157, 2010.[0pt] [9] C. Chang, et al., APL 96, 111502, 2010.

  7. Radiation detector and method of opaquing the mica window

    SciTech Connect

    Morris, H.; Christianson, C.

    1983-10-11

    An improved particle detection tube is disclosed including a method for applying a radiation transparent electrically non-conductive, opaque to ultraviolet light coating to the mica window of the tube. The coating reduces erroneous counts by preventing arcing between the tube anode and window. A purified mineral bituminous hydrocarbon based wax coating is applied to the mica window by cleaning the window with a hydrocarbon or chlorinated solvent rinsing with isopropyl alcohol drying the window dissolving 4 to 20 milligrams of purified bituminous hydrocarbon based wax in 1 to 2 milliliters of a hydrocarbon or chlorinated solvent on the window, and rotating the tube until the solvent evaporates to produce a film of the wax thereon.

  8. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  9. Two-dimensional lattice polymers: Adaptive windows simulations

    NASA Astrophysics Data System (ADS)

    Cunha-Netto, A. G.; Dickman, Ronald; Caparica, A. A.

    2009-04-01

    We report a numerical study of self-avoiding polymers on the square lattice, including an attractive potential between nonconsecutive monomers occupying neighboring lattice sites. Using Wang-Landau sampling (WLS) with adaptive windows, we obtain the density of states for chains of up to N=300 monomers and associated thermodynamic quantities. Finite size scaling analysis yields a transition temperature of Θ=1.505(18). WLS with adaptive windows enables one to simulate accurately the low-temperature regime, which is virtually inaccessible using traditional methods. Instead of defining fixed energy windows, as in usual WLS, this method uses windows with boundaries that depend on the set of energy values on which the histogram is flat at a given stage of the simulation. Shifting the windows each time the modification factor f is reduced, we eliminate border effects that arise in simulations using fixed windows.

  10. Science objectives and performance of a radiometer and window design for atmospheric entry experiments

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.; Davy, William C.; Whiting, Ellis E.

    1994-01-01

    The Radiative Heating Experiment, RHE, aboard the Aeroassist Flight Experiment, AFE, (now cancelled) was to make in-situ measurements of the stagnation region shock layer radiation during an aerobraking maneuver from geosynchronous to low earth orbit. The measurements were to provide a data base to help develop and validate aerothermodynamic computational models. Although cancelled, much work was done to develop the science requirements and to successfully meet RHE technical challenges. This paper discusses the RHE scientific objectives and expected science performance of a small sapphire window for the RHE radiometers. The spectral range required was from 170 to 900 nm. The window size was based on radiometer sensitivity requirements including capability of on-orbit solar calibration.

  11. Atmospheric emitted radiance interferometer (AERI): Status and the aerosol explanation for extra window region emissions

    SciTech Connect

    Revercomb, H.E.; Knuteson, R.O.; Best, F.A.; Dirkx, T.P.

    1996-04-01

    High spectral resolution observations of downwelling emission from 3 to 19 microns have been made by the Atmospheric Emitted Radiance Interferometer (AERI) Prototype at the Southern Great Plains (SGP) Cloud and Radiative Testbed (CART) site for over two years. The spectral data set from AERI provides a basis for improving clear sky radiative transfer; determining the radiative impact of clouds, including the derivation of cloud radiative properties; defining the influences of aerosols in the window regions; and retrieving boundary layer state properties, including temperature, water vapor, and other trace gases. The data stream of radiometrically and spectrally calibrated radiances is routinely provided by Pacific Northwest Laboratory (PNL) to those science teams requesting it, and further information on the instrument and data characteristics is available in the ARM Science Team proceedings for 1993 and 1994 and in several conference publications. This paper describes the AERI status, calibration, field experiment wit a new AERI-01 and schedule, window region emissions, and future AERI plans.

  12. Simulating Complex Window Systems using BSDF Data

    SciTech Connect

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  13. Porting salinas to the windows platform.

    SciTech Connect

    Reese, Garth M.; Wilson, Christopher Riley

    2006-06-01

    The ASC program has enabled significant development of high end engineering applications on massively parallel machines. There is a great benefit in providing these applications on the desktop of the analysts and designers, at least insofar as the small models may be run on these platforms, thus providing a tool set that spans the application needs. This effort documents the work of porting Salinas to the WINDOWS{trademark} platform. Selection of the tools required to compile, link, test and run Salinas in this environment is discussed. Significant problems encountered along the way are listed along with an estimation of the overall cost of the port. This report may serve as a baseline for streamlining further porting activities with other ASC codes.

  14. Isocurvature forecast in the anthropic axion window

    SciTech Connect

    Hamann, J.; Hannestad, S.; Raffelt, G.G.; Wong, Y.Y.Y. E-mail: sth@phys.au.dk E-mail: yvonne.wong@cern.ch

    2009-06-01

    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the ''anthropic window'' where the axion decay constant f{sub a} >> 10{sup 12} GeV and the initial misalignment angle Θ{sub i} << 1. In a minimal ΛCDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to α < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of five better than the current limit. In the parameter space of f{sub a} and H{sub I} (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.

  15. Low heat transfer, high strength window materials

    DOEpatents

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  16. The uncrowded window of object recognition

    PubMed Central

    Pelli, Denis G; Tillman, Katharine A

    2009-01-01

    It is now emerging that vision is usually limited by object spacing rather than size. The visual system recognizes an object by detecting and then combining its features. ‘Crowding’ occurs when objects are too close together and features from several objects are combined into a jumbled percept. Here, we review the explosion of studies on crowding—in grating discrimination, letter and face recognition, visual search, selective attention, and reading—and find a universal principle, the Bouma law. The critical spacing required to prevent crowding is equal for all objects, although the effect is weaker between dissimilar objects. Furthermore, critical spacing at the cortex is independent of object position, and critical spacing at the visual field is proportional to object distance from fixation. The region where object spacing exceeds critical spacing is the ‘uncrowded window’. Observers cannot recognize objects outside of this window and its size limits the speed of reading and search. PMID:18828191

  17. Launch window definition for sky target experiments.

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1973-01-01

    This paper is a brief report on the computer program developed for the Extraterrestrial Physics Barium Ion Cloud (BIC) Project. The mathematical analysis developed for the program along with its programing characteristics are pointed out to show that this program is adaptable to similar sky target projects. Definite viewing constraints are specified so that the chosen ground tracking stations can photograph the behavior of the sky target after its release. Viewing factors include the illumination of the target by the sun, the relative elevation look angle to the target from each tracking station, the solar and lunar depression angles at each tracking station, and the total sky background brightness of the target relative to each tracking station. Numeric values are assigned to each factor through program input. The program output is flexible so that the results of the window calculations can be studied to the depth required.

  18. Managing coherence via put/get windows

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  19. Managing coherence via put/get windows

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  20. High efficiency novel window air conditioner

    DOE PAGESBeta

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  1. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  2. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  3. MAVIS III -- A Windows 95/NT Upgrade

    SciTech Connect

    Hardwick, M.F.

    1997-12-01

    MAVIS (Modeling and Analysis of Explosive Valve Interactions) is a computer program that simulates operation of explosively actuated valve. MAVIS was originally written in Fortran in the mid 1970`s and was primarily run on the Sandia Vax computers in use through the early 1990`s. During the mid to late 1980`s MAVIS was upgraded to include the effects of plastic deformation and it became MAVIS II. When the Vax computers were retired, the Gas Transfer System (GTS) Development Department ported the code to the Macintosh and PC platforms, where it ran as a simple console application. All graphical output was lost during these ports. GTS code developers recently completed an upgrade that provides a Windows 95/NT MAVIS application and restores all of the original graphical output. This upgrade is called MAVIS III version 1.0. This report serves both as a user`s manual for MAVIS III v 1.0 and as a general software development reference.

  4. THE METABOLOMIC WINDOW INTO HEPATOBILIARY DISEASE

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2014-01-01

    Summary The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develop. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver. PMID:23714158

  5. Windows on the axion. [quantum chromodynamics (QCD)

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the theta vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10(-12)eV is approx. less than m(a) which is approx. less than 10(6)eV, some 18 orders-of-magnitude. Laboratory experiments have excluded masses greater than 10(4)eV, leaving unprobed some 16 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producting detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10(-6)eV is approx. less than m(a) is approx. less than 10(-3)eV and 1eV is approx. less than m(a) is approx. less than 5eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve heavenly axions, are being planned or are underway.

  6. Adaptive explanations for sensitive windows in development

    PubMed Central

    2015-01-01

    Development in many organisms appears to show evidence of sensitive windows—periods or stages in ontogeny in which individual experience has a particularly strong influence on the phenotype (compared to other periods or stages). Despite great interest in sensitive windows from both fundamental and applied perspectives, the functional (adaptive) reasons why they have evolved are unclear. Here we outline a conceptual framework for understanding when natural selection should favour changes in plasticity across development. Our approach builds on previous theory on the evolution of phenotypic plasticity, which relates individual and population differences in plasticity to two factors: the degree of uncertainty about the environmental conditions and the extent to which experiences during development (‘cues’) provide information about those conditions. We argue that systematic variation in these two factors often occurs within the lifetime of a single individual, which will select for developmental changes in plasticity. Of central importance is how informational properties of the environment interact with the life history of the organism. Phenotypes may be more or less sensitive to environmental cues at different points in development because of systematic changes in (i) the frequency of cues, (ii) the informativeness of cues, (iii) the fitness benefits of information and/or (iv) the constraints on plasticity. In relatively stable environments, a sensible null expectation is that plasticity will gradually decline with age as the developing individual gathers information. We review recent models on the evolution of developmental changes in plasticity and explain how they fit into our conceptual framework. Our aim is to encourage an adaptive perspective on sensitive windows in development. PMID:26816521

  7. Biaxial flexural strength of optical window materials

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2009-10-01

    The design of high-energy laser windows critically depends on the availability of appropriate numbers for the allowable tensile stress. Relying on a "modulus of rupture" in conjunction with a "safety factor" usually results in overestimating the required thickness, which degrades the optical performance. The primary purpose of this paper is to clarify issues relating to Weibull's theory of brittle fracture and make use of the theory to assess the results of equibiaxial flexure testing that was carried out on laser-window material candidates. Specifically, we describe the failure-probability distribution in terms of the characteristic strength σC--i.e., the effective strength of a uniformly stressed 1-cm2 area---and the shape parameter m, which reflects the dispersion of surface-flaw sizes. A statistical analysis of flexural strength data thus amounts to obtaining the parameters σC and m, which is best done by directly fitting estimated cumulative failure probabilities to the appropriate expression derived from Weibull's theory. In this light, we demonstrate that (a) at the 1% failure-probability level, fusion-cast CaF2 and OxyFluoride Glass perform poorly compared to CVD-ZnSe; (b) available data for fused SiO2 and sapphire confirm the area-scaling principle, thus validating Weibull's theory; and (c) compressive coatings enhance the characteristic strength but degrade the shape parameter, which mitigates their benefit. In Appendix, it is shown that four-point bending data for fusion-cast CaF2 do not obey a simple two-parameter model but are indicative of a bimodal surface-flaw population.

  8. WORM - WINDOWED OBSERVATION OF RELATIVE MOTION

    NASA Technical Reports Server (NTRS)

    Bauer, F.

    1994-01-01

    The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.

  9. Sol-gel deposited electrochromic films for electrochromic smart window glass

    SciTech Connect

    Oezer, N.; Lampert, C.M.; Rubin, M.

    1996-08-01

    Electrochromic windows offer the ability to dynamically change the transmittance of a glazing. With the appropriate sensor and controls, this smart window can be used for energy regulation and glare control for a variety of glazing applications. The most promising are building and automotive applications. This work covers the use of sol-gel deposition processes to make active films for these windows. The sol-gel process offers a low-capital investment for the deposition of these active films. Sol-gel serves as an alternative to more expensive vacuum deposition processes. The sol-gel process utilizes solution coating followed by a hydrolysis and condensation. In this investigation the authors report on tungsten oxide and nickel oxide films made by the sol-gel process for electrochromic windows. The properties of the sol-gel films compare favorably to those of films made by other techniques. A typical laminated electrochromic window consists of two glass sheets coated with transparent conductors, which are coated with the active films. The two sheets are laminated together with an ionically conductive polymer. The range of visible transmission modulation of the tungsten oxide was 60% and for the nickel oxide was 20%. The authors used the device configuration of glass/SnO{sub 2}:F/W0{sub 3}/polymer/Li{sub Z}NiO{sub x}H{sub y}/SnO{sub 2}:F glass to test the films. The nickel oxide layer had a low level of lithiation and possibly contained a small amount of water. Lithiated oxymethylene-linked poly(ethylene oxide) was used as the laminating polymer. Commercially available SnO{sub 2}:F/glass (LOF-Tec glass) was used as the transparent conducting glass. The authors found reasonable device switching characteristics which could be used for devices.

  10. Spallanzani Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    31 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a layered, light-toned mesa among other layered materials exposed in a mound that covers much of the floor of Spallanzani Crater.

    Location near: 58.3oS, 273.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  11. Rose windows and other details. San Bernardino Valley Union Junior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rose windows and other details. San Bernardino Valley Union Junior College, Auditorium Building. Rose window; front windows; drinking fountain alcove; proscenium arch; stage door. G. Stanley Wilson, Architect, A.I.A., Riverside, California. Sheet 12, job no. 692. Various scales. March 27, 1936. Application no. 1446, approved by the State of California, Department of Public Works, Division of Architecture, April 22, 1936. - San Bernardino Valley College, Auditorium, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. Stand-alone photovoltaic (PV) powered electrochromic window

    DOEpatents

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  13. Stand-alone photovoltaic (PV) powered electrochromic window

    DOEpatents

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  14. Detail of arched windows on north elevation; camera facing southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of arched windows on north elevation; camera facing southwest. - Mare Island Naval Shipyard, Smithery, California Avenue, west side at California Avenue & Eighth Street, Vallejo, Solano County, CA

  15. Cooled window for X-rays or charged particles

    DOEpatents

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  16. Cooled window for X-rays or charged particles

    DOEpatents

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  17. DETAIL VIEW, SOUTH PORTICO, CENTER DOOR OPENING CONTAINING FRENCH WINDOWS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, SOUTH PORTICO, CENTER DOOR OPENING CONTAINING FRENCH WINDOWS. (NOTE THE INCISED STUCCO MIMICKING ASHLAR STONE COURSING - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  18. Marguerite Arnet Residence, exterior window detail, looking north. Adam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Marguerite Arnet Residence, exterior window detail, looking north. - Adam & Bessie Arnet Homestead, Marguerite Arnet Residence, 560 feet northeast of Adam & Bessie Arnet Residence, Model, Las Animas County, CO

  19. 6. DETAIL OF CORNICE, ROOF AND WINDOWS, VIEW TO SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF CORNICE, ROOF AND WINDOWS, VIEW TO SOUTHEAST - Providence Sewage Treatment System, Ernest Street Pumping Station, Boiler House, Ernest Street & Allens Avenue, Providence, Providence County, RI

  20. 12. DETAIL, TYPICAL WINDOW BAY Delaware, Lackawanna & Western ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL, TYPICAL WINDOW BAY - Delaware, Lackawanna & Western Railroad Freight & Rail Yard, Multiple Unit Light Inspection Shed, New Jersey Transit Hoboken Terminal Rail Yard, Hoboken, Hudson County, NJ

  1. TENANT HOUSE, WINDOW DETAIL, NORTH FRONT, LOOKING SOUTH Irvine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TENANT HOUSE, WINDOW DETAIL, NORTH FRONT, LOOKING SOUTH - Irvine Ranch Agricultural Headquarters, Carillo Tenant House, Southwest of Intersection of San Diego & Santa Ana Freeways, Irvine, Orange County, CA

  2. Windows Program For Driving The TDU-850 Printer

    NASA Technical Reports Server (NTRS)

    Parrish, Brett T.

    1995-01-01

    Program provides WYSIWYG compatibility between video display and printout. PDW is Microsoft Windows printer-driver computer program for use with Raytheon TDU-850 printer. Provides previously unavailable linkage between printer and IBM PC-compatible computers running Microsoft Windows. Enhances capabilities of Raytheon TDU-850 hardcopier by emulating all textual and graphical features normally supported by laser/ink-jet printers and makes printer compatible with any Microsoft Windows application. Also provides capabilities not found in laser/ink-jet printer drivers by providing certain Windows applications with ability to render high quality, true gray-scale photographic hardcopy on TDU-850. Written in C language.

  3. 7. DETAIL, NORTH FRONT, EASTERN PORTION OF MAIN BLOCK, WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL, NORTH FRONT, EASTERN PORTION OF MAIN BLOCK, WINDOWS - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. 7. DETAIL, WINDOWS AND SAFETY LADDER AT RECEIVING DEPARTMENT, NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL, WINDOWS AND SAFETY LADDER AT RECEIVING DEPARTMENT, NORTH SIDE, NEAR WEST END. - United Engineering Company Shipyard, Inspection & Repair Shops, 2900 Main Street, Alameda, Alameda County, CA

  5. Detail of window on south elevation; camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of window on south elevation; camera facing north. - Mare Island Naval Shipyard, Ordnance Warehouse, Blake Avenue, northeast corner of Blake Avenue & Railroad Avenue, Vallejo, Solano County, CA

  6. 7. SOUTHEAST REAR DETAIL, SHOWING WINDOWS. VIEW TO NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTHEAST REAR DETAIL, SHOWING WINDOWS. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, Key City Electric Street Railroad, Powerhouse & Storage Barn, Eighth & Washington Streets, Dubuque, Dubuque County, IA

  7. Vacuum window glazings for energy-efficient buildings

    SciTech Connect

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. ); Soule, D.E. )

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  8. Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets

    NASA Astrophysics Data System (ADS)

    Fernandez, Sergio; Gdeisat, Munther A.; Salvi, Joaquim; Burton, David

    2011-06-01

    Fringe pattern analysis in coded structured light constitutes an active field of research. Techniques based on first projecting a sinusoidal pattern and then recovering the phase deviation permit the computation of the phase map and its corresponding depth map, leading to a dense acquisition of the measuring object. Among these techniques, the ones based on time-frequency analysis permit to extract the depth map from a single image, thus having potential applications measuring moving objects. The main techniques are Fourier Transform (FT), Windowed Fourier Transform (WFT) and Wavelet Transform (WT). This paper first analyzes the pros and cons of these three techniques, then a new algorithm for the automatic selection of the window size in WFT is proposed. This algorithm is compared to the traditional WT using adapted mother wavelet signals both with simulated and real objects, showing the performance results for quantitative and qualitative evaluations of the new method.

  9. Structural evolution of an antiformal window: the Scheiblingkirchen Window (Eastern Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Willingshofer, Ernst; Neubauer, Franz

    2002-10-01

    The Scheiblingkirchen window, a Lower Austroalpine tectonic window at the eastern margin of the Eastern Alps (Austria) was formed during Late Cretaceous continent-continent collision. Structural investigations including structural mapping, microstructural studies and texture analysis revealed a decompression-related three-stage tectonic history of Lower Austroalpine units during the formation of the Scheiblingkirchen window. (1) Intra-Lower Austroalpine nappe stacking was by top-to-the-N out-of-sequence thrusting of the Kirchberg fold nappe over the Wechsel nappe under lower greenschist facies metamorphic conditions. The structural expression of the stacking event (D 1) comprises a penetrative foliation containing a N-S trending stretching lineation, isoclinal recumbent folds trending subparallel to the stretching lineation and ultramylonites. Quartz and calcite microstructures indicate that dynamic recrystallization processes accompanied deformation. Their commonly moderately developed lattice preferred orientation record dominant slip on the prism and rhomb planes parallel to < a>. (2) Subsequent exhumation of previously stacked rocks is related to the formation of foliation-parallel mylonitic shear zones within an E-W extensional regime (D 2). Microstructures and textures suggest similar deformation temperatures during thrusting and extension. (3) A superimposed phase of NW-SE oriented horizontal shortening (D 3) was accommodated by large- and small-scale upright folding of the area around NE-SW trending axes and by backthrusting leading to the antiformal doming of the Scheiblingkirchen Window. Subsequent subvertical flattening resulting from the shortening phase led to the formation of NE-SW trending, outcrop-scale open recumbent folds. Low temperature deformation conditions as inferred from the low degree of recrystallization of quartz and calcite aggregates and the dominance of glide on the basal planes point to a cooling-related deformation event.

  10. Sliding-window raptor codes for efficient scalable wireless video broadcasting with unequal loss protection.

    PubMed

    Cataldi, Pasquale; Grangetto, Marco; Tillo, Tammam; Magli, Enrico; Olmo, Gabriella

    2010-06-01

    Digital fountain codes have emerged as a low-complexity alternative to Reed-Solomon codes for erasure correction. The applications of these codes are relevant especially in the field of wireless video, where low encoding and decoding complexity is crucial. In this paper, we introduce a new class of digital fountain codes based on a sliding-window approach applied to Raptor codes. These codes have several properties useful for video applications, and provide better performance than classical digital fountains. Then, we propose an application of sliding-window Raptor codes to wireless video broadcasting using scalable video coding. The rates of the base and enhancement layers, as well as the number of coded packets generated for each layer, are optimized so as to yield the best possible expected quality at the receiver side, and providing unequal loss protection to the different layers according to their importance. The proposed system has been validated in a UMTS broadcast scenario, showing that it improves the end-to-end quality, and is robust towards fluctuations in the packet loss rate. PMID:20215084

  11. Improvements in large window and optics production

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Messner, Bill; Hall, Chris; Supranowitz, Chris

    2007-04-01

    Fabrication of large optics has been a topic of discussion for decades. As early as the late 1980s, computer-controlled equipment has been used to semi-deterministically correct the figure error of large optics over a number of process iterations. Magnetorheological Finishing, MRF®, was developed and commercialized in the late 1990's to predictably and reliably allow the user to achieve deterministic results on a variety of optical glasses, ceramics and other common optical materials. Large and small optics such as primary mirrors, conformal optics and off-axis components are efficiently fabricated using this approach. More recently, specific processes, MR Fluids and equipment have been developed and implemented to enhance results when finishing large aperture sapphire windows. MRF, by virtue of its unique removal process, overcomes many of the drawbacks of a conventional polishing process. For example, lightweighted optics often exhibit a quilted pattern coincident with their pocket cell structure following conventional pad-based polishing. MRF does not induce mid-frequency errors and is capable of removing existing quilt patterns. Further, odd aperture shapes and part geometries which can represent significant challenges to conventional polish processing are simply and easily corrected with MRF tools. Similarly, aspheric optics which can often present multiple obstacles-particularly when lightweighted and off-axis-typically have a departure from best-fit sphere that is not well matched with to static pad-based polishing tools resulting in pad misfit and associated variations in removal. The conformal subaperture polishing tool inherent to the QED process works as well on typical circular apertures as it does on irregular shapes such as rectangles, petals and trapezoids for example and matches the surface perfectly at all points. Flats, spheres, aspheres and off-axis sections are easily corrected. The schedule uncertainties driven by edge roll and edge control

  12. Interior view of the window wall of the enclosed office ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the window wall of the enclosed office area taken from the main warehouse area showing the metal sash windows, view facing west - U.S. Marine Corps Base Hawaii, Kaneohe Bay, Warehouse 250, Aviation Storehouse, C Street between Fifth & Sixth Streets, Kaneohe, Honolulu County, HI

  13. DETAIL OF ORIGINAL WINDOWS ON SECOND FLOOR AT THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF ORIGINAL WINDOWS ON SECOND FLOOR AT THE EAST END, SHOWING CLEARANCE BETWEEN WINDOW SASH AND PILASTER. VIEW FACING NORTH-NORTHWEST. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI

  14. 29. May 1985. DETAIL OF INSCRIPTION IN WINDOW PANE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. May 1985. DETAIL OF INSCRIPTION IN WINDOW PANE IN SITTING ROOM (window is immediately south of front, or east, doors; inscription reads: 'Another May new buds new flowers Ah why has happiness no second spring' (author and date undetermined) - Borough House, West Side State Route 261, about .1 mile south side of junction with old Garners Ferry Road, Stateburg, Sumter County, SC

  15. 16. Detail, northeast facade, operator's bow window and tower; note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, northeast facade, operator's bow window and tower; note condition of slates on tower skirt roof, missing section of gutter at left side of skirt roof, missing window panes; note also knee braces carried on masonry ancons; view to southwest, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  16. 46 CFR 127.440 - Operability of window coverings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Operability of window coverings. 127.440 Section 127.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Construction of Windows, Visibility, and Operability of Coverings § 127.440 Operability of...

  17. 46 CFR 127.440 - Operability of window coverings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Operability of window coverings. 127.440 Section 127.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Construction of Windows, Visibility, and Operability of Coverings § 127.440 Operability of...

  18. FACILITY 713, LIVING ROOM SHOWING DIAMONDPANED WINDOWS FLANKING THE FIREPLACE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 713, LIVING ROOM SHOWING DIAMOND-PANED WINDOWS FLANKING THE FIREPLACE, AND LEADED-GLASS WINDOWS IN DINING ROOM IN RIGHT BACKGROUND, VIEW FACING SOUTHEAST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  19. 49 CFR 238.113 - Emergency window exits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency window exits. 238.113 Section 238.113 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Safety Planning and General Requirements § 238.113 Emergency window exits....

  20. 49 CFR 238.114 - Rescue access windows.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Rescue access windows. 238.114 Section 238.114 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Safety Planning and General Requirements § 238.114 Rescue access windows....

  1. DETAIL VIEW, CENTER FIRSTFLOOR WINDOW IN WEST WALL. ORIGINALLY, THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, CENTER FIRST-FLOOR WINDOW IN WEST WALL. ORIGINALLY, THE EXTERIOR OF THE HOUSE WAS, AT THE VERY LEAST, LIMED, AND POSSIBLY STUCCOED. THUS, THE CONTRAST BETWEEN THE NEATLY CRAFTED BRICK WINDOW SURROUNDS AND THE STONE WALL WOULD HAVE BEEN REDUCED - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  2. Solving Math Problems. Windows on Literacy: Language, Literacy & Vocabulary

    ERIC Educational Resources Information Center

    Roberts, Jason

    2006-01-01

    This book is part of the "Windows on Literacy: Language, Literacy & Vocabulary" program and shows students ways to solve problems, including drawing a picture and using a calculator. The suggested grade range is K-3; the guided reading level is N-P; the basal results level is Grade 2-Grade 3; and the Windows on Literacy Stage is Fluent Plus…

  3. Interior of processing room showing the passthrough window from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of processing room showing the pass-through window from the shucking room. Tally board on the wall was used to keep track of the output of each shucker. Skimming table for rinsing the oyster meat is located under the pass-through window. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  4. Analysis of distributed cooled high power millimeter wave windows

    SciTech Connect

    Nelson, S.D.; Caplan, M.; Reitter, T.A.

    1995-09-09

    The sectional high-frequency (100--170 GHz) distributed cooled window has been investigated both electromagnetically and thermally previously using computational electromagnetics (EM) and thermal codes. Recent data describes the relationship to some experimental data for the window. Results are presented for time domain CW EM analyses and CW thermal and stress calculations.

  5. 14 CFR 25.775 - Windshields and windows.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Windshields and windows. 25.775 Section 25.775 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.775 Windshields and windows....

  6. 9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW FRONT DOOR, AND ORIGINAL 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS IN SINGLE AND DOUBLE ARRANGEMENTS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  7. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  8. 49 CFR 238.113 - Emergency window exits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Emergency window exits. 238.113 Section 238.113..., electrical locker, or kitchen); and (B) There are no more than eight seats in the seating area. (4) Cars with... have at least one emergency window exit in each such compartment. For purposes of this paragraph...

  9. 49 CFR 238.113 - Emergency window exits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Emergency window exits. 238.113 Section 238.113..., electrical locker, or kitchen); and (B) There are no more than eight seats in the seating area. (4) Cars with... have at least one emergency window exit in each such compartment. For purposes of this paragraph...

  10. Adjusting the detection window to improve the soliton communication system

    NASA Astrophysics Data System (ADS)

    Chi, Sien; Kao, Chuan-Yuan; Dung, Jeng-Cherng; Wen, Senfar

    2000-12-01

    The improvements of the Q factors of 10-Gb/s soliton systems detected by adjusting detection window are studied. We have found that the optimal width of the detection window depends on the noise-induced timing jitter, noise-induced soliton energy fluctuation, amplifier noise, dispersive wave, and soliton pulse width.

  11. 33. DETAIL VIEW OF THE WEST WINDOW AT THE FIRST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. DETAIL VIEW OF THE WEST WINDOW AT THE FIRST FLOOR LEVEL OF THE TOWER (NOTE LEVEL OF ARCHITECTURAL FINISH SEEN IN THE ROUNDHEADED WINDOW WITH ITS ROUND-ARCHED, BROWNSTONE HOOD THAT TERMINATES IN BRACKETS AS WELL AS IN THE STRINGCOURSE AND IN BRICK INSET-PANELING BELOW THE BROWNSTONE SILL) - Kenworthy Hall, State Highway 14 (Greensboro Road), Marion, Perry County, AL

  12. Radiation-transparent windows, method for imaging fluid transfers

    DOEpatents

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  13. VIEW OF ORIGINAL WINDOWS (TYPICAL) OF BUILDING 445, FROM EXTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF ORIGINAL WINDOWS (TYPICAL) OF BUILDING 445, FROM EXTERIOR OF THE BUILDING. THESE ORIGINAL STEEL SASHED WINDOWS ARE SHOWN WITH THE STEEL SHUTTERS OPEN. - U.S. Naval Base, Pearl Harbor, Magazine Building, Kuakua Avenue near Wharf S-20, Pearl City, Honolulu County, HI

  14. 22. DETAIL OF TRIPLE WINDOW, SOUTHEAST ROOM, FIRST FLOOR. Typical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OF TRIPLE WINDOW, SOUTHEAST ROOM, FIRST FLOOR. Typical for all triple windows on first and second floors. Single swing jib door under center sash opening out. Door thickness measures from flush with exterior siding to 3/4' inside bottom sash. See also Photo 12. SC-291-12. - John Joyner Smith House, 400 Wilmington Street, Beaufort, Beaufort County, SC

  15. VIEW OF ORIGINAL WINDOWS (TYPICAL) OF BUILDING 416, FROM EXTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF ORIGINAL WINDOWS (TYPICAL) OF BUILDING 416, FROM EXTERIOR OF THE BUILDING. THESE ORIGINAL STEEL SASHED WINDOWS ARE SHOWN WITH THE STEEL SHUTTERS OPEN. - U.S. Naval Base, Pearl Harbor, Magazine Building, Kuakua Avenue near Wharf S-19, Pearl City, Honolulu County, HI

  16. Field repair of AH-16 helicopter window cutting assemblies

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1984-01-01

    The U.S. Army uses explosively actuated window cutting assemblies to provide emergency crew ground egress. Gaps between the system's explosive cords and acrylic windows caused a concern about functional reliability for a fleet of several hundred aircraft. A field repair method, using room temperature vulcanizing silicone compound (RTV), was developed and demonstrated to fill gaps as large as 0.250 inch.

  17. High-Reliability Waveguide Vacuum/Pressure Window

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Hanson, Theodore R.; Long, Ezra M.; Montanez, Steven

    2013-01-01

    The NASA Deep Space Network (DSN) uses commercial waveguide windows on the output waveguide of Ka-band (32 GHz) low-noise amplifiers. Mechanical failure of these windows resulted in an unacceptable loss in tracking time. To address this issue, a new Ka-band WR-28 waveguide window has been designed, fabricated, and tested. The window uses a slab of low-loss, low-dielectric constant foam that is bonded into a 1/2-wave-thick waveguide/flange. The foam is a commercially available, rigid, closed-cell polymethacrylimide. It has excellent electrical properties with a dielectric constant of 1.04, and a loss tangent of 0.01. It is relatively strong with a tensile strength of 1 MPa. The material is virtually impermeable to helium. The finished window exhibits a leak rate of less than 3x10(exp -3)cu cm/s with helium. The material is also chemically resistant and can be cleaned with acetone. The window is constructed by fabricating a window body by brazing a short length of WR-28 copper waveguide into a standard rectangular flange, and machining the resulting part to a thickness of 4.6 mm. The foam is machined to a rectangular shape with a dimension of 7.06x3.53 mm. The foam is bonded into the body with a two-part epoxy. After curing, the excess glue and foam are knife-trimmed by hand. The finished window has a loss of less than 0.08 dB (2%) and a return loss of greater than 25 dB at 32 GHz. This meets the requirements for the DSN application. The window is usable for most applications over the entire 26-to-40-GHz waveguide band. The window return loss can be tuned to a required frequency by var y in g the thickness of the window slightly. Most standard waveguide windows use a thin membrane of material bonded into a recess in a waveguide flange, or sandwiched between two flanges with a polymer seal. Designs using the recessed window are prone to mechanical failure over time due to constraints on the dimensions of the recess that allow the bond to fail. Designs using the

  18. Accelerated Durability Testing of Electrochromic Windows

    SciTech Connect

    Tracy, C. E.; Zhang, J. G.; Benson, D. K.; Czanderna, A. W.; Deb, S. K.

    1998-12-29

    Prototype electrochromic windows made by several different U.S. companies have been tested in our laboratory for their long-term durability. Samples were subjected to alternate coloring and bleaching voltage cycles while exposed to simulated on 1-sun irradiance in a temperature-controlled environmental chamber with low relative humidity. The samples inside the chamber were tested under a matrix of different conditions. These conditions include: cycling at different temperatures (65 C, 85 C, and 107 C) under the irradiance, cycling versus no-cycling under the same irradiance and temperature, testing with different voltage waveforms and duty cycles with the same irradiance and temperature, cycling under various filtered irradiance intensities, and simple thermal exposure with no irradiance or cycling. The electro-optical characteristics of the samples were measured between 350 and 1,100 nm every 4,000 cycles for up to 20,000 cycles. Photographs of the samples were taken periodically wi th a digital camera to record cosmetic defects, the extent of residual coloration, and overall coloration and bleaching uniformity of the samples. Our results indicate that the most important cause of degradation is the combination of continuous cycling, elevated temperature, and irradiance. The relative importance of these variables, when considered synergistically or separately, depends on the particular device materials and design.

  19. Temporal Integration Windows for Naturalistic Visual Sequences

    PubMed Central

    Fairhall, Scott L.; Albi, Angela; Melcher, David

    2014-01-01

    There is increasing evidence that the brain possesses mechanisms to integrate incoming sensory information as it unfolds over time-periods of 2–3 seconds. The ubiquity of this mechanism across modalities, tasks, perception and production has led to the proposal that it may underlie our experience of the subjective present. A critical test of this claim is that this phenomenon should be apparent in naturalistic visual experiences. We tested this using movie-clips as a surrogate for our day-to-day experience, temporally scrambling them to require (re-) integration within and beyond the hypothesized 2–3 second interval. Two independent experiments demonstrate a step-wise increase in the difficulty to follow stimuli at the hypothesized 2–3 second scrambling condition. Moreover, only this difference could not be accounted for by low-level visual properties. This provides the first evidence that this 2–3 second integration window extends to complex, naturalistic visual sequences more consistent with our experience of the subjective present. PMID:25010517

  20. Dynamics of window glass fracture in explosions

    SciTech Connect

    Beauchamp, E.K.; Matalucci, R.V.

    1998-05-01

    An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.